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Abstract: 18 

Remanufacturing that returns used products to a like-new condition with equivalent 19 

warranty to match is an emerging triple-win (environmental, economic and social) 20 

industry. Process planning plays a vital role in the success of remanufacturing. However, 21 

compared with traditional mass manufacturing, the design of remanufacturing process 22 

planning (RPP) is far more complex and time-consuming, heavily depending on the 23 

experiences of operators. Since each returned used product, namely the raw materials 24 

for remanufacturing, is different, a customized RPP tackling the individuality of 25 

returned used products is essential. To this end, the reuse of remanufacturing knowledge 26 

from past successful RPP could lead to efficient generation of new process planning for 27 

new arrivals. This paper proposes an ontology-based method for knowledge modelling 28 

for RPP rapidly. In this method, (1) remanufacturing-ontology provides a unified 29 

framework for the management of information and knowledge from various sources. 30 

Especially, the remanufacturing knowledge modelling including problem description 31 
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and problem solution is constructed via a remanufacturing semantic model; (2) Case-1 

Based Reasoning (CBR) method is applied to reuse the knowledge from the most 2 

similar previous successful remanufacturing case for the rapid generation of RPP, 3 

leading to considerable time and cost saving. An application program is also presented 4 

to realize the proposed method. In addition, a case study of crankshaft remanufacturing 5 

is carried out to verify the feasibility and efficiency of the proposed method. 6 

Keywords: Ontology, Knowledge modelling, Knowledge reuse, Remanufacturing process planning, 7 

CBR 8 

1. Introduction 9 

Remanufacturing is defined as “a process of returning a used product to at least its 10 

original performance with a warranty that is equivalent to or better than that of the 11 

newly manufactured product” by British Standard BS8887 (2009). As a crucial End-12 

Of-Life (EOL) activity within the circular economy, it can release the residual value of 13 

used products (e.g., automotive parts and machine tools) compared to simply materials 14 

recycling. The remanufacturing industry is regarded as an eco-industry, as it not only 15 

alleviates environmental contamination but also reduces energy consumption and CO2 16 

emission ( Liu et al., 2014; Feng et al., 2016; Jiang et al., 2019). For example, the 17 

remanufacturing of automotive components yields around 88 % materials savings 18 

compared to that of a new product, with an associated 53% decrease in CO2 emission 19 

and 56 % less energy consumption (Parker et al., 2015). In addition, from the economic 20 

and social perspectives, remanufacturing could satisfy consumers’ needs (usually as-21 

new quality with a lower price), create new job opportunities and new markets, 22 

improved customer relation and satisfaction, and build a favorable image for companies 23 

(Ismail et al., 2017).  24 

Despite the tremendous benefits offered by remanufacturing, the 25 

remanufacturability largely depends on process planning, which bridges returned used 26 

products and remanufactured products. It contains the design of process route, sequence 27 

and parameters, and the associated resources planning, e.g., operators, facilitate, tools 28 

and time etc. for remanufacturing. A well-designed RPP could lead to enhanced 29 

remanufacturing rate, improved product quality, and reduced capital investment costs 30 

(Jiang et al., 2014; Zhou et al., 2014). However, compared to traditional mass 31 

production, the design of RPP suffers from a high level of uncertainty imposed by 32 
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varying quality and quantity of the returned products, often called cores, that were 1 

subjected to different operation environments, service life, maintenance measures, and 2 

reverse logistics (Wang et al., 2019; Peng et al., 2019). Thus, a tailored RPP is required 3 

for each core which is a time-consuming, labor-intensive and error-prone process (Jiang 4 

et al., 2019). The design of RPP heavily depends on the skills and experience of RPP 5 

designers since it is often a trial-and-error manual operation, leading to costly and 6 

lengthy RPP generation, a major barrier for the uptake of remanufacturing. This paper 7 

aims to develop a novel method to model and reuse remanufacturing domain knowledge 8 

based on ontology for rapid RPP.  9 

Knowledge, composed of useful information, refers to the relevant and objective 10 

information gained through experience (Cooper and Paul, 2014). Essentially, RPP 11 

generation is very knowledge-intensive, including knowledge acquisition of analysis of 12 

design specification, failure features and understanding of capability and facility of 13 

remanufacturing factory, knowledge mapping between failure cores and restoration 14 

processes, decision-making in the process sequence and parameters, and 15 

remanufacturing resource allocation. Hence, a knowledge modelling method is 16 

paramount to make full use of remanufacturing domain knowledge including existing 17 

skills and experience to generate a sound RPP and thereby increasing the success rate 18 

and efficiency of remanufacturing. In addition, the different RPP may be generated by 19 

different operators depending on their experiences, each with different performance. 20 

Thus, it is important to record the best practices for reusing and experience sharing so 21 

as to generate the optimal RPP that is cost-effective and efficient. 22 

Currently, there are limited studies in the RPP from the perspective of knowledge 23 

modelling. Remanufacturing knowledge may be constructed based on understanding 24 

and inter-connecting of large amounts of information and data in the remanufacturing 25 

domain, which guides decision-makers to make sound decisions. Unfortunately, due to 26 

data silo led from different ownership in product value chain, remanufacturing relevant 27 

information and data are often fragmented and disorganized generated at various 28 

product life cycle stages including begin-of-life (BOL), middle-of-life (MOL) and EOL, 29 

and different stakeholders including original equipment manufacturers (OEMs), 30 

distributors, recyclers, quality inspection departments, remanufacturers, etc. 31 

Multifarious information and data are generated along with the product lifecycle which 32 

has a significant influence on the RPP generation. For instance, the materials and 33 
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specification of products at BOL affect the selection of factory resources, e.g., lathe for 1 

cylinder parts, milling machine for prismatic parts and surface hardness and finish will 2 

have an impact on the machining parameters for surface finish and whether or not a 3 

coating operation is necessary. In order to develop an efficient method to unify, manage, 4 

retrieve, and reuse remanufacturing knowledge, enabling the rapid generation of RPP., 5 

two top challenges need to be addressed to establish such a knowledge-based method 6 

for RPP. Firstly, due to the complexity of remanufacturing-relevant information and 7 

data, the development of a generic model to unify and manage them from different 8 

lifecycle stages, thus to construct an organized and interconnected knowledge system 9 

for remanufacturing is paramount. Secondly, to effectively reuse the remanufacturing-10 

relevant knowledge, there is a need to develop a reasoning mechanism to retrieve and 11 

reuse the stored knowledge, facilitating the rapid generation of RPP for the new coming 12 

arrivals.  13 

Ontology is a formal, explicit specification of a shared conceptualization, allowing 14 

non-ambiguous semantic explanation to domain knowledge, therefore enabling a better 15 

representation of the knowledge (Khadir, 2012). Recently, ontology-based knowledge 16 

modelling capable of combining the domain knowledge with the information 17 

representation has been gradually used in various domains. It offers many advantages 18 

over other concept modelling technologies because it describes a formalized and shared 19 

understanding of a domain in terms of classes, possible relations between things, and 20 

axioms that constrain the meaning of classes and relations (Batres et al., 2007). With 21 

the purpose of efficiently reusing domain knowledge for the rapid generation of RPP to 22 

improve the success rate and efficiency of remanufacturing, this paper proposed an 23 

ontology-based method for knowledge modelling for RPP. With the constructed 24 

knowledge model, CBR method is chosen to effectively retrieve and reuse the 25 

remanufacturing knowledge due to it is an intelligent method which simulates the 26 

approach how human solve problems: using the solutions of similar past problems (i.e., 27 

cases) to solve the new one. It can help RPP designers make decision-making by reusing 28 

the existing remanufacturing knowledge for the rapid generation of RPP. The CBR 29 

method is mainly composed of four steps (1) retrieving similar cases, (2) reusing the 30 

retrieved cases, (3) revised the generated solution, and (4) retaining the successful cases 31 

in the case base, which means the problem-solving ability of the CBR system improves 32 

continuously as the number of cases increases (Chen et al., 2016).  33 
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Through the proposed method, the following contributions that advance the 1 

knowledge can be obtained: 2 

(1) The application of ontology makes it possible to establish a generic knowledge 3 

model of RPP. Different remanufacturing-relevant information from various sources 4 

can be unified and converted to remanufacturing-relevant knowledge, thus enables the 5 

knowledge integration, reusing, and sharing, which is fundamental to tackle the 6 

problems of low efficient and high cost remanufacturing. 7 

(2) Combined with ontology, the proposed CBR method has the ability to retrieve 8 

the previous successful remanufacturing cases from the case base, supporting the rapid 9 

generation of RPP. Significant time and labor cost can be saved via reusing and revising 10 

the retrieved case. The new generated RPP will be stored into the case base as a new 11 

case, enabling the continuous improvement of the problem-solving ability of the CBR 12 

system.  13 

The rest of this paper is organized as follows: Section 2 provides a literature review 14 

about RPP. The overall method for the RPP is presented in section 3. The information 15 

processing system based on ontology and CBR system constructed in section 4 and 16 

section 5 respectively. Section 6 demonstrated the developed method for the RPP using 17 

the remanufacturing of crankshafts as a case study. An interface to facilitate the process 18 

planning is also developed in this section; The last section presents conclusions and 19 

future work. 20 

2. Literature review 21 

Due to the significance of RPP to remanufacturing, several contributive studies 22 

have been carried out in this field. Jiang et al. (2014) presented a decision-making 23 

method for RPP selection considering remanufacturing time, quality and cost, which 24 

combines quality function deployment (QFD) and fuzzy linear regression. Kerbaum et 25 

al. (2009) presented an approach for the design and evaluation of the remanufacturing 26 

processes in a given facility. A mixed integer programming approach is used for the 27 

optimization of the RPP from cleaning to reassembly. There is no doubt that these 28 

studies contribute greatly to the RPP. However, due to the individuality of each product 29 

to be remanufactured, a customized RPP shall be developed which has not been 30 

addressed in existing research. The generation of RPP is still trial-and-error and labor-31 

intensive.   32 
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The existing remanufacturing experience and knowledge, especially previous 1 

successful RPP cases play a key role in the efficiency of RPP, however, it is rarely 2 

considered and reused in the generation of sound process planning. To reuse the 3 

previous successful remanufacturing experience, and thereby to facilitate decision-4 

making, CBR has been introduced in some remanufacturing fields, which can help 5 

process planners retrieve, reuse, revise the solution of past problems to solve similar 6 

new problems  (Kuo, 2010; Goodall, et al. 2015) proposed a method utilizing a 7 

combination of case-based reasoning and probability theory to identify similarities 8 

between historical data records and the product under assessment, to predict the cost 9 

and risks of remanufacturing. Veerakamolmal and Gupta (2002) suggested a CBR 10 

approach to automate the disassembly process planning for multiple products. Jiang, et 11 

al. (2019) proposed a hybrid approach of rough set and case-based reasoning for RPP. 12 

Zhou, et al. (2014) presented a CBR based method to develop a reasonable RPP for part 13 

remanufacturing. In these methods, influence factors for RPP including essential 14 

characteristics, failure characteristics, and remanufacturing processing characteristics 15 

are identified first, and then similarities of cases are calculated to retrieve the reusable 16 

similar cases for RPP.  17 

In these CBR researches for RPP, knowledge is represented in the form of case, 18 

which is a kind of semantic conception including problem description and problem 19 

solutions. However, the performance of these traditional CBR systems are not 20 

satisfactory, as the knowledge for the existing CBR is often described in a simple 21 

spreadsheet, the intricate link between different types and levels of knowledge from 22 

different sources and life cycle of products have been ignored, failing in dealing with 23 

complexity of knowledge modelling needed for RPP  (Kolodner 1993; Guo et al. 24 

2013).  25 

In this paper, a new approach to knowledge modelling based on ontology is 26 

proposed. There are some studies of CBR based on ontology in literature. Assali et al. 27 

(2009) presented an ontology-based CBR platform to diagnose the failure of gas sensors 28 

installed in industrial plants. The platform can capitalize and reuse past failure 29 

experiences based on ontological models describing the domain and case structures. 30 

Khadir (2012) developed a CBR application for fault diagnosis of steam turbines that 31 

integrated a domain knowledge modeling in an ontological form. Xie et al. (2013) 32 

proposed a CBR system for hydro-generator design, and the case base in the system 33 
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was constructed based on a domain ontology to improve retrieval efficiency. Chen et al. 1 

(2016) proposed an ontology and CBR based automated decision-making method for 2 

the disassembly of mechanical products, the method applied ontology to uniform 3 

different kinds of disassembly-related knowledge from different sources and CBR are 4 

used to obtain high flexible decision-making to various conditions. These researches 5 

demonstrated the effectiveness of the integration of CBR with ontology, enabling 6 

efficient knowledge reuse with the CBR method. Yet these studies were focused on the 7 

earlier stage of the product lifecycle, e.g. design and operation and maintenance, and 8 

knowledge is only based on a single life cycle stage of the product. For remanufacturing, 9 

RRP takes place at a very later stage of the product lifecycle, the knowledge modelling 10 

is far more complicated, and there is a need to take into consideration information from 11 

different lifecycle stages that is from different sources and in various formats. This 12 

requires the ontology for RPP to be highly flexible and the intricate relationship 13 

between the information to be modelled accurately. This hasn’t been taken into 14 

consideration to the best knowledge of the authors in prior research.  15 

3. The overall research framework 16 

A novel method for RPP integrating ontology with CBR is proposed. Fig. 1 17 

demonstrates the overall structure of the method. This method contains two subsystems 18 

including an information processing system and CBR system. The information process 19 

system is used to organize the remanufacturing knowledgebase through ontology, and 20 

the CBR system is employed to utilize the knowledge base to generate RPP for new 21 

incoming arrivals. The interaction of these two subsystems enables the efficient 22 

generation of RPP.  23 
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 1 
Fig. 1. Overall structure of the integrated remanufacturing process planning generation system 2 

The purpose of the information processing system is to provide an underpinning 3 

data structure to unify heterogenous information from different sources such as CAD, 4 

Enterprise Resource Planning (ERP), Product Data Management (PDM), Radio 5 

Frequency Identification Devices (RFID), etc. The collected remanufacturing-relevant 6 

information can be finally converted to RPP cases through knowledge extraction, 7 

ontology presentation and semantic model in the system. These RPP cases describe the 8 

goal, namely what are the requirements for the remanufactured products and how to 9 

achieve the goal, in other word, how to remanufacture the EOL products back to like-10 

new condition, which lays a foundation for the subsequent retrieval in the CBR system. 11 

The following contents explain the function of each module in this subsystem. 12 

 Remanufacturing-relevant information collection. Based on the existing 13 

information systems, information from lifecycle stages are collected into the 14 

database.  15 

 Remanufacturing-relevant information extraction. Redundant information 16 

can only add to the burden of the system without real value. This step identifies 17 

contributive classes of information to the presentation of RPP. Relevant useful 18 

remanufacturing information can be extracted according to the classification 19 

rules, which is essential to compose remanufacturing-relevant knowledge.  20 

 Remanufacturing-ontology construction. The ontology provides a 21 
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formalized definition to the knowledge of remanufacturing domain, 1 

knowledge classes and their attribute classes are ordered by specific logical 2 

rules. All the knowledge in the processing system is expressed according to 3 

the remanufacturing-ontology. 4 

 Semantic model construction. Based on the remanufacturing-ontology, this 5 

step maps the remanufacturing-relevant knowledge to a semantic model. It 6 

provides a generic model to describe remanufacturing cases so that an RPP 7 

case base can be constructed to store previous successful cases. It will be the 8 

basis for the subsequent CBR system. 9 

With the constructed remanufacturing case base, the purpose of the CBR system 10 

is to reuse the knowledge stored in the case base, enabling the rapid generation of new 11 

process planning for the new cores. Normally, a CBR system is a four-step cycle process 12 

including retrieve, reuse, revise and retain after the new case has been input in the 13 

system.  14 

 Retrieve similar remanufacturing cases. It calculates the similarities 15 

between the new case and the cases stored in the RPP case base. The higher 16 

the similarity between cases, the more similar the solutions of the cases will 17 

be, which means the solution to a similar case is beneficial to the new problem. 18 

 Reuse case. When the similarity between the new case and the previous case 19 

is greater than a similar threshold 𝜀𝜀 (e.g. 70%), the solution to the previous 20 

case is promising to solve the new case, which means the previous RPP can be 21 

reused for the new coming cores. 22 

 Revise case. The retrieved process planning may be revised before reusing 23 

according to the real condition of the to-be remanufactured core, if necessary. 24 

 Retain new generated case. If a new RPP has been generated successfully, it 25 

will be retained in the RPP case base, which, in turn, can improve the problem-26 

solving ability of the CBR system continuously by keeping adding successful 27 

cases to the case base. 28 

 Design new RPP. When there is no reusable case in the RPP case base, which 29 

usually happens early in the system construction, a new process planning needs 30 

to be designed and then retained in the case base. As the case base gets richer, 31 

the less chance this step is needed. 32 
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4 Knowledge modelling for remanufacturing process planning 1 

Knowledge for RPP means a bunch of useful information that describes the real 2 

condition of the remanufactured cores and the corresponding sound solutions to support 3 

remanufacturing operations. The following contents detail the steps of knowledge 4 

modelling. 5 

Although remanufacturing is an activity for EOL products, the information 6 

generated at the BOL and MOL stages, e.g. product material, geometry and 7 

specifications is crucial to the remanufacturing decision-making (Cao et al., 2009). In 8 

addition, the selling price of the new products at the BOL stage and that of the 9 

remanufactured products affect the decision-making for remanufacturability, on the 10 

other hand, the sale of remanufactured products may affect the demands for new 11 

products. The service condition at MOL will have impacts on the e.g. failure type and 12 

severity in the EOL phase, directly influence the remanufacturing processing routes and 13 

parameters. Such life cycle information of returned cores is collected for further 14 

knowledge modelling.  15 

4.1 Remanufacturing-relevant information extraction 16 

Inevitably, there will be redundant information in the collected remanufacturing-17 

relevant information, which will interfere with the efficiency and accuracy of 18 

knowledge reuse. Thus, useful information needs to be extracted and then converted to 19 

remanufacturing-relevant knowledge to support knowledge reuse. According to their 20 

relationships with the RPP, remanufacturing-relevant information is extracted into 5 21 

classes, including design specification, market, failure feature, process planning, and 22 

remanufacturing resource. Generally, design specification class contains basic design 23 

information of the product such as geometry, size, material and weight, product 24 

specifications; market class shows the brand, manufacturer and price of the product; 25 

failure feature class presents the failure condition of the core including failure mode,  26 

degree and location and so on; process routes and process parameters are included in 27 

the process planning class; and the remanufacturing resource class includes information 28 

such as devices and operators, supporting the execution of remanufacturing operations. 29 

Fig. 2 shows the upper relationships between the RPP and the remanufacturing-relevant 30 

information classes. It is worth noting that the design specification information, market 31 

information, and failure information are determined the input of the RPP which 32 
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determines the output including the process planning and remanufacturing resource 1 

information.  2 

 3 
Fig. 2 Relationships between RPP and remanufacturing-relevant information classes 4 

4.2 Ontology based Remanufacturing knowledge construction 5 

On the base of previous information collection and knowledge modelling, a 6 

remanufacturing-ontology framework is proposed, which provides unified formal 7 

representations of the knowledge in the domain of remanufacturing from different 8 

sources. Fig. 3 depicts the structure of the remanufacturing-ontology. Normally, a 9 

returned core is generally made up of multiple parts which are to be disassembled 10 

during remanufacturing, but sometimes it can also be a to-be remanufactured part 11 

directly which can’t be disassembled any more. In the remanufacturing-ontology 12 

framework, cores and parts are connected by a logical ‘Has-part’ in the ontology. Each 13 

disassembled part, such as a crankshaft, has five information classes as mentioned 14 

before. Their relationships with RPP have already been presented in Fig. 2. These 15 

information classes are composed of several attributes through a logical ‘Has-a’, for 16 

instance, failure feature class is composed of failure mode, failure degree, and failure 17 

location, etc. Table 1 lists the 15 attributes in RPP using crankshaft as an example 18 

including geometry, size, material, weight, journal diameters, surface roughness, 19 

surface hardness, parallelism, precision, brand, manufacturer, price, failure mode, 20 

failure degree, and failure location. These attributes are known as influence factors 21 

which are identified by skilled experts according to their importance to remanufacturing 22 

decision. In addition, the influence domain and the relevance of influence factors to 23 
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remanufacturing are also given in Table 1.  1 

The process planning class is composed of attributes including process routes, 2 

parameters, time, cost, etc. The process route of the process planning class is an ordered 3 

step of remanufacturing processes, and the corresponding process parameters in each 4 

step are recorded in the process parameters attribute. The process time and cost are 5 

important information that can help operators make or adjust remanufacturing strategies 6 

and production scheduling in addition to decision making whether or not an EOL 7 

product should be remanufactured. Similarly, remanufacturing resource class is 8 

essential to the implementation of the RPP by providing necessary remanufacturing 9 

resources such as device, operator, plant, and forklift.  10 

11 

Fig. 3 Classes in the remanufacturing-ontology (crankshaft is an example) 12 

Table 1: Influence factors related to crankshaft remanufacturing process planning. 13 

No. Influence factor Type  Label Influence domain Relevance to remanufacturing   

1 Geometry S S1 Selection of process Milling for prismatic part and turning for 

cylinder part for restoration of defects 

2 Size  S S2 Selection of machine Need to be within the threshold of machines 

at the remanufacturing factory 

3 Material  S S3 Process parameters Remanufacturing processes 

4 Weight  S S4 Selection of machine Need to be within the threshold of machines 

at the remanufacturing factory 
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5 Journal diameters S S5 Process parameters Need to be within the threshold of machines 

at the remanufacturing factory 

6 Surface roughness S S6 Process parameters Remanufacturing processes 

7 Surface hardness S S7 Surface treatment Remanufacturing process route, e.g. 

Coating or not 

8 Parallelism  S S8 Process route Remanufacturing process route, e.g. 

Straightening or not 

9 Precision S S9 Process parameters process parameters, e.g. cutting speed, 

federate etc.  

10 Brand M M1 Performance requirements Quality inspection for remanufactured 

products  

11 Manufacturer  M M2 Performance requirements Quality inspection for remanufactured 

products 

12 Price  M M3 Remanufacturability Different reuse strategy adapted based on 

the price of new/remanufactured products 

13 Failure mode F F1 Process route Process route and efficiency dependent on 

failure modes, e.g. wear and crack 

14 Failure degree F F2 Process route Process route and efficiency dependent on 

failure degree, e.g. slight, medium, high，

and severe 

15 Failure location F F3 Process route failure location will affect tool accessibility 

for the restoration of defects 

S: Design specification class 1 

M: Market class 2 

F: Failure feature class  3 

4.3 Generation of the remanufacturing case semantic model 4 

According to the remanufacturing-ontology, remanufacturing cases can be 5 

constructed as a semantic model to make it easier to be processed. 6 
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 1 
Fig. 4 Semantic model of a remanufacturing case 2 

Fig. 4 depicts the semantic model for remanufacturing cases, which is composed 3 

of two parts: (1) the semantic description of the remanufacturing case structure; (2) the 4 

similar previous successful solution for the to-be remanufactured case (which includes 5 

process route, parameters, devices, operators, etc.).  6 

For the semantic modeling in Fig. 4, a to-be-remanufactured core (C in Fig 4) is 7 

usually disassembled to several parts (P in Fig 4) each of which can be subjected to 8 

several remanufacturing processes such as cleaning, machining, welding, coating, and 9 

reassembly depending on the condition of individual parts. A case structure contains 10 

three types of influence factors of the target to-be remanufactured part as shown in the 11 

model in Fig 4. As explained earlier, a case of the to-be remanufactured part is described 12 

by influence factors including design specifications (S type), market influence (M type), 13 

and failure feature (F type) as shown in Table 1.  14 

For the description of remanufacturing process planning in Fig. 4, a new RPP to 15 

the to-be remanufactured part is developed. As shown in Fig. 4, a process route 16 
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composed of a series of process steps is employed to restore the to-be remanufactured 1 

parts, and each step in the process route also has several attributes to perform the 2 

specific repair actions including process name, device name, process parameters, 3 

technical requirements, operator ID, process time, process cost, remark, etc. 4 

5. Algorithm to calculate local and global similarity for case retrieval 5 

After the remanufacturing case base has been constructed, the previous decision 6 

for remanufacturing RPP is recorded and stored. The CBR method needs to be 7 

implemented to retrieve and reuse the stored remanufacturing knowledge. In a CBR 8 

system, the existing RPP is retrieved via the calculation of the similarity calculation. 9 

The similarity can be divided into local and global similarity. The local similarity is 10 

between two attributes and the global similarity is between two cases. Fig. 5 shows the 11 

method for calculating local and global similarity between new case X and existing case 12 

Y, where i means the sequence number of influencing factors and n represents the total 13 

number of the influence factors. Once the influence factors (C1, C2, C3……Cn) of the 14 

to-be remanufactured case are identified in the semantic model, local similarities of 15 

these attributes can be calculated by the nearest-neighbor matching method. Through 16 

Analytic Hierarchy Process (AHP) method, each factor is given a weight according to 17 

its importance to the case, and then the global similarity between the new case X and 18 

case Y in the knowledge base can be computed considering all the local similarities and 19 

their respective weights. In AHP, a pairwise comparison matrix is created based on 20 

decision-maker inputs, which gives comparative importance between two influence 21 

factors. Experts need to make a judgment of the factor A relative to B, the more 22 

important of the factor, the higher the score. The score is usually set to 1-9. If the 23 

importance of A relative to B is set to 5, the importance of B relative A will be the 24 

reciprocal of this number, 1/5. The geometric mean can be calculated and normalized 25 

to obtain the relative weight associated with each influence factor. The detail process 26 

of the AHP method can refer to Ding et al., (2018) and Zhou et al. (2014). 27 
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 1 
Fig. 5 Method for calculating local and global similarity to retrieve similar cases 2 

With the local similarities calculated, the global similarity between the new case X 3 

and an existing case Y in the knowledge base can be calculated by (1) 4 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌) = ∑ ѡ(𝑐𝑐𝑖𝑖)𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌)𝑛𝑛
𝑖𝑖=1    (1) 5 

Where 𝑋𝑋 and 𝑌𝑌 are the new case and existing case, respectively; 𝑛𝑛 is the number of 6 

influence factors. 𝑐𝑐𝑖𝑖𝑋𝑋 and 𝑐𝑐𝑖𝑖𝑌𝑌 represent the 𝑖𝑖𝑡𝑡ℎ  factors of 𝑋𝑋 and 𝑌𝑌, and ѡ(𝑐𝑐𝑖𝑖) is the 7 

associated important weight of this factor 𝑐𝑐𝑖𝑖 . 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌)  is the global similarity 8 

between the new case 𝑋𝑋 and the existing case Y, 𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌) is the local similarity 9 

between 𝑐𝑐𝑖𝑖𝑋𝑋 and 𝑐𝑐𝑖𝑖𝑌𝑌. 10 

As for local similarity calculation, there are three methods for three different types 11 

of influence factors: (1) numerical factors, (2) degree factors, and (3) linguistic factors, 12 

which are presented in Fig. 6. 13 

 14 
Fig. 6 Influence factors classification for local similarity calculation 15 
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For numerical influence factors, which can be identified with the exact number, the 1 

similarity can be calculated using equ. (2) where max (𝑐𝑐𝑖𝑖) and min (𝑐𝑐𝑖𝑖) are the maximum 2 

value and the minimum value of the factor 𝑐𝑐𝑖𝑖 among all the cases. 3 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌) = 1 − �𝑐𝑐𝑖𝑖
𝑋𝑋−𝑐𝑐𝑖𝑖

𝑌𝑌�
𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖)−𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖)

   (2) 4 

For degree influence factors, which can be divided into different degrees after 5 

normalization, the local similarity calculation is expressed as equ. (3), where 𝑀𝑀 is the 6 

maximum assignment value of the factor 𝑐𝑐𝑖𝑖. For example, the part size is described by 7 

the ambiguous words as {small, medium, large, huge} with the set {0.25, 0.5, 0.75, 1}, 8 

as shown in Table 2. Similarly, the failure degree can be described by the ambiguous 9 

words as {slight, medium, high, severe} with the set {0.25, 0.5, 0.75, 1}. 10 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌) = 1 − �𝑐𝑐𝑖𝑖
𝑋𝑋−𝑐𝑐𝑖𝑖

𝑌𝑌�
𝑀𝑀

   (3) 11 

Table 2. The assignment values of different part size. 12 
Degree Small Medium Large Huge 
𝑐𝑐𝑐𝑐 0.25 0.5 0.75 1 

For linguistic influence factors, which can’t be quantified, the local similarities can 13 

be calculated using equ. (4). where local similarity is 1 if two factors are identical; 14 

otherwise the local similarity is 0.  15 

𝑆𝑆𝑆𝑆𝑆𝑆�𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌� = �
1, 𝑐𝑐𝑖𝑖𝑋𝑋 = 𝑐𝑐𝑖𝑖𝑌𝑌

0, 𝑐𝑐𝑖𝑖𝑋𝑋 ≠ 𝑐𝑐𝑖𝑖𝑌𝑌
   (4) 16 

6. Case study 17 

Crankshaft, as a core part of the engine, is of great potential for remanufacturing 18 

(Smith and Keoleian 2004). In this section, a to-be remanufactured crankshaft of a 3.5L 19 

engine in a remanufacturing factory is taken as a case study to validate the effectiveness 20 

and feasibility of the method proposed above.  21 

In this case, the EOL crankshaft is mainly composed of main journal, rod journal, 22 

crank arm, oil hole, the front end, and the rear end. Wear, corrosion, bending-torsion 23 

deformation and crack are the common failure modes of crankshaft. Comprehensive 24 

remanufacturing-relevant information is collected and then converted to 25 

remanufacturing-relevant knowledge. Regarding the remanufacturing ontology, nine 26 

specification influence factors, three market influence factors, and three failure feature 27 

factors are identified to describe the crankshaft remanufacturing case, specific influence 28 
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factors and corresponding attributes are listed in Table 1. Meanwhile, the relative 1 

importance weights of these influence factors are determined to support subsequent 2 

case retrieval employing the AHP method, the results of relative importance and 3 

weights are listed as shown in table 3, the labels of the influence factors have been 4 

explained previously in Table 1.  5 
Table 3: Importance weights of the influence factors.  6 

Influence 

factors 

Design specification influence factors (S) 
Market influence 

factors (M) 
Failure feature factors (F) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 M1 M2 M3 F1 F2 F3 Weight 

S1 1 2 1/6 3 1 1/5 1/5 1/4 1/4 4 5 1 1/8 1/8 1/7 0.0254 

S2 1/2 1 1/6 1 1/2 1/6 1/5 1/4 1/4 1 3 1 1/9 1/9 1/8 0.0162 

S3 6 6 1 6 4 1 1 2 1/3 6 8 6 1/2 1/2 1 0.0919 

S4 1/3 1 1/6 1 1/3 1/5 1/5 1/5 1/4 1 2 1/2 1/8 1/8 1/8 0.0145 

S5 1 2 1/4 3 1 1/3 1/2 1/2 1 4 5 2 1/6 1/6 1/6 0.0343 

S6 5 6 1 5 3 1 1 1 2 6 7 5 1/3 1/2 1/2 0.0821 

S7 5 5 1 5 2 1 1 1 1 5 6 3 1/4 1/3 1/3 0.0664 

S8 4 4 1/2 5 2 1 1 1 1 5 7 3 1/5 1/5 1/4 0.0589 

S9 4 4 3 4 1 1/2 1 1 1 5 5 2 1/5 1/4 1/4 0.0655 

M1 1/4 1 1/6 1 1/4 1/6 1/5 1/5 1/5 1 1 1/2 1/9 1/8 1/8 0.0130 

M2 1/5 1/3 1/8 1/2 1/5 1/7 1/6 1/7 1/5 1 1 1/2 1/9 1/8 1/7 0.0111 

M3 1 1 1/6 2 1/2 1/5 1/3 1/3 1/2 2 2 1 1/7 1/7 1/7 0.0210 

F1 8 9 2 8 6 3 4 5 5 9 9 7 1 1 2 0.1875 

F2 8 9 2 8 6 2 3 5 4 8 8 7 1 1 2 0.1726 

F3 7 8 1 8 6 2 3 4 4 8 7 7 1/2 1/2 1 0.1398 

To make a returned used crankshaft back to the like-new conditions a series of 7 

remanufacturing processes need to be carried out. Take the crankshaft remanufacturing 8 

case 1 in the case base as an example, detailed information of 9 processes is listed in 9 

Table 4. Some of the process data is dummy due to the sensitivities. 10 
Table 4: Detailed information of remanufacturing process planning in case 1. 11 

Process 

number 

Process name Device name  Process parameters Technical 

requirements 

Operator 

ID 

Process 

time(min) 

Process 

cost(￥) 

Remark 

1 Cleaning Cleaning 
machine 

(1) Water-soluble 
washing liquid 
830LD; (2) 
Maximum washing 
distance d=1850 mm 

Cleaning 3-4 
times 

OP102 16 30 Wire brush oil holes, 
wash the overall shaft 
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2 Undercutting  Turing 
machine 

(1) ap=0.1mm; 
(2)f=0.03~0.07mm/r; 
(3)v=15~25m/min 

(1) Remove 
excess material; 
(2) No cracks 
are allowed 

OM201 20 40 Eliminate wear before 
buildup 

3 Thermal spry Thermal spry 
machine 

(1) Jet 
distance=20cm; (2) 
Nozzle diameter=2cm 

—— OM302 20 60 Important but not 
always necessary 

4 Welding  Submerged 
arc welding 
machine 

(1) Weld current: 900-
1000 A; (2) Arc 
voltage: 40-42 V; 
(3) Weld speed: 20 
cm/min 

Smooth welding 
seam without 
porosity 

OM407 20 50 Dry the electrode and 
flux before welding 

5 Grinding  Grinding 
machine 

(1) Wheel rotational 
speed 2800r/min; (2) 
Coarse grinding 
allowance 0.2mm; (3) 
Feed speed 2mm/min 

Grinding way: 
cut mill 

OM407 30 70 (1) Grinding wheel 
code G80V60; (2) 
Injection for pressure 3 
Mpa, fluid flow 
16L/min 

6 Shot Peening Shot peening 
machine 

(1) Steel shot 
diameter: 0.8mm; (2) 
Shot distance: 
150mm; 

The angle of 
shot peening> 
40° 

OM308 10 50 No heat treatment after 
shot peening in general 

7 Polishing  Polishing 
machine 

—— Polished surface 
roughness of 
transition fillet 
to Ra≤1.6; 
main journal to 
Ra≤0.4 

OM308 30 45 Polishing to technical 
cooperation 
requirements 

8 Test Hardness 
testing 
machine 

—— Standard 
hardness≥40;  

OT001 20 30 —— 

9 Rustproof  Spray gun Using cosmoline Rustproof 
overall 
crankshaft 

OP102 10 10 —— 

After the influence factors and their relative importance weights have been 1 

identified, local similarity and global similarity need to be calculated between the new 2 

case (Cn) and existing cases (C1, C2, C3, C4, C5, C6) in the case base to retrieve the 3 

closest match from existing RPP for the new to-be remanufactured crankshaft. Detailed 4 

information on these cases is shown in Table 5. Influence factors (S4, S5, S6, S7, S8, 5 

S9, M3) are numerically calculated by equ. (2), (S2, F2) are degree influence factors 6 

which are calculated by equ. (3), and (S1, S3, M1, M2, F1, F3) are linguistic influence 7 

factors which are calculated by equ. (4) respectively. Take local similarity S4, the 8 

weight of the core, between case 1 and case n as an example: 9 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌) = 1 − �𝑐𝑐𝑖𝑖
𝑋𝑋−𝑐𝑐𝑖𝑖

𝑌𝑌�
𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖)−𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑖𝑖)

= 0.4444   (5) 10 

The local similarity of other factors can be obtained in the same way. Then, the 11 

global similarity between case 1 and case n can be obtained as follows: 12 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌) = ∑ ѡ(𝑐𝑐𝑖𝑖)𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖𝑋𝑋, 𝑐𝑐𝑖𝑖𝑌𝑌)𝑛𝑛
𝑖𝑖=1 = 0.8196   （6） 13 
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The results of local and global similarity are listed in Table 6. Eventually, as can be 1 

seen in Table 6, C1 is the most similar case retrieved in the database with a similarity 2 

of 0.8196, whose RPP is most promising to be reused for the new coming arrivals. After 3 

comparing case C1 and Cn, the retrieved RPP is revised manually according to the real 4 

situation, if necessary. After the remanufacturing processes such as cleaning, 5 

undercutting, thermal spray, welding, grinding, shot peening, polishing, test, and 6 

rustproof, the returned used crankshaft is restored into a new remanufactured crankshaft 7 

as shown in the Fig. 7. 8 
Table 5: Detailed information about existing cases and the new case. 9 

Table 6: Results of local similarity and global similarity. 10 
Influence factors C1 C2 C3 C4 C5 C6 Weight 

Local similarity S1 1.0000  1.0000  1.0000  0.0000  1.0000  1.0000  0.0254 

Local similarity S2 0.7500  0.7500  1.0000  1.0000  0.7500  0.7500  0.0162 

Local similarity S3 1.0000  0 0 1.0000  0 0 0.0919 

Local similarity S4 0.4444  0.4889  0.7778  0.7333  0.6667  0.5556  0.0145 

Local similarity S5 0.6471  0.7647  0.8824  0.8824  0.4706  0.3529  0.0343 

Local similarity S6 1.0000  0 0  1.0000  1.0000  0.3333  0.0821 

Local similarity S7 0.6667  1.0000  0.3333  0.6667  1.0000  0.3333  0.0664 

Local similarity S8 0.6667  0.3333  0 1.0000  0.3333  0.3333  0.0589 

Local similarity S9 0 0.5000  1.0000  0 0.5000  1.0000  0.0655 

Local similarity M1 1.0000  1.0000  0 0 1.0000  0 0.0130 

Local similarity M2 1.0000  0 1.0000  0 0 0 0.0111 

Local similarity M3 0.7143  0.7429  0.7857  0.9286  0.4000  0.2857  0.0210 

Local similarity F1 1.0000  1.0000  0 0 1.0000  1.0000  0.1875 

Local similarity F2 0.7500  0.7500  1.0000  0.7500  0.7500  1.0000  0.1726 

Local similarity F3 1.0000  0 0 0 1.0000  1.0000  0.1398 

Global similarity 0.8196  0.5352  0.3710  0.4832  0.7424  0.6982  —— 

 11 

Case 

No. 

Specification influence 

 factors (S) 

Market influence  

factors (M) 

Failure feature  

factors (F) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 M1 M2 M3 F1 F2 F3 

C1 Cylinder Small Cast iron 15 48 0.8 45 0.012 6 Honda Aisin Seiki 2000 Wear Slight Main journal 

C2 Cylinder Small Cast steel 17 52 0.4 50 0.011 7 Honda IT Forging 2200 Wear Slight Rod journal 

C3 Cylinder Medium Forged steel 30 64 0.2 60 0.01 8 Toyota Aisin Seiki 5500 Corrosion Medium The front end 

C4 Irregular Medium Cast iron 28 64 0.8 45 0.013 6 Audi 
Bharat 

Forge 
4500 Deformation Slight Crank arm 

C5 Cylinder Large Cast steel 55 78 0.8 50 0.011 7 Honda Aisin Seiki 8200 Wear High Main journal 

C6 Cylinder Large Forged steel 60 82 0.4 60 0.01 8 Toyota IT Forging 9000 Wear Medium Main journal 

Cn Cylinder Medium Cast iron 40 60 0.8 50 0.013 8 Honda Aisin Seiki 4000 Wear Medium Main journal 
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 1 
Fig. 7 The returned to-be remanufactured crankshaft and the remanufactured new crankshaft 2 

In this case, six cases’ similarities were calculated rapidly using the developed 3 

program. Significant time for case retrieval can be reduced since the developed CBR 4 

method is an intelligent and automatic process. The highest similarity retrieved is 5 

0.8196, and when the number of cases in the case base increase, a better existing case 6 

might be retrieved. The required time and cost for remanufacturing processes are 7 

obtained in the retrieved RPP, which can facilitate the decision-making in 8 

remanufacturing practices. 9 

Some useful managerial insights could be obtained employing the proposed 10 

method in the real-world cases. Firstly, the RPP designer can design RPP for the new 11 

incoming core by reusing the remanufacturing knowledge, improving the efficiency of 12 

remanufacturing. Besides, the remanufacturing knowledge is stored as the form of cases 13 

in this method, it is possible to effectively retrieve a very similar or even identical case 14 

when the number of cases in the case base is large enough. What’s more, by introducing 15 

ontology technology into knowledge modelling, the remanufacturing relevant 16 

knowledge can be unified and shared for different domains. The knowledge 17 

accumulation and reuse will bring huge profits to the enterprise. 18 

In this paper, to facilitate the rapid generation of RPP for new arrivals of EOL 19 

products, an interface program named ‘CBR system’ has been developed based on 20 

Microsoft Access 2017 to implement the proposed method. Fig. 8 shows the main form 21 
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of the program; The operators need to input the necessary attributes of the case into the 1 

system which will automatically calculate the local similarity and global similarity and 2 

then return the most similar cases for reference. If a reusable existing remanufacturing 3 

case is found, it will be used for revising if applicable for the new RPP. If there is no 4 

reusable case e.g. very low similarity value, the operator needs to enter the RPP from 5 

the beginning. The new generated RPP, no matter revised or redesigned, will be retained 6 

into the case base to improve the problem-solving ability of the CBR system 7 

continuously because the more successful remanufacturing cases are recorded, the 8 

higher probability it is to retrieve reusable cases. 9 

 10 

Fig. 8 The main form of application program for CBR system 11 

6. Conclusion and future work 12 

RPP is an important but complex step in the remanufacturing. Efficient RPP offers 13 

great economic value and environmental benefits. The present study proposes an 14 

ontology-based method to realize the rapid generation of RPP for a to-be 15 

remanufactured core.  16 

In this method, ontology is used to organize and formalize different kinds of 17 

remanufacturing-relevant information from different sources and life cycle stages. It 18 

provides a structured way to express and manage remanufacturing knowledge in the 19 

information processing system. Meanwhile, CBR is employed to retrieve and reuse the 20 

existing remanufacturing knowledge to obtain candidate RPP. It is an intelligent process 21 

because it understands the remanufacturing knowledge stored in the semantic model. A 22 
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case of crankshaft remanufacturing has been carried out to verify the feasibility and 1 

efficiency of the proposed method. Furthermore, the method is generic and it can be 2 

extended to the remanufacturing of other EOL products, e.g.  electromechanical 3 

products.  4 

The developed method and application system would contribute to considerable 5 

time-saving and labor-saving through ontology-based knowledge-reusing, which in 6 

turn brings great profit. This study is based on the assumption that a returned core only 7 

has a defect, however, a returned core may have different failures at different locations 8 

in a real remanufacturing system. To enhance the flexibility and ability of the proposed 9 

method, for future work, the multi-failure mode in the to-be remanufactured core need 10 

to be further studied. In addition, remanufacturing information and knowledge is 11 

complex and difficult to be collected, uncertainty caused by the lacking of the necessary 12 

information in remanufacturing should be taken into consideration too. 13 
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