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1. Introduction

Noncommutative (NC) geometry provides a rich mathematical framework to modify the stan-
dard formalism of quantum field theory (QFT) in order to include quantum effects of spacetime
itself. There are various proposals of how to combine QFT and NC geometry, see e.g. the re-
view articles [1], but most of these approaches are restricted to the NC Euclidean space or to the
NC Minkowski spacetime. However, to address questions in NC cosmology and NC black hole
physics, where we expect interesting physical effects to occur, it is essential to formulate QFT on
NC curved spacetimes.

Since QFT on commutative curved spacetimes is formulated in an elegant way using the alge-
braic approach, see e.g. the monographs [2, 3], it is natural to proceed in this direction also in the
NC case. One practical advantage of this formulation is that it allows for a separate treatment of
algebraic aspects of QFTs and issues concerning the choice of quantum state. Recent approaches in
this direction are due to Dappiaggi, Lechner and Morfa-Morales [4] and myself and collaborators
[5, 6, 7]. In [4] Rieffel deformations of local algebras of observables along Killing flows have been
studied and applied to the construction of a deformed Dirac field on curved spacetimes. In our
approach [5, 6, 7] we have used methods from NC gravity [8, 9] to define an action functional for
a real scalar field on NC curved spacetimes and investigated the deformed wave equation and its
solution space in detail in terms of formal power series. We have shown by an explicit construction
that the solution space can be equipped with a (weak) symplectic structure, which allows us to
quantize these theories in terms of suitable ∗-algebras over the ring C[[λ ]]. Some first applications
of our approach to QFT on NC curved spacetimes have been studied in [6, 7].

The outline of the present proceedings article is as follows: In Section 2 we collect the required
tools from Drinfel’d twists and their associated NC geometry, which are mainly taken from [9]. We
define an action functional for a real and free scalar field on twist-deformed curved spacetimes in
Section 3 and derive the corresponding deformed wave operator. The deformed Green’s operators
are constructed in Section 4 and are applied in Section 5 to construct the space of real solutions
of the deformed wave equation, which is then equipped with a (weak) symplectic structure. The
quantization is performed in Section 6. As a new result we provide in Section 7 a theorem that
the deformed symplectic R[[λ ]]-module constructed in Section 5 is isomorphic, via a symplectic
isomorphism, to the formal power series extension of the undeformed symplectic vector space.
The consequences for the deformed QFT are discussed in Section 8. As another new element, we
develop throughout this paper a simplification of the formalism [5], where reality properties of the
deformed QFT are more obvious and which is easier to apply. The equivalence to [5] is shown in
the Appendix A. We conclude in Section 9.

Notation: In this article we work in a formal deformation quantization setting. This means that
we replace the field K = R or C by the commutative and unital ring K[[λ ]], where [[λ ]] denotes
formal power series in the deformation parameter λ . Elements of K[[λ ]] are given by K[[λ ]] 3 β =

∞

∑
n=0

λ n β(n), where β(n) ∈K for all n. The sum and product on K[[λ ]] reads, for all β ,γ ∈K[[λ ]],

β + γ :=
∞

∑
n=0

λ
n(β(n) + γ(n)) , β γ :=

∞

∑
n=0

λ
n

∑
m+k=n

β(m)γ(k) . (1.1)
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Let V be a vector space over K. Its formal power series extension V [[λ ]] can be equipped with
a K[[λ ]]-module structure by defining

v+ v′ :=
∞

∑
n=0

λ
n(v(n) + v′(n)) , β v :=

∞

∑
n=0

λ
n

∑
m+k=n

β(m) v(k) , (1.2)

for all β ∈ K[[λ ]] and v,v′ ∈ V [[λ ]]. A K[[λ ]]-module homomorphism (K[[λ ]]-linear map) is a
map between two K[[λ ]]-modules preserving the K[[λ ]]-module structure. Note that a family of
K-linear maps P(n) : V →W , n ∈ N0, induces a K[[λ ]]-linear map P? : V [[λ ]]→W [[λ ]] by defining
for all v ∈V [[λ ]]

P?(v) :=
∞

∑
n=0

λ
n

∑
m+k=n

P(m)(v(k)) . (1.3)

We shall use the notation P? = ∑λ nP(n). The other way around, let P? : V [[λ ]]→W [[λ ]] be a
K[[λ ]]-linear map, then it gives rise to a family of K-linear maps P(n) : V →W , n ∈ N0, defined by
P(n)(v) :=

(
P?(v)

)
(n), for all v ∈V . P? can be expressed in terms of the P(n) by (1.3)1.

A (weak) symplectic R[[λ ]]-module (W,ρ) is an R[[λ ]]-module W with an antisymmetric and
R[[λ ]]-bilinear map ρ : W ×W →R[[λ ]], such that ρ(ϕ,ψ) = 0 for all ψ ∈W implies ϕ = 0. Sim-
ilar to [3] we suppress the term weak in the following. An R[[λ ]]-linear map between symplectic
R[[λ ]]-modules, which preserves the symplectic structure, will be simply called a symplectic map.

2. Basics on Drinfel’d twist deformed differential geometry

We follow the approach of [8, 9] and refer to these works for details. Let M be a smooth
manifold and let Ξ be the complexified vector fields on M . A Drinfel’d twist is an invertible
element F ∈

(
UΞ⊗UΞ

)
[[λ ]], where UΞ is the universal enveloping algebra of Ξ, satisfying

F12(∆⊗ id)F = F23(id⊗∆)F , (2.1a)

(ε⊗ id)F = 1 = (id⊗ ε)F , (2.1b)

F = 1⊗1+O(λ ) , (2.1c)

where F12 := F ⊗1 and F23 := 1⊗F . The map ∆ : UΞ[[λ ]]→
(
UΞ⊗UΞ

)
[[λ ]] is the canonical

coproduct and ε : UΞ[[λ ]]→ C[[λ ]] is the canonical counit. We denote the inverse twist by (sum
over α understood)

F−1 = f̄ α ⊗ f̄α ∈
(
UΞ⊗UΞ

)
[[λ ]] . (2.2)

To simplify our investigations we demand the twist to be real, i.e. F ∗⊗∗ = (S⊗ S)F21, and
to satisfy S( f̄ α) f̄α = 1, where S : UΞ[[λ ]]→ UΞ[[λ ]] is the canonical antipode. Note that the
so-called abelian twists [10, 11]

Fabelian = exp
(
− iλ

2
Θ

abXa⊗Xb

)
, (2.3)

1The K[[λ ]]-linear maps P? and (1.3) constructed by the P(n) are identical when acting on polynomials V [λ ]. Em-
ploying the λ -adic topology, one finds that V [λ ] is dense in V [[λ ]] and that all K[[λ ]]-linear maps Q : V [[λ ]]→W [[λ ]]
are continuous. Thus, the maps are identical on V [[λ ]].
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where Xa ∈ Ξ are mutually commuting real vector fields and Θab is real, constant and antisymmet-
ric, are part of the Drinfel’d twists we consider.

The commutative algebra of smooth complex valued functions A =
(
C∞(M ), ·

)
is deformed

into a NC associative algebra A? :=
(
C∞(M )[[λ ]],?

)
by introducing the ?-product

h? k := f̄ α(h) · f̄α(k) , (2.4)

for all h,k ∈ C∞(M )[[λ ]]. The vector fields act on functions via the Lie derivative. Due to the
reality property of the twist the ?-product is hermitian, i.e. (h? k)∗ = k∗ ?h∗, for all h,k ∈A?.

Similarly, we deform the differential calculus (Ω•,∧,d) of differential forms on M into a
deformed differential calculus Ω•? := (Ω•[[λ ]],∧?,d). The deformed wedge product is defined by

ω ∧? ω
′ := f̄ α(ω)∧ f̄α(ω ′) , (2.5)

for all ω,ω ′ ∈ Ω•[[λ ]]. The vector fields act via the Lie derivative on differential forms. It turns
out that the undeformed exterior differential d satisfies the Leibniz rule

d(ω ∧? ω
′) = (dω)∧? ω

′+(−1)deg(ω)
ω ∧? (dω

′) , (2.6)

for all ω,ω ′ ∈Ω•[[λ ]], since Lie derivatives commute with d. Note that the space of formal power
series of n-forms Ωn

? := Ωn[[λ ]] is an A?-bimodule, where the left and right A?-action is provided
by the deformed wedge product.

We deform the vector fields Ξ into an A?-bimodule of deformed vector fields Ξ? := Ξ[[λ ]] by
employing the deformed left and right A?-action

h? v := f̄ α(h) f̄α(v) , v?h := f̄ α(v) f̄α(h) , (2.7)

for all h ∈ A? and v ∈ Ξ?. The action of the twist on Ξ[[λ ]] is given by the Lie derivative. The
duality pairing between vector fields and one-forms can also be deformed by

〈v,ω〉? :=
〈

f̄ α(v), f̄α(ω)
〉

, (2.8)

for all v∈Ξ? and ω ∈Ω1
?. The ?-pairing with v on the right and ω on the left is defined analogously.

One obtains the following relevant property by using identities of the twist

〈h? v? k,ω ? l〉? = h? 〈v,k ?ω〉? ? l , (2.9)

for all h,k, l ∈A?, v ∈ Ξ? and ω ∈Ω1
?.

Employing the ?-tensor product

τ⊗? τ
′ := f̄ α(τ)⊗ f̄α(τ ′) , (2.10)

we can deform the tensor algebra (T ,⊗) over A generated by Ξ and Ω1 into the tensor algebra
(T?,⊗?) over A? generated by Ξ? and Ω1

?. The relation (2.9) extends to the ?-tensor algebra〈
τ⊗? v?h,ω⊗? τ

′〉
?
= τ⊗? 〈v,h?ω〉? ? τ

′ , (2.11)

for all h ∈A?, v ∈ Ξ?, ω ∈Ω1
? and τ,τ ′ ∈T?.
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The integral over top-forms ω ∈ Ω
dim(M )
? is defined by

∫
M ω := ∑λ n ∫

M ω(n). Due to the
assumption S( f̄ α) f̄α = 1 the integral satisfies the graded cyclicity property [12]∫

M
ω ∧? ω

′ = (−1)deg(ω)deg(ω ′)
∫

M
ω
′∧? ω =

∫
M

ω ∧ω
′ , (2.12)

for all ω,ω ′ ∈Ω•? with deg(ω)+deg(ω ′) = dim(M ) and supp(ω)∩ supp(ω ′) compact2.

3. Deformed action functional and wave operator for a free and real scalar field

Using the tools of Section 2 we are in the position to construct a deformed action functional
for a free and real scalar field Φ. For this we additionally require a metric field and a volume form.
Consider a classical Lorentzian manifold (M ,g) with metric field g ∈Ω1⊗Ω1 and corresponding
volume form volg ∈ Ωdim(M ). To be as general as possible we consider as the deformed metric
field and volume form elements g? ∈ Ω1

?⊗? Ω1
? and vol? ∈ Ω

dim(M )
? only subject to the conditions

g∗? = g?, vol∗? = vol?, g?|λ=0 = g and vol?|λ=0 = volg. The ?-inverse deformed metric field g−1
? ∈

Ξ?⊗? Ξ?, defined by 〈g−1
? ,〈g?,v〉?〉? = v and 〈g?,〈g−1

? ,ω〉?〉? = ω for all v∈Ξ? and ω ∈Ω1
?, exists,

is hermitian and satisfies g−1
? |λ=0 = g−1. We follow [5] and define

S?[Φ] :=−1
2

∫
M

(〈〈
dΦ,g−1

?

〉
?
,dΦ

〉
?
+M2

Φ?Φ

)
?vol? . (3.1)

Varying this action by functions δΦ of compact support we obtain the top-form valued wave oper-
ator

P̃?(ϕ) :=
1
2

(
�?(ϕ)?vol? +vol? ?

(
�?(ϕ∗)

)∗−M2
ϕ ?vol?−M2vol? ?ϕ

)
. (3.2)

Employing the C[[λ ]]-module isomorphism ?g : C∞(M )[[λ ]]→ Ωdim(M )[[λ ]] , h 7→ hvolg, given
by the undeformed Hodge operator corresponding to g we define a scalar valued operator P? :
C∞(M )[[λ ]]→C∞(M )[[λ ]] by P? := ?−1

g ◦ P̃?. The wave operator P? is formally self-adjoint with
respect to the undeformed scalar product(

ϕ,ψ
)

:=
∫

M
ϕ
∗

ψ volg . (3.3)

More precisely, (
ϕ,P?(ψ)

)
=
(
P?(ϕ),ψ

)
(3.4)

holds true for all ϕ,ψ ∈C∞(M )[[λ ]] with supp(ψ)∩ supp(ϕ) compact.

Remark 1. The definition of the scalar valued wave operator is different to [5]. In [5] we have used
the deformed Hodge operator ?? : C∞(M )[[λ ]]→ Ωdim(M )[[λ ]] , h 7→ h ? vol?, to extract a scalar
valued operator from P̃? (3.2). The resulting operator was formally self-adjoint with respect to the
deformed scalar product (ϕ,ψ)? =

∫
M ϕ∗ ?ψ ?vol?. Since the map ι := ?−1

g ◦?? : C∞(M )[[λ ]]→
C∞(M )[[λ ]] is a C[[λ ]]-module isomorphism, the theory we are going to construct in the follow-
ing is completely equivalent to the one in [5], but has the advantage that reality properties of the
deformed QFT are more obvious in the present formulation. We show the equivalence of both
formulations in the Appendix A.

2Let ω := ∑λ nω(n) ∈ Ω•[[λ ]] and ω ′ := ∑λ nω ′(n) ∈ Ω•[[λ ]]. The statement supp(ω)∩ supp(ω ′) compact is an

abbreviation for supp(ω(n))∩ supp(ω ′(m)) compact for all n,m ∈ N0.

5
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4. The deformed Green’s operators

In this section we assume (M ,g) to be a time-oriented, connected and globally hyperbolic
Lorentzian manifold. Guided by Section 3 we consider C[[λ ]]-linear maps P? : C∞(M )[[λ ]]→
C∞(M )[[λ ]], which are deformations of normally hyperbolic operators, i.e. P?|λ=0 is normally
hyperbolic. This allows us to treat also more general wave operators than the deformed Klein-
Gordon operators of Section 3. We can write P? as a formal power series of operators

P? :=
∞

∑
n=0

λ
nP(n) . (4.1)

From the considerations in Section 3 we find that it is natural to demand P? to be formally self-
adjoint with respect to the undeformed scalar product (3.3) and to be real, i.e. (P?(ϕ))∗ = P?(ϕ∗)
for all ϕ ∈C∞(M )[[λ ]]. Furthermore, we demand P(n) to be finite-order differential operators for
all n ∈ N.

An interesting question is the existence and uniqueness of deformed Green’s operators ∆?± :
C∞

0 (M )[[λ ]]→ C∞(M )[[λ ]] corresponding to P?. These operators will play an important role in
the construction of the deformed QFT. Based on the strong results for the λ 0-part [3], we have
shown in [5] that the deformed Green’s operators exist, provided we assume a support condition on
the NC corrections P(n), n > 0.

Theorem 1 ([5]). Let (M ,g) be a time-oriented, connected and globally hyperbolic Lorentzian
manifold. Let P? := ∑λ nP(n) be a formal deformation of a normally hyperbolic operator acting on
C∞(M )[[λ ]], where for n > 0 the P(n) : C∞(M )→C∞

0 (M ) are finite-order differential operators.
Then there exist unique deformed Green’s operators ∆?± := ∑λ n∆(n)± satisfying

P? ◦∆?± = idC∞
0 (M ) , (4.2a)

∆?± ◦P?

∣∣
C∞

0 (M )[[λ ]] = idC∞
0 (M ) , (4.2b)

supp(∆(n)±(ϕ))⊆ J±(supp(ϕ)) , for all n ∈ N0 and ϕ ∈C∞
0 (M ) , (4.2c)

where J± is the causal future/past with respect to the classical metric g.
The explicit expressions for ∆(n)±, n > 0, read

∆(n)± =
n

∑
k=1

n

∑
j1=1

. . .
n

∑
jk=1

(−1)k
δ j1+···+ jk,n ∆± ◦P( j1) ◦∆± ◦P( j2) ◦ · · · ◦∆± ◦P( jk) ◦∆± , (4.3)

where δn,m is the Kronecker-delta.

The support condition P(n) : C∞(M )→C∞
0 (M ) is a remnant of the formal power series con-

struction and it is sufficient to make all compositions in (4.3) well-defined. Similar issues occur
in perturbative QFT, where one has to assume the interaction to be of compact support. For the
deformed Klein-Gordon operator of Section 3 the support condition is satisfied for the following
two scenarios: 1.) we deform by twists of compact support 2.) the vector fields entering the twist
are asymptotic (outside a region of compact support) Killing vector fields of g?. In other cases
we require, similar to perturbative QFT, an infrared regularization in terms of compactly supported
deformations.

6
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Next, we study properties of the deformed retarded-advanced Green’s operator given by the
C[[λ ]]-linear map

∆? := ∆?+−∆?− : C∞
0 (M )[[λ ]]→C∞

sc(M )[[λ ]] , (4.4)

where C∞
sc(M ) are the functions of spatially compact support. The importance of this map lies

in the fact that it defines the covariant Poisson bracket relations (i. e. the Peierls bracket relations)
of classical field theory and the canonical commutation relations of QFT. We have obtained the
following

Theorem 2 ([5]). Let (M ,g) be a time-oriented, connected and globally hyperbolic Lorentzian
manifold and let P? and ∆?± be as above. Then the sequence of C[[λ ]]-linear maps

0−→C∞
0 (M )[[λ ]] P?−→C∞

0 (M )[[λ ]] ∆?−→C∞
sc(M )[[λ ]] P?−→C∞

sc(M )[[λ ]] (4.5)

is a complex, which is exact everywhere.

This theorem provides us information on the solution space of the deformed wave equation,
i.e. the functions Φ ∈C∞

sc(M )[[λ ]] satisfying P?(Φ) = 0. Combining this information, we find that
the factor space C∞

0 (M )[[λ ]]/P?[C∞
0 (M )[[λ ]]] is isomorphic, as a C[[λ ]]-module, to the space of

complex solutions of the deformed wave equation SolCP?
. The isomorphism is given by the map

I C
? : C∞

0 (M )[[λ ]]/P?[C∞
0 (M )[[λ ]]]→ SolCP?

, [ϕ] 7→ ∆?(ϕ) , (4.6)

which is well-defined since ∆? ◦P? = 0 when acting on C∞
0 (M )[[λ ]].

5. The space of real solutions of the deformed wave equation

Since our purpose is to describe a real scalar field we have to restrict SolCP?
to the space of real

solutions, denoted by SolRP?
. Due to our new definition of the deformed scalar valued wave operator,

see Remark 1, this task turns out to be simpler than the construction presented in [5]. Since the
wave operator P? and the Green’s operators ∆?± are real, we find the isomorphism

I? : C∞
0 (M ,R)[[λ ]]/P?[C∞

0 (M ,R)[[λ ]]]→ SolRP?
, [ϕ] 7→ ∆?(ϕ) . (5.1)

We define V? := C∞
0 (M ,R)[[λ ]]/P?[C∞

0 (M ,R)[[λ ]]].
The next step is to show that V? carries a symplectic structure. We define the R[[λ ]]-bilinear

map

ω? : V?×V?→ R[[λ ]] , ([ϕ], [ψ]) 7→ ω?([ϕ], [ψ]) =
(
ϕ,∆?(ψ)

)
, (5.2)

where we have employed the scalar product (3.3). Analogously to [5] one shows that ω? is weakly
non-degenerate and antisymmetric.

We summarize the result of this section in the following

Proposition 1. Let (M ,g) be a time-oriented, connected and globally hyperbolic Lorentzian man-
ifold and let P? and ∆?± be as above. Then there is a canonically associated symplectic R[[λ ]]-
module (V?,ω?), where V? = C∞

0 (M ,R)[[λ ]]/P?[C∞
0 (M ,R)[[λ ]]] and ω? is given in (5.2).

Note that since V? is isomorphic to SolRP?
via (5.1) this means that the space of real solutions

of the deformed wave equation can be equipped with a symplectic structure.

7
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6. Canonical quantization

Guided by the algebraic approach to commutative QFTs, see e.g. [3], we quantize the sym-
plectic R[[λ ]]-module (V?,ω?) using suitable ∗-algebras of field observables. Since our present
focus is on formal deformation quantization, the preferred choice of an algebra of observables is
the ∗-algebra of field polynomials and not the Weyl algebra. This is due to the fact that formal
power series prohibit the use of C∗-algebras. For a review on algebras, states and representations
in deformation quantization see [13]. We make the following

Definition 1. Let (W,ρ) be a symplectic R[[λ ]]-module. A unital ∗-algebra over C[[λ ]] is called
∗-algebra of field polynomials A(W,ρ), if it is generated by the elements Φ(ϕ), ϕ ∈W , subject to
the relations

Φ(β ϕ + γ ψ) = β Φ(ϕ)+ γ Φ(ψ) , (6.1a)

Φ(ϕ)∗ = Φ(ϕ) , (6.1b)

[Φ(ϕ),Φ(ψ)] = iρ(ϕ,ψ)1 , (6.1c)

for all ϕ,ψ ∈W and β ,γ ∈ R[[λ ]].

A state on a unital ∗-algebra A over C[[λ ]] is a C[[λ ]]-linear map Ω : A→ C[[λ ]] satisfying

Ω(1) = 1 , (6.2a)

Ω(a∗ a)≥ 0 , ∀a ∈ A . (6.2b)

The ordering on R[[λ ]] is defined by

R[[λ ]] 3 γ =
∞

∑
n=n0

λ
n
γ(n) > 0 :⇐⇒ γ(n0) > 0 . (6.3)

The observables for the deformed QFT are given by the algebra A(V?,ω?). Due to the relations
(6.1) it is natural to interpret Φ(ϕ) as smeared field operators “ Φ(ϕ) =

∫
M Φϕ volg ”. Fixing a

state Ω? on A(V?,ω?) we can use the formal GNS construction outlined in [13] to represent A(V?,ω?)

on a pre-Hilbert space over C[[λ ]]. The choice of state Ω? for the deformed QFT is, similar to the
commutative case, in general highly nonunique. However, as we will show in Section 8, there is a
way to induce states on the algebra A(V?,ω?) by pulling-back states Ω of the commutative QFT.

7. Symplectic isomorphisms

In this section we provide a theorem showing that the deformed symplectic R[[λ ]]-module
(V?,ω?) is isomorphic, via a symplectic isomorphism, to the formal power series extension of the
undeformed symplectic vector space (V [[λ ]],ω), where V := C∞

0 (M ,R)/P[C∞
0 (M ,R)] and

ω : V [[λ ]]×V [[λ ]]→ R[[λ ]] , ([ϕ], [ψ]) 7→ ω([ϕ], [ψ]) =
(
ϕ,∆(ψ)

)
. (7.1)

Here P = P?|λ=0 is the undeformed wave operator and ∆ = ∆?|λ=0 is the corresponding undeformed
retarded-advanced Green’s operator. Analogously to (5.1) we have the isomorphism

I : V [[λ ]]→ SolRP , [ϕ] 7→ ∆(ϕ) . (7.2)

8
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Lemma 1. The maps T± : SolRP?
→ SolRP defined by

T± := idC∞
sc(M ) + t± = idC∞

sc(M ) +∆± ◦
∞

∑
n=1

λ
n P(n) (7.3)

are R[[λ ]]-module isomorphisms.

Proof. The compositions ∆± ◦P(n) are well-defined due to the support condition on P(n), n > 0.
Additionally, the maps ∆± ◦P(n) are real for all n > 0. The composition of P and T± is given by

P◦T± = P+P◦∆± ◦
∞

∑
n=1

λ
n P(n) = P+

∞

∑
n=1

λ
n P(n) =

∞

∑
n=0

λ
n P(n) = P? , (7.4)

where we have used that P◦∆± = idC∞
0 (M ). Thus, for all Φ ∈ SolRP?

we have T±(Φ) ∈ SolRP .
The inverse of T± is constructed by the geometric series

T−1
± =

(
idC∞

sc(M ) + t±
)−1 =

∞

∑
m=0

(−t±)m (4.3)= idC∞
sc(M )−∆?± ◦

∞

∑
n=1

λ
n P(n) (7.5)

and satisfies

P? ◦T−1
± = P?−P? ◦∆?± ◦

∞

∑
n=1

λ
n P(n) = P?−

∞

∑
n=1

λ
n P(n) = P , (7.6)

where we have used that P? ◦∆?± = idC∞
0 (M ). Thus, for all Φ ∈ SolRP we have T−1

± (Φ) ∈ SolRP?
.

It turns out that in general T+ and T− differ. To see this let Φ ∈ SolRP?
be arbitrary. Due to

Theorem 2 there is a ϕ ∈C∞
0 (M ,R)[[λ ]], such that Φ = ∆?(ϕ). We obtain

T+(Φ)−T−(Φ) = ∆

(
∞

∑
n=1

λ
n P(n) (∆?(ϕ))

)
=−∆(P(∆?(ϕ))) . (7.7)

The difference between T+ and T− is thus given by the operator ∆◦P◦∆?. Notice that this operator
is not zero in general, since the relation ∆◦P = 0 just holds when acting on functions of compact
support, while ∆? maps to functions of noncompact support. To be more explicit we expand the
operator ∆◦P◦∆? to first order in λ by using Theorem 1 and find

∆◦P◦∆? = ∆◦P◦
(
∆−λ (∆+ ◦P(1) ◦∆+−∆− ◦P(1) ◦∆−)

)
+O(λ 2)

=−λ ∆◦P(1) ◦∆+O(λ 2) . (7.8)

Since P(1) comes from the choice of deformation, while ∆ describes the commutative dynamics,
these operators are independent and ∆◦P◦∆? in general does not vanish.

Remark 2. The maps T± can be interpreted as retarded/advanced isomorphisms, since they depend
on the retarded/advanced Green’s operators. Due to the support property of ∆± and the support
condition on P(n), n > 0, we obtain order by order in λ that T±(Φ) is equal to Φ for sufficiently
small/large times, i.e. for t→∓∞.
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Employing the isomorphisms T±, the isomorphism I? (5.1) and its commutative counterpart
I (7.2), we obtain the R[[λ ]]-module isomorphisms T± := I −1 ◦ T± ◦I? : V? → V [[λ ]]. We
can map the deformed symplectic R[[λ ]]-module (V?,ω?), via a symplectic isomorphism, to the
symplectic R[[λ ]]-module (V [[λ ]], ω̂?), where by definition

ω̂?

(
[ϕ], [ψ]

)
:= ω?

(
T−1
±
(
[ϕ]
)
,T−1
±
(
[ψ]
))

, (7.9)

for all [ϕ], [ψ] ∈V [[λ ]]. This expression can be simplified and we obtain

ω̂?

(
[ϕ], [ψ]

)
=
(

T−1
± ([ϕ]),∆?

(
T−1
± ([ψ])

))
=
(

T−1
± ([ϕ]),T−1

±
(
∆(ψ)

))
=
(

T−1†
±
(
T−1
± ([ϕ])

)
,∆(ψ)

)
=−

(
∆
(
T−1†
±
(
T−1
± ([ϕ])

))
,ψ
)

, (7.10)

where we have used the adjoint map

T−1†
± = idC∞

0 (M )−
∞

∑
n=1

λ
n P(n) ◦∆?∓ (7.11)

and that ∆ is antihermitian. Defining the map ∆̂? : C∞
0 (M ,R)[[λ ]]→ SolRP by

∆̂? := ∆◦T−1†
± ◦I −1

? ◦T−1
± ◦∆ (7.12)

we have for all [ϕ], [ψ] ∈V [[λ ]]

ω̂?

(
[ϕ], [ψ]

)
=
(
ϕ, ∆̂?(ψ)

)
. (7.13)

Analogously to (5.1) and (7.2) we define the isomorphism

Î? : V [[λ ]]→ SolRP , [ϕ] 7→ ∆̂?(ϕ) . (7.14)

We obtain the following

Theorem 3. The map S : V [[λ ]]→V [[λ ]] defined by S =
∞

∑
n=0

λ nS(n), where

S(0) = idV , (7.15a)

S(1) =
1
2
I −1 ◦ Î(1) , (7.15b)

S(n) =
1
2

(
I −1 ◦ Î(n)−

n−1

∑
m=1

S(m) ◦S(n−m)

)
, ∀n≥ 2 , (7.15c)

provides a symplectic isomorphism between (V [[λ ]], ω̂?) and (V [[λ ]],ω), i.e. for all [ϕ], [ψ] ∈
V [[λ ]] we have ω̂?([ϕ], [ψ]) = ω(S[ϕ],S[ψ]).

Proof. The map S is invertible, since it is a formal deformation of the identity map. Let [ϕ], [ψ] ∈
V [[λ ]] be arbitrary. We obtain

ω(S[ϕ],S[ψ]) =
∞

∑
n=0

λ
n

∑
m+k+i+ j=n

ω(S(m)[ϕ](k),S(i)[ψ]( j))

=
∞

∑
n=0

λ
n

∑
k+ j+l=n

∑
m+i=l

ω(S(m)[ϕ](k),S(i)[ψ]( j)) . (7.16)
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Note that for all [ϕ], [ψ] ∈V we have ω([ϕ],S(0)[ψ]) = ω(S(0)[ϕ], [ψ]) (trivially) and

ω([ϕ],S(1)[ψ]) =
1
2

ω̂(1)([ϕ], [ψ]) =−1
2

ω̂(1)([ψ], [ϕ]) = ω(S(1)[ϕ], [ψ]) . (7.17)

By induction it follows that ω([ϕ],S(n)[ψ]) = ω(S(n)[ϕ], [ψ]) for all n≥ 0.
Using this, the inner sum of (7.16) reads

∑
m+i=l

ω(S(m)[ϕ](k),S(i)[ψ]( j)) = ω([ϕ](k),
l

∑
m=0

S(m) ◦S(l−m)[ψ]( j)) . (7.18)

It remains to simplify the map ∑
l
m=0 S(m) ◦S(l−m). For l = 0 this is simply the identity map and for

l = 1 it reads 2S(1) = I −1 ◦ Î(1). For l ≥ 2 we find

l

∑
m=0

S(m) ◦S(l−m) = 2S(l) +
l−1

∑
m=1

S(m) ◦S(l−m) = I −1 ◦ Î(l) . (7.19)

Thus, (7.16) reads

ω(S[ϕ],S[ψ]) =
∞

∑
n=0

λ
n

∑
k+ j+l=n

ω([ϕ](k),I
−1 ◦ Î(l)[ψ]( j)) = ω̂?([ϕ], [ψ]) . (7.20)

As a direct consequence we obtain

Corollary 1. The maps S± := S◦T± : V?→V [[λ ]] are symplectic isomorphisms between (V?,ω?)
and (V [[λ ]],ω), i.e. ω

(
S±([ϕ]),S±([ψ])

)
= ω?

(
[ϕ], [ψ]

)
for all [ϕ], [ψ] ∈V?.

8. Consequences of the symplectic isomorphisms

In this section we study consequences of the symplectic isomorphisms S± of Corollary 1.

8.1 ∗-algebra of field polynomials

The symplectic isomorphisms S± : V? → V [[λ ]] canonically induce ∗-algebra isomorphisms
S± : A(V?,ω?) → A(V [[λ ]],ω) between the ∗-algebra of field polynomials of the deformed and the
formal power series extension of the undeformed QFT. The maps S± are defined on the generators
1,Φ?([ϕ]) ∈ A(V?,ω?) by

S±
(
1
)

= 1 , (8.1a)

S±
(
Φ?([ϕ])

)
= Φ

(
S±([ϕ])

)
, (8.1b)

and extended to A(V?,ω?) as ∗-algebra homomorphisms. Here Φ([ψ]), [ψ] ∈V [[λ ]], are the genera-
tors of the algebra A(V [[λ ]],ω). In short, we obtain

Proposition 2. There exist ∗-algebra isomorphisms S± : A(V?,ω?)→ A(V [[λ ]],ω).

11
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This means that we can mathematically describe the NC QFT in terms of a formal power series
extension of the corresponding commutative QFT. However, the physical interpretation has to be
adapted properly: If we want to probe the NC QFT with a set of smearing functions {[ϕi]} in order
to extract physical observables (e.g. Wightman functions) we have to probe the commutative QFT
with a different set of smearing functions {S±([ϕi])}.

In [7] we have shown that ∗-algebra isomorphisms similar to Proposition 2 also exist for a
class of convergent deformations. The difference there is that the deformed QFT is isomorphic to
a reduced undeformed QFT, where certain strongly localized observables are excluded.

8.2 Symplectic automorphisms

An important class of symmetries of QFTs are those which are induced by symplectic auto-
morphisms. In particular, isometries of the background fall into this class.

Definition 2. Let (W,ρ) be a symplectic R[[λ ]]-module. A map α ∈ EndR[[λ ]](W ) is called a
symplectic automorphism, if it is invertible and if ρ

(
αϕ,αψ

)
= ρ(ϕ,ψ), for all ϕ,ψ ∈W . The

set G(W,ρ) of all symplectic automorphisms with the usual composition of homomorphisms ◦ forms
the group of symplectic automorphisms.

Due to the symplectic isomorphisms S± : V?→V [[λ ]] we find

Proposition 3. There exist group isomorphisms S±G : G(V [[λ ]],ω)→ G(V?,ω?), α 7→ S−1
± ◦α ◦S±.

The symplectic automorphisms G(W,ρ) of a symplectic R[[λ ]]-module (W,ρ) canonically in-
duce ∗-algebra isomorphisms of the corresponding ∗-algebra of field polynomials A(W,ρ). Thus, the
deformed QFT enjoys the same amount of symmetries as the undeformed one. However, the trans-
formations are represented in a non-canonical, and in general also non-geometric, way by using the
symplectic isomorphisms S±.

In [7] we have shown that Proposition 3 is restricted to the formal deformation quantization
setting. Convergent deformations in general break some of the symplectic automorphisms.

8.3 Algebraic states

Due to the symplectic isomorphisms S± the space of algebraic states on A(V?,ω?) and A(V [[λ ]],ω)

can be related in a precise way. To explain this we require the following well-known

Lemma 2. Let A1 and A2 be two unital ∗-algebras over C[[λ ]] and let κ : A1→ A2 be a ∗-algebra
homomorphism. Then each state Ω2 on A2 induces a state Ω1 on A1 by defining

Ω1(a) := Ω2
(
κ(a)

)
, (8.2)

for all a ∈ A1.

The proof of this standard lemma can be found e.g. in [7]. The state Ω1 is called the pull-back
of Ω2. Employing the ∗-algebra isomorphisms S± of Proposition 2 we obtain the following

Proposition 4. The ∗-algebra isomorphisms S± provide bijections between the states on A(V [[λ ]],ω)

and the states on A(V?,ω?). The G(V [[λ ]],ω)-symmetric states on A(V [[λ ]],ω) are pulled-back to G(V?,ω?)-
symmetric states on A(V?,ω?), and vice versa.

The proof of this statement can be found in [7].
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9. Conclusions and outlook

In this proceedings article we have summarized our recently developed approach to QFT on
NC curved spacetimes. We have constructed a deformed action functional for a real and free scalar
field on NC curved spacetimes by employing methods from twist-deformed differential geometry.
The deformed wave operator and its corresponding Green’s operators were constructed explicitly
in terms of formal power series. The solution space of the deformed wave equation was constructed
explicitly, equipped with a symplectic structure and quantized in terms of ∗-algebras over the ring
C[[λ ]]. We have shown that the deformed symplectic R[[λ ]]-module is isomorphic, via symplectic
isomorphisms, to the formal power series extension of the undeformed symplectic vector space.
A direct consequence of this symplectic isomorphism for the deformed QFT is that it is ∗-algebra
isomorphic to the formal power series extension of the undeformed QFT. This immediately yields
isomorphisms between the corresponding groups of symplectic automorphisms and bijections be-
tween the corresponding spaces of algebraic states.

In future work it would be interesting to study more examples of convergent deformations and
their properties, as it was already initiated in [7]. Furthermore, a more detailed study of QFTs on
deformed cosmological and black hole spacetimes, see e.g. [6], and their phenomenology would
be interesting.
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A. Equivalence to [5]

We show that the formalism presented in this paper is equivalent to [5] by providing the cor-
responding isomorphisms. Quantities in the formulation [5] are distinguished from those of the
present paper by a bar.

Wave operators: As already stated in Remark 1 in Section 3, the scalar valued wave operator P?

is related to the wave operator P̄? by the C[[λ ]]-module isomorphism

ι : C∞(M )[[λ ]]→C∞(M )[[λ ]] , ϕ 7→ ?−1
g
(
ϕ ?vol?

)
, (A.1)

where ?g is the undeformed Hodge operator corresponding to g. More precisely, we have

P? = ι ◦ P̄? . (A.2)

The deformed and undeformed scalar products are related by(
ϕ, ι(ψ)

)
=
∫

M
ϕ
∗

ι(ψ)volg =
∫

M
ϕ
∗ (ψ ?vol?)

(2.12)=
∫

M
ϕ
∗ ?ψ ?vol? =

(
ϕ,ψ

)
?
, (A.3a)(

ι(ϕ),ψ
)

=
∫

M
(ι(ϕ)volg)

∗
ψ =

∫
M

(ϕ ?vol?)
∗

ψ
(2.12)=

∫
M

ϕ
∗ ?ψ ?vol? =

(
ϕ,ψ

)
?
, (A.3b)
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for all ϕ,ψ ∈C∞(M )[[λ ]]. Let P̄? be formally self-adjoint with respect to ( , )?, then P? = ι ◦ P̄? is
formally self-adjoint with respect to ( , ), since(

ϕ,P?(ψ)
)

=
(
ϕ, P̄?(ψ)

)
?
=
(
P̄?(ϕ),ψ

)
?
=
(
P?(ϕ),ψ

)
. (A.4)

The reverse direction is shown analogously.

Green’s operators: Let ∆̄?± be the Green’s operators corresponding to P̄?. Then the Green’s
operators corresponding to P? = ι ◦ P̄? are given by

∆?± = ∆̄?± ◦ ι
−1 . (A.5)

Thus, the retarded-advanced Green’s operator is given by

∆? = ∆̄? ◦ ι
−1 . (A.6)

Symplectic R[[λ ]]-modules: In [5] we have defined the R[[λ ]]-module

H := {ϕ ∈C∞
0 (M )[[λ ]] :

(
∆̄?±(ϕ)

)∗ = ∆̄?±(ϕ)} , (A.7)

which was used as a pre-symplectic R[[λ ]]-module. This space is isomorphic to C∞
0 (M ,R)[[λ ]]

via the isomorphism ι−1. To see this let ϕ ∈C∞
0 (M ,R)[[λ ]] be arbitrary, then ι−1(ϕ) ∈ H since(

∆̄?±
(
ι
−1(ϕ)

))∗ =
(
∆?±(ϕ)

)∗ = ∆?±(ϕ) = ∆̄?±
(
ι
−1(ϕ)

)
. (A.8)

Let now ϕ ∈ H be arbitrary, then there is a ψ ∈C∞
0 (M )[[λ ]], such that ϕ = ι−1(ψ). We find that

ψ is real, since

0 =
(
∆̄?±(ϕ)

)∗− ∆̄?±(ϕ) = ∆?± (ψ∗−ψ) ⇒ ψ
∗ = ψ . (A.9)

The symplectic R[[λ ]]-module in [5] was defined by V̄? := H/P̄?[C∞
0 (M ,R)[[λ ]]], while V? =

C∞
0 (M ,R)[[λ ]]/P?[C∞

0 (M ,R)[[λ ]]]. The isomorphism ι : H → C∞
0 (M ,R)[[λ ]] gives rise to an

isomorphism between the factor spaces, since

ι
(
ϕ + P̄?(ψ)

)
= ι(ϕ)+P?(ψ) , (A.10)

for all ϕ ∈ H and ψ ∈C∞
0 (M ,R)[[λ ]]. The symplectic structure on V̄? and V? is given by

ω̄?([ϕ], [ψ]) =
(
ϕ, ∆̄?(ψ)

)
?
, (A.11a)

ω?([ϕ], [ψ]) =
(
ϕ,∆?(ψ)

)
. (A.11b)

We obtain that the map ι : V̄?→V? is a symplectic isomorphism

ω?([ι(ϕ)], [ι(ψ)]) =
(
ι(ϕ),∆?(ι(ψ))

) (A.3)=
(
ϕ, ∆̄?(ψ)

)
?
= ω̄?([ϕ], [ψ]) . (A.12)

∗-algebras of field polynomials: The symplectic isomorphism ι immediately leads to a ∗-algebra
isomorphism between A(V̄?,ω̄?) and A(V?,ω?). Thus, the approach presented in this paper leads to a
QFT which is mathematically equivalent to the one obtained in [5]. However, the physical in-
terpretation has to be adapted properly: The operators Φ?(ϕ) ∈ A(V?,ω?) should be interpreted as
smeared field operators with respect to the smearing “ Φ?(ϕ) =

∫
M Φϕ volg ”, while the operators

Φ̄?(ϕ)∈ A(V̄?,ω̄?) should be interpreted as smeared with the ?-products “ Φ̄?(ϕ) =
∫
M Φ?ϕ ?vol? ”.
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