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Abstract: Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic
tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have
been broadly explored for controlled drug delivery in different regenerative medicine approaches.
The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon
heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO
copolymers as gene delivery systems is a powerful emerging strategy to improve the performance
of classical gene transfer vectors. This review summarizes the state of art of the application of
PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as
gene delivery systems in different regenerative medicine approaches.
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1. PEO-PPO-PEO Tri-Block Copolymers

Amphiphilic copolymers are particularly appealing materials due to their ability of simultaneously
displaying the performance of hydrophilic and hydrophobic polymers. While the hydrophobic blocks
are responsible forthe water solubility from the individualized copolymer molecules and of the creation
of a suitable interface with the aqueous surrounding, the hydrophobic blocks adsorb onto hydrophobic
surfaces [1]. Among the different types of amphiphilic block copolymers, those based on tri-blocks of
poly-ethylene oxide (PEO, hydrophilic blocks) and poly-propylene oxide (PPO, hydrophobic blocks)
are among the most widely used in pharmaceutical formulations. PEO-PPO-PEO copolymers are
normally classified in two families according to the structure of their main chain. They can be linear
and bifunctional tri-blocks (PEO-PPO-PEO) known as poloxamers (Pluronic® or Lutrol®) or X-shaped
(four arms PEO-PPO blocks) triblocks linked by a dyamine central core known as poloxamines
(or Tetronic®) [1] (Figure 1). The unique structure of poloxamines confers them with multi-stimuli
responsiveness. In this context, the two tertiary amine central groups play an essential role, conferring
thermodynamical stability and pH sensitivity while enabling further chemical modifications in order
to acquire additional properties [2]. PEO-PPO-PEO copolymers are commercially available in a broad
spectrum of molecular weights (MW) and Ethylene oxide/Propylene oxide (EO/PO) ratios [3] and
generally display a good cytocompatibility, without producing significant irritation after topical or
parenteral administration [4,5].

The nomenclature of Pluronic® includes the letters, F, P, or L, which areassociated with the
physical states of these polymers, namely solid, paste and liquid, are followed by a two or three
digits, which represent a numeric code related with their structural parameters [6,7]. On the other
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hand, Tetronic®-based copolymers are normally classified as a function of their hydrophilicity as
highly hydrophilic (T908, T1107 andT1307), medium hydrophilic (T304, T904 and T1304)and highly
hydrophobic (T701, T901, T1301, T90R4 andT150R1) [1].
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Poloxamer P85 (CID: 10145203) and poloxamine 304 (CID: 86278173) were obtained from PubChem.
Three-dimensional (3D) structures of the different compounds were drawn with ChemBioOffice 2012
(Chem3D Pro 13; PerkinElmer Informatics, Cambrigde, MA, USA).

1.1. General Aspects

A feature of PEO-PPO-PEO copolymers is the ability of the individual block copolymers or
“unimers” to self-assemble into micelles in aqueous solution at concentrations higher than the critical
micellar concentration (CMC). In general, the lowerthe lipophilic/hydrophilic balance (HLB) and the
higher theMW, the lower the CMC found [8–10]. The temperature-sensitiveness of these copolymers
makes the CMC decrease with the increase of temperature. In general, those copolymer varieties with
longer PPO blocks require lower concentrations or temperatures for micellization to occur [9].

When the temperature and concentration increase, the micelles form 3D networks (gels) of high
viscosity. Chiefly, micellization is noted at much lower concentration (<1 wt %) than those needed for
gellation (>15 wt %) [8].

In general, PEO-PPO-PEO copolymers that display a sol-gel transition around 37 ◦C canbe
orally administered or injected in the body as liquidsolutions at room temperature and, once at the
physiologicaltemperature, they become semi-solid to solid gels that sustain drug release [3]. This ability
of PEO-PPO-PEO copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon
heating has endowed the denomination of “smart” or “intelligent” systems [11].

Even though PEO-PPO-PEO copolymers do not degrade under physiological conditions,
those with molecular weights between 10 and 15 kDa are normally filtered by the kidney and cleared
in urine [12]. These features make them powerful candidates to treat different human pathologies by
controlling the release of different models of drugs or other bioactives or by providing a platform for the
construction of biological structures acting as cell scaffolds in different tissue engineering approaches.

1.2. PEO-PPO-PEO-Based Micellar Systems

Polymeric micelles are nanosized carriers based on amphiphilic PEO-PPO-PEO thatcan be tailored
to fit the physicochemicalcharacteristics of cargo and therapeutic requirements ofthe pathological
process [13]. Structurally, polymeric micelles are based on a hydrophobic core with hydrophobic
blocks that are approaching to minimize the contact with the surface, increasing the solubilization and
stabilization of poorlywater-soluble drugs, and a hydrophilic shell with hydrophilic blocks in contact
in the aqueous medium acting as an interface with the core as well as decreasing undesirable drug
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interactions with the cells [6,14]. Micellization is a process strongly driven by an entropy gain and
the free energy ofmicellization is mainly a function of the PPO block [15]. Therefore PEO-PPO-PEO
copolymers with larger hydrophobic domains form micelles at lower concentrations [15].

Polymeric micelles have a size between 10–100 nm being in the preferred range for pharmaceutical
approaches [1,6]. When compared with micelles formed by common low MW surfactants, polymeric
micelles have lower CMC, higher thermodynamic and kinetic stability to withstand dilution,
and enhanced drugs solubilizing and stabilizing capability [16,17].

PEO-PPO-PEO-based micelles have been used as potential delivery systems of multiple
drugs and biomolecules to increase their stability and solubility and afford protection against fast
degradation [7,18–21].

1.3. PEO-PPO-PEO-Based Hydrogels

The viscoelastic behavior of PEO-PPO-PEO copolymers as afunction of their concentration and
the effect of several stimuli such as pH (poloxamines) and temperature on their gelation properties
have attracted the attention in recent yearsfordeveloping controlled delivery systems of diverse
biomolecules [22]. As the temperature increases, gel systems based on PEO-PPO-PEO block copolymers
become less hydrophilic due to the progressive dehydration of the polyether blocks. This fact promotes
the formation of more micelles and ultimately the formation their packing into body centered cubic
phase gels [23].

In general for a given content in EOgroups, the longer the PO block of the PEO-PPO-PEO
copolymer variety, the lower thegel temperature [1]. So far, poloxamers exhibit a sol-gel transition at
lower concentration compared with poloxamines. For example, while Pluronic® F127 (70 wt %
PEO, MW 12.6 kDa) shows a critical gel concentration around 14.8%, Tetronic® 1107 (70 wt %
PEO, MW 15 kDa) needs a minimal concentration around 30% to undergo sol-to-gel transition [24].
Formulation of aqueous systems based on PEO-PPO-PEO copolymers that can be easily syringeable at
room temperature leading to the formation of highly viscoelastic gels at physiological temperature
(37 ◦C) has a great potential for diverse regenerative approaches [18]. In situ gelling systems based
on poloxamers or poloxamines have been studied to control the release of growth factors [25,26]
and different drugs [27–29] and more recently for 3D cell printing applications in different tissue
engineering approaches [30,31].

2. PEO-PPO-PEO Tri-Block Copolymers as Micellar Nanocarriers for Drug Delivery

The ability of PEO-PPO-PEO micelles to host relatively hydrophobic drugs increasing their
apparent solubility and protecting them against degradation has already been reported for different
models of drugs [7,32–36]. This solubilization capacity from poloxamers and poloxamines relies
on the MW and the PEO/PPO ratio and in general the more hydrophobic the molecule, the higher
solubilization extension [3]. So far, it has been reported that those copolymers with a similar HLB will
display higher solubility efficiency when their MW are higher. On the other hand, a combination of
poloxamers with different MW and EO/PO ratios results in mixed micelles with a superior efficiency
of solubilization and higher stability upon dilution [8]. Poloxamer micelles have already been shown
to increase the solubility of different models of drugs [37].

In the particular case of poloxamines, their dual responsiveness to pH and temperature and the
possibility to adjust their aggregation properties by tuning the pH of the medium has attracted strong
attention in recent years as a means to increase the solubility of poorly soluble drugs [1]. Chiefly, it has
been reported that the higher the pH of the medium, the greater the micellization tendency and the
higher the solubilization ability of poloxamines [24]. This fact has already been described for both
pH-independent drugssuch asgriseofulvin [24] and efavirenz [38] and pH-dependent drugs such as
triclosan [19].
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3. PEO-PPO-PEO Tri-Block Copolymers for Passive Micellar Targeting

Direct administration of small free anticancer drugs generally results in a rapid distribution in
and out of all tissues, leading to a short residence time and rapid clearance by renal filtration [39].
A valuable strength of PEO-PPO-PEO micelles is their spontaneous and preferential accumulation at
biological places with vascular abnormalities leading to enhanced permeability and retention (EPR),
a common fact from all tumor types except the vascular ones [3]. To take advantage of the EPR effect,
the drug needs to be included into a macromolecular structure that can selectively enter the tumoral
tissue through the enhanced pores and avoid its elimination by the lymphatic drainage. Generally,
a more prolonged circulation time, ideally over 6 h for polymeric micelles, results in a greater possibility
of reaching the cancerous tissue [40]. Polymeric micelles (10–100 nm) are large enough nanocarriers to
avoid renal excretion (>50 KDa), but still small to bypass the filtration by inter-endothelial cells slits in
the spleen [3]. Of further note, the hydrophilic corona from polymeric micelles plays an important
role in preventing the opsonization and successive clearance by the mononuclear phagocyte system
in the spleen and liver [41]. Both poloxamers and poloxamines can lead to the formation of micelles
with an adequate size for the EPR effect and resist the strong dilution occurring upon contact with
physiological fluids [3,10,42–44].

4. PEO-PPO-PEO Tri-Block Copolymers for Human Gene Therapy

4.1. Gene Transfer Vectors: Current Limitations

The identification of gene products that areinvolved in supporting the underlying cause of
pathology has offered the biopharmaceutical industry an opportunity to develop compounds that can
specifically target these molecules to improve therapeutic responses and lower the risk of unwanted
side effects that are commonly seen in traditional small chemical-based medicines [45]. In this
scenario, the development of gene delivery vehicles have emerged as a promising technology to
treat different pathologies by directly transferring of genes encoding for therapeutic factors into the
places of injury that result in a temporarily and spatially defined delivery of a candidate agent [46].
Current gene transfer vectors used for gene transfer of target cell populations in regenerative medicine
approaches include nonviral [47] and viral vehicles [48] such as adenoviral [49], retro-/lentiviral [50,51]
herpes simplex viral vectors (HSV) [52], and recombinant adeno-associated viral (rAAV) vectors [53].
Nonviral gene delivery has various advantages as it is considered a safe method that does not provoke
immune responses in the host while it can be prepared in large amounts at relatively low expense [54].
While plasmid DNA (pDNA) permits transfection in vivo, packaging DNA with cationic lipids or
polymers may further facilitate material uptake and transfection in vitro and in vivo [47]. Therefore,
complexation of DNA with cationic polymers (polyplexes) or lipids (lipoplexes) may protect DNA
against degradation by nucleases and serum components by creating a less negative surface charge
and can be designed to target specific cell types through receptor-ligand interactions [55]. Yet, the main
limitation of such vectors is their tendency towards aggregation and their low transfection efficiencies
and short-term transgene expression levels (some days) [56]. Nonionic water-soluble polymers
that do not bind or condense with DNA but significantly enhance the expression of transgenes
in vitro and in vivo have noticeably received increased attention in recent years [6,57–60]. Of note,
PEO-PPO-PEO copolymers based on Pluronic® were reported to enhance the expression of both naked
pDNA [58,60–64] and genes delivered using polycation-DNA complexes [65–69] both in vitro and
in vivo. While depicting a higher efficiency, viral gene transfer is limited by the toxicity associated
withsome types of vectors (adenovirus), a possible diffusion of the vectors to nontarget places, and the
existence of patient-associated factors and physiological barriers (existence of neutralizing antibodies
against the viral capsid, inhibition of transduction in the presence of specific anticoagulants) that
may interfere with the effective delivery, processing, and expression of transgene inside the target
cells [46]. The use of PEO-PPO-PEO copolymers has already been described to increase the efficiency
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of viral gene transfer by providing a localized delivery into the targets or protecting the vectors against
physiological barriers [46], including of adenoviral [70–74], lentiviral [75,76], and rAAV vectors [77–82].

4.2. PEO-PPO-PEO Copolymers: Applications for Nonviral Gene Transfer

Skeletal muscle is a common target for gene therapy due to its accessibility and ability for
production of proteins as systemic therapeutic reagents [83]. Likewise, injection of naked pDNA into
muscle was already shown to provide an expression for up 19 months [84]. Still, the levels of gene
expression achievable with naked DNA are often insufficient to ensure a therapeutic effect. To increase
the efficiency of transgene expression, a combination of two poloxamers (SP1017: Pluronic® L61 and
F127) was involved to intramuscularly deliver pDNA encoding for reporter β-galactosidase gene
activity (lacZ) in mice [58,64] (Table 1).An estimation of the levels of lacZ expression revealed that
SP1017 considerably increased pDNA diffusion through the tissue [58,64]. A micellar solution of a
PEO-PPO-PEO copolymer with an average MW of 8400 was involved as a carrier for eye-drop gene
delivery of pDNA with lacZ in vivo [62]. Topical delivery of pDNA via PEO-PPO-PEO micelles for 48 h
demonstrated lacZ expression was detected around theiris, sclera, conjunctiva, and lateral rectus muscle
of rabbit eyes and also in the intraocular tissues of nude mice [62]. Polyelectrolyte complexes formed
between DNA and polycations constitute one of the gold standards for nonviral gene delivery. So far,
one of the main problems encountered using these techniques is the relatively low efficacy of DNA
(or complex) release from endocytic compartments in the cytoplasm and nucleus of cells [85]. Likewise,
due to charge neutralization, these complexes are often unstable in aqueous solutions and precipitate,
thus hindering their application in gene delivery [65,85]. To solve these issues, a micellar solution of
Pluronic® P85 has been employed to deliver DNA encoding for the chloramphenicol acetyltransferase
(CAT) gene complexed with poly(N-ethyl-4-vinylpyridiniumbromide) (PEVP) [65]. Results from this
study showed an increase of CAT gene internalization and expression in different cell lines when
provided via polymeric Pluronic® P85 micelles [65]. Polyethyleneimine (PEI) constitutes one of the
most widely used cationic polymers fornonviral gene transfer [86]. This polymer spontaneously
forms interpolyelectrolyte complexes with DNA as a result of cooperative electrostatic interactions
between the ammonium groups of the polycation and phosphate groups of the DNA [66]. However,
one of the main drawbacks of PEI is its poor solubility upon complexation with DNA that may
considerably reduce its transfection efficiency. Grafting of PEI with PEO-PPO-PEO copolymers
(Pluronic® P123) has been reported as a potential approach to solve such a limitation by optimizing
the size of the polyplexes [67], achieving an increased expression of the reporter Firefly luciferase
(luc) transgene, with a uniform distribution in the liver when administered intravenously in mice [66].
So far, the highest efficiency was reported to be achieved when using PEO-PPO-PEO copolymers at
high HLB [68]. Similarly to PEI, polylysine (PLL) is one of the best known cationic polymers to strongly
interact with pDNA, resulting in a compact polymer/DNA complex for an increased uptake of foreign
genes to mammalian cells [87]. Yet, its use as a DNA carrier is still limited by its low transfection
efficiency. Conjugation of PLL with Pluronic® F127 showed a 2-fold increase in transfection efficiency
compared with unmodified PLL [69]. Although less explored than their poloxamer counterparts,
poloxamines have also been studied as integrants of scaffolds for the controlled delivery of nonviral
vectors [88]. A fibrin/T904 hydrogel was synthesized to incorporate either a naked plasmid encoding
for the green fluorescent protein (GFP) or polyplexe vectors based on such a reporter gene sequence.
When N2A neuroblastoma cells were encapsulated in these systems, an increased transgene expression
profile was noted over 2 weeks [88].
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Table 1. Use of PEO-PPO-PEO copolymers for nonviral gene transfer.

Nonviral Systems Copolymers Genes Targets Administration Observations References

pDNA SP1017: Pluronic® L61 + F127 lacZ, luc muscle i.m. (rat) 10-fold increased trangene expression [58]

lacZ increased transgene expression after
electroporation [64]

PE6400 lacZ muscle cranial muscle (mouse) long-term expression similar to
electrotransfer [63]

Pluronic® F68 and F127 luc n.s. in vitro BL-6 cells increased activity in transfecting cells in
the presence of 20% serum [61]

Pluronic® P85 and L61 luc, GFP n.s. in vitro NIH3T3,
C2C12 and Cl66 cells increased transgene expression [60]

PEO-PPO-PEO copolymers
average MW 8400 lacZ Eye ocular (rabbit, mouse) higher transgene expression at 2 and

3 days [62]

Polycation DNA and
poly(N-ethyl4-vinylpyridinium) Pluronic® P85 CAT n.s. in vitro NIH 3T3, MDCK,

and Jurkat cell lines enhanced transfection [65]

P123-g-PEI(2K)polyplexe Pluronic® P123 luc n.s. in vitro Cos-7 cells,
i.v. (mouse)

more uniform distribution of transgene,
significant improvement of gene
expression in liver

[66]

n.s. in vitro prostate cancer
cells (PC-3) optimization of polyplexe size [67]

PEI-DNA complex Pluronic® F68, F127, P105,
P94, L122, L61

lacZ n.s. in vitro NIH/3T3 cells

Pluronic® with higher HLB showed
marked improvement of gene
expression levels in serum media
compared with PEI-DNA complexes
alone

[68]

PEI-DNA complex or pDNA Tetronic® 904 GFP n.s. in vitro N2A cells sustained transgene expression for over
2 weeks [88]

PLL-g-Pluronic® Pluronic® F127 lacZ n.s. in vitro HeLa cells higher transfection efficiency with
polymer:DNA at 1:1 [69]

Abbreviations: pDNA: plasmid DNA; lacZ: E. coli β-galactosidase; luc: luciferase; PE6400: poly(ethyleneoxide)(13)-poly(propyleneoxide)(30)-poly(ethyleneoxide)(13) block copolymer;
n.s.: not specified; GFP: green fluorescent protein; CAT: chloramphenicol acetyltransferase; i.m.: intramuscular; i.v.: intravenous; P123-g-PEI(2K)polyplexe: Pluronic® 123 grafted with
2KDa polyethyleneimine; PEI-DNA complex: polyethyleneimine-DNA complex; PLL-g-Pluronic®: poly-L-lysine grafted with Pluronic®.
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4.3. PEO-PPO-PEO Copolymers: Applications for Viral Gene Transfer

Development of strategies for in vivo transfer of therapeutic genes relevant to these specific
vascular pathophysiologic processes offers new therapeutic possibilities for the treatment of this
type of disorders. Specifically, adenoviral vectors appear to be the most efficient vectors for vascular
gene transfer [70]. However, transduction of vascular vessels requires enough time (20–45 min)
to permit sufficient vector uptake. Administration of adenoviral vectors with hydrogel systems
based on Pluronic® F127 has been reported as a potential approach to reduce the transfection time
of the blood vessels with significant improvement of transgene expression both in vitro [70,71] and
in vivo [72,73] (Table 2). A 10–100-fold increase on lacZ expression was seen upon administration
of adenoviral vectors with a hydrogel system based on Pluronic® F127 to vascular smooth muscle
cells [70], reducing the incubation time of adenoviral vectors from 20 to 10 min without compromising
transfection efficiency [71]. Intratumoral infusion of adenoviral vectors with Pluronic® F127 gels
was also described as a strong approach for cancer treatment by reducing the dissemination of the
viral vectors from tumor to normal tissues during and after the infusion [74,77]. Pluronic®-based gel
systems are potent adjuvants to increase the transduction efficiency of lentiviral vectors in vitro [76]
and in vivo [75]. Effective transduction of astrocytes has been reported by stereotaxic delivery of a
HIV-1-based lentiviral vector in a 15% PF127 gel [75]. rAAV exhibit potential advantages over other
viral vectors due to their small size, ability to transduce dividing and nondividing cells, and absence of
immunogenicity, constituting the most adapted vector to treat musculoskeletal disorders [89,90]. Still,
although gene transfer via viral vectors is highly efficient, the existence of patient-associated factors
and physiological barriers (existence of neutralizing antibodies against the viral capsid, inhibition
of transduction in the presence of specific anticoagulants) may interfere with the effective delivery,
processing, and transgene expression in the target cells [90]. Also, a possible dispersion of the rAAV
viral particles to nontarget places may reduce their gene transfer efficiency [91]. Encapsulation of
rAAV in poloxamer PF68 and poloxamine T908 polymeric micelles was shown to increase the levels of
transgene expression of both mesenchymal stem cells (MSCs) [79,80] and osteoarthritic chondrocytes
in vitroor in an in situ model of osteochondral defect [81,82] either with the reporter lacZ gene [80,81]
or with highly chondrogenic genes (the sex-determining region Y-type high mobility group box
9 transcription factor—SOX9, the transforming growth factor beta—TGF-β) [79,82] (Table 3). Of further
note, delivery of rAAV using such systems resulted in the restoration of the transduction of MSCs
or chondrocytes with rAAV in conditions of gene transfer inhibition, i.e., in the presence of heparin
or of a specific antibody directed against the rAAV capsid [79,81]. These features were attributed to
the X-shaped structure of the poloxamines, rendering a positive charge at the physiological pH and
protective effect exerted by PEO shell masking the antibody-specific rAAV capsid epitopes binding and
thus the rAAV neutralization. Despite their potential advantages and simplicity, in situ gel systems
based on these self-assembled copolymers remain partially hydrophilic and thus the gel depot erodes
quite rapidly. To solve these drawbacks, we recently developed pseudopolyrotaxanes hydrogels
by combining PEO-PPO-PEO copolymers with alpha cyclodextrins (α-CD) [92]. Results from these
studies showed that incorporation of α-CD into gels based on mixtures of chondroitin sulfate (CS) or
hyaluronic acid (HA) with PEO-PPO-PEO copolymer PF68 gels resulted in higher rAAV concentrations
and sustained levels of transgene expression over time. Still, and while addition of α-CD resulted in
the formation of more structured networks with greater elastic and viscous moduli compared with the
pristine systems, a higher mechanical stability may be necessary to provide support for load-bearing
functions of the cartilage tissue.
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Table 2. Use of PEO-PPO-PEO copolymers for viral gene transfer (part I).

Viral Systems Copolymers Genes Targets Administration Observations References

Adenovirus Pluronic® F127 lacZ cardiovascular in vitrovascular smooth
muscle cells

high pericellular concentrations of vector and 10- to
100-fold increase of transduction [70]

Pluronic® F127 lacZ vascular
in vitrovascular smooth
muscle cells; in vivo balloon
injured carotid arteries (rat)

improved gene transfer efficiencies [71]

Pluronic® F127 lacZ, luc vascular
in vivo percutaneous
administration in iliac
arteries (rabbit)

increased efficacy of percutaneous gene transfer and
reduced transfection time [72]

Pluronic® F127 gax vascular in vivo external iliac artery
with channel balloon catheter

gax overexpression inhibits neointimal hyperplasia and
lumen loss in atheromatous stented rabbit iliac arteries [73]

Pluronic® F127 GFP, luc solid tumors in vivo intratumoral infusion
(mouse)

blocked convection of viral vectors in the interstitial
space and the lumen of microvessels in the vicinity of
the infusion site

[74]

Lentivirus Pluronic® F127 GFP CNS in vivo injection to the
thalamus (rat) increased transduction of astrocytes at injection site [75]

Pluronic® F108 GFP, luc n.s.

in vitro HEK293T,
KARPAS-299, SUDHL-1,
SR-786, SUP-M2,
and PANC-1 cell lines

specific contribution to efficiency of each adjuvant;
polybrene: charge protector and poloxamer synperonic
F108: membrane modulator

[76]

Abbreviations: lacZ: E. coli β-galactosidase; luc: luciferase; gax: growth arrest homeobox; GFP: green fluorescent protein; rAAV: recombinant adeno-associated viral vectors; CNS: central
nervous system; DC: dendritic cells; n.s.: not specified.
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Table 3. Use of PEO-PPO-PEO copolymers for viral gene transfer (part II).

Viral Systems Copolymers Genes Targets Administration Observations References

rAAV Pluronic® F127 GM-CSF solid tumors in vivo intratumoral
infusion (mouse)

higher efficiency by combining DC, local tumor
irradiation and controlled supply of recombinant
mGM-CSF with Pluronic®

[77]

Pluronic® F68 lacZ adipose tissue in vivo inguinal
(mouse) increased transgene expression after 4 weeks [78]

Pluronic® F127 lacZ cartilage in vitro hMSCs
controlled release of rAAV for high efficiencies over
time and gene expression levels similar to those
achieved by direct vector application

[80]

Pluronic® F68,
Tetronic® 908

RFP, lacZ, and
SOX9 cartilage in vitro hMSCs

encapsulation of rAAV in polymeric micelles for
effective, durable, and safe modification of hMSCs;
restoration of hMSC transduction in conditions of
gene transfer inhibition; effective chondrogenesis

[79]

Pluronic® F68,
Tetronic® 908

lacZ cartilage
in vitro hOACs in situ
human osteochondral
model

micellar encapsulation for increased stability and
bioactivity of rAAV; high levels of safe transgene
expression in vitro and in experimental
osteochondral defects in situ

[81]

Pluronic® F68,
Tetronic® 908

TGF-β cartilage
in vitro hOACs in situ
human osteochondral
model

increased levels of transgene expression compared
with free vector treatment; high proteoglycan
deposition and increased cell numbers in hOACs
in vitro; high deposition of type-II collagen and
reduced hypertrophy in osteochondral defects
models in situ

[82]

Pluronic® F68,
Tetronic® 908

lacZ cartilage in vitro hMSCs high concentrations of rAAV; sustained levels of
transgene expression over time [92]

Abbreviations: rAAV: recombinant adeno-associated viral vectors; lacZ: E. coli β-galactosidase; GM-CSF: granulocyte-macrophage colony-stimulating factor; hMSCs: human mesenchymal
stem cells; RFP: red fluorescent protein; SOX9: sex-determining region Y-type high mobility group box 9; hOACs: human osteochondral chondrocytes; TGF-β: transforming growth
factor beta.
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5. Conclusive Remarks

The application of responsive “smart” PEO-PPO-PEO polymers has a broad potential for drug
delivery in different regenerative medicine approaches. While less explored, the use of these
compounds as gene delivery systems represents a potential tool in gene therapy approaches. In this
regard, the versatility of these molecules possibly forming micelles or gels in response to changes
in temperature and/or pH makes them new gene transfer systems with a superior performance
relative to the currently used gene shuttles. Diverse mechanisms have been proposed to explain
the ability of these polymers to increase the levels of transgene expression. While micellar solutions
from PEO-PPO-PEO copolymers were reported to increase the levels of DNA internalization [65]
by interacting with the cell plasma membrane [76,93], thus overcoming potential natural barriers
to vector transfection/transduction [68,79,81], gel systems were described to act as local reservoirs
of vector release [70,75], increasing DNA distribution through tissues and reducing the transfection
time compared with classical gene transfer vector [71]. Also, PEO-PPO-PEO copolymers have been
reported to promote membrane resealing and to decrease trauma via electroporation [64,94], increasing
the stability in solution of polyplexes [6,67]. There is also evidence showing that PEO-PPO-PEO
copolymers may play a role in increasing transgene expression. For instance, copolymers with
higher HLB are able to produce the highest improvement of gene expression levels in serum media
from 10% to 50% fetal bovine serum compared with PEI-DNA complexes alone [68]. A similar
trend was noted when combining such copolymers with viral vectors, promoting the highest gene
transfer efficiencies when used at highly hydrophilic varieties (HLB > 24) [79]. Yet, despite potential
advantages, gel systems formed by PEO-PPO-PEO copolymers are still characterized by a weak
mechanical strength, a short residence time, and a high permeability which limit their applicability in
gene/drug delivery [95]. Stabilization of these systems may however be promoted by crosslinking the
gels [96] or by combining them with other polymers [92]. While less explored than their poloxamer
counterparts, poloxamines have been also tested as gene delivery systems of both nonviral [88] and
viral systems [79,81,82,92]. The X-shaped structure of these copolymers, rendering a positive charge at
the physiological pH, may have an additional feature in conditions of gene transfer inhibition [79].
Altogether, the use of PEO-PPO-PEO for gene copolymers represents an emerging field in gene
delivery approaches. Despite the considerable number of studies reporting the efficiency of such
copolymers as adjuvants to increase the levels of transgene expression, more work is needed to
elucidate their benefit-to-risk ratio for translational regenerative medicine approaches. In this scenario,
limited work has been performed in relevant animal models of human diseases. Finally, and to our
best knowledge, only a limited number of clinical trials reporting the application of PEO-PPO-PEO
copolymers with gene transfer vectors have been reported for the treatment of intermittentclaudication
in patients with moderate to severe peripheralarterialdisease [97] and as preventive vaccines against
cytomegalovirus-associated disease [98].
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