Oxidation and erythropoiesis
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Purpose of review

Erythropoiesis is a complex multistep process going from committed erythroid progenitors to mature red
cells. Although recent advances allow the characterization of some components of erythropoiesis, much still
remains to be investigated particularly on stress erythropoiesis. This review summarizes recent progresses
made to understand the impact of oxidative stress on normal and pathologic erythropoiesis.

Recent findings

During erythroid maturation, reactive oxygen species might function as second messenger through either
transient oxidation of cysteine residues on signaling targets or modulation of intracellular signaling
pathways. Thus, in erythropoiesis, efficient cytoprotective systems are required to limit possible reactive
oxygen species-related toxic effects especially in stress erythropoiesis characterized by severe oxidation
such as B-thalassemia. In addition, prolonged or severe oxidative stress impairs autophagy, which might
contribute to the block of erythroid maturation in stress erythropoiesis. Understanding the functional role of
cytoprotective systems such as peroxiredoxin-2 or classical molecular chaperones such as the heat shock
proteins will contribute to develop innovative therapeutic strategies for ineffective erythropoiesis.

Summary

We provide an update on cytoprotective mechanisms against oxidation in normal and stress erythropoiesis.
We discuss the role of oxidative sensors involved in modulation of intracellular signaling during erythroid
maturation process in normal and stress erythropoiesis.
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INTRODUCTION

Erythropoiesis is a complex multistep process going
from committed erythroid progenitors to mature
red cells. Although recent advances allow the char-
acterization of some components of erythropoiesis,
much still remains to be investigated particularly on
stress erythropoiesis.

Erythroid differentiation is characterized by the
production of reactive oxygen species (ROS) both in
response to erythropoietin (EPO) and to the large
amount of iron imported into the cells during heme
biosynthesis coordinated with «/B-globin chain
synthesis. In erythropoiesis, ROS might also func-
tion as second messenger through either transient
oxidation of cysteine residues on signaling targets or
modulation of signaling pathways mainly involving
kinases [1-4,5",6,7]. Thus, in erythropoiesis, effi-
cient cytoprotective systems are required to limit
possible ROS-related toxic effects especially in stress
erythropoiesis characterized by severe oxidative
stress such as B-thalassemia [8-13]. In the present
review, we focus on cytoprotective and antioxidant
systems in normal and stress erythropoiesis,
summarizing the recent advancement on the
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mechanisms underlying the modulation of signal
transduction pathways to assist erythroid growth
and maturation.

ANTIOXIDANT AND CYTOPROTECTIVE
SYSTEMS IN ERYTHROPOIESIS

The studies of normal and stress erythropoiesis have
led to the identification of the key role of cytopro-
tective and antioxidant systems during erythroid
maturation. The importance of controlling ROS
generation during erythropoiesis is also supported
by the hematological phenotype of mice genetically
lacking cytoprotective or antioxidant systems such
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KEY POINTS

e ROS might function as second messenger during
erythropoiesis.

o Cytoprotective and antioxidant systems such as
peroxiredoxin-2 play a key role against oxidation to
ensure erythroid maturation.

e Impaired autophagy might contribute to amplify
oxidative stress in pathologic erythropoiesis. Future
studies should clarify the possible impact of autophagy
activating agent in assisting ineffective erythropoiesis.

as peroxiredoxin 2 (Prx2, Prx2~/~ mice) [7,14™,15-
18]. Prx2 has been first described in red cell and
represents the third most abundant red cell cyto-
plasmic protein, which is able to reduce and detox-
ify a vast range of organic peroxides, H,O,, and
peroxynitrite [16,19-21]. Prx2~/~ mice display
chronic hemolytic anemia, associated with ineffec-
tive erythropoiesis and oxidative DNA damage sim-
ilar to that observed in B-thalassemia (Fig. 1)
[14"%,15,22]. Recent evidence show that Prx2 expres-
sion is modulated during normal erythroid matura-
tion and it is wupregulated in B-thalassemia
[2,7,15,23]. Indeed, Prx2 serves as both antioxidant

and cytoprotective system, by specific binding to
free heme with decrease Prx2 peroxidase activity
(Fig. 2) [24]. This is extremely important in stress
erythropoiesis such as in B-thalassemia, which is
characterized by high levels of ROS and free heme
(Fig. 2) [7]. To further investigate the role of Prx2 in
stress erythropoiesis, we generated a mouse model
genetically lacking Prx2 in the context of thalasse-
mic background (Prx2~/~ Hbb*"*) [15]. In Prx2~/~
Hbb3*"™* mice, the absence of Prx2 worsens the
hematologic phenotype of B-thalassemic mice, by
amplifying erythroid oxidative stress and ineffective
erythropoiesis. This results in activation of the
redox-sensitive transcriptional factor nuclear factor
erythroid derived 2 (Nfr2), which promotes the
upregulation of anti-oxidant responsive elements
(ARE)-genes required to ensure cell survival. Thus,
in stress or pathologic erythropoiesis, Prx2 and Nfr2
might cooperate to minimize cellular oxidative
damage. As a proof-of-concept, we administered
the recombinant PEP1-Prx2 fusion protein to
Hbb3™* mice [14"15,25,26]. Treatment with
PEP1-Prx2 improves anemia of B-thalassemic mice
and decreases the extent of liver and spleen iron
overload, which is related to chronic hemolytic
anemia of B-thalassemia. Our data on PEP1-Prx2
suggest that the potentiation of endogenous
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FIGURE 1. Schematic diagram of the effects of oxidative stress during normal erythropoiesis. Akt, Ak strain transforming;
EPO, erythropoietin; HSP, heat shock proteins; Jak 2, janus kinase 2; PRX2, peroxiredoxin-2; PY, phospho-tyrosine; ROS,
reactive oxygen species; SE-P, seleno protein; STAT5, signal transducer and activator of transcription.
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FIGURE 2. Schematic model of the effects of oxidative stress in B-thalassemic erythroid precursors. AHSP-alpha, alpha
hemoglobin stabilizing protein-alpha; elF2-alpha, eukaryotic translation initiation factor 2 alpha kinase; HRI, heme regulated
elF2alpha kinase; HSPs, heat shock proteins; mTOR, mammalian target of rapamycin; Ngo1, NAD(P)H quinone
dehydrogenase 1; PRX2, peroxiredoxin-2; ROS, reactive oxygen species.

antioxidant system(s) might represent a new thera-
peutic strategy against oxidation in pathologic
erythropoiesis.

The role of Prx2 as redox-switch protein during
erythroid maturation is further supported by the
appearance of severe anemia with worsening of inef-
fective erythropoiesis in Prx2~/~ mice treated with
iron supplementation to induce iron overload [14™].
In iron-overloaded Prx2~/~ mice, we documented a
loss of the functional connection between erythro-
tferrone and hepcidin [4,27-29], linking erythropoi-
esis to iron homeostasis. In addition to target
erythropoiesis, Prx2 acts as an on-off switch of signal
transducer and activator of transcription (STAT3)
transcription activity [30,31], deeply affecting hepci-
din expression in response to iron overload. The
improvement of both iron-overload-induced ineffec-
tive erythropoiesis and liver cytotoxicity by PEP1-
Prx2 treatment supports the role of Prx2 as a ‘big
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brother’ in optimizing functional pathways linking
erythropoiesis to iron homeostasis.

Among the antioxidant systems important in
erythropoiesis, the Seleno (Se-) proteins have been
described to be required during erythroid matura-
tion events [32-34]. Recent evidence in mice
exposed to Se-deficient diet or carrying mutation
of gene Trsp that controls the synthesis of Se-pro-
teins further support the importance of Se-proteins
in normal and stress erythropoiesis [35%,36].

In addition to antioxidant systems, heat shock
proteins (HSPs) have been also described to assist
normal and stress erythropoiesis (Fig. 1) [37-41].
HSP27, 70, and 90 are expressed and modulated
during erythroid differentiation and growth. In-
vitro cell-based studies have shown that HSP70
and 90 are crucial for the activation of the heme-
regulated inhibitor (HRI) of protein translation that
represses globin translation in heme-deficient
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erythroid precursors of stress erythropoiesis
[6,42,43] and the protection of the transcription
factor GATA-1 from caspase-3 mediated cleavage
[37]. The activation of HRI results in phosphoryla-
tion of the a-subunit of elF2, an important regula-
tory translation initiating factor, which inhibits the
a, B-globin chain synthesis and activates the Atf4
pathway toward redox genes such as heme-oxygen-
ase-1 (ho-1) glutathione S-transferase, and NAD(P)H
quinone oxidoreductase 1 (Nqol) (Fig. 2) [6,44].
This might favorably impact pathologic erythropoi-
esis such as B-thalassemic ineffective erythropoiesis.
The importance of HSP70 nuclear translocation in
protecting GATA-1 during erythroid maturation is
supported by evidences in B-thalassemic erythropoi-
esis, in which the large part of HSP70 binds to
cytoplasmic free a-chains (Figs. 1 and 2). This
markedly reduces GATA-1 protection, contributing
to the block of the terminal phase of B-thalassemic
erythroid maturation [38].

Another cytoprotective system first described in
B-thalassemic erythropoiesis is the a-hemoglobin-
stabilizing protein (AHSP). AHSP acts by binding
heme-free or heme-replete free a-globin chains, sta-
bilizing their structure and inhibiting B-globin
expression (Fig. 2) [45-48]. Indeed, anemia of -
thalassemic mice is more severe in B-thalassemic/
AHSP-deficient mice [45-48]. The impact of abnor-
malities of AHSP in B-thalassemia patients is still
under evaluation, the link between decreased AHSP
expression and severity of B-thalassemic syndromes
remains speculative [49,50].

The tight control of the redox balance during
erythropoiesis also involves the redox-sensitive
transcriptional factor Forkhead-box-calls-O3
(FOXO03), which controls several scavenging
enzymes such as catalase or glutathione S-transfer-
ase [7,10,11,51,52]. In in-vitro model of human B-
thalassemic erythropoiesis, we recently show that
activation of FOXO3 by resveratrol, a polyphenolic-
stilbene, upregulates antioxidant systems, enabling
pathologic erythroid precursors to resist to oxidative
stress [7]. Thus, modulation antioxidant systems by
potentiation of endogenous antioxidants (i.e., PEP-
Prx2 or FOXO3 activators) or by exogenous antioxi-
dant molecules (resveratrol or quercetine) might be
considered as potential novel therapeutic strategy in
treating ineffective erythropoiesis [7,53-55].

REDOX-SENSITIVE SIGNAL
TRANSDUCTION PATHWAYS IN
ERYTHROPOIESIS

In the last decade, progresses have been made on the
characterization of signal transduction pathways
involved in erythropoiesis. ROS increases in
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response to EPO, activating the primary Kkinase,
janus kinase 2 (Jak2), and the secondary kinases,
Lyn (proto-oncogene Lyn) and Fyn (proto-oncogene
Fyn) [5%,9,56-63]. These kinases also target STATS
transcriptional factor, harmonizing the EPO-
induced signaling cascade and the erythroid matu-
ration events. The importance of both Lyn and Fyn
Tyrosine (Tyr)-kinases is supported by model of
stress erythropoiesis, showing the persistence ane-
mia in mice genetically lacking either Lyn (Lyn /")
or Fyn (Fyn~/") kinases treated with phenylhydra-
zine [5%,59,62].

Fyn kinase has been also described to be
involved as downstream regulator of the redox-
sensitive transcriptional factor Nfr2 in different
cell-based systems [64-66]. We recently show that
the absence of Fyn results in persistent activation of
Nfr2 and cytoplasmic accumulation of nonfunc-
tional, damaged proteins because of impairment
of autophagy during erythropoiesis [5"]. This further
amplifies intracellular oxidative stress, resulting in
dyserythropoiesis with detrimental effect on Fyn '~
erythroid maturation. In Fyn~/~ mice, increased
ROS promotes overactivation of Jak2, resulting in
increased Akt (AKk strain transforming kinase) phos-
phorylation state and activation of mammalian
target of rapamycin (mTOR), the gatekeeper of
autophagy [5"]. In Fyn /= mouse erythroblasts,
mTOR signaling blocks autophagy with accumula-
tion of nonfunction/damaged proteins, which fur-
ther amplified oxidation with severe cytotoxic
effect. Noteworthy, overactivation of Ja2-Akt-mTOR
pathway has been also reported in mice genetically
lacking the redox-sensitive transcriptional factor
FOXO3, which are characterized by ineffective
erythropoiesis similar to B-thalassemia [51,58,67].
Growing evidence in erythropoiesis suggest that the
Serin (Ser-) Threonin (Threo-) kinase, Akt, intersects
different signaling pathways, against oxidation or
involved in cell growth, differentiation or cell
metabolism [58,68]. This latter is mainly driven
by the phosphatidylinositol-4, 5-bisphosphate 3
kinase (PI3K)/Akt pathway, regulating the synthesis
of 1, 3-bisphosphoglycerate that is part of the cell
machinery for glycolysis during erythropoiesis
[10,58,69,70].

Among the Ser-Threo kinases linked to EPO
cascade and sensitive to oxidation, the extracellular
signal-regulated kinase (Erk)-1 and 2 have been
involved in cell proliferation events with negative
role in cellular differentiation in the early phase of
erythropoiesis [68,71]. Studies in-vitro B-thalasse-
mic erythropoiesis have shown activation of Erk1/
2 kinases, which may possibly act toward Bcl2
associated X protein/B cell lymphoma 2 system,
promoting either proliferation in early sate of -
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thalassemic erythroid differentiation or apoptosis of
B-thalassemic erythroid precursors in the late phase
of erythropoiesis [68,71].

Taken together these studies point out the
importance of redox modulation of signaling path-
ways, which are involved in cell maturation and
differentiation to ensure cell survival and support
erythropoiesis against oxidation.

OXIDATION INDUCES ACTIVATION OF
AUTOPHAGY TO ASSIST ERYTHROID
MATURATION

Autophagy is involved in quality control processes
during erythroid maturation, allowing the clearance
of unfolded damaged proteins as well as consume
organelles [5%44,58,72,73",74-76,77"%,78]. Oxida-
tion activates autophagy to ensure the development
and conclusion of erythroid maturation events.
However, an intense or prolonged oxidative stress
overwhelming autophagy, culminates into cell apo-
ptosis and/or block in cell maturation (Fig. 1).
Recently, we show an impairment of autophagy
with perturbation of erythropoiesis and increased
oxidation in in-vitro model of human erythropoie-
sis derived from CD34+ cells of patients with
chorea-acanthocytosis, a rare neurodegenerative
disease, involving also erythroid cells [73"*]. Similar
findings have been also reported in iron-deficient
erythropoiesis [44]. In B-thalassemic erythropoiesis,
the severe intracellular oxidation results in activa-
tion of Akt-mTOR pathway, repressing autophagy
and triggering apoptosis (Fig. 2) [73®]. This is also

the case of ineffective erythropoiesis of mice geneti-
cally lacking Fyn [5%].

The importance of autophagy in assisting eryth-
ropoiesis is further support by evidence in different
mouse models of stress erythropoiesis treated with
mTOR inhibitors such as rapamycin or sirolimus
[5%,58,75,79,80]. Table 1 summarizes the more rele-
vant studies on the impact of mTOR inhibitor(s)
either on normal erythropoiesis or phenylhydra-
zine-induced stress erythropoiesis or ineffective
erythropoiesis [5%58,75,79,81,82]. Noteworthy, in
normal erythropoiesis, the inhibition of mTOR
results in worsening erythropoiesis as also supported
in mouse model genetically lacking mTOR [81].
Otherwise, in model of ineffective erythropoiesis
associated with increased ROS and impaired autoph-
agy, the pharmacologic inhibition of mTOR acti-
vates autophagy, which assist cell growth and
differentiation. This indicates the importance of
control intracellular oxidation to ensure efficient
autophagy as adaptive mechanism to stressful con-
ditions. In erythropoiesis, the prolonged or severe
oxidative stress promotes autophagy dysfunction,
amplifying intracellular oxidative damage and trig-
gering cell apoptosis. Thus, agents modulating
autophagy in pathologic erythropoiesis might
represent a new interesting strategy to improve
ineffective erythropoiesis.

CONCLUSION

The mechanisms involved in controlling oxidation
during normal and pathologic erythropoiesis are

Table 1. Effects of mTOR inhibitors on murine erythropoiesis

Model mTOR inhibitors and erythropoiesis Reference

WT mice Torin 1: potent, selective ATP competitive inhibitor of mTOR Guo F et al. 2013 [81]
Torin 1-induced ineffective erythropoiesis

WT mice Rapamycin or sirolimus: mTOR inhibitor; Knight et al. 2014 [75]

PHZ-induced stress erythropoiesis
pan-mTOR inhibitor

MLNO128 or sapanisertib: second-generation ATP competitive

PHZ-treated mice showed prolonged anemia (Rapamycin) and

increased mortality (MLNO128)

Fyn™/~ mice
Increased ROS and dyserythropoiesis

Rapamycin or sirolimus: mTOR inhibitor
- Rapamycin ameliorated Fyn™/~ mouse dyserythropoiesis

Beneduce et al. 2018 [5"]

- Rapamycin restored physiologic hematologic response to PHZ-
treatment in Fyn™/~ mice

Rapamycin or sirolimus: mTOR inhibitor

Rapamycin ameliorated B-thalassemic ineffective erythropoiesis
and improved anemia of B-thalassemic mice

B-thalassemic mice
Increased ROS and ineffective
erythropoiesis

Zhang et al. 2014 [58]

SCD Rapamycin or sirolimus: mTOR inhibitor
Expanded erythropoiesis with limited Rapamycin supported SCD erythropoiesis and ameliorated the
ineffective erythropoiesis quality control process of terminal phase of erythroid
maturation, improving sickle red cell features

Wang J et al. 2016 [79]

PHZ, phenylhydrazine; ROS, reactive oxygen species; SCD, sickle cell disease; WT, wild-type.
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still far from being fully understood. However, pro-
gresses have been made in characterization of the
functional role of antioxidant systems and cytopro-
tective system such as Prx2 of HSP70 during eryth-
ropoiesis. The intense cross-talk between different
cellular functional compartments and the dynamic
cellular changes during erythropoiesis highlights
the importance of a tight control of ROS levels by
antioxidant and cytoprotective systems, which also
interface crucial signal transduction pathways
involving Jak2, Fyn, or Akt. An impairment of
autophagy further contributes to oxidative stress
sustained by ineffective erythropoiesis. Thus, the
beneficial effects of the inhibitors of the gatekeeper
of autophagy, mTOR, indicates that optimization of
the quality control processes might support ineffec-
tive erythropoiesis, ensuring erythroid maturation
and growth.

Further studies need to be carried out to under-
stand the role of cytoprotective systems during nor-
mal and pathologic erythropoiesis. In view of the
specific and characteristic association of ROS with
ineffective erythropoiesis, cytoprotective, and anti-
oxidant systems constitute an interesting research
target.
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