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Abstract: For the production of chemicals from biomass, new selective processes are required.
The selective oxidation of 5-(Hydroxymethyl)furfural (HMF), a promising platform molecule in fine
chemistry, to 2,5-furandicarboxylic acid (FDCA) is considered a promising approach and requires the
oxidation of two functional groups. In this study, Au/ZrO2 catalysts with different mean particle sizes
were prepared by a chemical reduction method using tetrakis(hydroxymethyl)phosphonium chloride
(THPC) and tested in HMF oxidation. The catalyst with the smallest mean particle size (2.1 nm) and
the narrowest particle size distribution was highly active in the oxidation of the aldehyde moiety of
HMF, but less active in alcohol oxidation. On the other hand, increased activity in FDCA synthesis
up to 92% yield was observed over catalysts with a larger mean particle size (2.7 nm), which had
a large fraction of small and some larger particles. A decreasing FDCA yield over the catalyst with
the largest mean particle size (2.9 nm) indicates that the oxidation of both functional groups require
different particle sizes and hint at the presence of an optimal particle size for both oxidation steps.
The activity of Au particles seems to be influenced by surface steps and H bonding strength, the latter
particularly in aldehyde oxidation. Therefore, the presence of both small and some larger Au particles
seem to give catalysts with the highest catalytic activity.

Keywords: gold catalysis; selective oxidation; colloidal synthesis; 5-(hydroxymethyl)furfural;
2,5-furandicarboxylic acid; particle size; biomass conversion

1. Introduction

The depletion of fossil resources and the ever-growing demand for energy and chemical products
drive the need to exploit renewable carbon sources such as biomass [1,2]. Inspired by current
value chains that are based on a small number of platform chemicals like ethylene or propylene,
the production of platform molecules through the partial fragmentation of biomass is one promising
approach [3]. 5-(Hydroxymethyl)furfural (HMF) is considered one of the most versatile platform
molecules that can be produced from carbohydrate biomass via dehydration [4–6]. More specifically,
HMF is obtained from hexoses and can therefore also be produced from non-edible polymeric
carbohydrates like cellulose [7]. As a platform molecule, HMF can undergo a variety of reactions
like hydrogenation, [8] dehydrogenation [9], or hydrodeoxygenation [10]. Furthermore, the selective
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oxidation of HMF has gained great interest in recent years. Selective oxidation of HMF can for example
give 5-hydroxymethyl-2-furancarboxylic acid (HFCA) or 2,5-diformylfuran. One of the most important
oxidation products is 2,5-furandicarboxylic acid (FDCA), [11,12] which is produced via the oxidation of
both functional groups of HMF (Scheme 1). The structural similarity of FDCA to terephthalic acid led to
its consideration as one of the twelve important molecules that can be produced from sugar-containing
biomass feedstock [11,12]. Therefore, FDCA may be used in future bio-based polymers thus overcoming
the need of petrochemical-based terephthalic acid [13,14]. Synthetic approaches for FDCA synthesis
include stoichiometric oxidation reactions [15] as well as catalytic routes with mostly molecular oxygen.
The latter range from bio- [16,17] to electro- [18–20] and metal catalysis. Current FDCA production is
based on the homogeneously catalyzed AMOCO process, which is carried out in acetic acid solvent at
125 ◦C and 70 bar air in the presence of a Cu/Mn/Br catalyst [21]. In addition, heterogeneous metal
catalysts have been applied in HMF oxidation. Especially supported noble metals like Pt [22–24] or
Pd [25–27] are catalytically active in this reaction. Among others, supported gold-based catalysts show
high activity in the oxidation of HMF with oxygen to FDCA [28–35]. For example, Au supported on
CeO2 nanoparticles allowed the production of FDCA in 96% yield after 5 h at 130 ◦C [28].
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Scheme 1. Possible products and involved oxidation steps of 5-(Hydroxymethyl)furfural (HMF)
oxidation over noble metal catalysts in alkaline solution.

Considering the chemical inertness of the bulk metal, gold has in early times been regarded
to be catalytically inactive as well. However, small Au particles of few nanometers in size show
catalytic activities in a variety of both gas and liquid phase reactions. Triggered by pioneering studies
on gold-catalyzed oxidation of CO [36], gold catalysts have been used in a variety of oxidation
reactions [37]. A special feature of gold catalysts is a strong dependence of catalytic activities on
the gold particle size. For example, small particles of 2 nm in size were first found most active in
the oxidation of CO [38] and propylene [39,40]. Later studies found that small clusters rather than
nanoparticles are the catalytically active species [41], but such clusters may require high surface areas
of the support material [42]. In contrast, slightly larger particles in the nanometer range (≈7 nm) are
most active in alcohol oxidation [43,44].

Given that HMF bears two different functional groups, one alcohol and one aldehyde, and the
strong influence of the Au particle size on the oxidation of different groups, an optimal Au particle
size is needed to oxidize each group in high yields. In this study, we prepared gold catalysts of four
different Au mean particle sizes (ranging from 2.1 to 2.9 nm) using a chemical reduction method with
THPC. The catalysts were characterized and tested in the batch-wise oxidation of HMF, in which the
influence of reaction temperature, amount of added base and air pressure were investigated.

2. Results

2.1. Catalyst Characterization

The starting gold colloids, prior to deposition on the ZrO2 support, were analyzed by UV-Vis
spectroscopy (Figure S1). The spectra showed very weak surface plasmon resonance (SPR) bands,
indicating that the particle size of the Au nanoparticles is smaller than ≈3 nm. According to
literature [38,45,46], below this value the SPR is strongly suppressed and surface scattering is the factor
dominating the UV-Vis spectrum. The colloid with the expected larger size presents additionally
a faint band centered at about 525 nm, indicating the possible presence of particles of up to 20 nm size.
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The supported catalysts are labelled as AuZX, where Z represents the ZrO2 support material and
X represents the mean particle size by number based on scanning transmission electron microscopy
(STEM, see text below and Figure 1). The metal loading (nominal loading: 2 wt.%) and the specific
surface area of the four catalysts used in this study are listed in Table 1. Deposition of the gold colloids
did not affect the specific surface area of the used ZrO2 support material showing that the Au colloids
or reductant did not block the pores of the support material. The support was added to the colloidal
suspension to achieve a Au loading of 2 wt.%, however lower metal loadings show an incomplete
deposition of the formed gold colloids on the support materials.
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Figure 1. Representative STEM images and the corresponding particle size distributions by number of
the four freshly prepared catalysts. The catalysts were labelled according to their mean particle sizes (a)
AuZ2.1, (b) AuZ2.4, (c) AuZ2.7, and (d) AuZ2.9.

Table 1. Metal loading and specific surface area of the Au/ZrO2 catalysts and the ZrO2 support material.

Entry Support/Catalyst Au Loading/wt.% Specific Surface Area/m2 g−1

1 ZrO2 - 99
2 AuZ2.1 1.4 97
3 AuZ2.4 1.8 98
4 AuZ2.7 1.8 100
5 AuZ2.9 1.8 102

For none of the catalysts, were any reflections of gold observed in the powder X-ray diffraction
(XRD) patterns (Figure S2). The absence of Au reflections is in good agreement with the Au loading
and the expected particle sizes, which are below the detection limit of XRD [47]. In addition,
similar diffraction patterns of the catalysts to the pure support material in all cases evidenced that
ZrO2 was stable in the colloidal suspension.

To gain insight into the particle sizes and size distributions of the catalysts, STEM images were
recorded (Figure 1). AuZ2.1 (Figure 1a) shows a narrow particle size distribution with an average
particle size of 2.1 nm at 37% dispersion. For this catalyst, 90% of all counted particles have a size of less
than 3 nm with 58% of all particles being in the range of 1–2 nm. The average particle size is slightly
larger than it was previously reported using this preparation procedure [43]. In contrast to the previous
report, the increase in the particle size was not that pronounced for the four catalysts with average
sizes of 2.4 nm, 2.7 nm, and 2.9 nm, respectively (Figure 1b–d). The increasing average particle size can
be attributed to a broadening of the particle size distributions in all cases. This means, that for the
catalysts b-d most particles are in the range of 2–3 nm (b: 45%, c: 41%, d: 50%), however, the fraction
of large particles increases, which can both be seen in the representative TEM images as well as the
particle size distributions (Figure 1). The difference in particle size distributions compared to literature
might be explained by the fact that we used another support material and chose to characterize the final
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supported catalysts. Possibly, larger particles were not adsorbed on the support material, which might
also explain the slightly lower metal loading. Note that the trend in particle size prevails also when
normalized to the surface atoms instead of the number of particles.

IR spectra were recorded for all the supported catalysts to investigate whether remains of the
reducing agent THPC were still present in the catalysts (Figure 2). In contrast to the pure support
material, all catalysts show two bands at 1130 cm–1 and 1052 cm–1. In the basic solution (see
details in the Experimental Section), bis(hydroxymethyl)phosphinic acid is formed from THPC [43].
Therefore, the bands can be assigned to the P = O (1130 cm–1) and P-OH (1052 cm–1) vibrations,
respectively. This shows, that all catalysts still contained residues of THPC even after a thorough
washing procedure.

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 13 

 

IR spectra were recorded for all the supported catalysts to investigate whether remains of the 
reducing agent THPC were still present in the catalysts (Figure 2). In contrast to the pure support 
material, all catalysts show two bands at 1130 cm–1 and 1052 cm–1. In the basic solution (see details in 
the Experimental section), bis(hydroxymethyl)phosphinic acid is formed from THPC [43]. Therefore, 
the bands can be assigned to the P = O (1130 cm–1) and P-OH (1052 cm–1) vibrations, respectively. This 
shows, that all catalysts still contained residues of THPC even after a thorough washing procedure. 

 
Figure 2. IR spectra of the supported as prepared catalysts and the pure ZrO2 support (dotted line). 

In order to quantify the surface contamination with remains of THPC, the catalysts were 
additionally characterized using X-ray photoelectron spectroscopy (XPS, Table 2, Figures S3 and S4). 
For all of them, the phosphorous content is indeed limited, and found in the range of 1–2 at%, with 
similar percentages also for gold. Only in the case of the sample with the largest average size the 
determined gold content is lower than 1 at% and therefore the P/Au ratio is four-fold that of the other 
samples. The samples contain also relevant amount of chlorine, originating both from the THPC and 
the gold precursor itself (tetrachloroauric acid). The latter is the most likely source, given the low 
amount of phosphorous present. 

Table 2. Atomic percentages of the elements composing the surface of the samples, determined by 
XPS. 

Entry Catalyst C / at% O / at% P / at% Au / at% Zr / at% Cl / at% 
1 AuZ2.1 49.4 33.1 1.4 1.0 6.9 8.2 
2 AuZ2.4 42.9 38.9 0.9 1.0 8.4 7.9 
3 AuZ2.7 43.0 37.6 1.8 1.6 7.4 8.6 
4 AuZ2.9 35.5 38.3 1.6 0.4 12.0 11.0 
 
The detailed analysis of the Au4f regions (Figure S4) showed that Au is mainly in metallic state 

(Au4f7/2 ≈ 83.5 eV), while oxidized components (Au+, Au4f7/2 ≈ 86.7 eV) are limited to 2–5%. Although 
cationic Au species also correlated with HMF oxidation activity for Au/CeO2 catalysts [48], their effect 
in this study is most likely not pronounced due to their low quantity, comparable among all the 
samples. 

2.2. Catalytic Activity 

The catalytic activity of all catalysts in HMF oxidation was studied under the same reaction 
conditions of 100 °C, 10 bar air pressure in the presence of four equivalents of NaOH (Table 3), based 
on a thorough literature review (e.g., refs. [28,30,31,48,49]). A catalyst prepared by deposition-
precipitation with a mean particle size of 3.7 nm (31% dispersion) was tested as a reference [50]. The 
generally lower product yields compared to Au/ZrO2 prepared via deposition-precipitation (Table 3, 
entry 1) might be explained by the preparation procedure, since the reference sample was calcined 

3500 3000 2500 2000 1500 1000 500

Ab
so

rb
an

ce

Wavenumber / cm-1

11
30

10
52

11
30

10
52

11
30

10
52

11
30

10
52

ZrO2

AuZ2.1

AuZ2.4

AuZ2.7

AuZ2.9

Figure 2. IR spectra of the supported as prepared catalysts and the pure ZrO2 support (dotted line).

In order to quantify the surface contamination with remains of THPC, the catalysts were
additionally characterized using X-ray photoelectron spectroscopy (XPS, Table 2, Figures S3 and
S4). For all of them, the phosphorous content is indeed limited, and found in the range of 1–2 at%,
with similar percentages also for gold. Only in the case of the sample with the largest average size
the determined gold content is lower than 1 at% and therefore the P/Au ratio is four-fold that of the
other samples. The samples contain also relevant amount of chlorine, originating both from the THPC
and the gold precursor itself (tetrachloroauric acid). The latter is the most likely source, given the low
amount of phosphorous present.

Table 2. Atomic percentages of the elements composing the surface of the samples, determined by XPS.

Entry Catalyst C/at% O/at% P/at% Au/at% Zr/at% Cl/at%

1 AuZ2.1 49.4 33.1 1.4 1.0 6.9 8.2
2 AuZ2.4 42.9 38.9 0.9 1.0 8.4 7.9
3 AuZ2.7 43.0 37.6 1.8 1.6 7.4 8.6
4 AuZ2.9 35.5 38.3 1.6 0.4 12.0 11.0

The detailed analysis of the Au4f regions (Figure S4) showed that Au is mainly in metallic
state (Au4f7/2 ≈ 83.5 eV), while oxidized components (Au+, Au4f7/2 ≈ 86.7 eV) are limited to
2–5%. Although cationic Au species also correlated with HMF oxidation activity for Au/CeO2

catalysts [48], their effect in this study is most likely not pronounced due to their low quantity,
comparable among all the samples.

2.2. Catalytic Activity

The catalytic activity of all catalysts in HMF oxidation was studied under the same reaction
conditions of 100 ◦C, 10 bar air pressure in the presence of four equivalents of NaOH (Table 3), based on
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a thorough literature review (e.g., refs. [28,30,31,48,49]). A catalyst prepared by deposition-precipitation
with a mean particle size of 3.7 nm (31% dispersion) was tested as a reference [50]. The generally
lower product yields compared to Au/ZrO2 prepared via deposition-precipitation (Table 3, entry 1)
might be explained by the preparation procedure, since the reference sample was calcined (350 ◦C,
4 h) prior to testing while the samples discussed here were used as prepared to avoid particle growth.
A possible influence could arise from the presence of the P and Cl contaminants, which might block
some of the active sites of the gold nanoparticles. On the other hand, the trend in activity does
not follow the variations seen for P and Cl contents since, e.g., AuZ2.9 with the highest relative
contaminations has a productivity similar to that of AuZ2.4, which has the least amount of impurities.
Hence, the difference in catalytic activity can be rationalized in terms of differences in noble metal
particle size. Attributing differences in catalytic activity to the nanoparticle size rather than small
Au clusters seems also reasonable, as the reaction is carried out in liquid phase and particles in the
nanometer range are the ones active in alcohol oxidation [43,44]. Accordingly, nanoparticles rather
than clusters will provide active sites. Furthermore, no correlation of the catalytic activity to the
electronic structure of Au can be found. AuZ2.1 and AuZ2.9 are almost similar in terms of electronic
structure based on XPS, but differ widely in their catalytic activity. This also underlines that the activity
differences arise from the particle sizes.

Table 3. Catalyst screening of Au/ZrO2 catalysts with different mean particle sizes in the oxidation
of HMF. Reaction conditions: 100 ◦C, 10 bar air pressure, 4 equivalents of NaOH, 5 h reaction time,
1 mmol HMF in 10 mL H2O, 98.5 mg catalyst.

Entry Catalyst HMF Conversion/%
Yield/%

C-Balance/% Productivity a/molFDCA h−1

molAu−1HFCA FDCA

1 [50] Au/ZrO2 100 0 75 75 19 (72)
2 AuZ2.1 100 9 16 25 5 (10)
3 AuZ2.4 100 0 35 35 8 (18)
4 AuZ2.7 100 0 43 43 10 (25)
5 AuZ2.9 100 1 30 31 7 (18)

a: Productivities normalized to surface Au atoms are given in brackets (molFDCA h−1 molAu,surface
−1).

Comparing the product yields under the same reaction conditions over the catalysts prepared
by the colloidal method, although the particle size differences are rather small, a clear trend can be
observed. AuZ2.1 gave the lowest carbon balance of 25% (Table 3, entry 2) with a FDCA yield of 16%
and 9% yield of the intermediate HFCA. AuZ2.4 gave a higher FDCA yield of 35% and a maximum
FDCA yield was observed over AuZ2.7, which produced FDCA in 43% yield. The differences in activity
between AuZ2.1 and AuZ2.4 can be attributed to the particle size, since these catalysts have similar
phosphorous and chloride content as well as fraction of cationic Au. No HFCA was produced over
AuZ2.4 and AuZ2.7, indicating a high activity in the oxidation of the intermediate HFCA. AuZ2.9 with
the largest mean particle size among the catalysts prepared by the colloidal method gave FDCA in
a lower yield of 30% along with 1% of HFCA. The same trend is also reflected in the productivity,
which normalizes the product yield to the reaction time and to the Au content thus eliminating any
effect from the slightly different Au loadings. For AuZ2.7, the highest productivity rate of 10 molFDCA

h−1 molAu
−1 was obtained under these reaction conditions. Note, that the productivity was calculated

based on the total amount of Au instead of the surface Au. Taking surface atoms into account in the
calculation leads to a higher productivity because of the lower fraction of surface Au atoms. The trend
persists, but the absolute values and relative differences between the catalysts increase (Table 3). AuZ2.4
and AuZ2.9 perform similarly when normalized to surface Au atoms with AuZ2.7 giving the highest
productivity of 25 molFDCA h−1 molAu,surface

−1.
The influence of the reaction temperature on the oxidation of HMF is shown in Figure 3. Since HMF

is unstable in basic aqueous solution and at high temperatures, [18] lowering the reaction temperature
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results in a higher carbon balance. On the other hand, the oxidation of the hydroxymethyl group
is the rate limiting step and often requires higher reaction temperatures [28]. Therefore, an optimal
temperature as a compromise between reaction time and high yield has to be determined. As expected,
a high carbon balance of above 80% was observed for all catalysts at 50 ◦C and HFCA was formed as
the main product. This shows that all catalysts have a high activity in aldehyde oxidation, although
there are slight differences. The highest carbon balance of 98% was observed for AuZ2.7, which yielded
73% of HFCA along with 25% of FDCA. This catalyst was active in alcohol oxidation even at a low
temperature of 50 ◦C. Increasing the reaction temperature led to a reduction of the HFCA yield and
the carbon balance for all catalysts. The HFCA yield decreased linearly over AuZ2.1 with increasing
the temperature to 75 ◦C and FDCA yield just increased slightly from 1 to 16%. On the other hand,
the selectivity shifted to FDCA at 75 ◦C for all catalysts except AuZ2.1, for which the selectivity switch
occurred only at 100 ◦C, with a decreasing overall carbon balance. These results show that alcohol
oxidation is the rate limiting step in this reaction, in line with literature [28] and is more pronounced for
smaller Au particles (<2.4 nm). For the three catalysts with larger mean particle sizes, the highest FDCA
yield of 55% was obtained at 75 ◦C (12 molFDCA h−1 molAu

−1). Also the surface-atom-normalized
productivities increase with increasing particle size from 8, 29, 30 to 33 molFDCA h−1 molAu, surface

−1

over AuZ2.1, AuZ2.4, AuZ2.7, and AuZ2.9, respectively, showing superior activity of larger particles.
Therefore, further catalytic experiments were carried out at this temperature, which was also chosen
for AuZ2.1 in order to have comparable reaction conditions.
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Reducing the amount of added base minimizes HMF degradation and enhances the sustainability
of the reaction. However, the poor solubility of FDCA in water and the formation of a germinal diol as
essential intermediate in the claimed reaction mechanism necessitate the use of a homogeneous base in
most reactions [51]. Figure 4 shows the influence of NaOH addition on the product yields over all
four catalysts. In all reactions that were conducted in the absence of base, a little amount of HMF was
converted, showing some catalytic activity in the base-free oxidation of HMF. Under these conditions,
the HMF conversion increased from 5 to 11% with increasing mean particle sizes. This indicates
that the particle size of Au also affects HMF conversion. In the absence of base, some reactions
gave HFCA in high selectivity. For example, HFCA was produced in 100% selectivity over AuZ2.4
at 7% HMF conversion. Increasing the amount of NaOH led to a linear increase in HFCA yield for
all catalysts. At 1 equivalent of NaOH referred to HMF, HFCA was exclusively produced indicating
that one hydroxide ion is required per oxidized functional group [51]. The highest HFCA yield of
93% was observed over AuZ2.1. Further increasing the amount of added base to two equivalents led
to an increase in FDCA production, which was produced in the highest yield of 51% over AuZ2.7.
Under these conditions, also AuZ2.1 produced some FDCA in 30% yield. Increasing the amount of
added NaOH to 4 equivalents led to a further increase in FDCA production, which was produced in
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a yield of around 55% over all catalysts other than AuZ2.1, which was the only catalyst that afforded
less FDCA in 14% yield upon further increasing the amount of NaOH.Catalysts 2020, 10, x FOR PEER REVIEW 7 of 13 
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The influence of the air pressure was investigated as a last step and was performed at 75 ◦C in
the presence of 4 equivalents of NaOH (Figure 5). As oxygen is consumed in the oxidation process,
presumably by indirect participation in the mechanism, the yield of oxidation products should also
increase with increasing pressure. A higher air pressure of 30 bar led to the exclusive production
of FDCA for all catalysts, which was additionally produced in higher yields. Under these reaction
conditions, FDCA was even produced in a high yield of 80% over AuZ2.1, which did not show a high
activity in alcohol oxidation in the previous reactions. However, in line with the aforementioned
studies, the FDCA yield over AuZ2.1 was the lowest under these conditions. Also at a higher air
pressure of 30 bar, AuZ2.7 showed the highest activity in FDCA synthesis, which was produced in 92%
yield at a productivity of 20 molFDCA h−1 molAu. The differences in the productivity normalized to
surface Au atoms becomes smaller here with the highest value of 53 molFDCA h−1 molAu,surface

−1 for
AuZ2.7 further underlining its superior activity. No leaching of Au (<1 ppm) was observed by means of
ICP-OES except for AuZ2.9, which corresponded to 0.2% of the total Au content. Thus, the adsorption
of pre-formed colloids resulted in strongly bound Au particles.
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3. Discussion

In this study, we investigated the particle size effect of small Au nanoparticles on the catalytic
HMF oxidation by fine-tuning the size of Au particles. Mean particle sizes between 2.1 and 2.9 nm
(286 atoms for 2.1 nm to 753 atoms for 2.9 nm) showed significant variations in activity and selectivity.
The differences in the catalytic activity can most likely be attributed to different particle sizes,
since other factors like e.g., the phosphorus or chloride contamination, did not show any clear
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correlation. In addition, particles in the nanometer range rather than small clusters were most active
in the oxidation of alcohols [44]. Recently, Megías-Sayago et al. [52] studied HMF oxidation over Au
particles in the range of 4–40 nm supported on carbon. In contrast to our study, both the HMF conversion
and HFCA yield were independent from the particle size at the larger particle sizes. Note that HMF
conversion is 100% in most reactions due to its instability in alkaline solution. An increasing activity
of smaller particles in alcohol oxidation of HMF was attributed to enhanced activity of such particles
to reduce oxygen on Au(100), which are present to a larger extent on small particles. Consequently,
oxygen is most probably activated on the Au particles in the present study as well, also considering the
unlikely activation on the support. However, the used model only applies to particles with a size of
more than 4 nm [52], which is larger than the mean sizes of particles used in this study also considering
the small fraction of particles in this range for AuZ2.7 and AuZ2.9. Thus, the observed differences in
catalytic activity can be attributed to the smaller particle sizes studied here.

The Au particle size is the most decisive factor influencing the catalytic activity of Au-based
catalysts in liquid phase reactions, sometimes even more important than the support material [53].
In general, the effect of the support material in HMF oxidation is an active field of research and was
attributed to the oxygen storage capacity [54], oxygen vacancies [48], or Brønsted acidity [55]. For ZrO2,
a low oxygen storage capacity was speculated to result in more active catalysts [54]. In addition,
the support material affects the particle-support interactions. Carbon-supported Au catalysts might
show different particle size dependencies, for example, intermediate particles were more active in the
oxidation of ethylene glycol when supported on carbon instead of Al2O3, since smaller Au particles
were located in micropores thus not accessible for the reactants [56]. The unlikely participation of the
used ZrO2 support material because of its low oxygen storage capacity combined with the fact that
the same support material was chosen for all catalysts tested here further underline the difference in
activity due to the particle size. This is also supported by no correlation between catalytic activity and
Au electronic structure.

AuZ2.1 showed the narrowest particle size distribution and no larger particles were found in TEM
analysis, therefore, its catalytic activity can be linked directly to the smallest gold particles. As AuZ2.1
showed the highest activity in HFCA production, i.e., aldehyde oxidation, and just a slight production
of FDCA at 2 equivalents of NaOH, the smaller particles seem to be beneficial in the oxidation of
the aldehyde but not the alcohol moiety of HMF when supported on ZrO2. In contrast, AuZ2.9 also
had a large fraction of small particles, however, with additional larger particles. Generally, catalysts
with larger mean particle sizes were more active in FDCA synthesis, i.e., alcohol oxidation, in line
with previous reports [43,57,58]. This might be due to the presence of surface steps, which are active
in β-H removal [58], also considering that the reactions were carried out with excess NaOH [52].
This step is also an important part of the reaction mechanism in HMF oxidation, which probably
follows a dehydrogenation mechanism [51,59]. During the reaction, the surface of Au particles gets
covered by hydrogen [51,60]. Since the interaction between hydrogen and gold is stronger for smaller
Au particles [61], active sites of AuZ2.1 may be blocked before being released after the reaction with
oxygen, which might be the reason for FDCA production only with increasing air pressure. During the
oxidation of the hydroxymethyl group, an aldehyde is formed in the first step [51]. Thus, the alcohol
moiety of HMF is transformed into the aldehyde on larger particles, which in turn is converted on the
smaller particles.

The instability of HMF in basic aqueous solution leads to humin formation, which lowers the
carbon balance. Since, HFCA does not polymerize or decompose under these reaction conditions,
it is therefore highly desirable to quickly convert HMF into HFCA before its thermal decomposition.
This is particularly relevant with the alcohol oxidation being the rate-limiting step in HMF oxidation
under such conditions. Therefore, the presence of a rather large fraction of small particles is beneficial
for HMF oxidation, since HFCA is formed quickly. An increasing FDCA yield with the particle size
up to AuZ2.7 shows that small but sufficiently large particles then oxidize the alcohol moiety and
FDCA is formed.
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4. Materials and Methods

4.1. Materials

Analytical grade chemicals were used without further purification: HMF, FDCA, THPC
(Sigma-Aldrich, Darmstadt, Germany), HFCA, NaOH (Merck, Darmstadt, Germany), 2,5-diformylfuran,
5-formyl-2-furancarboxylic acid (TCI Chemicals, Eschborn, Germany), ZrO2 1/8” pellets, HAuCl4·3H2O
(Alfa Aesar, Karlsruhe, Germany), synthetic air (Air Liquide, Düsseldorf, Germany).

4.2. Catalyst Preparation

The catalysts were prepared by a modified chemical reduction method based on a previously
established procedure [43]. In brief, gold colloids of different sizes were prepared by reducing alkaline
solutions of HAuCl4 with different molar ratios of the reducing agent THPC, which also acts as
a stabilizing agent. After generation of the gold sol, powdered ZrO2 was added to the acidified
(pH = 2) colloidal suspension, stirred for 1 h and the resulting catalyst was separated by centrifugation
and washed three times with water.

4.3. Catalyst Characterization

The starting colloids were analyzed, after 1:1 dilution with distilled water, by means of UV-Vis
spectroscopy, using a Perkin Elmer Lambda 650 spectrometer.

X-ray diffraction (XRD) measurements of powder catalysts were recorded between diffraction
angels 20◦ and 80◦ (step size 0.017◦, 0.53 s acquisition time) using Cu Kα radiation (1.54600 Å)
on a PANalytical (Malvern Panalytical, Kassel, Germany) X’Pert Pro instrument. In addition,
rotating sample holders were used.

The gold content of the supported catalysts was determined by X-ray fluorescence (XRF,
Bruker S4 Pioneer, Bruker, Billerica, MA, USA) and the concentration of gold in the reaction
solutions was investigated using inductively coupled plasma optical emission spectrometry (ICP-OES,
Agilent 720/725-ES, Agilent, Waldbronn, Germany).

The presence of organics on the supported catalysts was studied using infrared (IR) spectroscopy.
For this purpose, the powder catalysts were pressed into a pellet with KBr and spectra were recorded
in transmission mode (Agilent Varian 600-IR, Agilent, Waldbronn, Germany).

Specific surface areas of the catalysts and the corresponding support material were determined
by N2 physisorption according to the Brunauer–Emmet–Teller (BET) method. The catalysts were
pretreated by heating to 300 ◦C for 2 h under reduced pressure, prior to adsorption (Rubotherm
BELSORP-mini II, MicrotracBEL, Osaka, Japan).

Particle size distributions were determined based on transmission electron microscopy (TEM).
For the measurements, a suspension of the catalysts in ethanol was deposited on holey carbon-coated
gold grids. Scanning TEM (STEM) measurements were performed under high annular dark field
(HAADF) using a Fischione (Fischione Instruments, Export, PA, USA) model 3000 HAADF-STEM
detector on a FEI (Hillsboro, OR, USA) Titan 80–300 aberration corrected TEM instrument (300 kV).
The particle size distribution was determined by fitting ellipsoid shapes to the noble metal particles
using ImageJ software (National Institute of Health, Rockville, MD, USA). The dispersion of Au was
calculated from the mean particle size under the assumption of spherical particles using tabulated
values for the volume of Au atoms in bulk and the area of surface Au [62].

The XPS measurements were carried out under ultra-high vacuum with a base pressure in
10−10 mbar range. Core-level spectra were recorded under normal emission with a Scienta (Scienta
Omicron, Uppsala, Sweden) R4000 electron analyzer using Al-Kα radiation (1486.6 eV). In addition to
the survey XP spectra (Figure S3) the detailed C1s, O1s, P2p, Au4f, and Zr3d XP spectra were recorded.
For the determination of the atomic percentage the CasaXPS software was used. In case of Au4f line
the XP spectra were deconvoluted into two doublets corresponding to Au0 and Au3+ states (Figure S4).
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4.4. Selective Oxidation of HMF

Catalytic reactions were conducted in Teflon® inlets placed in home-built 52 mL autoclaves that
were magnetically stirred. The appropriate amount of water was added to 5 mL of a 0.2 M HMF and
the desired amount of NaOH was added as a 2.5 M solution to give a total volume of 10 mL. After the
addition of the catalyst (calculated based on the nominal metal loading of 2 wt.%), the reactors were
closed and the desired pressure was adjusted after purging the reactor three times with synthetic
air. The stirring speed was set to the maximum value and the reactors were heated with heating
sleeves controlled by a thermocouple inside the reaction mixture. The time at which the solution
first reached the desired temperature was set as the starting point of the reaction (t = 0). The reactors
were cooled to room temperature in an ice bath after the reactions followed by depressurizing and
separating the catalyst via decantation. Samples of the liquid phase were taken before and after the
reactions, filtered with a 0.45 µm Pall Teflon filter and diluted for HPLC analysis (HitachiPrimaide,
Hitachi, Chiyoda, Tokyo, Japan, Bio-Rad Aminex HPX-87H column, solvent 5 mM H2SO4, temperature
50 ◦C, 50 bar).

5. Conclusions

Au particles with different sizes between 2.1 and 2.9 nm supported on ZrO2 showed varying
product distributions in HMF oxidation. While small particles were identified to be highly active in
aldehyde oxidation, slightly larger particles favor alcohol oxidation. The differences in the catalytic
activity can be attributed to the presence of surface steps on larger particles, which are important
in alcohol oxidation as well as strongly bound H on smaller particles hindering further oxidation.
These differences could only be revealed by the very fine-tuning of the Au particle size on ZrO2.
Therefore, an ideal HMF oxidation catalysts should have small and larger Au particles to generate
a type of bifunctional catalysts of the same metal in order to achieve the highest activity in the oxidation
of both functional groups of HMF.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/3/342/s1,
Figure S1: UV-Vis spectra of the colloidal suspensions. Figure S2: XRD patterns of the supported as prepared
catalysts and the pure ZrO2 support material. Figure S3: XP spectra of the supported as prepared catalysts.
Figure S4: Au4f XP spectra of the supported catalysts. Figure S5: XRD patterns of the spent catalysts after
catalytic reactions.
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