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This paper deals with a design problem of an adaptive robust controller for a class of nonlinear systems with specified input
saturations. For the nonlinear system under consideration, the nonlinearity means unknown perturbations and satisfies the
matching condition. In this paper, we show that sufficient conditions for the existence of the proposed adaptive robust controller
giving consideration to input saturations are given in terms of linearmatrix inequalities (LMIs). Finally, simple illustrative examples
are shown.

1. Introduction

It is well known that robust control for uncertain dynamical
systems is very important topic for the control engineering
community, and therefore various robust control problems
have been well studied (see [1] and references therein).
Moreover many robust controllers, achieving some robust
performance such as mixedH2/H∞ control [2] and guaran-
teed cost control [3], have been suggested. Additionally, Šiljak
and Stipanovic [4] and Zuo et al. [5] have presented results
of robust stability and stabilization for linear continuous-
time and discrete-time system under nonlinear perturbations
using the linear matrix inequalities (LMIs). Although almost
all of these controllers consist of a state feedback with a
fixed feedback gain, the fixed feedback gain can be derived
by considering the worst case for unknown parameter
variations. In contrast with the above-mentioned control
strategies, adaptive robust controllers which are adjusted
by parameter updating laws have also been presented (e.g.,
[6, 7]). In the work of Maki and Hagino [6], an adapta-
tion mechanism for improving transient behavior has been

introduced, and the robust controller includes fixed gain
parameters and adjustable ones which are tuned by some
updating laws. Moreover, Oya and Hagino [7] have proposed
a robust controller with adaptive compensation inputs, and
the adaptive compensation input consists of a state feedback
with an adaptive gain and a compensation input. One can
see that these adaptive robust controllers have time-varying
adjustable parameters which are tuned by adjustment laws.

On the other hand in practical systems, there are some
constraints such as some limit of actuators and electric
saturations for electronic circuits. If the constraint conditions
are violated, they cannot generate the desired response, and
at worst the systembecomes unstable. From these viewpoints,
analysis and/or controller design of dynamical systems with
constraint conditions are very important issue, and there are
a large number of the existing results such as reachable and
controllable sets [8], Model Predictive Control (MPC) [9],
and saturation-dependent Lyapunov functions [10]. Gilbert
and Tan [11] have proposed a general theory which pertains
to the maximal output admissible sets O∞ and O𝑐∞ for linear
systems with state and input constraints. However, so far the
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design problem of adaptive robust controllers with adjustable
parameters for uncertain dynamical systems with input
saturations has little been considered as far as we know.

In this paper, on the basis of the work of Oya and Hagino
[7] we propose a new LMI-based design method of adaptive
robust controllers for a class of nonlinear systems with input
saturations. For the nonlinear system considered here, the
nonlinearity means unknown perturbations and satisfies the
well-known matching condition [12]. By using the concept
of state reachable sets, the proposed controller can flexibly
be adjusted by parameter updating laws [7] and satisfies
the specified input saturations. Namely, the result of this
paper is a natural extension of the existing result [7]. In this
paper, we show that sufficient conditions for the existence
of the proposed adaptive robust controller are given in
terms of LMIs.Thus, the proposed adaptive robust controller
can easily be derived by solving LMIs, and this is also an
advantage for the proposed controller design approach.

This paper is organized as follows. In Section 2, notation
and useful lemmas which are used in this paper are shown,
and in Section 3 we introduce the class of nonlinear sys-
tems with input constraints under consideration. Section 4
contains the main results. Finally we show simple illustrative
examples to verify the effectiveness of the proposed robust
controller.

2. Preliminaries

In this section, notations and useful and well-known lemmas
(see [13, 14] for details) which are used in this paper are
shown.

In the paper, the following notations are used: For a
matrix A, the inverse of matrix A and its transpose are
denoted by A−1 and A𝑇, respectively. Additionally 𝐻𝑒{A}
and 𝐼𝑛 mean A + A𝑇 and 𝑛-dimensional identity matrix,
respectively, and the notation diag (A1, . . . ,AN) represents
a block diagonal matrix composed of matrices A𝑖 for 𝑖 =1, . . . ,N. Trace{A} represents trace ofA. For real symmetric
matrices A and B, A > B (resp., A ≥ B) means that
A − B is positive (resp., nonnegative) definite matrix. For
a vector 𝛼 ∈ R𝑛, ‖𝛼‖ denotes standard Euclidian norm
and for a matrix A, ‖A‖ represents its induced norm. All
the eigenvalues of the matrix A are denoted by 𝜆{A}, and𝜆max{A} means the maximum value of the eigenvalues.
Additionally, for a symmetric positive definite matrix P ∈
R𝑛×𝑛, E(P) represents a region E(P) = {𝜁 ∈ R𝑛 | 𝜁𝑇P𝜁 ≤1}. The symbols “≜” and “⋆” mean equality by definition and
symmetric blocks in matrix inequalities, respectively.

Next, we show some useful lemmas which are used in this
paper.

Lemma 1. For arbitrary vectors 𝜆 and 𝜉 and the matrices
G and H which have appropriate dimensions, the following
inequality holds:

2𝜆𝑇GΔ (𝑡)H𝜉 ≤ 2 󵄩󵄩󵄩󵄩󵄩G𝑇𝜆󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩H𝜉󵄩󵄩󵄩󵄩 , (1)

where Δ(𝑡) with appropriate dimensions is a time-varying
unknown matrix satisfying 󵄩󵄩󵄩󵄩Δ(𝑡)󵄩󵄩󵄩󵄩 ≤ 1.0.

Lemma 2 (S-procedure [14]). Let F(𝑥), G(𝑥), and H(𝑥)
be three arbitrary quadratic forms over R𝑛. Then F(𝑥) <0 ∀𝑥 ∈ R𝑛 satisfying G(𝑥) ≤ 0 and H(𝑥) ≤ 0 if there exist
nonnegative scalars 𝜏1 and 𝜏2 such that

F (𝑥) − 𝜏1G (𝑥) − 𝜏2H (𝑥) ≤ 0 ∀𝑥 ∈ R
𝑛. (2)

Lemma 3 (Schur complement [14]). For a given constant
real symmetric matrix Θ, we consider the following inequality
conditions:

(i)

Θ = (Θ11 Θ12Θ𝑇12 Θ22) ≥ 0, (3)

(ii)

Θ11 > 0,
Θ22 − Θ𝑇12Θ−111Θ12 ≥ 0, (4)

(iii)

Θ22 > 0,
Θ11 − Θ12Θ−122Θ𝑇12 ≥ 0. (5)

Then the inequality condition of (i) is equivalent to inequalities
of (ii) and (iii).

3. Problem Formulation

Let us consider the nonlinear system represented by the
following state equation:

𝑑𝑑𝑡𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝜉 (𝑥, 𝑡) + 𝐵𝑟𝑟 (𝑡) ,
𝑥 (0) = 0, (6)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, and 𝑟(𝑡) ∈ R𝑙 are the vectors
of the state, the control input, and the reference input, res-
pectively. In (6), the reference input 𝑟(𝑡) is assumed to belong
to the ellipsoidal set E(X𝑟) defined as

E (X𝑟) = {𝑟 ∈ R
𝑙 | 𝑟𝑇X𝑟𝑟 ≤ 1} . (7)

Note that X𝑟 ∈ R𝑙×𝑙 is a given symmetric positive definite
matrix. In addition, the vector 𝜉(𝑥, 𝑡) ∈ R𝑛 in (6) means
nonlinearity and uncertainty in the controlled system, and it
satisfies the relation 𝜉(𝑥, 𝑡) = 𝐵𝑔(𝑥, 𝑡); that is, a well-known
matching condition [12] is satisfied. Although the nonlinear
function 𝑔(𝑥, 𝑡) ∈ R𝑚 is “unknown,” for the known matrix
G ∈ R𝑚×𝑛, it is assumed to satisfy the following inequality
condition [4, 5]: 󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑡)󵄩󵄩󵄩󵄩 ≤ ‖G𝑥 (𝑡)‖ . (8)

In the sequel, we deal with the case of 𝑚 = 1 for simplicity,
because the results for the case of𝑚 ≥ 2 can easily be obtained
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by the following result (see Remark 5).Therefore, we consider
the following constraint for the control input 𝑢(𝑡) ∈ R1:|𝑢 (𝑡)| ≤ 𝜇, (9)

where 𝜇 is a known positive constant, and this relation is
equivalent to ‖𝑢(𝑡)‖ ≤ 𝜇.

Now for the nonlinear system of (6), we consider the
control input 𝑢(𝑡) ∈ R𝑚 described as𝑢 (𝑡) ≜ 𝐾𝑥 (𝑡) + 𝜓 (𝑥, 𝑡) . (10)

In (10)𝐾 ∈ R𝑚×𝑛 and 𝜓(𝑥, 𝑡) ∈ R𝑚 are a fixed feedback gain
and an adaptive compensation input, respectively. From (6)
and (10), the closed-loop system can be described as𝑑𝑑𝑡𝑥 (𝑡) = 𝐴𝐾𝑥 (𝑡) + 𝐵𝜓 (𝑥, 𝑡) + 𝐵𝑔 (𝑥, 𝑡) + 𝐵𝑟𝑟 (𝑡) , (11)

where 𝐴𝐾 ∈ R𝑛×𝑛 is a matrix given by 𝐴𝐾 = 𝐴 + 𝐵𝐾.
Next we consider a state reachable set R(𝑥, 𝑡) for the

nonlinear system of (6). By using a symmetric positive def-
inite matrixP ∈ R𝑛×𝑛, we introduce the quadratic function
V(𝑥, 𝑡) ≜ 𝑥𝑇(𝑡)P𝑥(𝑡) and consider the time derivative of the
quadratic functionV(𝑥, 𝑡) along the trajectory of the closed-
loop system of (11). The ellipsoid E(P) contains the state
reachable set R(𝑥); that is, R(𝑥) ⊂ E(P) provided that, for
any 𝑥(𝑡) and 𝑟(𝑡) satisfyingV(𝑥, 𝑡) ≥ 1 and 𝑟𝑇(𝑡)X𝑟𝑟(𝑡) ≤ 1,
the following inequality condition holds [14]:𝑑𝑑𝑡V (𝑥, 𝑡) ≤ 0. (12)

Therefore, our objective in this paper is to develop an
LMI-based design procedure of the proposed adaptive robust
controller which guarantees the internal stability of the
resultant closed-loop system of (11) and the input constraint
of (9). In this paper, by using the concept of the state reachable
set, we derive an LMI-based design method for the fixed gain𝐾 ∈ R𝑚×𝑛 and the adaptive compensation input 𝜓(𝑥, 𝑡) ∈
R𝑚 such that the closed-loop system of (11) achieves not
only internal stability but also the control input constraint of‖𝑢(𝑡)‖ ≤ 𝜇.
4. Synthesis of Adaptive Robust Controllers

In this section, we show an LMI-based design method of
the fixed feedback gain 𝐾 ∈ R𝑚×𝑛 and the adaptive
compensation input 𝜓(𝑥, 𝑡) ∈ R𝑚 which ensure internal
stability of the closed-loop system of (11) and satisfy the input
constraint ‖𝑢(𝑡)‖ ≤ 𝜇.
4.1. Analysis of State Reachable SetR(𝑥). The time derivative
of the quadratic functionV(𝑥, 𝑡) can be expressed as𝑑𝑑𝑡V (𝑥, 𝑡) = 𝑥𝑇 (𝑡) (𝐴𝑇𝐾P +P𝐴𝐾) 𝑥 (𝑡)

+ 2𝑥𝑇 (𝑡)P𝐵𝜓 (𝑥, 𝑡)
+ 2𝑥𝑇 (𝑡)P𝐵𝑔 (𝑥, 𝑡)
+ 2𝑥𝑇 (𝑡)P𝐵𝑟𝑟 (𝑡) .

(13)

Firstly, we consider the case of 𝐵𝑇P𝑥(𝑡) ̸= 0. Then by
defining the adaptive compensation input 𝜓(𝑥, 𝑡) of (10) as

𝜓 (𝑥, 𝑡) ≜ − ‖G𝑥 (𝑡)‖󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡) (14)

and using Lemma 1, the inequality

𝑑𝑑𝑥V (𝑥, 𝑡)
≤ 𝑥𝑇 (𝑡) [𝐻𝑒 {P𝐴𝐾}] 𝑥 (𝑡)

+ 2𝑥𝑇 (𝑡)P𝐵(− ‖G𝑥 (𝑡)‖󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡))
+ 2 󵄩󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩 ‖G𝑥 (𝑡)‖ + 2𝑥𝑇 (𝑡)P𝐵𝑟𝑟 (𝑡)

= 𝑥𝑇 (𝑡) [𝐻𝑒 {P𝐴𝐾}] 𝑥 (𝑡) + 2𝑥𝑇 (𝑡)P𝐵𝑟𝑟 (𝑡)

(15)

is derived. Moreover, one can see that the inequality of (15)
can be represented as

𝑑𝑑𝑥V (𝑥, 𝑡) ≤ (𝑥 (𝑡)𝑟 (𝑡))
𝑇(𝐻𝑒 {P𝐴𝐾} P𝐵𝑟⋆ 0 )(𝑥 (𝑡)𝑟 (𝑡))

= (𝑥 (𝑡)𝑟 (𝑡))
𝑇Ψ (𝐾,P) ( 𝑥 (𝑡)𝑟 (𝑡) ) ,

(16)

where Ψ(𝐾,P) ∈ R(𝑛+𝑙)×(𝑛+𝑙) is given by

Ψ (𝐾,P) ≜ (𝐴𝑇𝐾P +P𝐴𝐾 P𝐵𝑟⋆ 0 ) . (17)

On the other hand, if 𝐵𝑇P𝑥(𝑡) = 0 is satisfied, then we
see from (13) that the following equation holds:

𝑑𝑑𝑡V (𝑥, 𝑡) = 𝑥𝑇 (𝑡) (𝐴𝑇𝐾P +P𝐴𝐾) 𝑥 (𝑡)
+ 2𝑥𝑇 (𝑡)P𝐵𝑟𝑟 (𝑡) . (18)

Note that, in this case, the adaptive compensation input𝜓(𝑥, 𝑡) ∈ R𝑚 can be defined as

𝜓 (𝑥, 𝑡) ≜ 𝜓 (𝑥, 𝑡𝛿) , (19)

where 𝑡𝛿 is given by 𝑡𝛿 = lim𝛿→0(𝑡−𝛿) [6]. Note that the norm
of 𝜓(𝑥, 𝑡) can be expressed as 󵄩󵄩󵄩󵄩𝜓(𝑥, 𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩G𝑥(𝑡)󵄩󵄩󵄩󵄩.

From the above discussion, in order for the state reachable
setR(𝑥) of the system of (6) to belong to E(P), the relation

(𝑥 (𝑡)𝑟 (𝑡))
𝑇Ψ (𝐾,P) (𝑥 (𝑡)𝑟 (𝑡)) ≤ 0 (20)
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should be satisfied. Therefore we introduce F𝑘(𝑥, 𝑟) (𝑘 =0, 1, 2) defined as

F0 (𝑥, 𝑟) ≜ (𝑥 (𝑡)𝑟 (𝑡))
𝑇Ψ (𝐾,P) (𝑥 (𝑡)𝑟 (𝑡)) ,

F1 (𝑥, 𝑟) ≜ (𝑥 (𝑡)𝑟 (𝑡))
𝑇(−P 00 0)(𝑥 (𝑡)𝑟 (𝑡)) + 1,

F2 (𝑥, 𝑟) ≜ (𝑥 (𝑡)𝑟 (𝑡))
𝑇(0 00 X𝑟

)(𝑥 (𝑡)𝑟 (𝑡)) − 1.
(21)

Note that the inequality condition of (20), V(𝑥, 𝑡) ≥ 1.0,
and 𝑟(𝑡) ⊂ E(X𝑟) correspond to F𝑘(𝑥, 𝑟) ≤ 0 (𝑘 = 0, 1, 2),
respectively. Therefore we consider

F0 (𝑥, 𝑟) ≤ 0
subject to F1 (𝑥, 𝑟) ≤ 0,
F2 (𝑥, 𝑟) ≤ 0. (22)

By using Lemma 2 (S-procedure), the condition of (22) is
equivalent to

( 𝑥 (𝑡)𝑟 (𝑡) )𝑇(𝐻𝑒 {P𝐴𝐾} + 𝜏1P P𝐵𝑟⋆ −𝜏2X𝑟)(𝑥 (𝑡)𝑟 (𝑡))
− 𝜏1 + 𝜏2 ≤ 0. (23)

Namely, if there exist the positive definite symmetric matrix
P ∈ R𝑛×𝑛, the fixed gain matrix 𝐾 ∈ R𝑚×𝑛, and the positive
scalars 𝜏1 and 𝜏2 satisfying

(𝐻𝑒 {P𝐴𝐾} + 𝜏1P P𝐵𝑟 0⋆ −𝜏2X𝑟 0⋆ ⋆ −𝜏1 + 𝜏2) ≤ 0, (24)

then R(𝑥) ⊂ E(P). Clearly we must have 𝜏1 ≥ 𝜏2. If the
inequality condition of (24) is satisfied for some (𝜏󸀠1, 𝜏󸀠2), then
it holds for all 𝜏󸀠1 ≥ 𝜏2 ≥ 𝜏󸀠2.Therefore, we can assume without
loss of generality that 𝜏1 = 𝜏2 = 𝜏, and the condition of (24)
can be rewritten as the following form [14]:

(𝐻𝑒 {P𝐴𝐾} + 𝜏P P𝐵𝑟⋆ −𝜏X𝑟) ≤ 0. (25)

Here by introducing the complementary matrices S ≜
P−1 and W ≜ 𝐾S and pre- and postmultiplying (25) by
diag (S, 𝐼𝑚), we have

(𝐻𝑒 {𝐴S + 𝐵W} + 𝜏S 𝐵𝑟⋆ −𝜏X𝑟) ≤ 0. (26)

Consequently, if there exist the symmetric positive defi-
nitematrixS ∈ R𝑛×𝑛, thematrixW ∈ R𝑚×𝑛, and the positive
scalar 𝜏 which satisfy the matrix inequality of (26), then the
state reachable set R(𝑥) for the closed-loop system of (11) is
included inE(P).

4.2. Analysis of Input Constraints. In Section 4.1, the con-
dition for achieving the relation R(𝑥) ⊂ E(P) has been
derived. Next we consider the input constraints.

From (10) and (14), we find that the control input 𝑢(𝑡) ∈
R1 can be written as

𝑢 (𝑡) = 𝐾𝑥 (𝑡) − ‖G𝑥 (𝑡)‖󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡) . (27)

Moreover, one can see from Section 4.1 that the state reach-
able setR(𝑥) belongs to E(P).

Firstly, we consider the 1st term of the right hand side of
(27). Taking the Euclidian norm of𝐾𝑥(𝑡), we obtain

max
𝑡

‖𝐾𝑥 (𝑡)‖ = max
𝑡

󵄩󵄩󵄩󵄩󵄩WS
−1𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩

≤ max
𝜁∈E(P)

󵄩󵄩󵄩󵄩󵄩WS
−1𝜁󵄩󵄩󵄩󵄩󵄩

= max
𝜁∈E(P)

󵄩󵄩󵄩󵄩󵄩WS
−1/2

S
−1/2𝜁󵄩󵄩󵄩󵄩󵄩

≤ √𝜆max {S−1/2W𝑇WS−1/2}.
(28)

Furthermore, one can easily see that, for the 2nd term of the
right hand side of (27), the inequality

max
𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ‖G𝑥 (𝑡)‖󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 = max
𝑡

‖G𝑥 (𝑡)‖ (29)

is satisfied. Additionally, by using the similar way to the
calculation of (28), we have

max
𝑡

‖G𝑥 (𝑡)‖ ≤ max
𝜁∈E(P)

󵄩󵄩󵄩󵄩G𝜁󵄩󵄩󵄩󵄩 = max
𝜁∈E(P)

󵄩󵄩󵄩󵄩󵄩GS
1/2

S
−1/2𝜁󵄩󵄩󵄩󵄩󵄩

≤ √𝜆max {S1/2G𝑇GS1/2}. (30)

From (28) and (30), in order to satisfy the specified
constraint ‖𝑢(𝑡)‖ ≤ 𝜇, the following inequalities should be
satisfied:

√𝜆max {S−1/2W𝑇WS−1/2} ≤ 𝜇𝐾,
√𝜆max {S1/2G𝑇GS1/2} ≤ 𝜇𝐿,𝜇𝐾 + 𝜇𝐿 ≤ 𝜇.

(31)

In this paper, in order to derive an LMI-based designmethod,
we introduce the conditions

S
−1/2

W
𝑇
WS
−1/2 ≤ 𝜇2𝐾𝐼𝑛,

S
1/2

G
𝑇
GS
1/2 ≤ 𝜇2𝐿𝐼𝑛,𝜇2𝐾 + 𝜇2𝐿 ≤ 𝜇,

(32)

instead of the inequalities of (31). Note that the 1st and the 2nd
inequalities of (32) are equivalent to them of (31), and the 3rd
inequality of (32) is a sufficient condition of the 3rd one of
(31). Thus, if the conditions of (32) hold, then the inequalities
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of (31) are also satisfied. Namely, if there exist the positive
scalars 𝜇𝐾 and 𝜇𝐿 satisfying the inequalities of (32), then the
input constraint is also satisfied.

Now, by introducing the complementary variables 𝜇⋆𝐾 and𝜇⋆𝐿 we consider the following inequalities:
S
−1/2

W
𝑇
WS
−1/2 ≤ 𝜇⋆𝐾𝐼𝑛,

S
1/2

G
𝑇
GS
1/2 ≤ 𝜇⋆𝐿𝐼𝑛,𝜇⋆𝐾 + 𝜇⋆𝐿 ≤ 𝜇,
𝜇⋆𝐾 ≥ 𝜇2𝐾,𝜇⋆𝐿 ≥ 𝜇2𝐿.

(33)

One can see from Lemma 3 (Schur complement) that the 4th
and 5th inequalities in (33) are equivalent to

(−𝜇⋆𝐾 −𝜇𝐾⋆ −1 ) ≤ 0,
(−𝜇⋆𝐿 −𝜇𝐿⋆ −1 ) ≤ 0. (34)

Moreover, by applying Lemma 3 (Schur complement) to the
1st inequality of (33), we obtain

−𝜇⋆𝐾𝐼𝑛 +S
−1/2

W
𝑇
WS
−1/2 ≤ 0 ⇐⇒

−𝜇⋆𝐾S +W
𝑇
W ≤ 0 ⇐⇒

−S + 1𝜇⋆𝐾W𝑇W ≤ 0 ⇐⇒
(−S W𝑇

W −𝜇⋆𝐾𝐼𝑚) ≤ 0.
(35)

Additionally, since the matrix G ∈ R𝑚×𝑛 is known, one can
easily calculate the scalar 𝛾G satisfyingG𝑇G ≤ 𝛾G𝐼𝑛.Thus, we
introduce the inequality condition

−𝜇⋆𝐿𝐼𝑛 + 𝛾GS ≤ 0, (36)

and this inequality is a sufficient condition of the 2nd
inequality of (33).

From the above discussion, one can see that, for given
positive constants 𝜏 and 𝛾G, if the symmetric positive definite
matrix S ∈ R𝑛×𝑛, the matrix W ∈ R𝑚×𝑛, and the positive
scalars 𝜇𝐾, 𝜇𝐿, 𝜇⋆𝐾, and 𝜇⋆𝐿 which satisfy LMIs of (26), (34),
(35), and (36) are obtained, then the input constraints are
satisfied.

Consequently, our main result is summarized as the
following theorem.

Theorem 4. Consider the nonlinear system of (6) and the
control input of (10).

For given positive constants 𝜏 and 𝛾G, if there exist the
symmetric positive definite matrix S ∈ R𝑛×𝑛, the matrix

W ∈ R𝑚×𝑛, and the positive scalars 𝜇𝐾, 𝜇𝐿, 𝜇⋆𝐾, and 𝜇⋆𝐿 which
satisfy the LMIs

(𝐻𝑒 {𝐴S + 𝐵W} + 𝜏S 𝐵𝑟⋆ −𝜏X𝑟) ≤ 0,
(−S W𝑇⋆ −𝜇⋆𝐾𝐼𝑚) ≤ 0,
(−𝜇⋆𝐾 −𝜇𝐾⋆ −1 ) ≤ 0,
(−𝜇⋆𝐿 −𝜇𝐿⋆ −1 ) ≤ 0,
−𝜇⋆𝐿𝐼𝑛 + 𝛾GS ≤ 0,

𝜇⋆𝐾 + 𝜇⋆𝐿 ≤ 𝜇,

(37)

the fixed gain matrix 𝐾 ∈ R𝑚×𝑛 and the adaptive compensa-
tion input 𝜓(𝑥, 𝑡) ∈ R𝑚 are determined as

𝐾 = WS
−1,𝜓 (𝑥, 𝑡)

= {{{{{
− ‖G𝑥 (𝑡)‖󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡)󵄩󵄩󵄩󵄩𝐵𝑇P𝑥 (𝑡) if 𝐵𝑇P𝑥 (𝑡) ̸= 0
𝜓 (𝑥, 𝑡𝛿) if 𝐵𝑇P𝑥 (𝑡) = 0,

(38)

where 𝑡𝛿 = lim𝛿>0,𝛿→0(𝑡−𝛿) [6].Then the closed-loop system of
(11) is internally stable and the state reachable setR(𝑥) belongs
to E(P). Moreover the input constraints for the control input𝑢(𝑡) are also guaranteed.
Remark 5. In this paper, we introduce the assumption𝑚 = 1
and consider the input constraint of (9).

By theway, for the control input𝑢(𝑡) = (𝑢1(𝑡), . . . , 𝑢𝑚(𝑡))𝑇
there exist the componentwise input constraints; that is,󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜇𝑖 (𝑖 = 1, . . . , 𝑚) , (39)

where 𝜇𝑖 is a given positive constant. If the positive constant𝜇𝑖 for the constraints of (39) satisfies 𝜇𝑖 = 1.0, one can adopt
the inequality [14]

𝑢𝑇 (𝑡)Z𝑢 (𝑡) ≤ 1,
Trace {Z} = 1, (40)

and the proposed design approach can be easily extended to
this case.

On the other hand, for the case of 𝜇𝑖 ̸= 1.0, although we
can consider the condition𝑢𝑇 (𝑡)R𝑢 (𝑡) ≤ 1,

R
1/2 = diag (𝜇+, . . . , 𝜇+) , (41)

instead of (40), where 𝜇+ means max𝑗{𝜇𝑗}, then the resulting
controller which is obtained by adopting the condition of (41)
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becomes very conservative. Thus the constraint condition of
(41) is not desirable, and efficient and tractable conditions
corresponding to the constraint of (39) have not been devel-
oped. Namely, the design problem for such constraints is one
of our future research subjects.

Remark 6. In this paper, we deal with a stabilization problem
of an adaptive robust controller for a class of nonlinear
systems with input constraints. On the other hand, in the
work of Oya and Hagino [7], by introducing an error signal
between the time response and the desired one, the robust
controller in [7] can achieve not only robust stability but
also satisfactory transient behavior. Note that the proposed
controller design approach can easily be extended to such
control strategy.

5. Numerical Examples

In order to demonstrate the efficiency of the proposed robust
controller, we have run a simple numerical example.

Let us consider the nonlinear system

𝑑𝑑𝑡𝑥 (𝑡) = (−1.0 4.00.0 −5.0) 𝑥 (𝑡) + (0.02.0) 𝑢 (𝑡)
+ (0.02.0) 𝑔 (𝑥, 𝑡) + (1.02.0) 𝑟 (𝑡) , (42)

with the input constraint‖𝑢 (𝑡)‖ ≤ 1.0. (43)

Additionally in this simulation, the reference input 𝑟(𝑡) ∈ R1

and G ∈ R1×2 selected as 𝑟(𝑡) = X−1𝑟 × cos(𝜋𝑡) (X𝑟 = 2.2)
andG = (2.0 1.0), respectively; that is, 𝛾G = 4.0.

Firstly, in order to derive the proposed adaptive robust
controller, we select the design parameter 𝜏 in (37) such as 𝜏 =2.0. Then by solving the LMIs of (37), the symmetric positive
definite matrix S ∈ R2×2, the matrix W ∈ R1×2, and the
positive constants 𝜇𝐾, 𝜇𝐿, 𝜇⋆𝐾, and 𝜇⋆𝐿 can be calculated as

S = (2.4439 × 10−1 −2.8670 × 10−2⋆ 8.2520 × 10−2 ) ,
W = (−4.4815 × 10−1 −6.3870 × 10−2) ,
𝜇𝐾 = 9.9729 × 10−1,
𝜇𝐿 = 3.8150 × 10−2,
𝜇⋆𝐾 = 9.9724 × 10−1,
𝜇⋆𝐿 = 1.8800 × 10−3.

(44)

Namely, the following inequality holds:

𝜇⋆𝐾 + 𝜇⋆𝐿 = 9.9912 × 10−1 (= 𝜇⋆) < 1.0. (45)

Thus the constraint of (43) for the control input is satisfied,
because 𝜇⋆ < 𝜇.

By using the symmetric positive definitematrixS ∈ R2×2

and the matrixW ∈ R1×2 we have𝐾 = (−2.0072 −1.4714) . (46)

Moreover, the symmetric positive definite matrix P ∈ R2×2

can be obtained as

P = (4.2676 1.4828⋆ 1.2633 × 10−1) , (47)

and the state reachable setR(𝑥) is included in the ellipsoidal
set E(P) described as

E (P) = {𝑥 ∈ R
𝑛 | 4.2676 × 10−1 × 𝑥21 (𝑡) + 2.9656

× 𝑥1 (𝑡) × 𝑥2 (𝑡) + 1.2633 × 10−1 × 𝑥22 (𝑡) ≤ 1.0} . (48)

In this example, the initial value of the uncertain nonlin-
ear system of (42) is selected as 𝑥(0) = (0.0 0.0)𝑇. Moreover,
in this simulation, we consider the following two cases for
the nonlinear function 𝑔(𝑥, 𝑡) (note that these two cases in
this example mean a nonlinear function of Case 1 and a
linear function of Case 2 as a special case for the nonlinearity,
respectively):

Case 1.𝑔 (𝑥, 𝑡)
= (√2 cos (10𝜋𝑥1 (𝑡)) , − sin (5𝜋𝑥2 (𝑡))) 𝑥 (𝑡) . (49)

Case 2.

𝑔 (𝑥, 𝑡) =
{{{{{{{{{{{{{{{

0 ≤ 𝑡 < 1, 𝑔 (𝑥, 𝑡) = (−√2, −1) 𝑥 (𝑡)1 ≤ 𝑡 < 3, 𝑔 (𝑥, 𝑡) = (−√2, 1) 𝑥 (𝑡)3 ≤ 𝑡 < 5, 𝑔 (𝑥, 𝑡) = (√2, −1) 𝑥 (𝑡)5 ≤ 𝑡, 𝑔 (𝑥, 𝑡) = (√2, 1) 𝑥 (𝑡) .
(50)

The simulation result of this numerical example is shown
in Figures 1–8. Figures 1–6 represent time histories of the state
and the control input, and in these figures “Conventional”
and “Proposed” mean the conventional robust control based
on the existing result [7] and the proposed robust controller,
respectively. Namely, “Conventional” does not take input
constraints into account. Moreover, “Upper bound” and
“Lower bound” in Figures 5 and 6 represent the constraint
for control input, and “blue” line in Figures 7 and 8 means
the ellipsoidal set E(P).

From these figures, the proposed robust controller and
the conventional adaptive robust controller based on the
existing result [7] stabilize the dynamical system of (42) in
spite of unknown nonlinearities. Moreover, from Figure 6,
we find that the proposed adaptive robust controller satisfies
the control input saturation. Additionally, one can see from
Figures 7 and 8 that the state trajectory is contained in the
ellipsoidal set E(P). Namely, the proposed controller can
robustly stabilize the uncertain system of (42) and also satisfy
the control input saturation.
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Figure 1: Time histories of 𝑥1(𝑡): Conventional.
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Figure 2: Time histories of 𝑥2(𝑡): Conventional.
On the other hand, one can see from Figure 5 that the

conventional adaptive robust controller cannot satisfy the
input constraints.

Therefore the effectiveness of the proposed adaptive
robust controller giving consideration to input constraints for
a class of nonlinear systems has been shown.

6. Conclusion

In this paper, we have proposed an adaptive robust controller
for a class of nonlinear systems with input constraints. The
proposed design method is based on LMIs, and thus the
proposed adaptive robust controller can easily be obtained
by using software such as MATLAB and Scilab. In addition,
the effectiveness of the proposed robust controller has been
shown by simple numerical examples. Note that the proposed
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Figure 3: Time histories of 𝑥1(𝑡): Proposed.
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Figure 4: Time histories of 𝑥2(𝑡): Proposed.
adaptive robust controller is an extension of the existing
results [7].

In the proposed adaptive robust control strategy, the
control input consists of a state feedback with fixed gains and
an adaptive compensation input, and the adaptive compen-
sation input is defined as a state feedback with time-varying
adjustable parameters..The advantages of the proposed adap-
tive robust control scheme are as follows: the proposed robust
controller is more flexible and adaptive than conventional
fixed gain robust controller, which is designed for the worst
case of unknown parameter variations, and satisfies the given
input saturations.

In our future work, we will extend the proposed adaptive
robust controller synthesis to such a broad class of systems
as linear systems with mismatched uncertainties, uncertain
nonlinear systems with time delays, and so on. Furthermore,
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Figure 5: Time histories of 𝑢(𝑡): Conventional.
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Figure 6: Time histories of 𝑢(𝑡): Proposed.

analysis of the conservativeness of the proposed adaptive
robust controller giving consideration to input saturations is
also an important issue for our future works. Additionally,
the extension of the proposed approach to more general
types for constraints such as (39) and the discussion for
conservativeness of the proposed design approach are also
important future research subjects.
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Figure 8: Ellipsoidal set and trajectory of 𝑥(𝑡): Case 2.
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