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“Not only is the universe stranger than we think, it is stranger than we can think.”

Werner Heisenberg
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Abstract

A quantum computer can reduce the amount of computational effort for selected
applications exponentially by taking advantage of quantum mechanical phenomena of
nature. For the realization of a real-world quantum computer, among other things, op-
timized qubit measurements and qubit coupling schemes are indispensable. This dis-
sertation uses theoretical tools to develop novel measurement and coupling strategies
in different superconducting qubit architectures. In a first part of the thesis a protocol
for multi-qubit parity measurements of Transmon qubit registers is presented, which
takes advantage of the nonlinear energy level structure to strongly increase contrast,
while at the same time achieving high fidelities and being quantum non-demolishing.
The second part focuses on superconducting flux qubits, which are promising for adi-
abatic quantum computing. First a novel indirect flux qubit measurement protocol
is introduced, which provides the ability to measure in a fixed basis, the persistent
current basis, independent of the qubit energy eigenbasis. Second it is shown that the
limitation of natural interactions to pairwise interactions can be overcome by using a
nonlinear coupler and four flux qubits. The achieved four local interactions between
the qubits are proven to be in the strong coupling regime and even exceed the two
local ones for the right system parameters.
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Zusammenfassung

Ein Quantencomputer besitzt das Potenzial den Rechenaufwand für bestimmte Aufga-
ben gegenüber einem klassischen Computer exponentiell zu reduzieren, indem er sich
quantenmechanischer Phänomene der Natur bedient. Zur Realisierung eines echten
Quantencomputers sind, neben anderen Bestandteilen, optimierte Mess- und Kopp-
lungsschemata für Qubits unabdingbar. Diese Dissertation befasst sich damit theoreti-
sche Mittel zu nutzen, um neue Mess- und Kopplunsstrategien in verschiedenen supra-
leitenden Qubitarchitekturen zu entwickeln. In einem ersten Teil der Arbeit wird ein
neues Protokol zur Paritätsmessung von Registern aus Transmon Qubits vorgestellt,
welches die nichtlineare Energiestruktur ausnutzt, um den Kontrast der Messung stark
zu erhöhen und zudem sowohl einen hohen Kontrast aufweist und QND ist. Der zwei-
te Teil fokussiert sich auf supraleitende Flussqubits, die vor allem beim adiabatischen
Quantencomputer genutzt werden. Zuerst wird ein neues, indirektes Messprotokol
vorgestellt, welches die Möglichkeit bietet in einer festen Basis, der Dauerstrombasis,
unabhängig von der jeweiligen Energieeigenbasis, zu messen. Danach wird gezeigt,
dass die Einschränkung von natürlichen Wechslewirkungen auf paarweise Wechselwir-
kung überwunden werden kann, indem man vier Flussqubits mittels eines nichtlinea-
ren Kopplers verknüpft. Die erreichten Viererwechselwirkungen zwischen den Qubits
sind im Regime starker Kopplung und können für die richtigen Systemparameter die
paarweisen Wechselwirkungen überschreiten.
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Chapter I

Introduction

In this part of the thesis we give a brief introduction into the theoretical backround
needed to understand the other two parts, where we present our own results. After a
short historical review of modern computation, we deliver the mathematical language
used in the field of quantum computation and list the necessary ingredients for a
universal quantum machine. Additionally it is shown how to realize quantum bits
in superconducting circuits. In the last section we briefly introduce the field of open
quantum system, which is used throughout the thesis to describe measurements of
quantum systems as well as environmental effects.
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1 History of Modern Computers

The aim to use physical constructions to solve computational problems started long
before the first realization of what we would now call a classical computer. One
of the first known mechanical tools which helped people to perform mathematical
calculus was the so called abacus, invented around 2500 B.C. Being far away from
solving complex problems like modern computers, the abacus is still used for basic
calculations, especially in Asia. The abacus may be viewed as the trigger that caused
an avalanche of inventions that finally resulted in modern classical computers.

Alan Turing started the journey of modern computing and the field of computer
science in 1936 with his remarkable paper, in which he first presented an abstract
version of a programmable computer, the now called Turing machine [1]. Here he
introduced the idea of universality and showed that any algorithm performed on some
deterministic device can also be performed on the universal Turing machine.

Motivated by Turing’s theoretical work, many scientists tried to build the optimal
mechanical device which realizes such a universal Turing machine. In 1941 Konrad
Zuse presented the Z3, which was the first functional, fully automatic, programmable
device using binary floating point numbers, hence the first modern computer.

Besides Zuse’s invention, there were a lot of other more or less successful efforts
to build a universal Turing machine. However, in most cases the biggest downside of
these devices was scalability. The physical constructions were huge and additionally
often extremely vulnerable to errors. This all changed with the development of the
transistor in 1947, which delivered a scalable and error-robust physical device to build
universal binary computers. The further development of integrated circuits since then
is a main research and engineering field, even honored with a Nobel price for Jack S.
Kilby in 2010 [2]. As predicted by Moore in the 60s, the computer power doubles every
year, a circumstance referred to as Moore’s law [3]. However, Moore’s law starts to
saturate [4], mostly because quantum mechanical effects start to matter when scaling
down more and more.

The breakdown of Moore’s law shows that the computational power of modern
computers will be limited, which motivated people to think about alternative ways
to perform computation in a more effective way. In 1981 Richard Feynman was the
first to noticed that it would make a lot more sense to use a machine which satisfies
the laws of quantum mechanics to simulate quantum systems [5]. This was the birth
of the field of quantum computing. Since quantum mechanical effects seem to limit
Moore’s law, a logical next step was to engineer quantum systems to be able to perform
computations on an atomic scale.

2 Quantum Computing

2.1 General Concepts

As mentioned in the previous section, there is a need of inventing new technology
to build more powerful computers including the laws of quantum mechanics. In this
section the basic concepts of a quantum computer are explained and additionally
it is shown how to build a Turing like machine, which is able to perform universal
computing.
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2.1.1 Qubits

In a classical computer every operation is performed in binary representation. The
smallest piece of information which can be stored and processed here is a bit. A
bit can adopt two values either ”0” or ”1”. To build a quantum computer, first we
need an analogous quantum version of the bit, which is called the "quantum bit" or
short, "qubit". A qubit is quantum system, in which two distinguishable states can
be isolated. To make a connection to classical computing these two states are usually
referred to as |0〉 and |1〉. How to actually realize qubits in physical systems will be
discussed in more detail in Sec. 2.4.

As mentioned before a classical bit has either the value 0 or 1, whereas in quantum
mechanical systems, a state can also be in a linear superposition of the two states |0〉
and |1〉,

|Ψ〉 = α |0〉+ β |1〉 . (1.1)

When a projective measurement (see Sec. 2.2.2) in the basis {|0〉 , |1〉} is performed,
one observes the value 0 with probability |α|2 and the value 1 with probability |β|2.
Therefore α and β are called the probability amplitudes of the state and naturally
|α|2 + |β|2 = 1. After the measurement, the original superposition state is projected
onto the logical state which corresponds to the respective measurement outcome. This
probabilistic behavior, meaning the possibility to be in superposition states, makes a
qubit more powerful than a classical bit. A classical bit can store one value whereas
the Hilbert space of a qubit is two dimensional. The dimension of the Hilbert state
scales exponentially as we will see in Sec. 2.1.2, such that one needs 2n classical
bits to simulate an n qubit register, highlighting the speedup potential of a quantum
computer.

It is possible to rewrite (1.1) as

|Ψ〉 = eiγ

(
cos

Θ

2
|0〉+ eiϕ sin

Θ

2
|1〉
)
, (1.2)

where γ, Θ and ϕ are real numbers. The global phase γ is insignificant, such that ϕ
and Θ completely determine the qubit state. These two numbers can be interpreted
as the polar and azimuthal angle of a vector, hence all qubit states lie on the surface
of a unit sphere which is called the Bloch sphere (see Fig. 1.1). It follows that the
state Ψ can also be expressed in Cartesian coordinates

|Ψ〉 =

sin Θ cosϕ
sin Θ sinϕ

cos Θ

 .

The x, y and z contributions correspond to the expectation value of the respective
Pauli spin matrix 〈σ̂i〉 = 〈Ψ|σ̂i|Ψ〉, with i = {x, y, z}.

Every single qubit gate can be interpreted as a unitary rotation of the correspond-
ing Bloch vector.

Another possibility is to represent qubit states in an operator formalism, in form of
the so called density matrix. For a pure state |Ψ〉, meaning a state that is represented
by one specific vector in the respective Hilbert space, the density operator is defined
as

ρ̂ = |Ψ〉 〈Ψ| . (1.3)
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Figure 1.1: Representation of the superposition state |+〉 =
1/
√

2(|0〉 + |1〉). Since |+〉 is an eigenstate of the Pauli X matrix,
it lies on the x-axis of the Bloch sphere.

If |Ψ〉 is a single qubit state of the form (1.1), the density matrix has the form

ρ̂ =

(
|α|2 αβ∗

α∗β |β|2
)
. (1.4)

However, a system is not always in a pure state, it can also exist in a mixed state, i.e.
the quantum state itself is only known with some probability. In this case the density
matrix is the sum of all the appearing states |Ψ〉 with corresponding weights pi

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| . (1.5)

(1.3) is just a special case of (1.5), where all weights except one are zero. Note that
the density matrix can be explicitly time-dependent. The analogue to the Schrödinger
equation in terms of density matrices describing the time evolution of the latter is the
Liouville-Von Neumann equation

˙̂ρ(t) = − i
~

[Ĥ(t), ρ̂(t)], (1.6)

where Ĥ(t) describe the, in general time dependent, Hamiltonian of the system.

2.1.2 Gates and multiple Qubits

As mentioned before, every single qubit gate can be represented by a unitary operator
Û rotating the initial state |Ψ〉 to the state |Ψ′〉 = Û |Ψ〉 on the Bloch sphere. An
example of such a rotation is the NOT gate, which corresponds to the classical version
of the NOT gate. On the Bloch sphere this operation can be interpreted as a π rotation
around the x-axis. Since we use |0〉 and |1〉 as the computational basis, the NOT gate
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can be written as the unitary

NOT =

(
0 1
1 0

)
, (1.7)

where the two basis states |0〉 and |1〉 correspond to the canonical basis vectors
(

1
0

)
and

(
0
1

)
,respectively. Note that in contrast to a classical computer, where the NOT

operation is the only non trivial single qubit operation, for a qubit there are several
non-trivial single qubit gates.

Certainly one does want to perform algorithms on larger systems than just one
single qubit. Therefore it is convenient to write a system of n qubits as a qubit
register. The corresponding state Hilbert space is the tensor product of the Hilbert
spaces of the single qubits H = ⊗nk=1Hk with dimension 2n. E.g. for a two qubit
register a natural basis choice is the compound logical basis {|00〉 , |01〉 , |10〉 , |11〉},
where |ij〉 = |i〉 ⊗ |j〉 is the tensor product between the respective two single qubit
states. We can again connect an amplitude αij with every computational state,

|Ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 . (1.8)

As in the one qubit case, a two qubit state can be written down as a four dimensional
vector of the form |Ψ〉 = (α00, α01, α10, α11)T and two qubit gates as 4 × 4 unitary
matrices.

The most important concept within quantum computing is entanglement. A two
qubit state can not always be written in the product form of two single qubit states
|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉. If the two qubits are able to interact with each other, then they
usually do not evolve independently, hence it is not possible to write them as a tensor
product of two single qubit states. Multi-qubit gates that create entanglement between
at least two states are called entangling gates and states that cannot be written as
product states are called entangled states.

To build a quantum Turing machine we have to be able to perform any arbitrary
unitary operation on a number of qubits equal to log2 of the unitary operators dimen-
sion. However, it can be shown that every such operation can be divided into single
qubit rotations and an entangling 2 qubit gate. A possible choice for such a gate is the
CNOT gate which flips the second qubit of the register if and only if the first qubit
is in state |1〉. Assume e.g. the input state |Ψ〉 = 1/

√
2(|0〉+ |1〉) |0〉, which is clearly

a product state, i.e. not entangled. Applying a CNOT on |Ψ〉 results in the output
state |Ψ′〉 = 1/

√
2(|00〉+ |11〉), which is maximally entangled. There are other choices

than the CNOT but the main point here is that we only need to perform single qubit
rotations and one specific 2 qubit gate to build a universal quantum computer, hence
evade the necessity to implement arbitrary n qubit gates (Solovay-Kitaev theorem
[6]). Another crucial point following from the unitarity of qubit operations is that in
contrast to a classical computer the quantum version is reversible [6] (e.g. the NAND
gate for classical computers is not invertible).

The model presented in this section is called the gate model and as mentioned
has the property to be universal. There are other forms of quantum processors like
adiabatic quantum computers (more details in Chapter III), which are not that closely
related to classical binary computers. To show that these architectures also realize
a universal quantum computer one usually tries to map them to the circuit model
with reasonable overhead [7]. Therefore the circuit model basically is the definition
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of universality in context of quantum computing.

2.1.3 Quantum Algorithms

In the previous sections we gave the main ingredients for building a quantum com-
puter. Basically we need qubits, a universal set of gates and the possibility to read
out the state of the qubit register at the end of the computation (for more details see
DiVincenzo criteria in Sec. 2.3). However, it is necessary to find actual algorithms
that can be run on a quantum computer and in the best case algorithms that are
provable to be faster than every existing, or even every possible classical algorithm.
The first known example of the latter type is Grover’s algorithm, first presented in [8].
Here, the problem is that one has a large book of elements where one is marked and
the goal is to find this marked element. In a more practical manner one could think
about having a set of possible solutions to a specific problem and wants to find the
right one with the minimum number of queries. We will not show how the quantum
algorithm works in detail, here we refer the reader to one of the references [9] or [6].
However, it can be shown that Grover’s algorithm has complexity O(

√
m) whereas

the best possible classical algorithm scales with O(m), where m denotes the number
of elements. Therefore Grover’s algorithm shows a provable quantum speedup. In
Sec. 9.2 we present the adiabatic version of the Grover algorithm in some detail.

Another prominent candidate of quantum algorithms is Shor’s algorithm. In [10]
Shor showed that a quantum algorithm can be used to efficiently perform prime fac-
toring. Since for classical computers this problem scales exponentially with currently
known algorithms and Shor’s quantum version only polynomially, this yields the first
huge quantum speedup ever predicted. Note that here quantum speedup is not proven,
since we do not know if the current classical algorithm is the most efficient one possible.

Since these more theoretically motivated quantum algorithms of the 90s were pre-
dicted, much more practically motivated suggestions on how to acutally use a real
world has been proposed. Grover’s and Shor’s algorithm would need a huge number
of qubits to actually beat a classical computer, whereas modern aspirations of quan-
tum algorithms try to focus on specific, mostly scientific problems which can be solved
by a quantum computer with a reasonable number of qubits. One prominent example
is the nitrogen fixation which could be solved efficiently on a quantum computer with
v 100 logical qubits (several 100 qubit units running in parallel) [11, 12, 13].

2.2 Quantum Measurement

Measurements are an important concept in the field of quantum mechanics. As we
have seen, the evolution of a closed quantum system can always be described by a
unitary operator. However, to measure the state of a quantum system, an interaction
with another system is required. In Sec. 3 we talk about open quantum systems, where
theoretical tools are given to study the non-unitary time evolution of the system for
such cases. To describe quantum measurements it is more convenient to use classical
probability theory.

In the field of quantum computing, measurements are needed to perform actual
quantum algorithms. After running an algorithm on a quantum computer one has
to be able to extract the information provided, i.e. to read out the system. Despite
this obvious application, quantum measurements are also needed for quantum error
correction, or to reset the quantum states. For detailed information about the theory
of quantum measurements we refer the reader to [14] and [6], here we will only discuss
the basic concepts needed for a thorough understanding of the following chapters.
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2.2.1 The Measurement Postulate

To simplify calculations and use classical probability theory, the founders of quantum
mechanics stated the measurement postulate which describes an arbitrary quantum
measurement [14]. Here every measurement is described by a collection of measure-
ment operators {M̂m}. These measurement operators are projective and act on the
system being measured. The outcomes are represented by the index m. The proba-
bility to get the result m is given by [6]

p(m) = 〈Ψ|M̂ †mM̂m|Ψ〉 , (1.9)

where |Ψ〉 denotes the state of the system before the measurement. The state after
the measurement is given by

Mm |Ψ〉√
〈Ψ|M̂ †mM̂m|Ψ〉

(1.10)

and the measurement operators must fulfill the completeness relation∑
m

M̂ †mM̂m = 1. (1.11)

As can be seen by (1.10), the map between the pre- and post-measured state is in
general not unitary. The measurement postulate therefore gives a simplification of the
more complicated process which happens during a measurement. Since the measure-
ment device itself behaves quantum mechanically and there needs to be an interaction
between the system to be measured and the readout device, only the dynamics of
the compound system can be described by a unitary operator. Often it is extremely
difficult or even impossible to include all degrees of freedom needed into the mathe-
matical description, such that the measurement postulate delivers a recipe to calculate
the post measurement state without knowing the full dynamics of the measurement
process. To study the time evolution of the state during the whole measurement
process, one needs the theory of open quantum systems which is discussed in Sec. 3.

2.2.2 Projective Measurements

A special case of the general quantum measurement described in the last section is the
so called Von-Neumann projective measurement. Here, the measurement operators
introduced in the measurement postulate must additionally be orthogonal projectors

M̂mM̂m′ = δmm′M̂m. (1.12)

Despite the fact that projective measurements have some nice properties, such as
delivering an easy way to calculate expectation values, they are the most frequently
appearing measurements in quantum theory. For example, readout in the logical
qubit basis with the measurement operators M0 = |0〉 〈0| and M1 = |1〉 〈1| describes
a projective measurement.

Another prominent example which is especially important for the second part
of this thesis are parity measurements in the computational basis. For an N qubit
register, a parity measurement determines if an even or odd number of qubits are
in their excited |1〉 state. For a two qubit register for example, a possible set of
measurement operators for even and odd parity reads M̂odd = |01〉 〈01| + |10〉 〈10|
and Meven = |00〉 〈00| + |11〉 〈11|. In quantum information parity measurements are
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important especially for syndrome readout in error correction codes [15, 16, 17], but
can also be used for entanglement generation [18]. In Part II of this thesis we present
a protocol to measure the parity of an N qubit register in a circuit QED setup.

2.2.3 Quantum Non-Demolition Measurement

As mentioned in Sec. 2.2.1, a quantum measurement inevitably includes an interaction
between the quantum system to be measured and the readout apparatus. Due to this
interaction, the state of the measured system gets disturbed, leading to the fact that a
successive measurement would yield another result. E.g. if one wants to measure the
position of an electron, the measurement itself kicks the electron with an in general
unpredictable force that changes the electrons position.

There are strategies to overcome this disturbance for a specific observable. The
main idea here is to design the interaction such that the measurement disturbs the
canonically conjugated variable but not the measurement observable itself. First in-
vestigated for the measurement of gravitational waves [19], these so called quantum
non-demolition (QND) measurements are also a of particular interest within the field
of quantum information. Since the measured observable itself is not disturbed by
the measurement, a successive sequence of measurements will always yield the same
result [14]. In a more mathematical language, the measured observable is an inte-
gral of motion within the measurement dynamics. A sufficient condition for a QND
measurement is met if the Hamiltonian which describes the interaction during the
measurement commutes with the system Hamiltonian.

In practice QND measurements are hard to realize, since a measurement result
in experiment always includes the interaction with a macroscopic system, which de-
stroys the quantum character of the measured system. To overcome this problem one
commonly uses indirect measurement methods. Here, the quantum system interacts
with a quantum probe, where only the conjugated variable of the measured observable
is influenced by this interaction. The measured system affects the probe, making it
possible to keep track of the quantum state in so called pointer states of the probe
subsystem. After this interaction the quantum system and the probe get effectively
decoupled, before the actual macroscopic measurement of the quantum probe is per-
formed. With these two steps, one is able to extract information about the quantum
system of interest, without disturbing the measured observable. A prominent example
of such indirect QND measurements in the field of quantum computing are disper-
sive measurements [20, 21]. Here a cavity realizes the quantum probe and the qubit
state is encoded in the phase or the photon number of the cavity field. The following
macroscopic readout usually destroys the cavity field but conserves the state of the
measured qubit. In Chapter II of of this thesis, we present a highly nonlinear QND
parity readout scheme for Transmon qubits and in Chapter III a novel indirect flux
qubit measurement which also satisfies the QND criterion.

2.3 DiVincenzo Criteria

In the last sections the different ingredients needed for the realization of a quan-
tum computer were presented. Up to this point, we treated the qubits and gates
as completely theoretical constructions and did not talk about actual experimental
realizations. In the next section we will shortly introduce one specific platform for
qubit realization, but first it makes sense to summarize which conditions an actual
experimental setup must satisfy to construct a quantum computer. In his paper
"The Physical Implementation of Quantum Computation" [22], David DiVincenzo



10 Chapter I. Introduction

presented five criteria in order to successfully implement quantum algorithms on an
experimental platform:

1. A scalable physical system with well characterized qubits: For the realization of a
qubit one needs a physical system with energy levels well separated by an energy
gap. These two states must be uniquely addressable, to actually perform single
and multiple gates. During the whole quantum algorithm the system should not
leak out of the two-level subspace. Furthermore, a well-defined qubit must be
one which can be isolate from the rest of the qubit register to perform control
and measurement on it. One big experimental challenge is to realize a scalable
register where at the same time every single qubit can be well isolated.

2. The ability to initialize the state of the qubits to a simple fiducial state: Quantum
algorithms start with some initial state, which has to be prepared. A typical
choice here is to start with every qubit of the register being in the |0〉 state.
There are different methods to realize qubit initialization. An intuitive way is
to choose temperature of the system close to zero and wait until every qubit
relaxes to the ground state (annealing). However, since cooling requires waiting
for a time on the order of the relaxation time T1, alternative ways to actively
initialize the qubits were presented, e.g. projective measurements.

3. Long relevant coherence times: Interaction of the qubit with an environment
induces decoherence transferring the quantum state into a classical one. The
timescale describing the loss of quantum behavior of the qubit register, i.e.
the coherence time, is especially important for quantum computation, since it
sets a limit for gate and measurement times. There are two main decoherence
mechanisms: relaxation where the qubit decays into its ground state due to the
interaction with the environment and dephasing, where interactions with the
environment destroy the coherence of superposition states. In most experimental
realizations decoherence times are rather small, such that active error correction
schemes are necessary to perform algorithms which require large qubit registers
and number of gates.

4. Universal set of gates: As mentioned in Sec. 1, a Turing machine can perform
any classical algorithm, hence it is called universal. For the quantum version
of a Turing machine, one also needs to realize a set of gates which is able to
perform any possible quantum algorithm, i.e. a universal set of quantum gates.
In particular it has been shown that it is sufficient to perform one two-qubit
entangling gate and a small number of single qubit gates to meet universality.
The experimental challenge here is to perform one and two qubit gates with
high fidelities, within the decoherence time of the qubit register.

5. Qubit specific measurement capability : At the end of a quantum algorithm, it
is necessary to extract the answer out of the system, otherwise the quantum
computer would be useless. Therefore one needs to experimentally realize high
fidelity measurement schemes to readout the state of the qubit register. Since the
measurement must be performed within the coherence time, these measurement
schemes also have to be fast compared to the decoherence rates of the system.

2.4 Qubit Realization with Integrated Circuits

Since the field of quantum information was born in the 1980s, a lot of qubit architec-
tures have been proposed [23]. In this thesis we focus on superconducting qubits. For
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the physical realization of a qubit one needs a system with two isolated addressable
energy levels corresponding to the computational 0 and 1 of the qubit. Many qubit
architectures use natural two-level systems e.g. the two different spin states of an
electron in an atom. Here the benefit is that the system parameters do not depend
on the fabrication process, they are fixed by nature.

Besides from this two-level systems that nature delivers, it is also possible to create
artificial two-level systems to use as a qubit. The advantage of these qubits is, that
the characteristic frequencies can be determined by the fabrication process, such that
they can be chosen in a regime where good control electronics already exist. In natural
two-level systems, on the other hand, the energy levels are fixed and one has to adjust
control electronics, which can be challenging. Furthermore, these artificial qubits are
fixed in space, e.g. they can be built on chip, and the interactions can be designed to
fit for specific purposes.

The currently most promising candidate within the family of artificial atoms are
the superconducting ones. Here the characteristic frequencies are in the GHz range,
such that one can use the well developed field of microwave electronics for manipu-
lation of the qubits. The necessity for superconducting circuits arises from the fact
that any loss mechanism would decohere the qubits and induce a transition from a
quantum mechanical to a classical system. On the other hand superconductivity is
a robust macroscopic quantum phenomenon [24], and as such fits perfectly to the
framework of quantum computing.

Here, we present two basic superconducting qubit realizations which are of impor-
tance for this thesis. On the one hand the charge qubit, which provides the basis for
the Transmon qubit used in Chapter II and on the other hand the flux qubit which is
of main interest in Chapter III. For further details see e.g. [25] for a detailed review
or [26] for a shorter overview.

2.4.1 Josephson Junction

The simplest choice for a multi-level quantum system in an integrated circuit would
be an LC-oscillator, i.e. a superconducting loop interrupted by a capacitance. How-
ever, the superconducting LC oscillator leads to the same Hamiltonian as a quantum
harmonic oscillator with an equidistant energy structure. Here, it is not possible
to address two energy levels separately making it incomplete for quantum computing
purposes. To break the equidistant energy splitting, a nonlinear element, the so called
Josephson junction, is needed in the circuit.

As shown in Fig. 1.2, the Josephson junction is a non-superconducting layer
(usually an insulator) sandwiched by two superconducting layers. The usual choice
for superconducting qubits is aluminum with an alumina layer of about 1 nm in
between the superconducting layer [27]. If the Josephson junction is cooled down to
the superconducting regime (about 15 mK), a tunneling of Cooper pairs across the
junction leads to a nonzero current and voltage. Each superconducting layer can be
described by a wave function with amplitude |Ψi| and phase ϕi. The current induced
by the tunneling is given by the first Josephson equation [28]

I = Ic sinϕ, (1.13)

where ϕ = ϕ1−ϕ2 denotes the phase difference across the junction. Ic corresponds
to the maximum value a biasing current can adopt before superconductivity breaks
down, called the critical current. The voltage across the junction is described by the
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Figure 1.2: A Josephson junction consists of two superconducting
layers and an insulating layer in between. For a non-vanishing phase
difference ϕ1−ϕ2 Cooper pairs can tunnel across the insulating layer,

resulting in a supercurrent across the junction.

quantum Faraday law [28]

V = Φ0ϕ̇, (1.14)

where Φ0 = ~/2e is the magnetic flux quantum. Since the two conducting layers with
an insulator in between also correspond to a capacitance, the Josephson junction can
be represented by a capacitance CJ in parallel with a nonlinear inductance LJ . A
microscopic derivation of the Josephson equations can be obtained using BCS theory;
we refer the reader to [29] for further details.

2.4.2 The Charge Qubit

The Josephson junction provides the nonlinear ingredient necessary for the realiza-
tion of superconducting qubits. However, there exist different possibilities to build a
superconducting qubit, one of which is the charge qubit [30, 31, 32]. The correspond-
ing circuit is shown in Fig. 1.3. Here the area isolated by the capacitance on the
one end and the Josephson junction on the other end is called the superconducting
island. In the quantum regime, Cooper pairs can tunnel through the junction onto
the isolated island and with this change the corresponding energy. Therefore one can
use the number of Cooper pairs on the island n̂ as a quantum variable and write the
Hamiltonian of the charge qubit as

Ĥ = Ec(n̂− ng)2 − EJ cos ϕ̂, (1.15)

with charging energy Ec = (2e2)/(CJ + Cg), Jospehson energy EJ = IcΦ0 and gate
charge number ng = CgVg/(2e). The charge qubit is operated in the regime Ec � EJ
to maximize the anharmonicity. The term Ec(n̂ − ng) leads to anharmonic energy
levels, where the two lowest ones can be used as the qubits logical 0 and 1. Since ϕ̂
is a conjugated variable to n̂, the cosine part of (1.15) induces a tunneling onto and
from the island, changing the quantum number n̂. Therefore the projection of the full
Hamiltonian (1.15) on the two lowest charge states |0〉 and |1〉 yields

ĤCQB = −Ec
2

(1− 2ng)σ̂z −
EJ
2
σ̂x, (1.16)
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Cg

Vg CJ LJ

Figure 1.3: Circuit of the charge qubit with gate voltage Vg, gate
capacitance Cg, junction capacitance CJ and inductance LJ . The su-

perconducting island is visualized by the blue (dotted) box.

with the two corresponding eigenenergies

E0/1 = ∓1

2

√
E2
c (1− 2ng)2 + E2

J (1.17)

and Pauli operators σ̂z = − |0〉 〈0|+ |1〉 〈1|, σ̂x = |0〉 〈1|+ |1〉 〈0|. The energy difference
of the two states is controlled by the gate voltage. To reduce noise sensitivity of the
charge qubit, it is usually operated at the degeneracy point ng = 1/2, where the
Hamiltonian is left with the σ̂x contribution. However, charge noise in the material
acting on the gate voltage has a crucial effect even slightly away from the degeneracy
point, such that modern realizations operate in the regime EJ � Ec. This is realized
by adding an additional shunt capacitance. In this regime the qubit is much more
robust against noise sources, but on the other hand it comes at the price of low
anharmonicites, making leakage to higher energy levels a serious issue [33]. This
version of the charge qubit is called Transmon [33] and appears in Part II of this
thesis.

2.4.3 The Flux Qubit

The flux qubit or persistent current qubit (three junction version) is a superconducting
qubit using the flux degree of freedom. The easiest design of a flux qubit is the rf-
SQUID, which consists of a simple superconducting loop interrupted by a Josephson
junction. Due to coherence properties it is more common to use a three junction
SQUID in real experiments (see Fig. 1.4). Fluxoid quantization tells us that the flux
enclosed in a superconducting loop is restricted to specific values. A loop interrupted
by Josephson junctions hence satisfies the relation∑

i

ϕi +
2πΦtot

Φ0
= 0, (1.18)
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Figure 1.4: Left: Circuit diagram of the commonly used three junc-
tion persistent current qubit. Upper Right: Double well potential of the
flux qubit with the two wells corresponding to two different persistent
current states. Lower right: Avoided crossing of the flux qubit energy

spectrum, with degeneracy point at Φx = Φ0/2

with Φtot being the total flux enclosed by the loop and ϕi the flux difference across
the i-th Josephson junction. If we assume one junction and apply an external flux
Φx, the total magnetic flux is given by

Φtot = Φx − LI, (1.19)

where L is the self-inductance and I the current through the loop. With the fluxoid
quantization relation (1.18) and (1.19), the quantized Hamiltonian of the flux qubit
can be written as

Ĥ =
Q̂2
c

2C
+

(Φ̂− Φx)2

2L
− β cos

(
2πΦ̂

Φ0

)
, (1.20)

with junction capacitance C and Q̂ being the canonical conjugate to the quantized flux
across the junction Φ̂, such that [Φ̂, Q̂] = i~. The nonlinearity of the flux qubit depends
on the ratio of the Josephson energy EJ and the inductive energy EL = (Φ0/2π)2/L,
i.e β = EJ/EL. It is common to use the phase ϕ̂ = 2πΦ̂/Φ0 and Cooper pair number
q̂ = Q̂/(2e) as dimensionless, conjugated quantum variables instead. Choosing the
external flux as

Φx

Φ0
=

1

2
mod 1, (1.21)

the potential has the form of a symmetric double well. The two wells correspond to two
different directions (clock- and counterclockwise) of the persistent current Ip, which
is induced to fulfill the fluxoid quantization condition (1.18). At the degeneracy point
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(1.21) the frustration between the two supercurrent directions is maximized. The co-
sine part of the Hamiltonian induces a tunneling between these two persistent current
states. For an arbitrary bias point, the two-level approximation of the Hamiltonian
(1.20) in the persistent current basis reads:

Ĥ = − ε
2
σ̂z −

∆

2
σ̂x, (1.22)

with energy asymmetry ε = Ip(Φx − Φ0/2) between the two wells and tunnel matrix
element ∆. The corresponding eigenvalues are given by

E0/1 = ±
√
ε2 + ∆2

2
, (1.23)

resulting in a level anticrossing, as shown in Fig. 1.4. Flux qubits are usually operated
at the degeneracy point, where they are to first order resistant against flux noise. On
the other hand, high fidelity and fast QND readouts at this point is quite challenging,
which is the main motivation for the novel measurement protocol presented Sec. 10
of this thesis.

The persistent current qubit was first proposed in [34] and up to now several
quantum effects have been observed in these architectures [35, 36, 37]. Modern circuit
model implementations usually use charge based qubits due to their better coherence
times. However, especially for the realization of a real world adiabatic quantum
computer, which will be studied in Chapter III of this thesis, flux qubits are the
common choice. One takes advantage of their intrinsic coupling properties as well as
their large nonlinearities. The best flux qubits which have been shown to be suitable
for quantum annealing are currently produced by the researchers of the quantum
enhanced optimization (QEO) program (T1 = 3.5 µs and T ∗2 = 0.13 µs) [38].

2.4.4 Circuit Quantum Electrodynamics

As shown in the first part of this section, artificial two-level systems serving as qubits
can be created using superconducting circuits. However, to build an actual quantum
computer one needs to couple, readout and control the respective qubits. Natural
atomic two-level systems have characteristic frequencies in the optical range, hence
optical cavities are used for this purpose. The study of interactions between light
confined in a cavity and atoms is called cavity quantum electrodynamics (cQED)
[39, 40]. In contrast, superconducting qubits work in the microwave regime, making
it necessary to exchange optical cavities by coplanar waveguide resonators. Being
quasi one-dimensional, these waveguides deliver an advantage over optical cavities
due to their small mode volume leading to extremely high coupling strengths. The
coupling can be achieved in various ways, by inductive or capacitive coupling with the
qubit being outside the resonator, or by using electrostatic or galvanic coupling when
placing the qubit inside the cavity. This field is called circuit QED [20, 41] and a lot
of experimental realizations including coherent Rabi interactions, strong/ultrastrong
coupling, readout and control has been presented in the last years [42, 43, 44, 45, 46,
47, 48].

To describe these usually classical microwave devices in a quantum mechanical
language, one moves to a second quantized representation. This can be done using
standard techniques which can be found in [49]. We refer the reader to this reference
and will not review the quantization of a microwave resonator here. After quantiza-
tion, one realizes that the microwave field in a resonator can be described analog to
the optical case, resulting in harmonic oscillator modes. Therefore, the interaction
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with a superconducting qubit is in first order given by Rabi dynamics

Ĥint = gσ̂x

(
â† + â

)
, (1.24)

with Pauli matrix σ̂x and bosonic field creation and annihilation operators â and
â†. The coupling strength g depends on the specific coupling implementation (for
an example see e.g. [50]). Even though in circuit QED experiments ultrastrong
couplings have been realized [42], in most cases the coupling strength is small enough
to neglect non-secular terms and perform the rotating wave approximation, leading
to the simplified Jaynes-Cummings Hamilton

ĤJC ≈ g
(
σ̂†â+ σ̂â†

)
, (1.25)

with σ̂† and σ̂ being the raising and lowering operator of the qubit. The nonsecular
terms are the fast oscillating ones appearing in (1.24). E.g if ωc denotes the frequency
of the cavity and ωQB the qubit frequency, the nonsecular terms are proportional to
e±i(ωQB+ωc). For couplings g � ωQB + ωc these terms average to zero and can be
dropped (for more details see [51])

As mentioned in the beginning of this section, waveguides are also used for qubit
readout. Since the second part of this thesis presents an improved version of the
usually used linear dispersive readout, we will give a brief introduction into the latter.
Dispersive readout schemes aim for a QND measurement of the qubit, meaning one
wants to suppress Rabi oscillations between the qubit and the resonator. Therefore
the frequency of the resonator ωc and the qubit ωQB are far detuned (∆ = ωc − ωQB

� g), such that the qubit dynamics are assumed to be constant, but the qubit induces
a frequency shift of the resonator field. For photon numbers beyond a critical value
ncrit (for more details see e.g. [52]), the Hamiltonian of the qubit-resonator system
can be approximated to order as

Ĥdisp = (ωc + χσ̂z) â
†â− 1

2
ωQBσ̂z, (1.26)

where χ = g2/∆ denotes the dispersive coupling strength between qubit and resonator.
Eq. (1.26) shows that the cavity incorporates a state dependent frequency shift. This
makes it possible to determine the qubit state by monitoring the transmission of the
resonator using homodyne or heterodyne detection [20, 53], or a microwave photon
counter [21, 54].

2.4.5 Currently available superconducting qubit architectures

In the last years the field of quantum computing made a transition from being a
completely fundamental reasearch topic, to raising also the interest of commercial
companies like IBM, Google, Microsoft and created various new startup companies
like Rigetti Computing. Here, we will give a few numbers of the current supercon-
ducting qubit chip of IBM, such that the reader has an insight on the current status
of superconducting qubits. The presented chip uses a variation of the Transmon qubit
[33], which is based on the charge qubit (see Sec. 2.4.2), as most of the current so-
called noisy intermediate scale quantum (NISQ) devices do. The additional shunt
capacitance increases the ratio EJ/EC ratio to approx. 50, making it extremely ro-
bust against charge noise. IBM build their 20 qubit universal quantum computing
device, the IBM Q One 20-qubit in 2018/2019, achieving the following numbers [55]:
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• T1 (relaxation time) : ≈ 38.2 µs - 132.9 µs

• T2 (decoherence time): ≈ 39.2 µs - 100.8 µs

• single qubit gate error rates: 8.2 · 10−4 − 1.9 · 10−4

• two qubit gate (CNOT) error rates: 285 · 10−4 − 97 · 10−4,

where the readout fidelity has yet to be determined. A detailed evaluation of the
superconducting qubit architectures of all the leading groups can be found in [23] or
on Quantum Computing report [56], including all relevant numbers as far as they are
published.

There are also various announcements of the different companies for the near
future. On the 2018 APS March meeting in Los Angeles, Google presented a 72-qubit
chip (Bristlecone) [57], basically extending the same architecture they already used for
their 9 qubit chip [58, 59, 60]. However, they have not published any results yet but
gave some numbers in a talk at the Adiabatic Quantum Computing Conference 2018
[61] and APS March meeting 2019 [62, 63], comparing their 5 and 9 qubit devices
against IBM Q indicating that their T1 times are roughly 2-4 times worse but the
single and two qubit gate fidelities are 2-10 times better. They expect the Bristlecone
chip to have roughly the same numbers than the previous 5 and 9 qubit devices.

Rigetti computing even announced a chip with 128 superconducting qubits, but
also didn’t share any results so far. Both of these chips would break the magic number
of around 50 qubits, where all currently existing supercomputers are assumed to no
longer be able to simulate the corresponding qubit chip, making these chips potential
candidates to prove quantum supremacy [64]. E.g. IBM presented a method to
simulate a universal random circuit with depth 27 on a 2D lattice of 7×7 qubits within
the limits of existing classical computers [65]. Note, that all the currently available
devices are so called NISQ computers (see [66] for more details), which means that
they do not include any error correction. These NISQ devices could be useful for
some specific applications, but the scaling of these devices is limited to a number
which is estimated somewhere around 100 qubits. To build quantum computers of
larger qubit numbers, one must take advantage of error correction schemes like e.g. the
surface code [16, 67]. However, until now no active error correction scheme has been
experimentally realized on a superconducting qubit architecture, although Google
achieved error detection and state preservation of five qubits [59].

2.4.6 Other Realizations

Despite the qubits based on Josephson junctions, there exist various other physical
systems in which qubits have been realized, e.g. ion traps, semiconductor platforms,
neutral atoms, photonic qubits, molecular approaches etc. Additionally there are
theoretical proposals for more abstract qubits such as topological Majorana qubits,
where no experimental prove of functionality has been achieved so far. A complete
evaluation of the currently existing qubit platforms can be found in a study of the
German IT security administration BSI [23]. We refer the reader to this reference for
more information, since this thesis only focuses on Josephson qubits.

3 Open Quantum Systems

In Sec. 2.2 it was mentioned that an actual measurement always includes the interac-
tion with an additional system, making the system of interest no longer closed. Such
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interactions are not only present during measurements. In realistic models, one needs
to include interactions with an environment, since control and measurement results
in a quantum system that is no longer closed. To preserve the unitary time evolution
in this case, one needs to include the environmental degrees of freedom, hence enlarge
the corresponding Hilbert space to that of the system and the environment. In this
section we will show how to derive an effective time evolution of the systems density
matrix including the interaction with the environment, but without explicitly stating
the time evolution of the latter. With this strategy, it is possible to derive an effec-
tive equation of motion for the system under the influence of the bath, avoiding the
enormous overhead arising from the environmental degrees of freedom. The theory of
open quantum systems is a distinct research area on its own and we can only touch the
surface here to give the reader enough basics to understand the rest of this thesis. For
a detailed description of open quantum systems, we refer the reader to the excellent
reference [68].

3.1 General Equations of Motion

An open quantum system is described by a composition of the actual system S and the
environment B, with which it interacts. The combined system S+B is again a closed
system, such that its time evolution can be described by a unitary time operator. The
dynamics of the system S change due to its inner dynamics and the interaction with
B. We refer to the dynamics of the subsystem under the influence of the environment
as the reduced system dynamics and call S the reduced system. To mathematically
describe the compound system, the Hilbert space of the system is denoted by HS and
that of the environment with HB. The Hilbert space of the closed system (including S
and B), is then given by the tensor product of these two Hilbert spaces H = HS⊗HB,
and the Hamiltonian reads

Ĥ = ĤS ⊗ 1B + 1S ⊗ ĤB + Ĥint(t). (1.27)

Here ĤS is the self-Hamiltonian of the system, ĤB the self Hamiltonian of the envi-
ronment, Ĥint describes the in general time-dependent interaction between the system
and the environment, and 1S/B denotes the identity on the system and bath, respec-
tively. In principle, it is possible to write down an evolution operater of the compound
system, using Hamiltonian (1.27). However, in most cases the combined dynamics are
much to complicated e.g. due to infinite environmental degrees of freedom, such that
it is beneficial to develop a simple way to calculate the reduced system dynamics
under the influence of the environment, without caring for the actual time evolution
of the environment. To do so, we write down the reduced system density matrix by
tracing out the environmental degrees of freedom

ρ̂S(t) = trB{ρ̂(t)}. (1.28)

The expectation value of an arbitrary (in general explicitly time dependent) system
operator is then given by 〈

Â(t)
〉

= trS{Â(t)ρS(t)}. (1.29)

Using the unitary properties of the compound system the formal time evolution of the
full density matrix reads

ρ̂(t) = Û(t, t0)ρÛ †(t, t0), (1.30)
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where Û(t, t0) is the time propagater resulting from the full Hamiltonian (1.27). To
get the time evolution of the reduced system one needs to again trace out the envi-
ronmental degrees of freedom

ρS(t) = trB

{
Û(t, t0)ρ̂Û †(t, t0)

}
. (1.31)

Eq. (1.31) leads to a general version of the Liouville-Von Neumann equation for open
quantum systems

˙̂ρS(t) = − i
~

trB

{[
Ĥ(t), ρ̂(t)

]}
. (1.32)

In most cases it is extremely hard or even not possible to integrate Eq. (1.32) and
obtain the exact time evolution of the reduced system. Therefore we will now show
how to derive an effective master equation which simplifies the exact equation sig-
nificantly by using various approximations. There are other types of open system
equations, where the specific choice depends on the conditions required for the re-
spective approximations included. However, in this thesis we only use the Lindblad
master equation. For the other important ones we refer the reader to Ref. [68].

3.2 The Lindblad Master Equation

Equation (1.32) can be expressed as a master equation. As a starting point, we
assume that the initial state is prepared as a product state between the system and
the environment ρ̂ = ρ̂S(0) ⊗ ρ̂B. The time evolution from the initial state to some
time t can then be described by a map V (t) acting on the space of density matrices
of the reduced system V (t) : S(HS) 7→ S(HS), such that

ρ̂S(t) = V (t)ρ̂S(0) = trB

{
Û(t, t0)[ρ̂S(0)⊗ ρ̂B]Û †(t, t0)

}
. (1.33)

The map V (t) can be shown to be convex-linear, completely positive and trace pre-
serving, which ensures that it maps valid quantum states to valid quantum states.
V (t) describes the time evolution of the reduced system over time t and is called a
dynamical map. Since in general t is not fixed, the evolution of the open system is
described by a family of dynamical maps {V (t)|t ≥ 0}. In a lot of realistic systems,
correlations between environmental degrees of freedom decay fast compared to the
characteristic time scale of the system, such that it is valid to neglect memory effects
in the reduced system dynamics

V (t1 + t2) = V (t1)V (t2). (1.34)

This is called the Markovian approximation and the detailed mathematical restrictions
which must be satisfied can be found in [68]. The dynamical map V (t) can be written
with the corresponding generator L of the semigroup

V (t) = exp(Lt). (1.35)

Using this property it is possible to write down the Markovian master equation for
the reduced system (with ~ set to 1)

˙̂ρS(t) = Lρ̂S(t). (1.36)
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The operator L is referred to as the Liouville super-operator. The most general form
of Eq. (1.36) is called the Lindblad master equation and reads

˙̂ρS(t) = −i
[
ĤS , ρ̂(t)

]
+
∑
k

γk

(
L̂kρ(t)L̂†k −

1

2

{
L̂†kL̂k, ρ̂(t)

})
. (1.37)

The Lindblad operators L̂K describe the different decay channels implied by the en-
vironment and the γks are the corresponding rates of the incoherent processes.

In general it is difficult to derive the Lindblad master equation out of the Hamil-
ton description of the coherent evolution between system and environment. Detailed
microscopic derivations of the Lindblad master equation can be found in [68] and we
refer the reader to this excellent reference for more details. For the derivation in the
weak coupling limit the following assumption, in addition to the mentioned Markov
approximation, are made:

• Born approximation: The effect of the dynamics on the state of the environment
can be neglected, such that for all times t the condition ρ̂ = ρ̂S(t)⊗ρ̂B is satisfied.
This approximation is closely related to the Markov approximation, such that
in literature the two are often merged into the Born-Markov approximation

• Rotating wave approximation: The nonsecular terms, i.e. the ones oscillating
fast and average out for weak couplings (see Sec. 2.4.4) are neglected.
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Chapter II

Parity Measurement

Robust high-fidelity parity measurement is an important operation in many applica-
tions of quantum computing. In this Chapter we show how in a circuit-QED architec-
ture, one can measure parity in a single shot at very high contrast by taking advantage
of the nonlinear behavior of a strongly driven microwave cavity coupled to one or mul-
tiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive
transformation. We show that appropriate tuning of experimental parameters leads to
very high contrast in the cavity and therefore to a high efficiency parity readout with
a microwave photon counter or another amplitude detector. These tuning conditions
are based on nonlinearity and hence are more robust than previously described linear
tuning schemes.
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Figure 2.1: Left: Circuit of the JPM; a superconducting loop is inter-
rupted with a small capacitance Josephson junction and an additional
bias current is applied. Right: Potential energy of the circuit shown

on the left. In every well one finds isolated quasi-bound states.

7 The Josephson Photomultiplier (JPM)

The parity measurement protocol presented in this chapter is based on an amplitude
readout of the cavity at the end of the protocol. This means that in contrast to usual
readout schemes of superconducting qubits, where a phase sensitive measurement of
the cavity is used to distinguish the qubit states, we use a microwave photodetec-
tor. In contrast to optical frequencies, where materials with matching characteristical
frequencies exist and can be used to build efficient photodetectors, in the microwave
range one has to use artificial atoms. There are different proposals to build such a mi-
crowave photodetector. For definiteness we will present one realization, the Josephson
Photomultiplier, which is studied theoretically in [21, 54, 69, 70], and has experimen-
tally shown to be sufficient for effective microwave photodetection [71], as well as for
the readout of superconducting qubits [72].

The JPM is in principle a current biased Josephson junction and the underlying
circuit is shown in Fig. 2.1. Using Kirchhoff’s laws, the potential of the JPM can be
derived from the cirucit and reads

U(ϕ) = IcΦ0 cosϕ− IbΦ0ϕ, (2.1)

with bias current Ib. In Fig. 2.1 one sees that the potential energy has the form
of a tilted washboard. In every well, one can identify quasi-bound energy levels,
where the number of levels depends on the external bias Ib. Since the tails of the
potential have finite height, the tunneling rate out of these stable energy levels is
not zero. When such a tunneling process happens, the system is in a state with
higher energy than the neighbouring local minima. Therefore the system runs down
the washboard and rapidly changes the phase ϕ. This rapid phase change implies
a voltage pulse, which can be detected using classical electronics. For the aim of
a microwave photodetector the bias point is chosen such that only two metastable
levels are placed in one well. Coupling the JPM to an occupied microwave cavity
results in Rabi oscillations between the cavity and the two-level system. The tunneling
probability is exponentially increased when the JPM gets excited from the ground to
the first excited state. If one prepares the JPM in the ground state, the event of
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an incoming photon results in an excitation to the first excited state. After this
process the system is very likely to tunnel and imply a measurable voltage pulse.
Hence a voltage pulse corresponds to a photon-induced transition of the JPM. Since
the characteristic frequency of the JPM is in the microwave range, it can be used to
detect single microwave photons efficiently. A complete theoretical description of the
JPM can be found in Ref. [69].
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8 Nonlinear Parity Readout with a Microwave Photode-
tector

The platform of circuit quantum electrodynamics (cQED) is a promising candidate
for realizing quantum computing in a scalable architecture [20, 26, 59, 73, 74, 75, 76].
In this field, superconducting circuits are used to realize qubits. The two lowest
levels of the energy spectrum play the role of the two qubit states. Waveguides and
microwave cavities allow for control and coupling of superconducting qubits [75, 77].
Another crucial point is readout. For the implementation of quantum error correction
[15, 78, 79, 80] as well as the realization of general multi-qubit circuit QED experiments
[81, 82, 83, 84], high fidelity multi-qubit state readout is essential.

Currently, readout in superconducting circuits is mostly realized using homodyne
field amplitude detection [20, 77, 85, 86, 87]. This scheme requires additional devices
such as parametric amplifiers to measure the field amplitudes [86, 88]. While amplifiers
are readily available, they require space-consuming microwave peripherals such as
circulators [89]. In [21] we presented a scheme to readout the state of a qubit by
coupling it dispersively to a driven microwave cavity and measure if the cavity is
bright or dark using a microwave photon counter. It is also possible to measure multi-
qubit parity states with this setup [54]. A challenge lies in the limited sensitivity
of these detectors. Effects like back reflection of incoming photons and wrong rate
calibration lead to photon loss in the counter, such that one needs a relatively high
number of photons to actually get a count [70]. This can be in conflict with the
applicability of the dispersive approximation [52].

A way out to increase contrast at limited sensitivity is to boost the signal and
use the nonlinear response of the driven cavity [90], similar to how it has been done
in the single qubit case. In [91] Boissenault et al. studied an M -level system disper-
sively coupled to a microwave cavity. They showed numerically that going to higher
drive strengths where n > ncrit leads to a nonlinear behavior of the system dynamics
resulting in a huge enhancement of the cavity occupation that can be used to dis-
tinguish the two logical qubit states. At the same time Bishop et al. [92] studied
the analogous system with just two energy levels included. This amounts to a binary
pre-measurement of the qubit state. They used the exact dispersive transformation
[93] in a semi-classical regime to describe this phenomenon mathematically. The non-
linear effects were also demonstrated in experiment for readout of a two-level system
[92, 94].

Here we study this transition to a nonlinear response of the cavity using the exact
dispersive transformation and extend it to multiple qubits coupled to the transmission
line while taking into account M energy levels of the system representing the qubit.
We show how the exact dispersive transformation is performed for the general case of
M energy levels and N qubits and derive an analytical expression for the steady state
photon occupation of the cavity depending on the N -qubit state. Analogous to the
results of [91] the equations lead to a strong enhancement in the cavity occupation
depending on the qubit state. This state dependence can only be seen when we include
higher energy levels than the two qubit states, since they lead to asymmetric frequency
shifts of the effective cavity frequency.

We furthermore use stability analysis to derive an expression for the critical drive
strength at which one can observe the strong enhancement in the cavity occupation.

Section 8 was published in "M Schöndorf and F. K. Wilhelm, Phys Rev. A 97, 043849 (2018)".
Copyright (2018) by the American Physical Society. The majority of the text was written by M.
Shöndorf. All numerical simulations and underlying analytic calculations were carried out by M.
Schöndorf.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.043849
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An important observation is that besides the qubit state, the position of this transition
also depends on the detuning of the drive frequency and the bare cavity frequency.
We show that with this dependency one can tune the system such that it is possible
to perform any arbitrary two qubit measurement in the logical basis, including parity
readout. While one drive frequency is enough to perform parity measurements for two
qubits, we show that one needs bN/2c different drive frequencies to extend the parity
readout scheme to N qubits.

The advantage of the strongly driven regime is the high contrast of about 105

photons between the different states, such that even a photon detector with very low
efficiency can be used to perform the scheme we present here. While it seems possible
to use homodyne detection at first, here the problem is that an arbitrary detuning
between drive and cavity frequency is not possible, because the drive is at the same
time used for readout, which also causes a phase sensitivity of the readout we do not
have when we use a microwave photon counter instead.

Another point which is crucial in this strong driven regime is the backaction of
the high cavity occupation on the qubit state. Since we want to perform quantum
non demolition measurements (QND) to use the scheme for instance for quantum
error correction [6, 95], the post-measurement qubit state should be the corresponding
parity eigenstate. We look at the effect of decoherence and relaxation of the qubit
in this regime and show that all the appearing rates of the decoherence channels in
the new frame (general dispersive frame) are of the order of the incoherent rates in
the lab frame. This is important, to show that incoherent processes are not orders of
magnitude larger in the frame we work in. Additionally we have to study the effect
of photon leakage of the cavity on the decoherence of the qubits.

8.1 Two Qubit Case

8.1.1 System and Hamiltonian

Here we look at two qubits coupled to a strongly, classically driven microwave cav-
ity. Since most of the current experiments use Transmon qubits, which have a weak
anharmonicity, we will take into account 3 energy levels instead of only the two low-
est qubit states. In Sec. 8.2 where we generalize the whole calculation, we expand
this to the case of a general M level system. The cavity is additionally coupled to a
microwave photon detector, which is used to distinguish between a bright and dark
cavity without detecting the phase [21, 54]. The setup is shown in Fig 2.2, where
the photon detection is performed by the JPM [69, 71], but in principle there are no
restrictions on the type of photon detector. The bare qubit and cavity Hamiltonian
Ĥ0 is given by

Ĥ0 = ωcâ
†â+

2∑
i=0

ω
(1)
i Π̂

(1)
i +

2∑
i=0

ω
(2)
i Π̂

(2)
i . (2.2)

In this expression â and â† denote the bosonic annihilation and creation operator for
a cavity mode of frequency ωc, respectively and ω(j)

i is the corresponding frequency of
the energy level |i〉(j), where the upper index stands for the j-th qubit (here j = 1, 2).
The operators Π̂

(j)
i = (|i〉 〈i|)(j) are the projection operators on the i-th qubit energy

level of the j-th qubit. To simplify the calculation we set ~ = 1.
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Figure 2.2: System schematic. 2 Qubits are coupled to a driven
microwave cavity. The existence of photons in the cavity is read out

by a microwave photon counter.

For later applying the exact dispersive transformation, we want to rewrite the
Hamiltonian using the σ̂z operators of the two dimensional subspaces

σ
(j)
z,i = −Π̂

(j)
i−1 + Π̂

(j)
i . (2.3)

The result is a Hamiltonian that highlights transitions

Ĥ0 = ωcâ
†â+

2∑
i=1

ω̃
(1)
i

σ̂
(1)
z,i

2
+

2∑
i=1

ω̃
(2)
i

σ̂
(2)
z,i

2
, (2.4)

where ω̃(j)
i are the transformed frequencies

ω̃
(j)
1 =

4ω
(j)
10 + 2ω

(j)
21

3
(2.5)

ω̃
(j)
2 =

2ω
(j)
10 + 4ω

(j)
21

3
, (2.6)

with ω(k)
ij = ω

(k)
i − ω

(k)
j . How to perform this transformation in general is shown in

App. 8.A. Note that for two different qubits it is ω̃(1)
i 6= ω̃

(2)
i .

The interaction between the cavity and the two qubits in the RWA is given by a
Jaynes-Cummings term [96] for every allowed transition

Ĥint = Ĥint,QB1 + Ĥint,QB2 (2.7)

=
2∑
i=1

g
(1)
i Î

(1)
+,i +

2∑
i=1

g
(2)
i Î

(2)
+,i, (2.8)

with coupling strength g(j)
i of the particular transition, interaction operator

Î
(j)
±,i = â†σ̂

(j)
i ± âσ

†(j)
i (2.9)
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and the creation and annihilation operator of the respective qubit transition

σ̂
(j)
i = (|i− 1〉 〈i|)(j) (2.10)

σ̂
†(j)
i = (|i〉 〈i− 1|)(j). (2.11)

In the case of a Transmon qubit, the coupling matrix elements g(j)
i between the cor-

responding energy levels only depend on that of the 0↔ 1 transition [33]

g
(j)
i =

√
ig

(j)
1 . (2.12)

To get a full description of the system, we also have to take into account the
classical cavity drive which is represented by the Hamiltonian [97]

Ĥd = ε
(
âeiωdt + â†e−iωdt

)
, (2.13)

with drive strength ε and drive frequency ωd.
Combining all terms we end up with the full Hamiltonian

Ĥ = Ĥ0 + Ĥint︸ ︷︷ ︸
≡Ĥsys

+Ĥd. (2.14)

To use the setup shown in Fig. 2.2 for readout we work in the strong dispersive
regime. The dispersive regime allows to reach a QND measurement by avoiding Rabi
oscillations; the strong-dispersive regime allows to resolve all spectral lines. Addi-
tionally we assume the bad cavity regime, such that we get a hierarchy of system
parameter constraints, which can be satisfied in most experiments

γ1, γΦ � κ�
(g

(j)
i )2

ω
(j)
i,i−1 − ωc

� g
(j)
i � ωc, (2.15)

where κ denotes the cavity decay rate and γ1, γΦ the qubit decay and dephasing rate,
respectively. As usual, these incoherent rates need to be smaller than those induced
by the measurement in order to faithfully detect the qubit, else it would decay before
the qubit is detected.

8.1.2 Exact dispersive transformation

In the low photon number regime n < ncrit with ncrit = (ω10 − ωc)2/4g2
1, one can use

the linear dispersive approximation to diagonalize (2.14). However, we want to go to
regimes where n� ncrit and a perturbative approximation in n/ncrit fails to converge.
Therefore we use a different approach, the exact dispersive transformation, which was
introduced in [93] and has been applied in circuit QED multiple times [33, 52, 92].

The exact dispersive transformation for two qubits has the parametric form

D̂ = exp

(
−

2∑
i=1

Λ
(1)
i (N̂

(1)
i )Î

(1)
−,i −

2∑
i=1

Λ
(2)
i (N̂

(2)
i )Î

(2)
−,i

)
, (2.16)

where the Λi(N̂
(j)
i )’s are scalar functions of N̂ (j)

i = â†â+ Π̂
(j)
i . This operator denotes

the excitation number of the cavity plus the i-th energy level. Since we are in the
strong dispersive regime the N̂ (j)

i s are approximately good quantum numbers , hence
Λ can be seen as a scalar when performing the transformation.
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Before we apply the transformation we calculate some important commutators. It
is easy to show that [

Î
(j)
−,1, Ĥ0

]
=
(
ω

(j)
10 − ωc

)
︸ ︷︷ ︸

∆
(j)
1

Î
(j)
+,1 (2.17)

[
Î

(j)
−,2, Ĥ0

]
=
(
ω

(j)
20 − ωc

)
︸ ︷︷ ︸

∆
(j)
2

Î
(j)
+,2. (2.18)

To simplify the notation we introduce the following nested commutator [98]

adA(B) ≡ [A,B] adnA(B) ≡ adA(adn−1
A (B)) (2.19)

With these commutators, we can apply the transformation on Ĥsys, using Baker Camp-
bell Hausdorffs formula

ĤD
sys = D̂†ĤsysD̂

= Ĥ0 +

2∑
j=1

∞∑
k=0

(k + 1)g + ∆
(j)
1 Λ

(j)
1

(k + 1)!
adk

ΛiÎ
(j)
−,1

(
Î+,1

)

+

2∑
j=1

∞∑
k=0

(k + 1)g + ∆
(j)
2 Λ

(j)
2

(k + 1)!
adk

ΛiÎ
(j)
−,2

(
Î+,2

)
.

(2.20)

The functions Λ
(j)
i will always depend on Ni, so we just write Λ

(j)
i ≡ Λ

(j)
i (Ni) in

the following. To get expression (2.20) we used some properties and relations of
the appearing nested commutators that we prove in Appendix 8.D. A more detailed
version of this calculation is shown in Appendix 8.C. Here we disregarded direct
two photon transition terms (for instance terms proportional to â2σ†1σ

†
2), since the

probabilities for such transitions are much less than the one photon processes due to
the weak anharmonicity of the Transmon potential (selection rules). It is possible to
calculate a closed form of the appearing commutators which reads

adΛiÎ2k
−,i

(
Î+,i

)
= (−4)k(Λi)

2kNk
i Î+,i

adΛiÎ
2k+1
−,i

(
Î+,i

)
= −2(−4)k(Λi)

2k+1Nk+1
i σ̂z,i.

(2.21)

We put (2.21) into (2.20) and end up with the following expression for the transformed
system Hamiltonian

ĤD
sys = Ĥ0 +

2∑
k=1

2∑
i=1

[
f

(j)
1

(
∆

(j)
i , g

(j)
i ,Λ

(j)
i , N

(j)
i

)
Î+,1

−2Nqf
(j)
2

(
∆

(j)
i , g

(j)
i ,Λ

(j)
i , N

(j)
i

)
σ̂

(j)
z,i

]
,

(2.22)

with

f1 ≡
∆i sin

(
2Λi
√
Ni

)
2
√
Ni

+ gi cos

(
2Λi

√
N

(j)
i

)
(2.23)

f2 ≡
gi sin

(
2Λi
√
Ni

)
2
√
Ni

+
∆i

{
1− cos

(
2Λi
√
Nq

)}
4Ni

. (2.24)
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To obtain a diagonal system Hamiltonian we have to choose Λ
(j)
i such that the Î(j)

+,i

contribution is zero. Setting (2.23) equal to zero we find the following choice:

Λ
(j)
i = −

arctan

(
λ

(j)
i

√
N

(j)
i

)
2

√
N

(j)
i

. (2.25)

with λ(j)
i = g

(j)
i /∆

(j)
i . Finally we put this expression for Λ

(j)
i into (2.20) and end up

with the diagonal system Hamiltonian

ĤD
sys = Ĥ0 −

2∑
j=1

2∑
i=1

∆
(j)
i

2

(
1−

√
1 + 4λ

(j)2
i N

(j)
i

)
σ̂

(j)
z,i , (2.26)

This expression is exact up to the non parity conserving terms we ignored in (2.20).
At this point we only moved Ĥsys into the dispersive frame, but to describe the whole
setup we additionally have to transform the drive Hamiltonian Ĥd. Since we are
interested in the regime n� ncrit, the drive Hamiltonian stays in its original form by
ignoring terms of the order n−1/2 and λ2

i [92]

ĤD
d ≈ Ĥd. (2.27)

For further calculations it is more convenient to work with a time independent
Hamiltonian. Since Ĥd still includes a time dependence, we go into the frame rotating
with the drive frequency Û = e−in̂ωdt. In this frame the drive is time independent
Ĥd = ε(â†+ â) and the system Hamiltonian just incorporates an additional frequency
shift in the bare cavity part

Ĥ0 = δcâ
†â+

2∑
j=1

2∑
i=1

ω̃
(j)
i

σ̂
(j)
z,i

2
. (2.28)

with δc = ωc − ωd.

8.1.3 Photon amplitude and instability

The interesting value which is crucial for the usage of the setup in Fig. 2.2 for readout
is the cavity occupation, which depends on the corresponding state of the qubit. Since
(2.26) is diagonal, it is relatively easy to obtain the steady state solution of the photon
amplitude. As mentioned in 8.1.2, we assume that the qubit occupation number is
constant during the dynamics of the system, which is satisfied because of the diagonal
structure of (2.26) and the strong detuning between cavity and qubit. Therefore the
σ̂

(j)
z,i s are constant, which simplifies the following calculation significantly.
As a starting point we use the Liouville Von-Neumann equation to obtain an

equation of motion for the annihilation operator of the cavity mode. Additionally we
include an incoherent channel described by the Lindblad operator L̂κ =

√
κâ [97],

which represents photon loss in the cavity with rate κ. The adjoint master equation
[68] leads to an equation of motion for the field operator â in the Heisenberg picture

˙̂a = i
[
ĤD

sys + Ĥd, â
]
− κ

2
â. (2.29)
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Putting in the expressions for ĤD
sys and Ĥd, we get

˙̂a = −i

δc − 2∑
j=1

2∑
i=1

g
(j)
i λ

(j)
i√

1 + 4λ
(j)2
i N

(j)
i

σ̂
(j)
z,i − i

κ

2

 â− iε. (2.30)

Conjugation of (2.30) leads to the equation of motion for â†. We are interested in
the cavity occupation in the post ringup state. Usually the steady state describes
the state reached at t −→ ∞, but for t with γ1t, γΦt � 1 the qubit state would be
completely destroyed. However, for κt � 1 the system is in a pseudo steady state,
where the behavior is well described by the steady state solutions. This is the reason
why we work in the bad cavity limit, such that for this time tpseudo we still meet the
condition γ1t, γΦt � 1.

Setting ˙̂a = ˙̂a† = 0 and solving both equations for â and â† we end up with an
expression for the photon occupation in the steady state

n =
〈
â†â
〉

=
ε2

[δc − χ (Nq)]
2 + κ2

4

. (2.31)

with nonlinear cavity frequency shift

χ (Nq) =
2∑
j=1

2∑
j=1

g
(j)
i λ

(j)
i√

1 + 4λ
(j)2
i N

(j)
i

σ
(j)
z,i . (2.32)

Note that the frequency shift itself depends on the qubit state, since it includes σ(j)
z,i

such that the photon amplitude depends on the qubit state as well. Another crucial
point is that the Nis include the photon number n in the cavity, such that (2.31)
represents a transcendental equation. We can solve the equation iteratively and the
results for some specific parameters are shown in Fig. 2.3.

There are three regimes which can be distinguished. For low drive strengths we see
a linear response of the cavity up to a critical drive strength ε1 and photon number n1.
This corresponds to the region where the system is described by the linear dispersive
approximation. After that the amplitude shows a nonlinear behavior (bistable region)
resulting in a strong enhancement of the photon occupation. Going to even higher
drive strengths yields another critical point (ε2, n2), where the response of the cavity
returns back to a linear behavior. The specific values of ε1 and ε2 depend heavily on
the state of the qubit.

The effective cavity frequency on the other hand starts at a specific value which
corresponds to the usual Stark shift and rapidly goes over to the bare cavity frequency
in between the region ε1 < ε < ε2. In the next chapter we will see that this nonlinear
behavior results from a bifurcation of the transcendental equation (2.31) [99].

In the limit n→ 0, the expression for the frequency shift is

lim
n→0

χ(Nq) =

2∑
j=1

2∑
i=1

g
(j)
i λ

(j)
i σ

(j)
z,i . (2.33)

If we couple one qubit to the cavity and only take the two qubit states into account,
we observe the linear χ-shift: χ = ±g2

1/∆1 (see [20]). Thus even though the whole
calculation was performed under the assumption n � ncrit we still get the correct
expressions for small values of n, such that we can assume that our equations also
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Figure 2.3: Photon amplitude (top) and effective cavity fre-
quency (bottom) depending on the drive strength ε for the four dif-
ferent qubit states. The parameters here are (ω10, ω21, g1)(1)/2π =
(4.297, 4.071, 0.12) GHz, (ω10, ω21, g1)(2)/2π = (4.094, 3.868, 0.12)
GHz, ωc = 5.005 GHz and δc = 0. For every state exists a specific
drive strength εcrit, where the frequency rapidly jumps back to the bare
cavity frequency and one observes a strong enhancement in the cavity

occupation.

give good results in this regime. Another point worth to mention here is that in the
case where only two levels are included the frequency shift is completely symmetric,
such that the response when driving at the bare cavity frequency would be independent
of the state of the qubit. This shows that the pure existence of higher levels influences
the system dynamics, they do not have to be occupied at all.

8.1.4 Stability anlaysis

As mentioned before, the observed strong nonlinear behavior of the photon amplitude
is caused by a bifurcation of (2.31). In between the two linear regimes (see Fig.
2.3) equation (2.31) posses a bistable area with two attractors. Tuning the drive
strength through the first bifurcation point, which appears at ε1, leads to a decision
of the cavity dynamics between the two attractors. Which of both attractors actually
describe the cavity state depends on the history of the system. In principle, small
fluctuations induced by environment-assisted processes can drive transitions between
the two attractors. However, as we see in Fig. 2.3 the difference in amplitude between
these is about 106 photons and these environmental fluctuations are assumed to be
rather small. Therefore the system tends to stay in the attractor it chooses when
its driven through the first bifurcation point, i.e. the transition time is exponentially
long.

In this section we want to calculate the two critical points that restrict the bistable
area using stability analysis similar to Drummond et al. [100]. It is difficult to use
the full expression (2.31) for stability analysis since n appears in a square root in the
denominator. As we see in Fig. 2.3 the transition happens around a cavity occupation
of about 10 photons. Therefore it is a good approximation to only keep terms up to
g4
i /∆

3
i , since for n ≈ 10 we still meet the condition n · g4

i /∆
3
i � 1. Expanding the

square root appearing in (2.26) up to that order we can derive an equation of motion
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for the field amplitudes in the same manner as in the previous section

∂

∂t

[
α
α∗

]
=

[
−iε−

[
κ
2 + ih(n)

]
α

iε−
[
κ
2 − ih(n)

]
α∗

]
, (2.34)

with 〈â〉 = α,
〈
â†
〉

= α∗ and photon number n = α∗α. The function h depends on
the photon number n and is given by

h(n) = δc +
2∑
j=1

2∑
i=1

∆
(j)
i

(
λ

(j)2
i − 2λ

(j)4
i N

(j)
i

)
σ

(j)
z,i . (2.35)

With h(n) the steady state condition ṅ = 0 can be written as

|ε|2 = n

(
κ2

4
+ h2(n)

)
. (2.36)

Now we assume small fluctuations ∆α(t) around the steady state solution

α(t) = α0 + ∆α(t) (2.37)

and get a linearized equation for the fluctuation

∂

∂t

[
∆α
∆α∗

]
= A

[
∆α
∆α∗

]
, (2.38)

with

A =

i(n∂h(n)
∂n + h(n)

)
+ κ

2 iα2
0
∂h(n)
∂n

−iα∗20
∂h(n)
∂n −i

(
n∂h(n)

∂n + h(n)
)

+ κ
2

 . (2.39)

The stability of equation (2.31) is then controlled by the Hurwitz criteria

Tr(A) > 0 (2.40)
Det(A) > 0. (2.41)

If these two criteria are fulfilled, the eigenvalues of the equation are stable. Therefore
the bistability can only occur if one of the two equations (2.41) changes sign. Since
Tr(A) = κ and we assume to have a cavity decay (κ > 0) only the second Hurwitz
criterion indicates an instability. The bistable region is restricted by the two critical
points that fulfill the condition Det(A) = 0, which leads to the following expression
for the photon number at the critical points:

n1/2 =
−2∆ωi ∓

√
∆ω2 − 3

4κ
2

6χ
, (2.42)
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00 01 10 11
20 log10(ε2,an/MHz) 41.4 38.7 37.6 33.4

20 log10(εcrit,plot/MHz) 41.6 38.6 37.9 33.2

Table II.1: Comparison between the analytical value of ε2 calculated
with (2.45) and the actual vlaue of εcrit in FIG. 2.3. We see an almost

perfect agreement.

where we adopted the notation of [100] by defining the parameters

∆ω ≡ δc +
2∑
j=1

2∑
i=1

∆
(j)
i

(
λ

(j)2
i − 2λ

(j)4
i N

(j)
QB,i

)
σ

(j)
z,i (2.43)

χ ≡ −
2∑
j=1

2∑
i=1

2∆
(j)
i λ

(j)4
i σ

(j)
z,i (2.44)

with N (j)
QB,i =

〈
Π̂

(j)
i

〉
. To get the drive strengths ε1 and ε2 corresponding to the two

bifurcation points, we have to put expression (2.42) into the equation for ε (2.36)

ε1/2 =

√
n1/2

(
κ2

4
+ h2(n)

)
. (2.45)

It is obvious that the photon numbers resulting from equation (2.42) has to be positive,
such that a bifurcation only occurs if ∆ω2 > 3κ2/4 and χ∆ω < 0. The first of these
inequalities shows that we do not observe a nonlinear behavior if the leakage rate of
the cavity is to high. On the other hand the second inequality leads to the fact that
the cavity has to be in the blue detuned regime with respect to the qubit frequencies.
The second condition also indicates the borders (dotted vertical lines) in Fig. 2.4.
Note that ∆ω as well as χ depend on the state of the two qubit subset, such that ε1
and ε2 depend on it as well, which explains the different position of the transition in
Fig 2.3.

What we know up to now is that the transition between the two attractors (which
we call low and high amplitude attractor in the following) occurs at some value in the
bistable area εcrit ∈ (ε1, ε2). The dynamics of the amplitude depend on the history of
the system. Starting at a drive strength smaller than the first bifurcation point ε1 and
slowly tune it up to higher drive strengths aims the system to stay in low amplitude
attractor until it reaches the second bifurcation point ε2, where this attractor no
longer exists and it rapidly jumps into the high amplitude attractor. On the other
hand starting at higher drive strengths than the second bifurcation point ε2 leads to a
behavior the other way round. The system stays in the high amplitude attractor until
it reaches the bifurcation point ε1 and then rapidly "jumps" into the low amplitude
attractor, since the high amplitude attractor does not exist for ε < ε1. Therefore the
dynamics of the system depend on how the tuning of the parameter ε is performed,
i.e. the history of the system.

The values for ε2 for the parameters in Fig. 2.3 are given in Tab. II.1. Comparing
them to the actual values values of εcrit in Fig. 2.3 we see an almost perfect coincidence
of ε2 with εcrit for all states, which is due to the fact that we started with a small
photon number when we solved equation (2.31) iteratively. In a real experiment where
one starts with small drive strength and slowly tunes up the drive strength the system
tends to stay in the low amplitude solution for every state as long as possible, hence
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Figure 2.4: Critical point εcrit = ε2 depending on the cavity drive
detuning δc for the same parameters as in Fig. 2.3. The dotted ver-
tical lines indicate the value of δc, where the condition ∆ωχ < 0 is
no longer fulfilled such that no bifurcation occurs if we increase δc to
higher negative values and the system stays in the low amplitude at-
tractor for all drive strengths. For a parity measurement we have to
choose δc such that we are in the area where the transition to the high
amplitude attractor occurs first for |01〉 and |10〉 (here δc ≈ −0.02). In
this region |11〉 does not show a bifurcation and stays in the low ampli-
tude attractor, such that for the corresponding critical drive strength
εcrit the photon number for |11〉 is about 0.5 (see inset plot). Addition-
ally we have to drive with ε012 < ε < ε002 , such that we do not reach
the bifurcation point for |00〉 which assures that we also have a small

photon amplitude if the system is in |00〉.

the transition in this case can be assumed to be very closed to ε2. Therefore we will
assume ε2 to be the actual transition point of the amplitude in the following, since
this is the more reasonable method in experiment.

8.1.5 Application to qubit readout and 2 Qubit parity measurement

In the previous sections we assumed that we drive the cavity on resonance δc = 0.
Therefore it is not possible to detune drive and cavity frequency arbitrarily. Since
the bifurcation points are fixed by the qubit parameters in this case, the ordering of
the transition depending on the qubit states is also fixed, e.g. εcrit for the |00〉 state
will always be larger than the other ones. Because of this, the usage for readout is
limited. If we are interested in parity readout, there is no possibility to distinguish
even from odd parity states in the case δc = 0, since the εcrits of the odd parity states
lie in between the εcrits of the even parity states.

Currently readout of superconducting qubits is in most cases performed by homo-
dyne detection schemes [20, 77, 85, 86, 87] where the drive and cavity frequency are in
resonance or slightly detuned δc ≈ 0 [20, 101] (heterodyne detection). Therefore the
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detuning between the drive and the cavity frequency is somehow fixed. However, it is
also possible to use a microwave photon counter (e.g. the JPM) for readout. Using a
microwave photon counter for the readout process of the cavity gives the possibility to
arbitrarily detune the drive from the bare cavity frequency δc 6= 0. The dependence
of the critical drive strength εcrit on the detuning δc is shown in Fig. 2.4. We see
that εcrit decreases if we go to higher negative values of δc up to a point, where the
condition ∆ωχ < 0 is no longer satisfied and we no longer have a bifurcation of (2.31),
hence the system stays in the low amplitude attractor (linear regime) over the full
range of ε (see dotted vertical lines in Fig. 2.4).

To perform two qubit parity measurements with this set up, one has to drive
the system with a detuning δc in between the point where |11〉 goes over to a stable
behavior and the point where this happens for |10〉 (circled area in Fig. 2.4). In this
region εcrit for the odd parity states is smaller than for the |00〉 state. The |11〉 state
on the other hand stays in the low amplitude solution. Hence the photon number
in the cavity if the system is in the |11〉 state is about 0.5 (see Fig. 2.4) for the
corresponding ε. All in all with this tuning, the cavity is in a low amplitude state if
the qubit is in an even parity state and vice versa.

When we take a closer look and compare the frequency shifts in Fig. 2.3 and Fig.
2.4, we see that the value of the detuning that gives the border between stable and
unstable behavior in Fig. 2.4 for the respective state, matches almost perfectly with
the corresponding bare χ-shift (at ε = 0). We will see in Sec 8.2 that this behavior
can also be observed for more than two qubits. Therefore we can give an analytic
expression for the optimal driving point, if one wants to perform parity measurements.
A possible physical explanation for this is, that as soon as the drive frequency is higher
than the χ-shifted cavity one switches from a red detuned to a blue detuned drive and
the drive is no longer forcing the frequencies closer to ωc. The bare χ-shift is given
by (2.33). The optimal driving point lies in between the stability border of |11〉 and
the one of |10〉 hence is given by:

ωd,opt = ωc +
χ10 + χ11

2
, (2.46)

where χij denotes the bare chi shift if the qubits are in the state |ij〉. The regime
that can be used for parity readout is therefore bounded by (area between two dotted
vertical lines 11 and 10 in Fig. 2.4)

ωc + χ11 < ωd < ωc + χ10. (2.47)

Choosing a detuning in this regime, which is about 7 MHz broad for the parameters
in Fig. 2.4, leads to the right positions of the bifurcation points to perform two qubit
parity measurements.

There is another crucial point one has to take care of when performing the mea-
surement. We have to drive with the right frequency and the right intensity ε at the
same time. In a real experiment, one would start with a low drive strength and tune
the drive strength up into the regime ε01

crit < ε < ε00
crit, hold the drive strength in this

regime for κt � 1 and then bring the JPM in resonance with the cavity to read out
if the cavity is bright or dark, which corresponds to odd or even parity respectively.
If we tune the system in this way we have a photon occupation of about 106 photons
if the qubits are in an odd parity state and about 1 − 10 if they are in an even par-
ity state. Note that there can be a small difference in photon number between |11〉
and |00〉 but compared to the huge contrast between the odd and even states, this
does not significantly influence the measurement. However, to distinguish between
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the two parity states we need a photodetector which only clicks if the photon number
is above the even parity threshold which can be realized by a lossy photodetector or
back reflection in the photon transfer from cavity to detector (see [70]).

By tuning δc right one can perform any possible two qubit measurement in the
logical basis, so this scheme is not restricted to parity measurement. Performing
e.g. projective state measurement just needs to drive the system such that the corre-
sponding εcrit is the lowest one. For some of the states we are in the region where the
dynamics do not show a bifurcation, but this again is no problem because of the same
reason as in the parity measurement scheme; the dynamics stay in the low amplitude
attractor, hence the photon number is low for the corresponding ε.

Note that in the case of two identical qubits the two odd parity states would show
exactly the same behavior, which means ε01

crit = ε10
crit. However, in real experiments it is

often the case that the qubits have different parameters, since it is hard to produce two
completely identical qubits. Therefore we assumed slightly different qubit parameters
in Fig 2.4, and we see that if the parameters do not vary too much, parity measurement
can still be performed even if the qubits are not completely indistinguishable. For two
qubit parity measurements we only need one drive frequency. We will see in Sec 8.2,
that this scheme can be expanded to N qubit parity measurements but with a need
of bN/2c drive frequencies, where bxc denotes the floor function that maps x to the
next smaller integer.

8.2 N Qubit case

8.2.1 General formulation and photon amplitude

In this section we expand our result of Sec. 8.1 to N qubits coupled to the read-
out cavity and we take into account M energy levels. The bare qubit and cavity
Hamiltonian Ĥ0 of this general case has the form

Ĥ0 = ωcâ
†â+

N∑
j=1

M−1∑
i=1

ω
(j)
i Π̂

(j)
i , (2.48)

where we used the same notation as in the previous section, but the upper limits of
the two appearing sums are given by the number of qubits N and theM energy levels
taken into account. Again we set ~ = 1 for simplicity. For the two qubit case it
was not difficult to rewrite the Hamiltonian using the σ(j)

z,i operators defined in Eq.
(2.3), since we just had to solve an equation system with two variables. Here we need
a general transformation rule to get the corresponding Hamiltonian including only
σ

(j)
z,i operators in the bare qubit part. How to obtain this transformation is shown in

Appendix 8.A. After this transformation we can write the bare Hamiltonian as

Ĥ0 = ωcâ
†â+

N∑
j=1

M−1∑
i=1

ω̃
(j)
i

σ̂
(j)
z,i

2
, (2.49)

with the transformation rule

ω̃
(j)
i =

M−1∑
k=1

A−1
i,kωk,k−1, (2.50)
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Figure 2.5: System schematic of the general case. N Qubits are
coupled to a driven microwave cavity. We take into account M levels.

where the matrix elements of A−1 are given by (see Appendix 8.A)

A−1
i,k =

{
− i(k−M−2)

M 1 ≤ i ≤ k
−k(i−M−2)

M k ≤ i ≤M − 1.
(2.51)

The interaction under the RWA leads to a Jaynes-Cummings term for every possible
qubit transition summed up over all qubits

Ĥint =

N∑
j=1

M−1∑
i=1

g
(j)
i Î

(j)
+,i, (2.52)

where the definition of Î(j)
±,i is similar to (2.9). Since we are still assuming Transmon

qubits, the coupling matrix elements of the respective qubit depends on the coupling
rate of the corresponding |0〉 to |1〉 transition in the same manner as before (see Eq.
(2.12)).

The drive Hamiltonian Ĥd does not change in the N qubit case and is therefore
still (2.13).

The exact dispersive transformation in the general case is given by

D̂ = exp

 N∑
j=1

M−1∑
i=1

Λ
(j)
i (N̂

(j)
i )Î

(j)
−,i

 , (2.53)

with Λ
(j)
i (N̂i) defined in (2.25). Since [σ̂z,i, σ̂z,i+1] 6= 0, the definition of the ∆̃

(j)
i is

different for higher levels

∆̃
(j)
i =


∆

(j)
1 −

ω̃
(j)
2
2 , i = 1

∆
(j)
M−1 −

ω̃
(j)
M−2

2 , i = M − 1

∆
(j)
i −

(
ω̃

(j)
i−1+ω̃

(j)
i+1

2

)
, else.

(2.54)

Applying this transformation on the system Hamiltonian is a little more difficult
than in the previous section and is done in Appendix 8.B. However, the resulting
Hamiltonian has a similar form, except that the appearing sums go to N and M − 1
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Figure 2.6: Photon amplitude (a) and effective cavity frequency
(b) depending on the drive strength ε. The plot is for four iden-
tical qubits including 10 energy levels. The parameters here are
(ω10, ω21, g1)(j)/2π = (4.297, 4.071, 0.12) GHz, ωc = 5.005 GHz and
δc = 0. For every set of states with the same number of excitations
there exists a specific drive strength, where the frequency rapidly jumps
back to the bare cavity frequency and one observes a strong enhance-

ment in the cavity occupation.

respectively

ĤD
sys = Ĥ0 −

N∑
j=1

M−1∑
i=1

∆̃
(j)
i

2

(
1−

√
1 + 4λ

(j)
i N

(j)
i

)
σ̂

(j)
z,i . (2.55)

We again moved to the frame rotating with the drive frequency ωd, such that δc
instead of ωc appears in Ĥ0. Like before we ignored non parity conserving transitions.

With this Hamiltonian we can again derive equations of motion for the field am-
plitudes and solve the equation for the photon occupation in the cavity for the steady
state resulting in

〈n〉 =
ε2

[δc − χ (Nq)]
2 + κ2

4

(2.56)

which is the same expression as in section two (see Eq. (2.31)) but the appearing χ
shift has more contributing terms

χ (Nq) =

N∑
j=1

M−1∑
i=1

g
(j)
i λ

(j)
i√

1 + 4λ
(j)2
i N

(j)
i

σ
(j)
z,i . (2.57)

The analogy of the expression we found here and the ones in the previous section
indicate that it is very likely that we also observe a nonlinear behavior comparable
to the two qubit case. To see that this is indeed the case, we can perform a stability
analysis in the same manner as before. Doing so we get the same expression for the
photon numbers at the two bifurcation points.

n1/2 =
−2∆ω ∓

√
∆ω2 − 3

4κ
2

6χ
, (2.58)
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with the parameters

∆ω ≡ δc +
N∑
j=1

M−1∑
i=1

∆̃
(j)
i

(
λ

(j)2
i − 2λ

(j)4
i N

(j)
QB,i

)
σ

(j)
z,i (2.59)

χ ≡ −
N∑
j=1

M−1∑
i=1

2∆̃
(j)
i λ

(j)4
i σ

(j)
z,i . (2.60)

The conditions that the amplitude shows a instable behavior are the same as for the
two qubit case, but with the changed parameters (2.59) and (2.60).

Since we have more qubits and energy levels here, we get a different position for
the bifurcation points for every qubit state (assuming that we have slightly different
parameters for every single qubit). However, we are only interested in the occupation
of the two lowest energy levels of the qubits, since they realize the two mathematical
qubit states needed for quantum computation. Again it is the existence of higher
levels that influence the whole system, they do not have to be occupied.

The results for the four qubit case is shown in Fig. 2.6. We see that the system
behaves the similar to the two qubit case. The photon amplitude shows a huge
enhancement at the second bifurcation point εcrit (2.45). Analytical expressions for
the two bifurcation drive strengths can be obtained by putting the general expression
for the bifurcation photon numbers (2.58) into the expression for the drive strength
(2.36). In Fig. 2.6 we included 10 energy levels, which is usually more than the
number of levels that are relevant in practice [91]. However, we show in App. 8.C
that in our case only the next lowest level which is not occupied matters, hence here
M = 3 yields the correct results.

8.2.2 Multi-qubit parity Measurements

In Sec. 8.1.5 we have shown how to perform two qubit parity measurements in the
nonlinear regime using our setup. Now we want to show that the same can be done
for N qubits, we just need more than one drive frequency. To perform an N qubit
parity measurement we need bN/2c different drive frequencies. In the N qubit case
the bifurcation drive strength εcrit depends on the detuning between the drive and the
bare cavity frequency as well. Therefore we can again take this as an advantage to
tune εcrit of the different states such that they fit for parity readout.

The values of εcrit depending on δc are shown in Fig. 2.7, for the case of four
identical qubits. Hence only qubits with different excitation number can be distin-
guished. We see that in the four qubit case in between the borders that restrict
the instability condition of |0001〉 and |0111〉 lies the border of the even parity state
|0011〉. Therefore it would not be possible to get εcrit for the two odd states smaller
than for |0011〉 at the same time, which gives rise to the need of two different drive
frequencies. One between the instability borders of |0111〉 and |1111〉, which means
ωc +χ1111 < ω

(1)
D < ωc +χ0111 and the other one in between the instability borders of

|0001〉 and |0011〉: ωc+χ0011 < ω
(2)
D < ωc+χ0001 as shown in Fig. 2.7. By comparing

the frequency shifts in Fig. 2.6 and Fig. 2.7 we again see a coincidence with the
instability borders and the bare χ-shifts of the respective states. The optimal drive
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frequencies lie in the middle of the respective regime

ω
(1)
D,opt = ωc −

χ0111 + χ1111

2
(2.61)

ω
(2)
D,opt = ωc −

χ0001 + χ0011

2
, (2.62)

where χijkl denotes the bare χ-shift of |ijkl〉 and can be calculated with (2.57). When
we drive the system with these two frequencies, there exists a region of the drive
strength

max[ε0111
crit (ω

(1)
D ), ε0111

crit (ω
(2)
D )] < ε

min[ε0001
crit (ω

(1)
D ), ε0000

crit (ω
(2)
D )] > ε

(2.63)

where the dynamics of the two odd parity states are described by the high ampli-
tude attractor and the dynamics of the even states by the low amplitude attractor
(either since ε is smaller then the corresponding εcrit, or the state no longer fulfills the
condition of instability, which means εcrit →∞).

The calibration of the experiment can be performed in the same manner as in
the one drive frequency case. First tune the two drives of the system to the right
frequencies and then turn up the drive strength into the regime (2.63), hold the drive
strengths constant for t � 1/κ and after that bring the JPM into resonance to read
out the state of the cavity.

We can expand this measurement scheme to N qubits. In this case we need bN/2c
different drive frequencies. Since we could show that the instability borders and the
bare cavity shifts are identical for the two as well as for the four qubit case, we can
follow that this also holds for the N qubit case. The respective drive frequencies have
to be in between all instability borders of odd and even states (as in the two and four
qubit case). Let {|Ψ〉i} be the subset of odd parity states and {|Φ〉j} the subset of
even parity states of a N qubit system, where i and j denote the number of excitations
respectively. With this notation the optimal drive strengths are given by

ω
(i)
D,opt = ωc −

χ|Ψ〉i + χ|Φ〉i+1

2
, (2.64)

where the appearing χ-shifts are again the bare χ-shifts of the corresponding states.
Note that in the case of an even number of qubits, it is i = 1, . . . , N/2 and j =
1, . . . , N/2 + 1 and in the case of an odd number of qubits i = 1, . . . , (N + 1)/2 and
j = 1, . . . , (N + 1)/2.

8.3 Is the Measurement Protocol QND?

In this section we want to take a closer look at the QNDness of our measurement
protocol. One crucial point here is to calculate the transformed incoherent rates in
the new exact dispersive frame and show that they do not increase in a much faster
way than the original rates, especially do not scale proportional to the photon number
n.

Another important incoherent process is the leakage of photons out of the cav-
ity (key point for the protocol), which leads to dephasing between superpositions of
equal parity states corresponding to different frequencies. Again it is to check if this
dephasing rate is in the range of the intrinsic incoherent rates of the qubits or if it
destroys the QND character of the measurement.



42 Chapter II. Parity Measurement

-0.1 -0.08 -0.06 -0.04 -0.02 0

c
 (GHz)

-50

0

50

2
0

 l
o

g
1

0
(

 c
ri
t/M

H
z
)

parity 

measurement

0111001100010000 1111

Figure 2.7: Value of εcrit = ε depending on the detuning between
drive and cavity frequency for four identical qbuits with the same pa-
rameters as in Fig. 2.6. The dotted vertical lines indicate the border,
where the instable behavior disappears for larger detunings and the dy-
namics are just described by the low amplitude attractor. To measure
parity we need to drive the system with two different frequencies. One
such that δc lies in between the dotted vertical line of |1111〉 and |0111〉
and the other one such that δc lies in between the dotted vertical line

corresponding to |0011〉 and |0001〉.

8.3.1 Transformation of incoherent channels for n� 1

In this section we take a look at qubit intrinsic incoherent effects, such as dephasing
and relaxation and how the corresponding Lindblad operators behave under the ex-
act dispersive transformation. The consequence of such effects in the regime of small
photon numbers is well studied [52, 94, 102, 103, 104] using the Polaron transforma-
tion, therefore we want to see how the system behaves in the regime in which we are
interested, i.e. n� 1. Since we want to perform QND measurements our setup, it is
important that the appearing dephasing and relaxation rates are not scaling with n
or some other parameter that is huge in our regime of interest.

We want to focus on the case of the first section here, where we studied two three
level systems coupled to a transmission line, again in the strong dispersive regime.
The general case could also be calculated, but it is not necessary, since all leading
effects that appear in the N qubit case with M energy levels taken into account will
also appear in this easier system. For example leakage to the fourth level will be less
probable than leakage to the third one, such that we get an upper bound for all higher
leakage processes. Furthermore possible interactions between the qubits induced by
the high photon number in the cavity will also appear in this smaller system, if they
are present, which is the reason why we include the second qubit and not concentrate
on one.

As mentioned, we are in the regime n� 1:

Nq = NQB + n ≈ n, (2.65)
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such that Λ(N̂q) acts like a scalar on qubit operators. Additionally we assume the
semiclassical limit, such that

â→ α

â† → α∗.

First we want to study relaxation of the first qubit with rate γ1. The corresponding
Lindblad operator is L̂D1 =

√
γ1σ̂

D
z,1. Therefore we have to calculate the transformation

of σ̂1:

σ̂1 = D̂†σ̂1D̂ (2.66)

= eΛ1(n)I1,−+Λ2(n)I2,− σ̂1e−Λ1(n)I1,−−Λ2(Nq)I2,− (2.67)

=

∞∑
k=0

1

k!

(
Λk1(n)adkI−,1(σ1) + Λk2(n)adkI−,2(σ1)

)
. (2.68)

The expressions for the first commutator can be calculated in a closed form

ad2k−1
I−,1

σ̂1 = 22(k−1)√n2k−1
(−1)kσ̂z,1 (2.69)

ad2k
I−,1 σ̂1 =

{
σ̂1 k = 0

22k−1√n2k
(−1)kσ̂x,1 k ≥ 1

. (2.70)

with σx,i = |i− 1〉 〈i|+ |i〉 〈i− 1|. Putting (2.69) and (2.70) into (2.68) yields

σ̂D1 = σ̂1 −
1

2

(
arctan2(2λ1

√
n)√

1 + 4λ2
1n

σ̂x,1 −
2λ1
√
n√

1 + 4λ2
1n
σz,1

)
(2.71)

+

∞∑
k=0

1

k!
Λk2(n)adkI−,2 σ̂1 (2.72)

In the same manner we get a closed expression for the second operator. First we
calculate two orders

first order: [I2,−, σ̂1] = −α∗ |0〉 〈2| (2.73)

second order: − α∗ [I2,−, |0〉 〈2|] = −|α|2σ̂2. (2.74)

In second order there appears the commutator between I−,2 and σ̂2, which can be
calculated with the formula (2.69) and (2.70), such that we get for k ≥ 1

ad2k−1
I−,2

= (−1)k
√
n

2k−1
22(k−2)Λ2k−1

2 (n)σ̂z,2 (2.75)

ad2k
I−,2 = (−1)k22k−3√n2k

Λ2k
2 (n)σx,2. (2.76)

Putting (2.75) and (2.76) and the expression for the first and second order into (2.72),
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we get the full expression for σ̂D1 which yields the following expression for the corre-
sponding Lindblad operator:

LD1 = γ1σ̂1

+
γ1

2

arctan2(2λ1
√
n)√

1 + 4λ2
1n

σ̂x,1 +
γ1

8

arctan4(2λ2
√
n)√

1 + 4λ2
2n

σ̂x,2

+ γ1
λ1
√
n√

1 + 4λ2
1n
σ̂z,1 +

γ1

4

√
nλ2 arctan2(2λ2n)√

1 + 4λ2
1n

σ̂z,2

+
γ1

2
arctan(2λ2n)σ̂1σ̂2 −

γ1

8
arctan2(2λ2n)σ̂2

(2.77)

We observe as a first term the original relaxation with rate γ1 and six additional terms.
The first one is a dephasing in the σ̂x,1 basis, which leads to a mixing of the ground
and first excited state. The corresponding rate has an arctan in the numerator and
a term proportional to

√
n in the denominator, which leads to a rate much smaller

than γ1 for n � 1. The same argument holds for the second term, which leads to
a dephasing in the σx,2 basis. This term has no crucial effect on the qubit as well.
The third term leads to a dephasing between the ground and first excited state. The
rate here is smaller than the original relaxation rate γ1 for all values of n. The fourth
term leads to a dephasing between the first excited state and the second excited state.
Here we observe a rate which will also be in the order of the original γ1, since we have√
n in the numerator as well as the denominator. The fifth and sixth term lead to

interactions between the second excited state and the ground and first excited state,
respectively. Anyways the rates here are again at the order of the original relaxation
rate γ1. All in all we have shown that relaxation in this system leads to additional
incoherent effects, but all are happening with a rate smaller or comparable with γ1.
Since we need condition (2.15) to perform any quantum mechanical operations with
the system, nothing crucial happens here.

Now we take a look at dephasing between the ground and first excited state. The
corresponding Lindblad operator can be written as LDϕ = γϕσ

D
z,1. The calculation can

be performed in the same way as for σ̂D1 , where we need the following commutators:

ad2k−1
I−,1

σ̂z,1 = (−1)k−122k−1√n2k−1
σx,1 (2.78)

ad2k
I−,1 σ̂z,2 = (−1)k22k√n2k

σ̂z,1 (2.79)

ad2k−1
I−,2

σ̂z,1 = (−1)k22(k−1)√n2k−1
σ̂x,2 (2.80)

ad2k
I−,2 σ̂z,1 = (−1)k22k−1√n2k

σ̂z,2, (2.81)

which yields the following expression for the dephasing operator in the new frame:

LDϕ = γϕσ̂z,1

− γϕ
arctan2(2λ1

√
n)√

1 + 4λ2
1n

σ̂z,1 −
γϕ
2

arctan2(2λ2
√
n)√

1 + 4λ2
2n

σ̂z,2

− γϕ
2λ1
√
n

1 + 4λ2
1n
σ̂x,1 − γϕ

λ2
√
n√

1 + 4λ2
2n
σ̂x,2.

(2.82)

Again we have the original dephasing term appearing in the Lindblad operator with
rate γ1. The first two additional terms lead to dephasing between the ground state
and the first excited state and the first excited state and the second one, respectively.
The rates are extremely small in the regime n � 1 such that we can neglect them.



8. Nonlinear Parity Readout with a Microwave Photodetector 45

The last two terms lead to dephasing in the σ̂x,1 and σ̂x,2 basis, but with a rate at
least smaller than the original dephasing rate γϕ.

All in all we have shown that we do not have any relevant incoherent processes
affecting the qubits, with rates higher than the relaxation and dephasing rate of the
qubit. This gives the possibility to perform QND measurements in this regime.

8.3.2 Dephasing due to photon leakage

In the parity measurement protocol we assumed a cavity decay rate κ, which is greater
than the intrinsic incoherent rates of the qubits. This assumption is important to reach
the pseudo steady state and measure before the qubit states decay. Since states with
the same parity can lead to different cavity frequency shifts (see Fig. 2.3), the photons
leaking out of the cavity carry qubit information. This leakage leads to an effective
dephasing (see e.g. [105]) of superpositions of parity states. We want to study this
process and calculate the respective dephasing rate. Note that only even parity states
cause different shifts in the cavity, since odd parity states are in the high amplitude
attractor, where the frequency is exactly the bare cavity frequency for all states (see
see Fig. 2.3). Therefore we only study the dephasing between even parity states.

In the measurement protocol, the drive strength is chosen such that the system
stays in the low amplitude attractor for even parity states. Here the behavior is still
linear (see 2.3), hence we can approximate the Hamiltonian (2.26)

Ĥ ≈ Ĥ0 +
2∑
j=1

2∑
i=1

(
g

(j)
i

)2

∆
(j)
i

â†âσ̂
(j)
z,i + Ĥd, (2.83)

where we assumed that we are already in the frame rotating with the drive frequency.
The incoherent evolution of the density matrix is described by the Lindbladian master
equation

ρ̇ = −i [H, ρ] + κD[â]ρ

+

2∑
j=1

2∑
i=1

γ1,iD[σ̂
(j)
i ] +

2∑
j=1

2∑
i=1

γΦ,iD[σ̂
(j)
z,i ]

, (2.84)

which includes three incoherent processes, photon loss of the cavity with rate κ, relax-
ation with rate γ1,i and dephasing with rate γΦ,i. We assume the intrinsic incoherent
rates to be equal for all qubits. The qubit-cavity density matrix of an equal superpo-
sition of even parity states can be written down as (for simplicity we label |00〉 = |0〉
and |11〉 = |1〉)

ρ̂ = ρ̂c00 |0〉 〈0|+ ρ̂c01 |0〉 〈1|+ ρ̂c10 |1〉 〈0|+ ρ̂c11 |1〉 〈1| , (2.85)

where ρ̂cij describe the field part of the density matrix. Putting this density matrix
expression into (2.84) we get equations of motion for the density matrix elements ρ̂ij .
These can be solved using the positive-P representation leading to the time evolution
of the density matrix

ρ̂(t) =

1∑
i,j=0

cij(t) |i〉 〈j| ⊗ |αi(t)〉 〈αj(t)| (2.86)
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For the detailed calculation see Appendix 8.D. The induced qubit dephasing is de-
scribed by the parameter

c10(t) =
a10(t)

〈α1(t)|α0(t)〉
, (2.87)

with

a10 = a10(0)e[−(γ2+iω̃)t]e[−i4(χ1−χ2/2)
∫ t
0 α1(t′)α∗0(t′)dt′] (2.88)

and

α1(t) = αs1 + e[−(κ
2

+i2(χ1−χ2)+iδc)t] (α1(0)− αs1) (2.89)

α0(t) = αs0 + e[−(κ
2
−i2χ1+iδc)] (α0(0)− αs0) . (2.90)

The steady state values of the field operators are given by

αs1 =
−iε

κ/2 + i2(χ1 − χ2) + iδc
(2.91)

αs0 =
−iε

κ/2− i2χ1 + iδc
. (2.92)

The results are similar to [105], but get an additional χ2 contribution from the third
energy level. This leads to a no longer symmetric dependence of the dephasing rate
on the detuning δc, which can be explained by the asymmetric frequency shift of
the cavity (in the two-level case the shift is ±χ). Note that we assumed identical
qubits in the derivation such that the appearing linear shifts read χi = g2

i /∆i. The
measurement should be performed in a pseudo steady state, when system dynamics
are almost zero. Therefore we assume the limit κt � 1, where the photon leakage
induced dephasing rate can be written as

ΓΦ = −4(χ1 − χ2/2)Im {αs1αs0∗} . (2.93)

Putting all together we finally get the following expression for the dephasing rate
induced by photon leakage of the cavity

ΓΦ =
4κε2χ2

(κ
2

4 + δ2
c + 2δcχ2 + 4χ2

1 − 4χ1χ2)2 + κ2χ2
2

(2.94)

For the parameters in Fig. 2.4, for the two qubit parity measurement protocol the
detuning is δc ≈ −20 MHz and the corresponding drive strength is ε ≈ 10 MHz. These
parameters lead to an effective dephasing of the qbuit with rate ΓΦ ≈ 9 kHz. Since the
cavity decay is assumed to be in the range of a few MHz, we can assume that a pseudo
steady state is reached before the cavity photon loss has a significant decoherence
effect on the superposition of equal parity states which leaves the measurement QND.
Anyways, ΓΦ and the intrinsic relaxation and dephasing rates give a limiting factor
to the fidelity of the measurement. For the N qubit case the result is similar, but
since there are more than one drive strengths needed, we also have more dephasing
channels. However, they are all in the range of a few kHz, hence even adding all of
them up does not lead to a significant dephasing as long as the number of qubits does
not get too large.

Note that one could as well use the Polaron Transformation in the manner of [104]
to calculate the repsective dephasing rate



8. Nonlinear Parity Readout with a Microwave Photodetector 47

8.4 Conclusion

In conclusion we have derived a mathematical description ofN superconducting qubits
coupled dispersively to a microwave cavity by generalizing the exact dispersive trans-
formation. We have obtained that our system of interest shows a nonlinear behavior
for a critical drive strength, that results in a huge enhancement (∼ 105 photons) of
the photon occupation in the microwave cavity. This critical drive strength depends
on the qubit state and can therefore be used for high efficiency state readout.

Furthermore we have shown that the state dependent critical drive strength can be
varied by the detuning between cavity and drive. Due to this dependence it is possible
to perform various high efficiency measurements including multi-qubit parity readout,
using a microwave photon counter to measure the cavity occupation and we have
shown how to tune the system to realize these measurements. We gave expressions
for the drive frequencies to perform mutli-qubit parity measurements, where one needs
bN2 c different drive frequencies to measure the parity of N coupled qubits.

Additionally we studied the effect of relaxation and dephasing in the high occupa-
tion regime and have shown that the appearing incoherent rates are smaller or equal
to the original rates. Also the photon leakage rate of the cavity does not lead to a
fast decay of qubit coherence. There are some other incoherent processes that could
be considered (like broadening due to photon number variations of equal parity states
[21]), but they are not as significant as the studied processes in typical Transmon sys-
tems. This makes the presented protocol a candidate for high contrast QND parity
readout.
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Appendices

8.A Frequency Transformation in the Bare Hamiltonian

We start with the bare qubit and cavity Hamiltonian

Ĥ0 = ωcâ
†â+

N∑
j=1

M−1∑
i=0

ω
(j)
i |i〉 〈i|

(j) . (2.95)

The goal is to transform the state projection operators |i〉 〈i|(j) into the operators

σ̂
(j)
z,i = − |i− 1〉 〈i− 1|(j) + |i〉 〈i|(j) , (2.96)

such that we end up with a Hamiltonian of the form

Ĥ0 = δcâ
†â+

N∑
j=1

N∑
i=1

ω̃
(j)
i

σ̂z,i(j)

2
. (2.97)

Comparing (2.95) and (2.97) we get the following transformation rule for the frequen-
cies:

2ω
(j)
0 = −ω̃(j)

1 +
M−1∑
k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
1 = ω̃

(j)
1 − ω̃

(j)
2 +

M−1∑
k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
2 = ω̃

(j)
2 − ω̃

(j)
3 +

M−1∑
k=1

β
(j)
j ω̃

(j)
j

...

2ω
(j)
M−2 = ω̃

(j)
M−2 − ω̃

(j)
M−1 +

M−1∑
k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
M−1 = ω̃

(j)
M−1 +

M−1∑
k=1

β
(j)
j ω̃

(j)
j ,

where β(j)
j is an arbitrary complex number. The last term in the equations comes

from the fact that we can add an arbitrary vacuum contribution to the Hamiltonian
in every qubit subspace without changing the system dynamics. Subtracting the
second equation from the first and so on for every pair of neighboring equations leads
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to

2ω
(j)
10 = ω

(j)
1 − ω

(j)
0 = 2ω̃

(j)
1 − ω̃

(j)
2

2ω
(j)
21 = −ω̃(j)

1 + 2ω̃
(j)
2 − ω̃

(j)
3

2ω
(j)
32 = −ω̃(j)

2 + 2ω̃
(j)
3 − ω̃

(j)
4

...

2ω
(j)
M−2,M−3 = −ω̃(j)

M−3 + 2ω̃
(j)
M−2 − ω̃

(j)
M−1

2ω
(j)
M−1,M−2 = −ω̃(j)

M−2 + 2ω̃
(j)
M−1.

This can be written down in a matrix representation

2ω
(j)
i,i−1 =

M−1∑
k=1

Ai,kω̃
(j)
k , (2.100)

with the transformation matrix

A =



2 −1 0 0 0 0 · · · 0
−1 2 −1 0 0 0 · · · 0
0 −1 2 −1 0 0 · · · 0

. . . . . . . . .
...

0 · · · · · · −1 2 −1
0 · · · · · · −1 2


. (2.101)

This is a Töplitz matrix with c = b = −1 and a = 2. The inverse of this kind of
Töplitz matrix can be found in literature and is given by

A−1 =

{
Pij 1 ≤ i ≤ j
Qij j ≤ i ≤ n

, (2.102)

with

Pij = − i(j − n− 1)

(n+ 1)

Qij = −j(i− n− 1)

(n+ 1)
.

Combining all these results the frequencies ω̃(j)
i can be calculated as

ω̃
(j)
i =

M−1∑
k=1

2A−1
i,k

(
ω

(j)
k − ω

(j)
k−1

)
. (2.103)

8.B Exact Dispersive Transformation

In this section of the appendix we show how to diagonalize the Hamiltonian

Ĥsys = H0 +Hint. (2.104)
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To do so we apply the unitary transformation

D̂ = exp

− N∑
j=1

M−1∑
i=1

Λ
(j)
i (N̂i)Î

(j)
−,i

 , (2.105)

where Λ
(j)
i (Ni) is a scalar function of N̂i. The excitation number of every subspace

(N̂i) is assumed to be constant, such that Λ acts like a scalar on the system Hamilto-
nian. We use the Baker Campbell Hausdorff formula

eABe−A =

∞∑
m=0

1

m!
adnAB. (2.106)

Before we transform Ĥsys we calculate some important commutators. It is easy to
show that [

Î
(j)
−,i, Ĥ0

]
= ∆̃

(j)
i I+,i, (2.107)

where

∆̃
(j)
i =


δ

(j)
1 −

ω̃
(j)
2
2 , i = 1

∆
(j)
M−1 −

ω̃
(j)
M−2

2 , i = M − 1

∆j
i −

(
ω̃

(j)
i−1+ω̃

(j)
i+1

2

)
, else.

(2.108)

and the definitions of Sec. 8.1.1. With this commutator relation, we can calculate the
transformation

D̂†HsysD̂ = Ĥ0 +

N∑
j=1

M−1∑
i=1

g
(j)
i Î−,i (2.109)

+
∞∑
k=1

1

k!

N∑
j=1

M−1∑
i=1

adk
Λ

(j)
i I−,i

(
Ĥ0 +

M−1∑
l=1

g
(j)
l Î−,l

)
(2.110)

= Ĥ0 +

∞∑
k=0

g
(j)
i

k + 1

(k + 1)!
adk

Λ
(j)
i I−,i

(
Î

(j)
+,i

)
(2.111)

+
∞∑
k=0

N∑
j=1

M−1∑
i=1

adk
Λ

(j)
i I−,i

(
Î+,i

)
(2.112)

= Ĥ0 +
∑
N,M

∞∑
k=1

(k + 1)g
(j)
i + ∆̃

(j)
i Λ

(j)
i

(k + 1)!
ad

Λ
(j)
i I−,i

(
Î+,i

)
. (2.113)

Here we made two steps, where we take use of the two relations we proof in Sec. 8.C.
The firs one is, that we splitted the two parts of the Hamiltonian on the right entry
of the nested commutators, so we assumed

adk∑M−1
i=1 ΛiÎ−,i

Ĥ0 =

M−1∑
i=1

adΛiÎ−,i
Ĥ0 (2.114)
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which is true due to the fact that
[
Î−,i, Î−,j

]
= 0 for i 6= j, if we ignore non

parity conserving terms and
[
Î−,i

[
Ĥ0, Î−,j

]]
= 0. The last relations is true since[

Ĥ0, I−,j

]
∝ Î−,j . Using this relations and the proof in Appendix. 8.C , (2.114) is

true.
On the other hand, we used that

adk∑M−1
i=1 ΛiÎ−,i

M−1∑
j=1

Î+,j

 =
M−1∑
i=1

adk
ΛiÎ−,i

Î+,i, (2.115)

which is true due to the proof in Appendix 8.C and with the relation
[
I−,i, Î+,j

]
= 0

for i 6= j again up to non parity conserving terms.
There only appears one commutator in the expression and it can easily be calcu-

lated to be

ad2n

Λ
(j)
i I−,i

(
Î

(j)
+,i

)
= (−4)nΛ

(j)2n
i Nn

i I+,i (2.116)

ad2n+1

Λ
(j)
i I−,i

(
Î

(j)
+,i

)
= −2(−4)Λ

(j)2n+1
i Nn+1

i σz,i. (2.117)

Putting (2.117) into (2.113) we end up with:

ĤD
sys = Ĥ0 (2.118)

+

N∑
j=1

M−1∑
i=1

∆̃
(j)
i sin

(
2Λ

(j)
i

√
Ni

)
2
√
Ni

+ g
(j)
i cos

(
2Λ

(j)
i

√
Ni

) I+,1 (2.119)

−2Niσz,i

g(j)
i sin

(
2Λ

(j)
i

√
Ni

)
2
√
Ni

+
∆̃

(j)
i

{
1− cos

(
2Λ

(j)
i

√
Ni

)}
4Ni

 . (2.120)

To get a diagonal Hamiltonian we have to define the scalar functions Λ
(j)
i as follows:

Λ
(j)
i (Ni) = −

arctan
(

2λ
(j)
i

√
Ni

)
2
√
Ni

. (2.121)

With this choice for Λ
(j)
i we end up with a diagonal system Hamiltonian

ĤD
sys = δcâ

†â+ Ĥ0 −
N∑
j=1

M−1∑
i=1

∆̃
(j)
i

2

1−

√√√√1 +
g

(j)
i

∆̃
(j)
i

Ni

 (2.122)

8.C The Effect of Higher Energy Levels

In this section of the appendix we want to show that only the lowest non occupied
energy level (in our case |2〉) of the qubits has an effect on the results. Including
even higher levels does not change either the frequency shifts nor the behavior of the
photon amplitude. This can be seen in Fig. 2.8 where we show the effective frequency
shift and compare the results when we include the lowest three energy levels with the
results when we include the lowest ten. One sees that the results of the two cases are
completely identical, such that we can claim that only the three lowest levels affect
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Figure 2.8: Comparison between the results of the effective cavity
frequency when including three or ten energy levels. We see that the
results are absolutely identical, such that it seems to be reasonable to
only include the lowest non occupied energy level into the calculations
to get correct results. The parameters are the same as in Fig. 2.3.

the results. More precisely it seems reasonable that the lowest non occupied energy
level is the last one that has an effect on the system.

8.D Proofs for Exact Dispersive Transformation

In this section of the appendix we will prove two relations for nested commutators
that we need to split up terms when we perform the exact dispersive transformation
including more than two energy levels.

8.D.1 First Proof

Given four operators A, B, C, and D, we want to show that

adnA+B (B + C) = adnA(C) + adnB(D), (2.123)

if the following relation is fulfilled:

[A,B] = [A,D] = [B,C] = [C,D] = 0. (2.124)

We use induction to show that (2.123) is valid for all n. Let’s start with the case
n = 1 which is trivial:

[A+B,C +D] =︸︷︷︸
(2.124)

[A,C] + [B,D]. (2.125)
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So we now that for n = 1 the relation holds. Lets assume that for n = k (2.125) holds,
that is

adkA+B(C +D) = adkA(C) + adkB(D). (2.126)

Let n = k + 1:

adk+1
A+B(C +D) =

[
A+B, adkA+B(C +D)

]
=
[
A+B, adkA(C) + adkB(D)

]
=
[
A,adkA(C)

]
+
[
B, adkB(D)

]
+
[
A,adkB(D)

]
+
[
B, adkA(C)

]
.

(2.127)

To get the relation we want, we have to show that[
A,adkB(D)

]
=
[
B, adkA(C)

]
= 0. (2.128)

For this we again use induction and only show it for one of the terms, since the second
calculation is analog. Again the case n = 1 is fulfilled:

[A, [B,D]] = − [B, [D,A]]− [D, [A,B]] =︸︷︷︸
(2.124)

0, (2.129)

where we used the Jacobi-identity for operators. So lets assume the statement is true
for n = k. Let n = k + 1[

A,adk+1
B (D)

]
=
[
A,
[
B, adkB(D)

]]
(2.130)

= −
[
B,
[
adkB(D), A

]]
−
[
adkB(D), [A,B]

]
= 0 (2.131)

where we again used the Jacobi-identity and the induction hypothesis. In the same
manner we can show that

[
B, adkA(C)

]
= 0, such that we finally proofed (2.125) under

the condition (2.124) for all n ∈ N.

8.D.2 Second Proof

Here want to prove a second identity we need to perform the exact dispersive trans-
formation in our case. We show that

adkA+B(C) = adkA(C) + adkB(C), (2.132)

if the following relations are satisfied:

[A,B] = 0 (2.133)
[B, [C,A]] = [A, [C,B]] = 0. (2.134)
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Again we use induction. The identity is trivial to show for n = 1. So we assume
(2.132) holds for n = k. Let n = k + 1:

adk+1
A+B(C) =

[
A+B, adkA+B(C)

]
(2.135)

=
[
A+B, adkA(C) + adkB(C)

]
(2.136)

= adk+1
A (C) + adk+1

B (C) (2.137)

+
[
A,adkB(C)

]
+
[
B, adkA(C)

]
. (2.138)

To prove (2.132) we therefore have to show that[
A,adkB(C)

]
=
[
B, adkA(C)

]
= 0. (2.139)

We start with the first term. For n = 1:

[A, [B,C]] = − [B, [C,A]]− [C, [A,B]] = 0, (2.140)

where we used the Jacobi-identity and relations (2.133) and (2.134). Let’s assume we
have proven the identity for n = k. Let n = k + 1:[

A, adk+1
B (C)

]
=
[
A,
[
B, adkB(C)

]]
(2.141)

= −
[
B,
[
adkB(C), A

]]
−
[
adkB(C), [A,B]

]
= 0 (2.142)

Likewise one can show that
[
B, adkA(C)

]
= 0 and therefore we have proven the identity

(2.132) under the conditions (2.133) and (2.134) for all n ∈ N.

8.E Equation System to Determine Dephasing

Here we solve the equation system to get the expression for the cavity leakage induced
dephasing of Sec. 8.3.1. Putting the density matrix (2.85) into the Lindblad equation
(2.84) we get equations of motion for the cavity parts of the density matrix

˙̂ρ11 = κD[â]ρ̂11 − (γ
(1)
1 + γ

(2)
1 )ρ̂11 − iε

[
â† + â, ρ̂11

]
− i(χ(1)

1 + χ
(2)
1 )

[
â†â, ρ̂11

]
− iδc

[
â†â, ρ̂11

]
(2.143)

˙̂ρ00 = κD[â]ρ̂00 + (γ
(1)
1 + γ

(2)
1 )ρ̂11 − iε

[
â† + â, ρ̂00

]
+ i(χ

(1)
1 + χ

(2)
1 )

[
â†â, ρ̂00

]
− iδc

[
â†â, ρ̂00

]
(2.144)

˙̂ρ10 = κD[â]ρ̂10 − (γ
(1)
2 + γ

(2)
2 )ρ̂10 − iε

[
â† + â, ρ̂10

]
− i
[
(χ

(1)
1 + χ

(2)
1 )

{
â†â, ρ̂10

}
− (χ

(1)
2 + χ

(2)
2 )â†âρ̂10

]
− iδc

[
â†â, ρ̂10

]
− i(ω̃1 +

ω̃2

2
)ρ̂10

(2.145)

˙̂ρ01 = κD[â]ρ̂01 − (γ
(1)
2 + γ

(2)
2 )ρ̂01 − iε

[
â† + â, ρ̂01

]
+ i
[
(χ

(1)
1 + χ

(2)
1 )

{
â†â, ρ̂10

}
− (χ

(1)
2 + χ

(2)
2 )ρ̂10â

†â
]
− iδc

[
â†â, ρ̂01

]
+ i(ω̃1 +

ω̃2

2
)ρ̂01,

(2.146)
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where γ(j)
2 = γ

(j)
1 + γ

(j)
Φ /2 and χ(j)

i = (g
(j)
i )2/∆̃

(j)
i . Now we assume that both qubits

have the same relaxation and dephasing rate and define ω̃ = ω̃1+ω̃2/2. In general there
exist no solution for these four equations because of the coupling term introduced by
γ1. In our case we are only interested in dephasing rate, such that we can set γ1 = 0 in
the equations for the diagonal parts. To solve the above equation system, we consult
the generalized P representation and express the cavity density matrix elements as

ρ̂cij =

∫
Λ(α, β)P (α, β)dµ(α, β), (2.147)

with probability densities Pij . Here we use the so called positive-P representation,
where

Λ(α, β) =
|α〉 〈β∗|
〈β∗|α〉

(2.148)

dµ(α, β) = d2αd2β (2.149)

Putting the positive-P representation of the matrix elements into equations (2.143)-
(2.146) using the relations (see e.g. [106])

âΛ(α, β) = αΛ(α, β) (2.150)

â†Λ(α, β) = (β + ∂α)Λ(α, β) (2.151)

Λ(α, β)â† = βΛ(α, β) (2.152)
Λ(α, β)â = (∂β + α)Λ(α, β) (2.153)

we get equations of motion for these probability densities

Ṗ11 = ∂α [(iε+ 2i(χ1 − χ2)α+ iδcα+ κα/2)P11] + ∂β [(−iε− 2i(χ1 − χ2)β − iδcβ + κβ/2)P11]

(2.154)

Ṗ00 = ∂α [(iε− 2iχ1α+ iδcα+ κα/2)P00] + ∂β [(−iε+ 2iχ1β − iδcβ + κβ/2)P00]
(2.155)

Ṗ10 = ∂α [(iε+ 2i(χ1 − χ2)α+ iδcα+ κα/2)P10] + ∂β [(−iε+ 2iχ1β − iδcβ + κβ/2)P10]

− i4(χ1 − χ2/2)αβP10 − 2γ2P10 − iω̃P10

(2.156)

Ṗ01 = ∂α [(iε− 2iχ1α+ iδcα+ κα/2)P01] + ∂β [(−iε− 2i(χ1 − χ2)β − iδcβ + κβ/2)P01]

+ i4(χ1 − χ2/2)αβP01 − 2γ2P10 + iω̃P01

(2.157)

Here we assumed identical qbuits, hence χ(j)
i = χ

(k)
i = χi and γ

(j)
i = γ

(k)
i = γi. These

equations can be solved with the Ansatz

P11 = δ(2) [α− α1(t)] δ(2) [β − α∗1(t)] (2.158)

P00 = δ(2) [α− α0(t)] δ(2) [β − α∗0(t)] (2.159)

P10 = a10(t)δ(2) [α− α1(t)] δ(2) [β − α∗0(t)] (2.160)

P01 = a01(t)δ(2) [α− α0(t)] δ(2) [β − α∗1(t)] (2.161)



8. Nonlinear Parity Readout with a Microwave Photodetector 57

which yields the following differential equations:

α̇1 = −iε− i (δc + χ1 − χ2 − iκ/2)α1 (2.162)
α̇0 = −iε− i (δc − χ1 − iκ/2)α0 (2.163)
ȧ10 = −i(ω̃ − i2γ2)a10 − i4(χ1 − χ2/2)α1α

∗
0a10 (2.164)

ȧ01 = i(ω̃ + i2γ2)a01 + i4(χ1 − χ2/2)α0α
∗
1a01. (2.165)

In this equation system we see the phase difference with which the two states |α0〉
and α1 oscillate, which leads to an effective dephasing. The differential equations for
αi and aij can easily be solved and lead to the time evolution of the density matrix
(2.86) we used in Sec 8.3.2 to calculate the respective dephasing rate
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Chapter III

Adiabatic Quantum Computing

Adiabatic quantum computing (AQC) is an alternative form of quantum computing.
In contrast to the circuit model, where the computation is encoded into a series of
unitary quantum gates, adiabatic quantum computing incorporates the solution of the
problem in the ground state of some final system Hamiltonian. The main principle
is to evolve the system over time, from an easily preparable ground state of some
Hamilonian, to the ground state of the desired Hamiltonian. The solution of the
problem is encoded in the ground state of the desired Hamiltonian. If this evolution is
slow enough, the adiabatic theorem ensures that the system stays in the instantaneous
ground state. AQC is also known to be universal as shown by Aharonov et al. in
2004 [107]. In this chapter we present two concepts whose realization would yield an
advantage for AQC. On the one hand a measurement scheme which allows for a fast
readout of flux qubits in the persistent current basis at the flux degeneracy point and
on the other hand a coupling scheme that produces four body local interactions.
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9 Introduction to AQC

First we give a brief introduction into AQC. We explain the basic principles behind
it and present an algorithm which shows a provable quantum speedup over classical
computing. For further informations we refer the reader to the broad literature avail-
able on AQC, where especially the review of Albash and Lidar [108] gives a nice and
complete overview. Note that in this chapter we change notation to X̂, Ŷ , Ẑ for the
Pauli spin matrices, since it is more common in the context of AQC.

9.1 General Concepts

9.1.1 The adiabatic theorem

The main principle behind AQC is the adiabatic theorem which makes a statement
about the time evolution of a quantum state depending on the time interval on which
the dynamics happen. It states that if the dynamics are slow enough, an initial ground
state does not get excited during the evolution. Various modifications which can be
interpreted as an application of the adiabatic theorem where used in the history of
physics, where the most popular one is probably the Born-Oppenheimer approxima-
tion [109]. However, the first mathematically rigorous proof of the adiabatic theorem
was given by Kato in 1950 [110]. The aidabatic approximation is stated compactly
by Albash and Lidar as follows [108]:

The adiabatic theorem states, roughly, that for a system initially prepared in the
ground state |ε0〉 (or another eigenstate) of a time dependent Hamiltonian H(t) with
the time evolution governed by the Schrödinger equation

i
∂ |Ψ(t)〉
∂t

= H(t) |Ψ(t)〉

(with ~ set to 1), will approximately keep the instantaneous ground state (or other
eigenstate) |ε0(t)〉 of H(t), provided that H(t) varies "sufficiently slowly".

The bottleneck of this statement is the term sufficiently slow, which is not a
rigorous statement. Kato quantified what this restrictions on the time scale of the
system dynamics mathematically means. We will give a approximate bound on the
time scale here.

Lets assume that |εj(t)〉 with j = 0, 1, . . . is the set of eigenstates of H(t) with
ordered eigenenergies εj(t) (εj(t) ≤ εj+1(t)). The simplest formulation of the adiabatic
theorem than assures that if we prepare the system initially in the eigenstate |εj(0)〉
it will remain in the same time evolved eigenstate |εj(t)〉 for all times t if the following
condition is satisfied:

maxt∈[0,tf ]
|〈εi|∂tH|εj〉|
|εi − εj |2

� 1 ∀i 6= j, (3.1)

where tf denotes the final time of the evolution. In AQC the time evolution happens
in the ground state, because the ground state is stable against relaxation. Therefore
it is useful to define the energy gap between ground and first excited state ∆(t) =
ε1(t)− ε0(t). The adiabatic condition is in this context often given by tf � 1/∆min,
with minimal gap ∆min = mint∆(t).

One can criticize that the given condition no longer ensures the dynamics assumed
in the adiabatic approximation if the system includes a separate, independent time
scale [111] (e.g. an oscillatory driving term). Therefore more rigorous statements were
made over the years, on the one hand treating different time scales more carefully
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[112] and on the other hand giving tighter bounds [108, 113, 114, 115, 116, 117, 118].
However, for the purposes of this thesis the above version of the adiabatic theorem is
sufficient and we refer the reader to the cited literature for the more rigorous versions.

9.1.2 General Hamiltonian

As mentioned before, in AQC the solution to the computational problem is encoded
in the ground state of a Hamiltonian Ĥ1, which in general can be extremely complex.
This Hamiltonian is often referred to as the target Hamiltonian. Since the ground
state of Ĥ1 is not known before the computation, one needs an initial state in which
one prepares the system. Here one chooses an easily preparable state, which yields
the ground state of the starting Hamiltonian Ĥ0. After preparing the system in the
ground state of Ĥ0, one slowly evolves the system from Ĥ0 to Ĥ1. The corresponding
time-dependent Hamiltonian has the form

Ĥ(s) = (1− s)Ĥ0 + sĤ1, (3.2)

with the normalized time parameter s = t/tf evolving from 0 to 1. The time evolution
has to be chosen such that the adiabatic theorem is applicable, meaning qualitatively
the minimal gap of Ĥ(s) is large compared to the total evolution time tf . As predicted
by the adiabatic theorem this condition ensures that the system stays in the ground
state of Ĥ(s) during the whole evolution, meaning it ends up with the ground state
of Ĥ1. Since the ground state of Ĥ1 encodes the wanted solution, the computational
problem is solved. In general one can choose more complicated schedules to optimize
the computation time, as we will see in Sec. 9.2

In a more visible manner, one can think about AQC as a particle starting in
the minimum of an easy energy landscape with just one minimum to a much more
complicated landscape with a lot of local minima where the particle can get stuck.
Classically the only way to get out of a local minimum is through thermal excitation
whereas in a quantum mechanical system the particle is also able to tunnel through
the barriers in the energy landscape as illustrated in Fig. 3.1. This picture visualizes
the advantage of quantum annealing over the classical counterpart. However, a bare
tunneling process gets the particle out of the minimum, but does not change the
energy, hence it is necessary to include some relaxation into the system (for more
details see [119, 120]). Also tunneling is rather inefficient if the system is stuck in a
broad minimum, such that at some points in the annealing schedule it is beneficial to
pause and let thermalization happen. These considerations lead to the investigation
of features in newer AQC realization like pausing, quenching and reverse annealing
[121, 122, 123, 124, 125, 126]. We refer the reader to the cited literature for more
information.

A typical example which is naturally suitable for AQC is finding the ground state
of the Ising spin Hamiltonian. Here the target Hamiltonian is given by [127]

Ĥ1 = −1

2

N∑
i=1

hiẐi +
∑
<i,j>

JijẐiẐj , (3.3)

which describes N interacting spin 1/2 particles. In (3.3) the interaction is restricted
to nearest neighbors, which is often a good approximation for realistic systems. As a
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Figure 3.1: Difference between classical annealing and quantum an-
nealing. In the classical case (left) the particle needs thermal excitation
to get out of the local minimum, whereas in the quantum case it can

tunnel through the barrier (right)

starting Hamiltonian the usual choice is

Ĥ0 = ∆
N∑
i=1

X̂i, (3.4)

whose unique ground state is easy to prepare (e.g by applying a strong transversal
field). The Ising spin Hamiltonian can be used to describe interesting phenomena in
spin-like systems, e.g. quantum phase transitions [124, 125]. However, finding the
ground state of (3.3) can be very difficult. In fact the Ising spin glass problem can be
shown to be NP-complete for dimensions larger than two [128]. Therefore finding the
ground state of (3.3) provides a natural way to compare AQC with classical computers.

Adiabatic quantum computing is also shown to be equivalent to the circuit model
and is therefore able to solve as a universal quantum computer [7]. However, for the re-
alization of universality one has to engineer interactions which do not naturally appear
in physical systems, either non-pairwise or non-stoquastic interactions. Non-pairwise
interactions are the main interest of Sec. 11, where we present a novel flux qubit
coupling device which induces four local interactions. Non-stoquastic interactions are
described by interaction Hamiltonians with non-negative off diagonal elements (e.g.
JX̂iX̂j , with J > 0) and are also hard to engineer in physical systems [129, 130, 131].
In principle one has to couple the system using the conjugated quantum variable
(e.g. in flux qubit couple charge degree of freedom). One experimental realization of
such non-stoquastic interactions using a special coupling architecture can be found
in [132]. Additionally there exists a theoretical proposal for an alternative flux qubit
which intrinsically delivers the possibility of nonstoquastic interactions [133].

9.2 Grover Search Algorithm

The Grover algorithm was the first proposed algorithm for a quantum computer with
provable quantum speedup. Originally the algorithm is designed for the circuit model,
but we will show in this section that it has an AQC equivalent which is able to achieve
the same speedup.

The problem tackled by the Grover algorithm is to search an unsorted database
of N items for a specific marked codeword m in as few queries as possible. One can
quantify the problem using binary codewords.
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Formally one is allowed to call a function f : {0, 1}n 7→ {0, 1}, where the function
satisfies f(m) = 1 and f(x) = 0 ∀x 6= m. Note that the number of possible items is
given by 2n. The goal is to find an algorithm, that identifies the marked item m with
as few queries of the database as possible. One can easily show that the best classical
method to find the marked item scales linearly with N .

To implement the problem on an AQC, we need a final Hamiltonian. We choose
Ĥ1 = 1 − |m〉 〈m|, where m in this case is the binary representation of the marked
codeword. One can easily check that |m〉 is the ground sate of Ĥ1 with eigenvalue
0. All other computational basis states give eigenvalue 1. Note that it is not a
priori clear how to implement Ĥ1 in an actual physical system. In the circuit version
of Grover’s algorithm one assumes an oracle in form of a unitary operator, which
initializes some function f . The Hamiltonian can be seen as the counterpart of this
oracle in the adiabatic version. Clearly the motivation behind such oracle based
algorithms are rather proof of principle than actually application based. However,
Ĥ1 fulfills the requirements for the final Hamiltonian. As initial Hamiltonian, we use
Ĥ0 = 1− |φ〉 〈φ|. The state |φ〉 denotes the state

|φ〉 =
1√
N

N−1∑
i=0

|i〉 , (3.5)

which is assumed to be easy preparable (see discussion about Ising model in Sec.
9.1.2). Now that we defined the initial and final Hamiltonian we can write down the
time-dependent system Hamiltonian

Ĥ(s) = (1− s)Ĥ0 + sĤ1 (3.6)
= (1− s)(1− |φ〉 〈φ|) + s(1− |m〉 〈m|)). (3.7)

If the system initially is in the ground state of Ĥ0, which is given by |φ〉, the time
evolution during the anneal happens in a two dimensionl subspace with basis |m〉 and
|mT 〉. By representing Ĥ(s) in this two dimensional subspace it is easy to calculate the
eigenvalues in this subspace and the gap between the two eigenvalues in this subspace
is given by (for more details see [108])

∆(s) =

√
(1− 2s)2 +

4

N
s(1− s). (3.8)

The time scaling of the algorithm is determined by the minimal gap, which occurs at
s = 1/2:

∆min = 2−n/2. (3.9)

Using a rigorous version of the adiabatic condition, which e.g. can be found in [108],
this leads to the following condition on the annealing time

tf �
3

∆2
min

, (3.10)

which unfortunately states that the scaling of the adiabatic Grover algorithm is the
same as the classical counterpart. However, here we used a linear time schedule. In
general one can choose more complicated time schedules of the form

Ĥ(s) = (1−A(s))Ĥ0 +A(s)Ĥ1, (3.11)
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with A(0) = 0 and A(s) = 1. Eq. Since we did not observe any speedup so far, it
may be necessary to improve the time schedule. Note that the minimal gap appears
at s = 1/2, so it would make sense to choose a time schedule which slows down closed
to this area and speeds up away from the minimal gap. One possible choice is given
by the differential equation

∂sA = c∆p[A(s)], p, c > 0. (3.12)

For this schedule and the choice p = 2 the scaling can be shown to be

tf � k ×
√
N, (3.13)

where k is a constant factor. Therefore the adiabatic version of the Grover algorithm
shows the same scaling as the circuit based version, yielding a provable quantum
speedup of both. Since the circuit model and AQC are known to be universal, this is
also the best scaling possible with an adiabatic algorithm.
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10 Flux Qubit Readout at Arbitrary Bias Points

Common flux qubit readout schemes are qubit dominated, meaning they measure in
the energy eigenbasis of the qubit. For various applications meausrements in a basis
different from the actual energy eigenbasis are required. Here we present an indi-
rect measurement protocol, which is detector dominated instead of qubit dominated,
yielding a projective measurement in the persistent current basis for arbitrary bias
points. We show that with our setup it is possible to perform a quantum nondemo-
lition measurement (QND) in the persistent current basis at all flux bias points with
fidelities reaching almost 100%.

10.1 Introduction

The measurement postulate is fundamental in the formulation of quantum mechanics
[6]. To obtain information about the quantum state of a closed system one needs
to employ an interaction with an additional readout system (meter). The required
interaction affects the measured system, resulting in a change of its quantum state.
It is possible to design this interaction, such that the measured observable is an
integral of motion during the readout process, and is thus minimally affected by
the detector. This is called a quantum non-demolition (QND) measurement. QND
measurements enable repeated measurements having the same outcome, to exceed the
standard quantum limit [19].

In the field of quantum information QND measurements play an important role
in various aspects like e.g. error correction [16, 134], initialization by measure-
ment [135] or one way quantum computing [136]. A promising candidate for the
real world implementation of quantum computers are superconducting qubits [26].
Here QND measurements have been experimentally realized for different qubit re-
alizations [48, 101, 137, 138, 139, 140, 141, 142]. The main principle behind all
these measurements is to couple the qubit to a far-detuned resonator and measure
the state-dependent frequency of the resonator using homodyne/heterodyne mea-
surements [20, 53] or a photodetector [21, 54, 70, 143]. These so called disper-
sive measurements can be performed in the linear [21, 52] and the nonlinear regime
[91, 101, 138, 139, 141, 143]. Dispersive measurements as well as most measurements
performed in the field of quantum information are qubit dominated. In these schemes
the qubit basis is the preferred basis due to the weak coupling, leading to the fact
that the qubit basis determines the measured observable.

Flux qubits [34] are especially interesting for the field of quantum annealing [7,
108, 112, 144, 145, 146] where the intrinsic possibility for inductive coupling and
the rather large anharmonicity deliver a big advantage. However, for flux qubits
QND measurements in the persistent current basis have only been performed far
away from the flux degeneracy point. At the degeneracy point the expectation value
of the persistent current, i.e the measurement variable is zero for the qubit energy
eigenstates. Measurement in the energy eigenbasis at the degeneracy point is possible
by coupling the qubit transversely to a resonator, leading to a measurement of the
quantum inductance [147, 148, 149, 150], or by using a more complicated scheme based
on modulated coupling [151]. On the other hand flux qubits are most robust against
environmental effects (e.g 1/f noise) at the degeneracy point, making it very attractive

Section 10 was submitted for peer-review in Physical Review Letters. Preprint is available online:
"M Schöndorf, A. Lupaşcu and F. K. Wilhelm, arXiv:1904.13157 (2019)". The majority of the text
was written by M. Schöndorf. All numerical simulations and underlying analytic calculations were
carried out by M. Schöndorf.

https://arxiv.org/abs/1904.13157
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to operate at this point. The possibility to measure during the anneal process in the
persistent current basis, without first driving the qubit far away from the degeneracy
point would yield huge benefits, e.g. avoid quenches in annealing schedules, which
limit success probability [108, 124, 125].

Also state tomography would benefit from such a readout scheme, since here one
has to be able to perform measurement in canonically conjugated bases [152, 153].
Flux qubit readout at the degeneracy point by measuring of the state dependent
Josephson inductance corresponds to a measurement in the qubit energy eigenbasis,
whereas readout at this point in the persistent current basis yields a measurement
in the conjugated basis. Therefore a combination of both serves the possibility for
effective state tomography of single and multiple qubit states.

Here we present a method to measure the state of a flux qubit for arbitrary biases
at and far away from the degeneracy point, both QND and with a high measurement
fidelity. In contrast to existing protocols, here the measurement is always performed
in the persistent current basis as opposed to the energy eigenbasis for ∆ 6= 0. The
presented indirect measurement protocol includes a quantum probe in between the
flux qubit we want to read out and the actual readout resonator (e.g. SQUID),
namely a compound Josephson junction SQUID (cjj-SQUID) [154, 155, 156]. The
most characteristic feature of the cjj-SQUID is the possibility to control the tunneling
matrix element with an external flux. Taking advantage of this feature, we can map the
qubit states to pointer states of the cjj-SQUID and after that decrease the tunneling
rate. With this strategy we effectively decouple the qubit from the probe before
performing the macroscopic readout, a necessary condition for QND measurements.
In contrast to usual measurement schemes here we present a detector dominated
measurement by choosing strong or even ultrastrong coupling between the qubit and
the quantum probe, such that the measured observable is determined by the eigenbasis
of the operator coupled to the probe. Here this is the persistent current basis, as
opposed to the qubit energy eigenbasis.

We show that our measurement protocol enables a QND measurement at the
degeneracy point and can achieve measurement fidelities of almost 100% with no
unnecessary backaction on the qubit. The results are obtained by quantizing the
measurement circuit and by studying the underlying dynamics numerically as well as
analytically.

10.2 Circuit and Hamiltonian

Standard flux qubit readout in the persistent current basis is usually realized by
coupling a SQUID to the flux qubit to be measured [35, 137, 138, 139, 140, 157, 158,
159]. The two main strategies in use are to operate the SQUID as a switching device
[160] or as an oscillator with state dependent frequency [137, 138, 161]. In our scheme
we include an additional ingredient, the cjj-SQUID, [155] in between the qubit and
the actual readout SQUID, realizing the quantum probe of our indirect measurement.
This cjj-SQUID is a superconducting loop interrupted by a smaller dc-SQUID. It
behaves like an rf-SQUID with a tunable critical current, serving as a coupler that
can be tuned from off to ultrastrong (coupling rate higher than qubit frequency) using
an external flux bias. This device has various uses in quantum information mostly as
an advanced flux qubit design [154, 155, 156]. The Hamiltonian of the cjj-SQUID can
be written down using circuit quantization [156]

Ĥcjj =
φ2

0

L

(
4ξ2 q̂

2

2
+

(ϕ̂− ϕ̃x)2

2
− βcjj(Φc) cos ϕ̂

)
, (3.14)
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Figure 3.2: Circuit for the measurement protocol. The qubit (yellow)
is coupled to the large SQUID loop of the quantum probe, here the cjj-
SQUID (green). To measure the persistent current of the cjj-SQUID
in the end, the large loop is coupled to an additional flux readout loop
(blue). To control the barrier of the cjj-SQUID an external control flux

Φc (red) is applied to the small SQUID loop.

where ξ = e/φ0

√
L/CΣ, and φ0 = Φ0/2π, with mutual inductance M , persistent

current Ip, inductance of the large cjj-SQUID loop L, sum of the two junction ca-
pacitances CΣ and Φ0 the flux quantum. The quantum variable of the probe is the
average phase of the junctions ϕ̂ = 2πΦ̂/Φ0 and q̂ is the conjugated variable. As
shown in Fig. 3.2 two different fluxes can be applied to the two loops of the cjj-
SQUID. Here Φc denotes the flux applied to the small SQUID loop and ϕx = Φx/φ0

the flux applied to the larger loop. Using Φc it is possible to tune the barrier of the
cjj-SQUIDs double well potential up and down. The actual flux dependence on Φc is
βcjj(Φc) = (2I0L/φ0) cos(Φc/2φ0) [156], with critical current of the SQUID junctions
I0.

The external flux on the larger loop on the other hand determines the tilt of the
double well potential, hence we couple the flux qubit we want to read out to this loop.
The coupling is realized via a mutual inductance M of the qubit and the cjj-SQUID
incorporates an additional contribution (MIp/φ0)Ẑ to ϕx. Ip denotes the persistent
current of the qubit. Since this contribution depends on the Pauli spin operator Ẑ in
the persistent current basis of the qubit, the effect on the cjj-SQUID depends on the
qubit state. The overall system Hamiltonian can then be written as

Ĥ =
Φ2

0

L

4ξ2 q̂
2

2
+

(
ϕ̂− MIp

φ0
Ẑ − ϕ̃x

)2

2
− βcjj(Φc) cos ϕ̂

+ Ĥqb. (3.15)
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Figure 3.3: Principle of the measurement scheme. Color code analog
to Fig 3.2. 1.) Initialization (upper left): The qubit (yellow) and the
cjj-SQUID (green) initial state are prepared. 2.) Premeasurement
(upper right): The coupling between the qubit and the cjj-SQUID is
ramped up, such that the qubit states get entangled with corresponding
pointer states. 3.) Effective decoupling (lower left): The c-jj SQUID
potential is turned from a single well to a double well potential. 4.)
Readout (lower right): The cjj-SQUID persistent current state is read

out with an additional flux readout device (e.g rf-SQUID).

The Hamiltonian of the flux qubit can be expressed in the two-level approximation
using Pauli spin operators

Ĥqb =
ε

2
Ẑ +

∆

2
X̂ (3.16)

Eq. 3.16 is written down in the persistent current basis of the qubit {|	〉 , |�〉}. The
energy spacing between these states is given by ε = Ip(ΦQB−Φ0/2) and ∆ denotes the
tunneling energy . Especially at the degeneracy point ε = 0, the energy eigenstates
of the qubit are orthogonal to the persistent current states and are given by the
symmetric and antisymmetric superpositions of the ladder.

To later ensure symmetric pointer states, we bias the cjj-SQUID at the symmetry
point ϕ̃x = π, yielding

Ĥ =
φ2

0

L

(
4ξ2 q̂

2

2
+
ϕ̂2

2
+ βcjj(Φc) cos ϕ̂− g√

ξ
ϕ̂Ẑ

)
+ Ĥqb, (3.17)

where g =
√
ξMIp/φ0 denotes the coupling parameter and with ϕx = ϕ̃x + π. The

Hamiltonian can be divided into the bare qubit part, the quadratic part of the cjj-
SQUID, the tunable nonlinear part of the cjj-SQUID and transverse coupling part.
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For further calculations we will write ϕ̂ as

ϕ̂ =
1√

2mΩ
(â† + â), (3.18)

with effective mass m = 1/(2ξ)2, Ω = 2ξ and where â and â† are the annihilation and
creation operator of the quadratic part of the cjj-SQUID Hamiltonian, satisfying the
commutation relation

[
â, â†

]
= 1. Using Eq. (3.18) the Hamiltonian can be expressed

by ladder operators

Ĥ = EL

[
Ωâ†â+mΩ2βcjj(Φc) cos

(
1√

2mΩ
(â† + â)

)
− g(â† + â)Ẑ

]
+ Ĥqb, (3.19)

with inductive energy of the large coupler loop EL = φ2
0/L.

10.3 Measurement Protocol

In this section we present the protocol of the measurement. Here we qualitatively dis-
cuss the main steps and the basic idea behind them, before we quantitatively analyze
the whole procedure in the next section. It has four main steps, the initialization, the
premeasurement, the effective decoupling and the readout of the probe. The whole
measurement protocol is visualized in Fig. 3.3.

In the initialization step we prepare the qubit in an arbitrary initial state α |	〉+
β |�〉 and the cjj-SQUID in the ground state |g〉. Here the qubit and the probe are
decoupled and the screening parameter βcjj of the cjj-SQUID is zero, meaning it is
described by a harmonic oscillator potential.

After initialization we start the premeasurement. For this, we turn on the coupling
between the qubit and the cjj-SQUID. During this step, the external bias on the small
coupler loop is still chosen as Φc = Φ0/2, such that the barrier is zero and the
cjj-SQUID potential is purely quadratic. By turning on the coupling between the cjj-
SQUID and the qubit, an entangled state between the qubit and the pointer states of
the probe is created, performing the premeasurement. Since the cjj-SQUID starts in
the ground state |g〉, the coupling term shifts the center of the Gaussian distribution
of the phase. For zero coupling, the cjj-SQUID state is centered around 〈ϕ̂〉 = 0, until
the coupling shifts the mean value to 〈ϕ̂〉 = ±ϕp

〈
Ẑ
〉
. Note that the shift depends

on the qubit state as follows from (3.17).
Here we want to choose parameters such that the interaction does not induce

any excitation of the cjj-SQUIDs initial ground state, meaning we require a perfect
adiabatic time evolution of the system [162]

(α |	〉+ β |�〉) |g〉 −→ αeff |	, g−〉+ βeff |�, g+〉 , (3.20)

where |g〉 is the coupler ground state centered around zero and |g±〉 are the corre-
sponding displaced ground states centered around ±ϕp. αeff and βeff include the time
evolution under the bare qubit Hamiltonian [162], i.e. if the system is not in an
eigenstate of Ĥqb. The effective coupling energy ∆eff gets rescaled due to the interac-
tion with the cjj-SQUID [162]. To make the adiabatic approximation applicable, the
timescale of the interaction must satisfy the adiabatic theorem [110]. This yields the
condition

maxt
ġ(t)√
ξ
� Ω. (3.21)
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Violating this condition leads to transitions between cjj-SQUID pointer states which
destroys the distinguishability, since there is no longer a clear map between direction
of persistent current and qubit state.

Besides the fact that we want the measurement to discriminate between the qubit
states, we additionally want the measurement to be QND. A QND measurement is
achieved, when the measured observable is an integral of motion during the measure-
ment, meaning successive measurements of the qubit yield the same result [14]. This
is achieved by the third step of our protocol, the effective decoupling. Especially in the
case ε � ∆, the non-commuting part of the system and the interaction Hamiltonian
is crucial, hence severe backaction would appear during the macroscopic readout of
the probe. Therefore in the effective decoupling step, we use the external bias Φc to
ramp the barrier of the cjj-SQUID potential from a single well harmonic potential to
a double well potential with a high barrier. This exponentially decreases the effective
coupling energy ∆eff , resulting in a reduction of the non-commuting part. With this
we freeze the dynamics of the qubit, yielding an effective decoupling of the qubit and
the probe, necessary for a QND measurement [14]. Note that the tuning of the barrier
also has to be adiabatically on the cjj-SQUID timescale to again avoid excitations to
higher modes, such that we have to modify condition (3.21) and include the time
derivative of the screening parameter βcjj(t)

maxt

[
ġ(t)√
ξ
, β̇cjj(t)

]
� Ω. (3.22)

In a last step we can measure the probe state using the additional persistent
current readout with indicating almost no backaction, since ∆eff(T ) ≈ 0

Because of the non-commuting nature of the interaction and the system Hamilto-
nian, there is also a backaction induced during the premeasurement and the effective
decoupling. Therefore one needs to perform these two steps fast with respect to the
characteristic qubit timescale

T
√

∆2 + ε2 � h, (3.23)

where T denotes the overall time of the measurement protocol. However, this general
condition is to strict in our case. On the one hand the whole point of the third step
is to decrease the effective decoupling rate to almost zero and on the other hand in
the case ε� ∆ the backaction is negligible, since system and interaction Hamiltonian
almost commute. Including these facts, the QND condition for our system is given by∫ T

0
∆eff(t)dt� h, (3.24)

Note that the effective tunneling rate is time dependent, since it is influenced by the
interaction with the probe. Because of the entanglement of the pointer states and the
qubit states after the premeasurement, a high barrier of the cjj-SQUID potential also
frustrates a tunneling between the qubit states. This leads to the fact that 3.24 is
even satisfied for measurement times larger than the qubits characteristic time, as we
will see in the next section.

Before the macroscopic readout of the probe state, it is important that the two
pointer states are statistically distinguishable, meaning that the maximal coupling
strength gmax = g(T ) needs to be chosen such that the condition [163]

〈ϕ(T )〉1 − 〈ϕ(T )〉0 ≥ 2 [σ1(T ) + σ0(T )] , (3.25)
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is satisfied at the end. Here 〈ϕ(T )〉i is the expectation value of the pointer state if
the qubit is in state i and σ(T )i is the respective standard deviation. Both are taken
at the end of the measurement protocol.

The distinguishability criterion gives a lower bound for the necessary maximal
coupling strength gmax. The measurement fidelity is limited by the overlap of the
pointer states and transitions between different cjj-SQUID states during the interac-
tion process. Therefore the most general expression for the measurement fidelity is
given by

Fmeas =
F� + F	

2
, (3.26)

where Fi denotes the probability to get the right measurement result if the qubit is
prepare in the energy eigenstate |i〉. The state fidelities read

Fi =

∫ bi

ai

(∣∣∣〈ϕ,	 |Û(t)|g, i〉
∣∣∣2 +

∣∣∣〈ϕ,� |Û(t)|g, i〉
∣∣∣2)dϕ (3.27)

where i ∈ {	,�}, Û(t) is the time evolution operator which describes the time dy-
namics of the measurement process and {a	, b	} = {−∞, 0}, {a�, b�} = {0,∞}.

10.4 Numerical Results

We want to quantitatively study the measurement protocol. The most important
point here is to quantify the right time scales and system parameters to obtain high
measurement fidelities and prove the QNDness of the protocol. In Sec. 10.3 the
premeasurement and decoupling of the protocol were discussed successively, but to
get a faster measurement and reduce backaction we will combine these two steps.
This means we turn on the coupling and in the same time period we ramp the barrier
of the cjj-SQUID potential. In an experiment this would give the opportunity to
control the coupling and the cjj-SQUID with one control flux.

10.4.1 measurement fidelity

To numerically study the measurement fidelity we use the harmonic oscillator repre-
sentation of the cjj-SQUID (3.19). With this representation we can write down the
Hamiltonian in harmonic oscillator modes of the cjj-SQUID using the formula

〈n|eir(â†+â)|m〉 = i3n+m

√
n!

m!
e−

r2

2 rn−kL(n−m)
n (r2), (3.28)

where L(n−m)
n (r2) refers to the generalized Laguerre polynomial. Here we truncate

the Hamiltonian after 100 oscillator states. Since g(t) and βcjj(t) are time dependent
we have to solve a time dependent Schrödinger equation. For this we use a standard
Runge-Kutta method.

In Fig. 3.4 we see the probability distribution of the cjj-SQUID after performance
of the measurement protocol. We use the simplest possible time schedule, where we
tune up the coupling and the barrier linearly. Here the maximal value of the coupling is
λmax = 1, the maximal nonlinearity βmax

cjj = βcjj(T ) is 2 and ξ = 0.1. The overall time
interval in which we ramp up both parameters is chosen to be 10/Ω and the coupler
frequency is ten times the qubit frequency. We perform the measurement protocol
at the flux degeneracy point ε = 0 and choose as initial state the qubit ground state
|0〉 = (|	〉+ |�〉)/

√
2. Fig. 3.4 shows that the pointer states resolve the qubit states
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Figure 3.4: Probability distribution for a linear time schedule with
λ(T ) = 1 and βcjj(T ) = 2 as final values. As initial state we choose

the qubit ground state |0〉 = 1/
√

2(|	〉+ |�〉).

accurately. The projection of the final combined state into the qubit persistent current
state |	〉 and |�〉 shows a probability distribution peaked around a value −ϕp and
ϕ, respectively. Therefore the two different qubit states correspond to two different
persistent current directions of the cjj-SQUID (clockwise and counterclockwise). The
two distributions show the respective shifted cjj-SQUID ground state where the shift
depends on the qubit state.

The different persistent current states of the cjj-SQUID can be measured with the
additional readout device in a next step, yielding a projective measurement of the
flux qubit in the persistent current basis. As can be seen in Fig. 3.4 the overlap of
the two distributions is almost zero promising a good measurement fidelity. For the
parameters of Fig. 3.4 the measurement fidelity is 1− 10−5.

To quantify the dependence on the maximal coupling strength, we show the mea-
surement fidelity dependence on gmax for different values of ξ in Fig 3.5. We see that
the measurement fidelity strongly increases for larger values of gmax until it reaches
a plateau at fidelity 1. For smaller ξ, the fidelities are lower. Even though the ul-
trastrong coupling regime is accessible in flux qubit architectures ([42, 164, 165]), it
is more feasible to work in the strong coupling regime. However, even in this regime
which corresponds to gmax/Ω ≈ 0.1, the measurement fidelities are quite high. E.g.
for ξ = 0.1 we reach a fidelity of 80.8%. Since the coupling is weaker the interaction
time needed for a resolving premeasurement is also longer, hence it is supporting to
choose longer measurement times. For an increased measurement time of T = 50/Ω
the fidelity for ξ = 0.1 and g = 0.1 already reaches 95%. Here we model measurement
at the flux degeneracy point, but the protocol leads to high fidelities for ε 6= 0 as well,
e.g. for the same parameters as in Fig. 3.4 but for the case ε = ∆, a measurement
fidelity of 1− 10−5 is achievable.
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Figure 3.5: Dependence of the fidelity on the maximum coupling
strength gmax for different values of ξ.

Here we model measurement at the flux degeneracy point, but the protocol also
works analogously for ε 6= 0.

10.4.2 Backaction

In the last section we showed that the measurement protocol works and that we can
achieve high fidelities. However, usual dispersive measurement protocols in the per-
sistent current basis fail to be QND at ε� ∆, since the interaction Hamiltonian does
not commute with the system Hamiltonian. This implies a change of qubit popula-
tion in the measurement basis, mostly because of the rather slow nature of dispersive
measurements. Here the measurement is performed relatively fast with respect to
the qubit frequencies and the non-commuting part is discriminated exponentially by
turning on the barrier, hence we expect the backaction having a less crucial effect. In
this section we want to confirm this by numerically tracking the time dynamics of the
density matrix elements of the qubit.

In Fig. 3.6, the time evolution of the density matrix elements for the initial qubit
state |0〉 = 1/

√
2(|	〉 + |�〉) and at the degeneracy point ε = 0 is studied. The pa-

rameters are the same as in Fig. 3.4. We see that the measurement induces a strong
dephasing in the measurement basis (persistent current basis). This is what one ex-
pects since entangling the qubit with the respective pointer states means transferring
qubit information to the probe system ([68] or [14]). The fact that the measurement
induces a dephasing in the persistent current basis proves that the meausrement pro-
tocol does not measure in the energy eigenbasis of the qubit, but in the eigenbasis of
the probe. The diagonal elements on the other hand stay constant, meaning the pop-
ulation in the persistent current basis is conserved (note again that energy eigenstates
are the two equal superposition states of the persistent current).
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As mentioned before, a way to determine the QNDness of a measurement is the
comparison of repeated successive readouts. Since here the measurement observable
is the persistent current, we have to study the decay of the corresponding states
|�〉 , |	〉 of the qubit to check for QNDness. The QNDness in our system can be
quantified as the probability that the qubits initial persistent current state is preserved
after premeasurement, irrespective of the measurement outcome [14, 140], yielding the
expression

FQND =
〈� |ÛQB(t)| �〉+ 〈	 |ÛQB(t)| 	〉

2
, (3.29)

where ÛQB(t) = Trcjj{Û(t)} denotes the effective time evolution of the qubit during
the premeasurement. As mentioned, to ensure QNDness of the protocol we ramp up
the barrier and effectively discriminate the time evolution of the system, which leads
to the fact that only in the beginning of the protocol the qubit suffers a small rotation.
For the parameters of Fig. 3.4, expression (3.29) can be determined numerically and
yields a QND fidelity of FQND = 99.6%. We are optimistic that further optimization
strategies (e.g. find optimized schedules) could lead to even better results, yielding a
perfect QND measurement with a measurement fidelity of almost 100%.

Note that we do not include environmental effects here which would set an upper
limit for the QNDness. The most crucial one in flux qubit architectures is usually 1/f
flux noise [166, 167]. Flux noise changes the value of ε such that the chosen initial state
|0〉 is no longer an eigenstate of the Hamiltonian resulting in a small change of the qubit
population over time. Additionally flux noise changes the symmetry character of the
potentials such that the minima of the cjj-SQUID potential are no longer symmetric.
This does not change the QNDness per se but the overall measurement fidelity.

10.5 Analytical Fidelity

In this section we will analytically describe the setup presented in Sec I, especially
giving approximate expression for the success probability.

Since we are in the regime where the energy of the cjj-SQUID is larger than the
energy of the qubit , we consider the qubit Hamiltonian as the perturbation of the
system

V =
ε

2
Ẑ +

∆

2
X̂. (3.30)

As shown in Sec. 10.2, the phase-charge space representation of the unperturbed
Hamiltonian reads

H0(t) = EL

(
q̂2

2m
+mΩ2ϕ

2

2
+mΩ2βc(t) cos(ϕ)−mΩ2λ(t)Zϕ

)
. (3.31)

with λ(t) = g(t)/
√
ξ. Without the cosine term, this yields a shifted harmonic oscillator

where the shift depends on the qubit state. To include the contribution of the non-
harmonic cosine part, we will approximate the potential around its minimum. It
is

U ′(ϕ)/EL = mΩ2ϕ−mΩ2βc(t) sin(ϕ)−mΩ2λ(t)Z. (3.32)
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Figure 3.6: Time evolution of the density matrix elements of the
qubit subspace for the initial state |0〉.

The condition U ′(ϕ) = 0 leads to an equation for the potential minimum, depending
on Z. Since 〈Z〉 = ±1 the position is symmetric for the two qubit states

ϕ±(t) = ±ϕp(t), (3.33)

where ϕp(t) denotes the positive valued minimum. The effective potential up to second
order then reads

U(ϕ)/EL ≈ ϕp(t)Z +
mΩ2

2
[1− βc(t) cos(ϕp(t))]

(
ϕ− ϕp(t)Ẑ

)2
(3.34)

= ϕp(t)Z +
mΩ̃(t)2

2
ϕ2 −mΩ̃(t)2ϕp(t)ϕẐ. (3.35)

with time dependent frequency Ω̃(t) = Ω
√

1− βc(t) cos(ϕp). Note that the frequency
does not depend on the qubit state, because of the symmetry of the cosine. This leads
to the effective Hamiltonian

Ĥ(t) ≈ EL

(
q2

2m
+
mΩ̃(t)2ϕ2

2
−mΩ̃(t)2ϕp(t)ϕẐ

)
(3.36)

= EL

Ω̃(t)a†a− Ω̃(t)

√
mΩ̃(t)

2
ϕp(t)(a

† + a)Ẑ

 . (3.37)
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The last part implies a qubit dependent shift of the harmonic oscillator, such that we
can diagonalize this Hamiltonian with the displacement operator

ˆ̃H(t) = D†(ϕ̃p(t)Ẑ)HD(ϕ̃p(t)Ẑ) (3.38)

= ELΩ̃(t)a†a (3.39)

where ϕ̃p(t) = ϕp(t)
√
mΩ̃(t)/2. The time dependence of the transformation induces

an additional inertia term. As mentioned before, we choose time scales to be diabatic
on the qubit and adiabatic on the coupler time scale. Hence in zeroth order we
assume the SQUID state to follow the minimum adiabatically, so we ignore the term
proportional to ˙̃ϕp (inertia part) for now. Additionally we ignore the contribution
arising from the zeroth order of the Taylor expansion, since it only acts as a correction
of the bare qubit Hamiltonian (for more details see Sec. 10.6).

We can directly write down the solution to (3.39) in the position space which is a
Gaussian distribution around the minimum of the potential

ϕ(t) =
(
2πσ(t)2

)−1/4
e
−
(
ϕ−ϕp〈Ẑ〉(t)

2σ(t)

)2

+ip0ϕ
|ϕ〉 , (3.40)

with standard deviation σ(t) = 1/
√

2mΩ̃(t) and p0 being the average momentum.
Let us now assume the qubit starts in a superposition state and the cjj-SQUID in its
ground state (centered around ϕ = 0). The time evolution reads

(α |	〉+ β |�〉) |g〉 Û→ αeff |	, ϕ−(t)〉+ βeff |�, ϕ+(t)〉 , (3.41)

with

|ϕ±(t)〉 =
(
2πσ(t)2

)−1/4
e
−
(
ϕ∓ϕp
2σ(t)

)2
+ip0ϕ |ϕ〉 (3.42)

and where αeff and βeff include the time evolution induced by the bare qubit Hamil-
tonian, i.e when the state is not an eigenstate (see [162] for more details). We are
especially interested in the probabilities for the SQUID to be in the left or right per-
sistent current state, depending on the qubit state. E.g. the probability to get the
right measurement result if the qubit starts in the |	〉 state (equivalent to F	 of the
main text) is given by

F	(t) =
1√

2πσ(t)2

∫ 0

−∞
e
− (ϕ+ϕp)2

2σ(t)2 dϕ (3.43)

= Φ

(
ϕp(T )

σ(t)

)
, (3.44)

with Φ(x) = 1√
2π

∫ x
−∞ e−

1
2
t2dt denoting the normal cumulative distribution function.

In the same manner we can write down the probability to get the right measurement
result when the qubit starts in state |1〉

F�(T ) = −Φ

(
−ϕp(T )

σ(T )

)
. (3.45)
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Figure 3.7: Comparison of the numerical (solid) and analytical (dot-
ted) results for the same parameters as in the main text.

This expressions correspond to the two contributions that appear in the expression
for the fidelity hence, in the Gaussian approximation, F can be written as

F(T ) = Φ

(
ϕp(T )

σ(T )

)
, (3.46)

where we used the fact that Φ(t) is an odd function. Fortunately, Gaussians are among
the simplest special functions and the expectation value is completely determined by
the standard deviation σ(T ), hence the fidelity is fully determined by σ(T ) and ϕp.
This fact can be used to e.g. put a lower bound on the measurement fidelity and
determine the corresponding system parameter intervals to reach this fidelity. Here
the main parameters that can be varied are gmax and βmax

cjj . One could also optimize
the schedule, i.e. find an optimal pulse for the time dynamics of the coupling and the
barrier to optimize both, measurement fidelity and backaction. However, this would
yield an optimal control problem and can be tracked by future work. A lower bound
for the respective system parameters is given by the distinguishability condition (Eq.
(3.25) of Sec. 10.3). Since the distributions are symmetric, the condition has the
simplified form

ϕp(T ) ≥ 2σ(T ). (3.47)

In Fig. 3.7 the distribution of the cjj-SQUID state (depending on the qubit state)
is compared to the numerical results. We basically see what we expect. The two
results coincide very well, but there are corrections coming from the higher order
potential terms. Since we model the double well potential of the cjj-SQUID with
two harmonic potentials, the two numerical expectation values are slightly shifted
compared away from the barrier in the middle and they also do not show the slight
asymmetric behavior on the left of the distributions.

All in all this section shows, that the intuitive picture of the system dynamics, we
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gave when we described the measurement scheme in the main text can be quantified
with the given analytical results assuming an adiabatic time evolution of the pointer
states. Since the analytical results also give a good agreement with the numerics, the
adiabatic approximation is satisfied for the chosen time scale, avoiding any induced
transitions between different cjj-SQUID states.

10.6 Analytical Backaction

Here we will try to analytically approximate the backaction of the measurement on
the qubit. For this we first transform the Hamiltonian into an interaction frame
(i.e the displaced oscillator frame) such that we can write down the time dependent
Hamiltonian as a tensor sum of two dimensional matrices (within the adiabatic ap-
proximation). Then we can study the time evolution of the qubit subspace density
matrix and with this make statements about the backaction.

As shown in 10.5 we can diagonalize H0 approximately by applying the displace-
ment operator

D̂(ϕ̃p(t)Ẑ). (3.48)

This leads to a diagonal Hamiltonian plus an additional inertia term coming from the
time dependence of the transformation and a correction of the bare qubit Hamiltonian
arising from the fact that the two minima of the tilted double well potential are not
at the same potential level

H̃0 = Ω̃(t)â†a− i ˙̃ϕp(t)(a
† − a)− λϕ(t)Ẑ (3.49)

= Ω̃(t)â†a− i ˙̃ϕ(t)p0

(
ϕ̇p +

1

4

˙̃Ω(t)

Ω̃(t)
ϕp(t)

)
− λϕ(t)Ẑ (3.50)

where p0(t) is the average momentum at time t, which can be rewritten using the
correspondence principle p0(t) = mϕ̇p(t). The last term arises from the zeroth order
of the Taylor expansion. Hence we need to take into account two correction terms.
We also have to check what is the effect of the transformation on the bare qubit
Hamiltonian

Ṽ = D̂†(ϕ̃p(t)Ẑ)
[
εẐ + ∆X̂

]
D̂(ϕ̃p(t)Ẑ) (3.51)

≈ εẐ + ∆X̂ + 2ϕ̃p(t)p0(t)∆σ̂y, (3.52)

where we only kept the first order term of the Baker-Campbell-Hausdorff formula.
Since we assume ∆ � Ω, the σy correction is assumed to be rather small compared
to the Z correction arising from ˆ̃H0, hence will be ignored in the following. With this
we can write the Hamiltonian in the transformed basis as a tensor sum

H̃(t) = ⊕∞N=0H̃N (t), (3.53)

where HN (t) is the Hamiltonian in the N excitation subspace {|0, N−〉 , |1, N+〉} and
has the form

H̃N (t) =

(
N Ω̃(t)− γ(t) ∆

2 〈N+|N−〉
∆
2 〈N−|N+〉 N Ω̃ + γ(t)

)
, (3.54)
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with

γ(t) = −m

(
ϕ̇p(t)

2 +
1

4

˙̃Ω(t)

Ω̃(t)
ϕp(t) + λϕp(t)

)
(3.55)

Ω̃N (t) = N Ω̃(t). (3.56)

Here |N±〉 refer to the N excitation states of a shifted harmonic oscillator, where the
sign depends on the qubit state and the shift is given by (3.33) (for more details on
the shifted harmonic oscillator we refer to [168]). Here we assumed an adiabatic time
evolution of the cjj-SQUID dynsmics by setting 〈N±|M±〉 = 〈N±|M∓〉 = 0 if N 6= M .
Note that 〈N+|N−〉 = 〈N−|N+〉, hence H̃(t) is hermitian as demanded. The overlapp
between the shifted oscillator vacuum states is given by [168]

〈0−|0+〉 = e−ϕ
2
p/2 (3.57)

Because of the block diagonal structure of the Hamiltonian, we can also write down
the time propagator U(t) in a block diagonal structure. For this we need the following
expressions

UN (t) = exp

(
iT
∫ t

0
dt′H̃N (t′)

)
, (3.58)

with the time ordering operator T . Since we assume the time evolution to be diabatic
on the qubit subspace and we are interested in the dominating backaction effects, we
use first order Magnus expansion to calculate the time propagators VN (t)

VN (t) ≈ exp

(
i

∫ t

0
dt′H(t′)

)
. (3.59)

Defining the parameters Γ(t) =
∫ t

0 dt′γ(t′) and ∆̃N (t) = ∆/2
∫ t

0 dt′ 〈N+|N−〉 (t′) the
propagator of the N excitation subspace can be written as

VN (t) = ei
∫ t
0 dt′Ω̃N (t′)

(
cos (Θ(t))− iKN (t) sin (Θ(t)) iKN (t) sin (Θ(t))

iKN (t) sin (Θ(t)) cos (Θ(t)) + iKN (t) sin (Θ(t))

)
.

(3.60)

with

Θ(t) =

√
Γ(t)2 + ∆̃(t)2 (3.61)

KN (t) =
∆̃N (t)√

Γ(t)2 + ∆̃(t)2

(3.62)

Since the backaction tends to be strongest at the degeneracy point, we choose ε = 0
in the following, such that HQB = ∆

2 X. We want to study the time evolution of an
arbitrary qubit state, when we prepare the SQUID in the ground state (〈N〉 = 0),
leading to the following density matrix at t = 0

ρ̂(0) =

(
|α|2 αβ∗

α∗β |β|2
)
⊗ |0〉 〈0| (3.63)

The time evolution of this state can then be calculated using V (t). We are especially
interested in the density matrix of the qubit at time t, so we trace out the cjj-SQUID
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degrees of freedom

ρQB(t) = Trcjj {ρ(t)} (3.64)

= |α(t)|2 |	〉 〈	|+ α(t)β∗(t) |	〉 〈�| e−ϕ̃p(t)2

+ α∗(t)β(t) |�〉 〈	| e−ϕ̃p(t)2
+ |β(t)|2 |�〉 〈�|

. (3.65)

Here we clearly see the measurement induced dephasing appearing as an exponential
damping of the off diagonal elements, depending on the displacement between the two
pointer states. The time evolution of the prefactors α and β can be calculated using
the time propagator. For the initial state |0〉, it is α = 1/

√
2 and β = 1/

√
2 leading

to the density matrix entries

ρQB
00 (t) =

1

2

(
1− 2

∆̃0(t)Γ(t)

κ(t)
sin2 κ(t)

)
(3.66)

ρQB
01 (t) =

1

2

(
1− 2

Γ(t)2

κ2(t)
sin2 κ(t)

−2i
Γ(t)

κ(t)
sinκ(t) cosκ(t)

)
exp

(
−ϕ̃p(t)2

) (3.67)

ρQB
10 (t) =

(
ρQB

01 (t)
)∗

(3.68)

ρQB
11 (t) = 1− ρQB

00 (t), (3.69)

where we defined κ(t) =
√

∆0(t)2 + Γ(t)2. In Fig. 3.8 we see the time evolution
of the parameters Γ(t) and ∆̃(t). We see that for t 7→ T , Γ gets much larger than
∆ leading the oscillating term of the diagonal elements to go to zero, such that at
the end of the measurement process the population is the same as in the beginning,
proving the measurement to be QND. The long time behavior of the off diagonal
elements are dominated by the measurement induced dephasing, i.e. the exponential
part. Therefore the offdiagonal elements completely decay for t 7→ T , what we also
see in the numerical results.

However, even though the analytical results predict the right qualitative behavior
and the right long time behavior, there are deviations between the analytical and
numerical results. E.g. the predicted damped oscillations of the diagonal elements
around 1/2 are not observed in Fig. 3.8. Two main factors limit the validity of the
analytics. First we only included the first order of the Magnus expansion, but since
T is in the order of the qubit time evolution for the parameters in Fig. 3.6, it is not
completely reasonable to assume a diabatic time evolution on the qubit time scale.
Hence to get more rigorous results one has to include higher orders of the Magnus
expansion. Second, we ignored the contributions coming from the non-commuting
character of the interaction and the qubit Hamiltonian. Even though the studied
contributions are the leading backaction terms, for T comparable to the qubit time
scale, the other contributions also start to matter.

10.7 Conclusion

In conclusion we have presented an indirect measurement protocol to perform fast
read out a flux qubit at every bias point in the persistent current basis, with possible
measurement fidelities closed to 100%. Further the measurement is also shown to
be QND, which increases the possibility for applications in fundamental flux qubit
experiments as well as in the perspective of quantum annealing even more. A special
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Figure 3.8: Time evolution of the parameters ∆̃(t), Γ(t) and ϕp(t)
for the same parameters as in the main text.

feature is that the readout at the flux degeneracy point is performed in the persistent
current basis, being potentially useful in terms of quantum annealing but also for
other applications such as quantum state tomography.
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11 Non-Pairwise Interactions Induced by Virtual Transi-
tions

The field of quantum information has matured and various protocols implementing
a quantum computer are being pursued. Most similar to a classical computer is the
circuit model. In 2004 Aharonov et al. showed the equivalence between the circuit
model and an AQC, and with this proofed the universality of the latter. However,
equivalence with the circuit model requires multi-local interactions, i.e. interaction
terms involving more than two subsystems. Natural interactions are only two-local,
hence the construction or simulation of higher order couplers is indispensable for a
universal AQC. Also four-local interactions serve as a tool for basic research. Here we
show that in a specific flux qubit coupler design without ancilla qubits, strong four
body interactions are induced by virtual coupler excitations. For specific parameter
regimes they are even the leading effect and can be tuned up to the GHz range.

11.1 Introduction

Quantum computers have the potential to lead to an exponentially reduced com-
putation time compared to classical computers for certain problems. One promis-
ing candidate for the realization of such a device is an adiabatic quantum computer
(AQC), where the computation proceeds from an initial Hamiltonian whose ground
state is easy to prepare to the ground state of a final Hamiltonian which encodes the
solution of the computational problem, by avoiding excitations [108, 144, 169, 170].
It is now known that an AQC represents a universal quantum computer due to its
equivalence with the circuit model [107]. Still, implementing an AQC with verifiable
speedup is a difficult task. A big step is to overcome the locality of natural interac-
tions. k local interactions with k > 2 are suitable for the effective implementation
of various optimization algorithms without using perturbative gadget methods which
create overhead [146] and can also be used for effective prime factoring on AQCs
[171]. Furthermore, since conventional qubit designs are not feasible to implement
non-stoquastic interactions [131, 133], the universality of AQCs is restricted by the
condition k > 2 [7]. There are embedding schemes that simulate this type of coupling
requiring overhead, making it desirable to implement them as natively as possible.
On the other hand higher order local interactions are interesting from a fundamental
physics point of view, since the only known and proven interaction between more than
two particles is found in Efimov states [172, 173].

In this section we propose a specific coupler architecture using flux qubits [34] and
prove the existence of non negligible antiferromagnetic four local interactions. There
are many proposals to realize higher local interactions, using quantum embedding or
ancilla qubits [174, 175, 176]. All of the currently existing ones for k > 3 need at least
k additional qubits despite the computational ones, to realize k local interactions.
Here we present a setup where these basic functions are put into a single coupling
device.

11.2 Setup and Hamiltonian

In our setup four qubits are connected via a nonlinear coupler. Here the qubits as well
as the nonlinear coupler are realized by an inductive loop with inductivity Lj interrupt

Section 11 was submitted for peer-review in npj: Quantum Information. Preprint is available
online: "M Schöndorf and F. K. Wilhelm, arXiv:1811.07683 (2018)". The majority of the text was
written by M. Shöndorf. All numerical simulations and underlying analytic calculations were carried
out by M. Schöndorf.

https://arxiv.org/abs/1811.07683
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Figure 3.9: Left: Setup of the coupler architecture. Four flux qubits
are inductively coupled to an additional flux qubit with higher energy
via mutual inductances Mj. This induces an effective coupling between
the four qubits. On the left of the qubit we see the qubit double well
potential which can be approximated by two shifted harmonic potentials
with eigenstates |0−〉 and |0+〉 corresponding to the persistent current
states |�〉 and |	〉 of the qubits. This was done to obtain the projection
into the qubit subspace for the analyitcal results. We choose a sym-
metric coupler potential, to reduce Ẑ corrections arising from Ĥint by
biasing the coupler at the flux degeneracy point, as shown on the right
of the coupler circuit. Right: Visualization of four local interaction
induced by virtual coupler transitions. A virtual excitation and anni-
hilation of the coupler leads to an energy transfer between two qubits,
hence two such processes can induce effective four local interactions.

by a Josephson junction with capacity Cj and critical current I(c)
j , namely a flux qubit.

The junction represents the nonlinear ingredient of the system. Our setup includes
four qubits and the coupler (see Fig. 3.9), such that the j ∈ {1, 2, 3, 4, c}. A crucial
point is that the couplers plasma frequency has to be chosen higher than the qubit
ones to avoid transitions between coupler energy levels. The corresponding quantum
variables are the respective quantized fluxes of the five loops Φ̂j . The Hamiltonian
describing Fig.3.9 can be obtained by standard circuit quantization. We split the
Hamiltonian in three parts [177],

Ĥ =

4∑
j=1

Ĥj + Ĥc + Ĥint, (3.70)

the sum over the bare qubit Hamiltonians Ĥj , the bare coupler Hamiltonian Ĥc

and the interaction Hamiltonian Hint. The qubit and the coupler Hamiltonian in-
clude a quadratic potential coming from the LC part and a cosine contribution
form the Josephson junction. The strength of the nonlinear term is determined by
the ratio between the Josephson energy EJ = Φ0I

(c)
j /2π and the inductive energy

ELj = (Φ0/2π)2/Lj , where Φ0 denotes the flux quantum. More interest should be
paid into the interaction part, which arises from an induced external flux from qubit
to the coupler and vice versa. Further we operate the coupler as well as the qubits at
(or close to) the flux degeneracy point. The different parts of (3.70) can be written
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in unitless parameters (for a detailed derivation see Supplement)

Ĥj = ELj

(
4ξ2
j

q̂2
j

2
+ (1 + α2

j )
ϕ̂2
j

2
+ βj cos(ϕ̂j)

)
(3.71)

Ĥc = EL̃c

(
4ξ2
c

q̂2
c

2
+
ϕ̂2
c

2
+ βc cos(ϕ̂c)

)
(3.72)

Ĥint = EL̃c

 4∑
i<j

αiαjϕ̂iϕ̂j +

4∑
j=1

αjϕ̂cϕ̂j

 . (3.73)

Here we rescaled the coupler impedance L̃c = Lc−
∑4

j=1 αjMj to decouple equations,
where Mj denotes the mutual inductances of the j-th qubit and αj = Mj/Lj is
the dimensionless mutual inductance. Additionally we defined the parameter ξj =
4πZj/RQ with characteristic impedance Zj =

√
Lj/Cj and the resistance quantum

RQ = h/e2. The quantized phases are given by ϕ̂j = (2π/Φ0)Φ̂j + π and q̂j is the
conjugated quantum variable. Note that we shifted the appearing phases by π leading
to the positive sign in front of the cosine part. For coupler and qubits the screening
parameter is given by βc = 2πL̃cI

(c)
c /Φ0 and βj = 2πLjI

(c)
j /Φ0, respectively. Here

I
(c)
j denotes the critical current of the junctions.

To write down the Hamiltonian in a qubit representation we need to project it
into the two-level subspaces with respect to the qubits. A standard way of doing
this is to approximate the two wells of the flux qubit potential as shifted harmonic
oscillators [168] and interpret the two persistent current states of the qubit as the
lowest eigenstates of these symmetrically shifted oscillators [178]. This leads to

ϕ̂j ≈ sjẐj , (3.74)

where Ẑj , denotes the Pauli spin operator in the persistent current basis. The factor
sj ∝

√
1− 〈0+|0−〉/

√
1 + 〈0+|0−〉 accounts for the fact that the two shifted ground

states are not orthogonal, meaning that sj would be unity if the overlap of these states
was zero (see App. 11.B). Using this notation, the interaction Hamiltonian can be
written as

Ĥint = EL̃c

(αs)2
4∑

i,j=1

ẐiẐj + αs
4∑
i=1

Ẑiϕ̂c

 , (3.75)

where we assume identical qubits (αisi = αs ∀i). The first part induces two body
local interactions between the qubits, which we call the direct coupling part and the
second part describes the interaction between the qubits and the coupler modes, here
referred to as indirect coupling. In commonly used coupler architectures one chooses
parameters such that the direct coupling dominates and the two local interactions
become strong. Here we want to use a different strategy, where we choose parameters
such that the direct interaction part is rather small compared to the indirect coupling
part, which gives rise to two but also higher local interactions.

To see how these higher order local interactions are indicated by the indirect in-
teraction part we use a prominent tool from many body physics, the Schrieffer-Wolff
transformation (SWT) [179, 180]. We choose the SWT since it produces physically
transparent analytical expressions for the induced interactions arising from the indi-
rect coupling part of (3.75). Other than the simplest form of the Born-Oppenheimer
approximation [109], it does not rely on the separation of classical frequencies and
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effective potentials. It is thus applicable even if transitions are vertical in the coor-
dinate and if in the deep nonlinear regime classical frequencies are ill-defined (worse
results for symmetric coupler potential in [181]). The SWT assumes that there are no
transitions between different coupler levels, but includes corrections of the low energy
subspace due to the existence of higher levels. Hence with the SWT it is possible to
perturbatively write down an effective Hamiltonian in this low energy subspace

Ĥeff = P̂0Ĥ0P̂0 + εP̂0V̂ P̂0 +
∞∑
n=2

εnĤeff,n. (3.76)

where Ĥ0 = Ĥc+
∑

j Ĥj is the unperturbed Hamiltonian, V̂ = Ĥint is the perturbation,
here the interaction, ε = αs is a small parameter and P̂0 projects the Hamiltonian
into the low energy subspace (coupler ground state). Every order of the effective
Hamiltonian leads to higher order local interactions between the qubits, i.e. in general
the k-th perturbative term contains induced interactions up to k-th order. Truncation
at fourth order therefore includes fourth order local interactions, such that the effective
Hamiltonian has the form

Ĥ ≈ P̂0Ĥ0P̂0 + J2

∑
i<j

ẐiẐj + J4Ẑ1Ẑ2Ẑ3Ẑ4. (3.77)

The coupling strengths Jj are given by the prefactors generated by the SWT. Note
that J2 additionally includes direct interactions arising from the second term in (3.76).
In general the SW expansion also gives rise to single Ẑ-rotations and three body terms,
but since we choose a symmetric coupler potential these terms are negligible, as we
will argue in the following.

The physical principle behind these indirect interactions can be understand with
the language of virtual excitations. E.g. the second order describes deexcitation of
an excited qubit resulting in a virtual excitation of the coupler, which deexcites again
and in turn excites the same or another qubit. Such processes leave the coupler in the
ground state, but result in higher order qubit interactions. These virtual processes
can be thought to occur only within the Heisenberg energy-time uncertainty. Fourth
order processes in the same manner lead to four local interactions as illustrated in
Fig. 3.9. For the first and third order, there are no such processes, where the coupler
ends up in the ground state, hence they can be neglected in (3.77) (about 2-3 orders
of magnitude smaller).

11.3 Analytical Calculation of the SWT

Here we will show how to get an analytical approximation for the SWT by expressing
the harmonic part of the coupler using latter operators, and treating the cosine part
as a perturbation. For this we truncate the coupler potential after O(ϕ̂4

c). The
interaction part of the Hamiltonian then reads

Ĥint/EL̃c =
βc
24
ϕ̂4
c + α2

4∑
i<j

ϕ̂iϕ̂j + α
4∑
i=1

ϕ̂cϕ̂i. (3.78)
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For simplicity we chose identical qubits here. Now we project the Hamiltonian into
the qubit subspace (see App. 11.B)

Ĥint/EL̃c =
βc
24
ϕ̂4
c + α2s2

4∑
i<j

ẐiẐj + αs
4∑
i=1

φ̂cẐi. (3.79)

The harmonic part of the coupler potential

Ĥharm
c = 4EL̃c

(
ξ2
c

q̂2
c

2
+

1− βc
2

ϕ̂2
c

)
(3.80)

can be interpreted as a quantum harmonic oscillator with effective massmc = 1/4EL̃cξ
2
c

and frequency ωc = 2EL̃cξc
√

1− βc. Note that the coupler nonlinearity βc is assumed
to be smaller that one, since we want the coupler frequency to be higher than the
qubit frequencies. With this we can define the position and momentum operator as

X̂c =
√
mcωcϕ̂c (3.81)

P̂c =
1

√
mcωc

q̂c (3.82)

and rewrite the harmonic part as Ĥharm
c = ωc

2 (X̂2
c + P̂ 2

c ). In the same manner we can
define the annihilation and creation operator

âc =
1√
2

(
X̂c + iP̂c

)
(3.83)

â†c =
1√
2

(
X̂c − iP̂c

)
(3.84)

and rewrite the quantized phase in terms of these operators

ϕ̂c =
1√

2mcωc

(
â†c + âc

)
. (3.85)

Using equation (3.85) it is possible to rewrite the interaction Hamiltonian in terms of
latter operators

V̂int/EL̃c =
βc
24

1

(2mcωc)2

(
â†c + âc

)4
+ α2s2

4∑
i<j

ẐiẐj + αs
4∑
i=1

1√
2mcωc

(
â†c + âc

)
Ẑi.

(3.86)

To get a better overview, we divide (3.86) into three parts, the direct qubit-qubit
coupling

V QB,QB
int = EL̃c

α2s2
∑
i<j

ẐiẐj (3.87)

the indirect coupling part between qubits and coupler modes

V QB,c
int =

EL̃c√
2mcωc

α2s2
4∑
i=1

(
â†c + âc

)
Ẑi, (3.88)
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and the corrections arising from the fourth order cosine part

Vcorr =
EL̃cβc

96m2
cω

2
c

(
â†c + âc

)4
. (3.89)

To simplify notation even more in the following, we define the appearing prefactors
as follows:

gQB,c =
EL̃cαs√
mcωc

(3.90)

gQB,QB = EL̃cα
2s2 (3.91)

Kcorr =
EL̃cβc

96m2
cω

2
c

. (3.92)

As mentioned before, we want to perform the SWT under the assumption that the
coupler frequency is higher than the respective qubit frequencies. Basically we have
three different perturbative parts (3.87), (3.88) and (3.89), where V̂ QB,QB

int just acts
on the qubit subspace, hence simply gives a contribution in zeroth order.

In a first step we have to calculate the even and odd contributions of the per-
turbative parts. Let’s define P0 = |0〉 〈0| and Q0 = 1 − P0 =

∑∞
n=1 |n〉 〈n| as the

projection operator on the even and odd subspaces, respectively. Here |n〉 denotes
the n-th Fock state of the harmonic coupler potential. The off-diagonal part of an
operator X̂ is then given by O(X̂) = P0X̂Q0 + Q0X̂P0 and the diagonal part by
D(X̂) = P0X̂P0 +Q0X̂Q0. Since Ĥ

QB,QB
int acts as identity on the coupler subspace it

is completely diagonal. The other parts read

O(â† + â) = η+
01 (3.93)

O
(

(â† + â)4
)

=
√

4!η+
04 + 5

√
2!η+

02 (3.94)

D(â† + â) =

∞∑
n=1

η+
n,n+1 (3.95)

D
(

(â† + â)4
)

=
∞∑
n=1

(
A(4)
n η+

n,n+4 +A(2)
n η+

n,n+2 +A(0)
n

η+
n,n

2

)
, (3.96)

with η±k,l = |k〉 〈l| ± |l〉 〈k|, A(4)
n =

√
(n+ 4!/n!) , A(2)

n =
√
n2(n+ 1)(n+ 2) +√

(n+ 1)3(n+ 2)+
√

(n+ 1)(n+ 2)3+
√

(n+ 1)(n+ 2)(n+ 3)2 and A(0)
n = 6(n2+n).

Additionally we calculate some useful commutators[
η+
ij , η

+
kl

]
= δjkη

−
il + δjlη

−
ik + δikη

−
jl + δilη

−
jk (3.97)[

η−ij , η
−
kl

]
= δjkη

−
il − δjlη

−
ik − δikη

−
jl + δilη

−
jk (3.98)[

η−ij , η
+
kl

]
= δjkη

+
il + δjlη

+
ik − δikη

+
jl − δilη

+
jk (3.99)[

η+
ij , η

−
kl

]
= δjkη

+
il − δjlη

+
ik + δikη

+
jl − δilη

+
jk. (3.100)

With this as a starting point we can calculate the different orders of the SW
corrections to the effective Hamiltonian. The zeroth order of the effective Hamiltonian
is just the unperturbed part projected into the coupler ground state subspace. The
first order corrections are given by the diagonal projections of the perturbation, so in
our case only the part ĤQB,QB

int and the diagonal parts arising from Ĥcorr, which are
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zero because A0
n(0) = 0. Hence a real calculation is first needed for the corrections

of order higher than one. When calculated to a specific order the SWT finally gives
an effective Hamiltonian acting only on the subspace of interest (here the coupler in
ground state subspace), but including corrections coming from states not included in
this subspace. The general form of the effective Hamiltonian under the SWT is given
in Eq. (3.76). In the following we calculate the different orders of the SWT, up to
fourth order analytically.

11.3.1 Second order effective Hamiltonian

First we calculate the first order of the generator S, that defines the SWT and is used
to calculate the respective order of the effective Hamiltonian. The first order of S is
given by

S1 = L(Vod), (3.101)

where we used the notation of Bravyi et al. [180], such that Vod denotes all the off
diagonal parts of the perturbation Hamiltonian and the linear map L is defined as

L(X) =
∑
i,j

〈i|O(X)|j〉
Ei − Ej

|i〉 〈j| , (3.102)

where {|i〉} is an orthonormal eigenbasis of the unperturbed Hamiltonian. With this
definition we can write down the expression for S1

S1 =
∑
i,j

〈i|V QB,c
od |j〉

Ei − Ej
|i〉 〈j|+

∑
i,j

〈i|V corr
od |j〉

Ei − Ej
|i〉 〈j| . (3.103)

In our case the |i〉’s are the eigenstates of the bare coupler Hamiltonian (harmonic
oscillator part). We need the following expressions to get S1:

〈i|η+
kl|j〉 = δikδjl + δilδkj (3.104)

⇒ 〈i|η+
10|j〉 =

1

E1 − E0
η−10 (3.105)

⇒ 〈i|η+
40 + η+

20|j〉 =
1

E4 − E0
η−40 +

1

E2 − E0
η−20, (3.106)

such that we get

S1 =
4∑
j=1

gQB,c
j σ̂x,j

E1 − E0
η−10 +Kcorr

( √
4!

E4 − E0
+

5
√

2!

E2 − E0
η−20

)
(3.107)

=
4∑
j=1

γ
(1)
j σ̂x,jη

−
10 + β

(1)
1 η−40 + β

(1)
2 , (3.108)

where γ(1)
j = gQB,c

j /(E1−E0), β(1)
1 =

√
4!Kcorr/(E4−E0) and β(2)

2 = 6
√

2Kcorr/(E2−
E0).

The second order of the effective Hamiltonian is then given by

Heff,2 = b1P0Ŝ1(Vod)P0, (3.109)
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where we again adopt the notation of Barvyi et al. such that Ŝ1(Vod) = [S1, Vod]. The
prefactor b1 is characterized by the equation

b2n−1 =
2(22n − 1)B2n

(2n)!
(3.110)

with Bernoulli numbers Bn. Using the commutation relations (3.97)-(3.100) and the
fact that P0 projects into the coupler ground state subspace - only terms proportional
to η00 give a contribution - we get

Ĥeff,2 = −

 4∑
i,j=1

α
(1)
i gQB,c

j ẐiẐj + β
(1)
1 β

(0)
1 + β

(1)
2 β

(0)
2

 , (3.111)

with β(0)
1 =

√
4!Kcorr and β(0)

2 = 6
√

2Kcorr.

11.3.2 Third order effective Hamiltonian

The second order of the generator S is given by

S2 = −LV̂d(S1), (3.112)

where Vd denotes the diagonal contributions of the perturbation Hamiltonian. In a
first step we calculate [Vd, S1]. Again with (3.97)-(3.100) we get

[Vd, S1] =
√

2

4∑
i,j=1

gQB,c
i γ

(1)
j σ̂x,iσ̂x,jη

+
20 +

4∑
j=1

gQB,c
j β

(1)
1

(√
5η+

50 + 2η+
30

)

+
4∑
j=1

gQB,c
j β

(1)
2 σ̂x,j

(√
3η+

30 +
√

2η+
10

)

+Kcorr

 4∑
j=1

γ
(1)
j A

(4)
1 σ̂x,jη

+
50 + β

(1)
1 A

(4)
2 η+

60 + β
(1)
2 A

(4)
4 η+

80

+
4∑
j=1

γ
(1)
j A

(2)
1 η+

30β
(1)
1 A

(2)
2 η+

40 + β
(1)
2 A

(2)
4 η+

60β
(1)
2 A

(2)
2 η+

20 +
4∑
j=1

γ
(1)
j A

(0)
1 σ̂x,jη

+
10

+ β
(1)
1 A

(0)
4 η+

40β
(1)
2 A

(0)
2 η+

20

]
(3.113)

The next order of the effective Hamiltonian is given by Heff,3 = b1P0Ŝ2(Vod)P0, so
it is again sandwiched by projection operators onto the coupler ground state. S2 is
given by −L(Vd(S1)). L maps η+

ij to η−ij and adds the respective energy prefactor
1/(Ei − Ej). Only terms proportional to η00 will not be projected to zero by P0.
Looking at (3.97)-(3.100) we see that only commutators of ηs with identical indices
will give a contribution. In Vod the only appearing operators of this sort are η10, η20

and η40. This means that we can ignore all other η operators in the commutator
V̂d(S1), since they don’t give a contribution to Heff,3. Using this simplification, we get
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the following expression for the third order effective Hamiltonian

Ĥeff,3 =

 4∑
i,j=1

( √
2β

(0)
2

(E2 − E0)
γ

(1)
i gQB,c

j +

√
2β

(1)
2

E1 − E0
gQB,c
i gQB,c

i +
KcorrA

(0)
1

E1 − E0
α

(1)
i gQB,c

j

)
ẐiẐj

(3.114)

+KcorrĤ
(3)
shift

]
(3.115)

where H(3)
shift adds an overall energy shift to the coupler ground state energy given by

H
(3)
shift =

4∑
j=1

(
β

(1)
1 β

(0)
1 A

(2)
2

E4 − E0
+
β

(1)
2 β

(0)
2 A

(2)
2

E2 − E0
+
β

(1)
1 β

(0)
1 A

(0)
4

E4 − E0
+
β

(1)
2 β

(0)
2 A

(0)
2

E2 − E0

)
. (3.116)

Hence the third order effective Hamiltonian has two effects on the qubits. It leads to
an overall energy shift given by H(3)

shift and like the second order effective Hamiltonian
induces two body local interactions. Therefore we have to calculate the next higher
order and see if local interactions k > 2 appear.

11.3.3 Fourth order effective Hamiltonian

The third part of the generator is given by

S3 = −LV̂d(S2) + a2LŜ2
1(Vod). (3.117)

with parameters

an =
2nBn
n!

(3.118)

We start with calculating V̂dS2. In the expression for Heff,4 the commutator of S3

with Vod appears. This expression is again sandwiched by P0 operators. In the same
manner as in the last section we therefore only have to include terms of S3 proportional
to η10, η40 or η20. This leads to twelve different terms. The effective Hamiltonian is
given by

Heff,4 = b1P0Ŝ3(Vod)P0 + b3P0Ŝ
3
1(Vod). (3.119)

We split this Hamiltonian into three different parts

Heff,4 = H
(1)
eff,4 +H

(2)
eff,4 +H

(3)
eff,4 (3.120)

= −b1P0

[
LV̂d(S2), Vod

]
P0 + b1a2P0

[
LŜ2

1(V od), Vod

]
+ b3P0Ŝ

3
1(Vod)P0

(3.121)
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For the first part we get:

H
(1)
eff,4

= −2b1Kcorr

4∑
i,j=1

 5β
(1)
1 g

QB,c
i g

QB,c
j

(E5 − E0)(E4 − E0)
+

√
5KcorrA

(4)
1 γ

(1)
i g

QB,c
i

(E5 − E0)(E4 − E0)
+

( √
4

E4 − E0

+

√
3

E3 − E0

) √
3β

(1)
2 g

Qb,c
i g

QB,c
j

E3 − E0

+
KcorrA

(2)
1 γ

(1)
i g

QB,c
j

E3 − E0

( √
4

E4 − E0

+

√
3

(E3 − E0)

)
+

2β
(1)
1 g

QB,c
i g

QB,c
j

E3 − E0

( √
4

E4 − E0

+

√
3

E2 − E0

)

+
2β

(1)
2 γ1i g

QB,c
j

(E2 − E0)2
+

√
2KcorrA

(0)
1 γ

(1)
i γ

(1)
j

E2 − E0

+

√
2KcorrA

(2)
2 γ

(1)
i g

QB,c
j

(E2 − E0)(E4 − E0)
+

√
2KcorrA

(0)
2 γ

(1)
i g

QB,c
j

(E2 − E0)2

 ẐiẐj

+
4∑

j=1

√2Kcorrβ
(1)
2 A

(2)
2 g

QB,c
j

(E2 − E0)(E1 − E0)
+

√
2Kcorrβ

(1)
2 A

(0)
2 g

QB,c
j

(E2 − E0)(E1 − E0)
+

√
5Kcorrβ

(1)
1 A

(4)
1 g

QB,c
j

(E5 − E0)(E1 − E0)
+

KcorrA
4
1A

(4)
1 γ

(1)
j

(E5 − E0)(E1 − E0)

+
2Kcorrβ

(1)
1 A

(2)
1 g

QB,c
j

(E3 − E0)(E2 − E0)
+

√
3Kcorrβ

(1)
2 A

(2)
1 g

QB,c
j

(E3 − E0)(E1 − E0)
+

KcorrA
(2)
1 A

(2)
1 γ

(1)
j

(E3 − E0)(E1 − E0)
+

√
2A

(0)
1 β

(1)
2 g

QB,c
j

(E1 − E0)2

+
KcorrA

(0)
1 A

(0)
1 γ

(1)
j

(E1 − E0)2

 Ẑj

+
K2

corrA
(4)
2 β

(1)
2 A

(4)
2

(E6 − E0)(E2 − E0)
+

K2
corrβ

(1)
2 A

(2)
4 A

(2)
2

(E2 − E0)(E4 − E0)
+

K2
corrβ

(1)
2 A

(0)
2 A

(2)
2

(E2 − E0)(E4 − E0)
+

K2
corrβ

(1)
1 A

(2)
2 A

(2)
2

(E4 − E0)(E2 − E0)

+
K2

corrβ
(1)
1 A

(0)
4 A

(2)
2

(E4 − E0)(E2 − E0)
+

K2
corrβ

(1)
1 A

(4)
2 A

(2)
4

(E6 − E0)(E4 − E0)
+

K2
corrβ

(1)
2 A

(2)
4 A

(2)
4

(E6 − E0)(E4 − E0)
+
K2

corrA2(0)β
(1)
2 A

(2)
2

(E2 − E0)2

+
Kcorrβ

(1)
2 A

(0)
2 A

(0)
2

(E2 − E0)2
+
Kcorrβ

(1)
1 A

(0)
4 A

(2)
2

(E4 − E0)2
+
Kcorrβ

(1)
1 A

(0)
4 A

(0)
4

(E4 − E0)2
+

K2
corrβ

(1)
1 A

(4)
2 A

(4)
2

(E6 − E0)(E2 − E0)
+

K2
corrβ

(1)
2 A

(4)
4 A

(4)
4

(E8 − E0)(E4 − E0)

+

4∑
i,j,k=1

2Kcorrγ
(1)
i g

QB,c
j g

QB,c
k

(E2 − E0)(E1 − E0)
ẐiẐj Ẑk

(3.122)

We see that a lot of two local coupling terms arise. Additionally we have single
Ẑ corrections, an overall energy shift and most important the last term leads to
three local qubi-qubit interactions. Let’s first calculate the other contributions to the
effective Hamiltonian. The second part is given by

H
(2)
eff,4

= 2b1a1

4
3∑

i,j,k,l=1

g
QB,c
i g

QB,c
j g

QB,c
k

g
QB,c
l

(E1 − E0)4
ẐiẐj ẐkẐl +

4∑
i,j=1

 γ(1)i γ
(1)
j β

(0)
1 β

(0)
1

E4 − E0

+
γ
(1)
i γ

(1)
j β

(0)
2 β

(0)
2

E2 − E0

+
β
(0)
1 β

(1)
1 γ

(1)
i g

QB,c
j

E4 − E0

+ 2β
(1)
1 β

(0)
1 γ

(1)
i γ

(1)
j +

β
(0)
2 β

(0)
2 γ

(1)
i g

QB,c
j

E2 − E0

+ 2β
(1)
2 β

(0)
2 γ

(1)
i γ

(1)
j +

2β
(1)
2 β

(0)
2 γ

(1)
i g

QB,c
j

E2 − E0

+β
(1)
2 β

(0)
2 β

(0)
2 γ

(1)
i γ

(1)
j + β

(1)
2 β

(1)
2 γ

(1)
i g

QB,c
j +

2β
(1)
1 β0

1γ
(1)
i g

QB,c
j

E4 − E0

+ β
(1)
1 β

(1)
1 γ

(1)
i g

QB,c
j + β

(1)
1 β

(0)
1 γ

(1)
i γ

(1)
j

 ẐiẐj

+
β
(1)
2 β

(1)
1 β

(0)
2 β

(0)
1

E4 − E0

+
2β

(1)
1 β

(0)
1 β

(1)
2 β

(0)
2

E2 − E0

+
4β

(1)
1 β

(1)
1 β

(0)
1 β

(0)
1

E4 − E0

+
β
(1)
2 β

(1)
2 β

(0)
1 β

(0)
1

E4 − E0

+
β
(1)
1 β

(1)
1 β

(0)
2 β

(0)
2

E2 − E0

+
β
(1)
2 β

(0)
1 β

1()
1 β

(0)
2

E2 − E0

+
2β

(1)
1 β

(1)
2 β

(0)
2 β

(0)
1

E4 − E0


(3.123)

and the last part reads

H
(3)
eff,4

= 2b3

4
4∑

i,j,k,l=1

γ
(1)
i γ

(1)
j γ

(1)
k
g
QB,c
l

ẐiẐj ẐkẐl +
4∑

i,j=

(
β
(0)
1 β

(1)
1 γ

(1)
i γ

(1)
j + β

(0)
2 β

(1)
2 γ

(1)
i γ

(1)
j

+β
(1)
1 β

(1)
1 γ

(1)
i g

QB,c
j + 2β

(0)
1 β

(0)
1 γ

(1)
i γ

(1)
j + β

(1)
2 β

(1)
2 γ

(1)
i g

QB,c
j + 2β

(0)
2 β

(1)
2 γ

(1)
i γ

(1)
j + 2β

(1)
2 β

(1)
2 γ

(1)
i g

QB,c
j

+β
(0)
2 β

(1)
2 γ

(1)
i γ

(1)
j + β

(1)
2 β

(1)
2 γ

(1)
i g

Qb,c
j

)
σ̂x,iσ̂x,j + 2β

(1)
1 β

(0)
1 β

(1)
2 β

(1)
2 + β

(1)
2 β

(1)
1 β

(0)
2 β

(1)
1 + β

(1)
2 β

(1)
2 β

(0)
1 β

(1)
1

4β
(1)
2 β

(1)
2 β

(0)
2 β

(1)
2 + 4β

(1)
1 β

(1)
1 β

(0)
1 β

(1)
1 + β

(1)
1 β

(1)
1 β

(0)
2 β

(1)
2 + β

(1)
1 β

(1)
2 β

(0)
1 β

(1)
2 + 2β

(1)
1 β

(0)
2 β

(0)
2 β

(0)
1

]
.

(3.124)

Finally with all these results, the fourth order effective Hamiltonian acting only
on the coupler ground state subspace can be written as

Heff = P̂0Ĥ0P̂0 + P̂0V̂ P̂0 +
4∑

n=2

Ĥeff,n. (3.125)



11. Non-Pairwise Interactions Induced by Virtual Transitions 95

11.3.4 Coupling Strengths

All in all Heff,4 leads to 3 and 4 local qubit-qubit interactions. Anyways, there still
are 2 local qubit interactions present and we want the higher ones, to give the leading
effect. Therefore it is necessary to go to a regime where the 2 local interactions vanish
or at least are smaller than the higher ones. Note that the sum

∑
i,j,k,l also gives rise

to 2 local interactions (e.g. if i = j and k = l), so we have to take them into account.
To summarize the results, we want to give expressions for the different couplings.

For simplification we assume that the qubit parameters are the same for all qubits. We
define the different coupling strengths such that we can write the effective interaction
Hamiltonian as:

Hint,eff = J4Ẑ1Ẑ2Ẑ3Ẑ4 + J3

∑
i<j<k

ẐiẐjẐk + J2

∑
i<k

ẐiẐj + J1

4∑
i=1

Ẑi,

where the whole interaction Hamiltonian acts only on the |0〉 subspace of the coupler.
The restriction of the sums comes from the fact that e.g ẐiẐj = ẐjẐi, hence we get
an additional prefactor in front of the different coupling terms

∑
i 6=j 6=k 6=l

ˆ̂ZiẐjẐkẐl +
∑
i 6=j 6=k

ẐiẐjẐk +
∑
i 6=k

ẐiẐj +
4∑
i=1

Ẑi (3.126)

= 4!ẐiẐjẐkẐl + 3!
∑
i<j<k

ẐiẐjẐk + 2!
∑
i<k

ẐiẐj +

4∑
i=1

Ẑi. (3.127)

The four body coupling strength is given by

J4 = 24
g4

QB,c

∆3
10

, (3.128)

with ∆ij = Ei − Ej . The three body coupling strength is given by

J3 = −
12Kcorrg

3
QB,c

∆20∆2
10

. (3.129)

The expression for the two body interaction is a little more complicated

J2/2 = gQB,QB/2−
g2QB,c

∆10

+
12Kcorrg

2
QB,c

∆20∆10

+
12Kcorrg

2
QB,c

∆10∆20

+
12Kcorrg

2
QB,c

∆2
10

−
10
√

6K2
corrg

2
QB,c

∆50∆2
40

−
10
√

6K2
corrg

2
QB,c

∆50∆40∆10

−
12
√

6K2
corrg

2
QB,c

∆40∆30∆20

−
18
√

2K2
corrg

2
QB,c

∆2
30∆20

−
20
√

6K2
corrg

2
QB,c

∆40∆30∆10

−
30
√

2K2
corrg

2
QB,c

∆2
30∆10

−
8
√

6K2
corrg

2
QB,c

∆40∆20∆10

−
12
√

2K2
corrg

2
QB,c

∆3
20

−
12
√

2K2
corrgQB,c

∆20∆2
10

−
28
√

8K2
corrgQB,c

∆40∆20∆10

−
36
√

2K2
corrg

2
QB,c

∆2
20∆10

+
8K2

corrg
2
QB,c

∆40∆2
10

+
24K2

corrg
2
QB,c

∆3
20

+
8K2

corrg
2
QB,c

∆2
40∆10

+
16K2

corrg
2
QB,c

∆3
10

+
48K2

corrgQB,c

∆3
20

+
48K2

corrg
2
QB,c
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as well as the Ẑ corrections

J1 = −
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20∆10

−
432K3

corrgQB,c

∆2
20∆10

−
120
√

3K3
corrgQB,c

∆50∆40∆10
−

120K3
corrgQB,c

∆50∆2
10

−
240K3

corrgQB,c

∆30∆40∆10
−

360K3
corrgQB,c

∆30∆20∆10
−

600K3
corrgQB,c

∆30∆2
10

−
144K3

corrgQB,c

∆20∆2
10

−
144K3

corrgQB,c

∆3
10

− 12
Kcorrg

3
QB,c

∆3
10

(3.131)

The bare coupler Hamiltonian is equivalent to a harmonic oscillator, such that the
relation ∆n0 = (n− 1)∆10 is satisfied. Therefore we can simplify the expressions for
the coupling strengths

J4 = 24
g4

QB,c

∆3
10

(3.132)

J3 = −6
Kcorrg

3
QB,c

∆3
10

(3.133)

J2 = gQB,QB − 2

1− 1

4
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√
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Putting in the expressions for Kcorr, gQB,c and ∆10, we can write the different
couplings in terms of system parameters

J4 = 3EL̃c
(αs)4

ξc(1− βc)5/2
(3.137)

J3 = −EL̃c
(αs)3βc

√
ξc

32(1− βc)3
(3.138)

J2 = EL̃c(αs)
2

(
1− 1

(1− βc)
+

1

2

βcξc

(1− βc)5/2
+ c1

β2
c ξ

2
c

(1− βc)4
+ 5

(αs)2

ξc(1− βc)5/2

)
,

(3.139)

with c1 = 1689+1060
√

2−82
√

6−12
√

30
55296 and where we assumed to have identical qubits,

such that αi = αj = α, si = sj = s. Note that all these expressions diverge for
βc −→ 1. This is since the prefactors of Hint (especially VQB,c) is in the order of
1 in this case, such that the convergence criteria for the SW expansion is no longer
satisfied. Anyways we will observe really interesting effect in the regime βc < 1.
Note that J1 and J3 are two to three orders of magnitude smaller than the equal
contributions hence they can be ignored (also observed in numerics).
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11.4 Numerical Evaluation of the SWT

In the previous section, we presented an analytic solution for the SWT by truncation of
the cosine part of the coupler potential. To get more accurate results, it is convenient
to include the full coupler potential and solve for the eigenfunctions numerically. We
will see that corrections from higher order cosine terms play an important role for
larger nonlinearities. To do so, we numerically solve the bare coupler Hamiltonian

Ĥc = EL̃c

(
ξ2
c

q2
c

2
+
ϕ̂

2
+ βc cos(ϕ̂c)

)
. (3.140)

This Hamiltonian can be evolved in harmonic oscillator states. For the harmonic part
we use the results of the previous section and the cosine part can be written down in
this basis using the relation

〈n|eir(â†+â)|m〉 = i3n+m

√
n!

m!
e−

r2

2 rn−kL(n−m)
n (r2), (3.141)

where L(n−m)
j refers to the generalized Laguerre polynomial. The cosine part of the

potential can now be written in the polar representation and we can write down Ĥc

in the harmonic oscillator basis

Ĥc =
∞∑

n,m=1

〈n|Ĥc|m〉 |n〉 〈m| . (3.142)

Solving for the eigenvectors, we find the unitary transformation Ûc that diagonalizes
Ĥc. With Ûc it is possible, to transform the interaction part of the Hamiltonian into
the eigensystem of Ĥc (Note that the coupler parts of the interaction can easily be
written down in the harmonic oscillator basis, using (3.141)). This makes it easy
to numerically calculate the commutators arising during the SWT by simple matrix
multiplications. We truncate the series (3.142) at n = 50 oscillator states, since higher
truncation limits didn’t lead to any notable changes of the results. With this we can
calculate the prefactors of (3.127). We see that the results of the analytic and the
numerical SWT show the same overall behavior, but the values of both are significantly
different. Since the cosine part of the potential gives important contributions to the
value of the energy gap, this is what we expect. For increasing βc the value of ωc, which
denotes the gap in the analytical case decreases rapidly, pushing the calculation over
the convergence limit of the SWT. By including the whole potential in the numerical
case, the decrease of the gap with increasing βc is much slower, shifts the convergence
breakdown to higher values of βc. The validity of the SWT will be discussed a little
more in the following.

11.5 Comparison Between the Analytical and the Numerical SWT

The difference between the analytical method described in Sec. 11.3 and the numeri-
cal SW approach described in Sec. 11.4 is the cosine part of the coupler potential. In
the analytical part, we truncate the cosine part after fourth order in ϕ̂c, whereas in
the numerical SW approach, we treat the complete cosine part, by calculating the re-
spective coupler eigenfunctions numerically. These parts become especially important
for increasing βc, since this part determines the weight of the cosine part. In Fig. 3.10
we compare the coupling strength given by the analytical and numerical SWT, for the
same parameters as in Fig. 2 of the main part. We see that the analyitcal coupling
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Figure 3.10: Comparison between the coupling strengths for the an-
alytical and the numerical SWT for the same prameters as in Fig. 2

of the main text.

strengths show the same principle behavior as the numerical SW ones, but the val-
ues of J coincide only for very small βc, whereas for increasing nonlinearities βc, the
numerical SW predicts higher couplings (hence are closer to the complete numerical
solution).

11.6 Fully Numerical Results

Since our qubit modeling using (3.74) is not very accurate for qubit nonlinearities
only slightly larger than unity, we solve the system numerically and study the result-
ing spectrum. Here we evolve the bare qubit and coupler Hamiltonian in harmonic
oscillator modes using about 50 oscillator states, then project the interaction parts
into the low energy subspace and determine the resulting spectrum numerically. The
corresponding coupling strengths can be extracted out of the spectrum by the distance
of certain energy levels. In more detail we looked at the two-excitation subspace of
the spectrum, which is also zoomed in on the right of Fig 2.12. Within this subspace,
the distance between the different lines at the point where all frequencies are equal
(ω1/2

ω2/3
= 1) can be calculated analytically. These distances depend on J2 and J4, hence

it is possible to translate the resulting spectrum into coupling strengths.
The results for a device with realizable qubit and coupler parameters are shown

in Fig. 3.11. All the contributions from the indirect coupling term increase with the
coupler nonlinearity βc. We see that for βc ≈ 0 the two local interactions are domi-
nated by the antiferromagnetic direct coupling part and with increasing nonlinearity
get more and more dominated by the ferromagnetic contribution from the indirect
part. This results in a change of the nature of the interactions from antiferromagnetic
to ferromagnetic at around βc = 0.2. The four local interactions on the other hand
are antiferromagnetic for all nonlinearities, since they only arise from the indirect
coupling. Also we observe that J2 and J4 have a crossing point at around βc = 0.05.
For higher nonlinearites |J4| is larger than |J2|. Both coupling strenghts increase with
increasing βc, but for the chosen parameters, at βc around 0.7 the energy levels of the
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Figure 3.11: Left: Coupling strength depending on the nonlinearity
of the coupler for EL̃c

= 1 THz, ξc = 0.01, ξj = 0.05, αj = 0.05 and
βj = 1.1. This corresponds to the physical parameters Lj = 817 pH,
Cj = 77 fF, Lc = 170 pH, Cc = 407 fF, Ijc = 443 µA, respectively
with a mutual inductance of M = 40 pH . The corrections arising
from the virtual transitions lead to an enhancement of the four local
interactions and a discrimination of the two local interactions. For
βc = 0.43 the results predict antiferromagnetic four local interactions
which are twice as large as the ferromagnetic two local interactions.
Right: Numerically determined spectrum of the two excitation subspace
for Ej/EL̃c

= 0.2. One sees exactly the spectrum theoretically expected
at this specific point and the corresponding coupling strengths are J4 =

291 MHz, and J2 = −145.5 MHz for EtildeLc
= 1 THz.

coupler ground and coupler excited subspace start to mix, such that we can no longer
use the setup to mimic the spectrum of the general Ising Hamiltonian including four
local interactions. This is the reason why the results in Fig. 3.11 are restricted to
βc < 0.7 (a more detailed study on this can be found in Sec 11.7). Another remark-
able result is, that due to the present virtual transitions, which are not restricted to
a nonlinear coupler, there are non-zero four local interactions of about 90 MHz for
βc = 0.

Note that our parameter choice assumes very high coupler capacitances of about
half a pH, but that such values can be realized (e.g. in [156] for a tunable rf-SQUID),
and one could also decrease this value accepting smaller coupling strengths. E.g.
reducing the coupler capacitance by the factor 1/4, results in a reduction of the
two and four local interactions from 1.6 GHz to 0.6 GHz, when changing only the
capacitance.

A well distinguishable point in the spectrum is J4 = −2J2. In the two excita-
tion subspace of the generalized four qubit Ising Hamiltonian including fourth order
interactions, one observes three different energy levels, a non-degenerated, a twice
degenerated and a three times degenerated one. At the specific point J4 = −2J2

this behavior changes and only two different energies are left over, a twice and a four
times degenerated. Our results indicate that this point is at βc = 0.43 and the numer-
ically calculated spectrum for this specific nonlinearity is shown in Fig 3.11 (right).
We see exactly the theoretically expected behavior of the spectrum. For equal qubit
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frequencies the spectrum only shows two different energy levels, one twice and one
four times degenerate. The distance between these two energy levels is 4J4. For the
chosen parameters and a realistic EL̃c of about 1 THz, we observe a coupling strength
of J4 = 291 MHz and J2 = −145.5 MHz. By increasing the nonlinearity βc the four
local interactions can be increased to almost 1 GHz. This is the largest predicted
four local interaction strength in a superconducting qubit architecture without ancilla
qubits, to the best of our knowledge. The coupling could also be made to be tunable
by using a flux qubit architecture with tunable nonlinearity, i.e. a tunable rf-SQUID
[156] instead of the rf-SQUID coupler.

Although the analytial results of Sec 11.3 and 11.4 qualitatively give the right
behavior of the different coupling strengths, the actual values found by analytics
differ from the numerical ones. As mentioned before the reason is the rather small
qubit nonlinearity βj = 1.1, where the validity of the shifted harmonic oscillator
approximation we used to model the qubits is not reliable. Also the larger βc gets
the more important higher orders of the SWT become. E.g. for the specific point
βc = 0.51 chosen in Fig. 3.11, analytics predict J4 = 0.3 GHz and J2 = −0.18 GHz.

11.7 Discussion of the SWT

As mentioned, there are rather large deviations between the coupling strengths of
the effective Hamiltonian obtained by the SWT and the completely numerically de-
termined coupling strengths. The SWT gives the right principle behavior of the
coupling, meaning a change of J2 from antiferromagnetic to ferromagnetic due to the
indirect coupling part of the Hamiltonian and a continuous increase of J4. There are
two main problems why the SWT does not quantitatively model the effective system
Hamiltonian. The first one is as mentioned above the way we model the qubit. As
shown in Sec. 11.B we model the qubit potential with two shifted harmonic poten-
tials. The smaller the qubit nonlinearity βj the farer away the actual potential is from
two shifted harmonic potentials. To get more quantitative results we would have to
include higher order corrections to the potential, but then it is no longer possible to
get nice analytical results. On the other hand the more we increase the nonlinearity of
the coupler βc, the more higher orders of the SWT matter. This is because the energy
distance between the coupler ground and coupler excited subspace decrease with in-
creasing coupler nonlinearity, hence prefactors of e.g. sixth order terms increase. This
is the reason for the turnover of the coupling strengths at around βc = 0.45 (see Fig.
3.10), which we do not see in the full numerical results of Fig. 3.11. Also for to strong
nonlinearities when the two subspaces start to mix, the SWT will diverge when we do
not include the coupler excited subspace as well. But as soon as these subspaces start
to mix, the system can no longer mimic the spectrum of the Ising spin Hamiltonian
including four local interactions, hence we are not interested in this regime. Here with
mix we mean that the gap between the two coupler subspaces becomes comparable to
the gaps of the spectral lines in the coupler ground state subspace. Then it is likely
that interactions between the two subspaces happen. In Fig. 3.12 we compare the gap
between the lowest state in the coupler excited and the highest state in the coupler
ground subspace and the largest distance between two spectral lines in the coupler
ground state subspace depending on the coupler nonlinearity βc. For consistency rea-
sons we chose the same qubit and coupler parameters as in Fig. 3.11. One sees that
for small βc the gap is much larger than the intersubspace energy differences, but for
increasing βc the gap starts to decrease whereas the intersubspace energy difference
increases. In between the region 0.7 < βc < 0.9 the two values of ∆max and ∆gap



11. Non-Pairwise Interactions Induced by Virtual Transitions 101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

3

4

5

6

7

8

9

10

E
n
e
rg

y
 (

G
H

z
)

 max

 Gap

Figure 3.12: Gap between coupler ground and coupler excited sub-
space ∆Gap and maximum spectral distance in coupler ground state

subspace ∆max depending on the coupler nonlinearity βc.

become comparable and the two subspaces are no longer well separated. This is the
reason why we only show coupling strenghts up to βc = 0.7 in Fig. 3.11.

11.8 Susceptibilites to Flux Noise and Fabrication Errors

So far we assumed a perfect coupler with four identical qubits and no external noise.
However, in a real experiment there are uncertainties in the system parameters due
to fabrication errors as well as external noise sources (especially 1/f noise [167]).

11.8.1 Flux noise

Usually the most crucial effect is flux noise. In the Hamiltonian (3.71) and (3.72) flux
noise can be described as an additional external flux Φjx on the qubit and coupler
loops, respectively. An external flux on the qubit loops induces a small tilt of the
double well potential driving it slightly away from the flux degeneracy point. However,
this effect just adds a small Ẑj contribution on the qubit Hamiltonians. The most
important influence of flux noise is the external noise applied to the coupler loop. This
can significantly change the respective coupling strength, hence we will focus on this
effect. In Fig. 3.13 we show J2 and J4 under the influence of a small external current
on the coupler loop. We see that small flux variations do not change the four local
interaction strength, indicating a magic point for flux noise at Φcx = Φ0/2. Such a
point arises when first order corrections of flux fluctuations vanish due to symmetry
properties [182] .Only the two local interactions are affected. However, the two local
interactions become smaller when we add a small external flux. This brings a huge
benefit, since these results indicate that we can apply an external flux to discriminate
the two local interactions leading to J4 of a few hundreds of MHz and J2 one order
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Fig. 3.11.

of magnitude smaller for the chosen parameters. Driving the system slightly away
from the degeneracy point also adds X̂j corrections to the qubit. However, for the
chosen parameters the Ẑj corrections can be estimated from the Hamiltonian to be
approximately 10 GHz/mΦ0 , which results in J1 ≈ 10 MHz for the sweet spot shown
in Fig. 3.13.

11.8.2 fabrication errors

To study errors in fabrication (e.g. wrong junction parameters), we calculate several
susceptibilities that describe the influence of these on the coupling parameters.

For every system parameter that arises in the four and two local interaction
strength, we can define a corresponding susceptibility

χ4J,j =
1

J4

∑
junctions

∣∣∣∣∂J4

∂Pj

∣∣∣∣
J4=max

(3.143)

χ2J,j =
1

J2

∑
junctions

∣∣∣∣∂J2

∂Pj

∣∣∣∣
J2=max

, (3.144)

where the 2 and 4 denote the two and four local interaction strength and Pj repre-
sents the system parameter that varies due to fabrication issues. Note that all our
analytical results seem to only qualitatively coincide with the numerical found solu-
tion. Therefore we will calculate the susceptibilities in this section numerically. The
two and four local interaction strengths can be extracted out of the spectrum and
then be used to calculate the derivatives appearing in the susceptibilities. Here we
assume that the optimal point is the one where the four local interaction strength
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Figure 3.14: Variation of the two and four local interactions for
varying nonlinearity of the qubits. The slope can be extracted out of the
plots. We choose the same parameters as before, χc = 0.01, χj = 0.05

and βc = 0.43

is twice the two local one, so we vary the respective parameters around this optimal
point.

Error in Josephson energy A typical fabrication error is an impurity in the junc-
tions included in the system. This leads to variations of the Josephson energy. First
we study a variation of the Josephson energy of the qubit junctions

χ4,EJj
=

4

J4

∣∣∣∣ ∂J4

∂EJj

∣∣∣∣ (3.145)

=
4

J4

∣∣∣∣∂J4

∂βj

∣∣∣∣ ∣∣∣∣ ∂βj∂EJj

∣∣∣∣ (3.146)

=
4

J4

∣∣∣∣∂J4

∂βj

∣∣∣∣ 1

EL̃c
, (3.147)

where we used the fact that only βj changes if we change EJj and that we assume equal
parameters for all four qubits (factor 4). The derivative appearing in the expression
can be calculated numerically and EL̃c will be a normalization parameter. In Fig. 3.14
we show the variation of the four local and two local interactions for a small variation
of EJj . The susceptibility for the two local interactions χJ2,EJj

can be calculated
analog to χJ4,EJj

, but we additionally have to include a factor three which arises from
the fact that every qubit can interact with three others. Here we show the variation
of the coupling strength with the nonlinearity βj and using Fig. 3.14 we can extract
the derivatives ∂J

∂EJj
we need to calculate the susceptibilities. This gives the following
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values for the used system parameters

EL̃c
χ4J,EJj

≈ 4

J4
6 · 10−4 ≈ 2.1 (3.148)

EL̃c
χ2J,EJj

≈ 12

J2
12 · 10−4 ≈ 33.1. (3.149)

We see that the two local interactions are more affected by variations of the Jospehson
energies. However, EL̃c is in the THz range for typical system parameters. This means
that even for the two local interactions changing EJj about 1 GHz only results in a
change of the order 10−2 − 10−3 GHz of the coupling strength. Typical fabrication
errors are assumed to be much smaller than 1 GHz, such that small variations do not
crucially affect the two coupling strengths and susceptibilities are rather small.

The same study can be done for a variation of the couplers Josephson energy. The
results are shown in Fig. 3.15 and again we can extract the needed derivative from
Fig. 3.15 to get an approximate value for the susceptibilities

EL̃c
χ4J,EJc

≈ 1

J4
8 · 10−3 ≈ 2.7 (3.150)

EL̃c
χ2J,EJc

≈ 1

J2
9 · 10−3 ≈ 6.2. (3.151)

As in the previous case for typical values of EL̃c these values of the susceptibilities
lead to extremely small changes of the coupling strengths when EJc does not vary too
much.
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Error in inductive Energy Another typical fabrication error is a deviation of
inductances between theoretical predicted and actual values in the experiment. In
this case it is a little more difficult to calculate the corresponding susceptibilities,
since more than one parameter appearing in the coupling strength depend on the
impedances of the qubits Lj and the coupler Lc, respectively. First we assume fab-
rication error in the coupler impedance, which means we have a change in EL̃c . The
susceptibility can be written as

χ4J,ELc
=

1

J4

(∣∣∣∣∣ ∂J4

∂EL̃c

∣∣∣∣∣
∣∣∣∣∂EL̃c∂L̃c

∣∣∣∣
∣∣∣∣∣∂L̃c∂Lc

∣∣∣∣∣+

∣∣∣∣∂J4

∂ξc

∣∣∣∣ ∣∣∣∣ ξc∂L̃c
∣∣∣∣
∣∣∣∣∣∂L̃c∂Lc

∣∣∣∣∣+

∣∣∣∣∂J4

∂βc

∣∣∣∣ ∣∣∣∣ ∂βc∂L̃c

∣∣∣∣
∣∣∣∣∣∂L̃c∂Lc

∣∣∣∣∣
)

(3.152)

=
1

L̃c

(
1 + χc

1

J4

∣∣∣∣∂J4

∂ξc

∣∣∣∣+ βc

∣∣∣∣∂J4

∂βc

∣∣∣∣) (3.153)

⇒ L̃cχ4J,Lc = 1 + χc
1

J4

∣∣∣∣∂J4

∂ξc

∣∣∣∣+ βc

∣∣∣∣∂J4

∂βc

∣∣∣∣ (3.154)

Again we can plot the variation of the coupling strength around the optimal point,
to numerically determine the two derivatives appearing in the expression for χ. The
susceptibility for the two local interactions is analog, we just have to replace J4 with
J2. The variation with βc is already shown in Fig. 3.15 and in Fig. 3.16 we see the
variation of the coupling strengths with ξc. For the two susceptibilities we get the
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approximate values

L̃cχ4J,Lc ≈ 1.5 (3.155)

L̃cχ2J,Lc ≈ 2.1. (3.156)

However, these susceptibilities are given with respect to L̃c. It is more convenient
to look at the susceptibilites with respect to the inductive energies EL̃c and ELj ,
respectively. We start with the first one to see how a change in EL̃c affects the
coupling strength. The corresponding susceptibility is just given by (note that we
chose units such that Ji = EL̃c J̃i)

EL̃cχ4J,EL̃c
= 1 (3.157)

EL̃cχ2J,EL̃c
= 4, (3.158)

where again the factor 4 in J2 arises from the fact that four qubits interact with the
coupler. A change in the inductive energy of the qubits leads to a change of βj , such
that

χ4J,ELj
=

4

J4

(∣∣∣∣∂J4

∂βj

∣∣∣∣ ∣∣∣∣ ∂βj∂ELj

∣∣∣∣) (3.159)

=
4

J4

βj
ELj

∣∣∣∣∂J4

βj

∣∣∣∣ , (3.160)

hence we get (using Fig. 3.14)

ELjχ4J,ELj
≈ 9 (3.161)

ELjχ2J,ELj
≈ 36. (3.162)

We see that these two susceptibilities are the most critical ones, since ELj is one to two
orders of magnitude smaller than EL̃c . Anyways, the fabrication error of inductivities
is usually much smaller than the corresponding errors in the junctions and we still
need a huge discrepancy here to get a mentionable change of the coupling strengths
(since ELj still is in the order of 10− 100 GHz).

To summarize the susceptibility results, we have shown that only huge fabrication
errors of the junctions as well as the inductances lead to significant changes of the cou-
pling strengths. Hence our coupler setup is assumed to be robust against fabrication
errors.

11.9 Conclusion

In conclusion we have shown that the coupling architecture presented in Fig. 3.9 can
exhibit large effective four body local interactions in the deep nonlinear regime. With
suitable realistic parameters they are even larger than the two body local interactions
and can be in the GHz range. To our knowledge these are the strongest four body local
interactions ever predicted in an architecture without additional ancilla qubits. Build-
ing such a device could yield a strong improvement of the applicability of AQC. We
are also optimistic that this idea can be adapted by other fields, e.g. quantum optics,
to build up tools with high four body local interactions using nonlinear couplers.
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Appendices

11.A Derivation of the Circuit Hamiltonian

In this section we show how to get from Kirchhoff’s laws to the Hamiltonian (3.170) of
the circuit shown in Fig. (1) of the main text using circuit quantization. The section
mostly recaps calculations that can be found in [181], but for the sense of completeness
we also show them here. In our setup we inductively couple four superconducting flux
qubits using a coupling loop, realized by an additional flux qubit with higher plasma
frequency as the four qubits. Kirchhoff’s laws and Josephson’s equations give the
current equations of the system

CΦ̈c + I(c)
c sin(2πΦc/Φ0)− IL,c = 0 (3.163)

Ij − I∗j = 0 (1 ≤ j ≤ k). (3.164)

For the first equation, Φc denotes the flux across the coupler’s Josephson junction (and
capacitor), IL,c denotes the current through the couplers inductor, and Φ0 = h/(2e) is
the flux quantum. The second equation simply states that the current Ij through j-th
inductor is equal to the current I∗j flowing through the rest of the qubit circuit. We
just leave the factors I∗j like this, since we will see that they do not give a contribution
to the interaction part and later lead to the usual flux qubit Hamiltonian [177]. The
inductive and flux quantization relationships can be combined into

LcIL,c +
k∑
j=1

MjIj = ΦL,c (3.165)

LjIj +MjIL,c = Φj (3.166)
ΦL,c = Φcx − Φc, (3.167)

where Φcx is the external flux applied to the coupler loop, Φj is the flux across the
j-th junction, Lj is the j-th qubit self inductance and Mj is the mutual inductance
between the jth qubit and the coupler. With equations (3.165)-(3.167) it is possible
to rewrite equations (3.163) and (3.164) in flux variables

CΦ̈cI
(c)
c sin(2πΦc/φ0) +

Φc − Φcx +
∑4

i=j αiΦj

L̃c
= 0 (3.168)

Φj

Lj
+ αj

(
Φc − Φcx +

4∑
k=1

αkΦk

)
− I∗j = 0, (3.169)

with dimensionless mutual inductance αj = Mj/Lj and rescaled coupler impedance
L̃c = Lc −

∑4
j=1 αjMj . These equations of motion represent the Euler-Lagrange

equation, resulting from the Lagrange function of the system. Now one can apply
circuit quantization to find the corresponding Hamiltonian. From (3.168) and (3.169)
we know the Lagrangian, which can be used to define the adjoint variable to the flux
and write down a quantized version of the system Hamiltonian using the Legendre
transformation. This leads to the Hamiltonian

Ĥ =
Q̂2

2C
− EJc cos(2πΦ̂c/Φ0) +

(
Φ̂c − Φcx +

∑k
j=1 αjΦ̂j

)2

2L̃c
+

k∑
j=1

Ĥj . (3.170)
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Here Ĥj denotes the Hamiltonian for qubit j in the absence of the coupler (i.e in the
limit αj −→ 0). Here Q̂c is the canonical conjugate to Φ̂c satisfying

[
Φ̂c, Q̂c

]
= i~,

and the coupler’s Josephson energy is EJc = Φ0I
(c)
c /2π.

The Hamiltonian can be rewritten in unitless parameters

Ĥ = EL̃c

(
4ξ2
c

q̂2
c

2
+

(ϕ̂c − ϕx)2

2
+ βc cos(ϕ̂c)

)
+

4∑
i=1

Ĥj (3.171)

Ĥj = EL̃j

(
4ξ2
j

q̂2
j

2
+

(ϕ̂j − ϕx)2

2
+ βj cos(ϕ̂j)

)
, (3.172)

with the following definitions:

EL̃c =
(Φ0/2π)2

L̃c
ζc =

2πe

Φ0

√
L̃c
C

βc = 2πL̃cI
(c)
c /Φ0 = EJc/EL̃c q̂c =

Q̂

2e

ϕ̂c =
2π

Φ0
Φ̂c + π ϕcx =

2π

Φ0
Φcx + π

ϕ̂j =
2π

Φ0
Φ̂j ϕ̂x = ϕcx −

k∑
j=1

αjϕ̂j

[ϕ̂c, q̂j ] = i.

Note that the phases ϕ̂ is shifted by a factor π, such that the flux degeneracy point
corresponds to ϕcx = 0.

11.B Projection into the Qubit Subspace

Since we are interested in qubit interactions, we want to project the qubit part of the
Hamiltonian into the subspace of the two lowest eigenstates of every included qubit
(computational states). To do so we take a look at the qubit potential

Ûj(ϕj) =
1 + α2

j

2
ϕ2
j + βj cos(ϕj). (3.173)

In case of a flux qubit, the nonlinearity βj should be larger than one. This leads to a
double well potential. The local maximum is located at ϕ = 0 and the two symmetric
minima at ϕ = ±ϕp. Now we approximate the two wells of the potential with two
harmonic potentials, shifted by ±ϕp respectively . The equation that determines ϕp
reads

0 = (1 + αj)ϕ− βc sin(ϕp), (3.174)

which can easily be solved numerically. To get a harmonic approximation, we evolve
the respective potential well around ±ϕp up to second order

U+(ϕ) = c+ U ′(ϕp)(ϕ− ϕp) + U ′′(ϕp)(ϕ− ϕp)2 (3.175)

U−(ϕ) = c+ U ′(−ϕp)(ϕ+ ϕp) + U ′′(−ϕp)(ϕ+ ϕp)
2. (3.176)
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The constant part can be ignored, and the first derivative vanishes, since ϕp satisfies
equation (3.174). Hence we get

U(ϕ) ≈ U+(ϕ) + U−(ϕ) (3.177)

=
1 + αj − βj cos(ϕp)

2
(ϕ− ϕp)2 +

1 + αj − βj cos(ϕp)

2
(ϕ+ ϕp)

2. (3.178)

To quantize the system we introduce the raising and lowering operator of the two
shifted quadratic potentials

â†± |N±〉 =
√
N± + 1 |N± + 1〉 (3.179)

â± |N±〉 =
√
N± |N± − 1〉 , (3.180)

where |N±〉 are the Fock states of the respective shifted harmonic oscillator. For more
details on the displaced harmonic oscillator basis we refer the reader to [168]. We
want to restrict the basis to the two lowest energy levels (qubit basis). In the flux
basis, which are the superpositions of the ground states |0±〉 of the two wells

|0̃〉 =
1√
2

(|0+〉+ |0−〉) (3.181)

|1̃〉 =
1√
2

(|0+〉 − |0−〉) . (3.182)

Here the two ground states |0±〉 correspond to the persistent current states of the
respective flux qubit. The two states are othorgonal, but since 〈0+|0−〉 6= 0, we need
to redefine an orthonormal qubit basis

|0〉 =
1√

2(1 + 〈0+|0−〉)
(|0+〉+ |0−〉) (3.183)

|1〉 =
1√

2(1− 〈0+|0−〉)
(|0+〉 − |0−〉) . (3.184)

Using all the properties we wrote down in this section, we can translate the quantized
phase into an operator only acting in the new defined qubit subspace

ϕ̂j 7−→
1√

2mjωj

ϕp (1− 〈0−|0+〉)√
1− 〈0−|0+〉2

X̂j , (3.185)

where the mj = 1/4ξ2
j and ωj = 2ξj

√
1 + α2

j − βc cosϕp are the effective mass and

frequency of the quadratic potential and X̂j is the Pauli spin operator in the qubit
basis. For simplification we additionally define the factor

sj =
1√

2mjωj

ϕp (1− 〈0−|0+〉)√
1− 〈0−|0+〉2

,

which also appears in the main text. The overlap between the states in the displaced
wells can be calculated by the formula [168]

〈M−|N+〉 =

e−
ϕ2
p
2 (−ϕp)M−N

√
N !/M !LM−NN [ϕ2

p] M ≥ N

e−
ϕ2
p
2 (−ϕp)N−M

√
M !/N !LN−MM [ϕ2

p] M < N
, (3.186)
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where Lkn are the generalized Laguerre polynomials. In the flux qubit literature it is
more common to write down the Hamiltonian in the persistent current basis rather
than the qubit basis, hence the flux is proportional to Ẑj instead of X̂j (X̂j 7→ Ẑj) in
the following and in the main text.
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Conclusion

Since first proposed, the field of quantum computing has progressed rapidly and a real
world quantum computer beating classical computers in some specific applications
does not seem far away. Circuit model based quantum computers breaking the magic
number of 50 qubits with potentially high fidelities are already built, but are not
yet running with high fidelity. However, to build a functional universal quantum
computer with hundreds or thousands of qubits, not only suitable for specific limited
problems, one still needs a lot of improvements within the individual concepts. In this
thesis two of the main building blocks of quantum computing where optimized, the
measurement of qubits and their interaction. This was achieved by developing new
strategies to perform both of these challenges more effectively.

Chapter II of the thesis presents a method to measure the parity of multi-qubit
states with high contrast and high fidelity, which is even shown to be potentially
quantum non-demolition. This is achieved by coupling multiple qubits to a microwave
cavity and driving the cavity into the strongly non-dispersive regime. Here the nonlin-
earity provided by the qubits causes bifurcations leading to a strong enhancement of
the cavity occupation for specific drive strengths. The bifurcation points itself depend
on the qubit state, such that, by choosing the right drive frequency, it is shown that
different parity states can be distinguished using a microwave photon counter. Con-
trasts of about 105 photons were predicted, exceeding the contrast of typical linear
dispersive measurements by several orders of magnitude, making it more suitable for
currently available microwave photon counters. In principle the presented protocol
can be used for all existing superconducting qubits, but it was especially intended for
Transmon based qubits with low anharmonicities.

In Chapter III of the thesis the focus changed from Transmon based to flux based
qubits, which are broadly used in the area of adiabatic quantum computing. In Sec.
10 a novel flux qubit measurement scheme is presented, that is able to measure in the
persistent current basis at arbitrary bias points, even at the flux degeneracy point.
At this point the qubit energy eigenbasis is perpendicular to the persistent current
basis. To accomplish that, the flux qubit is coupled to a quantum probe, realizing an
indirect measurement with tunable coupling between system and meter. With this
strategy and strong coupling it is possible to map the qubit states to pointer states
of the quantum probe, and by an additional control, force them into a persistent
current direction resolving the qubit state. Such a measurement could yield a variety
of applications especially in the area of adiabatic quantum computing, e.g. readout
during the anneal and avoid quenches in the annealing schedule, but could also be
used for effective quantum state tomography. The quantum non-demolition property
of the protocol even extends its possible relevance.

In Sec. 11 the thesis provides a way to overcome the natural limitations to pairwise
interactions in most physical systems, by using a nonlinear coupler to control the
interaction of four flux qubits. The main idea is to go to a system parameter regime
where direct qubit-qubit coupling, leading to the usual pairwise interactions, is rather
small and the indirect qubit coupler interaction tends to be the main effect. Within
this regime the virtual coupler excitations and deexcitations that result in higher local
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interactions are no longer negligible and strong four local interactions are observed
in the system. For the right system parameters these four local interactions even
exceed the two local ones, making it the leading effect in the system. Such four local
interactions are, besides from a fundamental physics point of view, very interesting for
the field of adiabatic quantum computing. Here higher order interactions can be used
to embed general algorithms on the provided graph structure of the adiabatic quantum
computer with much less overhead. Additionally since non-stoquastic interactions
are hard to realize in conventional flux qubit realizations, higher local interactions
exceeding pairwise also paves the way to a universal adiabatic quantum computer.

All in all quantum computing is evolving more and more from a fundamental
physical concept to actual real world applications in fields like quantum chemistry
or optimization. Over the last years it was possible to roughly double the number
of qubits every year and quantum machines with hundreds of qubits already seems
feasible in near future. Building a universal fault tolerant quantum computer on the
other hand is a whole other challenge, since there is a huge gap in system size as soon
as one needs to include error correction. To achieve such an error corrected quantum
computer it needs much further fundamental research to understand the nature of
error channels, as well as engineering expertise to scale up and control huge quantum
systems.
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