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ABSTRACT 65 

Genomics of primary prostate cancer differs from that of metastatic castration-resistant 66 

prostate cancer (mCRPC). We studied genomic aberrations in primary prostate cancer 67 

biopsies from patients who developed mCRPC, also studying matching, same patient, 68 

diagnostic and mCRPC biopsies following treatment. 69 

We profiled 470 treatment-naïve, prostate cancer diagnostic biopsies and for 61 cases, 70 

mCRPC biopsies using targeted and low-pass whole genome sequencing (n=52). 71 

Descriptive statistics were used to summarize mutation and copy number profile. 72 

Prevalence was compared using Fisher´s exact test. Survival correlations were studied 73 

using log-rank test. 74 

TP53 (27%) and PTEN (12%) and DDR gene defects (BRCA2 7%; CDK12 5%; ATM 75 

4%) were commonly detected.  TP53, BRCA2 and CDK12 mutations were significantly 76 

commoner than described in the TCGA cohort. Patients with RB1 loss in the primary 77 

tumour had a worse prognosis. Among 61 men with matched hormone-naïve and 78 

mCRPC biopsies, differences were identified in AR, TP53, RB1 and PI3K/AKT 79 

mutational status between same-patient samples.  80 

In conclusion, the genomics of diagnostic prostatic biopsies acquired from men who 81 

develop mCRPC differs to that of the non-lethal primary prostatic cancers. 82 

RB1/TP53/AR aberrations are enriched in later stages, but the prevalence of DDR 83 

defects in diagnostic samples is similar to mCRPC.   84 
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INTRODUCTION  85 

Inter-patient genomic heterogeneity in prostate cancer is well-recognized (1) . However, 86 

molecular stratification of prostate cancer to guide treatment selection based on 87 

predictive genomic biomarkers remains an unmet clinical need. Recent genomic studies 88 

have elucidated this inter-patient heterogeneity, identifying multiple potentially 89 

actionable alterations which are now being evaluated in clinical trials. These studies 90 

have also described differences in the genomic landscape of the different clinical states 91 

of the disease (localized vs metastatic)(1, 2). Alterations in the AR gene (mutations, 92 

amplifications and structural variants) are increased the prevalence in mCRPC, and 93 

associated with the development of castration-resistance, as well as resistance to 94 

abiraterone acetate and enzalutamide (3, 4). Moreover, loss-of-function events in TP53, 95 

RB1, PTEN and DNA damage repair (DDR) genes are more common in mCRPC 96 

compared to non-metastatic, prostate cancer cohorts. It remains unclear whether these 97 

differences are the result of evolutionary processes in response to therapy exposure, or 98 

whether these reflect different disease sub-types with differing outcomes. 99 

 100 

An ultimate aim of understanding the genomic landscape of cancer is the 101 

implementation of more precise therapeutic strategies, but metastatic biopsy acquisition 102 

is a key obstacle for implementing genomic stratification in clinical practice. Liquid 103 

biopsies can partially overcome this limitation, but these assays are not yet validated to 104 

replace tumour biopsy testing, at least for prostate cancer(5, 6). Understanding if 105 

primary tumour biopsies can be used for molecular stratification to guide the treatment 106 

of advanced mCRPC years later remains a key question. 107 

  108 
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This study aims to describe the genomic profile of primary tumour biopsies from lethal 109 

prostate cancers, either presenting as metastatic hormone treatment-naïve prostate 110 

cancers, or locoregional tumours that later evolve to metastatic disease; we 111 

hypothesized that these primary tumours would be enriched for alterations previously 112 

associated with mCRPC, and would be different to those primary prostate tumours that 113 

do not recur. Additionally, we assessed a cohort of same-patient, matched, treatment-114 

naïve and mCRPC biopsies to determine if these genomic defects change during 115 

treatment with tumour evolution.  116 
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RESULTS 117 

Patient and sample disposition 118 

Between March 2015 and December 2017, 652 primary tumor samples from consenting 119 

patients were received; 87 cases (13%) were discarded due to either low DNA yield or 120 

excessive DNA degradation. Hence, targeted NGS was successfully performed on 565 121 

prostate cancer diagnostic biopsies.  Fifty-four cases were excluded due to either: 1) the 122 

biopsy not being collected prior to ADT; or 2) diagnosis being based on a metastatic 123 

biopsy (Supplementary Figures 1 and 2 in the Appendix). Next generation sequencing 124 

of 511 samples was analysed; of those, 41 (8%) cases did not meet quality control 125 

criteria for copy-number calling (7) and were discarded, so the final analysis evaluated 126 

470 cases. Two cohorts were defined for the planned analyses based on disease extent at 127 

the time of original diagnosis: Cohort 1 was composed of 175 cases with locoregional 128 

prostate cancer at diagnosis (69.5% confined to the prostate, 30.5% with pelvic nodal 129 

extension); Cohort 2 included 292 primary tumours from patients with metastatic 130 

disease at diagnosis. The clinical records of 3 subjects were unobtainable (Table 1). 131 

 132 

Genomic profile of lethal primary prostate tumours 133 

Recurrent aberrations in genes and pathways related to lethal prostate cancer were 134 

identified, the commonest being mutations and homozygous loss of TP53, (27%) 135 

(Figure 1 and Appendix).  Deleterious mutations and/or homozygous deletions in genes 136 

involved in DNA damage repair pathways were identified in 23% of primary tumours. 137 

BRCA2 was the DDR gene most commonly altered (7%). Alterations in mismatch repair 138 

genes were detected in 11/470 (2%) cases.  139 

 140 
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Activating mutations in PIK3CA and AKT1 were detected in 5%, with PTEN loss-of-141 

function mutations or deep deletions in 12%. Deep deletions of RB1 were uncommon in 142 

the primary tumours (5%), although shallow deletions in RB1 were frequent. Genes in 143 

the WNT pathway (loss of APC or activating mutations in CTNNB1) were altered in 7% 144 

of cases (8, 9). SPOP mutations were identified in 7% cases(10, 11). 145 

 146 

Surprisingly, low-allele frequency AR T878A or R630Q mutations (always with low 147 

MAF, ranging 0.06 to 0.18) were detected in 1% of treatment-naïve samples(12).  148 

 149 

Our Cohort 1 of primary tumours, without detectable metastases at diagnosis, was 150 

enriched for alterations in TP53 (25 vs 8%; p<0.001), BRCA2 (8 vs 3%; p=0.015) and 151 

CDK12 (6 vs 2%; p=0.04) when compared with the TCGA series (Table 2). Conversely, 152 

SPOP mutations were less common in our population than in the better prognosis 153 

TCGA series (3% vs 11%; p=0.001). No relevant differences in prevalence of other 154 

mutations were observed when comparing Cohort 1 and Cohort 2. After adjusting for 155 

Gleason score, CDK12 mutations were enriched in Gleason 8 or higher cases (1/105 156 

cases in Gleason 6-7 vs 21/353 in Gleason >8) (Appendix) 157 

 158 

Clinical outcome based on primary tumour genomics. 159 

Median time to ADT progression and start of first mCRPC therapy was 1.17 years 160 

(95%CI: 1.08-1.26 years) among the subset (n=210) of patients with clinical data 161 

available. Median overall survival from first evidence of metastatic disease was 4.28 162 

years (95%CI: 3.72-4.84 years).  163 

 164 
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None of the gene alterations were associated with a significantly different time to ADT 165 

progression; patients with germline or somatic BRCA2 alterations had the lowest 166 

median time to ADT progression among the subgroups but the differences were not 167 

significant (median 0.92 years, 95%CI 0.5-1.17, p=0.39). (Table 3) 168 

 169 

Patients with RB1 alterations in the primary tumour had a significantly shorter overall 170 

survival (median OS from metastatic disease 2.32 years, 95%CI 1.82-3.84; p=0.006).  171 

(Table 3 and Appendix) 172 

 173 

Changes when assessing clinically actionable genomic alterations in patient-matched 174 

treatment-naïve and castration-resistant. 175 

We pursued NGS of mCRPC biopsies acquired from 61 patients participating in this 176 

study to further investigate if certain gene aberrations were detected more often in 177 

biopsies after progression on ADT and subsequent lines of therapy. Overall, we 178 

performed targeted NGS on 61 mCRPC biopsies (using the same panel as for the 179 

primary treatment-naïve samples) and copy-number profiles for both primary and 180 

mCRPC samples were compared using low-pass WGS in 52 cases with sufficient DNA 181 

in both samples. Copy number estimation was adjusted for ploidy, and tumour purity, 182 

since mCRPC biopsies overall had higher tumour content than the primary prostate 183 

biopsies (Appendix).   184 

 185 

The median time between the two same-patient biopsies was 45.2 months (range 12 to 186 

211 months). All mCRPC samples were obtained after progression on ADT, and in 187 

50/61 (82%) cases after progression on at least 2 further lines of therapy for mCRPC 188 
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(80% after at least one taxane and 90% after abiraterone acetate and/or enzalutamide) 189 

(Table 4).  190 

 191 

The commonest finding, when comparing same-patient primary treatment-naïve and 192 

mCRPC samples, was an increase in AR mutations and amplification. Other than AR, 193 

the main differences between the two same-patient biopsies were increased TP53, RB1 194 

and PI3K/AKT pathway alterations in mCRPC (Figure 2 and Appendix) suggesting that 195 

these may emerge with treatment selection pressures.  196 

 197 

In several cases, mutations in TP53 (n=4) and RB1 (n=4), detected in mCRPC samples, 198 

were not detected in the same patient’s, matched, treatment-naïve and diagnostic 199 

primary tumour biopsies. Overall, there was a decrease in copy-number for both TP53 200 

and RB1 in mCRPC, even after adjusting for tumour purity based on low-pass WGS. 201 

More deep deletions in PTEN were also detected in the mCRPC cohort. Mutations in 202 

the WNT pathway genes CTNNB1 and APC, as well as MYC amplification, were also 203 

more common in mCRPC. 204 

 205 

Conversely, aberrations in DNA damage repair pathway genes were relatively 206 

unchanged from diagnosis to mCRPC. Eleven truncating mutations in BRCA2, CDK12, 207 

ATM, MSH6 and PALB2 were identified in the mCRPC biopsies of 9/61 patients (one 208 

patient had both CDK12 and PALB2 mutations; one patient CDK12 and MSH6 209 

mutations). Two patients had pathogenic germline BRCA2 mutations; in both of these 210 

cases, both the primary untreated tumour and the mCRPC biopsy presented loss of 211 

heterozygosity resulting in biallelic BRCA2 loss. The other 8 deleterious mutations (4 in 212 

CDK12, 2 BRCA2, 1 ATM, 1 PALB2, 1 MSH6) were only detected in somatic DNA; all 213 
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8/8 were also detected in the patient-matched, metachronous, diagnostic, treatment-214 

naïve, biopsies. In 3 of 4 cases with CDK12 truncating mutations, there was a second 215 

missense mutation in CDK12; again, these second events were also detected in both the 216 

diagnostic patient-matched biopsies.  However, 2 truncating mutations in ATRX and 217 

FANCM were detected only in the mCRPC samples.  218 

 219 

With regards to copy number aberrations in DNA repair genes, we identified a trend for 220 

lower tumour suppressor gene copy number in mCRPC samples, only partially 221 

explained by the higher tumour purity of mCRPC biopsies. No deep deletions in 222 

BRCA1/BRCA2/ATM were identified, although changes indicating single copy loss with 223 

disease evolution to mCRPC were detected. 224 

 225 

Generally, the number of private events was small. An outlier case was P001, a patient 226 

with a MMR-defective prostate cancer who had the highest mutation burden, including 227 

several shared mutations between primary and mCRPC (APC, CDK12, MSH6, ERBB4, 228 

PTEN and TP53), several private mutations only detected in mCRPC (including 229 

missense, non-truncating, mutations in APC, ATM, EZH2, JAK1) and several private 230 

mutations of the primary tumour not detected in the later mCRPC biopsy (CTNNB1, 231 

PRKDC, ERCC3 and ERRC6), suggesting the presence of different clones coming from 232 

a shared origin.  233 

 234 

  235 
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DISCUSSION 236 

Molecular stratification of prostate cancer promises to impact patient care and deliver 237 

more precise treatments, but several challenges remain to be addressed including the 238 

elucidation of the genomic profiles of distinct clinical states and understanding the 239 

impact of drug resistance and tumour evolution (13, 14).  Here, we show that the 240 

primary prostatic biopsies of patients who develop metastatic prostate cancer are 241 

enriched for genomic aberrations typically found in mCRPC, even prior to exposure to 242 

androgen deprivation. These data may help define a subset of patients with locoregional 243 

disease at diagnosis with higher risk of lethal disease; clinical trials should test if these 244 

patients may benefit from more intense therapeutic approaches. Furthermore, our data 245 

support the use of primary prostate biopsies to characterize metastatic hormone-naïve 246 

prostate cancers, which may facilitate the implementation of genomic testing into 247 

clinical practice. 248 

 249 

Defects in some DNA damage repair genes have been identified as promising predictive 250 

biomarkers for PARP inhibitors or platinum chemotherapy(15-18). The prevalence of 251 

mutations and deletions in DNA repair genes in our cohorts of patients with only 252 

locoregional disease detected at diagnosis or metastatic, hormone-naïve prostate cancer 253 

was similar to what has been previously described for mCRPC. In a recent study, 254 

Marshall et al found an increased prevalence of these mutations in higher-Gleason score 255 

primary tumours, which also indirectly supports the association of these mutations with 256 

more aggressive primary tumours (19). These data in a cohort of 470 primary tumours 257 

suggest that lethal prostate cancer is enriched for DNA repair defects from diagnosis, 258 

prior to developing castration-resistance. However, the limited number of cases with 259 

DDR gene alterations in the cohort of matched primary-metastatic biopsies, including 260 
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only 4 cases with BRCA2 mutations, prevents us from making broad conclusions with 261 

regards to the genomic evolution of these tumours. Indeed, we and others have reported 262 

sub-clonal homozygous deletions of DDR genes (20, 21). Detecting these subclonal 263 

deletions is technically challenging with targeted NGS assays used for patient 264 

stratification in clinical practice or in clinical trials, particularly when studying primary 265 

tumour samples with low tumour content and degraded DNA. 266 

 267 

Alterations in TP53 were common in diagnostic biopsies in this cohort. Moreover, 268 

several loss-of-function alterations of TP53, RB1 and PTEN were detected in mCRPC 269 

biopsies but not in patient-matched, treatment-naïve, primary tumours. Concurrent loss 270 

of RB1 and TP53 function has been postulated to drive a phenotypic change associated 271 

with resistance to endocrine therapies(22, 23); additionally, TP53 mutations have been 272 

associated with more aggressive disease (24-26), which may in part explain why we are 273 

observing TP53 mutations more often than expected in primary prostate cancer in this 274 

cohort of patients who all had lethal forms of the disease, even if many presented as 275 

localized tumours. 276 

 277 

As precision medicine strategies are developed for prostate cancer patients, our findings 278 

become clinically-relevant. Firstly, our analyses indicate that RB1 loss in the primary 279 

tumour associates with poor prognosis; these data confirm recently published results 280 

from two independent studies looking at genomics-clinical outcome correlations in 281 

metastatic samples (27, 28). In our series, DDR defects and particularly BRCA2 282 

mutations did not associate with shorter survival; however, most of these patients were 283 

enrolled into PARPi clinical trials; data from randomized trials has confirmed the 284 

improved outcome of patients with DDR defects receiving PARPi; this needs to be 285 
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taken into consideration when interpreting our results. Secondly, these data are critically 286 

important for designing precision medicine strategies: if DNA repair defects are already 287 

detectable in the primary tumour, there is a rational for testing synthetic lethal strategies 288 

with PARP inhibitors or platinum, in metastatic hormone-naïve prostate cancer, where 289 

the magnitude of benefit for patients could be larger. These data also support the use of 290 

diagnostic prostate cancer biopsies for the patient stratification based on DNA repair 291 

gene defects in trials of men with mCRPC, as the prevalence of these alterations in 292 

primary tumours from patients with lethal prostate cancer was similar to what has been 293 

reported for metastatic disease, and in the small number of same-patient sample pairs 294 

available, DDR mutational status was concordant (29). Conversely, trials investigating 295 

novel therapeutic approaches in the TP53/RB1-deficient phenotype should take into 296 

account that a proportion of genomic aberrations in TP53 and RB1 are not detected 297 

when assessing diagnostic treatment-naïve primary tumour specimens. 298 

 299 

The main limitation of our study comes from having only one biopsy core available per 300 

time point and patient; we therefore could not assess spatial tumour heterogeneity. 301 

Primary prostate cancers can be multifocal, and previous studies have reported on inter-302 

foci genomic heterogeneity(30, 31). We cannot rule out that in some cases the primary 303 

tumour sample may not represent the dominant tumour clone in the primary biopsy; 304 

hence, it is possible that some of the differences we observe in paired mCRPC biopsies 305 

may have not resulted from treatment-selective pressure but been in other areas of these 306 

primary tumours. However, genomic testing in clinical practice is largely based on the 307 

analyses of single biopsy cores. With the advent of novel imaging modalities, genomic 308 

stratification of prostate cancer could be improved by better identifying aggressive areas 309 

of prostate cancer in clinical diagnostic pathways (32, 33). Another key limitation is the 310 
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inability to pursue subclonality assessments using our clinically-oriented targeted 311 

sequencing assay. Hence, we cannot prove if some of the gene aberrations detected in 312 

the mCRPC biopsies, but not in the treatment-naïve samples, were already present at a 313 

subclonal level at the time of diagnosis. Regardless of whether these events emerge de 314 

novo or as a result of expansion of a subclone, the observed enrichment for certain 315 

alterations (such as TP53 or RB1) in the post-treatment resistance samples supports the 316 

clinical relevance of such alterations. 317 

 318 

In conclusion, this study describes the genomic landscape of primary prostate tumours 319 

that will evolve to lethal prostate cancer across a cohort of 470 cases, with this being 320 

characterized by higher frequencies of TP53 and DNA repair gene aberrations. 321 

Significant differences in the detection of AR, TP53, RB1 and PTEN alterations, but not 322 

of DNA repair genes, was observed when comparing same patient mCRPC and 323 

treatment-naïve biopsies. These data are important for the genomic stratification of 324 

primary prostate cancer to identify higher risk cases, support the use of primary prostate 325 

tumour biopsies for molecular stratification of metastatic hormone-naïve prostate cancer 326 

and provide a rational for the study of DNA repair-targeting therapies, including PARP 327 

inhibitors, in earlier stages of the disease.  328 

  329 
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METHODS 330 

Study design 331 

This analysis included all consecutive patients consented between March 2015 and 332 

December 2017 for molecular characterization of prostate cancer biopsies at The 333 

Institute of Cancer Research (London, UK). These studies involved either prostate 334 

tumour samples and/or newly acquired metastatic biopsies. We report here on all 335 

patients for whom a treatment-naïve primary prostate tumour sample was successfully 336 

sequenced. Primary tumour samples were retrieved from referring hospitals; in most 337 

cases, only one sample was made available for the study; if more than one sample from 338 

the primary tumour was available, the highest Gleason lesion was used. Additionally, 339 

metastatic biopsies in castrate-resistant conditions were pursued in consenting patients.  340 

 341 

Sample acquisition and processing 342 

All prostate cancer treatment-naïve and metastatic biopsy samples were centrally 343 

reviewed by a pathologist (D.N.R). DNA was extracted from formalin-fixed and 344 

paraffin embedded (FFPE) tumour blocks (average, 6 sections of 10mic each per 345 

sample) using the FFPE Tissue DNA kit (Qiagen). DNA was quantified with the Quant-346 

iT high-sensitivity PicoGreen double-stranded DNA Assay Kit (Invitrogen). The 347 

Illumina FFPE QC kit (WG-321-1001) was used for DNA quality control tests 348 

according to the manufacturer’s protocol as previously described (34). In brief, 349 

quantitative polymerase chain reaction (qPCR) was performed using 4ng of sample or 350 

control DNA and the average Cq (quantification cycle) was determined. The average Cq 351 

value for the control DNA was subtracted from the average Cq value of the samples to 352 

obtain a ΔCq. DNA samples with a ΔCq<4 were selected for sequencing; double 353 

amount of DNA was used for cases with ΔCq between 2-4. 354 
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Sequencing and bioinformatic analyses 355 

Libraries for next-generation targeted sequencing were constructed using a customized 356 

panel (Generead DNAseq Mix-n-Match Panel v2; Qiagen) covering 6025 amplicons 357 

(398702 bp) across 113 genes used in (35) (Appendix). Libraries were run using the 358 

MiSeq Sequencer (Illumina). FASTQ files were generated using the Illumina MiSeq 359 

Reporter v2.5.1.3. Sequence alignment and mutation calling were performed using the 360 

Qiagen GeneRead Targeted Exon Enrichment Panel Data Analysis Portal 361 

(https://ngsdataanalysis.qiagen.com). Mutation calls were reviewed manually in IGV 362 

according to the standard operating procedure for somatic variant refinement of tumour 363 

sequencing data, following the principles described in (36). This manual review 364 

included assessing read strand quality, base quality, read balance and sequencing 365 

artefacts (high discrepancy regions, adjacent indels, multiple mismatches, start or end of 366 

amplicons. Mutation annotation was based on data from publically available databases 367 

(ClinVar, COSMIC, Human Genome Mutation Database, IARC TP53 Database), 368 

published literature and in silico prediction tools, and only deleterious mutations were 369 

included in the analysis.  370 

 371 

Copy number variations (CNV) in prostatic biopsies were assessed using CNVkit 372 

(v0.3.5, https://github.com/etal/cnvkit(37)), which we  previously validated in an 373 

independent cohort of prostate cancer samples(7). The read depths of tumour samples 374 

were normalized and individually compared to a reference consisting of non-matched 375 

male germline DNA; the circular binary segmentation (CBS) algorithm was used to 376 

infer copy number segments.  Quality estimation of the CNV was based on distribution 377 

of bin-level copy ratios within segments. Cases were excluded from the analysis if any 378 

of the following criteria were met: IQR>1, total reads<500000, <99.9% of reads on 379 
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target, <95% paired reads or single reads>0. Manual review of copy number calls for 380 

selected oncogenes and tumour suppressors was pursued, accounting for tumour 381 

content.  Oncoprints and heatmaps representing mutations and copy number calls were 382 

generated using R and cBioportal OncoPrinter (38-40).  383 

 384 

Low-Pass Whole Genome Sequencing was performed on the mCRPC, and same 385 

patient, treatment-naïve, diagnostic, paired samples for copy-number profiling. 386 

Libraries where constructed using the NEBNext Ultra FS II DNA kit (NEB) according 387 

to the manufacturer’s protocol. Samples where pooled and run on the NextSeq 388 

(Illumina) at 0.5X mean coverage, using the 300 cycles High Output V2.5 kit. BCL files 389 

were converted to FASTQ files using BCL2FASTQ v2.17. Sequence alignments were 390 

performed using Burrows-Wheeler Aligner (BWA mem v0.7.12) to the hg19 human 391 

genome build. Copy number analysis was performed using IchorCNA(41). In short, 392 

hg19 genomes (filtered centromeres) were divided into 500kb non-overlapping bins, 393 

and the abundance of the mapped reads was counted by HMMcopy Suite in each bin 394 

and predicted segments of CNAs. GC and mappability bias were corrected by loess 395 

regression and based on a panel of germline DNA sequencing from healthy donors. The 396 

maximum CNA detection was set to 20 copies. 397 

 398 

Raw sequencing data has been deposited at the European Nucleotide Archive with 399 

Accession number PRJEB32038. VCF files with mutation calls and CN values for the 400 

targeted sequencing data are available in the appendix. 401 

 402 

 403 

 404 
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Statistical considerations 405 

Descriptive statistics were used to summarize patient, and sample, characteristics data 406 

as well as mutation frequency. The prevalence of mutations was compared between 407 

cohorts using Fisher´s exact test. The statistical analysis plan and the gene list to be 408 

analysed was designed prior to data collection. A Bonferroni correction was applied; p-409 

values of <0.01 were considered statistically significant and all tests were two-sided 410 

unless otherwise specified.  411 

 412 

Additionally, exploratory associations between the pre-selected list of gene alterations 413 

and patient outcomes were tested in a subset of the study population (n=210) with 414 

available consent for clinical data collection (all at The Royal Marsden). Clinical data 415 

was captured retrospectively from electronic patient records. Time to ADT progression 416 

was defined from the date of starting ADT to start of first mCRPC therapy. Overall 417 

survival was defined as time from the date of diagnosis, date of metastatic disease and 418 

the date of CRPC to the date of death or last follow up. To account for variability 419 

between patients who were diagnosed with de-novo metastatic vs localized disease, 420 

survival data is presented from the first evidence of metastatic disease. Patients alive at 421 

the time of last follow up were censored. Association of genomic aberrations with 422 

survival are presented using Kaplan-Meier curves and log-rank test. All calculations 423 

were performed using STATA v15.1(Stata Corp,TX).  424 

 425 

Study Approval 426 

The study included all patients with mCRPC who, between March 2015 and December 427 

2017 provided written consent to participate in one of two IRB-approved molecular 428 

characterization programs for prostate cancer: 1) an internal molecular characterization 429 
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study at The Royal Marsden Hospital (London, UK) and/or 2) a tumour next-generation 430 

sequencing (NGS) pre-screening study at 17 hospitals (Appendix) for the TOPARP-B 431 

study, an investigator-initiated clinical trial of the PARP inhibitor olaparib in mCPRC 432 

(42)  (TOPARP, CR-UK 11/029, NCT 01682772).   433 
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Figure 1. Oncoprint of genomic aberrations (non-sense, indels, splice site mutations, 461 

relevant missense mutations and copy number changes) for 470 untreated primary 462 

prostate cancer biopsies from patients who later developed metastatic castration-463 

resistant disease.  464 
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Figure 2. Differences in genomic profiles between same patient, matched, primary 465 

untreated and mCRPC biopsies. A) Mutation calls in genes of interest for the mCRPC 466 

biopsies which were not present in the treatment-naïve primary tumour for the same 467 

patient (61 pairs, full gene set in Suppl Fig 6); B) Overall copy number profiles based 468 

on low-pass WGS (52 pairs); C) amplifications and deep deletions detected in the 469 

mCRPC biopsies and not present in the treatment-naïve primary tumours for the same 470 

patient (based on low-pass WGS, after adjusting for tumour purity and ploidy, and 471 

validated by SNP data from targeted panel sequencing).472 
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Table 1. Population characteristics and sample disposition for the overall study 474 

population (n=470) 475 

Metastatic disease at original diagnosis of prostate cancer   
  No (Cohort 1) 175 37.5% 
  Yes (Cohort 2) 292 62.5% 
  Not recorded 3   

Gleason score primary tumour (overall population)   
  <7 15 3.3% 
   7 90 19.7% 
   8 85 18.6% 
   9 245 53.5% 
  10 23 5.0% 
                  Gleason not recorded 12   

Race       
  Caucasian 431 96.9% 

  
African or african-
american 7 1.6% 

  asian 4 0.9% 
  Caribbean 4 0.9% 
  Not recorded 25   

Staging of patients in Cohort 1     
  T1 6 3.7% 
  T2 20 12.2% 
  T3 131 79.9% 
  T4 7 4.3% 
  N0 114 69.5% 
  N1 50 30.5% 
  T-N not recorded 11   

Gleason score in Cohort 1     
  <7 11 6.5% 
  7 50 29.6% 
  8 28 16.6% 
  9 76 45.0% 
  10 4 2.4% 
  Not recorded 6   
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Table 2. Comparison of cohort 1 in this study (patients with primary, non-metastatic at 476 

diagnosis, prostate cancer) and the TCGA series for primary prostate cancers 477 

(distribution of genomic events per Gleason score group are available in the Appendix). 478 

Gene Events considered TCGA(N=333) Cohort 1 

(N=175) 

p-value 

(Fisher exact 

test) N (%) N (%) 

AKT1 Activating mutations 3 (0.9%) 0 (0%) 0.56 

ATM Loss-of-function mutations 

and deep deletions 

20 (6%) 10 (6%) 1.00 

BRCA1 Loss-of-function mutations 

and deep deletions 

3 (1%) 3 (2%) 0.42 

BRCA2 Loss-of-function mutations 

and deep deletions 

10 (3%) 14 (8%) 0.015 

CDK12 Loss-of-function mutations 

and deep deletions 

7 (2%) 10 (6%) 0.04 

CTNNB1 Activating mutations 7 (2%) 3 (2%) 1.00 

PIK3CA Activating mutations and copy 

number gains 

7 (2%) 7 (4%) 0.26 

PTEN Loss-of-function mutations 

and deep deletions 

57 (17%) 20 (11%) 0.09 

RB1 Loss-of-function mutations 

and deep deletions 

3 (1%) 6 (3%) 0.07 

SPOP Hotspot mutations 37 (11%) 5 (3%) 0.001 

TP53 Loss-of-function mutations 

and deep deletions 

27 (8%) 44 (25%) <0.001 
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Table 3. Association of gene defects with clinical outcome. Long-rank p-values are 479 

presented unadjusted and adjusted for both Gleason score (<7 vs >8) and 480 

presence/absence of metastatic disease at initial diagnosis. 481 

 

Time to ADT progression Overall Survival (from metastatic disease) 

n Median (Years) 

Log-

rank/Log-

rank 

stratified 

p-values n Median (Years) 

Log-

rank/Log-

rank 

stratified 

p-values 

Overall 

population 202 1.17 (95%CI: 1.08-1.27)  203 4.28 (95%CI: 3.71-4.84)  

Gene alteration 

TP53 47 1.19 (95%CI: 1.00-1.67) 0.64/0.19 47 4.24 (95%CI: 3.06-5.00) 0.51/0.77 

PTEN 23 1.58 (95%CI: 0.83-2.15) 0.09/0.06 22 3.78 (95%CI: 3.20-5.60) 0.38/0.48 

RB1 13 1.17 (95%CI: 0.56-2.33) 0.89/0.79 13 2.32 (95%CI: 1.82-3.84) 0.006/0.004 

SPOP 9 1.25 (95%CI: 0.50-2.23) 0.67/0.91 9 5.46 (95%CI: 2.07-NA) 0.63/0.47 

BRCA2 15 0.92 (95%CI: 0.50-1.17) 0.39/0.36 15 3.84 (95%CI: 2.09-4.69) 0.25/0.13 

CDK12 12 1.20 (95%CI: 0.58-2.82) 0.88/0.67 12 4.32 (95%CI: 2.44-NA) 0.39/0.24 

ATM 11 1.07 (95%CI: 0.42-2.33) 0.44/0.32 10 4.73 (95%CI: 2.03-5.65) 0.98/0.77 

PIK3CA 7 1.62 (95%CI: 0.58-2.41) 0.97/0.80 7 2.92 (95%CI: 1.02-NA) 0.14/0.24 

CTNNB1 7 1.42 (95%CI: 0.50-2.00) 0.68/0.70 8 6.46 (95%CI: 2.53-NA) 0.22/0.27 

AKT1 2 1.58 (95%CI: NA) 0.77/0.53 2 5.64 (95%CI: NA) 0.65/0.59 

BRCA1 3 1.08 (95%CI: 0.42-NA) 0.66/0.62 3 2.31 (95%CI: NA) 0.07/0.17 

BRCA1/2 / ATM 28 1.07 (95%CI: 0.83-1.21) 0.27/0.21 27 3.61 (95%CI 3.01-4.69) 0.17/0.15 

PIK3CA/ 

AKT1/PTEN 32 1.59 (95%CI: 1.00-2.15) 0.11/0.05 31 4.11 (95%CI 3.20-5.60) 0.70/0.74 
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Table 4. Sample disposition for the patient-matched primary untreated and mCRPC 482 

biopsies (n=61 cases with paired samples). Median time between the two same-patient 483 

samples were taken was 45.2 months (range: 12 to 211 months) 484 

  

n (total 61) % 

Location Hormone-Naive Sample Prostate 61 100 

Location CRPC Sample 

Bone 24 39.4% 

Lymph Node 22 36.17% 

Liver 4 6.6% 

Other 11 18.0% 

Metastatic status at  

original diagnosis 

M0 25 41.7% 

M1 35 58.3% 

Treatments received  

between the two samples acquisition 

Prostatectomy  10 16.4% 

Pelvic radiotherapy 27 44.3% 

Androgen deprivation therapy 61 100% 

First gen antiandrogen 41 67.2% 

Abiraterone acetate 34 55.7% 

Enzalutamide 33 54.1% 

Abiraterone and/or 

enzalutamide 
55 90.2% 

Docetaxel 49 80.3% 

Cabazitaxel 20 32.8% 

Radium-223 4 6.5% 

Investigational agents 14 22.9% 

Lines of therapy for CRPC before 

mCRPC biopsy 0 

 

2 

 

3.2% 

  1 9 14.7% 

  2 21 34.4% 

  3 or more 29 47.5% 

  485 
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