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Abstract: Neutrosophy theory has found application in health sciences in recent years. There is the 

need to develop neutrosophic algebraic systems which are good and appropriate for studying and 

understanding the effects of diseases and their possible treatments. In order to achieve this, special 

types of quasi neutrosophic loops and their isotopy needed to be introduced for this purpose. 

Fenyves BCI-algebras are BCI-algebras (special types of quasi neutrosophic loops) that satisfy the 60 

Bol-Moufang identities. In this paper, the isotopy of BCI-algebras are studied. Neccessary and 

sufficient conditions for a groupoid isotope of a BCI-algebra to be a BCI-algebra are established. It is 

shown that 𝑝-semisimplicity, quasi-associativity and BCK-algebra are invariant under isotopies 

which are determined by some regular permutation groups. Furthermore, the isotopy of both the 46 

associative and 14 non-associative Fenyves BCI-algebras are also studied. It is shown that for 

BCI-alegbras, associativity is isotopic invariant. Hence, the following set of Fenyves BCI algebras 

(𝐹𝑖-algebras) are invariant under any isotopy: 𝑖 ∈ {1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24 

, 25,26,27,28,30,31,32,33,34,35,36,37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60}. It is shown that 

the following sets of non-associative Fenyves BCI algebras (𝐹𝑖-algebras) are invariant under isotopies 

which are determined by some regular permutation groups: 𝑖 ∈

{3,5,8,19,21,29,39,42,46,52,55,56,59}, {56}, {8,19,29,39,46,59}. In conclusion, this is the isotopic study 

of 120 particular types of the 540 varieties of Fenyves quasi neutrosophic triplet loops (FQNTLs) 

which were recently discovered, wherein the 14 non-associative Fenyves BCI-algebras do not 

necessarily have the Iseki's conditions (S). Importantly, applying these results, the initial (old, sick or 

healthy) state of a person can be represented by a type of Fenyves BCI-algebra, while the Fenyves 

BCI-algebra isotope will represent the final (new, healthy or sick) state of the person as a result of the 

prescribed medical treatment, which the isotopism represents. The isotopism is a measure of the 

change from the old state of body condition to the new state.  

Keywords: BCI-algebra; quasi neutrosophic loops; Fenyves identities; Bol-Moufang Type 

 

 

1. Introduction 

     The prevalence and spread of diseases among inhabitants of the world, especially tropical 

regions has raised serious concerns among scientists. In this work, we embarked on an algebraic way 

of representing the effects of diseases on the health of the people. This is based on the philosophy of 

representing disease-victim(s) by algebraic structures. These structures represent the state of health 

before the ''invasion'' by organisms which cause disease(s). The transformation of the body by these 

diseases is represented by the isotopisms which form the crux of the study. The isotopisms 

transform a hitherto healthy person to somebody with health challenges. Other researchers who 
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have worked on neutrosophy theory and its applications to medicine and other fields include 

Abdel-Basset et al. [1], [2], [3], [4]. 

 

1.1.  BCI-algebra and BCK-algebra 

BCK-algebras and BCI-algebras are abbreviated as two B-algebras. The former was raised in 

1966 by Imai and Iseki [16], Japanese mathematicians, and the latter was put forward in the same 

year by Iseki [17]. The two algebras originated from two different sources: set theory and 

propositional calculi. 

There are some systems which contain the only implicational functor among logical 

functors, such as the system of weak positive implicational calculus, BCK-system and BCI-system. 

Undoubtedly, there are common properties among those systems. We know that there are close 

relationships between the notions of the set difference in set theory and the implication functor in 

logical systems. For example, we have the following simple inclusion relations in set theory:  

 (𝐴 − 𝐵) − (𝐴 − 𝐶) ⊆ 𝐶 − 𝐵,        𝐴 − (𝐴 − 𝐵) ⊆ 𝐵. 

These are similar to the propositional formulas in propositional calculi:  

 (𝑝 → 𝑞) → ((𝑞 → 𝑟) → (𝑝 → 𝑟)),        𝑝 → ((𝑝 → 𝑞) → 𝑞), 

which raise the following questions: What are the most essential and fundamental properties of 

these relationships? Can we formulate a general algebra from the above consideration? How do we 

find an axiomatic system to establish a good theory of general algebras? Answering these questions, 

K.Iseki formulated two kinds of B-algebras, in which BCI-algebras are of wider class than 

BCK-algebras. Their names are taken from BCK and BCI systems in combinatory logic. 

BCI-Algebras are very interesting algebraic structures that have generated wide interest 

among pure mathematicians. In fact, since late 1970s, much attention has been paid to the study of 

BCI and BCK algebras. In particular, the participation in the research of polish mathematicians 

Tadeusz Traczyk and Andrzej Wronski as well as Australian mathematician William H. Cornish and 

so on, is really making this branch of algebra to develop rapidly. Many interesting and important 

results are discovered continuously. Now, the theory of BCI-algebras has been widely spread to 

many areas such as general theory which includes congruences, quotient algebras, 

BCI-Homomorphisms, direct sums and direct products, commutative BCK-algebras, positive 

implicative and implicative BCK-algebras, derivations of BCI-algebras, and ideal theory of 

BCI-algebras ([16], [18], [14], [41], [50]). 

 

1.2.  BCI-algebra and the Fenyves Identities 

    We shall now discuss BCI-algebras in relation to Fenyves identities. 

 

Definition 1  A triple (𝑋,∗ ,0) is called a BCI-algebra if the following conditions are satisfied for any 

𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0;  

2. 𝑥 ∗ 0 = 𝑥;  

3. 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 ⇒ 𝑥 = 𝑦.  
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    We call the binary operation ∗ on 𝑋 multiplication, and the constant 0 in 𝑋 the zero element 

of 𝑋. We often write 𝑋 instead of (𝑋,∗ ,0) for a BCI-algebra in brevity. Juxtaposition 𝑥𝑦 shall be at 

times used for 𝑥 ∗ 𝑦 and will have preference over ∗ i.e. 𝑥𝑦 ∗ 𝑧 = (𝑥 ∗ 𝑦) ∗ 𝑧.  

Example 1  Let 𝑆 be a set. Let 2𝑆 be the power set of 𝑆, − the set difference and ∅ for the empty set. Then 

(2𝑆, −, ∅) is a BCI-algebra.  

Example 2  Suppose (𝐺,⋅, 𝑒) is an abelian group with 𝑒 as the identity element. Define a binary operation ∗ 

on 𝐺 by putting 𝑥 ∗ 𝑦 = 𝑥𝑦−1. Then (𝐺,∗, 𝑒) is a BCI-algebra.  

Example 3  (ℤ, −,0) and (ℝ − {0},÷ ,1) are BCI-algebras.  

Example 4  Let 𝑆 be a set. Let 2𝑆 be the power set of 𝑆, 𝛥 the symmetric difference and ∅ the empty set. 

Then (2𝑆, 𝛥, ∅) is a BCI-algebra.  

The following theorems give necessary and sufficient conditions for the existence of a BCI-algebra.  

Theorem 1 (Yisheng [51]) 

Let 𝑋 be a non-empty set, ∗ a binary operation on 𝑋 and 0 a constant element of 𝑋. Then (𝑋,∗ ,0) 

is a BCI- algebra if and only if the following conditions hold:   

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0;  

2. (𝑥 ∗ (𝑥 ∗ 𝑦)) ∗ 𝑦 = 0;  

3. 𝑥 ∗ 𝑥 = 0;  

4. 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 imply 𝑥 = 𝑦.  

Definition 2 A BCI- algebra (𝑋,∗ ,0) is called a BCK-algebra if 0 ∗ 𝑥 = 0 for all 𝑥 ∈ 𝑋.  

Definition 3 (Jaiyé𝑜lá et al. [36]) 

A BCI- algebra (𝑋,∗ ,0) is called a Fenyves BCI-algebra if it satisfies an identity of Bol-Moufang type.  

The identities of Bol-Moufang type are given below:   

 𝐹1: 𝑥𝑦 ∗ 𝑧𝑥 = (𝑥𝑦 ∗ 𝑧)𝑥      𝐹2: 𝑥𝑦 ∗ 𝑧𝑥 = (𝑥 ∗ 𝑦𝑧)𝑥 (Moufang identity)    𝐹3: 𝑥𝑦 ∗ 𝑧𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) 

 𝐹4: 𝑥𝑦 ∗ 𝑧𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) (Moufang identity) 𝐹5: (𝑥𝑦 ∗ 𝑧)𝑥 = (𝑥 ∗ 𝑦𝑧)𝑥  𝐹6: (𝑥𝑦 ∗ 𝑧)𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) (extra identity) 

 𝐹7: (𝑥𝑦 ∗ 𝑧)𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) 𝐹8: (𝑥 ∗ 𝑦𝑧)𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) 𝐹9: (𝑥 ∗ 𝑦𝑧)𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) 𝐹10: 𝑥(𝑦 ∗ 𝑧𝑥) = 𝑥(𝑦𝑧 ∗ 𝑥) 

 𝐹11: 𝑥𝑦 ⋅ 𝑥𝑧 = (𝑥𝑦 ∗ 𝑥)𝑧  𝐹12: 𝑥𝑦 ∗ 𝑥𝑧 = (𝑥 ∗ 𝑦𝑥)𝑧  𝐹13: 𝑥𝑦 ∗ 𝑥𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) (extra identity) 

 𝐹14: 𝑥𝑦 ∗ 𝑥𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧)   𝐹15: (𝑥𝑦 ∗ 𝑥)𝑧 = (𝑥 ∗ 𝑦𝑥)𝑧   𝐹16: (𝑥𝑦 ∗ 𝑥)𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) 

 𝐹17: (𝑥𝑦 ∗ 𝑥)𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧) (Moufang identity)   𝐹18: (𝑥 ∗ 𝑦𝑥)𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) 

 𝐹19: (𝑥 ∗ 𝑦𝑥)𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧) (left Bol identity)   𝐹20: 𝑥(𝑦𝑥 ∗ 𝑧) = 𝑥(𝑦 ∗ 𝑥𝑧)   𝐹21: 𝑦𝑥 ∗ 𝑧𝑥 = (𝑦𝑥 ∗ 𝑧)𝑥 

 𝐹22: 𝑦𝑥 ∗ 𝑧𝑥 = (𝑦 ∗ 𝑥𝑧)𝑥 (extra identity)   𝐹23: 𝑦𝑥 ∗ 𝑧𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥)   𝐹24: 𝑦𝑥 ∗ 𝑧𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) 

 𝐹25: (𝑦𝑥 ∗ 𝑧)𝑥 = (𝑦 ∗ 𝑥𝑧)𝑥   𝐹26: (𝑦𝑥 ∗ 𝑧)𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥) (right Bol identity) 

 𝐹27: (𝑦𝑥 ∗ 𝑧)𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) (Moufang identity) 𝐹28: (𝑦 ∗ 𝑥𝑧)𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥)   𝐹29: (𝑦 ∗ 𝑥𝑧)𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) 

 𝐹30: 𝑦(𝑥𝑧 ∗ 𝑥) = 𝑦(𝑥 ∗ 𝑧𝑥)  𝐹31: 𝑦𝑥 ∗ 𝑥𝑧 = (𝑦𝑥 ∗ 𝑥)𝑧 𝐹32: 𝑦𝑥 ∗ 𝑥𝑧 = (𝑦 ∗ 𝑥𝑥)𝑧  𝐹33: 𝑦𝑥 ∗ 𝑥𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) 

 𝐹34: 𝑦𝑥 ∗ 𝑥𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧)  𝐹35: (𝑦𝑥 ∗ 𝑥)𝑧 = (𝑦 ∗ 𝑥𝑥)𝑧  𝐹36: (𝑦𝑥 ∗ 𝑥)𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) (RC identity) 

 𝐹37: (𝑦𝑥 ∗ 𝑥)𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧) (C-identity) 𝐹38: (𝑦 ∗ 𝑥𝑥)𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) 𝐹39: (𝑦 ∗ 𝑥𝑥)𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧) (LC identity) 

 𝐹40: 𝑦(𝑥𝑥 ∗ 𝑧) = 𝑦(𝑥 ∗ 𝑥𝑧)  𝐹41: 𝑥𝑥 ∗ 𝑦𝑧 = (𝑥 ∗ 𝑥𝑦)𝑧 (LC identity)    𝐹42: 𝑥𝑥 ∗ 𝑦𝑧 = (𝑥𝑥 ∗ 𝑦)𝑧 

 𝐹43: 𝑥𝑥 ∗ 𝑦𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) 𝐹44: 𝑥𝑥 ∗ 𝑦𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧)  𝐹45: (𝑥 ∗ 𝑥𝑦)𝑧 = (𝑥𝑥 ∗ 𝑦)𝑧  

 𝐹46: (𝑥 ∗ 𝑥𝑦)𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) (LC identity) 𝐹47: (𝑥 ∗ 𝑥𝑦)𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹48: (𝑥𝑥 ∗ 𝑦)𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) (LC identity) 

 𝐹49: (𝑥𝑥 ∗ 𝑦)𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹50: 𝑥(𝑥 ∗ 𝑦𝑧) = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹51: 𝑦𝑧 ∗ 𝑥𝑥 = (𝑦𝑧 ∗ 𝑥)𝑥  𝐹52: 𝑦𝑧 ∗ 𝑥𝑥 = (𝑦 ∗ 𝑧𝑥)𝑥 

 𝐹53: 𝑦𝑧 ∗ 𝑥𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥) (RC identity)  𝐹54: 𝑦𝑧 ∗ 𝑥𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥)  𝐹55: (𝑦𝑧 ∗ 𝑥)𝑥 = (𝑦 ∗ 𝑧𝑥)𝑥 

 𝐹56: (𝑦𝑧 ∗ 𝑥)𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥) (RC identity) 𝐹57: (𝑦𝑧 ∗ 𝑥)𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥) (RC identity) 
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 𝐹58: (𝑦 ∗ 𝑧𝑥)𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥)        𝐹59: (𝑦 ∗ 𝑧𝑥)𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥)      𝐹60: 𝑦(𝑧𝑥 ∗ 𝑥) = 𝑦(𝑧 ∗ 𝑥𝑥)  

   

The identities of Bol-Moufang type are sixty in number based on Fenyves [12], [13]. The 

identities of Bol-Moufang type were investigated in BCI-algebras by Jaiyéolá et al. [36], thereby 

leading to the study of the sixty varieties of Fenyves BCI -algebras, as well as their holomorphic 

study in Ilojide et al. [15]. Here are some examples. 

Example 5 Let us assume the BCI-algebra (𝐺,∗, 𝑒)  in Example 2. Then (𝐺,∗, 𝑒)  is an 𝐹8 -algebra, 

𝐹19-algebra, 𝐹29-algebra, 𝐹39-algebra, 𝐹46-algebra, 𝐹52-algebra, 𝐹54-algebra, 𝐹59-algebra.  

Example 6 Let us assume the BCI-algebra (2𝑆, −, ∅)  in Example 1. Then (2𝑆, −, ∅)  is an 𝐹3 -algebra, 

𝐹5-algebra, 𝐹21-algebra, 𝐹29-algebra, 𝐹42-algebra, 𝐹46-algebra, 𝐹54-algebra and 𝐹55-algebra.  

Example 7 The BCI-algebra (2𝑆, 𝛥, ∅) in Example 4 is associative.  

Example 8 By considering the direct product of the BCI-algebras (𝐺,∗, 𝑒) and (2𝑆, −, ∅) of Example 2 and 

Example 1 respectively, we have a BCI-algebra (𝐺 × 2𝑆, (∗, −), (𝑒, ∅))  which is a 𝐹29 -algebra and a 

𝐹46-algebra.  

Remark 1 The direct product of two or more BCI-algebras which are 𝐹𝑖-algebras will give a BCI-algebra which 

is an 𝐹𝑖-algebra for distinct 𝑖's.  

Definition 4 A BCI-algebra (𝑋,∗ ,0) is called associative if (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.  

Definition 5 A BCI-algebra (𝑋,∗ ,0) is called 𝑝-semisimple if 0 ∗ (0 ∗ 𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 .  

Theorem 2 (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. Define a binary relation ≤ on 𝑋 by which 

𝑥 ≤ 𝑦 if and only if 𝑥 ∗ 𝑦 = 0 for any 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, ≤) is a partially ordered set with 0 as a minimal 

element(meaning that 𝑥 ≤ 0 implies 𝑥 = 0 for any 𝑥 ∈ 𝑋).  

Definition 6 A BCI-algebra (𝑋,∗ ,0) is called quasi-associative if (𝑥 ∗ 𝑦) ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈

𝑋.  

The following theorems give equivalent conditions for associativity, quasi-associativity and 

𝑝-semisimplicity in a BCI-algebra:  

Theorem 3  (Yisheng [51]) 

Given a BCI-algebra 𝑋, the following are equivalent 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. 𝑋 is associative.  

2. 0 ∗ 𝑥 = 𝑥.  

3. 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 ∀ 𝑥, 𝑦 ∈ 𝑋.  

Theorem 4  (Yisheng [51]) 

Let 𝑋 be a BCI-algebra. Then the following conditions are equivalent for any 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋:   

1. 𝑋 is 𝑝-semisimple  

2. (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑢) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑢).  

3. 0 ∗ (𝑦 ∗ 𝑥) = 𝑥 ∗ 𝑦.  

4. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = 𝑧 ∗ 𝑦.  

5. 𝑧 ∗ 𝑥 = 𝑧 ∗ 𝑦 implies 𝑥 = 𝑦. (the left cancellation law)  

6. 𝑥 ∗ 𝑦 = 0 implies 𝑥 = 𝑦.  

Theorem 5 (Yisheng [51]) 

Given a BCI-algebra 𝑋, the following are equivalent for all 𝑥, 𝑦 ∈ 𝑋:   

1. 𝑋 is quasi-associative.  
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2. 𝑥 ∗ (0 ∗ 𝑦) = 0 implies 𝑥 ∗ 𝑦 = 0.  

3. 0 ∗ 𝑥 = 0 ∗ (0 ∗ 𝑥).  

4. (0 ∗ 𝑥) ∗ 𝑥 = 0.  

Theorem 6 (Yisheng [51]) 

A triple (𝑋,∗ ,0) is a BCI-algebra if and only if there is a partial ordering ≤ on 𝑋 such that the 

following conditions hold for any 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) ≤ 𝑧 ∗ 𝑦;  

2. 𝑥 ∗ (𝑥 ∗ 𝑦) ≤ 𝑦;  

3. 𝑥 ∗ 𝑦 = 0 if and only if 𝑥 ≤ 𝑦.  

Theorem 7  (Yisheng [51]) 

Let 𝑋 be a BCI-algebra. 𝑋 is 𝑝-semisimple if and only if one of the following conditions holds for 

any 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. 𝑥 ∗ 𝑧 = 𝑦 ∗ 𝑧 implies 𝑥 = 𝑦. (the right cancellation law)  

2. (𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥) = 𝑦 ∗ 𝑧.  

3. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = 0 ∗ (𝑦 ∗ 𝑧).  

Theorem 8  (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. 𝑋 is associative if and only if 𝑋 is 

𝑝-semisimple and 𝑋 is quasi-associative.  

Theorem 9  (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. Then for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ 𝑦.  

2. 𝑥 ≥ 𝑦 implies 0 ∗ 𝑥 = 0 ∗ 𝑦.  

Remark 2 In Theorem 8, quasi-associativity in BCI-algebra plays a similar role which weak associativity (i.e. 

the 𝐹𝑖 identities) plays in quasigroup and loop theory.  

 

1.3.  Isotopy and Autotopy in Quasigroups and Loops 

    We now move on to quasigroups and loops, their isotopy and autotopy.  

Definition 7 Let 𝐿 be a non-empty set. Define a binary operation (⋅) on 𝐿 . If 𝑥 ⋅ 𝑦 ∈ 𝐿 for all 𝑥, 𝑦 ∈ 𝐿, (𝐿,⋅) 

is called a groupoid. If in a groupoid (𝐿,⋅), the equations:  

 𝑎 ⋅ 𝑥 = 𝑏        𝑎𝑛𝑑        𝑦 ⋅ 𝑎 = 𝑏 

 have unique solutions for 𝑥  and 𝑦  respectively, then (𝐿,⋅)  is called a quasigroup. If in a 

quasigroup (𝐿,⋅), there exists a unique element 𝑒 called the identity element such that for all 𝑥 ∈ 𝐿, 

𝑥 ⋅ 𝑒 = 𝑒 ⋅ 𝑥 = 𝑥, (𝐿,⋅) is called a loop.  

Remark 3 For a groupoid (𝐺,⋅), 𝑅𝑥: 𝐺 → 𝐺, the right translation is defined by 𝑦𝑅𝑥 = 𝑦 ⋅ 𝑥 and 𝐿𝑥: 𝐺 → 𝐺, 

the left translation is defined by 𝑦𝐿𝑥 = 𝑥 ⋅ 𝑦 for all 𝑥, 𝑦 ∈ 𝐺. This mappings are not necessarily bijections. But 

for a quasigroup, they are.  

 Consider (𝐺,⋅) and (𝐻,∘) being two groupoids (quasigroups, loops). Let 𝐴, 𝐵 and 𝐶 be 

three bijective mappings, that map 𝐺 onto 𝐻. The triple 𝛼 = (𝐴, 𝐵, 𝐶) is called an isotopism of (𝐺,⋅) 

onto (𝐻,∘), written as 

  (𝐺,⋅)
(𝐴,𝐵,𝐶)
→    (𝐻,∘) if 𝑥𝐴 ∘ 𝑦𝐵 = (𝑥 ⋅ 𝑦)𝐶∀𝑥, 𝑦 ∈ 𝐺. 

So, (𝐻,∘) is called a groupoid (quasigroup, loop) isotope of (𝐺,⋅). 
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If 𝐶 = 𝐼 is the identity map on 𝐺 so that 𝐻 = 𝐺, then the triple 𝛼 = (𝐴, 𝐵, 𝐼) is called a 

principal isotopism of (𝐺,⋅) onto (𝐺,∘) and (𝐺,∘) is called a principal isotope of (𝐺,⋅). Eventually, the 

equation of relationship now becomes  

 𝑥 ⋅ 𝑦 = 𝑥𝐴 ∘ 𝑦𝐵∀𝑥, 𝑦 ∈ 𝐺 

which is easier to work with. But if 𝐴 = 𝑅𝑔  and 𝐵 = 𝐿𝑓  where 𝑓, 𝑔 ∈ 𝐺 , the relationship now 

becomes  

 𝑥 ⋅ 𝑦 = 𝑥𝑅𝑔 ∘ 𝑦𝐿𝑓∀𝑥, 𝑦 ∈ 𝐺. 

With this new form, the triple 𝛼 = (𝑅𝑔, 𝐿𝑓 , 𝐼) is called an 𝑓, 𝑔-principal isotopism of (𝐺,⋅) onto (𝐺,∘), 

𝑓 and 𝑔 are called translation elements of 𝐺 or at times written in the pair form (𝑔, 𝑓), while (𝐺,∘) is 

called an 𝑓, 𝑔-principal isotope of (𝐺,⋅). 

The following theorem shows that the principal isotopes of a groupoid account for all its 

isotopes.  

Theorem 10  (Pflugfelder [43]) 

If (𝐺,⋅) and (𝐻,∘) are isotopic groupoids, then (𝐻,∘) is isomorphic to some principal isotope (𝐺, å) 

of (𝐺,⋅).  

    Let (𝑋,∗ ,0)  be a BCI-algebra and let 𝑥 + 𝑦 = 𝑥 ∗ (0 ∗ 𝑥) . A groupoid (𝑋, +)  is called an 

associated groupoid of (𝑋,∗ ,0). Based on Theorem 2, Corollaries 3, 4 and 5 of Dudek [9], 𝑥 ∗ 𝑦 = 𝑥 −

𝑦 = 𝑥 + (−𝑦) ⇔ (𝑥 ∗ 𝑦)𝐼 = 𝑥𝐼 + 𝑦𝐽 where 𝐽: 𝑥 ↦ −𝑥. so, we have 

Lemma 1  A BCI-algebra (𝑋,∗ ,0) is a quasigroup if and only if there exists an abelian group (𝑋, +,0) such 

that (𝑋, +,0)
(𝐼,𝐼,𝐽)
→   (𝑋,∗ ,0).  

 According to Dudek [9], the variety of all BCI-algebras that are quasigroups 

(BCI-quasigroups) is selected from the quasivariety of all BCI-algebra by any of the following 

equivalent laws:   

(i) 𝑝-semi simplicity law: 0 ∗ (0 ∗ 𝑥) = 𝑥 

(ii) Semi left inverse property: 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦 (SLIP) 

(iii) Medial law: (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑢) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑢)   

(iv) (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = (𝑧 ∗ 𝑦)  

(v)  0 ∗ (𝑥 ∗ 𝑧) = 𝑧 ∗ 𝑥 

(vi)  (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑥) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑥) 

(vii)  [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ [(𝑥 ∗ 𝑢) ∗ 𝑦] = (𝑢 ∗ 𝑧)  

    Thus, following Lemma 1, it can further be said that the variety of all BCI-algebras that are 

quasigroups is determined by abelian group under the isotopy (𝐼, 𝐼, 𝐽) where 𝐽  is the inverse 

mapping on the abelian group. 

Dudek [11] showed that a BCI-algebra with the medial law obeys the SLIP and further 

showed in Dudek [10] that every BCI-algebra that obeys the SLIP has the Iseki's condition (S)-[19] 

and form a variety characterized with an associated abelian group. 

    In Theorem 10, if (𝐺,⋅) = (𝐻,∘), then the triple 𝛼 = (𝐴, 𝐵, 𝐶) of bijections on (𝐺,⋅) is called an 

autotopism of the groupoid (quasigroup, loop) (𝐺,⋅). Such triples form a group 𝐴𝑈𝑇(𝐺,⋅) called the 

autotopism group of (𝐺,⋅). Furthermore, if 𝐴 = 𝐵 = 𝐶, then 𝐴 is called an automorphism of the 
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groupoid (quasigroup, loop) (𝐺,⋅). Such bijections form a group 𝐴𝑈𝑀(𝐺,⋅) called the automorphism 

group of (𝐺,⋅). 

The group of all permutation on 𝐺 is called the permutation group of 𝐺 and denoted by 

𝑆𝑌𝑀(𝐺).   

1. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called autotopic if there exists (𝑈, 𝑉,𝑊) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group Σ(𝐺,⋅).  

2.  𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜆-regular if there exists (𝑈, 𝐼, 𝑈) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group Λ(𝐺,⋅) ≤ Σ(𝐺,⋅).  

3. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜌-regular if there exists (𝐼, 𝑈, 𝑈) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group 𝒫(𝐺,⋅) ≤ 𝑆𝑌𝑀(𝐺).  

4. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜇-regular if there exists 𝑈′ ∈ 𝑆𝑌𝑀(𝐺) such that (𝑈, 𝑈′−1, 𝐼) ∈ 𝐴𝑈𝑇(𝐺,⋅). 𝑈′ 

is called the adjoint of 𝑈. The set of all 𝜇-regular mappings forms a group Φ(𝐺,⋅) ≤ Σ(𝐺,⋅). The 

set of all adjoint mapping forms a group Ψ(𝐺,⋅) ≤ 𝑆𝑌𝑀(𝐺). Whenever 𝑈′ = 𝑈, then 𝑈 is said to 

be 𝜇-regular and self adjoint.  

 

1.4.  Quasigroup, Loop and their Universality 

      In recent past, and up to the present time, identities of Bol-Moufang type have been studied on 

the platform of groupoids, quasigroups and loops by Fenyves [12], Phillips and Vojtĕchovský, P. [44]

, [45], [46], Jaiyeola [20], Robinson [47], Burn [6], [7], [8], Kinyon and Kunen [40] and by several other 

authors to mention a few. Fenyves [13], Kinyon and Kunen [40], and Phillips and Vojtĕchovský [46] 

found some of these identities to be equivalent to associativity in quasigroups and loops (i.e. 

groups), and others to describe weak associative laws such as extra, Bol, Moufang, central, flexible 

laws in quasigroups and loops. These results are tabularly summarised in Jaiyéolá et al. [36]. 

Loops such as Bol loops, Moufang loops, central loops and extra loops are the most popular 

loops of Bol-Moufang type whose isotopic invariance (universality) has been considered. Some 

others are flexible loops, F-quasigroups, totally symmetric quasigroups(TSQ), distributive 

quasigroups, weak inverse property loops(WIPLs), cross inverse property loops(CIPLs), 

semi-automorphic inverse property loops(SAIPLs) and inverse property loops(IPLs). As shown in 

Pflugfelder [43], a left(right) inverse property loop is universal if and only if it is a left(right) Bol 

loop, so an IPL is universal if and only if it is a Moufang loop. Kepka et. al. [37], [38], [39] solved the 

Belousov problem concerning the universality of F-quasigroup which has been open since 1967. The 

universality of WIPLs and CIPLs has been addressed by Osborn [42] and Artzy [5] respectively 

while the universality of elasticity(flexibility) was studied by Syrbu [49]. Jaiyéolá [20], [22], Jaiyéolá 

and Adéníran [26], [27], [28] studied the universality of central loops while Jaiyéolá [23], [21], [24]

, [25], Jaiyéolá and Adéníran [29], [31], [30], [32], and Jaiyéolá et al. [33] studied the universality 

Osborn loops. 

 

1.5.  Some Existing Results on Fenyves BCI-algebras 

Jaiyéolá et al. [36] investigated Fenyves identities on the platform of BCI-algebras. They 

classified the Fenyves BCI-algebras into 46 associative and 14 non-associative types and showed 

that some Fenyves identities played the role of quasi-associativity, vis-a-vis Theorem 8 in 
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BCI-algebras. Their work clarified the relationship between a BCI-algebra, a quasigroup and a loop. 

Some of their results are stated below. 

Theorem 11 (Jaiyé𝑜lá et al. [36]) 

1. A BCI algebra 𝑋 is a quasigroup if and only if it is 𝑝-semisimple.  

2. A BCI algebra 𝑋 is a loop if and only if it is associative.  

3. An associative BCI algebra 𝑋 is a Boolean group.  

Theorem 12 (Jaiyé𝑜lá et al. [36]) 

Let (𝑋,∗ ,0)  be a BCI-algebra. If 𝑋  is any of the following Fenyves BCI-algebras, then 𝑋  is 

associative.   

1.  𝐹1-algebra  2.  𝐹2-algebra  3.  𝐹4-algebra  4.  𝐹6-algebra  5.  𝐹7-algebra  6.  𝐹9-algebra    

7.  𝐹10 -algebra  8.  𝐹11 -algebra  9.  𝐹12 -algebra  10.  𝐹13 -algebra  11.  𝐹14 -algebra  12.  

𝐹15 -algebra  13.  𝐹16 -algebra  14.  𝐹17 -algebra  15.  𝐹18 -algebra  16.  𝐹20 -algebra  17.  

𝐹22-algebra  18. 𝐹23-algebra 19.  𝐹24-algebra  20.  𝐹25-algebra  21.  𝐹26-algebra  22.  𝐹27-algebra  

23.  𝐹28-algebra  24. 𝐹30-algebra 25.  𝐹31-algebra  26.  𝐹32-algebra  27.  𝐹33-algebra   

28.  𝐹34 -algebra  29.  𝐹35 -algebra  30. 𝐹36 -algebra 31.  𝐹37 -algebra  32.  𝐹38 -algebra  33.  

𝐹40-algebra  34.  𝐹41-algebra  35.  𝐹43-algebra  36. 𝐹44-algebra 37.  𝐹45-algebra  38.  𝐹47-algebra  

39.  𝐹48 -algebra  40.  𝐹49 -algebra  41.  𝐹50 -algebra  42. 𝐹51 -algebra 43.  𝐹53 -algebra  44.  

𝐹57-algebra  45.  𝐹58-algebra  46.  𝐹60-algebra. 

Remark 4 All other 𝐹𝑖's which are not mentioned in Theorem 12 were found to be non-associative. Every 

BCI-algebra is naturally an 𝐹54 BCI-algebra. A BCI-algebra that obeys any of the 𝐹𝑖's in Theorem 12 is a 

Boolean group by Theorem 11(3), hence isomorphic to its associated groupoid (the abelian group in Lemma 1).  

Zhang et al. [52] introduced quasi-neutrosophic triplet loops (QNTLs) which is made up of 

nine main types (cf. Definition 9 of Jaiyéolá et al. [36]). BCI-algebra belong to the class of three of 

these nine main types of QNTLs: (r-r)-QNT, (r-l)-QNTL and (r-lr)-QNTL. Therefore, any 𝐹𝑖 

BCI-algebra, 1 ≤ 𝑖 ≤ 60  belongs to at least one of the following varieties of Fenyves quasi 

neutrosophic triplet loops: (r-r)-FQNTL, (r-l)-FQNTL and (r-lr)-FQNTL. Any associative QNTL is 

called a quasi neutrosophic triplet group (QNTG). 

The variety of quasi neutrosophic triplet loop is a generalization of neutrosophic triplet 

group (NTG) which was originally introduced by Smarandache and Ali [48]. New results and 

developments on neutrosophic triplet groups and neutrosophic triplet loop have been reported by 

Zhang et al. [52], [54], [55], [53], and Smarandache and Jaiyéolá [34], [35]. 

 

1.6.  Motivation, Problem Statement, Aims and Objectives, Methodology 

 In this current paper, the isotopy of BCI-algebras is the main focus of this study (an 

extension of the work in Jaiyéolá et al. [36]). Necessary and sufficient conditions for a groupoid 

isotope of a BCI-algebra to be a BCI-algebra will be established. It will be shown that 

𝑝 -semisimplicity, quasi-associativity and BCK-algebra are invariant under isotopies which are 

determined by some regular permutation groups. Furthermore, the isotopy of both the 46 

associative and 14 non-associative Fenyves BCI-algebras will also be studied. This is with the view 

of showing that there exist some other laws aside (i) to (vii) in subsection 1.3 which can be used to 

select some other varieties of BCI-algebra (e.g. 𝐹𝑖  BCI-algebras, which are not necessarily 
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quasigroups) from the quasivariety of all BCI-algebras. Furthermore, this will mean that such 

varieties of BCI-algebra (which are not necessarily quasigroups) can be determined by another 

structure under an isotopy which differs from (𝐼, 𝐼, 𝐽) . Consequently, the 14  non-associative 

Fenyves BCI-algebras do not necessarily have the Iseki's conditions (S) based on the results in 

Theorem 14 of Jaiyéolá et al. [36]. 

 

2.  Main Results 

2.1.  Regular Bijections of BCI-Algebras 

 We need the following results on regular bijections of BCI-algebras.  

Lemma 2  Let (𝐺,⋅ ,0) be a BCI-algebra with 𝛿, 𝑈 ∈ SYM(𝐺). Then the following hold:   

1. 𝛿 is 𝜆-regular ⇔ 𝛿𝑅𝑥 = 𝑅𝑥𝛿 ⇔ 𝐿𝑥𝛿 = 𝐿𝑥𝛿 for all 𝑥 ∈ 𝐺.  

2. 𝛿 is 𝜌-regular ⇔ 𝛿𝐿𝑥 = 𝐿𝑥𝛿 ⇔ 𝑅𝑥𝛿 = 𝑅𝑥𝛿 for all 𝑥 ∈ 𝐺.  

3. 𝛿 is 𝜇-regular and self-adjoint ⇔ 𝛿𝑅𝑥 = 𝑅𝑥𝛿 ⇔ 𝐿𝑥𝛿 = 𝛿𝐿𝑥 for all 𝑥 ∈ 𝐺.  

4. If 𝑈 is 𝜆-regular, then 𝐿0𝑈 = 𝐿0𝑈, 𝑥𝑈 ⋅ 𝑥 = 0𝑈 for all 𝑥 ∈ 𝐺.  

5. If 𝑈 is 𝜌-regular, then 𝑈 = 𝑅0𝑈, 0 ⋅ 0𝑈 = 0𝑈, 𝑈𝐿0 = 𝐿0𝑈.  

6. If 𝑈 is 𝜇-regular and self-adjoint, then 0𝑈 ⋅ 0𝑈−1 = 0, 𝑈𝑅0𝑈−1 = 𝐼, 𝐿0𝑈 = 𝑈𝐿0.  

7. If 𝑈 is autotopic, then there exist 𝑉,𝑊 ∈ 𝑆𝑌𝑀(𝐺) such that 𝑈−1𝑊 = 𝑅0𝑉, 𝑉𝐿0𝑈 = 𝐿0𝑊, 

𝑥𝑈 ⋅ 𝑥𝑉 = 0𝑊 for all 𝑥 ∈ 𝐺.  

Proof.   

1. 𝛿 is 𝜆-regular ⇔ (𝛿, 𝐼, 𝛿) ∈ AUT (𝐺,⋅) ⇔ 𝑦𝛿 ⋅ 𝑥𝐼 = (𝑦 ⋅ 𝑥)𝛿 ⇔ 𝑦𝛿𝑅𝑥 = 𝑦𝑅𝑥𝛿 ⇔ 𝛿𝑅𝑥 =

𝑅𝑥𝛿 ⇔ 𝑦𝛿𝑅𝑥 = 𝑦𝑅𝑥𝛿 ⇔ 𝑦𝛿 ⋅ 𝑥 = (𝑦 ⋅ 𝑥)𝛿 ⇔ 𝑥𝐿𝑦𝛿 = 𝑥𝐿𝑦𝛿 ⇔ 𝐿𝑦𝛿 = 𝐿𝑦𝛿.  

2. 𝛿 is 𝜌-regular ⇔ (𝐼, 𝛿, 𝛿) ∈ AUT (𝐺,⋅) ⇔ 𝑥𝐼 ⋅ 𝑦𝛿 = (𝑥 ⋅ 𝑦)𝛿 ⇔ 𝑦𝛿𝐿𝑥 = 𝑦𝐿𝑥𝛿 ⇔ 𝛿𝐿𝑥 =

𝐿𝑥𝛿 ⇔ 𝑦𝛿𝐿𝑥 = 𝑦𝐿𝑥𝛿 ⇔ 𝑥 ⋅ 𝑦𝛿 = (𝑥 ⋅ 𝑦)𝛿 ⇔ 𝑥𝑅𝑦𝛿 = 𝑥𝑅𝑦𝛿 ⇔ 𝑅𝑦𝛿 = 𝑅𝑦𝛿.  

3.  𝛿 is 𝜇-regular with adjoint 𝛿′ = 𝛿 ⇔ (𝛿, 𝛿′−1, 𝐼) ∈ AUT (𝐺,⋅) ⇔ 𝑥𝛿 ⋅ 𝑦𝛿′−1 = (𝑥 ⋅ 𝑦)𝐼 ⇔

𝑥𝛿 ⋅ 𝑦𝛿𝛿−1 = 𝑥 ⋅ 𝑦𝛿 (by replacing 𝑦 by 𝑦𝛿) ⇔ 𝑥𝛿 ⋅ 𝑦 = 𝑥 ⋅ 𝑦𝛿 ⇔ 𝑥𝛿𝑅𝑦 = 𝑥𝑅𝑦𝛿 ⇔ 𝛿𝑅𝑦 =

𝑅𝑦𝛿 ⇔ 𝑥𝛿𝑅𝑦 = 𝑥𝑅𝑦𝛿 ⇔ 𝑥𝛿 ⋅ 𝑦 = 𝑥 ⋅ 𝑦𝛿 ⇔ 𝑦𝐿𝑥𝛿 = 𝑦𝛿𝐿𝑥 ⇔ 𝐿𝑥𝛿 = 𝛿𝐿𝑥.  

4. If 𝑈 is 𝜆-regular, then 𝑥𝑈 ⋅ 𝑦 = (𝑥𝑦)𝑈. Put 𝑥 = 0 in this, then you have 𝐿0𝑈 = 𝐿0𝑈. Putting 

𝑦 = 𝑥, we have 𝑥𝑈 ⋅ 𝑥 = 0𝑈. 

5.  If 𝑈 is 𝜌-regular, then 𝑥 ⋅ 𝑦𝑈 = (𝑥𝑦)𝑈. Put 𝑦 = 0, then you get 𝑈 = 𝑅0𝑈. Putting 𝑥 = 𝑦 =

0, we have 0 ⋅ 0𝑈 = 0𝑈. Substituting 𝑥 = 0, we get 𝑈𝐿0 = 𝐿0𝑈.  

6. If 𝑈 is 𝜇-regular with adjoint 𝑈′ = 𝑈, then 𝑥 ⋅ 𝑦𝑈−1 = 𝑥 ⋅ 𝑦. Put 𝑥 = 𝑦 = 0 to get 0𝑈 ⋅

0𝑈−1 = 0. Put 𝑦 = 0 to get 𝑈𝑅0𝑈−1 = 𝐼. Put 𝑥 = 0 to get 𝐿0𝑈 = 𝑈𝐿0.  

7.  If 𝑈 is autotopic, then there exist 𝑉,𝑊 ∈ 𝑆𝑌𝑀(𝐺) such that 𝑥𝑈 ⋅ 𝑦𝑉 = 𝑥 ⋅ 𝑦. Putting 𝑦 = 0, 

we get 𝑈−1𝑊 = 𝑅0𝑉. Substituting 𝑥 = 0, we have 𝑉𝐿0𝑈 = 𝐿0𝑊. Substituting 𝑦 = 𝑥, we get 

𝑥𝑈 ⋅ 𝑥𝑉 = 0𝑊.  

 

2.2.  Quasi Neutrosophic Triplet Loop Isotopes of BCI-Algebras 

 We now present results on isotopy of BCI-algebras.  

Theorem 13  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗) is a groupoid.   

1. Let 휀−1𝛿 = 𝛿−1휀. Then, (𝐺,∗ ,0) is a (r-r)-quasi NTL or (r-l)-quasi NTL or (r-rl)-quasi NTL if 
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and only if 𝛿 = 휀 and 𝛿 = 𝑅0 −1  (i.e. ∃𝑔 ∈ 𝐺 ∋ 𝛿 = 𝑅𝑔; 𝑔 = 0휀
−1).  

2.  (𝐺,∗ ,0) is a BCI-algebra if and only if the following hold:   

a. 𝛿 = 𝑅0 −1  (∃𝑔 ∈ 𝐺 ∋ 𝛿 = 𝑅𝑔; 𝑔 = 0휀
−1);  

b.  𝛿 = 휀;  

c.  [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0.  

Proof.   

1. (𝐺,∗ ,0) is a (r-r)-quasi NTL or (r-l)-quasi NTL or (r-rl)-quasi NTL if and only if 𝑥 ∗ 0 = 𝑥 

and 𝑥 ∗ 𝑥 = 0.   

a. 𝑥 ∗ 0 = 𝑥 ⇔ (𝑥𝛿−1 ⋅ 0휀−1)𝐼 = 𝑥 ⇔ 𝑥𝛿−1𝑅0 −1 = 𝑥 ⇔ 𝛿−1𝑅0 −1 = 𝐼 ⇔ 𝛿 = 𝑅0 −1 .  

b.  𝑥 ∗ 𝑥 = 0 ⇔ 𝑥𝛿−1 ⋅ 𝑥휀−1 = 0 = 𝑥2. Replace 𝑥 by 𝑥휀−1𝛿 to get 𝑥 ∗ 𝑥 = 0 ⇔ 𝑥휀−1𝛿𝛿−1 ⋅

𝑥휀−1𝛿휀−1 = (𝑥휀−1𝛿)2 ⇔ 𝑥휀−1 ⋅ 𝑥휀−1𝛿휀−1 = 0 ⇔ 𝑥휀−1 ⋅ 𝑥𝛿−1 = 0. So, 𝑥𝛿−1 ⋅ 𝑥휀−1 = 0 

and 𝑥휀−1 ⋅ 𝑥𝛿−1 = 0 implies that 𝑥𝛿−1 = 𝑥휀−1 ⇔ 𝛿 = 휀.  

2. For the forward, we shall assume that (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗) and (𝐺,∗ ,0) is a BCI-algebra.   

a. As above in 1, 𝑥 ∗ 0 = 𝑥 ⇔ 𝛿 = 𝑅0 −1.  

b.  Let 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0, and so 𝑥𝛿−1 ⋅ 𝑦휀−1 = 0 and 𝑦𝛿−1 ⋅ 𝑥휀−1 = 0 respectively. 

The equation 𝑦𝛿−1 ⋅ 𝑥휀−1 = 0 can be re-written as 𝑦𝛿−1 ⋅ 𝑥휀−1 = 𝑦2. Now, replacing 𝑦 

by 𝑦휀−1𝛿 to get 𝑦휀−1𝛿𝛿−1 ⋅ 𝑥휀−1 = (𝑦휀−1𝛿)2 ⇒ 𝑦휀−1 ⋅ 𝑥휀−1 = 0 ⇒ 𝑦휀−1 ⋅ 𝑥휀−1 = 𝑥2. 

Furthermore, 𝑥 by 𝑥𝛿−1휀 to get 𝑦휀−1 ⋅ 𝑥𝛿−1휀휀−1 = (𝑥𝛿−1휀)2 ⇒ 𝑦휀−1 ⋅ 𝑥𝛿−1 = 0. 

Thus, we have shown that 𝑥𝛿−1 ⋅ 𝑦휀−1 = 0 and 𝑦휀−1 ⋅ 𝑥𝛿−1 = 0. Recall that 𝑥 ⋅ 𝑦 = 0 and 

𝑦 ⋅ 𝑥 = 0 imply that 𝑥 = 𝑦. So, 𝑥𝛿−1 = 𝑦휀−1 ⇒ 𝛿 = 휀.  

c. [(𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)] ∗ (𝑧 ∗ 𝑦) = 0 ⇔ [(𝑥𝛿−1 ⋅ 𝑦휀−1)𝛿−1 ⋅ (𝑥𝛿−1 ⋅ 𝑧휀−1)휀−1]𝛿−1 ⋅ [(𝑧𝛿−1 ⋅

𝑦휀−1)]휀−1 = 0. Replace 𝑥𝛿−1 by 𝑥, 𝑦휀−1 by 𝑦, and 𝑧휀−1 by 𝑧 to get [(𝑥 ⋅ 𝑦)𝛿−1 ⋅ (𝑥 ⋅

𝑧)휀−1]𝛿−1 ⋅ [𝑧휀𝛿−1 ⋅ 𝑦]휀−1 = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)]𝛿−1 ⋅ [𝑧휀𝛿−1 ⋅ 𝑦]휀−1 = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅

𝑧)] ∗ [𝑧휀𝛿−1 ⋅ 𝑦] = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ [𝑧 ⋅ 𝑦] = 0.  

    For the converse: we shall assume (a), (b) and (c). Following directly the reverse of 2(a), 

𝑥 ∗ 0 = 𝑥 . Since 𝛿 = 휀 , then 𝑥 ∗ 𝑦 = 0 ⇒ 𝑥𝛿−1 ⋅ 𝑦휀−1 = 0  and 𝑦 ∗ 𝑥 = 0 ⇒ 𝑦𝛿−1 ⋅ 𝑥휀−1 = 0 

which means that 𝑥𝛿−1 ⋅ 𝑦𝛿−1 = 0 and 𝑦𝛿−1 ⋅ 𝑥𝛿−1 = 0 imply 𝑥 = 𝑦. Since 𝛿 = 휀, then (c) 

can be reversed to get [(𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)] ∗ (𝑧 ∗ 𝑦) = 0. ∴ (𝐺,∗ ,0) is a BCI-algebra.  

Corollary 1 Let (𝐺,⋅ ,0)
(𝑅𝑔,𝑅𝑔,𝐼)
→     (𝐺,∗) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗) is a groupoid.   

1. (𝐺,∗ ,0) is a (r-r)-quasi NTL, (r-l)-quasi NTL and (r-rl)-quasi NTL.  

2. (𝐺,∗ ,0) is a BCI-algebra if and only if [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0 holds.  

 

Proof. We shall use Theorem 13. 1 and 2 are true because 𝑅𝑔 = 𝑅0𝑅𝑔−1  since 𝑔 = 0𝑅𝑔
−1 ⇔ 𝑔2 = 0, 

which is true in the BCI-algebra (𝐺,⋅ ,0).  

Theorem 14  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄) such that 0𝐶 = 0′, where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄) is a 

groupoid. 

1. Let 𝐴−1𝐵 = 𝐵−1𝐴 , then (𝐻,⋄, 0′)  is a (r-r)-quasi NTL or (r-l)-quasi NTL or 

(r-rl)-quasi NTL if and only if 𝐴 = 𝐵 and 𝐴 = 𝑅0′𝐵−1𝐶 (i.e. ∃𝑔 ∈ 𝐺 ∋ 𝐴 = 𝑅𝑔𝐶, 𝑔 =
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0′𝐵−1).  

2.  (𝐻,⋄, 0′) is a BCI-algebra if and only if the following hold:   

a. 𝐴 = 𝑅0′𝐵−1𝐶 (∃𝑔 ∈ 𝐺 ∋ 𝐴 = 𝑅𝑔𝐶, 𝑔 = 0
′𝐵−1); 

b. 𝐴 = 𝐵; 

c. [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′. 

Proof. We make use of Theorem 13. Theorem 10 shall be applied in here as follows: (𝐺,∗) is a 

principal isotope of (𝐺,⋅) such that (𝐺,∗) ≅
𝐶
(𝐻,⋄).   

a. is true ⇔ 𝐴𝐶−1 = 𝑅0(𝐵𝐶−1)−1  ⇔ 𝐴𝐶−1 = 𝑅0𝐶𝐵−1 ⇔ 𝐴 = 𝑅0′𝐵−1𝐶.  

b. is true ⇔ 𝐴𝐶−1 = 𝐵𝐶−1 ⇔ 𝐴 = 𝐵. 

c.  [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0 ⇔ {[(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦)}𝐶 = 0𝐶 ⇔ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)]𝐶 ⋄

(𝑧 ⋅ 𝑦)𝐶 = 0′ ⇔ [(𝑥 ⋅ 𝑦)𝐶 ⋄ (𝑥 ⋅ 𝑧)𝐶] ⋄ (𝑧 ⋅ 𝑦)𝐶 = 0′ ⇔ [(𝑥𝐴 ⋄ 𝑦𝐵) ⋄ (𝑥𝐴 ⋄ 𝑧𝐵)] ⋄ (𝑧𝐴 ⋄ 𝑦𝐵) =

0′.  

 Replace 𝑥𝐴  by 𝑥 , 𝑦𝐵  by 𝑦 , and 𝑧𝐵  by 𝑧  to get [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧𝐵−1𝐴 ⋄ 𝑦) = 0′ ⇔

[(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′.  

Corollary 2 Let (𝐺,⋅ ,0)
(𝑅𝑔𝐶,𝑅𝑔𝐶,𝐶)
→        (𝐻,⋄) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄) is a groupoid. Let 0𝐶 =

0′, then  

1.  (𝐻,⋄, 0′) is a (r-r)-quasi NTL, (r-l)-quasi NTL and (r-rl)-quasi NTL.  

2.  (𝐻,⋄, 0′) is a BCI-algebra if and only if [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′ holds.  

  

Proof. We shall use Theorem 14. 1 and 2 are true because 𝑅𝑔𝐶 = 𝑅0′(𝑅𝑔𝐶)−1𝐶 since 𝑔 = 0′(𝑅𝑔𝐶)
−1 ⇔

𝑔 = 0′𝐶−1𝑅𝑔
−1 ⇔ 𝑔 = 0𝑅𝑔

−1 ⇔ 𝑔2 = 0, which is true in the BCI-algebra (𝐺,⋅ ,0).  

 

2.3.  Isotopy of [𝑝-semisimple, quasi-associative] BCI-Algebras and BCK-Algebras 

 Isotopy of 𝑝-semisimple, quasi-associative BCI-algebras and BCK-Algebras is presented.  

Theorem 15  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  is a BCI-algebra and (𝐺,∗ ,0)  is a BCI-algebra. 

Under any of the following conditions:   

 

1. 0𝛿 = 0, 𝛿 ∈ 𝒫(𝐺,∗) and |𝛿| = 2 (i.e. 𝛿2 = 𝐼);  

2. 𝛿 ∈ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗) and |𝛿| = 2;  

(𝐺,⋅ ,0) is 𝑝-semisimple if and only if (𝐺,∗ ,0) is 𝑝-semisimple.  

Proof. By Theorem 13, 𝛿 = 휀.   

1. (𝐺,⋅ ,0) is 𝑝-semisimple if and only if 0 ⋅ (0 ⋅ 𝑥) = 𝑥 ⇔ 𝐿0
2 = 𝐼 . (𝐺,⋅ ,0) is 𝑝-semisimple if 

and only if 0𝛿 ∗ (0𝛿 ∗ 𝑥𝛿)𝛿 = 𝑥 ⇔ 0 ∗ (0 ∗ 𝑥𝛿)𝛿 = 𝑥 ⇔ 0 ∗ (0 ∗ 𝑥)𝛿 = 𝑥𝛿 ⇔ 𝕃0𝛿𝕃0 = 𝛿. 

Following 2. of Lemma 2, (𝐺,⋅ ,0) is 𝑝-semisimple if and only if 𝕃0
2 = 𝐼 ⇔ (𝐺,∗ ,0) is    

 𝑝-semisimple. 

2. (𝐺,⋅ ,0)  is 𝑝 -semisimple if and only if (𝑥 ⋅ 𝑦) ⋅ (𝑥 ⋅ 𝑧) = 𝑧 ⋅ 𝑦 ⇔ 𝐿𝑥𝐿𝑥⋅𝑦 = 𝑅𝑦 . (𝐺,⋅ ,0)  is 

𝑝-semisimple if and only if (𝑥𝛿 ∗ 𝑦휀)𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀 = 𝑧𝛿 ∗ 𝑦휀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ (𝑥 ∗ 𝑧)𝛿 = 𝑧 ∗ 𝑦 ⇔

𝕃𝑥𝛿𝕃(𝑥∗𝑦)𝛿 = ℝ𝑦. 
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Following 3. of Lemma 2, (𝐺,⋅ ,0)  is 𝑝 -semisimple if and only if 𝕃𝑥𝛿
2𝕃(𝑥∗𝑦) = ℝ𝑦 ⇔

𝕃𝑥𝕃(𝑥∗𝑦) = 

ℝ𝑦 ⇔ (𝐺,∗ ,0) is 𝑝-semisimple.  

Corollary 3  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra, and 

(𝐺,∗) is a principal isotope of (𝐺,⋅). Under any of the following conditions:   

 

1. 0𝐶 = 0𝐴, 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) and 𝐶𝐴−1𝐶 = 𝐴;  

2. 𝐴𝐶−1 ∈ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗) and 𝐶𝐴−1𝐶 = 𝐴;  

 

(𝐺,⋅ ,0) is 𝑝-semisimple if and only if (𝐻,⋄ ,0′) is 𝑝-semisimple.  

Proof. Use the Theorem 15.  

Theorem 16  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 0𝛿 = 0. (𝐺,⋅ ,0) is a BCK-algebra if and only if (𝐺,∗ ,0) is a BCK-algebra.  

  

Proof. (𝐺,⋅ ,0) is a BCK-algebra if and only if 0 ⋅ 𝑥 = 0 ⇔ 0𝛿 ∗ 𝑥휀 = 0 ⇔ 0 ∗ 𝑥𝛿 = 0 ⇔ 0 ∗ 𝑥 = 0 if 

and only if (𝐺,∗ ,0) is a BCK-algebra.  

Corollary 4  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a zero-cancellative BCI-algebra and (𝐻,⋄ ,0′) is a 

BCI-algebra such that 0𝐶 = 0𝐴 = 0′. (𝐺,⋅ ,0) is a BCK-algebra if and only if (𝐻,⋄ ,0′) is a BCK-algebra.  

  

Proof. Use the Theorem 16.  

Theorem 17  Let (𝐺,⋅ ,0, ≤)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0, ⋜  ) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. 

Under any of the following conditions:   

1. 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3.  𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

 (𝐺,⋅ ,0) is quasi-associative if and only if (𝐺,∗ ,0) is quasi-associative.  

 Proof. In the light of Theorem 2, we shall adopt the following representation for any two self 

maps 𝐴  and 𝐵  on 𝐺 : 𝐴 ≤ 𝐵 ⇔ 𝑥𝐴 ≤ 𝑥𝐵  and 𝐴 ⋜ 𝐵 ⇔ 𝑥𝐴 ⋜ 𝑥𝐵  for all 𝑥 ∈ 𝐺 . Recall that by 

Theorem 2, 𝑥 ⋅ 𝑦 = 0 ⇔ 𝑥 ≤ 𝑦 and 𝑥 ∗ 𝑦 = 0 ⇔ 𝑥 ⋜ 𝑦. So, 𝑥 ≤ 𝑦 ⇔ 𝑥 ⋅ 𝑦 = 0 ⇔ 𝑥𝛿 ∗ 𝑦휀 = 0 ⇔ 𝑥𝛿 ⋜

𝑦휀. Hence, 𝑥 ≤ 𝑦 ⇔ 𝑥𝛿 ⋜ 𝑦휀. Note that by Theorem 13, 𝛿 = 휀.   

1. (𝐺,⋅ ,0)  is quasi-associative if and only if (𝑥 ⋅ 𝑦) ⋅ 𝑧 ≤ 𝑥 ⋅ (𝑦 ⋅ 𝑧) ⇔ (𝑥𝛿 ∗ 𝑦휀)𝛿 ∗ 𝑧휀 ≤ 𝑥𝛿 ∗

(𝑦𝛿 ∗ 𝑧휀)휀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧)휀 ⇔ ℝ𝑦𝛿ℝ𝑧 ≤ ℝ(𝑦∗𝑧)𝛿 . 

Following 1. and 2. of Lemma 2, (𝐺,⋅ ,0) is quasi-associative if and only if 𝛿ℝ𝑦ℝ𝑧 ≤ 𝛿ℝ𝑦∗𝑧 ⇔ (𝑥𝛿 ∗

𝑦) ∗ 𝑧 ≤ 𝑥𝛿 ∗ (𝑦 ∗ 𝑧) ⇔ (𝑥 ∗ 𝑦) ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧) ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ⋅ [𝑥 ∗ (𝑦 ∗ 𝑧)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧]𝛿 ∗ [𝑥 ∗

(𝑦 ∗ 𝑧)]휀 = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧𝛿] ∗ [𝑥 ∗ (𝑦 ∗ 𝑧휀)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ⋜

[𝑥 ∗ (𝑦 ∗ 𝑧)] if and only if (𝐺,∗ ,0) is quasi-associative. 

2. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). Hence, the 
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conclusion follows by 1.  

3. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). Hence, the 

conclusion follows by 1.  

Corollary 5  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra, (𝐻,⋄ ,0′) is a BCI-algebra and 

(𝐺,∗) is a principal isotope of (𝐺,⋅) with 0𝐶 = 0′. Under any of the following conditions:   

 

1. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗); 

3. 𝐴𝐶−1 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗);  

 

(𝐺,⋅ ,0) is quasi-associative if and only if (𝐻,⋄ ,0′) is quasi-associative.  

  

Proof. Use the Theorem 5.  

 

2.4.  Isotopy of Associative Fenyves BCI-Algebras 

  

Isotopy of associative Fenyves BCI-algebras is presented. The set 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅)  of a 

groupoid (𝐺,⋅) is defined as 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) = {𝑥 ∈ 𝐺: 𝑥𝑦 = 𝑦𝑥∀𝑦 ∈ 𝐺}.  

Theorem 18  Let (𝐺,⋅ ,0)
(𝛼,𝛼,𝐼)
→    (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  and (𝐺,∗ ,0)  are BCI-algebras. (𝐺,∗ ,0)  is 

associative if and only if 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

  

Proof. 0 ∗ 𝑥 = 𝑥 ⇔ 0𝛼−1 ⋅ 𝑥𝛼−1 = 𝑥 ⇔ 𝛼 = 𝐿0𝛼−1 ⇔ 𝑅0𝛼−1 = 𝐿0𝛼−1 ⇔ 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

Corollary 6  Let (𝐺,⋅ ,0)
(𝐴,𝐴,𝐶)
→    (𝐻,⋄ ,0′)  where (𝐺,⋅ ,0)  and (𝐻,⋄ ,0′)  are BCI-algebras. (𝐻,⋄ ,0′)  is 

associative if and only if 0𝐶𝐴−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

  

Proof. Use Theorem 18.  

Corollary 7  Let (𝐺,⋅ ,0)
(𝛼,𝛼,𝐼)
→    (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  and (𝐺,∗ ,0)  are BCI-algebras. (𝐺,∗ ,0)  is an 

𝐹𝑖-algebra if and only if 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) for 𝑖 = 1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22, 

23,24,25,26,27,28,30,31,32,33,34,35,36, 37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows by Theorem 18 and Theorem 12.  

Corollary 8  Let (𝐺,⋅ ,0)
(𝐴,𝐴,𝐶)
→    (𝐻,⋄, 0′)  where (𝐺,⋅ ,0)  and (𝐻,⋄, 0′)  are BCI-algebras. (𝐻,⋄, 0′)  is an 

𝐹𝑖-algebra if and only if 0𝐶𝐴−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) for 𝑖 = 1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22, 

23,24,25,26,27,28,30,31,32,33,34,35,36, 37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows by Corollary 6 and Theorem 12.  
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Theorem 19  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. Then 

(𝐺,⋅ ,0) is associative if and only if (𝐺,∗ ,0) is associative.  

  

Proof. (𝐺,⋅ ,0) is associative if and only if 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 ⇔ 𝑥𝛿 ∗ 𝑦휀 = 𝑦𝛿 ∗ 𝑥휀 ⇔ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 ⇔ (𝐺,∗ ,0) 

is associative.  

Corollary 9  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra. 

Then (𝐺,⋅ ,0) is associative if and only if (𝐻,⋄ ,0′) is associative.  

  

Proof. This follows from Theorem 19.  

Corollary 10  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. Then 

(𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐺,∗ ,0)  is an 𝐹𝑖 -algebra, 𝑖 =

1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,40,41, 

43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows from Theorem 12 and Theorem 19.  

Corollary 11  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄, 0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄, 0′) is a BCI-algebra. 

Then (𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐻,⋄, 0′)  is an 𝐹𝑖 -algebra, 𝑖 =

1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,40,41, 

43,44,45,47,48,49,50,51,53,57,58,60.  

 

Proof. This follows from Theorem 12 and Corollary 9.  

 

Remark 5 Note that those 𝐹𝑖 identities which are not in Corollary 11, do not necessarily imply associativity in 

BCI-algebra, hence, they need some isotopic conditions for isotopic invariance. The next subsection addresses 

this.  

 

2.5.  Isotopy of Non-Associative Fenyves BCI-Algebras 

  

Isotopy of non-associative Fenyves BCI-algebras is presented.  

 

Theorem 20  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that any of the following is true:   

 

1. .𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2.  𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3.  𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗).  
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Then, (𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐺,∗ ,0)  is an 𝐹𝑖 -algebra; where 𝑖 =

3,5,8,19,21,29,39,42,46,52,55,56,59.  

  

Proof. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗) ⇔ 𝛿 ∈ Λ(𝐺,∗

) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). By Theorem 13, 𝛿 = 휀. The arguments of the proof is based on 

condition 1. 

 

(𝐺,⋅ ,0)  is an 𝐹3 -algebra if and only if (𝑥 ⋅ 𝑦) ⋅ (𝑧 ⋅ 𝑥) = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ (𝑥𝛿 ∗ 𝑦휀)𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]휀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ (𝑧 ∗ 𝑥)휀 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)휀]휀 ⇔ 𝑦𝕃𝑥𝛿ℝ(𝑧∗𝑥) = 𝑦ℝ(𝑧∗𝑥) 휀𝕃𝑥 ⇔

𝕃𝑥𝛿ℝ(𝑧∗𝑥)휀 = ℝ(𝑧∗𝑥)휀
2𝕃𝑥 ⇔ 𝑦𝕃𝑥ℝ(𝑧∗𝑥) = 𝑦ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [(𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑥) = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹3-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹5-algebra if and only if [(𝑥 ⋅ 𝑦) ⋅ 𝑧)]𝑥 = [𝑥 ⋅ (𝑦 ⋅ 𝑧)]𝑥 ⇔ [(𝑥 ∗ 𝑦)𝛿 ∗ 𝑧]𝛿 ∗ 𝑥 = [𝑥 ∗ (𝑦 ∗

𝑧)휀]𝛿 ∗ 𝑥 ⇔ 𝑦ℝ𝑧휀𝕃𝑥𝛿ℝ𝑥 = 𝑦𝕃𝑥𝛿ℝ𝑧𝛿ℝ𝑥 ⇔ ℝ𝑧휀𝕃𝑥𝛿ℝ𝑥 = 𝕃𝑥𝛿ℝ𝑧𝛿ℝ𝑥 ⇔ ℝ𝑧𝕃𝑥휀𝛿ℝ𝑥 = 𝕃𝑥ℝ𝑧𝛿
2ℝ𝑥 ⇔

ℝ𝑧𝕃𝑥ℝ𝑥 = 𝕃𝑥ℝ𝑧ℝ𝑥 ⇔ 𝑦ℝ𝑧𝕃𝑥ℝ𝑥 = 𝑦𝕃𝑥ℝ𝑧ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  is an 

𝐹5-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹8-algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⋅ 𝑥 = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧휀)휀]𝛿 ∗ 𝑥휀 = 𝑥𝛿 ∗

[𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)휀]𝛿 ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)휀]휀 ⇔ 𝑦ℝ𝑧휀𝕃𝑥𝛿ℝ𝑥 = 𝑦ℝ(𝑧∗𝑥) 휀𝕃𝑥 ⇔

ℝ𝑧𝕃𝑥휀𝛿ℝ𝑥 = ℝ(𝑧∗𝑥)휀
2𝕃𝑥 ⇔ ℝ𝑧𝕃𝑥ℝ𝑥 = ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is an 

𝐹8-algebra 

 

(𝐺,⋅ ,0)  is an 𝐹19 -algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑥)] ⋅ 𝑧 = 𝑥 ⋅ [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑥휀)휀]𝛿 ∗ 𝑧휀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)휀]𝛿 ∗ 𝑧휀 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)휀]휀 ⇔ 𝑦ℝ𝑥휀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ(𝑥∗𝑧) 휀ℝ𝑥 ⇔

ℝ𝑥𝕃𝑥휀𝛿ℝ𝑧 = ℝ(𝑥∗𝑧)휀
2ℝ𝑥 ⇔ ℝ𝑥𝕃𝑥ℝ𝑧 = ℝ(𝑥∗𝑧)ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)] ∗ 𝑧 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹19-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹21-algebra if and only if [(𝑦 ⋅ 𝑥) ⋅ (𝑧 ⋅ 𝑥)] = [(𝑦 ⋅ 𝑥) ⋅ 𝑧] ⋅ 𝑥 ⇔ (𝑦𝛿 ∗ 𝑥휀)𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀 =

[(𝑦𝛿 ∗ 𝑥휀)𝛿 ∗ 𝑧휀]𝛿 ∗ 𝑥휀 ⇔ (𝑦 ∗ 𝑥)𝛿 ∗ (𝑧 ∗ 𝑥)휀 = [(𝑦 ∗ 𝑥)𝛿 ∗ 𝑧]𝛿 ∗ 𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿𝕃𝑦ℝ𝑥𝛿 ⇔

𝕃𝑦ℝ𝑥𝛿ℝ𝑥 = ℝ𝑥𝕃𝑦ℝ𝑥𝛿 ⇔ 𝕃𝑦𝛿ℝ𝑥ℝ𝑥 = ℝ𝑥𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦ℝ𝑥 ⇔ [(𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥)] = [(𝑦 ∗ 𝑥) ∗

𝑧] ∗ 𝑥 ⇔ (𝐺,∗ ,0) is an 𝐹21-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹29 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⋅ 𝑥 = 𝑦 ⋅ [𝑥 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]𝛿 ∗ 𝑥휀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)휀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)휀]휀 ⇔ 𝑧𝕃𝑥휀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥휀𝕃𝑥휀𝕃𝑦 ⇔

𝕃𝑥𝕃𝑦휀𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥휀
2𝕃𝑦 ⇔ 𝕃𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)] ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0) is an 

𝐹29-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹39 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑥)] ⋅ 𝑧 = 𝑦 ⋅ [𝑥 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑥휀)휀]𝛿 ∗ 𝑧휀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)휀]𝛿 ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)휀]휀 ⇔ 𝑧𝕃[𝑦∗(𝑥∗𝑥) ]𝛿 = 𝑧𝕃𝑥휀𝕃𝑥휀𝕃𝑦 ⇔
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𝕃[𝑦∗(𝑥∗𝑥) 𝛿] = 𝕃𝑥
2휀2𝕃𝑦 ⇔ 𝕃[𝑦∗(𝑥∗𝑥)] = 𝕃𝑥

2𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)] ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹39-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹42-algebra if and only if (𝑥 ⋅ 𝑥) ⋅ (𝑦 ⋅ 𝑧) = [(𝑥 ⋅ 𝑥) ⋅ 𝑦] ⋅ 𝑧 ⇔ 0𝛿 ∗ (𝑦 ∗ 𝑧)휀 = (0𝛿 ∗ 𝑦)𝛿 ∗

𝑧 ⇔ 𝑦ℝ𝑧휀𝕃0𝛿 = 𝑦𝕃0𝛿𝛿ℝ𝑧 ⇔ 𝑦ℝ𝑧휀𝕃0𝛿 = 𝑦𝕃0𝛿𝛿ℝ𝑧 ⇔ 𝑦ℝ𝑧𝕃0휀𝛿 = 𝑦𝕃0ℝ𝑧 ⇔ 𝑦ℝ𝑧𝕃0 = 𝑦𝕃0ℝ𝑧 ⇔ 0 ∗

(𝑦 ∗ 𝑧) = (0 ∗ 𝑦) ∗ 𝑧 ⇔ (𝐺,∗ ,0) is an 𝐹42-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹46 -algebra if and only if [𝑥 ⋅ (𝑥 ⋅ 𝑦)] ⋅ 𝑧 = 𝑥 ⋅ [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑦휀)휀]𝛿 ∗ 𝑧휀 =

𝑥𝛿 ∗ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)휀]𝛿 ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)휀]휀 ⇔ 𝑦𝕃𝑥휀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ𝑧휀𝕃𝑥휀𝕃𝑧 ⇔

𝕃𝑥𝕃𝑥휀𝛿ℝ𝑧 = ℝ𝑧𝕃𝑥휀
2𝕃𝑧 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)] ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] ⇔ (𝐺,∗ ,0) is an 𝐹46-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹52-algebra if and only if (𝑦 ⋅ 𝑧) ⋅ (𝑥 ⋅ 𝑥) = [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 ⇔ (𝑦𝛿 ∗ 𝑧휀)𝛿 ∗ (𝑥𝛿 ∗ 𝑥휀)휀 =

[(𝑦𝛿 ∗ 𝑧휀)𝛿 ∗ 𝑥휀]𝛿 ∗ 𝑥휀 ⇔ (𝑦 ∗ 𝑧)𝛿 ∗ (𝑥 ∗ 𝑥)휀 = [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 ⇔ 𝑦ℝ𝑧𝛿ℝ(𝑥∗𝑥) = 𝑦ℝ𝑧𝛿ℝ𝑥𝛿ℝ𝑥 ⇔

ℝ𝑧ℝ(𝑥∗𝑥)휀𝛿 = ℝ𝑧ℝ𝑥𝛿
2ℝ𝑥 ⇔ ℝ𝑧ℝ(𝑥∗𝑥) = ℝ𝑧ℝ𝑥

2 ⇔ (𝑦 ∗ 𝑧) ∗ (𝑥 ∗ 𝑥) = [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  is an 

𝐹52-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹55-algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥]𝑥 = [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = [𝑦 ∗ (𝑧 ∗

𝑥)휀]𝛿 ∗ 𝑥 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥휀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥휀𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦휀𝛿ℝ𝑥 =

𝑧ℝ𝑥휀𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥휀𝕃𝑦𝛿ℝ𝑥 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  

is an 𝐹55-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹56 -algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 = 𝑦 ⋅ [(𝑧 ⋅ 𝑥) ⋅ 𝑥] ⇔ [(𝑦𝛿 ∗ 𝑧휀)𝛿 ∗ 𝑥휀]𝛿 ∗ 𝑥휀 =

𝑦𝛿 ∗ [(𝑧𝛿 ∗ 𝑥휀)𝛿 ∗ 𝑥휀]휀 ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥)𝛿 ∗ 𝑥]휀 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿ℝ𝑥휀𝕃𝑦 ⇔

𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = ℝ𝑥𝛿ℝ𝑥휀𝕃𝑦 ⇔ 𝕃𝑦ℝ𝑥𝛿
2ℝ𝑥 = ℝ𝑥ℝ𝑥𝛿휀𝕃𝑦 ⇔ 𝕃𝑦ℝ𝑥ℝ𝑥 = ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 =

𝑧ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥) ∗ 𝑥] ⇔ (𝐺,∗ ,0) is an 𝐹56-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹59 -algebra if and only if [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 = 𝑦 ⋅ [𝑧 ⋅ (𝑥 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]𝛿 ∗ 𝑥휀 =

𝑦𝛿 ∗ [𝑧𝛿 ∗ (𝑥𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)휀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)휀]휀 ⇔ 𝑦ℝ(𝑧∗𝑥) 𝛿ℝ𝑥 = 𝑦ℝ[𝑧∗(𝑥∗𝑥) ] ⇔

ℝ(𝑧∗𝑥)휀𝛿ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)]휀
2 ⇔ ℝ(𝑧∗𝑥)ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)] ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹59-algebra.  

 

Corollary 12  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra 

such that any of the following is true:   

 

1. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3. 𝐴𝐶−1 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗);  

 

where (𝐺,∗) is a principal isotope of (𝐺,⋅) with 0𝐶 = 0′. Then (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if 

(𝐻,⋄ ,0′) is an 𝐹𝑖-algebra; where 𝑖 = 3,5,8,19,21,29,39,42,46,52,55,56,59.  
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Proof. This follows from Theorem 20 and Theorem 14.  

 

Theorem 21  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 𝛿 ∈ 𝛬(𝐺,∗) and |𝛿| = 2. Then (𝐺,⋅ ,0) is an 𝐹56-algebra if and only if (𝐺,∗ ,0) is an 𝐹56-algebra.  

  

Proof. By Theorem 13, 𝛿 = 휀. 

(𝐺,⋅ ,0)  is an 𝐹56 -algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 = 𝑦 ⋅ [(𝑧 ⋅ 𝑥) ⋅ 𝑥] ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = 𝑦 ∗

[(𝑧 ∗ 𝑥)𝛿 ∗ 𝑥]휀 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿ℝ𝑥휀𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥ℝ𝑥𝛿휀𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 =

𝑧ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥) ∗ 𝑥] ⇔ (𝐺,∗ ,0) is an 𝐹56-algebra.  

 

Corollary 13  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra 

such that 𝐴𝐶−1 ∈ 𝛬(𝐺,∗) and |𝐴𝐶−1| = 2. Then (𝐺,⋅ ,0) is an 𝐹56-algebra if and only if (𝐻,⋄ ,0′) is an 

𝐹56-algebra.  

  

Proof. This follows from Theorem 21 and Theorem 14.  

 

Theorem 22  Let (𝐺,⋅ ,0)
(𝛿, ,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 𝛿 ∈ 𝒫(𝐺,∗) and |𝛿| = 2. Then (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if (𝐺,∗ ,0) is an 𝐹𝑖-algebra; where 

𝑖 = 8,19,29,39,46,59.  

  

Proof. By Theorem 13, 𝛿 = 휀. 

(𝐺,⋅ ,0) is an 𝐹8-algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⋅ 𝑥 = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧휀)휀]𝛿 ∗ 𝑥휀 = 𝑥𝛿 ∗

[𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)휀]𝛿 ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)휀]휀 ⇔ 𝑦ℝ𝑧휀𝕃𝑥𝛿ℝ𝑥 = 𝑦ℝ(𝑧∗𝑥) 휀𝕃𝑥 ⇔

ℝ𝑧𝕃𝑥휀𝛿ℝ𝑥 = ℝ(𝑧∗𝑥)휀
2𝕃𝑥 ⇔ ℝ𝑧𝕃𝑥ℝ𝑥 = ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is an 

𝐹8-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹19 -algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑥)] ⋅ 𝑧 = 𝑥 ⋅ [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑥휀)휀]𝛿 ∗ 𝑧휀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)휀]𝛿 ∗ 𝑧휀 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)휀]휀 ⇔ 𝑦ℝ𝑥휀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ(𝑥∗𝑧) 휀ℝ𝑥 ⇔

ℝ𝑥𝕃𝑥휀𝛿ℝ𝑧 = ℝ(𝑥∗𝑧)휀
2ℝ𝑥 ⇔ ℝ𝑥𝕃𝑥ℝ𝑧 = ℝ𝑥∗𝑧)ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)] ∗ 𝑧 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹19-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹29 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⋅ 𝑥 = 𝑦 ⋅ [𝑥 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]𝛿 ∗ 𝑥휀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)휀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)휀]휀 ⇔ 𝑧𝕃𝑥휀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥휀𝕃𝑥휀𝕃𝑦 ⇔

𝕃𝑥𝕃𝑦휀𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥휀
2𝕃𝑦 ⇔ 𝕃𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)] ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0) is an 

𝐹29-algebra. 

(𝐺,⋅ ,0) is an 𝐹39-algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑥)] ⋅ 𝑧 = 𝑦 ⋅ [𝑥 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑥휀)휀]𝛿 ∗

𝑧휀 = 𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)휀]𝛿 ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)휀]휀 ⇔ 𝑧𝕃[𝑦∗(𝑥∗𝑥) ]𝛿 = 𝑧𝕃𝑥휀𝕃𝑥휀𝕃𝑦 ⇔
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𝕃[𝑦∗(𝑥∗𝑥) 𝛿] = 𝕃𝑥
2휀2𝕃𝑦 ⇔ 𝕃[𝑦∗(𝑥∗𝑥)] = 𝕃𝑥

2𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)] ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹39-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹46 -algebra if and only if [𝑥 ⋅ (𝑥 ⋅ 𝑦)] ⋅ 𝑧 = 𝑥 ⋅ [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑦휀)휀]𝛿 ∗ 𝑧휀 =

𝑥𝛿 ∗ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧휀)휀]휀 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)휀]𝛿 ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)휀]휀 ⇔ 𝑦𝕃𝑥휀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ𝑧휀𝕃𝑥휀𝕃𝑧 ⇔

𝕃𝑥𝕃𝑥휀𝛿ℝ𝑧 = ℝ𝑧𝕃𝑥휀
2𝕃𝑧 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)] ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] ⇔ (𝐺,⋅ ,0) is an 𝐹46-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹59 -algebra if and only if [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 = 𝑦 ⋅ [𝑧 ⋅ (𝑥 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥휀)휀]𝛿 ∗ 𝑥휀 =

𝑦𝛿 ∗ [𝑧𝛿 ∗ (𝑥𝛿 ∗ 𝑥휀)휀]휀 ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)휀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)휀]휀 ⇔ 𝑦ℝ(𝑧∗𝑥) 𝛿ℝ𝑥 = 𝑦ℝ[𝑧∗(𝑥∗𝑥) ] ⇔

ℝ(𝑧∗𝑥)휀𝛿ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)]휀
2 ⇔ ℝ(𝑧∗𝑥)ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)] ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹59-algebra.  

  

Corollary 14  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) be an isotopism; where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a 

BCI-algebra such that 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) and |𝐴𝐶−1| = 2, where (𝐺,∗) is a principal isotope of (𝐺,⋅) with 

0𝐶 = 0′. Then, (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if (𝐻,⋄ ,0′) is an 𝐹𝑖-algebra; where 𝑖 = 8,19,29,39,46,59.  

Proof. This follows from Theorem 22 and Theorem 14.  

 

Remark 6 Note that those 𝐹𝑖 identities which do not appear in Corollaries 12,13,14 will trivially obey these 

corollaries because they imply associativity in BCI-algebra with no condition(s) placed on the isotopy.  

 

3.  Summary, Conclusion and Future Studies 

  

We shall now highlight the theoretical and practical implications of this research, discuss 

our research findings, highlight practical advantages and research limitations, and then suggest 

some future studies. 

Comparing the characterization of the permutation in the isotopy for the isotopic invariance 

of quasi-associativity (a measure of weak associativity) in Theorem 17 and the characterization of the 

permutation in the isotopy for the isotopic invariance of the 13 non-associative 𝐹𝑖  algebras in 

Theorem 20, the three are the same. This is a new contribution to the fact that isotopy in BCI-algebras 

and quasi-associativity can be measured with 14 non-associative 𝐹𝑖 identities. 

In loop theory, all the 30 Fenyves identities that are equivalent to associativity are isotopic 

invariant for any isotopy and some of the other 30 Fenyves identities that are non-associative (e.g. 

Moufang, Bol, Extra) are also isotopic invariant for any isotopy, while the others (e.g. LC, RC, C) are 

not. From our results in this work, all the 46 𝐹𝑖 identities that are equivalent to associativity in 

BCI-algebras are isotopic invariant for any isotopy, while for the 14 Fenyves identities that are 

non-associative in BCI-algebras; they are isotopic invariant for special isotopies including some well 

known identities (e.g. left Bol, LC and RC). Thus, it can be concluded that the isotopy of Fenyves 

identities that are non-associative in BCI-algebras is of better advantage over Fenyves identities that 

are non-associative in loops. But, there is limitation on the isotopy of all the 46 𝐹𝑖 identities that are 

equivalent to associativity in BCI-algebras. 
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Those 46 Fenyves identities that are equivalent to associativity in BCI-algebras as well as 

𝐹54 which of course are isotopic invariant under any isotopy are denoted by √ in the fourth and 

fifth columns of Table 1 and Table 2. While the 13 Fenyves identities that are equivalent to 

associativity in BCI-algebras excluding 𝐹54 which are isotopic invariant under special isotopies are 

identified by the symbol '‡' in the fourth and fifth columns of Table 1 and Table 2. Theoretically and 

practically, this research implies the isotopic study of 120 particular types of the 540 varieties of 

Fenyves quasi neutrosophic triplet loops (FQNTLs) discovered in Jaiyéolá et al. [36] (cf. Figure 1). 

For future studies, based on the philosophy of representing disease-victim(s) by 

neutrosophic algebraic structures, some of the 14 Fenyves identities that are non-associative in 

BCI-algebras (quasi neutrosophic loops) can be judiciously selected with good and appropriate 

choice of special isotopies for which such are isotopic invariant in order to study and understand the 

effects of diseases and possible treatment of a patient.  
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  FENYVES  

IDENTITY  

 𝑭𝒊 ≡ 𝑨𝑺𝑺  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN BCI ALG  

 𝑭𝒊 + 𝑩𝑪𝑰  

 ⇒ 𝑨𝑺𝑺  

  𝐹1  √     √   √  

 𝐹2    √     √  √  

 𝐹3  √      ‡   ‡ 

 𝐹4      √  √    √ 

 𝐹5  √      ‡   ‡ 

 𝐹6       √   √   √ 

 𝐹7  √     √   √  

 𝐹8  √     ‡   ‡ 

 𝐹9      √  √  √  

 𝐹10  √      √   √ 

 𝐹11  √     √   √  

 𝐹12  √     √   √  

 𝐹13      √  √   √  

 𝐹14  √     √   √  

 𝐹15       √ √   √  

 𝐹16  √     √   √  

 𝐹17      √  √   √  

 𝐹18  √     √   √  

 𝐹19    √    ‡   ‡ 

 𝐹20  √       √   √ 

 𝐹21  √      ‡   ‡ 

 𝐹22    √   √    √ 

 𝐹23  √     √   √  

 𝐹24  √      √  √  

 𝐹25  √     √    √ 

 𝐹26    √   √   √  

 𝐹27    √   √    √ 

 𝐹28  √     √   √  

 𝐹29  √      ‡   ‡ 

 𝐹30    √   √    √ 

 𝐹31  √     √    √ 

 𝐹32  √     √   √  

 𝐹33  √     √   √  

 𝐹34  √      √    √   

 𝐹35    √   √   √  

Table 1: Characterization of the Isotopy of Fenyves Identities in Loops and BCI-Algebras 
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  FENYVES  

IDENTITY  

 𝑭𝒊 ≡ 𝑨𝑺𝑺  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN BCI ALG  

 𝑭𝒊 + 𝑩𝑪𝑰  

 ⇒ 𝑨𝑺𝑺  

  𝐹36    √   √   √  

 𝐹37    √   √   √  

 𝐹38    √   √    √ 

 𝐹39    √    ‡   ‡ 

 𝐹40    √     √   √ 

 𝐹41    √     √  √  

 𝐹42    √    ‡   ‡ 

 𝐹43    √   √   √  

 𝐹44  √     √   √  

 𝐹45    √   √   √  

 𝐹46    √    ‡   ‡ 

 𝐹47  √     √   √  

 𝐹48    √   √   √  

 𝐹49  √     √   √  

 𝐹50  √     √    √ 

 𝐹51    √   √   √  

 𝐹52  √      ‡   ‡ 

 𝐹53    √     √   √ 

 𝐹54    √   √    ‡ 

 𝐹55  √      ‡   ‡ 

 𝐹56    √    ‡   ‡ 

 𝐹57    √   √   √  

 𝐹58  √     √    √ 

 𝐹59  √      ‡   ‡ 

 𝐹60    √   √    √ 

Table 2: Characterization of the Isotopy of Fenyves Identities in Loops and BCI-Algebras 
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