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fluorescence microscopy tensor 
imaging representations for large-
scale dataset analysis
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Understanding complex biological systems requires the system-wide characterization of cellular and 
molecular features. Recent advances in optical imaging technologies and chemical tissue clearing have 
facilitated the acquisition of whole-organ imaging datasets, but automated tools for their quantitative 
analysis and visualization are still lacking. We have here developed a visualization technique capable 
of providing whole-organ tensor imaging representations of local regional descriptors based on 
fluorescence data acquisition. This method enables rapid, multiscale, analysis and virtualization 
of large-volume, high-resolution complex biological data while generating 3D tractographic 
representations. Using the murine heart as a model, our method allowed us to analyze and interrogate 
the cardiac microvasculature and the tissue resident macrophage distribution and better infer and 
delineate the underlying structural network in unprecedented detail.

Comprehensively understanding tissues requires the integration of cellular information across multiple scales1. 
Recently developed optical clearing technologies2–9 as well as mapping approaches10,11 can now explore tissues at 
the single-cell level and provide an opportunity to better understand how tissue organization influences cellular 
function. These methods include tissue and organ clearing8,9 as well as mapping approaches10,11. Together, these 
methods may ultimately provide a global framework for comprehensively mapping the human body at a cellular 
resolution, thereby leading to deeper multidimensional descriptions of individual cells within their functional 
and 3D tissue contexts1.

As clearing technologies have advanced, so has the ability to profile larger tissue volumes from a few cell 
layers12 up to entire organs1,13–16. This development has created enormous computational challenges: manual 
segmentation, annotation and classification are no longer practical. Similarly, simple visual representation of 
these large, complex datasets at the organ level has been extraordinarily challenging as information spans several 
scales17,18.

Even though visualization is a recent research field which is a consequence of the modern scientific computing 
and computer graphics, it has been extensively increasing in importance and as pointed out by Walter et al.19 its 
use extends beyond what is the mere presentation of the imaging data. Visualization has become an invaluable 
tool greatly employed in research areas such as, for instance, medical, biological, and natural sciences. What is 
particularly difficult to achieve in computer visualization is to provide the user with the right representation of 
the salient information concealed in the data and to facilitate meaning extraction out of it. This point becomes 
even more problematic when data increase in dimensionality and size. New tools and resources to query and 
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analyze such large-scale image data and to translate them into intuitive visual representation are therefore in high 
demand19 with the final goal to facilitate addressing broader biological questions19.

Tensor field visualization in particular is an important visualization technique in imaging as it allows the user 
to depict the order in data starting from a local description of a sensed quantity which is better represented by a 
tensor.

Tensors are sophisticated mathematical entities whose implementation has broadly increased during the last 
decades, in particular in the imaging and visualization field. As an extension of scalars and vectors, they are more 
suitable to describe and characterize physical quantities which are difficult to represent otherwise. So far they 
have been largely used to accurately describe classical physics phenomena spreading from electromagnetism (e.g. 
polarization tensor, EM tensor) to mechanics (e.g. tensor of inertia, stress tensor) as well as others. Tensors find 
also applications in fluid dynamics, the theory of relativity and amongst several computer science and engineering 
fields. Also machine learning, computer graphics and vision, just to name a few, take advantage of the use of such 
a mathematical tool.

Specifically in the field of medical imaging, tensors are used to describe the molecular diffusion within a 
tissue, mainly through DTI-MRI scans. As water diffusion displays an anisotropic behavior, which is adequately 
described by a 3 by 3 second rank tensor, it is used to distinguish nerve bundles within the brain and other organs 
such as the heart where it is possible to reconstruct the myocytes myocardial paths. Since in DTI it is possible to 
directly associate at each voxel a tensor entity, several display and visualization methods have been developed. 
Many of these methods rely on the representation of a tensor as an ellipsoid whose axes are aligned along the 
tensor eigenvectors and with length proportional to the corresponding eigenvalue.

Also, due to the capability of DTI to capture neural fibers directionality, a class of algorithms has been intro-
duced and utilized to perform fiber tractography. Through tractography, cardiac myofiber architecture has been 
detected20 and it has been used to gain a new understanding of the underlying mechanics or to give rise to math-
ematical models.

Due to the intrinsic capabilities of tensors to characterize and identify various structural information and 
inspired by work in the DTI-MRI field, we have here extended the applications of this tool to fluorescence micros-
copy to gain insights into very large and dense datasets that would be otherwise difficult to both decode and 
display.

Here we introduce a fluorescence microscopy tensor imaging method for analyzing and virtualizing fluores-
cence microscopy organ datasets. This method consists in extracting from binarized imaging datasets, a set of 
morphological descriptors based on specific biological questions. These are then used to build a local voxel-wise 
variance-covariance matrix to obtain a volumetric tensor-value representation of the imaging dataset. Finally, 
local image correlation is characterized and salient local geometrical information is extracted and visualized. The 
process is iterated among any sub-volumes giving rise to a tensor field to express relevant image information. 
As descriptors and voxel size are in general user-defined parameters, our method is characterized by a great 
flexibility, which reflects on the possibility of creating 3D representations at different resolution scales and in a 
multifactorial fashion.

The method is a powerful tool for complete virtualization and synthesis of imaged samples’ geometry and 
topology as well as fiber tract maps. The use of the term fiber is here intended to represent “bundles of organi-
zational tracts”. Tractography maps of the microvasculature and macrophages’ organization can be obtained by 
visualizing “streamlines of organizational tracts”. The method’s implementation on currently available large-scale 
dataset can allow for unprecedented insights at many levels of biological scale. It is also independent from the 
chosen segmentation approach, it could be seamlessly applied to freely available digitized atlases, and it could 
synergize with several existing computational approaches and acquisition modalities such as micro-XCT, syn-
chrotron radiation phase contrast imaging, and histopathology. Here we apply our method to mapping of the 
murine heart and we demonstrate how organizational tracts orientations and transmural angle maps can be 
resolved in greater details.

The method could be also applied for visualization of large in vivo data collections such as dorsal window 
chambers or in developing zebrafish.

Results
Data acquisition and segmentation. To demonstrate our imaging method on real data we needed first 
to acquire a whole organ imaging dataset and then perform accurate binarization for extracting the sets of mor-
phological descriptors from which the volumetric tensor-value representation can be generated. Supplementary 
Fig. S1 summarizes the general acquisition and processing pipeline. We here focused on the cardiac microvascu-
lature as it is highly relevant to organismal health, well understood and can be easily validated, but other organs 
could be also considered.

After sample preparation and optical clearing (see Supplement 1), images were acquired by fluorescence 
confocal microscopy at sub-cellular resolution. Images were then computationally pre-processed to maximize 
signal-to-noise ratio (SNR) and contrast ratio (Supplementary Fig. S2, Fig. 1a) (see Supplement 1). Because the 
dataset is volumetric in nature, we used 3D segmentation algorithms to properly segment the microvascula-
ture (Fig. 1b). Due to the large size and complexity of typical organ datasets, traditional methodologies based 
on manual tracing have become impractical. We therefore implemented custom-designed, supervised neural 
networks (Supplementary Fig. S3), with parameters determined through manually annotated datasets (see 
Supplement 1). The goodness of the automatic segmentation procedure compared to a manually obtained one 
(also determined through the use of Dice coefficient as given in Supplement 1) is visually shown for several vol-
umes (Supplementary Fig. S4) in Supplementary Figs. S5 and S6 and in Supplementary Movies 1–6.

Since structural and topological analysis (e.g. complete graph, nodes, links, bifurcations, vessels length, etc.) 
can be readily obtained from the centerline information, extracting skeletonization after binary segmentation 
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(Fig. 1c,d and Supplementary Movie 7) generated a symbolic description of the dataset. This processing extracts 
region-based shape features through so-called thinning algorithms. Whole heart slices were then processed, and 
both microvasculature and graph representations were obtained (Fig. 1e–j).

What clearly emerges from the obtained datasets is the high complexity of the structural properties and the 
topology of the vascular network (Fig. 1g,j, Supplementary Movie 8) which makes it hard to infer and delineate 
what is the overall underlying vascular structure.

Mathematical framework. The mathematical framework at the core of our method is here illustrated. 
Within a sampling volume (voxel) of an imaging dataset, a set of morphological feature descriptors can be 
extracted starting from the segmented raw data (Fig. 2a–c, Supplementary Movies 9 and 10). These descriptors 
are user-defined depending on the specific biological problem and are the result of different image processing 
techniques. For imaging capillary’ structures, one possible feature descriptor of interest could be the vascular 
branches’ specific spatial orientation and length (Fig. 2c). Conversely, for individual cells, regional density hetero-
geneity, cellular orientational axis or morphological phenotypes may reflect steady state function in healthy tissue 
or pathological changes in diseases such as heart failure.

An effective method to quantify the spatial patterns and characterize the overall directional distributions 
of the descriptors ri (in general vectors) within the defined voxels (red boxes in Fig. 2c) relies on statistical rep-
resentations such as the standard deviation ellipsoid (Fig. 2d, Supplementary Fig. S7), which is an isosurface of 

Figure 1. Heart microvasculature acquisition. 3D rendering of a representative volume of lectin-TRITC stained 
heart microvasculature. Comparison between the raw data (a) and the ML-based segmentation results (b). (c,d) 
Automated feature extraction of the vascular skeleton (red lines) with endpoints and bifurcations represented 
as nodes (green circles). Bounding box, 105 × 120 × 345 μm. (e–g) 3D rendering of a representative short-axis 
basal slice with fluorescence microvasculature signal (e), microvascular skeleton (f) and nodes (g). (h–j) 3D 
rendering of a representative sagittal slice with corresponding microvascular skeleton and node representations. 
Scale bars, 500 μm.
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Figure 2. Covariance matrix and tensor imaging representation. 3D renderings of a representative volume 
of lectin-TRITC stained heart. (a) Image processed fluorescence data, (b) corresponding skeleton (white) 
and graph nodes (red), (c) nodes (white circles) and their connecting segments (white lines). Bounding box, 
250 × 205 × 340 μm. (d) 3D representation of the covariance ellipsoid. All feature descriptors (segments, for 
the microvasculature case) present within the red sampling volume ε (corresponding to a voxel in the final 
3D image) are plotted and rendered with a directionally encoded color, defined in the microscopy acquisition 
frame. (e) By calculating the covariance Cov of the vascular tracts we can obtain the entries of the variance-
covariance matrix CM (3 × 3), which is a tensor of rank 2. Here the matrix’s diagonal entries are the variances, 
while the others are the covariances. (f) Image representation of the tensor field components of the mid axial 
plane of the representative volume of lectin-TRITC stained heart shown in (a), using a pseudo-color map. 
Off diagonal components rescaled for better contrast. (g) Rotating the reference frame makes it possible 
to diagonalize the CM tensor with the positive eigenvalues λ1, λ2, λ3 related to the spread (variance) in the 
eigenvectors directions v1, v2, v3. (h) In the new principal axis frame, the principal eigenvector v1 gives the main 
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directional probability. In Fig. 2d all feature descriptors ri present within the red sampling volume ε (correspond-
ing to a single voxel in the final 3D image) and corresponding to the vascular branches present in it, are plotted 
and rendered with a directionally encoded color, as defined in the microscopy acquisition frame.

We next calculate the variations and covariations of the descriptors’ coordinates from their mean in each voxel 
(Fig. 2e), thus capturing the local distribution. If this spread is homogeneous, the data can be conceptualized as a 
sphere since no particular dimension prevails over another (isotropic). Conversely, when the spread is heteroge-
neous, the data correlate and their distribution is better expressed as an ellipsoid with a particular spatial orienta-
tion and axes of different sizes (anisotropic). The approach is similar to diffusion tensor imaging (DTI) MRI21,22, 
though DTI-MRI attains diffusion ellipsoid shape and orientation from separate, distinct diffusion measurements 
made along multiple independent directions, while our method extracts information after binarizing the data. 
This allows us to extract several feature sets that are independent of the acquisition modality and to build virtual 
mathematical models that provide multiple ways to synthesize the local cellular architecture.

Mathematically it is convenient to express the standard deviation ellipsoid as a second order tensor (Fig. 2e), 
because spheres and ellipsoids can be easily represented by such a matrix (CM), which in turn can be directly 
derived from the voxel data. In our case, the tensor is a 3 × 3 matrix and captures the basic features of the dataset’s 
local geometrical structure. In particular, the tensor encapsulates information about the scattered data’s orienta-
tion and spread within the voxel of interest. Its axes are oriented along the direction of maximum variability and 
the axes’ sizes correlate with the spread’s magnitude.

The ability to assign a tensor representation for all feature descriptors present within each voxel is important 
due to the tensor’s further statistical interpretation, which permits us to draw a bridge with the geometrical ellip-
soid representation. In fact, the 3 × 3 matrix can be contextualized in multivariate statistics, particularly as the 
variance-covariance matrix23 in three-dimensional Gaussian distributions. The individual matrix entries are the 
result of computing all possible covariances among all feature descriptors’ components ri,j (i = 1. N, j = 1–3) with 
respect to the microscope reference system. Here N represents the number of elements per voxel, while j runs 
over the 3D space dimension (X, Y and Z components). The tensor diagonal components are represented by the 
terms cov(X,X), cov(Y,Y) and cov(Z,Z) which are particular cases as they coincide with the variances of X, Y and 
Z respectively (Fig. 2e). Under our assumptions, the matrix is symmetric positive definite, and therefore only six 
entries are necessary when dealing with three dimensions (Fig. 2e,f).

When the ellipsoid aligns with the main frame axes (microscope reference frame), only the principal diago-
nal entries of the 3 × 3 correlation matrix are non-zero (diagonal tensor). Specifically, these eigenvalues are the 
values obtained by computing variances of the x, y and z data components, respectively, and are proportional to 
the squares of the lengths of the ellipsoid axes24. Non-diagonal entries, by contrast, produce a rotated ellipsoid, in 
which case the covariance matrix univocally defines the ellipsoid spatial orientation and axis lengths.

The spectral theorem25 guarantees that it is possible to diagonalize the non-singular cross correlation matrix 
(Fig. 2g) and determine an orthogonal basis (eigenvectors) that defines the principal coordinate directions, with 
dimensions and eigenvalues equal to the matrix size. Importantly, this allows one to characterize the structural 
properties independently from the microscope acquisition frame and to work within each voxel in a local coor-
dinate system solely determined by the specimen anatomy. In this principal frame, the ellipsoid’s axes are aligned 
along the eigenvectors of the variance-covariance matrix, and the ellipsoid axes’ lengths are regulated by the 
eigenvalues’ magnitudes24 (Fig. 2h).

The above procedure and interpretations can be unified into a single framework, i.e. the principal compo-
nent analysis (PCA)26–32, which is commonly used to reduce large datasets’ dimensionality33,34. By exploiting the 
variance-covariance matrix computed from the data, eigenvectors and eigenvalues are calculated and a change in 
the data coordinate system is introduced such that the projected feature points’ greatest variation occurs across 
the new axis.

The eigenvector with the largest eigenvalue (v1) corresponds to the dimension with the strongest correlation, 
i.e. principal component (PC), while the corresponding eigenvalue represents its variability. The second eigenvec-
tor (v2) represents the maximum variability along a direction orthogonally oriented with respect to the first one. 
The third (v3) is the maximum variability orthogonally oriented with respect to the previous two.

Because each voxel corresponds to a specific tensor that contains six degrees of freedoms (in addition to the 
three spatial), volumetric datasets can be associated with tensor fields (TF), or collections of region descriptors, 
which reflect the order on a unique local orthogonal coordinate system and produce tensor-valued images (see 
Supplementary Information). For an intuitive representation of the tensor data for an axial slice of the tensor 
field, see Fig. 2f. One challenge is how to best interpret and visualize such highly dimensional data35,36. Possible 
approaches include tensor glyphs (Fig. 2i, Supplementary Movie 11), i.e. 3D parameterized graphical objects 
representing the different characteristics of each tensor point with shape, size, position and color, respectively37. 

vascular directionality within every voxel. The square root of the eigenvalues is proportional to the ellipsoid 
radii. The eigenvectors to their orientations. (i) The 3D ellipsoid glyph-based visualization of the mid axial 
plane of the representative volume of lectin-TRITC stained heart shown in (a), describes the tensor information 
at any point along an axial plane of the microvasculature. Ellipsoid colors are rendered using a directional 
color-encoded map (X, red; Y, green; Z, blue). (j) 3D vector-field representation of the entire vascular volume 
in (a). (k) Voxel maps of the principal eigenvector component along the lab reference frame, using a pseudo-
color map, for the mid axial plane of the representative volume of lectin-TRITC stained heart shown in (a). 
(l) Directional color-encoded maps of the CM eigenvectors for the same mid axial plane shown in (k). RGB 
components are defined as the absolute values of the eigenvectors’ XYZ components (see inset). Scale bars in 
(f,k,l), 50 μm.
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Figure 3. Content visualization and vascular tractography. All representations and visualizations refer to 
the representative volume of lectin-TRITC stained heart shown in Fig. 2(a). The 3D perspective (a), axial (b) 
and sagittal (c) vector field representations of the primary eigenvector clearly show the spatial preferential 
orientation of the microvascular network present in the tissue volume of Fig. 2a. Vectors are color coded to 
represent orientation with respect to the XYZ lab frame. (d) Map of the principal eigenvector along a sagittal 
plane (Supplementary Fig. S7g–h) of the volume in (a). The intensity corresponds to the principal eigenvector’s 
length, with hedgehogs representing its direction in space at each point in the field. (e) Ellipsoid glyph 
representation of the tensor field for the same sagittal plane. Different streamline groups represent different 
trajectories along the principal eigenvector direction. (f) Color-coded fiber tracts represent seeded streamlines 
along the principal eigenvector and illustrate the main distribution and direction of the microvasculature. 
3D perspective (g), axial (h) and sagittal (i) vascular tractograms with an associated axial ellipsoid glyph 
representation. (j–l) Tomographic vascular tractograms obtained along the principal (j), secondary (k) and 
tertiary (l) eigenvector, respectively. 3D rendering of the vascular skeleton (m) and the segments connecting the 
graph nodes. Color coded, RGB. Bounding box, 250 × 205 × 340 μm. Scale bars, 50 μm.
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In this representation, the eigenvectors define the local voxel glyph spatial orientation, while the eigenvalues 
define the glyph lengths. Other interpretations based on vector fields (VF)38 (Fig. 2j), 2D scalar maps (Figs. 2k,l, 
and S5a–f) and tractographic representations are also possible39 ways to visualize data.

The tensor field40 information can be reduced41, assuming the principal eigenvectors encode the locally pre-
vailing vascular orientation in each voxel (Fig. 3a–c).

The accompanying eigenvector field representing the fiber orientation maps (FOM) (Fig. 2j) can be con-
verted to a color space representation42, to build 2D maps for more immediate interpretation of the underly-
ing 3D vascular or cellular structure (Figs. 2k,l and 3d, Supplementary Fig. S8). A directionally encoded color 
scheme (DEC)43,44 defined in the microscope acquisition frame can visually facilitate tensor interpretation. 
Other eigenvalue-derived tensor metrics include the fractional anisotropy (FA) (Supplementary Fig. S8f), which 
encodes directionality component strength, or the Westin’s coefficients42 (Supplementary Fig. S8b). Using the 
eigenvectors’ orientation and a tensor-based deterministic method based on the 2nd order Runge-Kutta method45, 
3D trajectories can be also reconstructed (Fig. 3e–l) (see Supplementary Information). Directional tracking 
through the eigenvector fields is obtained by propagating the tracks in a voxel-by-voxel manner from selected 
seeds (Fig. 3e) while following the eigenvectors’ local orientation (Fig. 3f). The associated fiber bundles (Fig. 3g–l, 
Supplementary Movie 11) give insights into the underlying anatomical structures and their regional variations 
and trends (Fig. 3m,n). Indeed, by varying the sampling volume over which the PCA analysis is performed, it is 
possible to provide a mathematical description at virtually any scale of magnification.

Fluorescence microscopy tensor imaging representations of the cardiac microvascularity. We 
then used our method to interrogate the cardiac microvasculature and obtain structural tractographic representa-
tions in unprecedented detail. We first transformed the segmented vascular imaging datasets (Fig. 1e–j) into 
completely virtualized tensor field representations. To quantify local variations within these representations and 
characterize the different vascular myocardial features, the vascular tensor fields can be simplified to vector field 
representations defined along the principal eigenvectors that here represent the vascular directionality. Figure 4a 
(Supplementary Movie 12) shows a tomographic VF representation of the vascular directional primary eigen-
vector in an apical short-axis slice (mid and basal short-axis representative slices are provided in Supplementary 
Fig. S9). To represent the major eigenvector’s spatial orientation we use a direct RGB-to-XYZ mapping color 
scheme (Fig. 2). The red color indicates right-left orientation, green the anterior-posterior orientation and blue the 
superior-inferior orientation. Together, the VF and corresponding tractogram (Fig. 4b, Supplementary Movie 12) 
emphasize the left-handed helical orientation of the microvasculature in the left ventricular wall and the myo-
cardial fibers’ overlapping course in the transition area from epi- to endocardium (Supplementary Fig. S9). A 
detailed magnified view (Fig. 4c) of the septal boundary at the intersection of the left ventricle and lateral bound-
aries shows intricate vascular structure branching near the interventricular sulcus. Two-dimensional directional 
encoded colored (DEC) maps of eigenvectors, tensor field representation and scalars detail the local 3D vascular 
organization (Supplementary Fig. S10). A tensor glyph representation (Fig. 4d) provides visual insights into the 
complex tensor field at each voxel to better emphasize local order and directionality, particularly along directions 
different from the principal ones to interrogate myocardial vascular sheet structures46,47.

The high level of structural hierarchy can be further analyzed by comparing the overall organization present 
within the vascular tractograms determined along the secondary (sheet-parallel) and tertiary (sheet-normal) 
eigenvectors, respectively (Fig. 4e,f), in conjunction with the original vascular skeleton view representations 
(Fig. 4g). Overall, the VF and tractograms emphasize how the vascular network presents a gradual counter-
clockwise rotation similar to the classical myocardial fiber orientation from the epicardium to the endocardium. 
The directional color-encoded maps of the principal eigenvectors (Supplementary Fig. S10) together with their 
corresponding vascular tractograms (Fig. 4b,e,f), are in good agreement with results obtained by diffusion tensor 
MRI20 and structure tensor synchrotron radiation imaging48, while offering a much higher degree of details.

In the epicardium and endocardium, the primary eigenvectors are mostly oriented in the longitudinal 
apex-base direction. In the mid-wall, the fibers are oriented predominantly in the circumferential direction. This 
is better emphasized in the magnified views of the lateral exterior left ventricle (Fig. 4h–l). The effect can be quan-
tified along the transmural depth, from epi- to endocardium, using a new set of coordinates defined by the trans-
verse and helix angle (HA) relative to the local wall (Supplementary Fig. S11). In this frame, vascular fibers with 
positive helix angle values run toward the antero-apex direction, while those with negative values run toward the 
postero-apex one. Plots of the helix angle as a function of the transmural distance49 indicate that vascular tracts 
in the subepicardium and subendocardium have positive and negative helix angle values, respectively, giving 
rise to a local helical architecture presenting a transmural angle of 150 degrees (Supplementary Fig. S11f). Tracts 
in the midcardium, where the helix angle approaches null values, are strongly circumferential (Supplementary 
Fig. S9d–g).

Tomographic vascular tractograms of a representative basal short axis slice (Fig. 4m, Supplementary Movie 13) 
reveal the mainly vertical pathways of the vascular fiber tracts within the papillary muscles (blue color-coded, 
along the inferior-superior orientation) (Supplementary Fig. S12). Representative vascular skeletons and tracto-
grams of sagittal slices are shown in Fig. 4p,q and Supplementary Movie 14. Vascular tracks can be seen spiral-
ing down the apex, following the general layout of cardiomyocytes that are spatially organized to optimize the 
rhythmic cardiac contractions that lead to blood ejection into the aorta. This process is highly energy dependent, 
requiring ample oxygenated blood and nutrient supply through capillaries that are in close proximity to contract-
ing cells, a requirement fulfilled by the similar orientation of muscle fibers and the vascular bed.

DTI cannot directly image the heterogeneity of the fiber tracts orientations within a single voxel (typically 
100 microns isotropic). To validate our results we have therefore used diffusion spectrum magnetic resonance 
imaging (DSI)20 (see Supplementary Information), due to its ability to image intravoxel fiber tract intersections 
at resolutions more realistically comparable to the ones obtained with our method. A direct comparison between 
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helix angle representations obtained with our method (Supplementary Fig. S11d) and with DSI (Supplementary 
Fig. S11g), shows that the two modalities are in good agreement with each other. Clearly our method provides 
informative maps at much higher resolution and allows to resolve in greater details the tracts orientations and 

Figure 4. Tomographic vascular tractograms. (a-l) Representations and visualizations of the microvasculature 
for a lectin-TRITC stained apical short-axis slice (as shown in Fig. 1e). (a) Tomographic vector field 
representation of the vascular directional primary eigenvector in a lectin-TRITC stained apical short-axis 
slice (as shown in Fig. 1e and plane 1 of Fig. S13). Tomographic vascular tractogram determined along the 
primary eigenvector (b) and magnified view of the posterior left/right ventricle border area (c). Scale bar, 100 
μm. (d) 3D ellipsoid glyph representation of the tensor field for the representative slice in (a). (e,f) Tomographic 
vascular tractograms determined along the secondary (e) and tertiary (f) eigenvectors. (g) Skeleton axial 
view representation of the vascular network. (h–l) 3D magnified views of the area α To (g). Glyph tensor 
field representation (h) and vascular skeleton (i) with corresponding vector field representations (j,k). In 
(j) colors encode directional information, while in (k) a cold-hot pseudo-color map encodes the principal 
eigenvector projection’s magnitude along the vertical axis. (l) 3D rendering of the fiber tracts corresponding 
to the magnified area. (m) Tomographic directional vascular tractogram in a lectin-TRITC stained basal 
short-axis slice (plane 3 of Fig. S13). (n,o) Magnified skeleton representation of the microvasculature in λ 
and corresponding tractogram. (p,q) Skeleton representation of the microvasculature and corresponding 
tractogram for a representative lectin-TRITC stained sagittal slice (as shown in Fig. S1h). Scale bar, 500 μm.
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to accurately follow the gradual change of the helix angle from the epi- to the endocardium (Supplementary 
Fig. S11f). Also the measured value (150 degrees) of the transmural angle (Supplementary Fig. S11f) is in good 
agreement with DSI obtained values20.

The location within the heart where the axial slices have been taken is shown in Supplementary Fig. S13. A 
flowchart describing the elaboration and visualization process is given in Supplementary Fig. S14, with a descrip-
tion of the visualization tools used.

Cellular orientation of cardiac tissue resident macrophages. A second application of our visuali-
zation technique is its use in cellular mapping over whole organs. Here we chose to investigate tissue resident 
macrophages in the myocardium as these cells have important homeostatic, house-keeping and other newly 
appreciated functions50,51. We imaged the perfused and cleared hearts of Cx3cr1GFP/+ mice, a reporter strain 
in which green fluorescent protein (GFP) can be used to identify cardiac macrophages in the normal heart50. 
These cells, which have a central body and long protrusions that mingle in between other stromal cells and car-
diomyocytes, have been shown to have important sensing functions52 and even play a role in electrical conduc-
tion50. Consecutive thick murine heart slices were stained with anti-GFP to amplify the fluorescent signal. We 
also experimented with GFP-preserving fixation methods9, although anti-GFP staining resulted in higher SNR. 
Volumetric datasets were then assembled and processed (Fig. 5a,b, and Supplementary Movie 15). For each mac-
rophage we estimated the best-fitting ellipsoid and determined the ellipsoids’ principal axes, which are assumed 
to represent the individual cellular orientational axes (Fig. 5c). We then determined the statistical distribution of 
the descriptor vectors within a sampling volume by PCA (Fig. 5d). Finally, we propagated the computation of the 
macrophage covariance matrix over all the sampling volumes to infer the overall organ cellular spatial distribu-
tion. We found that cardiac macrophages do not randomly orient themselves but rather preferentially align with 
each other in distinct directions (Fig. 5e–f, Supplementary Movie 16). This orientation is similar to that observed 
for the microvasculature, a similarity emphasized in the magnified 3D renderings (Fig. 5g–j).

Discussion
Our goal was to develop an imaging and computational method to automatically extract spatial, cellular and 
molecular information from large-size fluorescence microscopy imaging data sets. By using the feature vectors’ 
variance-covariance matrix as a local region descriptor53, we virtualized and obtained tensor field data representa-
tion. We have demonstrated how vascular information can be visualized regionally and throughout the murine 
heart. Since visualizing large datasets is critical to improving analysis, we also developed and applied different 
tensor metrics derived from both eigenvectors and eigenvalues. Our segmentation method of choice relied on 
a machine learning custom-based solution, but other methods are possible, and data acquired and segmented 
by other groups with alternative methods as well as freely accessible already digitized atlases, can be seamlessly 
integrated into our mathematical framework pipeline to generate tensorial multiscale maps.

Acquiring and navigating large datasets has been attempted in the past. OCT54,55, PS-OCT56, histopathology57 
and other techniques have been used to map fiber orientation, but these approaches mainly used size-limited 
acquisitions and/or direct elaboration schemes. Examples of direct methods for fibers orientation mapping 
include those based on the Fourier transform58 and wedge filters59 as well as others based on image filters such as 
the gradient or the second order derivative information60–63. Generally, these methods are fast but require prior 
knowledge of the imaged sample features to identify the most relevant ones and to properly perform orientation 
estimation. Furthermore, these and other filtering-based approaches are intrinsically correlated to the analysis, 
which de facto reduces their flexibility, leading to high reprocessing times if other features or different sampling 
rates are required.

Alternatively, segmentation-based methods preserve the entire image information, thereby facilitating com-
plete binarization of a sample volume. By dissociating the processing and analysis steps, this complete binariza-
tion permits more freedom regarding feature analysis and speeds up the analytical process, e.g. when multiple 
descriptors are considered at the same time. Moreover, this approach provides a correct simplification and data 
down-sampling without altering any geometrical or signal intensity characteristic of the original images.

While we here chose to apply our method on the murine cardiac microvasculature, our imaging method 
could be applied to other cellular structures within the heart for instance to determine the distribution and ori-
entation of the macrophage population, or to other organs. In the brain for example it could be used in order 
to produce detailed tractographic representation of structural connectivity maps (connectomes, projectomes) 
based on single-cell (neurons) data64–68 or to analyze the distribution patterns of the microvasculature and of the 
brain-wide arterial and venous cerebral vascular system, particularly in relation to the different brain regions. In 
tumors differences in the distributions between different cell populations (e.g. tumor-associated macrophages 
and cancer cells) and their relation with respect to the vasculature, collagen or drug distributions could be also 
obtained, providing a better understanding of the whole tumor microenvironment.

The imaging scheme could be also used as an invaluable quantitative tool to independently validate local 
tissue structures derived from diffusion magnetic resonance images48,57,69–72 and to relate pathology with DTI 
information57.

The flexibility of our approach ensures it is translatable to other imaging techniques. This is an important 
feature because it could allow to utilize data collected with different imaging techniques and based on different 
contrast mechanisms, such as for example optical coherence tomography, micro-XCT, synchrotron radiation 
phase contrast imaging, and histopathology. A multimodal approach based on the combination of two or more of 
the aforementioned techniques may also provide synergistic and complementary information, offering the possi-
bility to overcome limitations present in the single modalities. We have focused on fixed image samples, but our 
approach could be also applied in in vivo settings, for the characterization for example of cell migration in tumors.
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Figure 5. Tomographic cellular tractograms. (a,b) 3D renderings of the anti-GFP stained GFP-expressing 
macrophages distribution present in a representative basal short-axis slice. (a) Raw fluorescence signal. (b) 
Cells are segmented and randomly color coded for better visual discrimination. (c) Magnified views of two 
different macrophages and their spatial distribution, with the fitting ellipsoids and their respective principal 
axes (feature descriptors). Scale bar, 10 μm. (d) 3D representation of the cellular covariance ellipsoid Mϕ, which 
represents the isosurface of the macrophages’ directional probability on a single voxel. (e-j) Representations 
and visualization of the anti-GFP stained GFP-expressing macrophages distribution present in the basal 
short-axis slice shown in (a,b). (e) The 3D ellipsoid glyph-based visualization describes the macrophage tensor 
field information. (f) Corresponding directional cellular tractogram. (g,h) Magnified 3D rendering of the 
macrophage population in δ (G) and maximum intensity projections along orthogonal planes (h). Scale bar, 
100 μm. 3D rendering of the ellipsoid glyph-based tensor (i) and respective cellular directional tractogram (j). 
Colors are rendered using a directional color-encoded map.
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Finally, we emphasize that our method is highly valuable for seamlessly studying data on micro, meso- and 
macroscale organization significantly improving abstraction. These goals are difficult to achieve by conventional 
microscopic or macroscopic imaging technologies alone; rather, potent processing methods such as the one here 
illustrated are needed to distill the most relevant information from large-scale datasets.

Materials and Methods
Animals and experimental parameters. C57BL/6 (000664) mice were purchased from Jackson 
Laboratory (Bar Harbor, ME, USA) and maintained in our pathogen-free environment at the Massachusetts 
General Hospital animal facility (MGH, Boston, MA, USA). Animal experiments were performed in compli-
ance with institutional guidelines and approved by the Subcommittee on Animal Research Care at Massachusetts 
General Hospital. Eight-week-old mice were used for experiments. For in vivo microvasculature labeling, 
mice were anesthetized with 1.5–2% isoflurane supplemented with oxygen prior to intravenous injection of 
Rhodamine-labelled Griffonia simplicifolia lectin (100 µl; RL-1102, Vector Laboratories, Burlingame, CA, USA). 
Mice were sacrificed five minutes after in vivo labeling of endothelial cells and perfused through the left ven-
tricle with 20 mL of ice-cold PBS followed by 20 mL of 4% formaldehyde solution in PBS (Thermo Scientific, 
Waltham, MA, USA). Hearts were harvested, post-fixed for an additional hour at room temperature, washed in 
PBS, embedded in 4% agarose and cut in 300 μm sections using a Pelco 101 vibratome.

optical clearing. Heart tissue section clearing was performed using a slightly modified version of the CUBIC 
(clear, unobstructed brain imaging cocktails and computational analysis) method14 for multicolour imaging of 
fluorescent proteins and/or immunostained samples. The method is based on immersing fixed tissue slices in a 
chemical mixture containing aminoalcohols. After sectioning, tissue slices were immersed in a 30% glycerol solu-
tion for 1 h and stored at −80C. Prior to imaging, slices were brought back to room temperature, washed twice 
in PBS for 10 minutes and immersed for 30 min in a solution obtained by mixing 25 wt% urea (U16–3, Fisher 
Scientific Hampton, NH, USA), 25 wt% N,N,N0,N0-tetrakis(2-hydroxypropyl) ethylenediamine (50-014-48142, 
Fisher Scientific) and 15 wt% Triton X-100 (85111, Life Technologies, Carlsbad, CA, USA). Slices were then 
mounted in a custom-made imaging holder and allowed to mechanically relax for 30 minutes prior to imaging.

confocal microscopy. Images at 1.2 microns/pixel planar resolution (512 × 512) were acquired (integration 
time, 2.0 microsecond/pixel) as a function of depth (z-stack, 4 μm step size) using a customized Olympus FV1000 
system based on a BX61-WI confocal microscope (Olympus America).

A XLUMPLFLN 20x water immersion (NA 1.0, Olympus America, 2 mm WD), a XLUMPlanFl 10x water 
immersion (NA 0.6, Olympus America, 2 mm WD) and a UPLSAPO 30x silicon immersion (NA 1.05, Olympus 
America, 0.8 mm WD) were the objectives used for data collection.

Imaging probes. Lectin was imaged using a 559 nm diode lasers, respectively, in combination with a dichroic 
beam splitter (DM405/488/559/635 nm). Fluorescence was collected using appropriate combinations of beam 
splitters (SDM560) and emission filters (BA575–620).

Rhodamine-labelled Griffonia simplicifolia lectin (RL-1102, Vector Laboratories) was used as an intravital 
stain to outline the microvasculature. The dye-labelled lectin (lectin-TRITC) has a 550 nm maximum excitation 
and a 575 nm maximum emission and was excited using a 559 nm diode laser. Fluorescence was collected using 
an appropriate combination of beam splitters (SDM560) and emission filters (BA575–620).

Data analysis. Analyzing data and coordinate transformations among different visualization datasets was 
performed using Matlab (The Math Works, Natick, MA, USA) in integration with Camino, Diffusion Toolkit, 
Trackvis, Paraview, ITKsnap and Amira (FEI). Data elaboration was performed on several platforms. Image pro-
cessing was performed on a Precision Tower Workstation Intel Xeon Processor E5-2637, 3.5 GHz, 64 bit, equipped 
with an NVIDIA GeForce GTX 1080 graphics card, 128 GB RAM, a fast-drive PCI 512 GB SSD Samsung 950 
Pro, running Windows 10. Codes for the 3D segmentation were written using Matlab, Python (Python Software 
Foundation, Wilmington, DE, USA), and Tensorflow. Matlab-based multilayer feed-forward neural networks 
training was performed locally on a GTX 1080 graphic card. Tensorflow-based CNN training was performed on 
the ERIS One computing cluster utilizing two Tesla P100 Nvidia GPUs. Skeletonization and graph analysis were 
performed on 10 virtual machines instances on Azure (D2s-64 series, 128 GB RAM).

image processing. Microscopy images were image processed in order to increase both SNR and contrast 
ratio. Images were first de-noised using a BM3D filter method. Data were then interpolated along axial direction 
and deconvolved to sharpen images. Deconvolution and de-noise were performed on a local GPU (GTX 1080) to 
increase performance (approximately a factor 100 acceleration) (Supplementary Fig. S2).

Data segmentation. After image processing (Supplementary Fig. S2), images were segmented to extract 
underlying information and then post-processed to remove segmentation-related artifacts. After exploring some 
previously published techniques2, we decided to develop a new custom-built solution based on machine learning. 
This approach has several advantages: our measurements generate a great deal of data, which is a key requirement 
for the training stage when using complex learning models; new datasets may further improve the classifier; suit-
able artificial intelligent development programming platforms and online resources are readily available. While 
we have here adopted a custom-based solution based on machine learning, we note that the specific algorithmic 
route chosen for producing the segmented data can be different depending on the dataset complexity as well as 
the origin of the signal contrast (e.g. fluorescence, absorption, scattering, X-CT, synchrotron radiation, etc.) or 
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other personal preferences. To that aim different approaches are possible and recommended, and they all repre-
sent the preliminary step to obtain data binarization, which is necessary for extracting the sets of morphological 
descriptors from which volumetric tensor-value representation can be generated.

Specifically we chose the supervised learning paradigm to develop specific neural networks for our project. 
Because biological structures are three-dimensional, we selected volumetric approaches, which also address our 
imaging protocol’s anisotropic resolution, with a slight elongation along the vertical axis. To train networks, we 
used manually annotated datasets as training, validation and test datasets. While several frameworks are available 
for deep learning, we focused on Matlab and Tensorflow for, respectively, multilayer feed-forward neural net-
works and convolutional neural networks (CNN).

In Matlab, we used training datasets (6) to train a multilayer feed-forward neural network consisting of 
four-hidden layers and seven neurons each (Supplementary Fig. S3). The input was a 3D cubic stack patch of 
7 × 7 × 7 normalized data concatenated to a raw data subset to allow the network to learn the sample features 
while also considering signal intensity. The network was designed to classify the 3D stack’s central point as 
belonging or not to a certain biological structure. The network output was thresholded to assign a designated 
class. Network performances were computed through the Dice coefficient calculated on the datasets (values up 
0.8, for appropriate threshold).

The average Dice coefficient calculated on independent datasets (n = 11) extracted within a short axis slice 
(Supplementary Fig. S4A) is equal to 0.85.

While the above network is fast, has simple architecture and can be used with local hardware resources, we 
also investigated a more complex network based on Tensorflow, which can work on remotely connected computa-
tional platforms. In Tensorflow, the structure of the 3D Convolutional Neural Network (CNN) was adapted from 
the V-Net and retains the 29 convolutional layers present in the original, with some adaptations. The number of 
filters (5 × 5 × 5) learned in the first layer is 24 and doubles every down-convolution. Down-convolution is per-
formed using a volume of 2 × 2 × 2 and stride 2. All activation functions used prior to the final layer are Rectified 
Linear Units. All variable initializations for all weights used the Xavier initialization and all variable initializa-
tions for the biases used zero initialization. A batch normalization layer was added to each set of layers before a 
down-convolution was performed. This network was implemented in TensorFlow 1.7, and all code was written 
in Python. Training was performed on the ERIS One computing cluster utilizing two Tesla P100 Nvidia GPUs for 
training and forward passes of the network.

Our 3D CNN was trained on five manually annotated training volumes. The size of the volumes was reflec-
tively padded along XY to the size of 352 × 352 × Z. Here the depth Z varied in size between 200–400 slices. The 
batch size consisted of only one training example. From each of the five volumes, the network was given an input 
slice stack of image data, size 352 × 352 × 5, and a slice of segmented label, size 352 × 352 × 1. The segmented 
label corresponded to the middle of the input image slice stack. The network’s output volume matched the seg-
mented data size. After one batch had been used for trained, the input data and segmented label shifted down one 
slice. Training followed this pattern until the entire training volume stack had been processed, and training on 
all five volumes was considered one epoch. The network was trained by reducing the cross-entropy loss between 
the network output and the expert-obtained segmented labels. ADAM was used as the optimization algorithm.

The network was monitored during each epoch by checking the performance on one volume of previously 
unseen validation data using the Dice coefficient loss. Since the network’s output layer is a softmax layer, a naïve 
threshold of 0.5 was used to test against the binary values in the segmented labels. The network model was saved 
once convergence was determined by the network designer. After convergence, the model received a Dice coef-
ficient test score of 0.81 on another previously unseen test volume. Despite their differences, the two NN archi-
tectures produced very similar results. We decided therefore to elaborate all the data in a local Matlab framework 
for convenience.

The direct comparison between the 3D rendering of the fluorescence imaging data (Fig. 1a) and the thresh-
olded network output (Fig. 1b) demonstrates the high degree of overlap present between the two datasets, as 
suggested by the Dice coefficient.

expert-annotated datasets. We took particular care to obtain excellent annotated datasets. We 
built a total of eight annotated datasets for training, validation and testing. Typical sizes are in the range of 
300 × 300 × 250 microns. Randomly selected areas were chosen within a mid short-axis heart slice (300 microns 
thickness). For each area, two image datasets were acquired. One dataset was acquired using the same exper-
imental acquisition condition used for whole heart imaging, including the post-acquisition image processing 
pipeline (Supplementary Fig. S1). The other dataset was obtained while imaging the same region but using an 
oil-immersion objective to better match the refractive index of the clearing solution and therefore reduce the axial 
point spread function. Also, imaging acquisition conditions were changed in order to maximize SNR, thereby 
increasing the laser power and integration time while reducing PMT gain. This was done in order to facilitate the 
microvasculature segmentation and was performed by an expert annotator using local orthogonal sections to 
exploit the volumetric information and enhance structural recognition.

In order to achieve spatial matching between the two datasets, it was necessary to ensure the samples did not 
move when objectives were exchanged. We also conducted automatic registration based on cross-correlation 
between the two datasets. After being manually inspected, the registered datasets were properly cropped to trim 
borders and match the datasets. The microvasculature segmentation obtained from the oil-based acquisition 
was then used as a guideline to facilitate manual annotation of the water-based objective-acquired dataset. This 
annotation was performed using local orthogonal sections for structural recognition enhancement. These seg-
mentations were considered our “gold standard”.
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Skeletonization. The binary segmentation data were skeletonized using a 3D medial surface/axis 
thinning-based algorithm by Lee et al. The algorithm finds the centerline of the binarized vessels through a fast, 
iterative erosion process, using Skeletonize3D on an existing Fiji/ImageJ plugin. Quantitative analysis of the skel-
etonized images is performed using AnalyzeSkeleton, another Fiji/ImageJ plugin, to obtain a direct graph rep-
resentation that includes the coordinates of all nodes and skeleton branches and classifies voxels based on their 
number of neighbors: end-points (<2), junctions (>2) or slabs (=2).

Figure 1c shows the high degree of accuracy achieved in identifying the skeletonized microvasculature 
throughout the dataset represented in Fig. 1a. This is emphasized also in Supplementary Movie 7, where an axial 
view of the microvasculature fluorescence signal is represented as it moves along the vertical direction. The 3D 
rendering of the skeletonized microvasculature was overlaid to better follow the identification of the microvas-
culature tracts and branches.

Vector and tensor fields. Tensor fields were obtained by extracting information contents from the seg-
mented images and then computing using a sliding window. All biological structures within the window were 
transformed into feature descriptors (in the microvasculature, segments represent adjacent nodes connections) 
and centered on their midpoint. All extreme points of the grouped segments were used as a points cloud to esti-
mate the dispersion through a tensor (variance-covariance matrix). While an arbitrary value can be chosen, we 
chose a mesoscale range typical of techniques such as MRI. The window size was set at 90 × 90 × 90 microns, 
while the window shifting spacing was equal to 20 microns. The vector fields were obtained by selecting the prin-
cipal eigenvector from each coordinate point in the tensor field. Vector and tensor maps were weighted by the 
number of elements present within each single volume (Supplementary Fig. S8g) in order to attribute statistical 
significance to the voxels. Large window sizes are preferred to obtain smoothed vector/tensor fields.

Tractography. Eigenvector tracking was performed along the three principal eigenvectors using Diffusion 
Toolkit and Trackvis. Tracks were generated from all voxels using a tracking deterministic method based on the 
2nd order Runge-Kutta technique. A propagation angle of greater than 35 degrees was used as single termination 
criterion. No FA thresholds were implemented. Typically, only 15% of the tracks are displayed. This angle is sub-
stantially higher than the propagation angle of normal myofiber tracts, which is <4o per voxel at mesoscopic reso-
lution, but is required for complete resolution of a branching continuum such as a vascular tree. No FA thresholds 
were implemented. Typically, only 15% of the tracks are displayed. Tractography of myofiber tracts by MRI in the 
murine heart (Supplementary Fig. S11g) was performed with diffusion spectrum imaging as previously described20.

Ethical approval. All animal procedures and protocols were approved by the Institutional Animal Care and 
Use Committee of the Massachusetts General Hospital, and they are in accordance with the NIH Guide for the 
Care and Use of Laboratory Animals.

Data availability
The deep learning model and the Matlab-based multilayer feed-forward neural networks reported in this work 
use standard libraries and scripts that are publicly available in both TensorFlow and Matlab. The raw images 
training datasets for the experiments are available from the corresponding author upon request. The trained 
networks are also available upon request.
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