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Abstract: The phosphorus (P) supply from soils is crucial to crop production. Given the complexity
involved in P-cycling, a model that can simulate the major P-cycling processes and link with other
nutrients and environmental factors, e.g., soil temperature and moisture, would be a useful tool.
The aim of this study was to describe a process-based P module added to the SPACSYS (Soil Plant and
Atmosphere Continuum System) model and to evaluate its predictive capability on the dynamics of P
content in crops and the impact of soil P status on crop growth. A P-cycling module was developed
and linked to other modules included in the SPACSYS model. We used a winter wheat (Triticum
aestivum, cv Xi-19) field experiment at Rothamsted Research in Harpenden to calibrate and validate
the model. Model performance statistics show that the model simulated aboveground dry matter, P
accumulation and soil moisture dynamics reasonably well. Simulated dynamics of soil nitrate and
ammonium were close to the observed data when P fertiliser was applied. However, there are large
discrepancies in fields without P fertiliser. This study demonstrated that the SPACSYS model was
able to investigate the interactions between carbon, nitrogen, P and water in a single process-based
model after the tested P module was implemented.
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1. Introduction

Phosphorus (P) supply from soils is crucial to crop production. Often, crop yields are constrained
if no external P is supplied. The limitation of P on biomass production will become more severe under
increasing nitrogen (N) global loading in the future [1]. Phosphorus fertiliser is mainly produced from
rock phosphate, which is not only a finite resource, but also a geographically unevenly distributed
one, meaning that continued supply is subject to geopolitical threats [2]. To support the demand for
food with the projected increase in population this century [3], an increase in P fertiliser application
will be expected [4]. Both limited supply and increased demand implies the importance of using the
existing resources wisely in order to make agricultural production sustainable. The recovery of added
P by crops is often low [5,6], due to sorption reactions of P which form poorly soluble or insoluble
compounds [7]. Hence, there is a challenge in agriculture on how crop P use efficiency can be improved.
P fertilisers can also contribute to P surpluses in soils and to P exports from land to surface waters.
Therefore, an efficient way of maintaining optimum crop production through adding P fertilisers while
reducing P losses to the environment is to manage P applications properly to ensure maximum crop
acquisition of soil and fertiliser P [8].
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Total P in soils consists of many different fractions, including crystalline, occluded and adsorbed
particulate organic, soluble organic and soluble inorganic P. Soil organic P compounds have been
largely overlooked in P agronomy, but can represent up to 90% of soil total P [9]. Methods have
been developed to characterise soil organic P mainly focused on the identification and quantification
of inositol phosphates [10] and other phosphomonoesters [11]. However, a small proportion of soil
organic P compounds with potentially very different properties remain unidentified [11,12]. For the
identified compounds, their cycling, mobility and bioavailability generally are poorly understood [10].
On the other hand, inorganic P exists in soils in various forms that are categorised in terms of
accessibility (accessible to plants) and extractability (extractable in different reagents) in agricultural
soils [13]. Furthermore, mobility, stability and transformations between P compounds are affected
by soil environmental conditions, e.g., soil acidity [14] and land use [15]. Soil P dynamics are also
influenced by complex interactions between physical, chemical and biological processes that occur
within the rhizosphere.

Given the complexity of P-cycling, a model that is able to simulate the major P-cycling processes
and link with other nutrients and factors, would be a useful tool to quantify the impact of nutrients,
soil moisture, field management practices and climatic conditions on crop growth and yields. There are
several field-scale and process-based P-cycling models which are either independent ICECREAM [16,17]
or modules integrated into other nutrient cycling models, e.g., ANIMO [18], APSIM [19], EPIC [20],
CENTURY [21] and its daily version DAYCENT [22], ecosys [23] and other unnamed models [24,25].
Daroub et al. [26] also developed a soil P module that operates with two comprehensive crop simulation
models within the DSSAT (Decision Support System for Agrotechnology Transfer) software [27]. Lewis
and McGechan [28] reviewed some of these models in terms of the concepts and constituent processes
and concluded that a comprehensive description of all processes relevant to P in soil should consider
transport of both soluble and particulate P, inorganic and organic P, as well as transformations from
one form of P to another following applications of both mineral fertiliser and manure P. However, they
also concluded that a mechanistic approach is too complex for incorporation into a systems model for
the whole range of P processes.

SPACSYS [29,30] is a field scale model with a flexible soil layer definition (layer number and
thickness of each defined layer), weather-driven, process-based and daily-time-step dynamic simulation
on plant growth and development, soil carbon (C) and N cycling, with water movement and heat
transfer. It has been used to investigate various issues, including nitrate leaching [31,32], root
systems [33], greenhouse gas emissions [30,34], soil C and N stock change [35] and the responses
of cropping/grassland systems to environmental changes [36,37]. However, it would be impossible
to accurately assess the impacts of general management practices (i.e., combined application of N
and P fertilisers) on agricultural systems using the SPACSYS model without incorporating P-cycling.
The objectives of this study were to describe a process-based P module added to the SPACSYS model
and to evaluate its predictive capability on the dynamics of P content in crops and the impact of soil P
status on crop growth via validation with a winter wheat field experiment conducted at Rothamsted
Research, Harpenden, UK, over two consecutive growing seasons between 2012 and 2014.

2. Results

Accurately estimating the dynamics of soil moisture is essential for quantifying crop growth and
nutrient cycling correctly. Simulated soil water content in separate soil layers over the growing seasons
were compared with discrete samplings (Figure 1). Both simulated results and observed data show
that soil moisture in the field of the Control treatment was higher than that of the P-added treatment,
especially in the sub-soil layer (23–46 cm). The model performance statistical analysis demonstrate
that the simulations followed the observed trend and reasonably matched the observed data (Table 1).
It was noted that there were abnormal observed values (over 60% in the topsoil layer and between
45–63% in the subsoil layer on 25 February 2014). The reason is that soil was too wet to be sieved.
Removal of the point, statistical analysis showed significantly improved model performance (Table 1).
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Figure 1. Comparison of soil water contents in the top (A: 0–23 cm) and the subsoil (B: 23–46 cm) 
between simulation and observation (three replications) covering two growing seasons for both 
Control and P added treatments. The error bars represent the standard deviation. 

Similarly to soil water content, both simulated and measured nitrate and ammonium content in 
the topsoil showed the same trend through the growing seasons. In general, the contents from the P 
added treatment were lower than those from the control, especially for nitrate (Figure 2). The 
measured nitrate content in the Control treatment was much higher than that in the P-added 
treatment. However, the simulations did not show this. In general, the simulation of nitrate content 
for the P added treatment was over-estimated but it was under-estimated for the Control treatment. 

Figure 1. Comparison of soil water contents in the top (A: 0–23 cm) and the subsoil (B: 23–46 cm)
between simulation and observation (three replications) covering two growing seasons for both Control
and P added treatments. The error bars represent the standard deviation.

Table 1. Model performance statistics on comparison between simulated and observed soil moisture in
top (0–23 cm) and sub (23–46 cm) soil layers (n = 15) (numbers in parenthesis are the result excluding
the unusual sample dated on 25 February 2014).

Statistical Element *
Topsoil Layer Subsoil Layer

P Added Control P Added Control

Correlation coefficient (r) 0.86 (0.94) 0.80 (0.89) 0.81 (0.96) 0.67 (0.92)
Modelling efficiency (EF) 0.59 (0.85) 0.52 (0.62) 0.60 (0.89) 0.35 (0.66)

Coefficient of determination (CD) 3.03 (1.22) 2.39 (0.75) 2.08 (0.80) 3.20 (0.63)
Relative error (RE, %) 14.0 (6.67) 13.49 (8.0) 8.24 (2.08) 11.57 (4.48)

RMSE (%) 35.1 (13.8) 29.1 (14.6) 26.3 (9.2) 31.6 (10.9)
RMSE95% 35.77 (39.82) 40.55 (44.31) 75.14 (59.03) 51.18 (48.58)

* If all simulated and observed values were the same, then r = 1.0; EF = 1; CD = 1; RE = 0; and RMSE = 0.
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Similarly to soil water content, both simulated and measured nitrate and ammonium content in
the topsoil showed the same trend through the growing seasons. In general, the contents from the P
added treatment were lower than those from the control, especially for nitrate (Figure 2). The measured
nitrate content in the Control treatment was much higher than that in the P-added treatment. However,
the simulations did not show this. In general, the simulation of nitrate content for the P added treatment
was over-estimated but it was under-estimated for the Control treatment.
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Figure 2. Comparison of nitrate (A) and ammonium (B) contents in the top soil (0–23 cm) between
simulation and observation (three replications) over the two growing seasons for both Control and P
added treatments. Error bars represent the standard deviation.

Overall, dynamics of aboveground dry matter for both treatments were simulated reasonably well
compared to the observed data (Table 2). The SPACSYS model over-estimated aboveground dry matter
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accumulation for the Control treatment in the first growing season but slightly under-estimated it for
the P added treatment in both seasons (Figure 3). However, the relative errors in final grain yield were
± 15%, with the smallest being only 5.5% for the P added treatment in the 2013–2014 growing season.
Furthermore, both simulations and observations showed a difference in dry matter accumulation,
especially after GS35 (stem elongation), between the treatments, which suggests that P supply from the
soils affected the growth rate. The model slightly over-estimated dry matter accumulation before GS35.

Table 2. Model performance statistics on comparisons between simulated and observed aboveground
dry matter and phosphorus content in dry matter (n = 14).

Statistical Element *
Aboveground Dry Matter P Content in Aboveground Biomass

P Added Control P Added Control

Correlation coefficient (r) 0.99 0.96 0.87 0.82
Modelling efficiency (EF) 0.88 0.91 0.59 0.59

Coefficient of determination (CD) 1.59 1.27 0.63 2.98
Relative error (RE, %) 20.5 −9.0 −1.77 −16.5

RMSE (%) 31.3 31.6 50.4 58.9
RMSE95% 117 275 155 300

* If all simulated and observed values were the same, then r = 1.0 EF = 1; CD = 1; RE = 0; and RMSE = 0.

Plants 2019, 8, x FOR PEER REVIEW 6 of 19 

grain yield were ± 15%, with the smallest being only 5.5% for the P added treatment in the 2013–2014 
growing season. Furthermore, both simulations and observations showed a difference in dry matter 
accumulation, especially after GS35 (stem elongation), between the treatments, which suggests that 
P supply from the soils affected the growth rate. The model slightly over-estimated dry matter 
accumulation before GS35. 

Table 2. Model performance statistics on comparisons between simulated and observed aboveground 
dry matter and phosphorus content in dry matter (n = 14). 

Statistical Element * 
Aboveground Dry 

Matter  
P Content in Aboveground 

Biomass 
P Added Control P Added Control 

Correlation coefficient (r) 0.99 0.96 0.87 0.82 
Modelling efficiency (EF) 0.88 0.91 0.59 0.59 

Coefficient of determination 
(CD) 

1.59 1.27 0.63 2.98 

Relative error (RE, %) 20.5 −9.0 −1.77 −16.5 
RMSE (%) 31.3 31.6 50.4 58.9 
RMSE95% 117 275 155 300 

* If all simulated and observed values were the same, then r = 1.0 EF = 1; CD = 1; RE = 0; and RMSE = 0. 

 
Figure 3. Simulated and observed (three replications) aboveground dry matter accumulation and leaf 
weight over two growing seasons. The error bars represent the standard deviation. 
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Figure 3. Simulated and observed (three replications) aboveground dry matter accumulation and leaf
weight over two growing seasons. The error bars represent the standard deviation.

Simulated P accumulation in aboveground biomass generally followed the observed trend (Table 2)
although it showed large discrepancies during the later growing stages. The observed P content in the
crop in the P added treatment showed an increase in P accumulation during the later growth stages
in the first growing season, but the simulation showed a decrease in rate of accumulation (Figure 4).
For the Control treatment, the model over-estimated P uptake before anthesis and under-estimated it
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after. The phosphorus content in leaves was over-estimated, which might be caused by the defined
partitioning coefficients of nutrients absorbed into various organs.
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3. Discussions

This study describes the testing of a P module for the SPACSYS model and demonstrates that
the SPACSYS model was able to investigate the interactions between C, N, P and water in a single
process-based model after the tested P module implemented. The advantage is to investigate not only
the dynamics of a single element but also the interactions between them, and in turn, their effects
on crop growth using a systems approach. The simulation results show reasonable agreement with
observed data in terms of aboveground dry matter accumulation and P content, dynamics of soil water,
soil inorganic forms of N and final grain yield under different soil P supply levels under varying climatic
conditions. However, large errors between the simulated and observed data occurred when weather
was abnormal, e.g., warmer, wetter and more sunshine hours over the 2013–2014 growing season.
In the model, however, the negative impact of excess soil water (or waterlogging) on crop growth and
partitioning was not considered. It was noted that soil ammonium content was over-estimated in
the field of the Control treatment (Figure 2B), which might imply that the soil mineralisation process
and the preference of ammonium update by winter wheat were exaggerated under lower soil P
concentration. The interaction of soil N and P dynamics under various environmental conditions
should be further investigated.

A review on the effects of waterlogging on wheat growth reported that root growth and physiology
are adversely affected by soil waterlogging [38]. A field experiment conducted in the UK showed that
winter waterlogging affected dry matter accumulation, shoot:root ratio and final yield of cv. Xi-19 [39].
In our study, wheat plants were subjected to saturated conditions during the winter in both growing
seasons (Figure 1), which should reduce plant net photosynthesis. Furthermore, plant growth might



Plants 2019, 8, 404 7 of 18

be subject to the impacts of pests and diseases. However, the model does not consider these. As a
result, the model may have over-estimated crop biomass accumulation during the period. During the
later stages of the second growing season, the net photosynthesis rate may have been over-estimated
because of the establishment of a larger canopy due to favourable weather conditions, which results
in enhanced nutrient uptake, accumulated dry matter and P content (Figure 3; Figure 4). There are
many processes involved in nutrient cycling further complicated by the interactions between the
processes and intricate relationships between these and environmental factors. It is inevitable that the
simulations generated from the model created some discrepancies in simulated data compared with
observed data. In order to understand and quantify the interaction between nutrients and the impact
of nutrient supply on crop growth and partitioning of photosynthate and absorbed nutrients, it might
be necessary to design new experiments to monitor nutrient contents in crop and soils under different
combinations of N and P supply.

The evidence showed that P plays a fundamental role in controlling resource allocation of plants
in response to nutrient enrichment [40]. The model captured the influence of P stress on wheat growth
and P content, and final grain yield and P content in grains were reasonably simulated. The simulations
suggest that the model estimated the dynamics of P uptake reasonably well (Table 2), which indicates
that soil P-cycling was correctly represented in the model. In the observed data, P content in grains
rapidly increased at the early stages of grain filling, which is similar to reported observations in rice [41].
Another independent experiment concluded that P deficiency affected harvest index and the root-shoot
ratio of barley after anthesis [42]. However, the rate of P remobilised from vegetative tissues to grains
was set to a constant in our model. This gave rise to a discrepancy between observed and simulated
P contents in grain. As this difference was generated within plants, it could be addressed in further
investigations into partitioning of P within the plant and its subsequent remobilisation.

4. Materials and Methods

4.1. Module of P-cycling

The SPACSYS model has been described elsewhere [29,30]. Only the P-cycling module is
considered here. In order to match P pools with soil organic C and N pools that were used in the
SPACSYS model, soil P was partitioned into soil P pools reflecting those used for soil organic C and N
pools as closely as possible. Phosphorus is considered to be present in ups to eight different pools
in the SPACSYS model based on its accessibility and extractability, and thus its availability to plants
(Figure 5).

Soluble P (Soluble P shown in Figure 5) with main compounds of PO4
3−, HPO4

2−, H2PO4
− is

immediately available for uptake by plant roots and can move with soil water in the soil matrix and
potentially can leach down the soil profile or be lost to surface waters, typically via subsurface drains.
Most of the soluble P taken up by plant roots during a growing season will probably have moved only
a few cm or less through the soil to the roots. Inorganic P compounds were divided into three pools
apart from the soluble P pool: the stable inorganic P pool (Stable P in Figure 5), the adsorbed P pool
and the precipitated P pool, the same as those suggested by Syers et al. [13]. The stable inorganic P
pool is strongly bonded and hardly available to plants P. The adsorbed P pool is inorganic phosphate
that is attached (or adsorbed) to small particles in the soil and may be released back to the soil solution.
The precipitated P pool (or fixed) contains inorganic phosphate compounds that are low in solubility.
Phosphate in this pool may remain in soils for years without being made available to plants and may
have very little impact on the soil fertility. The inorganic phosphate compounds in the precipitated P
pool are more crystalline in their structure and less soluble than those compounds in the stable P pool.
In the model, the transformation between inorganic P pools is reversible. Similarly to the inorganic
pools, the stable organic and active P pools (Stable Org P and Active P in Figure 5, respectively) are
two fractions of organic P. P in microbial biomass (Microbial P shown in Figure 5) is able to connect to
the mineral P pool through mineralisation/immobilisation. Mineral P is, in turn, transferred to soluble
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P via dissolution. The magnitude of the transfer depends on a maximum transfer rate that could
be determined with literature or experimental data. The equations and parameters for individual
processes in the P module are listed in the Appendix A.Plants 2019, 8, x FOR PEER REVIEW 9 of 19 
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water redistribution and heat transfer.

Mass flow, diffusion and root interception are potentially important processes whereby P arrives
at the root surface [43]. The uptake of P by plants is an active process that is mediated by specific
transport proteins [44]. To reflect the characteristics, the Barber-Cushman model [45,46] that simulates
nutrient uptake by roots was incorporated to replace the existing method in SPACSYS for estimating
nutrient uptake by plants. As root hairs can play an important role in P uptake [47,48], a modified
version of nutrient flux through a cylinder of soil to a root at the centre of the cylinder [49] was adopted:

∂Cl
∂t

=
1
r
∂
∂r

(
rDe
∂Cl
∂r

+
r0v0Cl

b
−

Ih
b

)
(1)

where Cl is the concentration of nutrient in the soil solution (µmol·cm−3), t is time (s), De is the effective
diffusion coefficient for nutrient diffusion through the soil (cm2

·s−1), ro is the mean root radius (cm), vo

is the mean water influx into the root at the root surface (cm−1), b is the buffer power of the nutrient
adsorbed on the solid phase for the nutrient in solution (-) and Ih is the uptake rate by root hairs per
unit volume of root hair zone (µmol·cm−3).

The uptake rate of a nutrient at the root is governed by a Michaelis-Menten type equation.
Therefore, Equation (1) could be transformed at the root surface (r = r0):

Imax(Cl −Cmin)

Km + Cl −Cmin
= Deb

∂Cl
∂r

+ v0Cl − Ih0 (2)
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Imax(Cl −Cmin)

Km + Cl −Cmin
= Deb

∂Cl
∂r

+ v0Cl − Ih0 (3)

where Imax is the maximal influx at high concentrations of the nutrient in solution (µmol·cm−2
·s−1),

Cmin is the concentration below which net nutrient influx ceases (µmol·cm−3), Km is the nutrient
concentration in solution minus Cmin where the net influx is one-half Imax (µmol·cm−3) and Iho is the
root hair nutrient uptake rate:

Ih0 =
Imaxh(Clh −Cmin)

Kmh + Clh −Cmin
(4)

where Imaxh is the Imax value for root hairs, Kmh is the Km value for root hairs and Clh is the nutrient
concentration at the root hair surface.

4.2. Linkage with Soil C and N Cycling and Plant Growth

The impact of soil P content on the decomposition rate of organic matter (Ddecom, gC·m−2
·d−1)

was introduced on top of the existing impact factors in the original version:

Ddecom = kmax·Dpool· ftemp· fwater·min( fCN, fCP) (5)

where kmax is the specific decomposition rate for a given organic matter pool (d−1), Dpool is the biomass of
the given organic matter pool (gC·m−2), ftemp and fwater are the response functions of the decomposition
process to temperature and the soil moisture, respectively; fCN and fCP are the unitless response
functions to the C:N and C:P ratios of the given organic matter pool, respectively, and were calculated
following Jones et al. [50]:

fCN =


1.0 (CN < 25)

e−0.693( CN−25
25 ) (CN ≥ 25)

(6)

where CN is the C:N ratio in the given organic matter pool.

fCP =


1.0 (CP < 200)

e−0.693( CP−200
200 ) (CP ≥ 200)

(7)

where CP is the C:P ratio in the given organic matter pool.
Daily canopy potential net photosynthesis is calculated based on the Hurley Pasture Model

(equation 3.2j) [51]. However, the leaf light saturated photosynthetic rate in the equation was modified
by the impact of leaf P content:

fP =



0 (Pcon ≤ Pmin)

Pcon−Pmin
Popt−Pmin

(Pmin < Pcon < Popt)

1
(
Pcon ≥ Popt

) (8)

where Pcon is the leaf P content (g P·g−1 dry matter) that is calculated from simulated P content in
leaves and accumulated leaf dry matter (DM), Popt is the optimal P content (g P·g−1 DM) above which
the rate is not limited by the leaf P content and Pmin is the minimum P content (g P·g−1 DM) below
which the rate is set to 0 because of the P stress. Both Popt and Pmin are variety specific.
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4.3. Site Description

To calibrate and validate the model, we used a winter wheat field experiment on the Exhaustion
Land plots, which is one of the classical experiments at Rothamsted Research in Harpenden (51◦49’N,
0◦21’W and 128 m a.s.l.) and situated on Hoosfield and the soil is classified as a Chromic Luvisol (FAO
classification) with silty clay loam texture top soil at a 2 m depth [52]. The experiment started in 1852.
Since then, the experiment has had several distinct phases in cultivar and fertiliser management [53].
The experimental setup consisted of two treatments: Control (No P was added) and P-added. Each
treatment had three replicate plots. The general characteristics of the 0–23 cm depth soils of the six plots
(25.6 × 6 m each) are shown in Table 3. From 1986–1992 triple superphosphate was applied 131 kg·ha−1

P on the plots for the P-added treatment. Since 1986, all the experimental plots have received annual
basal manuring at 300 kg N·ha−1 each growing season split into 50, 200 and 50 in March, April and
May, respectively, and 124.5 kg·ha−1 potassium, and 20 kg·ha−1 magnesium sulphate (Mg) every three
years (12 kg·ha−1 Mg annually since 2009). Since 2000, “maintenance” P has been applied to all the
P-added plots. This was applied as 20 kg P·ha−1 as triple superphosphate in autumn 2001–2008 and
15 kg P·ha−1 2009–2014. The P-added treatment received triple superphosphate supplying 15 kg P·ha−1

incorporated into the soil before wheat was sown in autumn. Winter wheat has been grown on the
plots since 1992 [53].

Table 3. General characteristics of the 0–23 cm soils of the six plots sampled of the Exhaustion
Land Experiment.

Control P Added

Main Plot No 3 7 9 Mean (SE) 3 7 9 Mean (SE)

pH (water) 7.2 6.2 7.2 6.82 (0.34) 6.5 6.4 7.1 6.6 (0.21)
Organic C (%) 1.03 0.89 0.86 0.93 (0.05) 1.17 1.04 0.94 1.05 (0.07)

CaCO3 (%) 0.55 0.05 0.52 0.37 (0.16) 0.06 0.14 0.42 0.21 (0.11)
Olsen-P (mg kg−1) 7.4 6.0 7.4 6.9 (0.47) 31.2 29.0 31.6 30.6 (0.81)
Total-P (mg kg−1) 399 351 368 373 (14.15) 596 588 566 584 (8.92)

Data were collected from the field experiments over two consecutive growing seasons (2012–2013
and 2013–2014). Weather data used for simulations were downloaded from the electronic Rothamsted
Archive. Daily maximum and minimum air temperatures and monthly precipitation during the
growing seasons were used (Figure 6). The weather conditions contrasted greatly in the two growing
seasons. Compared to the mean climatic conditions over the growing season between 1981 and 2010
with a mean temperature of 8.7 ◦C and a precipitation amount of 611 mm, the first growing season was
cooler (7.9 ◦C) and slightly wetter (672 mm) but the second season was warmer (10.1 ◦C) and wetter
(814 mm). Although the total amount of precipitation over the first growing season was similar to the
mean, there was more precipitation during the winter (October–December, 322 mm compared to a
mean of 228 mm) of 2012 and it was drier during the vigorous wheat growth period (April–July, 2013,
160 mm compared to a mean of 205 mm). Despite the wetter growing season in 2013–2014, the total
sunshine hours (1363 h) were higher than the mean (1243 h) and the first season (1268 h). In general,
weather conditions in the second growing season were unusual, whilst in the first season, they could
be described as ‘typical’.
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4.4. Treatments and Measurement

The winter wheat cultivar was Xi-19. Each treatment was replicated in three plots. Soil and plant
samples were taken at approximately four weekly intervals throughout the growth period of the wheat,
commencing at the Zadoks growth stage (GS) 13 (3 leaves unfolded) [54]. For each sample date, four
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0.5 m rows (0.25 m2) of wheat on each plot (without repetition) were removed at ground level using
secateurs. Soils were sampled using a 2.5 cm diameter stainless steel auger to two depths: 0–23 cm and
23–46 cm. Five cores were taken from each 0.25 m2 at each depth and aggregated.

Harvested wheat samples were washed thoroughly with deionised water to remove any soil
contamination. From GS 60 (beginning of anthesis) the wheat plants were separated into stems, leaves
and ears and analysed separately. Dry matter was determined by oven drying for 16 h at 80 ◦C.
The dried wheat samples were then ground to pass a 0.5 mm mesh using a Glen Creston Hammer Mill
and digested with high purity concentrated nitric and perchloric acids (85/15, v/v) in a heating block [55].
Total P concentrations in the plant tissue samples were determined using Inductively Coupled Plasma
Optical Emission Spectroscopy (ICP-OES, Perkin Elmer optima 7500 DV, Waltham, MA).

Soil nitrate and ammonium-N were determined on fresh < 4 mm sieved soil, using 2M potassium
chloride as an extractant. Samples were shaken for 2 h and then filtered through a Whatman No.1
filter paper. The supernatant was analysed using an automated colorimetric assay (Skalar SANPLUS
System; Skalar, Breda, The Netherlands). The remaining soil was further sieved to <2 mm and dry
matter was determined after oven drying for 16 h at 105 ◦C. Olsen P measurements were determined
in extractions from 5 g of air-dried soil with 0.5 M sodium bicarbonate at pH = 8.5 [56]. Soil samples
were shaken for 30 min on an orbital shaker (120 rpm, 20 ◦C), filtered through Whatman 42 filter paper.
Phosphorus in the bicarbonate solution was determined by a phospho-molybdenum blue method on
the Skalar SANPLUS System (continuous colourimetric flow analysis).

The measured nutrient concentrations and gravimetric water content of soils were converted into
total nutrient contents and volumetric water content using soil bulk density in order to compare them
directly with simulated results.

4.5. Parameterisation

The parameters used to describe crop growth and development are based on a previous study [33].
Those parameters were used directly in the simulations. SPACSYS was previously parameterised for
the processes of soil water, soil heat transformation, C and N cycling [57]. The data collected from
the sub-plot of main plot 3 (P added) during the first growing season (2012–2013) on aboveground
biomass accumulation and P content in leaves, stems and ears, were used to parameterise crop P
uptake, partitioning to leaves, stems and roots and translocation from leaves and stems to grains.

4.6. Statistical Analysis

The statistical methods [58] were used to evaluate the performance of the model by comparing
simulation results and observed data. Five statistical criteria were included: correlation coefficient
(r), root mean square error (RMSE), modelling efficiency (EF), relative error (RE) and the coefficient
of determination (CD). When a RMSE value is smaller than the RMSE value at the 95% confidence
level (RMSE95%), this indicates that the simulated values fall within the 95% confidence interval of the
measurements. An EF value of 1 means that the simulated values perfectly match the measured values.
The closer the model efficiency is to 1, the more accurate the model is. An RE value greater than the
RE value at the 95% confidence level indicates that the bias in the simulation is greater than the 95%
confidence interval of the measurement. The coefficient of determination (CD) is a measurement of the
proportion of the total variance in the observed data that is explained by the simulated data, and was
defined by [59]:

CD =

∑n
i=1

(
Oi −O

)2

∑n
i=1

(
Si −O

)2 (9)

where Oi are the observed data, Si are the simulated values, O is the mean of the observed data and n
is the number of samples. CD values can be greater than 1, which indicates that the model describes
the measured data better than the mean of the samples [58].



Plants 2019, 8, 404 13 of 18

Author Contributions: Conceptualization, L.W.; methodology, L.W.; investigation, M.B., S.D. and J.H.-A.; data
curation, S.D. and J.H.-A.; draft preparation L.W., S.D. and J.H.-A.; writing—review and editing, L.W., M.B., S.D.,
J.H.-A. and S.P.M.; funding acquisition, S.P.M.

Funding: This research was funded by the Biotechnology and Biological Sciences Research Council:
BBS/E/C/00005197, BBS/E/C/000I0310 and BBS/E/C/000I0320.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CD coefficient of determination
EF modelling efficiency
GS growth stage
r correlation coefficient
RE relative error
RMSE root mean square error

Appendix A Equations in the P module

Appendix A.1 P Mineralisation/Immobilisation

P gross mineralisation is calculated based on C:P ratio in microbial biomass:

MP−gross = Pmicrobial

(
1−

CPmicrobial
CPcritcal

)
(A1)

where CPcritical is critical C:P ratio above which immobilisation occurs, assumed as 28:1 [60], CPmicrobial is actual
C:P ratio in microbial biomass and Pmicrobial is P content in microbial biomass.

Appendix A.2 Dissolution

Dissolution of phosphate minerals occurs when the mineral dissolves and releases P. The algorithm to
estimate dissolution from mineral P to soluble P follows Jones et al. [50]:

Rla = kd ×

(
Pm ×

PAI
1− PAI

− Ps

)
× fT × fw (A2)

where kd is the rate constant for P movement between the two pools (d−1) and assumed to be 0.1 under optimum
temperature and moisture [61], Ps is soluble P content after fertilisation and incubation, usually for 6 months,
Pm is mineral P content, fT and fw are response functions of the process to soil temperature and soil moisture,
respectively, described in Jones et al. [50], and PAI is a P availability index that indicates how much mineral P
added to soil remains soluble P on reaching relative equilibrium, and expressed as [50]:

PAI =
Ps − Ps0

P f
(A3)

where Pso is the soluble P content before fertiliser was applied, and Pf is the amount of applied P. The parameter
increased with a decrease in CaCO3 and clay content, for the calcareous and highly weathered soils, respectively.
For slightly weathered soils, it increased with an increase in Pso, base saturation and pH [62].

No net movement between the two pools occurs when they are at equilibrium (Pm = Ps ×
1−PAI

PAI ). When Ps
is higher than its equilibrium concentration, Rla is positive; when Ps is lower, Rla is negative.

Appendix A.3 Precipitation/Weathering

Phosphate precipitation is a process in which P reacts with another substance to form a solid mineral.
Inorganic P precipitates with metal to salts (in acid soil with Al or Fe and Ca in neutral soil). In the current module,
only calcium phosphate precipitation was considered. Precipitated inorganic P can be solubilised by bacteria or
some plant exudates, named as the weathering process in the module.

Following the ANIMO model [18], precipitation of P takes place immediately when the concentration of the
solution exceeds a defined equilibrium buffer concentration (Peq, g P·m−3 soil). This precipitated mineral dissolves
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immediately when the concentration drops below Peq. For establishing this equilibrium concentration, ANIMO
uses the following relation based on the soil pH:

Peq = 0.135× 10−3
× 35−pH (A4)

Calcium phosphate precipitation is a very complex process involving various parameters. It depends on
calcium and phosphate ion concentrations, ionic strength, temperature, ion types, pH value and time (solid-solid
transformation) [63].

Appendix A.4 Sorption/Desorption

The phenomenon when soluble P is immobilised into solid forms is defined as sorption in the model. Its
reverse process is called desorption. The sorption process assumes that the processes of both absorption and
adsorption take place simultaneously. In the model, the two separate processes were not distinguished. Both of
them are categorised as sorption, i.e., soluble P being incorporated into a material of a different state and adhering
to the surface of another molecule and the molecules being attracted to or attached to solid particles, including
the soil. Following the method used in the SWAT model [64], the sorption rate from the soluble P pool to the
adsorbed P pool (Pos) was estimated:

Rsa=


Ps − Pos ×

PAI
1−PAI (Rsa ≥ 0)

0.1×
(
Ps − Pos ×

PAI
1−PAI

)
(Rsa < 0)

(A5)

If the value of Rsa is negative, then desorption occurs.

Appendix A.5 Transfer Between Easily Available P and Fixed P

Following Jones et al. [50], this model simulates slow inorganic P sorption by assuming that easily available
mineral P (Pia, defined as the adsorbed P pool in Figure 5) is in slow equilibrium with a stable mineral P pool (Pis).
At equilibrium, Pis is assumed to be four-times Pia. When not in equilibrium, the rate of movement (Ras) of P
between Pia and Pis is described by

Ras = kas × (4Pia − Pis) (A6)

where kas (d−1) is a rate constant for slow inorganic P adsorption and varies among soils. In calcareous soils, the
value ranges from 0.00073 to 0.00079 [65]. In non-calcareous soils, kas can be calculated from PAI [50]:

kas = e−1.77PAI−7.05 (A7)

Appendix A.6 Soluble P Loss Through Surface Runoff

The primary mechanism of P movement in the soil is by diffusion. Due to the low mobility of soluble P,
surface runoff will only partially interact with the soluble P stored in the top 10mm of soil. The amount of soluble
P loss (Ploss_surf, g P·m−2

·d−1) is estimated by

Ploss_sur f =
Rrunoff·Pcon

kr
(A8)

where Rrunoff is the surface runoff rate (mm·d−1), Pcon is soluble P concentration in the top 10 mm soil (g P·mm−1

water) and kr is the P soil partitioning coefficient (cm3
·g−1), i.e., the ratio of the soluble P concentration in the

surface 10 mm of soil to the concentration of soluble P in surface runoff.

Appendix A.7 Phosphorus Attached to Sediment In surface Runoff

Organic and mineral P attached to soil particles may be moved by surface runoff. The amount of P transported
with sediment (Ploss_sed, g P·m−2) is calculated with a loading function [66]:

Ploss_sed = Pconc_sed ∗ sed ∗ εp (A9)

where Pconc_sed is the concentration of P (the summation of all the P pools except the soluble P pool, g P·g−1

sediment) attached to sediment in the top 10 mm, sed is the sediment yield on a given day (g), εp is the P enrichment
ratio, defined as the ratio of the concentration of P transported with the sediment to the concentration of P in the
soil surface layer and expressed as [67]

εp = 0.78 ∗ (sedconc)
−0.2468 (A10)
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where sedconc is the concentration of sediment in surface runoff (g sediment·cm−3 water).

Appendix A.8 Phosphorus Leaching

Because of the low mobility of soluble P, P leaching from the soil profile (gP·m−2
·d−1) is estimated as

Ploss =
Pisconc
1000

·qd (A11)

where Pisconc is the concentration of soluble P in a given compartment (gP·m−3 water), qd is ground water flow
from the compartment (mm·m−2

·d−1) and the constant of 1000 is for a unit conversion.
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