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Abstract: The process of macromolecular crystallisation almost always begins by setting up
crystallisation trials using commercial or other premade screens, followed by cycles of optimisation
where the crystallisation cocktails are focused towards a particular small region of chemical space.
The screening process is relatively straightforward, but still requires an understanding of the plethora
of commercially available screens. Optimisation is complicated by requiring both the design and
preparation of the appropriate secondary screens. Software has been developed in the C3 lab to aid
the process of choosing initial screens, to analyse the results of the initial trials, and to design and
describe how to prepare optimisation screens.
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1. Introduction

There are a number of techniques which can produce atomic resolution structures of
macromolecules (for example, proteins), but by the far the most productive technique to date is
X-ray crystallography [1], whereby a crystal of the sample of interest is irradiated with high-energy
X-rays, and the resultant diffraction pattern deconvoluted to give an image of the molecules making
up the crystalline sample [2]. The production of ‘diffraction quality’ crystals is required for the
generation of atomic resolution structures by X-ray crystallography, and this is the major limitation of
the technique [3].

Although there are many techniques used for growing crystals [4], most crystals are grown using
the method of vapour diffusion, in which a droplet of pure, concentrated protein is mixed with a
droplet of a chemical mixture (also called the condition, or the cocktail), and the combined droplet is
allowed to equilibrate against a larger volume of the cocktail. These experiments can be hanging drop
experiments (often set up laboriously by hand, in 24 well arrays) or sitting drop experiments (which
are more likely to be set up with the help of automation, in 96 well arrays). The screening experiments
most often use standard sets of conditions, ‘commercial screens’ which are widely available through a
number of different vendors. Many different commercial screens exist. The variables for the screening
step are quite limited—what screen(s) to use, what protein concentration to test, how much of the
protein sample to include in the experimental drop, how much of the condition to include (i.e., the ratio
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of these two liquids), and the temperature at which to incubate the experiments. Each experimental
droplet must be examined, over a number of days or weeks for indications of a crystalline outcome.
If a suitable crystal is observed it can be harvested from the screening droplet, but most often several
cycles of optimisation are needed before a suitable crystal is obtained.

Optimisation can be done in many different ways [5], but almost all optimisation requires the
design and creation of a focused screen around conditions that appear to be promising from the
initial screening. This might be a screen using only chemicals found in ‘hits’ from the screening (often
called fine screening), or it might be a single cocktail, which is dispensed 96 times and where each
well is tweaked by the addition of a different chemical (additive screening). Optimisation requires
more decision making than screening, even putting aside the often very difficult question of what
screening condition(s) should be included in subsequent optimisation. Each cocktail consists of one or
more chemical factors, that is, a chemical with an associated concentration, concentration unit and
possibly pH value. In optimisation fine screening, one has to choose which chemicals to include,
what concentration, or concentration range, to use for each chemical, and possibly which pH or range
of pH values to be tested. On top of this there are orthogonal considerations that interfere with
the design process, such as the solubility and/or buffering range of a chemical, or the possibility of
unwanted interactions. For example, mixing solutions of calcium chloride and ammonium sulfate, two
commonly used chemicals in protein crystallisation, will inevitably lead to the formation of calcium
sulfate crystals, confounding the interpretation of the optimisation outcome.

There are a number of applications that estimate the likelihood of a successful protein
crystallisation given a sequence [6–10], but there are few software tools available that help to clarify
what to actually do in the laboratory to make the protein crystallise. A common approach is to do a
search to see if the target of interest has been crystallised before, and use the published conditions as a
starting point. If the target of interest has not been crystallised, then often the advice is to search for
(and then start screening with) crystallisation conditions used to crystallise similar proteins (perhaps
in the Biological Macromolecule Crystallization Database (BMCD; http://bmcd.ibbr.umd.edu/)) [11],
although recently the soundness of that approach has been questioned [12]. However, even if the
protein target has been crystallised previously, the literature conditions tend only to be a rough
guide—subtle differences in the exact construct and/or expression and purification can alter how
the protein target behaves in crystallisation experiments. Nevertheless, published conditions can
narrow down the screening process—for example, by suggesting that trialling conditions containing
mid-range polyethylene glycol (PEG) might be appropriate.

The Collaborative Crystallisation Centre (C3; http://crystal.csiro.au/) is a full service protein
crystallisation facility operated by the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) in Parkville, Australia. It was set up in the early 2000s to give the local structural biology
community access to crystallisation automation, but has extended its mandate since then to provide
novel software tools to facilitate the process of growing macromolecular crystals. To make the software
tools accessible, the tools are web-based, and include manuals on how to use the various features of
the programs. This report aims to give an flavour of what the tools can do, rather than describe in
detail how each feature works.

One of the first software tools developed in the C3 was the C6 webtool [13]. C6 (https://c6.csiro.
au/) was designed over ten years ago to provide a tool that would answer questions such as ‘Which
commercial screen contains the most PEG 8000?’, or ‘What range of ammonium sulfate concentrations
are found in Crystal Screen HT from Hampton Research?’ The web server PICKScreens [14] (https:
//registration.cc.biophys.mpg.de/pickscreens/) had a similar mandate. The C6 tool tries to capture
information about all the commercial screens in a format to allow these types of queries. Of course,
some of this information could be found by navigating to each vendor’s website in turn, but the
advantage of the C6 tool was the translation of all of the screen information provided by the vendor
into a common vocabulary [15], which enabled the development of a heuristic distance measurement
between individual conditions and screens [13]. Formalising the concept of similarity has been found
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useful by other groups since as well [16]. There were 220 commercial screens captured in the original
C6 tool (compared to the 129 in the PICKScreens database), since then over 100 new commercial
screens have been added. A further function of the original C6 tool was to provide a list of what
screens were physically present in C3, and thus available for use by the C3 user community. Along
with new commercial screens, other features and improvements have been added to the original tool.
The most fundamental was a ≈1000× increase in the speed of generating the underlying database,
with a concomitant increase in the real time utility of the tool. In this paper we describe five of the
more novel/useful new features of the C6 program.

More recently, we have developed a viewing, scoring and optimisation tool ‘See3’. See3 (https:
//see3.csiro.au/) incorporates a machine learning (ML) tool (MARCO) [17] which runs in real time and
returns one of four possible classifications to images of the crystal experiment (Clear, Precipitate, Crystal
or Other). The MARCO tool was generated using a multi-layered neural network (deep learning) using
a large set of training images of ≈500,000 human scored collected from a consortium of academic and
industrial crystallisation groups. The generated classification is estimated to be about 90% accurate for
the images collected in C3. The MARCO scores, along with manual human scoring, can be used to
generate fine screens for optimisation.

Overview of the C6 and See3 Programs

The See3 program is a web-based application for the viewing, scoring and optimisation of
crystallisation experiments which have been set up within C3. The C6 program is a tool for the analysis
and comparison of crystallisation screens, both those commercially available and those designed in the
See3 application. The two applications both rely on information from the ‘CM’ crystallisation database
in C3. This is an OracleTM12c database, which started as the ‘Crystal’ database provided by the
(now defunct) company RoboDesign (then Rigaku) with their Minstrel imaging system. Although C3
migrated from the Minstrel imagers in 2016, C3 continues to use the CM database, thus preserving ten
years of legacy data, and uses a Dynamic-link library (DLL) to translate between the CM schema and
the dataforms required to run the current (Formulatrix RI-1000) imagers. The CM database captures
information about the screens (and the cocktails that make up the screens), samples, users, images,
scores, as well as tracking the barcoded deepwell blocks and experimental crystallisation plates used
in C3. Both See3 and C6 have public information (commercial screens and screens offered by C3) and
private information (any data associated with a particular user). The latter is password protected and
only visible to the authorised users.

2. C6

The C6 program is a webtool which catalogues and compares crystallisation conditions. The tool
contains (most of) the commercial crystallisation screens, along with screens designed by users of the
C3 crystallisation facility. The data in the C6 SQLite database is derived from the screen information in
the CM database; along with the chemical description of each cocktail in every screen obtained from
the CM database, the C6 database contains a matrix of distances between every pair of crystallisation
cocktails [13]. The matrix of distances allows the calculation of screen (dis)similarity. This, for example,
allows for the trivial identification of commercial screens which are essentially the same, which is hard
to do by hand, as each vendor may have the same set of conditions in a screen, but ordered (or even
spelled) differently (Figure 1).

https://see3.csiro.au/
https://see3.csiro.au/
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Figure 1. Using the ‘Find similar screens’ report, it can be seen that the screens Crystal Screen HT
(Hampton Research, Aliso Viejo, CA, USA), Structure Screen 1 and 2 HT-96 (Molecular Dimensions), HT
kit (Sigma, St. Louis, MO, USA), The Classics Suite (Qiagen, Hilden, Germany), JBScreen Basic HTS (Jena
BioSciences, Jena, Germany) along with the Helsinki Random I screen (a non-commercial ‘community’
screen from Helsinki University) are all essentially the same, as they each have pairwise screen scores
(‘Score’) of < 0.1. A screen (dis)similarity score between two screens can be generated by using the
minimum paired distance of all the conditions in two screens. Using this approach, two screens with
every condition in common will have a screen (dis)similarity score of 0. A pair of screens where none
of the conditions in either screen have any chemicals in common will have a screen pair score of 1.

As in the earlier version [13], each screen in C6 can be displayed as a set of cocktails, or as a
list of the component chemicals, with usage count, concentration and pH ranges. The interface has
been updated, and now groups the available reports into logical classes. Under each section one
can choose from a predefined subset of all screens, e.g., ‘C3 screens’, or ‘Commercial Screens from
Hampton Research’. C6 also allows for the creation of both persistent custom subsets or on-the-fly
custom subsets of screens.

Within each section the queries can be filtered by subsets of screens, such as only those screens
available within C3, or only those screens sold by the vendor Hampton Research. For example, if one
wanted to see which screens are currently available from Molecular Dimensions, one would select the
report ‘Screens Lists’, and choose the filter ‘Commercial Screens’, then the filter ‘Molecular Dimensions’.

2.1. Interface

C6 now breaks down the available reports into four sections: ‘Screens and Stocks’, ‘Compare’,
‘Search’ and ‘Tools’ (Figure 2).
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Figure 2. The C6 reports are now grouped into four logical sections: ‘Screens and Stocks’, ‘Compare’,
‘Search’ and ‘Tools’.

Once the appropriate filters have been selected a list of screens is returned. Each screen name is
selectable, and clicking on a screen name will open a new browser tab containing a header containing
information about the screen, followed by a listing of the contents of each well of the screen (Figure 3).

Figure 3. The screens returned by selecting ‘C3 screens’ as a filter in the report ‘Screens Lists.’ The names
of the screens in the list are links to the screen content. If the name ‘Shotgun’ (second screen from the
bottom) is clicked, then a new tab is opened and the wells of the Shotgun screen are shown (Figure 4).

Clicking on the screen name will open up a new browser tab containing a listing of the chemicals
found in each well. If the cocktail can be made with C3 stocks (i.e., the chemicals are named
appropriately, and C3 has stocks of appropriate concentration and/or pH) then a recipe of how
that condition can be made is also provided (Figure 4).
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Figure 4. The contents of the Shotgun screen. The left hand cells show each condition in terms of
concentration, and the right hand wells show how the condition can be made using C3 stocks. The ‘pH’
column contains the average pH value of the condition; the pH is measured each time a new screen is
created [18].

The report ‘C3 Stocks’ found under the section ‘Screens and Stocks’ gives a listing of all the stocks
currently available in C3 (Figure 5).

Figure 5. The stocks report shows the stocks available in C3, shown here are just the subset of stocks
containing ammonium. The chemical name in the stocks list is a link, clicking on a chemical name will
show the C3 screens that contain that chemical.

Another new feature of the interface is the inclusion of an updated User Manual and Frequently
Asked Questions (FAQ) list, but more importantly, there are inbuilt tools that support the facile
generation of new entries into the FAQ list. The landing page of the C6 tool, like most of the
outward facing web-tools from C3 includes a Twitter feed, where tweets from the C3 Twitter account
(@CSIROC3) are displayed. This provides a mechanism for notifications in real time.

2.2. Screen Attributes

One of the screen metrics that was available in the original C6 was the concept of “Internal
Diversity” (ID). This is a global measure of how different each condition in a screen is from the other
conditions in the same screen. ID is normalised to give a value between 0 and 1; screens with an ID of
0 have each condition in the screen identical to the others, screens with an ID of 1 consist of conditions
with no common chemicals in them. The ID value of a screen can be used to identify what type of
screen it is, and thus where to use it in a crystallisation campaign. Screens with low ID (<0.5) are often
grid screens, or screens with few chemicals in them; these screens are most often optimisation tools
(fine screens) and are used once initial conditions have been identified. Screens with very high ID
(≈1) are most likely to be additive screens; these are used in the early stages of optimisation. Screens
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with a high ID (≈0.9) are often the initial “sparse matrix” [19] screens and are used at the start of a
crystallisation project. Other useful global features of a screen might be the pH range it samples, or the
relative amount of salty or PEG-based conditions it contains. All these global indicators are available
through the Screens Attribute report. This report returns a sortable table, as shown in Figure 6.

Figure 6. The Screen Attributes table for the crystallisation screens available in C3. The table can be
sorted on any column. For the ‘% polyethylene glycol (PEG)’ and ‘% Salt’ values only the primary factor
(the primary factor is the chemical which is the most abundant in the condition) for each condition is
considered. The ‘Av. pH’ column reports the average of the measured pH for each condition in the
screen, if no measured pH is available a calculated estimated pH value (paper in preparation) is used.
The ‘Wells within Av. pH +/- 1’ estimates the breadth of the pH sampling, where a larger number
indicates a narrow range of pH values. Finally, the ‘Distinct Chemicals’ column counts the number of
stocks required to make the screen.

2.3. Persistent Screen Sets

Many of the C6 reports require the selection of a subset of screens on which to perform the
report action. For example, when using either the ‘Find a chemical in screens’ or ‘Find a condition
in screens’ report, the user is prompted to select a pre-defined subset of screens, such as ‘C3 screens’
or ‘Commercial screens’ in which to search for the chemical (or condition). Initially C6 only offered
pre-defined screen subsets, and although these pre-defined sets were helpful, there are cases where the
user might wish to choose their own subset of screens. Being able to define one’s own specific subset
of screens is particularly useful for users outside the C3 user community, who can create a subset of
commercial screens corresponding to those they have in their home laboratory. The creation of screen
sets is done through the report ‘Create a set of screens’, found in the ‘Tools’ section of the top menu.
The user-defined sets persist in the C6 database and can be edited as needed. Any user-defined screen
sets are found under the ‘My Screen Sets’ filter option (Figure 7).
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(a)

(b)
Figure 7. (a) The second level of filtering that is required to select a custom screen set for a report.
(b) The top part of the ‘Create Custom Sets’ report shows sets that are available for the user. The sets
are created from the list of screens (bottom right) available to that user: commercial screens and screens
owned by the user. The interface for creating a custom set allows for screens to be moved into and out
of the custom set by dragging into (or from) the selected screens list (bottom right).

The screens able to be added to a user’s screen set include all private screens belonging to the
user, and all public screens both commercial and in-house (C3 screens). These are presented in a list,
and can be searched via the search bar for ease of use. From the same report, existing screen sets can
be modified or deleted as well as created, and all changes take effect immediately and will update
accordingly in the screen group selection boxes in the other C6 reports.

2.4. Recipes

Most often a crystallisation screen is described as a set of conditions, where each condition
contains one or more chemical factors. This way of documenting a screen does not capture how the
condition was made—for example, 1 mL of a simple condition containing only 1 M sodium chloride
could be made by pipetting out 1 mL of a 1 M sodium chloride stock, or by pipetting out 0.2 mL of
a 5 M sodium chloride stock and adding 0.8 mL water. Generally, we refer to the description of a
crystallisation condition in terms of concentration as a ‘design’ and the description of the the same
solution in terms of stocks and volumes as a ‘recipe’. For every condition that can be created with C3
stocks the recipe for producing 1 mL of that condition is given alongside the design of that condition
(see Figure 4). If every condition in the screen can be created with the stocks available in C3 then
an option appears in the header of that screen to export a file containing the recipes for every well.
The final volume required can be stipulated (it defaults to 1 mL), and the recipe can be exported in
different formats. To date the export formats include an xml format and a human-readable csv format
suitable for import into the Dragonfly (SPT Labtech) liquid dispensing robot (Figure 8).
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Figure 8. The row in the header ‘Recipe Generator’ allows the user to set the required volume for the
screen. ‘Minimize stocks’ retains only the most concentrated stock of a chemical, if more than one stock
of the same chemical was used in the initial screen recipe. The ‘Summary’ button opens a report that
shows which stocks (and how much of them) will be used to create the recipe for the screen.

2.5. Phase Space Visualisation

Both fine screening and additive screening methods of optimisation rely on the user having a
clear understanding of patterns in the outcomes of previous crystallisation experiments. In practice,
such understanding is often sought by unsystematically eyeing a table of conditions in the hope
of spotting commonalities between successful experiments. With this approach, one is prone to
missing important positive correlations between a particular condition and the formation of crystals,
or conversely, not grasping which areas in the condition space have been explored thoroughly without
proving fruitful. While progress is being made towards automation of this analysis using chemical
ontologies, human expertise will continue to be valuable, so there is a need for tools that augment
human abilities to perceive which points in condition space have been tested for a given protein,
and what the outcomes of those experiments were.

To this end, a ‘Visualise phase space’ report has been added to C6, which, for any user-selected
combination of experiment barcodes, plots a subset of the conditions used including temperature, pH,
chemical species and concentration on an interactive parallel coordinates plot (a common plot-type for
high-dimensional data). Each experiment is represented by a line intersecting each of the condition
axes at the relevant value, and the colour of each line indicates the outcome of the experiment it
represents (as scored by the user in See3). Axes can be reordered, inverted or removed to make key
trends clearer. Experiments can be easily filtered by any of the axis dimensions, as well as screen,
well or outcome. To aid new users, a draggable card summarising the available interactions can be
displayed on top of the interface, which also links to a video walk-through of how to use it.

An example plot is included in Figure 9.
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Figure 9. The parallel coordinates plot of the crystallisation phase space for a particular sample, generated using the ‘Visualise Phase Space’ report. By default lines
are coloured by simplified set of experimental outcomes (Crystal, Clear, Precipitate, and Other) but, as shown here, the user can toggle on the use of the full set of
classifications used in See3 [20] for greater discrimination. The legend is in the bottom-left corner of the interface. The full set includes several classes for human
scoring of crystals: Crystalline, Crystals *, Crystals **, Crystals *** and Shoot Me. In this example, the darker oranges/reds used for higher quality crystals suggest that
lower buffer concentration, lower buffer pH, and the presence of trisodium citrate tend to produce higher quality crystals. The reasoning behind the use of different
numbers of asterisks (*), rather than explicit descriptions to distinguish the different crystal scores is that crystal quality is highly project dependent—one project’s
crystals assigned the visual score of Crystal *** might only be rated Crystal * in another system.



Crystals 2020, 10, 95 11 of 19

3. See3

See3 has three major sections—a viewing and scoring section, a design section and an
administration section, which is not visible to the general user. The viewing and design sections
are accessible to all users; a user will see only plates owned by themselves. The viewing and scoring
section of See3 provides the user with a selection grid of existing crystallisation plates. After a plate is
selected See3 shows a grid of the most recent images associated with that plate (Figure 10).

Figure 10. On opening See3, the user sees a searchable grid on the left, and once a plate is selected,
it will appear as a grid on the right hand side of the screen. Each droplet image is surrounded by a
narrow band of colour, indicating any score associated with the droplet. The pale pink border around
many of the droplets indicate that they have been MARCO autoscored as Crystal.

By default, the thumbnail images are arrayed in a grid corresponding to their position on the
crystallisation plate, however the images may also be arrayed by scores. A MARCO autoscore for
each image is generated automatically and associated with an image, and human scores can also be
associated with each image. A visual indication of the score for a well is given in the coloured border
around the well [20]. Sorting by score will display images with Crystal scores first, followed by images
with Other scores, then Precipitate scores and finally those with Clear scores, with human scores in
each category being shown before autoscored images with the same classification. Double-clicking on
a thumbnail will open up a larger image, and display associated information, including the sample
name, the cocktail name, and what chemicals they respectively contain.

Users may place images from one or more plates on to a clipboard, this is a way of cherry-picking
conditions for cycles of optimisation. The images on the clipboard can be used to generate a hit
report (see Supplementary Information for an example of a hit report for a crystallisation plate set up
with the protein Lysozyme). The hit report contains the details of conditions and samples in the
droplets contained in the images, listed for each image on the clipboard. The hit report concludes
with a summary of the chemical factors (the ‘Chemistry Range Table’) found in the conditions on the
clipboard (Figure 11).
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Figure 11. The ‘Chemistry Range Table’ from the Hit Report shown in Appendix A. This shows the
chemical factors for the four conditions in the Hit Report and some initial clustering into chemically
equivalent groups has been attempted.

If appropriate images were placed on the clipboard, the information in the ‘Chemistry Range
Table’ is a reasonable starting point for optimisation through fine screening. The optimisation tool
allows one to work with the information from the clipboard to design new screens. Once designed and
saved, the screens will appear in the next build of C6, generally within an hour. By default, the nascent
design in See3 is checked against the stocks available in C3 before being saved, thus any design that
was saved successfully in See3 will be able to be produced with C3 stocks, and the recipe for its creation
will be available from C6, along with the screen description.

4. Features in See3

The See3 application initially provided a modern viewing, scoring and reporting tool for images
collected in C3. Many of the features included in the viewing component of See3 are standard, and are
found in many viewing programs—for example, measuring tools, drop history, drop components
etc. Along with the expected functions, See3 has some tools which were built after user feedback.
These include a tool for adjusting the zoom or centre of images, the ability to see the recipe for a
single condition and the ability to select and write out regions of interest within crystallisation images.
Beyond the viewing capability, See3 allows users to design optimisation experiments. Optimisation
screens can be automatically generated from information on the clipboard, or can be created from a
blank slate by the user. Screens can be in 24, 48 or 96 well formats.

4.1. Recentering Images

The very first image of a drop is at a zoom level that encompasses the entire subwell in which
the droplet is located. This image is segmented by the RockImager software and subsequent images
are taken at a zoom level and with centre coordinates so that the experimental droplet fills the field of
view. Mostly this process works well, but it fails sufficiently often that a tool that allows the user to
reset the centre and zoom level (to be used on the subsequent images of that droplet) has proven very
useful (Figure 12).
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Figure 12. Images before (left) and after (right) manual recentering.

4.2. ROI Setting and Export

Being able to locate a subregion within a droplet can be used for a number of purposes: to earmark
particular crystals for harvesting, or for in-situ X-ray interrogation. Within the See3 viewing software
one can mark one or more regions of interest (ROI), and the coordinates of these can be exported.
The (x, y) coordinates of the ROI are relative to the centre of the subwell. A Z-offset is also included
which gives the curved surface depth of the subwell (assuming the plate is an MRC sitting drop plate)
at the ROI position.

4.3. Optimisation

Optimisation is the refinement of initial screening conditions with the goal of producing a well
diffracting crystal. Aside from microseeding [21], the most common methods of optimisation are
fine screening, using information gleaned from any previous experiments, and additive screening,
where a single promising condition is doped with many different chemicals to test their effect on the
crystallisation process. The optimisation function of See3 has two distinct modes for optimisation;
an Automatic and a Manual mode. In essence, the Automatic mode considers the entire screen as a
entity, whereas the Manual mode considers the individual wells as components that together make up
a screen.

4.3.1. Automatic Optimisation

The Automatic optimisation tool allows the generation of a new optimisation screen based on
the currently selected conditions on the clipboard. By default, the Automatic mode generates a
screen by populating each well with a random pick of a chemical from a number of Factor Groups,
and assigns a random concentration (from a range) for each chemical. The first step is the clustering
of the chemicals found on the clipboard into Chemical Factor groups. This grouping of chemicals
is based on their class or role, and is similar to how the chemicals are grouped in the ‘Chemistry
Range Table’ (Figure 11). The Primary Factor Group contains the chemicals that are found at the
highest concentration in each of the conditions selected on the clipboard. Other default Chemical
Factor Groups include Buffers, Polymers, Organics and Salts. Each chemical within a Factor Group
is given four attributes: a flag which decides if the concentration or the pH is to be varied (conc/pH
flag), a lower limit, an upper limit, and a weight. The attributes are set from the values seen in the
‘Chemical Range Table.’ For chemicals with the pH/conc flag set to ‘conc,’ the upper and lower values
are set according to the average concentration of that chemical found in the ‘Chemical Range Table.’
For chemicals in the Primary Factor group (and for chemicals found at greater than 0.5 M), the default
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limits are 0.8× average concentration for the lower limit, and 1.1× average concentration for the upper
limit. For other Factor groups the concentration limits are 0.1× average concentration (lower limit)
and 2× average concentration (upper limit). The pH range is set by default to the (nearest) pKa for the
buffer ±1 pH unit. The weight of the chemical depends on how many clipboard conditions contained
that chemical. The Factor Groups for the ‘Chemical Range Table’ shown in Figure 11 are shown in
Figure 13.

Figure 13. The Automatic optimisation function in See3 is based around random picks from a Factor
Group Table. This Factor Group table corresponding to the ‘Chemistry Range Table’ from the Hit
Report shown in Appendix A.

The weighting and upper and lower limits can be edited, chemicals can be added or deleted from
Factor groups, and Factor Groups can be added or deleted. Users also have some control over where
different chemicals can be found on the plate, and how the concentration or pH values are chosen.
The user can choose to include the original hit conditions (those placed on the clipboard) in the final
design. The screen generated from the Factor Group table can be saved, also the Factor Group table
can be saved. Of course, if a saved Factor Group is re-loaded, it is unlikely that exactly the same screen
will be generated again, due to the random selection of concentrations.

After the optimisation screen has been generated, it undergoes a number of checks before it can be
saved. If the screen cannot be created with C3 stocks it will not be saved, and the user will be alerted.
The most common reason for failing to save is that the available stocks are not sufficiently concentrated
to make up the conditions. This is called ‘overflowing.’ If there are fewer than 20 overflowing wells,
the program will try to correct this by reducing the concentration of the chemical from the Primary
Factor group. The user will also be warned if incompatibilities such as divalent metals in the same
condition as a phosphate salt are detected, but the incompatibility warnings do not preclude the screen
from being saved.

4.3.2. Manual Optimisation

The Manual optimisation tool also enables the creation of a new optimisation screen but with
greater customisability. Users are given a blank design and are free to create the experiment as they
wish. Portions of existing designs or clipboard conditions can be copied, sections of the optimisation
design can be repeated, individual chemicals can be added modified or removed, and chemical
gradients can be placed across the new design (Figure 14).
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(a)

(b)

Figure 14. In Manual optimisation users select a subset of wells, and can either add chemicals either at
a single concentration or as a gradient, as shown in (a), or can add conditions from other screens (b).

When switching from the Automatic design to the Manual design, users are asked if they wish to
begin their Manual optimisation design with their current Automatic optimisation design. This allows
for the modification of specific conditions within an automatically generated screen.

5. Discussion

In the heyday of the Structural Genomics initiatives it was believed that simply by having
sufficient protein, automation and appropriate screens any desired crystal—and thus structure—could
be generated. More recent analyses suggest that screening alone is insufficient in about 80% of
cases [22]. Once the truism that optimisation is required is accepted, then the pathway of crystallisation
becomes less obvious. Which screens are best? What is a hit? Which conditions gave hits? How do I
optimise the hit(s)? What is noticeably lacking is a set of tools to guide a structural biologist through
this complicated process. We require tools for helping select initial screens, and for analysing the
outcomes of those screens. Following that, tools are needed both to create designs for optimisation
screens as well as to produce the recipes for those designs. Of course automation aids the process by
enabling plate preparation, plate imaging and the production of screens. However, automation does
not provide an answer to the question of what to do; without tools to help the researcher decide what
is the best (or at least a reasonable) way forward, automation just speeds up the process of doing the
wrong thing.

Our experience from working in a crystallisation core facility for over a decade suggests that one
of the notable benefits of a facility is the expertise that builds up within the centre which then becomes
available to the users of the facility. Most of the individuals using a crystallisation facility only spend
a small percentage of their time thinking about crystallisation, as structure is only part of a bigger
picture for understanding any protein system. Almost invariably, the users ask questions about what
screens to use, “if this is a hit,” and then how to optimise. The development of the software tools
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described here is a result of our interactions with users, and is an effort to distill our experience so that
it persists and can be shared. In particular, the hope that screening would solve the problem of crystal
production has led to an explosion in the number of screens available. Counter-intuitively, this has
made it harder to work out where to start.

The C6 tool cannot give answers about what is the ‘best’ screen with which to start a crystallisation
campaign. However, given some information about the protein (e.g., it has been crystallised before in
PEG) it can help select which screens to use. Further, C6 allows one to see if a further screen is testing a
novel area of chemical space or is replicating conditions that have already been set up, and allows one
to check a group of screens for condition redundancy. The visualisation tool provides an interactive
interface for building up hypotheses about what parts of crystallisation space might be used to produce
crystals, which can either guide subsequent screen selection or optimisation strategies.

The See3 viewing platform, coupled with reliable, real-time autoscoring, enormously speeds up
the process of analysing the results of crystallisation trials. The link between finding a hit and creating
optimisation from any hit(s) is aided by the automatic extraction of chemical factors from the hits.
See3 optimisation tools are intuitive, and sufficiently sophisticated to allow for the design of almost
anything that can be set up with current automation. The combination of automatic and manual
screening modes brings the power of combinatorial optimisation which allows for the simultaneous
optimisation of many conditions, with the specificity that comes from having control over each well.
The most practical aspect of the optimisation is tying it in with stock availability, so that only screens
which can be easily created can be designed.

Most importantly, these tools are web-based, and are available to the wider structural biology
community. Both C6 and See3 can be accessed with a guest account (username guest@c3, password
vegemite), or by registering as a C3 user. Any screens developed in See3 as a guest will be visible and
editable by any other guest user, screens designed by a C3 user are only accessible by that user.

6. Materials and Methods

6.1. C6 Implementation

The C6 back-end was predominantly written in Python 2, which has now been migrated to Python
3, while the front-end is written in HTML/CSS and JavaScript. The similarity calculation comparison
code has been implemented in C. C6 uses an internal SQLite database (https://www.sqlite.org/),
which currently takes two days or so to build from scratch (pairwise comparisons of all screens),
and roughly 7 minutes to update hourly, once initially built. The interactive data visualisation
in the ‘Visualise Phase Space’ C6 report uses v3.5.17 of the d3.js JavaScript visualisation library
(https://d3js.org/), with additional use of the jQuery library (http://jquery.com/) for various UI
elements and keyboard shortcuts.

6.2. See3 Implementation

See3 is written as an ASP MVC .NET Framework project which is written with HTML/CSS and
JavaScript for the front-end user interface, and C# for the back-end. The front-end JavaScript user
interface is written using the Kendo UI framework. Back-end database connections to the Oracle CM
database were written using the the Nhibernate framework.

6.3. MARCO Implementation

The MARCO autoscoring pipeline (C4) consists of a number of steps, and is controlled using
a Python script, for a complete description see [23]. Briefly, Cron is used to provide lists of recently
inspected plates; images from these are copied to a GPU cluster using scp. Images in batches of 32
are passed through a SLURM workflow manager where they are processed through the MARCO
tensorflow AI. The output from this is post-processed to extract the single most likely classification

https://www.sqlite.org/
https://d3js.org/
http://jquery.com/
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and returned via SQL into the CM database. The C4 workflow is available from https://doi.org/10.
4225/08/5a97375e6c0aa.
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Appendix A

A hit report is generated from images placed on the clipboard in See3. Images can be from one or
more plates, and the report includes details about the drops, and concludes by summarising all the
chemical factors found collectively in the drops included in the hit report.

Hit Report

MC013779 Inspection #6 at 8¶C - A1.1

Visible image FOV 2.12mm

Sample Name: Lysozyme
20 mg/ml S: lysozyme

Screen Name: Lysozyme QA Screen
100 mM C: sodium HEPES (pH 7)
0.5 %w/v C: jeffamine ED-2001 (pH 7)

1.1 M C: sodium malonate-malonic acid (pH 7)

Volumes (uL)
Sample (S) 0.15

Crystallant (C) 0.15

Project (user): Lysozyme (C3_QA@csiro.au)
Inspect (setup, last): 17/09/2019, 26/09/2019
Elapsed Time: 9 Days

Scores: (type, user, date, inspection #)

MC013779 Inspection #6 at 8¶C - A2.1

Visible image FOV 2.12mm

Sample Name: Lysozyme
20 mg/ml S: lysozyme

Screen Name: Lysozyme QA Screen
1 M C: lithium chloride

20 %w/v C: polyethylene glycol 6000
0.1 M C: trisodium citrate-citric acid (pH 4)

Volumes (uL)
Sample (S) 0.15

Crystallant (C) 0.15

Project (user): Lysozyme (C3_QA@csiro.au)
Inspect (setup, last): 17/09/2019, 26/09/2019
Elapsed Time: 9 Days

Scores: (type, user, date, inspection #)

MC013779 Inspection #6 at 8¶C - A3.1

Visible image FOV 2.12mm

Sample Name: Lysozyme
20 mg/ml S: lysozyme

Screen Name: Lysozyme QA Screen
0.2 M C: magnesium chloride
0.1 M C: tris chloride (pH 8.5)
20 %w/v C: polyethylene glycol 8000

Volumes (uL)
Sample (S) 0.15

Crystallant (C) 0.15

Project (user): Lysozyme (C3_QA@csiro.au)
Inspect (setup, last): 17/09/2019, 26/09/2019
Elapsed Time: 9 Days

Scores: (type, user, date, inspection #)

CSIRO Sample supplied by customer, results apply to sample as received. 1 Generated by Janet Newman on September 29, 2019

Hit Report

MC013779 Inspection #6 at 8¶C - A4.1

Visible image FOV 2.12mm

Sample Name: Lysozyme
20 mg/ml S: lysozyme

Screen Name: Lysozyme QA Screen
1 M C: sodium chloride

0.1 M C: sodium acetate-acetic acid (pH 4.5)

Volumes (uL)
Sample (S) 0.15

Crystallant (C) 0.15

Project (user): Lysozyme (C3_QA@csiro.au)
Inspect (setup, last): 17/09/2019, 26/09/2019
Elapsed Time: 9 Days

Scores: (type, user, date, inspection #)

Chemistry Range Table

Class Avg Conc Conc Range Units Name Count
Buffer 100 mM sodium HEPES (pH 7) 1
Buffer 0.1 M tris chloride (pH 8.5) 1
Buffer 0.1 M sodium acetate-acetic acid (pH 4.5) 1
Polymer 0.5 w/v jeffamine ED-2001 (pH 7) 1
Salt 1.1 M sodium malonate-malonic acid (pH 7) 1
Salt 1 M lithium chloride 1
Salt 0.2 M magnesium chloride 1
Precipitant 20 w/v polyethylene glycol 6000 1
Precipitant 20 w/v polyethylene glycol 8000 1
Precipitant 1 M sodium chloride 1
Fundamental Mixtures 0.1 M trisodium citrate-citric acid (pH 4) 1

Comments:

CSIRO Sample supplied by customer, results apply to sample as received. 2 Generated by Janet Newman on September 29, 2019

Figure A1. A ‘Hit Report’ generated from four drops of a plate containing Hen Egg White Lysozyme
(coloured blue) as the protein sample. The latest image from each drop is included, along with
information about the chemical conditions, the drop size, the temperature of incubation, and the
elapsed time since setup.

https://doi.org/10.4225/08/5a97375e6c0aa
https://doi.org/10.4225/08/5a97375e6c0aa
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