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ABSTRACT 

In this work we study the potential of C-band SAR images to map ionosphere disturbances 

in the Arctic region. This region is a unique region for ionosphere studies due to the characteristics 

of the geomagnetic field. In particular, we focus on the SAR interferometry technique as means to 

measure the temporal variation of propagation delay in correspondence of ionosphere 

disturbances. This technique provides maps of propagation delay differences between the 

acquisition dates of the two coherent SAR images needed to estimate the propagation delay over 

the study area. The high spatial resolution of C-band SAR images, in the order of 25 meters could 

contribute to the study of spatial distribution of ionosphere disturbances. Digisondes, VLF/ELF 

receivers and the EISCAT radars in the available in the Arctic region provide the time of 

ionosphere disturbances due to the solar activity, monitored by the ACE satellite. This allows to 

select the SAR images to process to map the ionosphere disturbances. The typical spatial coverage 

and acquisition times of Sentinel-1 images over the Arctic region are reported. A numerical 

analysis is carried out to estimate the expected ionosphere propagation delay in Sentinel-1 

interferograms and so the potential of SAR interferometry to map the effects of ionosphere 

disturbances. 
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INTRODUCTION 

The last two decades have witnessed an astonishing development of Synthetic Aperture 

Radar (SAR) applications mainly in the C-band thanks to the regular acquisition plans and easy 

access of the European Space Agency (ESA) missions, Envisat/ASAR from 2002 up to 2012 and 

Sentinel-1 starting from 2014 and, in the Canadian Space Agency with the Radarsat-2 mission 

starting from 2007. The availability of a huge amount of C-band SAR images has spurred the use 

of SAR interferometry (InSAR) as a new space geodesy technique for the mapping of terrain 

displacements with a high spatial resolution and coverage, and a sub-centimeter precision of 

displacement measurements. The interferometric processing of time series of SAR images 

acquired over the same area, using the same acquisition geometry has demonstrated the concept 

of SAR interferometry as a new tool for the study of tectonics, landslides, subsidences, volcano 

and the measurements of displacements due to human activity as works in urban areas, water and 

oil pumping. All these applications pointed out the need to mitigate effects to due propagation in 

the atmosphere, mainly intended as temporal variations of propagation caused by the changes in 

the spatial variation of water vapor in troposphere. Recently, is has been recognized as SAR 
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interferometry can also become a tool for mapping of the high resolution of water vapor in 

atmosphere giving rise the development of the so-called SAR meteorology. This recent concept 

has mainly benefited from the availability of Sentinel-1 images characterized by a mean temporal 

baseline of six days, depending on the geographical location, a spatial resolution of about 25 meters 

and an even increased spatial coverage up to the scale of country size. In all above InSAR 

applications of C-band SAR images, the propagation delay in ionosphere was neglected due to 

both smaller delay in the C-band with respect to the L-band. However, the larger spatial coverage 

of Sentinel-1 pointed out the need to correct for ionospheric propagation delay even in C-band 

[Mateus et al., 2017]. Even if delay can be considered a second order correction in SAR 

interferograms, it becomes useful when providing precise maps of water vapor in atmosphere. The 

Total Electrom Content (TEC) maps made available by ionosphere community were used to 

computed the propagation delays at the acquisition times of the two SAR images used to generate 

the interferogram.  

In any case, Sentinel-1 images were not used so far for studies on ionosphere. The only 

papers on the detection of ionospheric effects in SAR images were based on the L-band SAR 

images [Meyer, 2011; Gomba, De Zan, 2017]. In particular, it was found that the propagation 

delay in atmosphere affects both the interferometric phase and the target position in SAR 

amplitude images. Furthermore more, specific effect as the Faraday rotation were detected in fully 

polarimetric SAR images (e.g. see the recent paper [Li et al., 2018] and reference therein). 

However, current L-band SAR missions do not have a regular acquisition plan as Sentinel-1 and 

this limits their use for systematic studies on ionosphere. 

The aim of this paper is to investigate the potential of Sentinel-1 image as a new tool for the 

study of ionosphere phenomena, with emphasis on disturbances which lead to significant 

variations of TEC and an important impact on space geodesy application of both SAR and Global 

Navigation Satellite Systems (GNSS). The Arctic regions is chosen as study area it is characterized 

by significant ionosphere disturbances. Furthermore, Sentinel-1 has a very short revisiting time 

over this area, o a few days, due its polar orbit. 

 

MATERIALS AND METHODS OF RESEARCH 

IONOSPHERE PROPERTIES AND DATA OVER THE STUDY AREA 

The spatial and temporal structure of ionosphere are primarily induced by the intensity of 

the solar radiation, electron density altitude distribution and geomagnetic field morphology. The 

solar radiation is the most important source in ionization processes which are shaping the temporal 

structure of the ionosphere.  Charged particles and electromagnetic radiation are the two main 

contributions of solar radiation to the properties of ionosphere. Although their influences vary 

spatially in terms of geographical location and altitude, we can generally speak about daytime and 

nighttime ionosphere.  

This vertical structure of ionosphere depends on the electron density vertical distribution and 

it depends on the day period. During daytime, the ionosphere is divided in three layers: F, E and 

D. The electron density is the largest in F-region while it attains a minimal value in the D-region. 

In the nighttime the lowest layers of ionosphere dissipate their electron density due to decrease of 

incoming solar radiation and, consequently, have a lower ionization. Significant differences in 

ionosphere are also observed moving from the equator toward the polar regions. These changes 

are due to morphology of the geomagnetic field, consequently, the ionosphere can be divided in 

equatorial, middle-latitude and polar ionosphere. 

The knowledge of all these variations is important not only to describe the quiet ionosphere 

but also to study the influences of different geophysical and astrophysical events and processes on 

local plasma characteristics which can be quasi-permanent, periodical and sudden in time.  For 

example, the influence of X-radiation on D-region perturbation is more important than on the upper 
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ionosphere1, while entering and penetration of charged particles depend on the geomagnetic field 

and their influence is the most important at polar region.  

In this paper we focus on the polar ionosphere above the Arctic and near Arctic regions. 

Their geophysical locations characterized by morphology of the magnetic field which allows more 

intensive charge particle penetration to the lowest ionospheric altitudes makes very interesting 

research of the charged particles effect on changes in the physical and chemical characteristics of 

this area. Bearing in mind the role of the ionosphere in the propagation of electromagnetic waves, 

this task is also of significant importance for practical applications.  

Fig. 1 shows the location of different stations deployed in Arctic and near-Arctic regions for 

ionosphere observations. In particular, we are interested in TEC measurements.   
 

         

 

Fig. 1. Location of digisondes stations (red diamonds), EISCAT radar (blue square),  

VLF/ELF receivers (green circle) over the Arctic region 

 

 
1 Todorović Drakul M., Čadež V.M., Bajčetić J., Blagojević D., Nina A. Behaviour of electron contentin the 

ionospheric D-region during solar X-ray flares. Serbian Astronomical Journal, 2016. V. 193. P. 11 ̶ 18. DOI: 

10.2298/SAJ160404006T 
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In fact, the high temporal sampling of the point-like measurements can help to detect TEC 

variations induced by the impact of charged particles impact and select the most suitable Sentinel-

1 images for the mapping of these effects at a much high spatial resolution. 

SAR INTERFEROMETRY: BASICS 

Synthetic Aperture Radar (SAR) interferometry relies on the processing of two SAR images 

of the same scene acquired by two spatially and/or temporally separated antennas. Many 

spaceborne SAR mission provide useful data for SAR interferometry applications. Usually, the 

satellite passes over the same area with a revisiting time giving the spatial baseline of the 

interferometric couple of SAR images, named master and slave, respectively. The distance 

between the two satellite orbits at the moment of SAR acquisitions is called spatial baseline. Both 

baselines affect the quality of the interferometric processing. In fact, the SAR interferogram, 

consisting in the phase image resulting from the processing of an interferometric pair of SAR 

images, is characterized by the interferometric coherence, depending on the scattering properties 

of the scene (e.g. vegetated areas are less coherent of urban areas) and temporal and spatial baseline 

(large baselines reduced the interferometric coherence) [Massonnet, 2018]. 

For each pair of coherent SAR images, the interferometric phase is computed as follows: 

 

 
( ) 122,1 SSatan conj=

                (1) 

 

where S1 and S2 are the two coherent complex-values SAR images acquired at times t1 and t2, 

respectively. 

The main application of SAR interferometry has been the measurement of terrain 

displacements. The Line-of-Sight (LoS) displacement D1,2 of a point P in the scene, occurred in 

the time interval [t1, t2] is related to the interferometric phase Δφ1,2 by the relationship: 
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where λ is the radar wavelength. The precision of displacement measurements depends on the 

accuracy of phase measurements and it can be a fraction of millimeter, if artifacts due to phase 

propagation in atmosphere are identified and corrected. However, if we use interferometric SAR 

images with a temporal baseline of a few days and we can neglect terrain displacements within 

this time interval, or we can model them and estimate their phase contribution to interferometric 

phase, the equation (2) provides the temporal change of propagation delay in atmosphere, between 

the acquisition times t1 and t2 1,2. 

 

RESULTS OF RESEARCH AND DISCUSSION, FINDINGS 

In this section we present a few results about estimation of variations in SAR signal delay 

before and during the time interval when an increase of charged particles entering in the 

atmosphere is observed on 31st May 2018 as recorded by ACE satellite3. According to the TEC 

time evolutions derived from data recorded by ionosondes located in Thromsѻ (Norway), Moscow 

(Russia) and Eielson (Alaska) before and during increasing of charge particles entering in the 

atmosphere4 we can see that TEC variations were significant for the first and third stations while 

 
1 Mateus P., Nico G., Tomé R., Catalao J., Miranda P.M.A. Experimental study on the atmospheric delay based on 

GPS, SAR interferometry, and numerical weather model data. IEEE Transactions on Geoscience and Remote Sensing, 

2013. V. 51. No 1. P. 6 ̶ 11. DOI: 10.1109/TGRS.2012.2200901 
2 Mateus P., Miranda P.M.A., Nico G., Catalao J., Pinto P., Tomé R. Assimilating InSAR maps of water vapor to 

improve heavy rainfall forecasts: a case study with successive storms. Journal of Geophysical Research: Atmospheres, 

2018. V. 123. No 7. P. 3341 ̶ 3355. DOI: 10.1002/2017JD027472 
3 See the URL ftp://sohoftp.nascom.nasa.gov/sdb/goes/ace/daily/20180531_ace_swepam_1m.txt 
4 Digisonde data are available at the URL http://giro.uml.edu/didbase/scaled.php 
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the Moscow station which was in the considered time period in night time did not detect TEC 

changes. In our analysis we estimated that TEC increases from about 5 to 20 TECU (it reaches 

about 37 TECU but in a short time period) above Thromsѻ and from 5 to 9 TECU above Eielson.  

Can the current Sentinel-1 acquisitions provide a coverage and temporal sampling to map 

the ionosphere disturbance locally detected by the ionosondes? Figures 2 and 3 try to answer this 

question. In particular, figure 2 shows the footprints of Sentinel-1 images over the Arctic region, 

emphasizing ascending and descending orbits. The corresponding acquisition times, measured 

with respect a reference image, are reported in figure 3. It is worth noting that mean revisiting time 

of Sentinel-1 images over Europe is of six days. This figure can increase over other geographical 

areas. Nevertheless, in correspondence of polar regions, the different orbits cross each other and 

the revisiting time over those regions is much smaller than six days. In particular, the analysis of 

figure 3 shows that the ionosphere disturbances over the whole Arctic can be sampled in time 

frequently during one day. 

 

 

Fig. 2. Footprint of Sentinel-1 images over the Arctic region.  

Ascending and descending passages are plot in red and blue, respectively 
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Fig. 3. Acquisition times of Sentinel-1 images over the Arctic region  

during a 4-day time interval:  

(top) Relative acquisition times, in hours, with respect to the first Sentinel-1 acquistion;  

(bottom) Boxplot of time intervals, in hours, between the different acquisitions 

 

A second question concerns the Sentinel-1 interferograms to detect the typical TEC 

variations observed during an ionosphere disturbance and so to provide high resolution maps of 

them to complement the spatially coarse information provided traditional techniques currently 

used. Figure 4 displays the propagation delay it would be measured in the C-band at the frequency 

of Sentinel-1 SAR in the case of TEC measured at the stations of Thromsѻ and Eielson before and 

during ionosphere disturbances on 31st May 2018. The propagation delay is computed as a function 

of the SAR look angles. The difference between the propagation delay before and during the 

ionosphere disturbance gives the signal that it should be measured in Sentinel-1 interferograms in 

order to detected and map the ionosphere disturbance. It can be observed that the disturbances over 

the Thromsѻ and Eielson stations would give a difference in the propagation delay larger than 270 

mm and 72 mm, respectively. In the case of Thromsѻ station, the change in the propagation delay 

would give rise up to about five fringes in a Sentinel-1 interferogram able to catch the maximum 

of the ionosphere disturbance. In the case of the Eielson station, the maximum number of fringes 

in a Sentinel-1 interferogram which map the peak of the disturbance would be of about one fringe 
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and a half. In both cases, the disturbance would be detectable in a Sentinel-1 interferogram. 

However, it is worth noting that the acquisition times of the master and slave images used to 

produce the interferogram are of key point as it is required that one of the two images be acquired 

during the maximum of ionosphere disturbance. 

 

 
 

 
 

Fig. 4. Temporal change of propagation delay before and during the ionosphere disturbance 

observed on 31st May 2018 over the Arctic regions: 

(top) Thromsѻ (Norway);  

(bottom) Eielson (Alaska) 
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