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Abstract

We develop refined inference for spatial regression models with predetermined regressors. The ordinary least
squares estimate of the spatial parameter is neither consistent, nor asymptotically normal, unless the ele-
ments of the spatial weight matrix uniformly vanish as sample size diverges. We develop refined testing of
the hypothesis of no spatial dependence, without requiring negligibility of spatial weights, by formal Edge-
worth expansions. We also develop higher-order expansions for both an unstudentized and a studentized
transformed estimator, where the studentized one can be used to provide refined interval estimates. A Monte
Carlo study of finite sample performance is included.

JEL Classifications: C12, C13, C21

Keywords: Spatial autoregression; least squares estimation; higher-order inference;

Edgeworth expansion; testing spatial independence.

1 Introduction

Spatial autoregressions (SARs, henceforth) have been broadly applied in various fields of economics over

the past few decades. The main advantage of SARs is their parsimonious functional form, which embeds

the notion of pairwise spatial proximity between units in the so-called weight matrix, exogenously chosen

by the practitioner in terms of a general economic distance. Thus, SARs are particularly appealing as

they allow a straightforward interpretation of estimates in terms of marginal effects, accounting for the

feedback generated by the network structure described by the weight matrix.

Various estimation methods for parameters of standard SARs for cross-sectional data and their

asymptotic theory have been broadly developed in the recent literature. These include instrumen-

tal variables/two-stage least squares methods (e.g. Kelejian and Prucha (1998)), Gaussian maximum
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likelihood/quasi-maximum likelihood estimation (e.g. Ord (1975) and Lee (2004)) and techniques based

on generalised methods of moments (e.g. Kelejian and Prucha (1999) and Lee (2007)). Also, asymp-

totic theory for various tests for lack of spatial correlation has been widely derived and discussed, e.g.

Burridge (1980), Cliff and Ord (1981), Kelejian and Prucha (2001), Anselin (2001), Robinson (2008),

Lee and Yu (2012), Martellosio (2012) and Delgado and Robinson (2015).

A considerable body of literature has focussed on finite-sample behaviour of estimates and test

statistics for SARs. Although asymptotic properties are favourable under general conditions, perfor-

mance of estimates and test statistics in small/moderate samples might not be very satisfactory. More

specifically, Bao and Ullah (2007) derived a Nagar-type of expansion to evaluate the second-order bias

and mean square error of the Gaussian maximum likelihood estimator for the spatial parameter of SAR

models without regressors, and their work has been extended in Bao (2013) to accommodate exogenous

regressors and non-Gaussian errors. More generally, Yang (2015) developed higher-order bias and vari-

ance corrections by means of stochastic expansions and bootstrap for a class of non-linear models that

includes SAR as a special case. More recently, Martellosio and Hillier (2019) derived refined estimates

of the spatial parameter of SARs by centring the associated profile score function, and constructed

confidence sets using a Lugannani-Rice approximation. So far as improved tests are concerned, various

refinements of test statistics have been derived by Cliff and Ord (1981), Robinson (2008), Baltagi and

Yang (2013), Robinson and Rossi (2014, 2015), Liu and Yang (2015) and Jin and Lee (2015).

In addition to the aforementioned estimation methods and test statistics, Lee (2002) developed

asymptotic theory for inference on parameters of SARs based on the ordinary least squares (OLS,

henceforth) principle. The OLS estimator is desirable as it enjoys a simple closed-form, but it is

consistent for the spatial parameter only under some stringent assumptions on the network structure

in the limit. Specifically, OLS estimates of spatial parameters are consistent only if the elements of the

weight matrix are uniformly negligible as sample size increases, and have a limiting standard normal

distribution only if they vanish at a suitably faster rate. Such conditions are restrictive and, even more

importantly, they are difficult to check in practical cases when only a finite number of observations is

available. By means of a formal Edgeworth expansion, Robinson and Rossi (2015) developed a refined

t-type test for lack of spatial correlation in SARs without exogenous regressors based on the OLS

estimate of the spatial parameter, and they showed its consistency under general assumptions on the

weight matrix. However, the framework of Robinson and Rossi (2015) did not allow the construction of

improved confidence sets for the spatial parameter. On the other hand, Kyriacou et al. (2017) derived a

new OLS-based estimator for the spatial parameter of SARs without exogenous regressors, by means of
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an indirect inference transformation that restored consistency and asymptotic normality under general

network structures.

In this paper, we consider the standard spatial autoregression with predetermined, thus exogenous,

regressors

y = λWy +Xβ + ǫ, (1.1)

whereW is an n×n spatial weight matrix with (i, j)−th elementWij , y is an n×1 vector of observations,

X is an n × k matrix of exogenous regressors, and ǫ is an n × 1 vector of independent and identically

distributed (i.i.d.) disturbances, with zero mean and unknown variance σ2. Throughout, we drop the

subscript n in yn = y, Wn = W , Xn = X and ǫn = ǫ, even though such quantities are, in general,

triangular arrays. We focus on estimation and inference on the unknown scalar λ, which is often the

parameter of interest in model (1.1). We first derive a formal second-order Edgeworth expansion for

the cumulative distribution function (cdf, in the sequel) of the OLS estimate of λ, suitably centred

so that the expansion is justified even without uniform negligibility of Wij as sample size increases.

Such a formal expansion provides the basis to derive improved tests on λ, after suitable studentization,

under the null hypothesis of interest, by means of either Edgeworth-corrected quantiles or corrected

test statistics. In order to construct point and interval estimates for λ which are consistent under

general assumptions on W , we then introduce a monotonic transformation of the OLS estimate of λ

and derive the second-order Edgeworth expansion for its cdf. A studentized version of this expansion

provides second-order corrected confidence sets for λ. The advantage of our method over ones based

on implicitly-defined estimators is that the simple closed form of the OLS of λ allows straightforward

implementation regardless of theW structure, which is reflected by very satisfactory Monte Carlo results

in small/moderately-sized samples.

The derivation of the expansion for the suitably centred, standardized cdf of the OLS estimate of

λ in (1.1) is presented in Section 2, while its studentized version and application to testing follows in

Section 3. In Section 4 we derive the formal expansion for the cdf of the standardized transformed-OLS,

and in Section 5 we construct Edgeworth-refined confidence sets by means of the studentized variant of

the expansion presented in the previous section. A brief discussion of SAR models with no exogenous

regressors is presented in Section 6, while a Monte Carlo exercise to assess the finite sample performance

of our refined, OLS-based tests and confidence sets is reported in Section 7.

Throughout, Bij indicates i− jth element of the generic p× q matrix. ηi(A), i = 1, ....q denote the

eigenvalues of a generic q×q matrix A, while η̄(A) = max
i=1,....q

{|ηi(A)|} and η
−
(A) = min

i=1,....q
{|ηi(A)|}. Also,
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for s = 0, 1, ...., As denotes the s−th power of A, with a similar convention for A
′s, in turn denoting the

s−th power of A′, which is the transpose of A. Also, ||.|| indicates the spectral norm, i.e. for any p× q

matrix B, ||B||2 = η̄(B′B), whereas the absolute row sum norm of a q×q matrix A with (i, j)−th element

Aij is ||A||∞ = max
i

q
∑

j=1
|Aij |. Let K be a finite, positive, generic constant, c an arbitrarily small positive

constant, and I = In the n×n identity matrix. Also, let f (i)(x) = dif(x)/dxi for a generic scalar function

f(·) and scalar x, while for a generic k× 1 vector z, ∂f(z)/∂z = (∂f(z)/∂z1, ∂f(z)/∂z2, ....∂f(z)/∂zk)
′.

Finally, f−1(·) denotes the inverse function of f(·), with the obvious implication that f−1(i)(·) represents
the total derivative of order i of f−1(·).

2 An Edgeworth expansion for the ordinary least squares estimator

We consider the model (1.1) and its reduced form

y = S−1(λ)(Xβ + ǫ), (2.1)

provided that the inverse of S(λ) = I − λW exists (as implied by Assumptions 2 and 3 below).

The OLS estimates λ̂, β̂ of λ and β are given by





λ̂− λ

β̂ − β



 =M−1u, (2.2)

where

M =





m11 m12

m′
12 m22



 , u =





u1

u2



 (2.3)

and

m11 = y′W ′Wy, m12 = y′W ′X, m22 = X ′X, u1 = y′W ′ǫ u2 = X ′ǫ. (2.4)

Lee (2002) showed that β̂ is consistent under very general model assumptions, while λ̂, is consistent

under

lim
n→∞

max
1≤i,j≤n

|Wij | = O

(

1

h

)

, where
1

h
+
h

n
→ 0 as n→ ∞, (2.5)

with h = hn being a positive, deterministic, sequence.

Denote by ǫi the i−th element if ǫ, and introduce the following assumptions.

Assumption 1 The ǫi are independent normal random variables with mean zero and unknown variance
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σ2.

Assumption 2 λ ∈ Λ, where Λ = [b1, b2] with −1 < b1 < b2 < 1.

Assumption 3

(i) For all i, n, Wii = 0.

(ii) For all n, ||W || = 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K.

(iv) lim
n→∞

max
1≤i,j≤n

|Wij | = O
(

h−1
)

, where h/n→ 0 as n→ ∞.

Assumption 4 For all sufficiently large n, sup
λ∈Λ

(

||S−1(λ)||∞ + ||S−1(λ)′||∞
)

< K.

Assumption 5 For all i, j = 1, ...., n and for all n, each element Xij of X is predetermined and

|Xij | ≤ K. Moreover,

0 < c < η
−

(

X ′X
n

)

for all sufficiently large n.

Normality of the ǫi is an unnecessarily strong condition to derive first-order results, but it is familiar

in higher-order asymptotic theory as Edgeworth expansions would otherwise be complicated by the

presence of cumulants of ǫi. Assumptions 2 and 3(ii) guarantee that S−1(λ) exists for all λ ∈ Λ. It

is well documented (e.g. Kelejian and Prucha (2010)) that either Assumptions 2 and 3(ii) or similar

ones are necessary in order to justify SAR as an equilibrium model and develop asymptotic theory.

Assumption 3(iv) establishes the limit behaviour of W as n→ ∞. Unlike (2.5), we allow h to be either

divergent or bounded.

Let P = I −X(X ′X)−1X ′, G(λ) ≡ G = WS−1(λ) and gst = tr(GsG
′t)/n, for s, t = 0, 1, ....., such

that, for instance, g10 = tr(G)/n. Also, let δ(A) = β′X ′G′PAPGXβ/n, for a generic n × n matrix

A such that ||A||∞ + ||A′||∞ < K. Under Assumptions 2-5, for all s, t = 0, ...., n, uniformly in λ ∈ Λ,

||G(λ)||∞ + ||G′(λ)||∞ < K, gst = O(1) and δ(A) = O(1), as n→ ∞. We also impose

Assumption 6 lim
n→∞

δ(I) > 0.

Assumption 6 does not require the limit of δ(I) to exist, but it ensures that the leading terms of

the expansion in Theorems 1-4 below are well defined. Also, Assumption 6 rules out the case β = 0 a

priori, which was covered by Robinson and Rossi (2015), and the possibility that the columns of G and

X are perfectly collinear in the limit, e.g. Assumption 6 implies rank(G′PG) ∼ n as n → ∞, where

α ∼ n denotes α/n→ K ∈ (0,∞) for a generic sequence α = αn.
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In general, λ̂ is inconsistent for λ under Assumptions 1-6, since

λ̂− λ→
p

lim
n→∞

σ2tr(G)/n

β′X ′G′PGXβ/n+ σ2tr(G′G)/n
, (2.6)

where the RHS tends to zero under (2.5) as n→ ∞, but not under the weaker Assumption 3(iv).

The requirement on h to derive a central limit theorem for
√
n(λ̂ − λ) is even stricter than that

imposed by (2.5), as h/
√
n → ∞ as n → ∞. In practical terms, the RHS of (2.6) vanishes if the

number of neighbours of each unit increases with n and
√
n(λ̂−λ) is asymptotically normal only if this

number increases faster than
√
n. Such conditions are difficult to check in practice, where n is finite.

As an illustration, λ̂ would not be consistent under the popular contiguity-based choice of W , in which

Wij = 1 if unit i and unit j share a border, and Wij = 0 otherwise. On the other hand, though, OLS

desirably has a simple closed form and is unaffected by sparsity of W .

We introduce

ψn(x) = ψ(x) = x+
y′S(x)′PS(x)y
y′W ′PWy

1

n
tr(G(x)), (2.7)

which is well defined as n increases under Assumption 6. As n→ ∞,

ψ(λ)− λ
p→ lim

n→∞
σ2g10

δ(I) + σ2g11
, (2.8)

so long as the limit exists, this corresponding to the RHS of (2.6). In particular, ψ(λ) = λ for any n

when λ = 0 and ψ(λ) →p λ as long as h → ∞ as n increases. Since λ̂ is inconsistent for general λ and

h under Assumptions 1-6, in the sequel we focus on deriving the Edgeworth expansion of an adjusted

OLS estimator (e.g. Maekawa (1985)), namely λ̂− ψ(λ).

Define

a = δ(I) + σ2(g20 + g11 − 2g210), (2.9)

t =
δ(I) + σ2g11

(σ2a)1/2
, (2.10)

b = δ(G)− g10δ(I) +
1

3
σ2(g30 + 3g21) +

8

3
σ2g310 − 2σ2g10(g20 + g11) (2.11)

and the quadratic polynomial

e(x) =
σ

a1/2
(

tr(G′X(X ′X)−1X ′)− kg10)
)

+
2

ta
(δ(G) + σ2g21 − σ2g11g10)x

2 − σb

a3/2
(x2 − 1). (2.12)

In the Appendix we prove
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Theorem 1 Suppose that model (1.1) and Assumptions 1-6 hold. For any real number ζ, the cdf of λ̂

admits the second order formal Edgeworth expansion

Pr(
√
n
(

λ̂− ψ(λ)
)

≤ ζ) = Φ(tζ) +
1√
n
e(tζ)φ(tζ) + o

(

1√
n

)

, (2.13)

where e(tζ) = O(1) as n→ ∞.

The RHS of (2.13) is well defined under Assumption 6. We stress that in general Theorem 1 is

infeasible as it depends on unknown parameters. Equivalently, we can write Theorem 1 for ζ = t−1η

and we can re-write (2.13) as

Pr(
√
nt
(

λ̂− ψ(λ)
)

≤ η) = Φ(η) +
1√
n
e(η)φ(η) + o

(

1√
n

)

. (2.14)

A remark on the random centring sequence ψ(λ) is appropriate. Instead of λ̂ − ψ(λ), we could

consider

λ̂− λ− σ2g10
δ(I) + σ2g11

, (2.15)

but this involves also the unknown σ2 and β, which would need to be consistently estimated in order to

obtain an operational version of (2.13). As already mentioned, under Assumptions 2-6 and for general

values of λ, OLS would be consistent for β, but not for λ and σ2. If the main application of Theorem

1 is limited to the derivation of corrected tests on λ, which is the focus of Section 3, β and σ2 could

be easily estimated under the null hypothesis. A feasible corrected OLS estimator for λ in (1.1) and its

higher order expansion will be discussed in Section 4.

3 Refined test for lack of spatial correlation

In this section, we derive the second-order expansion of the studentized version of (2.14) to develop

refined tests of

H0 : λ = 0 (3.1)

against

H1 : λ > (<) 0. (3.2)

Under H0, several simplifications to the expressions displayed in Section 2 are possible. Specifically,

G = W , gst = tr(W sW
′t)/n, g10 = 0 and thus ψ(λ) = λ = 0, δ(A) = β′X ′W ′PAPWXβ/n (for any
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generic n × n matrix A) and a = δ(I) + σ2(g20 + g11), with analogous simplifications for b and e(η).

Define

t̂ =
g11σ̂

2 + δ̂(I)

(σ̂2â)1/2
, (3.3)

where δ̂(I) and â are the estimates of δ(I) and a obtained by replacing the unknown β and σ2 by their

OLS estimates under H0 in (3.1).

The following theorem is proved in the Appendix

Theorem 2 Suppose that model (1.1) and Assumptions 1-6 hold. For any real number ζ, under H0 in

(3.1) the studentized cdf of λ̂ admits the second order formal Edgeworth expansion

Pr(
√
nt̂λ̂ ≤ η) = Φ(η) +

1√
n
e(η)φ(η) + o

(

1√
n

)

, (3.4)

with e(η) defined in (2.12) and e(η) = O(1) as n→ ∞.

The RHS of (3.4) is well defined under Assumption 6. Theorem 2 shows that studentization of λ̂

does not alter higher order terms compared to (2.14) for λ = 0. Also, we can replace unknown λ, β

and σ2 in e(·) defined in (2.12) by λ = 0, β̂ and σ̂2 respectively, where β̂ and σ̂2 are OLS estimates

under H0, to obtain a feasible variant of e(·), ê(·). As β̂ and σ̂2 are consistent under H0, the order of

the remainder in (3.4) is not affected when we replace e(·) by ê(·).
According to standard first order asymptotic theory, we reject H0 in (3.1) if

√
nt̂λ̂ > z1−α, (3.5)

where z1−α denote the 1− α quantile of the standard normal distribution. From (3.4), a test based on

(3.5) has approximate size α. From (3.4), by inversion we can derive a refined test that rejects H0 in

(3.1) when
√
nt̂λ̂ > z1−α − 1√

n
ê(z1−α). (3.6)

Rather than correcting the critical value, from (3.4) we can construct a transformation of the test

static itself (i.e. Yanagihara et al. (2005)), such as

l(x) = x+
1√
n
e(x) +

1

4n

∫

(

e(1)(x)
)2
dx = x+

1√
n
e(x) +

1

12n

(

4

at
(δ(W ) + σ2g21)−

σb

a3/2

)2

x3, (3.7)

where again e(·) is defined according to (2.12). We indicate by l̂(·) the feasible version of l(·), obtained
by replacing unknown parameters by their estimates under H0.
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We denote by w1−α the true 1− α quantile of
√
nt̂λ̂, so that a test that rejects when

√
nt̂λ̂ > w1−α

has exact size α. From Theorem 2 we deduce

Corollary 1 Suppose that model (1.1) and Assumptions 1-5 hold.

w1−α =z1−α +O

(

(

1

n

)1/2
)

(3.8)

=z1−α − 1√
n
ê(z1−α) + o

(

(

1

n

)1/2
)

(3.9)

and

P (l̂(
√
nt̂λ̂) > z1−α) = α+ o

(

(

1

n

)1/2
)

. (3.10)

A similar standardization procedure, and thus similar refined tests, could also be derived for H0 :

λ = λ0 6= 0, at expense of some extra computational burden, by using the estimates of β and σ2 under

H0, i.e.

β̂ = (X ′X)−1X ′S(λ0)y, σ̂2 =
1

n
y′S(λ0)′PS(λ0)y. (3.11)

Since ψ(λ0) does not contain any unknown parameters under H0, the whole derivation reported in the

proof of Theorem 2 would go through with virtually no modification in case λ0 6= 0, apart from some

slightly more cumbersome algebraic expressions.

4 Corrected ordinary least squares estimator

As already mentioned, Theorems 1 and 2 are useful to deduce refined inference procedures when the

main interest is testing the significance of the spatial parameter. However, the studentized version of

(2.13), and thence the refined confidence sets, cannot be derived in general cases, as neither λ nor σ2 can

be consistently estimated by OLS unless (2.5) holds. Therefore, in this section we introduce a corrected

estimator, denoted λ̂C in the sequel, and a higher order expansion for its cdf. We impose

Assumption 7 For all sufficiently large n, ψ(λ) defined in (2.7) is strictly increasing for all λ ∈ Λ

with probability one.

From (2.7), ψ(λ) is continuously differentiable for all λ ∈ Λ, with positive first derivative under

Assumption 7. The latter is a high level assumption that can be verified numerically in each empirical

case, as ψ(·) does not depend on any nuisance parameter. In Section 7 we will report some plots of ψ(·)
for a few data generating processes.
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Under Assumption 7, define λ̂C = ψ−1(λ̂). Heuristically, for any real ζ we can write

Pr
(√

n(λ̂− ψ(λ)) ≤ ζ
)

=Pr

(

λ̂ ≤ ψ(λ) +
ζ√
n

)

= Pr

(

ψ−1(λ̂) ≤ ψ−1

(

ψ(λ) +
ζ√
n

))

=Pr

(

λ̂C ≤ ψ−1(ψ(λ)) + ψ−1 (1)(ψ(λ))
ζ√
n
+ op

(

1√
n

))

=Pr

(

λ̂C ≤ λ+
ζ√

nψ(1)(λ)
+ op

(

1√
n

))

=Pr
(√

nψ(1)(λ)(λ̂C − λ) + op(1) ≤ ζ
)

=Pr
(√

nψ(1)(λ)(λ̂C − λ) ≤ ζ
)

+ o(1). (4.1)

By combining Theorem 1 and the equivalence in (4.1), we deduce that under Assumptions 1-7

√
n(λ̂C − λ)

d→ N (0, v), with v = p lim
n→∞

(tψ(1)(λ))−2 (4.2)

provided that the limit v exists, where

v = lim
n→∞

(

δ(I) + σ2g11

(σ2a)1/2

(

1− 2σ2g210 − σ2g20
δ(I) + σ2g11

))−2

= lim
n→∞

(

( a

σ2

)1/2
)−2

= lim
n→∞

σ2

a
, (4.3)

which is equivalent to the variance of the Gaussian maximum likelihood estimator (MLE) of λ (Lee

(2004)). The asymptotic distribution result in (4.2) is expected to be robust to some departures from

normality of the ǫi.

Let

ῑ =
2

a2
(

δ(I)g10 + σ2(g11g10 − 2g20g10 + g30)
)

(4.4)

and

bC = σ2
(

g30
3

+ g21 +
8

3
g310 − 2g10(g20 + g11)

)

+ δ(G)− g10δ(I) +
ῑ

2
(a− δ(I))2. (4.5)

Define the quadratic polynomial

eC(x) =

(

σ2

a

)1/2
(

tr(GX(X ′X)−1X ′)− g10k −
ῑa

2

)

+
2σ

a3/2
(

σ2(2g310 + g21 − 2g11g10 − g20g10)

+ δ(G)− δ(I)g10)x
2 − σbC

a3/2
(x2 − 1),

(4.6)

where a, ῑ and bC are as in (2.9), (4.4) and (4.5), respectively.

From (4.1) and under Assumption 7, in order to derive the higher order expansion of the cdf of
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λ̂C − λ, we consider the equivalence

Pr

(

λ̂C − λ ≤ ζ√
n

)

= Pr

(

ψ−1(λ̂)− ψ−1(ψ(λ)) ≤ ζ√
n

)

(4.7)

and prove in the Appendix the following

Theorem 3 Suppose that model (1.1) and Assumptions 1-7 hold. For any real number ζ, the cdf of λ̂C

admits the second order formal Edgeworth expansion

Pr(
√
n
(

λ̂C − λ
)

≤ ζ) = Φ

(

( a

σ2

)1/2
ζ

)

+
1√
n
eC

(

( a

σ2

)1/2
ζ

)

φ

(

( a

σ2

)1/2
ζ

)

+ o

(

1√
n

)

, (4.8)

with eC(·) defined as in (4.6) and eC

(

(

a
σ2

)1/2
ζ
)

= O(1) as n→ ∞.

Again, non-singularity of a as n increases is guaranteed under Assumption 6. The first-order limit

result in (4.2) is contained in (4.8), provided that the limit of a exists. The expansion in Theorem 3

is infeasible, as it depends on unknown λ, β and σ. In order to construct improved confidence sets we

need to derive the studentized version of Theorem 3, as developed in the following section.

5 Refined confidence intervals for the spatial parameter

Let tC =
(

a/σ2
)1/2

, where a is defined as in (2.9). We estimate β and σ2 by

β̂C = (X ′X)−1X ′S(λ̂C)y, σ̂2C =
1

n
y′S(λ̂C)′PS(λ̂C)y, (5.1)

and plug these in a, defined in (2.9), to approximate tC by t̂C =
(

âC/σ̂
2
C

)1/2
.

Let

νCS =
1

(a3σ2)1/2
(δ(G)− δ(I)g10 + σ2(g21 − 2g11g20 − g10(g11 − 2g20))), (5.2)

bCS =σ2
(

g30
3

+ g21 +
8

3
g310 − 2g10(g20 + g11)

)

+ δ(G) + a3/2σνCS − δ(I)

a1/2

(

σνCSδ(I) +
g10

a3/2
(a− δ(I))2

)

(5.3)
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and the quadratic polynomial

eCS =

(

σ2

a3

)1/2
(

atr(GX(X ′X)−1X ′)− ag10k − δ(G)− σ2(g21 − 2g11g20 − g10(g11 − 2g20)
)

(5.4)

+2

(

σ2

a3

)1/2
(

(2g310 + g21 − 2g11g10 − g20g10)σ
2 + δ(G)− δ(I)g10

)

x2 − σbCS

a3/2
(x2 − 1). (5.5)

In the Appendix we prove

Theorem 4 Suppose that model (1.1) and Assumptions 1-7 hold. For any real number η, the cdf of
√
nt̂C(λ̂C − λ) admits the second order formal Edgeworth expansion

Pr(
√
nt̂C

(

λ̂C − λ
)

≤ η) = Φ (η) +
1√
n
eCS (η)φ (η) + o

(

1√
n

)

, (5.6)

and eCS (η) = O(1) as n→ ∞.

From Theorem 4 we can construct refined confidence sets for λ. We focus on the one-sided interval

(L,∞), where L is a suitable lower-end point, although the same type of correction can be deduced for

(−∞, U), U being an upper-end point. Define I =
(

λ̂C − wC
1−α/(t̂

C√n),∞
)

, where wC
α denotes the

true α−quantile of the c.d.f. of
√
nt̂C(λ̂C − λ), such that Pr(λ ∈ I) = 1− α, and

IN =
(

λ̂C − z1−α/(t̂
C√n),∞

)

. (5.7)

From Theorem 4, we define the Edgeworth-corrected α−quantile of
√
nt̂C(λ̂C − λ) as

zα − 1√
n
eCS(zα) (5.8)

and the corresponding refined interval

IEd =

(

λ̂C − z1−α − n−1/2eCS(z1−α)√
nt̂C

,∞
)

. (5.9)

From Theorem 4 we deduce

Corollary 2 Suppose that model (1.1) and Assumptions 1- 7 hold. As n→ ∞,

Pr
(

λ ∈ IN ) = Pr (λ ∈ I) +O

(

1√
n

)

= 1− α+O

(

1√
n

)

Pr
(

λ ∈ IEd
)

= Pr (λ ∈ I) + o

(

1√
n

)

= 1− α+ o

(

1√
n

)

. (5.10)
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The interval in (5.9) is infeasible, as the lower end-point depends on unknown λ, β and σ2 through

eCS(·). We can construct a feasible version of IEd by replacing the unknowns with their respective

estimates λ̂C , β̂C and σ̂2C , and thus eCS(·) with its estimated version êCS(·). Since λ̂C − λ = op(1),

β̂C − β = op(1) and σ̂
2
C − σ2 = op(1), the result in (5.10) holds with IEd replaced by

ÎEd =

(

λ̂C − z1−α − n−1/2êCS(z1−α)√
nt̂C

,∞
)

. (5.11)

The practical performance of the corrected confidence sets is assessed by a Monte Carlo experiment

reported in Section 7.

6 Discussion on the pure SAR case

A particular case of model (1.1) is the so-called pure SAR model

y = λWy + ǫ, (6.1)

where β = 0 a priori. Estimation of λ in (6.1) is generally more problematic than that in (1.1) as

the rate of convergence of standard estimators, such as MLE/QMLE, can be slower than the usual
√
n

depending on the choice of W (e.g. Lee (2004)). Moreover, the OLS estimator of λ in (6.1),

λ̂ =
y′W ′y
y′W ′Wy

, (6.2)

is inconsistent unless λ = 0 even under (2.5).

Since the framework outlined in Sections 2-5 cannot be directly applied to (6.2) as the leading terms

of (2.13) and (4.8) would be singular under Assumption 6, in this section we outline how results in

Sections 2-5 can be adapted to accommodate the case β = 0.

Following our derivation in Section 2, we define

ψP,n(x) = ψP (x) = x+
y′S(x)′S(x)y/n
hy′W ′Wy/n

h

n
tr(G(x)). (6.3)

For s, t = 0, 1, ......, let gst,P = htr(GsG
′t)/n, aP = g11,P + g20,P − 2g210,P /h, tP = g11,P /a

1/2
P ,

bP = g30,P + 3g21,P +
8g310,P
h2

− 6

h
g10,P (g11,P + g20,P ) (6.4)
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and

eP (x) =
2

tPaP

(

g21,P − g11,P g10,P
h

)

x2 − 1

3

bP

a
3/2
P

(x2 − 1). (6.5)

In order to ensure that the leading term of the expansions in Theorems 5-7 are well defined, we

replace Assumption 6 by

Assumption 6’ lim
n→∞

(g11,P + g20,P ) > 0.

Similarly to Theorem 1, we derive

Theorem 5 Suppose that model (6.1), Assumptions 1- 4 and 6’ hold. For any real number ζ, the cdf

of λ̂ admits the second order formal Edgeworth expansion

Pr

(

(n

h

)1/2 (

λ̂− ψP (λ)
)

≤ ζ

)

= Φ(tP ζ) +

(

h

n

)1/2

eP (tP ζ)φ(tP ζ) + o

(

(

h

n

)1/2
)

, (6.6)

where eP (tP ζ) = O(1) as n→ ∞.

The proof of Theorem 5 is similar to that of Theorem 1 and is omitted here to avoid repetition. If

λ = 0, the expansion in (6.6) corresponds to Theorem 1 in Robinson and Rossi (2015). Unlike (2.13),

the expansion in (6.6) does not depend on σ2 and can be used to derive improved tests on λ. Unlike

Theorem 1 in Robinson and Rossi (2015), Theorem 5 can be used to improve tests of H0 : λ = λ0

against H1 : λ > λ0 (λ < λ0) with λ0 6= 0.

Similarly to Assumption 7, we introduce

Assumption 7’ For all sufficiently large n, ψP (λ) defined in (6.3) is strictly increasing for all λ ∈ Λ

with probability one.

Under Assumption 7, we can estimate λ in (6.1) by λ̂P,C = ψ−1
P (λ̂), and deduce

Pr

(

(n

h

)1/2
(λ̂− ψP (λ)) ≤ ζ

)

= Pr

(

(n

h

)1/2
ψ
(1)
P (λ)(λ̂P,C − λ) ≤ ζ

)

+ o(1), (6.7)

such that

(n

h

)1/2
(λ̂P,C − λ)

d→ N (0, vP ), with vP = p lim
n→∞

(tPψ
(1)
P (λ))−2 = lim

n→∞
a−1
P , (6.8)

which is equivalent to the asymptotic variance of the MLE of λ in (6.1) (e.g. Lee (2004), Theorem 5.2).

We also report (without proofs, to avoid repetition), results corresponding to Theorems 3 and 4 for
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model (6.1). For this purpose, we define

ῑP =
2

a2P

(

g11,P g10,P
h

− 2g20,P g10,P
h

+ g30,P

)

(6.9)

and

bP,C =
g30,P
3

+ g21,P +
8

3

g310,P
h2

− 2g10,P (g20,P + g11,P )

h
+
ῑP
2
a2P (6.10)

and

eP,C(x) =− ῑPa
1/2
P

2
+

2

a
3/2
P

(

2g310,P
h2

+ g21,P − 2g11,P g10,P
h

− g20,P g10,P
h

)

x2 − bP,C

a
3/2
P

(x2 − 1). (6.11)

Theorem 6 Suppose that model (6.1), Assumptions 1- 4, 6’ and 7’ hold. For any real number ζ, the

cdf of λ̂P,C admits the second order formal Edgeworth expansion

Pr

(

(n

h

)1/2 (

λ̂P,C − λ
)

≤ ζ

)

= Φ
(

a
1/2
P ζ

)

+

(

h

n

)1/2

eP,C

(

a
1/2
P ζ

)

φ
(

a
1/2
P ζ

)

+ o

(

(

h

n

)1/2
)

, (6.12)

with eP,C

(

a
1/2
P ζ

)

= O(1) as n→ ∞.

Theorem 7 Suppose that model (6.1), Assumptions 1- 4, 6’ and 7’ hold. For any real number η, the

cdf of ((nâP /h)
1/2(λ̂P,C − λ) admits the second order formal Edgeworth expansion

Pr

(

(n

h

)1/2
â
1/2
P

(

λ̂P,C − λ
)

≤ η

)

= Φ(η) +

(

h

n

)1/2

eP,C (η)φ (η)

+

(

h

n

)1/2 1

a
3/2
P

(

g21,P + g30,P − 2g20,P g10,P
h

)

η2φ(η) + o

(

(

h

n

)1/2
)

, (6.13)

with eP,C (η) = O(1) and g21,P + g30,P − 2g20,P g10,P /h = O(1) as n→ ∞.

Similarly to the discussion in Section 6, Theorem 7 can be used to derive improved confidence

intervals for λ in (6.1).

7 Monte Carlo results

In this section, we report a small Monte Carlo exercise to assess the finite sample behaviour of our

corrected tests. The number of exogenous regressors is set at k = 3, with X1 being a n × 1 column of

ones, while for each i = 1, ...n X2i ∼ U [0, 1] and X3i ∼ U [0, 1], U [a, b] denoting a uniform distribution on
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support [a, b]. Regressors are generated once for each scenario and kept fixed across 1000 Monte Carlo

replications. We set β = (0.3, 0.5,−0.5), n = 30, 50, 100, 200 and generate ǫ according to Assumption

1 with σ2 = 1. We choose two different specifications for W , both of which are symmetric and satisfy

Assumptions 3 and 4

a) W is based on an exponential distance criterion, with initial weights equal to exp(−|ℓi−ℓj |)1(|ℓi−
ℓj | < log n), where ℓi is the i−th location along the interval [0, n] which is randomly generated

from U [0, n]. The resulting matrix is then rescaled to produce a W with elements in each row

summing to one. Such W is empirically motivated as it mimics a distance-based weight matrix

constructed from real data. W is generated once for each sample size and is kept fixed across

replications and across the different scenarios.

b) W is generated as a circulant structure with two neighbours ahead and two behind, normalised

so that elements in each row sum to one. More specifically,

W =
1

4























0 1 1 0 .... 0 1 1

1 0 1 1 0 .... 0 1

1 1 0 .... .... .... 1 1

... ... ... .... .... ... ... ....

1 1 ... .... ... 1 1 0























. (7.1)

Across tables, “standard”, “corrected” and “transformed” denote respectively empirical size/power

of tests (3.5), (3.6) and (3.10). For comparison purpose, we also report size and power of the t-test of

(3.1) against (3.2) based on the maximum likelihood estimator λ̂MLE of λ (Lee (2004)), and specifically

of a test that rejects H0 in (3.1) when

√
n

(

âMLE

σ̂2MLE

)1/2

λ̂MLE > z1−α, (7.2)

where σ̂2MLE and âMLE respectively denote the MLE of σ2 under H0 and the estimated version of a in

(2.9) with the unknown σ2 and β replaced by their MLE under H0. In the tables we indicate by “MLE”

the empirical size/power obtained from (7.2).

We also report size and power derived by a parametric bootstrap algorithm, denoted by “bootstrap”

in the tables. More specifically, under H0, we estimate β in (1.1) by OLS and obtain the “restricted”

residuals ǫ̂ = y − Xβ̂. We then generate B = 999 n−dimensional vectors ǫ̂∗j , j = 1, ....B, where each
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component of ǫ∗j is extracted from N(0, ǫ̂′ǫ̂/n), and hence B pseudo-data under H0, y
∗
j = Xβ̂ + ǫ̂∗j ,

j = 1, ....B. For every j = 1, ....B, we compute OLS bootstrap estimates λ∗j and restricted bootstrap

estimates of β and σ2 as β∗j = (X ′X)−1X ′y∗j and σ2j = y∗
′

j Py
∗
j /n. We then obtain B bootstrap OLS

null statistics as
√
nt∗jλ

∗
j , where t

∗
j is obtained from (2.10) by replacing unknowns by β∗j and σ∗j for each

j = 1, .....B, and compute the 1− α bootstrap quantile w∗
1−α as the solution of

1

B

B
∑

j=1

1
(√
nt∗jλ

∗
j ≤ w∗

1−α

)

≤ 1− α

under H0 in (3.1). The size of the test of (3.1) based on w∗
1−α is obtained as

Pr
(√

nt̂λ̂ > w∗
1−α

)

. (7.3)

[Tables 1-2 about here]

In Tables 1 and 2 we report empirical sizes of the various tests of (3.1) against (3.2), where nominal

size is α = 0.05, andW is chosen as both a) and b) above. In both tables, sizes for “normal” and “MLE”

are substantially lower than the nominal 0.05, while those obtained by “corrected” and “transformed”

seem significantly better. Specifically, sizes for “corrected” in both Tables 1 and 2 are slightly higher

than 0.05 for the smallest samples, but results improve as n increases. Sizes for “transformed”, instead,

are very close to the nominal for all sample sizes. Interestingly, for both scenarios, “transformed”

outperforms “bootstrap” for all sample sizes, while for larger n “corrected” returns values that are

closer to the nominal 0.05 than “bootstrap” . This pattern is roughly preserved even if we implement

the bootstrap algorithm by resampling from restricted residuals, rather than using the parametric

version described above.

[Tables 3-4 about here]

In Tables 3 and 4 we report power of the various tests against a fixed one-sided alternative (3.2),

H1 : λ = λ̄ > 0, (7.4)

with λ̄ = 0.2, 0.5, 0.8 where, again, α = 0.05. In Table 3 we report results for scenario a), while Table 4

displays empirical powers for scenario b). In both Tables and for all λ̄, “corrected” and “transformed”

significantly outperform “standard” and “MLE” for all sample sizes. Also, in both scenarios, tests based
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on “corrected” and “transformed” appear to be more powerful than “bootstrap”. Comparing results in

Tables 3 and 4, we detect a very similar pattern for the performance of various tests.

[Figures 1-2 about here]

In Figures 1 and 2 we report plots of ψ(·) in (2.7) for a few data generating processes, when n = 100.

In particular, Figure 1 reports ψ(x) for −1 < x < 1, when y is generated as in (1.1) with λ = 0.2, 0.5, 0.8

and W is a) above. Figure 2 reports ψ(x) over the same support, when y is generated according to the

same values of λ, but with W as in b). In all scenarios, β and X are generated as in the Monte Carlo

experiment described at the beginning of this section. From the plots of all curves for both scenarios,

we notice that ψ(x) is strictly increasing over the support. There is evidence of a discontinuity at x = 1,

but ψ(·) is well-behaved in the interior of the support implied by Assumption 2.

We also assess the practical performance of results in Section 5 by comparing the lower-end-points

(LEPs, henceforth) of intervals (5.7) and (5.11) averaged across Monte Carlo replications, and their

empirical coverage probabilities. We also report corresponding quantities for the confidence intervals

IMLE =

(

λ̂MLE − z1−α

(

σ̂2MLE

nâMLE

)1/2

,∞
)

(7.5)

and

IB =

(

λ̂C − wC∗
1−α√
nt̂C

,∞
)

, (7.6)

where wC∗
1−α is obtained by a bootstrap algorithm in which the pseudo-sample is generated as y∗j =

S−1(λ̂C)(Xβ̂C + ǫ̂∗j ), j = 1, ....B, with B = 999. Again, each component of the n−dimensional vectors

ǫ̂∗j , j = 1, ....B, is extracted from N(0, ǫ̂′ǫ̂/n), with ǫ̂ = y − λ̂CWy − β̂CX. For every j = 1, ....B, we

compute corrected-OLS bootstrap estimates λ∗Cj , β
∗
Cj and σ2∗Cj . We then obtain B bootstrap statistics

as
√
nt∗Cj(λ

∗
Cj − λ̂C), where t

∗
Cj is obtained from (2.10) and replacing unknowns by λ∗Cj , β

∗
Cj and σ2∗Cj

for each j = 1, .....B, and compute the 1− α bootstrap quantile wC∗
1−α as the solution of

1

B

B
∑

j=1

1
(√

nt∗Cj(λ
∗
Cj − λ̂C) ≤ wC∗

1−α

)

≤ 1− α.

Tables 5 and 6 reports average LEPs and empirical coverage probabilities (in brackets) for IN , ÎEd,

IMLE and IB (respectively, denoted as “normal”, “corrected”, “MLE” and “bootstrap” in the Tables)

with α = 0.05 for λ = 0.3, 0.5, 0.7.
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[Tables 5-6 about here]

Results in both Tables 5 an 6 reveal that, although not identical, LEPs and coverage probabilities of

“normal” and “MLE” are often the same up to the fourth decimal place, confirming that the asymptotic

equivalence of λ̂C and λ̂MLE reported after (4.2) is preserved reasonably well in small samples. Across all

scenarios, as expected LEP becomes a sharper lower bound for λ as n increases, although the empirical

coverage probabilities are often higher than the nominal 0.95. In all cases, “corrected” produce LEPs

that are closer to the true value of λ compared to that of either “normal” or “MLE”, with associated

coverage probabilities that are generally closer to 0.95 compared to “normal” (with few exceptions, e.g.

for λ = 0.7 and small n, in scenario b)). The comparison of “corrected” and “bootstrap”, instead, reveal

that “bootstrap” generally offers sharper LEPs than “corrected” for λ = 0.3, 0.5, while the opposite

holds for λ = 0.7. In terms of coverage probabilities, the performance of “corrected” is comparable

to, and often superior to “bootstrap”. Across all scenarios and for all n, Tables 5 and 6 show that

“corrected” and “bootstrap” outperform “normal” and “MLE” in terms of providing sharper bounds

for λ and in terms of coverage probabilities.

8 Concluding remarks

In this paper we revisited standard OLS estimation for the spatial parameter of a standard SAR model

with or without exogenous regressors, and derived formal higher-order expansions that can be used to

develop improved inference under general network structures. In particular, we suggest improved tests

starting from the Edgeworth expansion of the cdf of a suitably centred OLS estimate of λ, and construct

refined confidence sets from the higher-order expansion of a transformed OLS estimate. The transformed

estimate of λ is consistent and it is asymptotically first-order equivalent to the MLE under normality

of the error term. A small Monte Carlo study shows that our new improved tests and confidence sets

enjoy a very satisfactory finite sample performance, which is comparable (or sometimes superior) to a

suitable bootstrap algorithm.

Appendix

Proof of Theorem 1
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We have

M−1 =





m11 m12

m12′ m22



 , (A.1)

where m11 = (m11 −m12m
−1
22 m21)

−1, m12 = m21′ = −m11m12m
−1
22 , m

22 = m−1
22 (I +m21m

11m12m
−1
22 ),

and m11, m12 = m′
21 and m22 are defined in (2.3).

We proceed as in Phillips (1977). From (2.2) and (2.7),

λ̂− ψ(λ) = m11u1 +m12u2 − g10m
11ǫ′Pǫ = m11(u1 −m12m

−1
22 u2)− g10m

11ǫ′Pǫ

= ((Xβ + ǫ)′G′PG(Xβ + ǫ))−1
(

(Xβ + ǫ)′G′Pǫ− g10ǫ
′Pǫ
)

, (A.2)

since, from (2.3) and after substituting (2.1), we obtain

u1 −m12m
−1
22 u2 = (Xβ + ǫ)′G′ǫ− (Xβ + ǫ)′G′X(X ′X)−1X ′ǫ = (Xβ + ǫ)′G′Pǫ (A.3)

and

m11 = ((Xβ + ǫ)′G′PG(Xβ + ǫ))−1. (A.4)

For any real number ζ,

Pr

(

λ̂− ψ(λ) ≤ ζ√
n

)

= Pr

(

1

2
ǫ′(C + C ′)ǫ+ c′ǫ+ d ≤ 0

)

, (A.5)

with

C = G′P − Pg10 −
ζ√
n
G′PG, c′ = β′X ′G′P

(

I − 2ζ√
n
G

)

, d = −√
nζδ(I). (A.6)

For ease of notation, let f = ǫ′(C + C ′)ǫ/2 + c′ǫ+ d.

Under Assumption 1, we can derive the characteristic function of f as

E(eitf ) =E(eit(
1

2
ǫ′(C+C′)ǫ+c′ǫ+d)) =

eitd

(2π)n/2σn

∫

ℜn

eit
1

2
ξ′(C+C′)ξ+itc′ξe−

ξ′ξ

2σ2 dξ

=
eitd

(2π)n/2σn

∫

ℜn

e−
1

2
( ξ

σ
−q)′(I−itσ2(C+C′))( ξ

σ
−q)e

1

2
q′(I−itσ2C)qdξ, (A.7)

where q satisfies itc′ = q′(I − itσ2(C +C ′))/σ. By standard algebra, q = (I − itσ2(C +C ′))−1itcσ, and
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hence q′(I − itσ2(C + C ′))q = −t2c′(I − itσ2(C + C ′))−1cσ2. By Gaussian integration, (A.7) becomes

E(eitf ) =eitd−
σ2

2
t2c′(I−itσ2(C+C′))−1cdet(I − itσ2(C + C ′))−1/2

=eitd−
σ2

2
t2c′(I−itσ2(C+C′))−1c

n
Π
j=1

(1− itσ2ηj(C + C ′))−1/2. (A.8)

From (A.8), the cumulant generating function of f is

ln
(

E(eitf )
)

=itd− σ2

2
t2c′(I − itσ2(C + C ′))−1c− 1

2

n
∑

j=1

ln(1− itσ2ηj(C + C ′))

=itd− σ2

2
t2c′

∞
∑

s=0

(itσ2(C + C ′))sc+
1

2

∞
∑

s=1

1

s
(itσ2)str((C + C ′)s), (A.9)

where the last displayed equality follows since

(I − itσ2(C +C ′))−1 =
∞
∑

s=0

(itσ2(C +C ′))s, ln(1− itσ2ηj(C +C ′)) = −
∞
∑

s=1

(itσ2ηj(C + C ′))s

s
(A.10)

and hence

−1

2

n
∑

j=1

ln(1− itσ2ηj(C + C ′)) =
1

2

n
∑

j=1

∞
∑

s=1

1

s
(itσ2)sηj(C + C ′)s =

1

2

∞
∑

s=1

1

s
(itσ2)s

n
∑

j=1

ηj(C + C ′)s

=
1

2

∞
∑

s=1

1

s
(itσ2)str((C + C ′)s). (A.11)

With κs denoting the s−th cumulant of f , (A.9) gives

κ1 = d+ σ2trC, κ2 = σ2(c′c+
σ2

2
tr((C + C ′)2)), (A.12)

and

κs =
σ2ss!

2

(

1

σ2
c′(C + C ′)s−2c+

tr((C + C ′)s)
s

)

, s > 2. (A.13)

Let f c = (f − κ1)/κ
1/2
2 and κcs = κs/κ

s/2
2 , so that

ln
(

E(eitf
c

)
)

= −1

2
t2 +

∞
∑

s=3

κcs(it)
s

s!
(A.14)
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and thus

E(eitf
c

) = e−
1

2
t2 exp

( ∞
∑

s=3

κcs(it)
s

s!

)

=e−
1

2
t2



1 +

∞
∑

s=3

κcs(it)
s

s!
+

1

2!

( ∞
∑

s=3

κcs(it)
s

s!

)2

+
1

3!

( ∞
∑

s=3

κcs(it)
s

s!

)3

+ .....





= e−
1

2
t2
(

1 +
κc3(it)

3

3!
+
κc4(it)

4

4!
+
κc5(it)

5

5!
+

(

κc6
6!

+
(κc3)

2

(3!)2

)

(it)6 + .....

)

. (A.15)

By Fourier inversion, formally,

Pr(
√
n
(

λ̂− ψ(λ)
)

≤ ζ) = Pr(f c ≤ −κc1) = Φ(−κc1)−
κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κc1) + .... (A.16)

Now,

κc1 =
d+ σ2tr(C)

σ
(

c′c+ σ2

2 tr((C + C ′)2)
)1/2

. (A.17)

By standard algebra, tr(C) = −√
ng11ζ − tr(G′X(X ′X)−1X ′) + g10k +O (1/

√
n), and hence

d+ σ2tr(C) = −√
n
(

g11σ
2 + δ(I)

)

ζ − σ2tr(G′X(X ′X)−1X ′) + σ2kg10 +O

(

1√
n

)

. (A.18)

Also, σ2tr((C + C ′)2)/2 = σ2n(g20 + g11 − 2g210) + 4σ2
√
n(g10g11 − g21)ζ + o(

√
n) and c′c = nδ(I) −

4
√
nδ(G)ζ + o(

√
n), so that

(

c′c+
σ2

2
tr((C + C ′)2)

)1/2

=n1/2a1/2
(

1 +
4(σ2g10g11 − σ2g21 − δ(G))ζ√

na
+ o

(

1√
n

))1/2

=n1/2a1/2
(

1 +
2(σ2g10g11 − σ2g21 − δ(G))ζ√

na

)

+ o

(

1√
n

)

, (A.19)

with a defined in (2.9). Combining (A.18) and (A.19),

κc1 =− g11σ
2 + δ(I)

σa1/2
ζ − 1√

n

σ(tr(G′X(X ′X)−1X ′)− kg10)

a1/2

+
1√
n

2(g11σ
2 + δ(I))(σ2g11g10 − δ(G)− σ2g21)ζ

2

σa3/2
+ o

(

1√
n

)

. (A.20)

Similarly, c′(C + C ′)c = 2nδ(G) − 2ng10δ(I) + o(n) and tr((C + C ′)3)/3 = 2n (g30 + 3g21) /3 +
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5ng310/3− 2ng10(g20 + g11) + o(n), and hence

κc3 =
3σ
(

c′(C + C ′)c+ σ2

3 tr((C + C ′)3)
)

(

c′c+ σ2

2 tr((C + C ′)2)
)3/2

=
6σ√
n

b

a3/2
+ o

(

1√
n

)

, (A.21)

where b is defined according to (2.11).

Thus, by Taylor expansion of (A.20), (A.16) becomes

Pr(
√
n
(

λ̂− ψ(λ)
)

≤ ζ) = Φ(tζ) +
1√
n
e1(tζ)φ(tζ)−

1√
n

σb

a3/2
Φ(3)(tζ) + o

(

1√
n

)

, (A.22)

where e1(x) = σ
(

tr(G′X(X ′X)−1X ′)− kg10)
)

/a1/2+2(δ(G)+σ2g21−σ2g11g10)x
2/ta and t defined as

in (2.10).

The claim in (2.13) of Theorem 1 holds using Φ(3)(x) = (x2 − 1)φ(x) and by letting e(x) =

e1(x)− σb(x2 − 1)/a3/2.

Proof of Theorem 2

By the mean value theorem,

√
nt̂λ̂ =

√
ntλ̂+

√
nλ̂

∂t

∂β′
|β,σ2(β̂ − β) +

√
nλ̂

∂t

∂σ2
|β,σ2(σ̂2 − σ2)

+
1

2

√
nλ̂





β̂ − β

σ̂2 − σ2





′

H̄





β̂ − β

σ̂2 − σ2



 , (A.23)

where H̄ is the (k + 1)× (k + 1) matrix of second derivatives, i.e.

H =





∂2t
∂β∂β′

∂2t
∂β∂σ2

∂2t
∂σ2∂β′

∂2t
∂(σ2)2



 , (A.24)

evaluated at β̄ and σ̄2 such that ||β̄ − β|| < ||β̂ − β|| and |σ̄2 − σ2| < |σ̂2 − σ2|, respectively, and

β̂ − β = (X ′X)−1X ′ǫ, σ̂2 − σ2 =
1

n
y′Py − σ2 =

1

n
ǫ′ǫ− σ2 + op

(

1√
n

)

(A.25)

under H0 in (3.1).
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Let

v =
δ(I) + σ2(2g20 + g11)

(σ2a)3/2
. (A.26)

By standard algebra we derive

∂t

∂β′
=
σ2

n
vβ′X ′W ′PWX,

∂t

∂σ2
= −δ(I)

2
v (A.27)

and

∂2t

∂β∂β′
=
σ2

n
vX ′W ′PWX +

σ2

n
X ′W ′PWXβ

∂v

∂β′
,

∂2t

∂(σ2)2
= −δ(I)

2

∂v

∂σ2
,

∂2t

∂β∂σ2
= − v

n
X ′W ′PWXβ − δ(I)

2

∂v

∂β
, (A.28)

with

∂v

∂β
= − 1

na

(

2σ2g20

(σ2a)3/2
+ v

)

X ′W ′PWXβ,
∂v

∂σ2
= −3v(g20 + g11)

2a
− a(3δ(I) + σ2(2g20 + g11))

2(aσ2)5/2
.

(A.29)

Under H0 in (3.1), β̂ − β = Op(1/
√
n), σ̂2 − σ2 = Op(1/

√
n) and λ̂ = Op(1/

√
n), so that the

last term in (A.23) is Op(1/n) as long as each element of H̄ is Op(1). Standard calculations under

Assumptions 3-5 show that each element of X ′W ′PWX/n, as well as the numerators of v, ∂v/∂σ2

and ∂v/∂β, are O(1) as n → ∞ under H0 in (3.1). Each element of H̄ is Op(1) so long as ā =

β̄′X ′W ′PWXβ̄/n+ σ̄2(g20+ g11) > 0 as n→ ∞. Under H0, with probability approaching 1 as n→ ∞,

||β̄ − β|| < ||β̂ − β|| < ε and |σ̄2 − σ2| < |σ̂2 − σ2| < ε, for any ε > 0. We can write

ā ≥ a− |ā− a|, (A.30)

and under Assumption 6, as n→ ∞

a = δ(I) +
σ2

2n
tr(W +W ′)2 ≥ δ(I) > 0. (A.31)
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Also,

ā− a =
1

n

(

β̄′X ′W ′PWXβ̄ − β′X ′W ′PWXβ
)

+ (g20 + g11)(σ̄
2 − σ2)

=
1

n
β′X ′W ′PX( ¯̄β − β) + (g20 + g11)(σ̄

2 − σ2) +Op(|| ¯̄β − β||2) = Op(ε) = op(1), (A.32)

with || ¯̄β−β|| < ||β̄−β|| < ε and where the last equality in (A.32) holds from arbitrariness of ε. Hence,

combining (A.30)-(A.32), ā > 0 as n→ ∞, and (A.23) becomes

√
nt̂λ̂ =

√
ntλ̂+

√
nλ̂

∂t

∂β′
|β,σ2(β̂ − β) +

√
nλ̂

∂t

∂σ2
|β,σ2(σ̂2 − σ2) +Op

(

1

n

)

. (A.33)

By substituting (A.25) and (A.27) into (A.33),

√
nt̂λ̂ =

√
ntλ̂+

√
nλ̂
σ2v

n
β′X ′W ′PWX(X ′X)−1X ′ǫ−√

nλ̂
δ(I)v

2

(

1

n
ǫ′ǫ− σ2

)

+ op

(

1√
n

)

, (A.34)

and therefore, for any real η,

P
(√

nt̂λ̂ ≤ η
)

=P

(√
ntλ̂+

√
nλ̂
σ2v

n
β′X ′W ′PWX(X ′X)−1X ′ǫ−√

nλ̂
δ(I)v

2

(

1

n
ǫ′ǫ− σ2

)

+ op

(

1√
n

)

≤ η

)

=P

(√
ntλ̂+

√
nλ̂
σ2v

n
β′X ′W ′PWX(X ′X)−1X ′ǫ−√

nλ̂
δ(I)v

2

(

1

n
ǫ′ǫ− σ2

)

≤ η

)

+o

(

1√
n

)

.

So, by substituting λ̂ = m11(Xβ + ǫ)′W ′Pǫ, where m11 is defined in (A.4), into the last displayed

expression and rearranging,

P
(√

nt̂λ̂ ≤ η
)

= P

(

ξ +
1√
n
ρ ≤ 0

)

+ o

(

1√
n

)

(A.35)

with ξ = ǫ′Csǫ+ c′sǫ+ ds, where

Cs =
t

2
√
n
(WP + PW ′)− η

n
W ′PW, c′s =

t√
n
β′X ′W ′P − 2η

n
β′X ′W ′PW, ds = −ηδ(I) (A.36)
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and ρ = ρ1 + ρ2 + ρ3 + ρ4, with

ρ1 =
σ2v

2n
ǫ′(W ′P + PW )ǫβ′X ′W ′PW (I − P )ǫ, (A.37)

ρ2 =
σ2v

2n
ǫ′
(

(I − P )W ′PWXββ′X ′W ′P + PWXββ′X ′W ′PW (I − P )
)

ǫ, (A.38)

ρ3 = −vδ(I)
4n

ǫ′(W ′P + PW )ǫ
(

ǫ′ǫ− nσ2
)

, ρ4 = −vδ(I)
2n

β′X ′W ′Pǫ
(

ǫ′ǫ− nσ2
)

. (A.39)

By standard algebra involving expectations of quadratic forms in normal random variables we can show

that ξ = Op(1) and ρ = Op(1) as n→ ∞.

We approximate the characteristic function of ξ + 1√
n
ρ by 1 + χ, where

χ = itE(ξ +
1√
n
ρ) +

1

2
(it)2E((ξ +

1√
n
ρ)2) +

1

6
(it)3E((ξ +

1√
n
ρ)3), (A.40)

and deduce its approximate cumulant generating function

log(1 + χ) =
∞
∑

s=1

(−1)s+1χ
s

s
. (A.41)

Using the notation adopted in the proof of Theorem 1, we indicate by κs the sth cumulant of ξ + 1√
n
ρ

and by κcs = κs/κ
s/2
2 its scaled version. Using standard formulae for moments of linear and quadratic

forms in normal random variables (details of full derivation can be obtained from the authors upon

request), we deduce κ1 = −η(σ2g11+ δ(I))−σ2tr(W ′X(X ′X)−1X ′)t/
√
n+ o (1/

√
n), and κ2 = σ2t2a−

4σ2t(δ(W ) + σ2g21)η/
√
n+ o (1/

√
n), such that

κc1 = −η − 1√
n

(

2

at
(δ(W ) + σ2g21)η

2 +
σ

a1/2
tr(W ′X(X ′X)−1X ′)

)

+ o

(

1√
n

)

. (A.42)

Also, from (A.40) and (A.41), we deduce

κ3 = 8σ6tr(C3
s ) + 6σ4c′sCscs + o

(

1√
n

)

=
6√
n
t3σ4

(

δ(W ) + σ2
(g30

3
+ g21

)

+ o

(

1√
n

))

(A.43)

and κc3 = 6σb/
√
na3/2 + o (1/

√
n) . The claim in (3.4) follows by setting e(η) as in (2.12).

Proof of Theorem 3
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By standard algebra, using (2.1), ψ(1)(λ) = 1−m11 (2g10ǫ
′G′Pǫ+ 2g10β

′X ′G′Pǫ− g20ǫ
′Pǫ) and ψ(2)(λ) =

2m11
(

(m11)−1g10 − 2g20ǫ
′G′Pǫ− 2g20β

′X ′G′Pǫ+ g30ǫ
′Pǫ
)

. We write

√
n(λ̂C − λ) =

√
n(ψ−1(λ̂)− ψ−1(ψ(λ)))

=
√
n
λ̂− ψ(λ)

ψ(1)(λ)
− 1

2

ψ(2)(λ)

(ψ(1)(λ))3
√
n(λ̂− ψ(λ))2 + op

(

1√
n

)

, (A.44)

where ψ(λ), ψ(1)(λ) and ψ(2)(λ) are well defined under Assumption 6 and are Op(1). The order of the

remainder in (A.44) follows from standard algebra under Assumptions 3-7, after observing that, from

the mean value theorem, the negligible term is

(

3(ψ(2)(ψ−1(λ̄)))2

(ψ(1)(ψ−1(λ̄)))5
− ψ(3)(ψ−1(λ̄))

(ψ(1)(ψ−1(λ̄)))4

) √
n(λ̂− ψ(λ))3

6
(A.45)

with |λ̄−ψ(λ)| < |λ̂−ψ(λ)| = Op(1/
√
n), from Theorem 1. By λ̄ = ψ(λ) +Op(1/

√
n) and ψ−1(ψ(λ) +

Op(1/
√
n)) = λ+Op(1/

√
n) under Assumption 7, (A.45) becomes

(

3(ψ(2)(λ))2

(ψ(1)(λ))5
− ψ(3)(λ)

(ψ(1)(λ))4

) √
n(λ̂− ψ(λ))3

6
+ op

(√
n(λ̂− ψ(λ))3

)

= op

(

1√
n

)

. (A.46)

We define

ι1 =
1

n
(m11)−1(λ̂− ψ(λ)) =

1

n

(

ǫ′G′Pǫ+ β′X ′G′Pǫ− g10ǫ
′Pǫ
)

, (A.47)

ι2 =
1

n
(m11)−1ψ(1)(λ) =

1

n

(

(m11)−1 − 2g10ǫ
′G′Pǫ− 2g10β

′X ′G′Pǫ+ g20ǫ
′Pǫ
)

(A.48)

and

ι3 =
1

n
(m11)−1ψ(2)(λ) =

2

n

(

(m11)−1g10 − 2g20ǫ
′G′Pǫ− 2g20β

′X ′G′Pǫ+ g30ǫ
′Pǫ
)

, (A.49)

where, by standard algebra of quadratic forms in normal variates, under Assumptions 1-5, ι1 =

Op(1/
√
n), ι2 = Op(1) (and non zero under Assumption 7) and ι3 = Op(1). Also, let

ῑ3 = 2
(

δ(I)g10 + σ2(g11g10 − 2g20g10 + g30)
)

. (A.50)
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Thus, (A.44) becomes

√
n(λ̂C − λ) =

√
n
ι1
ι2

−
√
n

2

ι3
ι32
ι21 + op

(

1√
n

)

=
√
n
ι1
ι2

−
√
n

2

ῑ3
a3
ι21 + op

(

1√
n

)

=
√
n
ι1
ι2

−
√
n

2

ῑ3
a2
ι21
ι2

+ op

(

1√
n

)

, (A.51)

where the second equality is deduced by the delta method expansion

ι3
ι32

− ῑ3
a3

=
1

a3
(ι3 − ῑ3)−

3ῑ3
a4

(ι2 − a) + .... = Op

(

1√
n

)

, (A.52)

with the last displayed bound following from Lemma 1, and from a and ῑ3 being O(1). Similarly, the

third equality in (A.51) follows since

√
n

2

ῑ3
a3
ι21 =

√
n

2

ῑ3
a3
ι21
a+ (ι2 − a)

ι2
=

√
n

2

ῑ3
a2
ι21
ι2

+ op

(

1√
n

)

, (A.53)

by Lemma 1 and from ι21/ι2 = Op(1/n).

Setting ῑ = ῑ3/a
2, for any real ζ,

Pr
(√

n(λ̂C − λ) ≤ ζ
)

=Pr

(√
nι1 −

√
n

2
ῑι21 − ζι2 ≤ 0

)

+ o

(

1√
n

)

, (A.54)

since ι2 is strictly positive over λ ∈ Λ under Assumption 7. Therefore, similarly to the proof of Theorem

2,

Pr
(√

n(λ̂C − λ) ≤ ζ
)

=Pr

(

ξC +
1√
n
ρC ≤ 0

)

+ o

(

1√
n

)

, (A.55)

where ξC = ǫ′CCǫ+ c′Cǫ+ dC , with

CC =
1

2
√
n

(

1 +
2ζ√
n
g10

)

(G′P + PG)− 1√
n

(

g10 +
ζ√
n
g20

)

P − ζ

n
G′PG, (A.56)

c′C =
1√
n

(

1 +
2ζ√
n
g10

)

β′X ′G′P − 2ζ

n
β′X ′G′PG, (A.57)

dC = −δ(I)ζ, and ρC = ρC1 + ρC2 + ρC3, with

ρC1 =
ῑ

2n
ǫ′
(

G′P + PG

2
− g10P

)

ǫǫ′
(

G′P + PG

2
− g10P

)

ǫ, (A.58)
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ρC2 =
ῑ

2n
β′X ′G′Pǫǫ′PGXβ, ρC3 =

ῑ

n
ǫ′
(

G′P + PG

2
− g10P

)

ǫǫ′PGXβ. (A.59)

Proceeding as in (A.40) and (A.41), we derive the first three cumulants of ξC + ρC/
√
n (indicated

again as κ1, κ2 and κ3) by standard algebra involving moments of quadratic forms in normal random

variables, i.e.

κ1 =σ
2tr(CC) + dC +

1√
n
E(ρC1) +

1√
n
E(ρC2)

=−
(

δ(I) + σ2(g11 + g20 − 2g210)
)

ζ − σ2√
n
tr(GX(X ′X)−1X ′) +

σ2√
n
g10k

+
ῑσ2

2
√
n
(σ2(g20 + g11 − 2g210) + δ(I)) + o

(

1√
n

)

=− aζ − σ2√
n
tr(GX(X ′X)−1X ′) +

σ2√
n
g10k +

ῑσ2

2
√
n
a+ o

(

1√
n

)

, (A.60)

with a defined in (2.9). Similarly,

κ2 =E

(

(

ξC +
1√
n
ρC

)2
)

− κ21 = 2σ4tr(C2
C) + σ2c′CcC + o

(

1√
n

)

=σ2a+
4σ2√
n

(

(g20g10 + 2g11g10 − 2g310 − g21)σ
2 + δ(I)g10 − δ(G)

)

ζ + o

(

1√
n

)

=σ2a

(

1 +
4ζ√
na

(

σ2(g20g10 + 2g11g10 − 2g310 − g21) + δ(I)g10 − δ(G)
)

)

+ o

(

1√
n

)

, (A.61)

since

2σ4tr
(

C2
C

)

=σ4
(

g20 + g11 − 2g210
)

+
4σ4√
n

(

g20g10 + 2g11g10 − 2g310 − g21
)

ζ + o

(

1√
n

)

,

σ2c′CcC =σ2δ(I) +
4σ2√
n
(δ(I)g10 − δ(G)) ζ + o

(

1√
n

)

. (A.62)

Denoting κcs = κs/κ
s/2
2 , we deduce

κc1 =−
( a

σ2

)1/2
ζ − 1√

n

(

σ2

a

)1/2
(

tr(GX(X ′X)−1X ′)− g10k −
ῑa

2

)

+
1√
n

2ζ2

(σ2a)1/2
(

σ2(g20g10 + 2g11g10 − 2g310 − g21) + δ(I)g10 − δ(G)
)

+ o

(

1√
n

)

. (A.63)
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Similarly, we deduce

κ3 =8σ6tr(C3
C) + 6σ4c′CCcC +

3√
n
σ4ῑ(a− δ(I))2 + o

(

1√
n

)

=
6σ6√
n

(

g30
3

+ g21 +
8

3
g310 − 2g10(g20 + g11)

)

+
6σ4√
n

(

δ(G)− g10δ(I) +
ῑ

2
(a− δ(I))2

)

+ o

(

1√
n

)

,

(A.64)

since c′CCCcC = (δ(G)− g10δ(I)) /
√
n+ o (1/

√
n) and

8tr(C3
C) =

6√
n

(

g30
3

+ g21 +
8

3
g310 − 2g10(g20 + g11)

)

+ o

(

1√
n

)

, (A.65)

and thus

κc3 =
6σ√
n

bC
a3/2

+ o

(

1√
n

)

, (A.66)

where bC is defined as (4.5). So, after Taylor expansion of Φ(−κc1),

Pr
(√

n(λ̂C − λ) ≤ ζ
)

=Φ

(

( a

σ2

)1/2
ζ

)

+
1√
n
e1C

(

( a

σ2

)1/2
ζ

)

φ

(

( a

σ2

)1/2
ζ

)

− 1√
n

σbC
a3/2

Φ(3)

(

( a

σ2

)1/2
ζ

)

+ o

(

1√
n

)

, (A.67)

where

e1C(x) =

(

σ2

a

)1/2
(

tr(GX(X ′X)−1X ′)− g10k −
ῑa

2

)

+
2σ

a3/2
(

(2g310 + g21 − 2g11g10 − g20g10)σ
2

+ δ(G)− δ(I)g10)x
2.

(A.68)

Thus, the claim in (4.8) follows by Φ(3)(x) = (x2 − 1)φ(x) and with eC(·) as in (4.6).

Proof of Theorem 4
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We proceed similarly to the proof of Theorem 2. By the mean value theorem,

√
nt̂C(λ̂C − λ) =

√
ntC(λ̂C − λ) +

√
n(λ̂C − λ)

∂tC
∂β′

|λ,β,σ2(β̂C − β) +
√
n(λ̂C − λ)

∂tC
∂σ2

|λ,β,σ2(σ̂2C − σ2)

+
√
n
∂tC
∂λ

|λ,β,σ2(λ̂C − λ)2 +
1

2

√
n(λ̂C − λ)











λ̂C − λ

β̂C − β

σ̂2C − σ2











′

H̄











λ̂C − β

β̂C − β

σ̂2C − σ2











, (A.69)

where H̄ is the (k + 2)× (k + 2) matrix of second derivatives, i.e.

H =











∂2tC
∂λ2

∂2tC
∂λ∂β′

∂2tC
∂λ∂σ2

∂2tC
∂β∂λ

∂2tC
∂β∂β′

∂2tC
∂β∂σ2

∂2tC
∂σ2∂λ

∂2tC
∂σ2∂β′

∂2tC
∂(σ2)2











, (A.70)

evaluated at β̄C , σ̄
2
C and λ̄C such that ||β̄C−β|| < ||β̂C−β||, |σ̄2C−σ2| < |σ̂2C−σ2| and |λ̄C−λ| < |λ̂C−λ|

respectively. From (A.51) and (5.1),

λ̂C − λ =
ι1
ι2

− 1

2

ῑ3
a2
ι21
ι2

+ op

(

1

n

)

, (A.71)

β̂C − β =
(

X ′X
)−1

X ′ǫ−
(

X ′X
)−1

X ′GXβ(λ̂C − λ) + op

(

1√
n

)

=
(

X ′X
)−1

X ′ǫ−
(

X ′X
)−1

X ′GXβ
ι1
ι2

+ op

(

1√
n

)

=
(

X ′X
)−1

X ′ǫ−
(

X ′X
)−1

X ′GXβ
ι1
a
+ op

(

1√
n

)

(A.72)

and

σ̂2C − σ2 =
1

n
y′S(λ̂C)′PS(λ̂C)y − σ2 =

1

n
ǫ′ǫ− σ2 − 2

n
ǫ′G′Pǫ(λ̂C − λ) + op

(

1√
n

)

=
1

n
ǫ′ǫ− σ2 − 2

n
ǫ′G′Pǫ

ι1
ι2

+ op

(

1√
n

)

=
1

n
ǫ′ǫ− σ2 − 2

n
ǫ′G′Pǫ

ι1
a
+ op

(

1√
n

)

(A.73)

with ι1, ι2, ῑ3 and a defined in (A.47), (A.48), (A.50) and (2.9), respectively. The last equality in both

(A.72) and (A.73) follow from the same argument adopted to obtain (A.51) and by Lemma 1.

Let

dλ ≡ ∂tC
∂λ

=
1

tC

(

1

nσ2
β′X ′G′PG2Xβ + g30 + g21 − 2g10g20

)

, (A.74)
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dβ ≡ ∂tC
∂β′

=
1

nσ2tC
β′X ′G′PGX and dσ2 ≡ ∂tC

∂σ2
= − δ(I)

2σ4tC
. (A.75)

Thus, (A.69) can be written as

√
nt̂C(λ̂C − λ) =

√
ntC

ι1
ι2

+
√
n
ι21
aι2

(

dλ − dβ(X
′X)−1X ′GXβ − dσ2ǫ′(G′P + PG)ǫ− tC ῑ3

2a

)

+
√
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(

dβ(X
′X)−1X ′ǫ+ dσ2

(

1

n
ǫ′ǫ− σ2
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+ op

(

1√
n

)

=
√
ntC
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ι2

+
√
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ι21
ι2
νCS − 1√

n

ι21
ι2a

dσ2ǫ′(G′P + PG)ǫ+
√
n
ι1
ι2
dβ(X

′X)−1X ′ǫ

+
1√
n
dσ2

ι1
ι2
(ǫ′ǫ− nσ2) + op

(

1√
n

)

, (A.76)

where

νCS =
1

a

(

dλ − dβ(X
′X)−1X ′GXβ − tC ῑ3

2a

)

=
1

(a3σ2)1/2
(δ(G)−δ(I)g10+σ2(g21−2g11g20−g10(g11−2g20))),

(A.77)

as defined in (5.2).

Therefore, under Assumption 7, for any real η

Pr
(√

nt̂C(λ̂C − λ) ≤ η
)

= Pr

(

ǫ′CCSǫ+ c′CSǫ+ dCS +
1√
n
ρCS ≤ 0

)

+ op

(

1√
n

)

, (A.78)

with

CCS =
1

2
√
n

(

tC +
2η√
n
g10

)

(G′P + PG)− 1√
n

(

tCg10 +
η√
n
g20

)

P − η

n
G′PG, (A.79)

c′CS =
1√
n

(

tC +
2η√
n
g10

)

β′X ′G′P − 2η

n
β′X ′G′PG, dCS = −ηδ(I), (A.80)

and ρCS =
10
∑

i=1
ρCSi,

ρCS1 =
νCS

n
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(

PG+G′P
2

− g10P

)

ǫǫ′
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PG+G′P
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)
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(
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ρCS7 =
1

n(σ2a)1/2
ǫ′
(

PG+G′P
2

− g10P

)

ǫβ′X ′G′PGX(X ′X)−1X ′ǫ,
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n(σ2a)1/2
β′X ′G′PGX(X ′X)−1X ′ǫǫ′PGXβ, ρCS9 = − δ(I)

2nσ3a1/2
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)

ǫ(ǫ′ǫ− nσ2). (A.81)

Similarly to the arguments employed in the proofs of Theorems 2 and 3, we derive the first three

cumulants of ǫ′CCSǫ + c′CSǫ + dCS + ρCS/
√
n (κ1, κ2 and κ3, respectively) and the centred cumulants

κc1 and κc2 as

κ1 =σ
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. (A.82)

Also

κ2 =E
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ǫ′CCSǫ+ c′CSǫ+ dCS +
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ρCS

)2
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− κ21

=2σ4tr(C2
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, (A.83)

where the last equality follows from algebra of quadratic forms in normal variates. Thus, similarly to

the proof of Theorem 3,

κ2 = σ2t2Ca

(

1 +
4η√
natC

(

σ2(g20g10 + 2g11g10 − 2g310 − g21) + δ(I)g10 − δ(G)
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, (A.84)

such that

κc1 =− η + 2

(

σ2

a3

)1/2
(

σ2(g20g10 + 2g11g10 − 2g310 − g21) + δ(I)g10 − δ(G)
)

η2
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+

(
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(A.85)

Also, by tedious, but straightforward algebra,
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, (A.86)

so that
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6√
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(
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So, after Taylor expansion of Φ(−κc1),

Pr
(√

nt̂C(λ̂C − λ) ≤ η
)
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1√
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e1CS (η)φ (η)− 1√
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(

1√
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, (A.87)

where

e1CS(x) =

(

σ2

a3

)1/2
(

atr(GX(X ′X)−1X ′)− ag10k − δ(G)− σ2(g21 − 2g11g20 − g10(g11 − 2g20)
)

+2

(

σ2

a3

)1/2
(

(2g310 + g21 − 2g11g10 − g20g10)σ
2 + δ(G)− δ(I)g10

)

x2

(A.88)

and bCS defined as in (5.3). Thus, the claim in (5.6) follows from Φ(3)(x) = (x2 − 1)φ(x) and (5.4).

Lemma 1 Under Assumptions 1-5, ι2 − a = Op(1/
√
n) and ι3 − ῑ3 = Op(1/

√
n).
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Proof: By standard algebra

ι2 − a =
1

n

(

ǫ′G′PGǫ− nσ2g11
)

− 1

n
g10
(

ǫ′(G′P + PG)ǫ− 2nσ2g10
)

+
1

n
g20
(

ǫ′Pǫ− nσ2
)

+
2

n
β′X ′G′P (G− g10I)ǫ. (A.89)

By the cr inequality,

E (ι2 − a)2 ≤K

n2
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E
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ǫ′G′PGǫ− nσ2g11
)2

+ E
(
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(

ǫ′Pǫ− nσ2
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′PGXβ

)

.

(A.90)

From standard calculation of moments of quadratic forms under Assumption 1, the first term in (A.94)

is

K

n2
(

σ4tr2(G′PG) + 2σ4tr(G′PGG′PG) + n2σ4g211 − 2nσ4g211 + 2nσ4g11tr(G
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)

=
K

n2
(

2σ4tr(G′PGG′PG) + σ4tr2(G′X(X ′X)−1X ′G)
)

= O

(

1

n

)

, (A.91)

under Assumptions 2-5. By Markov’s inequality, the first term on the RHS of (A.94) is Op(1/
√
n).

Similarly, we can show that the second and third terms on the RHS of (A.94) are Op(1/
√
n) as n→ ∞.

The last term on the RHS of (A.94) is

K

n

(

δ(GG′) + g210δ(I)− 2δ(G)g10
)

= O

(

1

n

)

(A.92)

under Assumptions 2-5, as n increases. By Markov’s inequality ι2 − a = Op(1/
√
n)

Similarly
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2
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and by cr inequality
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E
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+ E
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from the same argument above and observing that

1

n
β′X ′G′PGG′PGXβ(g10 − g20)

2 = δ(GG′)(g10 − g20)
2 = O(1) (A.95)

under Assumptions 2-5. Thus, by Markov’s inequality, ι3 − ῑ3 = Op(1/
√
n).

Tables

n = 30 n = 50 n = 100 n = 200

normal 0.0170 0.0110 0.0210 0.0250

corrected 0.0820 0.0660 0.0640 0.0520

transformed 0.0600 0.0530 0.0560 0.0500

bootstrap 0.0280 0.0410 0.0320 0.0310

MLE 0.0150 0.0130 0.0220 0.0290

Table 1: Empirical sizes (nominal α = 0.05) of tests of H0 in (3.1) against H1 in (3.2) for model (1.1) when W is derived
from the random exponential distance (a).

n = 30 n = 50 n = 100 n = 200

normal 0.0140 0.0160 0.0290 0.0390

corrected 0.0820 0.0650 0.0620 0.0600

transformed 0.0630 0.0540 0.0570 0.0540

bootstrap 0.0310 0.0410 0.0340 0.0370

MLE 0.0020 0.0200 0.0310 0.0350

Table 2: Empirical sizes (nominal α = 0.05) of tests of H0 in (3.1) against H1 in (3.2) for model (1.1) when W is the
circulant (b).

λ̄ n = 30 n = 50 n = 100 n = 200

normal

0.2
0.5
0.8

0.0860
0.5690
0.9840

0.1580
0.8170
1

0.2550
0.9740
1

0.5720
1
1

corrected

0.2
0.5
0.8

0.2650
0.7840
0.9950

0.3620
0.9170
1

0.4830
0.9910
1

0.6860
1
1

transformed

0.2
0.5
0.8

0.2270
0.7530
0.9950

0.3250
0.9100
1

0.4510
0.9910
1

0.6780
1
1

bootstrap

0.2
0.5
0.8

0.1080
0.5240
0.9850

0.2010
0.8680
1

0.3300
0.9730
1

0.6120
1
1

MLE

0.2
0.5
0.8

0.1020
0.5860
0.9880

0.1840
0.8340
1

0.2960
0.9800
1

0.5970
1
1

Table 3: Empirical powers of tests of H0 (3.1) against H1 (3.2), with nominal size α = 0.05 for model (1.1) when W is
derived from the exponential distance (a).
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λ̄ n = 30 n = 50 n = 100 n = 200

normal

0.2
0.5
0.8

0.0760
0.3730
0.8950

0.1530
0.7160
0.9950

0.3170
0.9720
1

0.5690
1
1

corrected

0.2
0.5
0.8

0.2750
0.7040
0.9870

0.3630
0.8700
0.9990

0.4930
0.9910
1

0.6880
1
1

transformed

0.2
0.5
0.8

0.2190
0.6500
0.9780

0.3230
0.8550
0.9990

0.4720
0.9900
1

0.6710
1
1

bootstrap

0.2
0.5
0.8

0.1390
0.5450
0.9540

0.2180
0.7970
0.9970

0.3510
0.9810
1

0.6120
0.9950
1

MLE

0.2
0.5
0.8

0.0670
0.4630
0.9420

0.1640
0.7580
0.9940

0.3490
0.9760
1

0.5910
1
1

Table 4: Empirical powers of tests of H0 (3.1) against H1 (3.2), with nominal size α = 0.05 in model (1.1) when W is
the circulant (b).
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Figure 1: Plots of ψ(x) in (2.7) for −1 < x < 1 when W is derived from the exponential distance (a) and λ = 0.2, 0.5, 0.8.
n = 100.
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Figure 2: Plots of ψ(x) in (2.7) for −1 < x < 1 when W is the circulant (b) and λ = 0.2, 0.5, 0.8. n = 100.

λ n = 30 n = 50 n = 100 n = 200

normal

0.3
0.5
0.7

−0.5713 (0.9870)
−0.1501 (0.9780)
0.3472 (0.9280)

−0.3625 (0.9940)
0.0410 (0.9850)
0.4548 (0.9600)

−0.2269 (0.9970)
0.1576 (0.9910)
0.5272 (0.9660)

−0.0351 (0.9970)
0.2863 (0.9930)
0.5944 (0.9600)

corrected

0.3
0.5
0.7

−0.3976 (0.9610)
0.0022 (0.9470)
0.4319 (0.9050)

−0.2361 (0.9660)
0.1416 (0.9550)
0.5095 (0.9230)

−0.1378 (0.9810)
0.2162 (0.9650)
0.5616 (0.9320)

0.0026 (0.9870)
0.3138 (0.9770)
0.6088 (0.9450)

MLE

0.3
0.5
0.7

−0.5713 (0.9870)
−0.1537 (0.9780)
0.3580 (0.9280)

−0.3625 (0.9940)
0.0410 (0.9850)
0.4496 (0.9600)

−0.2269 (0.9970)
0.1576 (0.9910)
0.5269 (0.9660)

−0.0351 (0.9970)
0.2863 (0.9930)
0.5944 (0.9600)

bootstrap

0.3
0.5
0.7

−0.2094 (0.9820)
0.0781 (0.9740)
0.3488 (0.9920)

−0.0662 (0.9720)
0.1719 (0.9760)
0.4739 (0.9900)

0.0467 (0.9780)
0.2840 (0.9740)
0.5540 (0.9660)

0.1399 (0.9680)
0.3626 (0.9780)
0.6070 (0.9660)

Table 5: Average lower-end-point of intervals (5.7), (5.11), (7.5) and (7.6) across 1000 Monte Carlo replications, and their
respective empirical coverage probability (in brackets) for model (1.1) when W is derived from the exponential distance
(a). Nominal confidence level 1− α = 0.95.
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λ n = 30 n = 50 n = 100 n = 200

normal

0.3
0.5
0.7

−0.7457 (0.9900)
−0.3148 (0.9850)
0.1366 (0.9570)

−0.4861 (0.9950)
−0.0619 (0.9880)
0.3605 (0.9710)

−0.2105 (0.9970)
0.1428 (0.9920)
0.5032 (0.9630)

−0.0412 (0.9990)
0.2584 (0.9910)
0.5749 (0.9560)

corrected

0.3
0.5
0.7

−0.5143 (0.9710)
−0.1330 (0.9450)
0.2834 (0.9370)

−0.3355 (0.9700)
0.0561 (0.9660)
0.4479 (0.9380)

−0.1349 (0.9810)
0.1991 (0.9670)
0.5403 (0.9410)

0.0038 (0.9870)
0.2882 (0.9770)
0.5924 (0.9410)

MLE

0.3
0.5
0.7

−0.7457 (0.9900)
−0.3148 (0.9850)
0.1487 (0.9560)

−0.4861 (0.9950)
−0.0619 (0.9880)
0.3653 (0.9710)

−0.2105 (0.9970)
0.1428 (0.9920)
0.5038 (0.9630)

−0.0412 (0.9990)
0.2584 (0.9910)
0.5749 (0.9560)

bootstrap

0.3
0.5
0.7

−0.2527 (0.9740)
−0.0046 (0.9680)
0.2997 (0.9740)

−0.0984 (0.9750)
0.1503 (0.9820)
0.4268 (0.9760)

0.0538 (0.9720)
0.2734 (0.9740)
0.5357 (0.9720)

0.1370 (0.9760)
0.3583 (0.9880)
0.5898 (0.9720)

Table 6: Average lower-end-point of intervals (5.7), (5.11), (7.5) and (7.6) across 1000 Monte Carlo replications, and their
respective empirical coverage probability (in brackets) for model (1.1) when W is the circulant (b). Nominal confidence
level 1− α = 0.95.
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