
Information Sciences 00 (2019) 1–29

Information
Sciences

, , , ,

Enabling Instant- and Interval-based Semantics in
Multidimensional Data Models: the T+MultiDim Model

Carlo Combia, Barbara Olibonia, Giuseppe Pozzib, Alberto Sabainia, Esteban Zimányic

aDipartimento di Informatica, Università degli Studi di Verona, strada le Grazie 15, I-37134 Verona, Italy,
name.surname@univr.it

bDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milano,
Italy, name.surname@polimi.it

cDepartment of Computer and Decision Engineering, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, B-1050
Bruxelles, Belgique, ezimanyi@ulb.ac.be

Abstract

Time is a vital facet of every human activity. Data warehouses, which are huge repositories of historical information,
must provide analysts with rich mechanisms for managing the temporal aspects of information. In this paper, we (i)
propose T+MultiDim, a multidimensional conceptual data model enabling both instant- and interval-based semantics
over temporal dimensions, and (ii) provide suitable OLAP (On-Line Analytical Processing) operators for querying
temporal information. T+MultiDim allows one to design typical concepts of a data warehouse including temporal
dimensions, and provides one with the new possibility of conceptually connecting different temporal dimensions
for exploiting temporally aggregated data. The proposed approach allows one to specify and to evaluate powerful
OLAP queries over information from data warehouses. In particular, we define a set of OLAP operators to deal with
interval-based temporal data. Such operators allow the user to derive new measure values associated to different
intervals/instants, according to different temporal semantics. Moreover, we propose and discuss through examples
from the healthcare domain the SQL specification of all the temporal OLAP operators we define.

c© 2018 Published by Elsevier Ltd.

Keywords: Data warehouses, temporal dimensions, OLAP (On-Line Analytical Processing), instant-based
semantics, interval-based semantics, telic vs atelic facts

1. Introduction

Conceptual data modeling provides analysts and designers with a high-level representation of the real
world and an efficient way to communicate among each other. Conceptual data models promote understand-
ing of the real-world domain [15] and enhance the ability to meet users requirements [3]. One of the major
advantages in using conceptual models is that the communication between users and designers is made eas-
ier. Users are not required to own skills about the implementation platform. Moreover, a conceptual model
abstracts from the underlying technology, allowing designers to use various logical models. A conceptual
schema is a concise description of the users data requirements, without taking into account implementation
details [30]. One important issue to be faced is the lack of a universally-adopted, conceptual model for
multidimensional data [38], usually stored in data warehouses. Consequently, data warehouses are often

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/289261400?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 2

directly designed at the logical level by following the well-known paradigm of star and/or snowflake schema.
Such schemata are hard to understand to most users, and are often technology dependent [30].

An essential feature of data warehouses is the presence of multiple temporal dimensions. Traditional
data warehouse models use an instant-based semantics [16, 30] by which data are interpreted as a sequence
of states, where the states are independent from each other. Consider for example a data warehouse with
a fact Sales that is related to two temporal dimensions OrderDate and ShippedDate. These dimensions
are independent and thus, a measure such as Amount can be analyzed and aggregated along one of these
temporal dimensions. On the other hand, an interval-based semantics allows one to reason on facts and
their time span, since it deals with time intervals instead of time instants. For example, suppose that in
a data warehouse a fact Treatment is used for analyzing the medical treatments administered to patients.
Such a fact may have dimensions Patient and Drug in addition to temporal dimensions such as DrugStart,
DrugEnd, EffectStart, and EffectEnd. Obviously, these temporal dimensions are not independent and define
various intervals that can be used to analyze and aggregate a measure such as Dosage.

As pointed out in [21], some temporal phenomena cannot be adequately modeled through instant-based
semantics. In particular, telic [2] facts characterized by an intrinsic goal or culmination require an interval-
based semantics, while the traditional instant-based semantics is adequate for atelic facts. The importance
of dealing with telic facts has been widely recognized in many different areas, spanning from artificial
intelligence to philosophy. As an example, the sentence “the patient had a complete antibiotic therapy from
September 3, 2018 to September 11, 2018” represents a telic fact. Indeed, we cannot assert that the patient
had a complete therapy during any subinterval of the given interval. Instead, the sentence “the patient had
fever from October 1, 2018 to October 4, 2018” refers to an atelic fact, as we can say that the patient had
fever during any subinterval of the period between October 1 and October 4.

We argue that, in a data warehouse context, the use of both instant-based and interval-based semantics
would benefit users. Temporal dimensions describe different aspects of the modeled reality, but they are
often individually taken into account, while analysts need to combine different temporal aspects, in order to
have insights on data during analysis. Unfortunately, the standard OLAP (On Line Analytical Processing)
operators do not provide users with such capabilities. Even though in the database field several important
issues relate to the temporal dimension of information, and thus different approaches on temporal evolution
of data or schema versioning have been proposed, little attention has been so far paid to modeling specific
semantics of temporal dimensions and on specifying time-oriented OLAP operators. In particular, telic and
atelic facts represented in a data warehouse are related to measures, i.e. quantitative features. Thus, we
need to explicitly address how telic and atelic measures have to be processed when aggregation/selection
queries require the computation of new telic/atelic measures associated to new intervals. As an example, the
atelic fact “the patient had a temperature of 39 from October 1, 2018 to October 4, 2018” may correspond
to the (same) fact “the patient had a temperature of 39 from October 2, 2018 to October 3, 2018”, if we are
querying the data warehouse about that period of two days. On the other hand, the telic fact “the patient
had a complete antibiotic therapy, consisting of 3600 mg of cefixime, from September 3, 2018 to September
11, 2018” may correspond to the atelic fact “the patient had a (partial) antibiotic therapy, consisting of 800
mg of cefixime, from September 4, 2018 to September 5, 2018”, when we are interested to that period of two
days. Moreover, if we assume to ignore the daily dosage of cefixime, we could also associate the given fact
to the atelic fact “the patient had a (partial) antibiotic therapy, consisting of less than 3600 mg of cefixime,
from September 4, 2018 to September 5, 2018”.

In this paper, we propose new solutions to two different, but intertwined, aspects in modeling and
managing temporal multidimensional data.

• We propose T+MultiDim, a temporal multidimensional data model that extends the MultiDim data
model [30, 39]. It allows the specification of both instant- and interval-based semantics for temporal
dimensions. T+MultiDim enables the designer to specify an explicit link between couples of instant-
based temporal dimensions, considering these dimensions as interval bounds. T+MultiDim conceptual
schemata may be suitably mapped to the classical logical representation based on relational star/s-
nowflake schemata.

• We formally introduce new OLAP operators dealing with such instant and interval-based temporal
2

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 3

dimensions and allowing users to perform temporal aggregate queries on multidimensional data, con-
sidering both telic and atelic semantics. We explicitly focus on the derivation of new telic facts from
the ones already stored in the data warehouse, according to different kinds of query. Moreover, we
specify how to express these new OLAP operators by SQL queries.

It is worth noting that the idea behind our approach is not specific to the MultiDim conceptual model, and
other conceptual multidimensional models may be similarly extended as well. Furthermore, without loss
of generality, we will discuss all the introduced concepts and techniques through a real-world motivating
example, taken from the domain of pharmacovigilance, to show the practical usefulness and applicability of
our proposal.

The paper is organized as follows. Section 2 introduces some basic notions useful for understanding the
context of the proposed approach. Section 3 describes a real-world scenario from the medical field, which is
used throughout the paper to emphasize the need of a connection between temporal dimensions. Section 4
defines the multidimensional conceptual data model considered throughout the paper and defines the concept
of link between two temporal dimensions. Section 5 defines some new OLAP operators that explicitly deal
with interval-based dimensions. Section 6 sketches the specification of the new OLAP operators in SQL.
Section 7 discusses related work and compares our proposal with approaches presented in literature. Finally,
Section 8 draws some conclusions and sketches out some future research directions.

2. Background

In this section, we will briefly introduce the data warehouses context and the related multidimensional
data models. Then, we will describe the conceptual model we extend in this paper and motivate our main
contributions pertaining to the conceptual modeling of temporal multidimensional data and to the analysis
of such data.

2.1. Multidimensional data model

Data warehouses are huge repositories of historical and integrated information. Data warehousing tech-
niques provide analysts with rich mechanisms for extracting information to be used as a support in decision-
making activities. In this context, temporal aspects of data are of primary importance.

The multidimensional data model is based on cubes, measures, dimensions, hierarchies, levels, and
attributes. A cube represents a fact of interest. Instances of a fact correspond to occurred events that can
be analyzed [30, 39]. Measures provide a quantitative description of events, since each fact is described by
relevant measures. Dimensions represent the possible perspectives of analysis of a fact. Time is usually
one of the considered dimensions. Dimensions are related to the concept of multidimensional space for
representing multidimensional data. Each dimension is related to a hierarchy of aggregation levels. Each
level represents a position in the hierarchy, and consists of a dimensional attribute. The multidimensional
model defines a representation for describing real-world business events. Analysts may analyze business
events by considering measures they are interested in and by examining dimensions and attributes that
make the data meaningful.

2.2. TheMultiDim multidimensional conceptual model

The MultiDim model [30, 39] allows analysts and designers to represent at a conceptual level all the
elements required in data warehouse. The graphical notation of the MultiDim model, shown in Figure 1,
resembles the one of the ER data model [8].

A fact is represented by a cube and contain measures, which are numerical data that can be analyzed
according to dimensions. Measures are usually classified according to additivity [30]: additive measures can
be summarized through all of their dimensions; semi-additive can be summarized on every dimension but
time; non-additive measures cannot be summarized through any dimension. As an example, the quantity of
an administered drug is additive, as it is meaningful to consider the overall quantity of drugs administered to

3

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 4

Attribute1
Attribute2

Fact LevelName2

IdentAttributes
OtherAttributes

RoleName1

LevelName

IdentAttributes
OtherAttributes

ChildLevelName

IdentAttributes
OtherAttributes

ParentLevel
Name

IdentAttributes
OtherAttributes

Fact
Additive
Semiadditive +!
Nonadditive =!

HierarchyName

RoleName2

LevelName1

IdentAttributes
OtherAttributes

(0,1)
(1,1)
(0,n)
(1,n)

a b

c d e

f

Figure 1. Notation of the MultiDim model. (a) Level. (b) Hierarchy. (c) Cardinalities of relationships between levels and
between levels and fact. (d) Specification for types of measures (depicted inside a fact). (e) Hierarchy name. The oval is
attached to the finest element of a dimension hierarchy, to highlight possibly multiple hierarchies for the same dimension
(further examples in Figure 2). (f) Fact with measures (i.e.Attribute1, Attribute2) and associated levels (through dimension
roles).

patients, for diagnoses, and for a certain period. On the other hand, the number of drugs administered daily
by patients is semi-additive as it is meaningful to consider the average number of drugs administered daily to
patients for diagnoses, but it is meaningless to sum such numbers for different days. Finally, the temperature
measured on patients is non-additive, as summing up patient temperatures is meaningless with respect to
any dimension. By default, measures are assumed to be additive. Semi-additivity or non-additivity measures
are identified by an extra symbol, +! and =!, respectively.

A fact relates several levels. Levels containing the most detailed data in a hierarchy are called leaf
level. Leaf level names define the dimension name, unless one or more roles are specified for that dimension.
Likewise, levels containing the most general data are called root levels. A dimension may contain several
hierarchies, each one expressing a particular criterion used for analysis purposes. Hierarchy names are
included in order to differentiate aggregation paths.

A level may play different roles in a fact. Each role is identified by a name and is represented by a
separate link between the corresponding level and the fact, as depicted in Figure 1f. A hierarchy comprises
several related levels, as depicted in Figure 1b. Given two related levels of a hierarchy, the lower level is
called child and the higher one parent. Thus they form parent-child relationships whose cardinalities, as for
facts, indicate the minimum and the maximum number of members in one level that can be related to a
member in another level. Aggregation functions may be associated with a measure by specifying them next
to measure names, as depicted in Figure 1e. The cardinality of the relationship between facts and levels
indicates the minimum and the maximum number of fact members that can be related to level members, as
shown in Figure 1c.

In this work, we extend the MultiDim model by defining suitable connections between different temporal
dimensions. Connecting temporal dimensions allows data analysts to navigate data cubes by using interval-
based temporal dimensions, thus viewing and analyzing data that otherwise would not be available.

4

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 5

3. Motivating Scenario

In this section, we use a real-world scenario from the pharmacovigilance domain to emphasize the need of
a connection between temporal dimensions in a multidimensional schema. Pharmacovigilance is the activity
related to the collection, analysis, and prevention of adverse drug reactions. Indeed, unexpected adverse
reactions may go undetected and only become observable when the drug reaches the general population.
Therefore, it is necessary to control drugs even after putting them on sale. This practice is invaluable,
provides early warnings, and requires limited economic and organizational resources. To this end, we often
need to store and analyze data about patients’ treatments, observed adverse reactions to drugs, and so on
[10, 12, 29]. The example focuses on treatments, only. From an analysis perspective, we can identify a main
fact of interest called Treatment. A treatment is characterized by a patient, an administered drug, a cost,
and a daily dosage. In addition, a treatment is related to four instant-based temporal dimensions: start
of administration, end of administration, start of effect, and end of effect. We can also identify interval-
based dimensions, in particular the drug administration and the effect intervals (i.e., periods), each of them
composed by a start and an end timestamp.

Figure 2 shows the multidimensional conceptual schema of the scenario represented with the MultiDim
conceptual model notation. The Treatment fact relates the Patient, Drug, and Time dimensions, and it
has two measures, Cost, and DailyDosage, where the notation “+!” means that the latter measure can be
partially aggregated. The considered fact has six dimensions: namely, Drug, Patient, and the four role-
playing dimensions DrugStart, DrugEnd, EffectStart, and EffectEnd over the Time dimension). Dimension
Drug uses the hierarchy ATC, named after the usual classification Anatomical Therapeutic and Chemical
(ATC), adopted in the pharmacology domain [35].

EffectStart

EffectEnd

DrugStart

DrugEnd

Drug

DrugKey

DrugName

ATC

ATC2

ATC2Key

ATC1

ATC1Key

Patient

PatientID

FirstName

LastName

Sex

Time

Date

CalWeek

Month

MonthNumber

MonthName

Quarter

Quarter

Year

Year

Cost

DailyDosage +!

Treatment

C
a

le
n

d
a

r

Week

WeekNumber

Figure 2. A multidimensional schema that represents treatments

Table 1 depicts an instance of Treatment fact represented at a logical level as a relation.
From now on, we make some assumptions on the data from Table 1. For example, let us consider first

tuple. According to the given assumptions, it asserts that:

i. the patient took the first pill on Aug. 16, 2018;

ii. the patient took the last pill on Sept. 07, 2018;

iii. the effect of the administration started on Sept. 03, 2018;

iv. the effect of the administration ended on Sept. 12, 2018;

v. the overall cost of the treatment was 65.

5

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 6

Patient Drug Cost DailyDosage DrugStart DrugEnd EffectStart EffectEnd

P1 Tylenol 65 40 16-08-2018 07-09-2018 03-09-2018 12-09-2018

P1 Tylenol 20 20 10-09-2018 14-09-2018 13-09-2018 05-10-2018

P2 Aspirin 80 30 01-09-2018 08-10-2018 06-09-2018 08-10-2018

P3 Tylenol 60 30 04-09-2018 19-09-2018 12-09-2018 18-09-2018

P4 Tylenol 30 40 20-08-2018 28-08-2018 22-08-2018 06-09-2018

P4 Aspirin 35 50 13-09-2018 20-09-2018 20-09-2018 02-10-2018

Table 1. Tuples of the Treatment fact relation from a pharmacovigilance database

From the above, we argue that:

• the duration of the administration (DrugPeriod) is 23 days, which shall be expressed as (DrugEnd -
DrugStart + 1). The closed interval is [DrugStart, DrugEnd]: Aug. 16 and Sept. 07 are both counted,
as we have closed intervals;

• the delay of the effect (EffectDelay) is 18 days, which shall be expressed as (EffectStart - DrugStart).
The closed interval is [DrugStart, EffectStart - 1]. Aug. 16 (the first day of the administration, i.e.,
DrugStart) and Sept. 02 (the last day of EffectDelay, i.e., EffectStart - 1) are both counted, as we have
closed intervals. Sept. 03 does not belong to the effect delay interval, as Sept. 03 is the first day when
the effect is observed;

• the daily cost of the treatment is computed as Cost/DrugPeriod, i.e. Cost/(DrugEnd− DrugStart + 1).

Multidimensional structures can be queried by using OLAP tools to retrieve information such as:

1. Compute the maximum daily dosage administered to a patient, grouping treatments according to the
month when the drug administration began.

2. Compute the total cost of treatments for every drug.

These are standard OLAP queries, where all the dimensions can be used for filtering or grouping purposes.
Temporal dimensions can be considered as yet another dimension upon which a total order has been defined.
For example, when applying query 1. to data of Table 1, we obtain two groups of tuples with respect to the
month when the drug administration began, i.e., a group for August, and a group for September. Within
each group, the maximum daily dosage is computed, and the result is: 50 for August and 30 for September.

The combination of two temporal dimensions can be considered as one time period, i.e., an interval.
Grouping according to interval-based temporal dimensions is one of the phases to compute temporal aggre-
gates over available data. This topic has been tackled for years in the database community, both from a
modeling and implementation perspective [6, 7, 17]. We focus here on the application of these techniques
in multidimensional structures. Data stored in Table 1, according to the Treatment schema depicted in
Figure 2, can be queried with respect to interval-based temporal dimensions to retrieve information such as:

3. Compute the total cost of therapies administered to patients on September 13.

4. Compute the total cost of therapies administered to patients during September.

5. Compute for every drug the total number of administrations.

6. Compute the maximum dosage per drug per month across all patients.

These queries are not standard OLAP queries. We can identify several issues in computing such queries
by means of standard OLAP operators. First of all, treatments can last several days and thus two dimensions
must be used for temporally bounding them. This raises the issue of selecting the temporal dimensions to
characterize treatment validity intervals. In Figure 2, there are four relationships between the Treatment fact
and the Time dimension, namely, DrugStart, DrugEnd, EffectStart, and EffectEnd. Some of these relationships
can be meaningfully combined in order to obtain a validity interval for treatments, while other combinations,
e.g., the couple 〈DrugEnd,DrugStart〉, can lead to mostly negative validity intervals.

6

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 7

By switching to interval-based reasoning we also address the aggregation issues when dealing with telic
and atelic measures. As an example, if we associate every treatment to an interval, we must switch from
an instant-based semantics to an interval-based one. While measure DailyDosage is atelic and thus it holds
at any day of the period 〈DrugStart,DrugEnd〉, measure Cost is telic, and it holds over the whole specified
period and not over its sub-periods. Such a measure does not reflect the cost spent to provide patients with
treatments for a single day as in the first query or during a month as in the second query. Therefore, the
values should be adjusted accordingly to correctly represent treatment costs for a specific subinterval. In
our approach, we propose some solutions allowing the derivation of new telic measure values, according to
specific queries, by considering the original telic values in a data warehouse. Usually such telic measure
values hold on some subintervals of the overall intervals associated to the original measure values.

For example, the third query can be computed in two different ways, depending on the adopted semantics.
If we consider an instant-based semantics, data are grouped according to the administered Drug: the number
of administrations is computed for each group and returned as the result. If we consider an interval-based
semantics, temporal aspects of data must be taken into account. In this case, Instant Temporal Aggregation
(ITA) [6] must be applied to evaluate the query. It computes the aggregate value at a given time instant t
by considering the set of tuples whose timestamp contains t.

The fourth query can also be computed in two different ways, depending on the adopted semantics. If
an instant-based semantics is considered, data are grouped according to the administered Drug and one of
the instant-based temporal dimensions at the month level. Then, the maximum dosage is computed for
each group and returned as the result. However, temporal aggregation techniques must be considered when
dealing with interval-based semantics. In this case, Span Temporal Aggregation (STA) [6] must be applied
to properly compute the result. STA allows one to group tuples when the related intervals overlap the
considered month.

When measures are aggregated using interval-based semantics, we must distinguish between atelic and
telic measures. Atelic measures satisfy the downward hereditary property while telic measures do not [33].
This property asserts that when a fact f holds over a time interval i, we can say that f holds over any
subinterval of i. An example of an atelic measure is the balance of bank accounts, since if an account has
a balance of $100 over a time interval, then the account has the same balance at any day included in that
interval. On the other hand, telic measures are not downward hereditary. For example, the measure Cost
of Treatment fact is telic, since the cost in a subinterval will be less than the overall cost. In this case,
appropriate measure adjustment functions must be defined for determining the value of the measure in any
subinterval, and this depends on the application domain at hand. In this paper, for conciseness reasons, we
only consider linear measure adjustment functions, although our approach can be generalized for arbitrary
functions.

Most multidimensional models allow designers to represent only instant-based temporal dimensions.
As we pointed out in the previous examples, both instant-based and interval-based semantics should be
considered when computing queries involving temporal dimensions. Domain expert reasoning is, indeed,
based on instantaneous and interval facts. In the following, we will discuss further specific queries similar to
the ones previously discussed, to show how our proposal allows the user to specify instant- and interval-based
temporal queries for multidimensional data.

4. The Multidimensional Model T+MultiDim

Temporal dimensions play several roles for a fact, capturing different temporal aspects of the modeled
reality. In the following, we assume that a multidimensional conceptual schema contains a special temporal
dimension called Time, composed by at least Day, Month, and Year levels, and has a hierarchy called
Calendar, which defines a roll-up relation between (Day, Month) and (Month, Year). Roles played by temporal
dimensions represent different temporal coordinates of a fact. We name these roles as role-playing temporal
dimensions (RPTDs). We argue that RPTDs can be combined to represent the temporal extent of a fact,
focusing on the importance of interval-based temporal analysis of multidimensional structures.

In this section, we formally introduce a multidimensional data model, based on the notion of dimensions,
measures, and facts. We start from the MultiDim model, and introduce links between couples of RPTDs that

7

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 8

share the same structure. Each dimension is organized in a hierarchy of levels, which allows us to summarize
the measures in facts at different granularities. Within a dimension, values of a finer granularity can roll up
to values of a coarser one. A multidimensional schema consists of facts defined with respect to a particular
combination of levels. A multidimensional instance associates measures with dimension coordinates in each
fact. A dimension may participate in a fact multiple times with different roles.

For simplicity, and without loss of generality, we assume that dimensions names are unique. We define
next multidimensional schemas.

Definition 1. Multidimensional Schema

• A multidimensional schema MS is composed by a set of levels L = {L1, . . . , Ln}, a set of dimensions
D = {D1, . . . , Dm,Time}, and a set of facts F = {F1, . . . , Fo}.

• A level L ∈ L, is defined by a schema 〈name, A1 : dom1, . . . , An : domn〉, where name is the level
name, and each attribute Aj is defined over the domain domj . The special level All ∈ L, does not
have any attribute. The level name name is unique inMS, and the attribute name Aj is unique in L.

• A dimension Di ∈ D has a unique name and is composed of a set of levels Li{Li1, . . . , Lin, All},Li ⊆ L,
and a set of hierarchies Hi = {Hi1, . . . ,Hik}.

• A hierarchy H ∈ Hi is defined by the schema 〈name,Si, Rname〉. name is the hierarchy name and it
is unique in MS. A hierarchy is composed by a set Si of levels of dimension Di, Si ⊆ Li. The roll-up
relation Rname consists of a set of triples 〈Lj , Lk, card〉, where Lj and Lk ∈ Si. card ∈ {1-1, 1-m,m-m}
denotes the cardinality of the link between the child level Lj and the parent level Lk. The roll-up
relation Rname, includes All as parent in some triple. Moreover, the All level is, directly or transitively,
accessible from all levels of the hierarchy.

Dimension Time has the associated hierarchy Calendar, composed by Day, Month, and Year levels. A
second hierarchy for Time could be named CalWeek, and it could be composed by Day, Week, and Year.
In such a dimension, weeks are numbered within a year. The first and the last week in a year might
be composed by less than 7 days1. According to the above definitions, these two hierarchies may be
defined as follows:

HTime = {〈Calendar, {Day, Month, Year}, RCalendar〉, 〈CalWeek, {Day, Week,Year}, RCalWeek〉}
RCalendar = {〈Day,Month, 1-m〉, 〈Month, Year, 1-m〉, 〈Year, All, 1-m〉}
RCalWeek = {〈Day,Week, 1-m〉, 〈Week, Year, 1-m〉, 〈Year, All, 1-m〉}

• A fact Fi ∈ F is defined by the schema (K, {〈L1, card1, N1〉, . . . , 〈Lm, cardm, Nm〉}, {〈Ki, Nj , Nk, Ti,
boundi〉, . . . , 〈Kh, Np, Nq, Th, boundh〉, with j 6= k, p 6= q}{〈M1 : dom1, add1〉, . . . , 〈Mn : domn, addn〉}).
A fact has an attribute K that uniquely identifies a fact instance, i.e., it functionally determines all the
dimension roles and the measures of each cell. A fact instance is characterized by a set of coordinates
and a set of measures. A coordinate is a level Lj of a dimension, and it is the finest granularity on
which measures are captured on that dimension. Indeed, a fact can be connected to any of the levels
of a dimension. As an example, sporadic events can be captured by a temporal dimension at the
month level, rather than at the day level. card indicates the cardinality of the relationship between
the dimensions and the fact and is one of 1-1, 1-m, or m-m. The same level can participate several
times in a fact, playing different roles. Ni is a name of the role played by a dimension, starting from
level Lj . As an example, a temporal dimension could play two different roles, one starting at the day
level, and the other starting at the month level.

Each measure Mi is defined over the domain domi. Measure types are additive (i.e., they can be
meaningfully summarized along all the dimensions, using addition), semi-additive (i.e., they can be

1For the sake of simplicity, we will consider in this paper only such two time hierarchies. Further granularities may be
suitably modeled, even with gaps and non convex granules [9]. In any case, we assume that all the date values stored for some
fact instance must belong to all the considered time hierarchies.

8

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 9

meaningfully summarized using addition along some, but not all, the dimensions), and non-additive
(i.e., they cannot be meaningfully summarized using addition across any dimension). The role names
Ni and the measures names Mj are unique in Fi.

• An explicit link existing between two RPTDs is defined by the schema 〈Ki, Nj , Nk, Ti, boundi〉, j 6= k.
Ki is its unique name, and it represents a connection between the ordered couple of RPTDs Nj , Nk,
i.e., levels of dimension Time. The two roles must refer to the same level, meaning that time must be
represented at the same granularity within the same temporal dimension. Furthermore, instances bj of
Nj must be connected only to instances bk of Nk such that bj ≤ bk. Thus, the corresponding (closed)
interval is [bj , bk], having length (bk − bj + 1). At last, the semantic of measures must be properly
managed. To this purpose, we define the set Ti ⊆ M , which is composed by the fact measures that
should be considered as telic ones over the new interval. boundi ∈ {++,+–, –+, – –} specifies whether
the given upper and lower bounds must contain the specified temporal values, respectively.

As pointed out by Terenziani et al. [37], by using an instant-based semantics, data are interpreted as
a sequence of states indexed by points in time. Each state is independent from every other state. By
considering two time points as an interval, the instant-based semantics no longer applies. Indeed, facts are
now associated with sets of time instants, which are the temporal extent where a fact is now described. The
telic aspects need to be considered, since the downward property could not hold over all the fact measures.
The telic property expresses the completeness of a fact over an interval. As an example, an overall cost of
100.00 for a 10 days therapy, does not reflect the cost of the first 5 days.

We now extend the notation of the MultiDim model by introducing links between RPTDs. Two temporal
dimensions can be connected by a link. Such a connection is characterized by a name and a direction. The
combination of two connected temporal dimensions will create an interval-based dimension sharing the
same name as the link one. Moreover, the link direction determines which instant-based dimension will be
considered as interval starting point, and which one as interval ending point.

The extended notation is depicted in Figure 3.

Time

DateMeasure1

...

Fact Time

Date

TimeDimension1

TimeDimension2

TimeDimension3

TimeLink1

Figure 3. Extension of the MultiDim notation to represent connections between time dimensions. The connection between
TimeDimension1 and TimeDimension2 by TimeLink1 means that the two temporal dimensions can be combined together to
create a derived interval-based dimension

TimeDimension1 is connected with TimeDimension2 by TimeLink1. This means that TimeDimension1
and TimeDimension2 can be combined to create a derived interval-based dimension called TimeLink1. Its
instances will be intervals composed by TimeDimension1 members, considered as the starting point, and
TimeDimension2 members considered as ending point.

Five time links have been added to the example of Figure 2, as depicted in Figure 4.
DrugPeriod and EffectPeriod are two obvious links, as defined by their temporal dimension names. On the

other hand, EffectDelay, ResidualPeriod, and TreatmentPeriod are strongly domain dependent: EffectDelay
represents the amount of time between the drug administration and its absorption (i.e., the process of a
substance entering the blood circulation. Once the administered drug has been absorbed, it starts to produce
its effects on the treated patient); ResidualPeriod represents the amount of time between the end of drug
administration and the end of its effect (i.e., once the drug administration stops, there is a period where
the effects still hold). Finally, TreatmentPeriod represents the overall period of a treatment, that is from the
start of the treatment to the end of residual effect of the administered drug.

9

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 10

DrugPeriod(Cost:Telic)

EffectPeriod(Cost:Telic)

TreatmentPeriod

EffectDelay(Cost:Telic)

ResidualPeriod

EffectStart

EffectEnd

DrugStart

DrugEnd

Drug

DrugKey

DrugName

ATC

ATC2

ATC2Key

ATC1

ATC1Key

Patient

PatientID

FirstName

LastName

Sex

Time

Date

CalWeek

Month

MonthNumber

MonthName

Quarter

Quarter

Year

Year

Cost

DailyDosage +!

Treatment

C
a
le

n
d
a
r

Week

WeekNumber

Figure 4. A multidimensional schema that represents treatments (i.e., the Treatment fact). The Time dimension plays different
roles, which are linked in order to set up temporal intervals. Different arrows specify different kinds of intervals, according to
Definition 1. Standard arrows correspond to ++ intervals; arrows with a filled circle correspond to +– intervals; arrows with
a filled circle correspond to –+ intervals.

Now, we give an example of how to define the multidimensional schema, as defined in Definition 1, of a
fact, starting from its conceptual graphical modeling. In this example, we start from Figure 4.

Example 1. The multidimensional schema of the fact Treatment depicted in Figure 4 can be defined as
follows:

L = {(Time, Date: Date), (Week, WeekNumber: Int),
(Month, MonthNumber: Int, MonthName: String),(Quarter, Quarter: Int),
(Year, Year: Int), (Drug, DrugKey: Int, DrugName: String),
(ATC2, ATC2Key: String), (ATC1,ATC1: String), (Patient, PatientID: Int,
FirstName: String, LastName: String, Sex: Char), (All)}

D = {Patient, Drug, Time},
F = {Treatment}

As for the schemata of dimensions, Time has been already introduced in Definition 1, being a widely
used dimension. Dimension Drug uses the hierarchy ATC, named after the usual classification Anatomical
Therapeutic and Chemical (ATC). The schema for the Drug and Patient dimensions is:

LDrug = {(Drug, DrugKey: Int, DrugName: String), (ATC2, ATC2Key: String),
(ATC1, ATC1Key: String), (All)}

HDrug = {〈ATC, {Drug, ATC2, ATC1}, RATC〉}
RATC = {〈Drug, ATC2, 1-m〉, 〈ATC2, ATC1, 1-m〉, 〈ATC1, All, 1-m〉}
LPatient = {(Patient, PatientID: Int, FirstName: String, LastName: String, Sex: Char), (All)}
HPatient = {〈Pat, {Patient}, RPat〉}
RPat = {〈Patient, All, 1-m〉}

10

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 11

The schema of the Treatment fact is described as:

Treatment = {TreatmentKey, {〈Drug, 1-m, Drug〉, 〈Time, 1-m, DrugStart〉,
〈Time, 1-m, DrugStart〉, 〈Time, 1-m, DrugEnd〉,
〈Time, 1-m, EffectStart〉, 〈Time, 1-m, EffectEnd〉, 〈Patient, 1-m, Patient〉},
{〈DrugPeriod, DrugStart, DrugEnd, {Cost},++〉,
〈EffectDelay, DrugStart, EffectStart, {Cost},+–〉,
〈ResidualPeriod, EffectEnd, DrugEnd, {}, –+〉,
〈TreatmentPeriod, DrugStart, EffectEnd, {},++〉,
〈EffectPeriod, EffectStart, EffectEnd, {Cost},++〉},
〈Cost: Int, Additive〉, 〈DailyDosage: Int, Semi-Additive〉}

Given the definition of a schema, we may define next multidimensional instances.

Definition 2. Multidimensional Instance. A multidimensional instance, also called cube, is composed by
instances of dimensions and facts.

The instance of a dimension Di is composed by:

• A set Bk of members for each level in Lk ∈ Li. The level All has a unique member all.

• A finite set of roll-up relations Rj,k
name, where name is the hierarchy name, containing pair of members

(bj , bk), where bj identifies a member in level Lj ∈ Li, and bk identifies a member in level Lk ∈ Li. A
pair 〈bj , bk〉 ∈ Rj,k

name if the member bj rolls up to bk.

A fact instance C is composed by cells c ∈ C characterized by:

• an identifier k,

• a member b for each level participating in a role-playing dimension, and

• a value for each measure that quantifies a fact.

We also introduce an auxiliary function K that, given a cell c, K(c) returns the identifier value of c.

We give next an example of fact instance.

Example 2. The instance of dimension Drug of the multidimensional schema depicted in Figure 4 can be
defined as:
BDrug = {(D1,Tylenol), (D2,Aspirin)}

BATC2 = {(N02), (B01)}

BATC1 = {(N), (B)}

RDrug,ATC2
ATC = {〈D1,N02〉, 〈D2,B01〉}

RATC2,ATC1
ATC = {〈N02,N〉, 〈B01,B〉}

The instances of fact Treatment are in the form: Treatment = {(P1,Tylenol, 65, 40, 16-08-2018, 07-09-2018,
03-09-2018, 12-09-2018), . . . }. The tuple in the example instance corresponds to the first line of Table 1.

5. Temporal OLAP Operations

In this section, we present OLAP operators to deal with interval-based RPTDs: the to atelic and to telic
operators, which change the representation of some measures; the interval slice operator, which filters interval
slices on data; The cumulative sum operator, which computes cumulative telic values of the measure over
intervals; and the temporal roll-up operator, which temporally summarizes data. As introduced in Section 4,
measures can be additive, semi-additive, and non-additive. These different types of measure ensure the

11

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 12

summarizability property, which is needed when aggregating data [34]. Another issue to consider deals with
interval-based data. Measures can quantify events that are characterized by a culmination, also called telic
events, and events that represent states, also called atelic events.

In the next subsection we shall define the function for adjusting measures according to the considered
intervals.

5.1. Measure Adjustment

In Definition 1, each time link is associated with a set of measures that must be considered as telic
ones over that interval. When manipulating telic measures, we must consider the fact that the downward
property does not hold [37]. As an example, assume that a value of 100 is associated to an interval that
lasts for 10 days. If the downward property holds, the value of 100 may be associated for every subinterval
within those 10 days. Otherwise, the interval represents a complete state, and the value of 100 is valid only
over the 10 day period. The corresponding value for a subinterval can be approximated according to some
functions: we propose here an adjustment function Adj that modifies a value of a measure according to a
given interval.

Definition 3. Adjustment (Adj) Function
Let ∩(i1, i2) be an auxiliary function that, given two intervals, returns their intersection. Given a measure

M , its value v, an interval-based RPTD coordinate in, and an interval l, the Adj function is defined as follows:

Adj(M, v, in, l) =


v·(end(∩(l,in))−start(∩(l,in))+1)

end(in)−start(in)+1 : M is telic over in

v : M is atelic over in

Time
1 10

0

100
@(4,9)=60

Figure 5. Example of measure adjustment for a telic measure. The value is adjusted by supposing that the measure increases
linearly over time

Intuitively, the value of the measure is proportionally adjusted to reflect its value over the intersection
between interval l and the RPTD instance in. As an example, let us assume that a given measure has a
value of 100, and that the closed interval associated to it over the chosen temporal dimension is [1, 10]. If
the temporal interval is l = [4, 9], then the interval length is 9− 4 + 1 = 6 and the resulting measure value
is adjusted to 60, as depicted in Figure 5. By using a simple linear monotonic function, we assume that
the measure increases linearly over time: however, as already pointed out in the literature by [25], other
functions can also be considered for computing a better estimate.

In general, we may introduce a more general version of function Adj, with a fifth argument, i.e.
Adj(M, v, in, l, f), where f is the function representing how values of telic measure M are “distributed”
over interval in. This way, a new telic measure can be derived for the intersection of the given intervals. In
this case, the function is redefined for telic measures as:

Adj(M,v, in, l, f) =

 f(end(∩(l, in)))− f(start(∩(l, in))) : M is telic over in

v : M is atelic over in
12

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 13

Hereinafter, for sake of simplicity and without loss of generality, we will consider telic measures as the
result of a linear increase over the given interval.

5.2. Converting measures from telic to atelic ones and vice versa

A common need when considering temporal data is to move from atelic data to their corresponding
atelic representation and vice versa, according the analysts’ requirements. For instance, users may want to
consider the overall quantity of drugs administered to patients, considering both the given daily quantity
and the administration period. On the other side, it could be useful to move, similarly to the approach
proposed for the adjustment function in the previous section, from a telic measure to its corresponding atelic
one. For instance, a user could require to have the daily cost of a drug, according to some associated period.

The following operators allow one to move from atelic measures to telic ones and vice versa.

Definition 4. τA Operator (To Atelic)
Given a multidimensional cube C, a telic measure M , one of its interval-based RPTD I, and a new measure
name M ′, the operator τA returns a cube where for cells c ∈ C values of new atelic measure M ′ are computed
by considering the corresponding telic values of measure M .

The syntax of the τA operator is:

C ′ = τA(C,M, I,M ′)

and it is defined as2:

C ′ = {x | ∃y ∈ C(∀i[1...m](Ni(x) = Ni(y)) ∧ ∀i[1...n](Mi(x) = Mi(y)) ∧M ′(x) = M(y)
end(I(y))−start(I(y))+1)}

Definition 5. τT Operator (To Telic)
Given a multidimensional cube C, an atelic measure M , one of its interval-based RPTD I, and a new
measure name M ′, the operator τT returns a cube where for cells c ∈ C values of new atelic measure M ′

are computed by considering the corresponding atelic values of measure M .
The syntax of the τT operator is:

C ′ = τT (C,M, I,M ′)

and it is defined as:

C ′ = {x | ∃y ∈ C(∀i[1...m](Ni(x) = Ni(y)) ∧
∀i[1...n](Mi(x) = Mi(y)) ∧M ′(x) = M(y) · (end(I(y))− start(I(y)) + 1))}

5.3. Interval Slice

Filtering is one of the most common operations on data. The standard OLAP slice operator returns
data subsets according to coordinates on instant-based dimensions. For instance, users may want to focus
on some of the administered drugs, only. The interval slice operator, instead, allows one to perform filtering
on interval-based temporal dimensions.

The interval slice operator allows one also to perform queries like “What is the value of the measure
during a given interval?” Such operator is named At, and it is depicted by the symbol @. Given a time
interval l and a fact instance, the operator returns the subset of cells that intersect l.

Definition 6. @ Operator (Interval Slice)
Given a multidimensional cube C, one of its interval-based RPTD I between roles Nj and Nk of dimension
Time, and an interval l, the operator @ returns (with some possible adjustments) all the cells c ∈ C for which
the temporal relationship intersect holds between the instances of I and l. The intersection relationship

2In the following we will use a sort of calculus for specifying the meaning of operators. Variables stand for cube cells,
while functions express dimension-related role members and measures for the given cells. Some basic arithmetic operations on
measures are used.

13

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 14

corresponds to the disjunction of equal, finishes, starts, during, overlaps, and meets ones (and their respective
inverse relationships, i.e., started-by, finished-by etc.) from the Allen’s interval algebra [1].

The syntax of the @ operator is:

C ′ = @(C, I, l)

and it is defined as:

C ′ = {x | ∃y ∈ C, intersect(I(y), l) ∧ ∀i[1...m],i6=j,k(Ni(x) = Ni(y)) ∧Nj(x) = start(∩(I, l)) ∧
Nk(x) = end(∩(I, l)) ∧ ∀i[1...n](Mi(x) = Adj(Mi,Mi(y), I(y), l)))}

Intuitively, only cells intersected by the given temporal interval over the chosen RPTD are kept. The
first line builds up all the role playing dimensions, but the last one. The intersect relationship between the
instance of I and l is checked, and it is then assigned to the selected RPTD. Finally, measures with adjusted
values are built up.

A particular case arises when, instead of a time interval, a time point is given as input. In this case, the
interval slice operator allows one to perform queries like “Compute the value of a measure at a particular
point in time”. Given a time point t and a fact instance, the operator returns the subset of cells whose
interval contains t. Since the temporal instant t can be seen as the interval [t, t], this case is equivalent to
the interval-based case.

5.4. Cumulative Sum

By applying the @ operator, users are interested in the instantaneous value of a measure. As depicted by
the previous example, in case of telic measures the @ operator returns the contribution of the measure for
that instant. The cumulative sum operator is needed to compute measure cumulative values over intervals.
This particular way of filtering is used to perform queries such as: “Compute the cost of Aspirin treatments
up to this day”. To perform such a query, we propose the Σ operator, defined next.

Definition 7. Σ Operator (Cumulative Sum)
Given a multidimensional cube C, one of its interval-based RPTD I between roles Nj and Nk of dimension
Time, and an instant t, the Σ returns all the cells c ∈ C for which the temporal relationship contains holds
between the instances of I and t. The syntax of Σ is:

C ′ = Σ(C, I, t)

and it is defined as:

C ′ = {x | ∃y ∈ C, contains(I(y), l) ∧ ∀i[1...m],i6=j,k(Ni(x) = Ni(y)) ∧Nj(x) = start(I(y)) ∧
Nk(x) = t ∧ ∀i[1...n](Mi(x) = Adj(Mi,Mi(y), I(y), [start(I(y)), t]))}

Intuitively, only those cells containing the given time interval over the chosen RPTD are kept. The
first line builds up all the role playing dimensions but the last one. The contains relationship between the
instance of I and t is checked. Finally, measures and dimensions with adjusted values are returned.

5.5. Temporal Roll-up

The roll-up operation allows one to summarize data from a finer to a coarser granularity level in the
existing dimensions. The first phase in the data summarization process aims at creating the aggregation
groups, that is, grouping data according to common coordinate values. Most models, like those we presented
in Section 4, include the top level named All which allows one to get rid of dimensions in the aggregation
phase. As an example, in the query “Compute the total cost of treatments per drug”, only the Drug
dimension is mentioned, meaning that the other dimensions are implicitly used at the All level. This will
lead to as many aggregation groups as the number of Drug members.

While finding the aggregation groups in point-based dimensions is quite trivial, working with interval-
based dimensions is more difficult. We consider here two techniques to achieve such temporal aggregations:

14

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 15

• Instant temporal aggregation (ITA) [6, 22, 28, 31, 40] computes the aggregate value at a given temporal
instant t, considering all the tuples whose timestamp contains t. In case of telic measures, suitable
adjustments are needed to derive atelic measures, as shown in the following examples. The resulting
tuples at consecutive temporal instants with identical aggregate values are then coalesced (i.e., fused
together) into one unique tuple, over the maximal temporal intervals during which the aggregate results
are constant. ITA will be used when only nontemporal dimensions are used to create the aggregation
groups.

• Span temporal aggregation (STA) [6, 22] allows an application to specify the temporal intervals for
which to report resulting tuples, e.g., for each year from 2010 to 2014. For each of these intervals, a
result tuple is produced by aggregating all the argument tuples that overlap such an interval.

As we shall describe later on in the current section, the proper aggregation will be selected according to
the dimensions used to create the aggregation groups. In both cases (ITA and STA), measure values are
adjusted to the new interval lengths. The temporal roll-up operator ρ is defined as follows.

Definition 8. ρ Operator (Temporal Roll-up)
Given a multidimensional cube C, one of its interval-based RPTD I, a set of levels L (one for each role
playing dimension Ni of C), and an optional temporal granule g, the ρ operator is defined as:

C ′ = ρ(C, I, {l1, . . . , lm}, [g])

The third parameter {l1, . . . , lm} is a set of levels containing one level for every dimension the cube
is made of. This set is used to generate the aggregation groups. Intuitively, the All level states that no
particular dimension is used in the aggregation groups. The optional parameter g is used to create the
temporal aggregation groups, and it consists of a granularity level taken from the RPTD upon which the
components of I are defined. As an example, EffectDelay is an interval-based RPTD composed by the instant-
based RPTD DrugStart and EffectStart. Both instant-based RPTDs are defined over the Time dimension.
The granule g is chosen among the levels of the Time dimension, namely Date, Week, Month, Quarter, and
Year. ITA is performed when the optional parameter g is not defined: the algorithm looks for the new
intervals in which the measure values are constant. STA, on the other hand, is performed when the optional
parameter g is defined.

5.6. Temporal operators at work

Let us now consider some analysis requirements related to the motivating scenario introduced in Section
3. In the following examples we will discuss how to use and combine the previously introduced operators to
manage some suitable OLAP queries, possibly involving multiple RPTDs.

Example 3. Consider the example of Figure 4. DrugStart and EffectStart have been combined to create
the interval-based RPTD EffectDelay. Let us consider the query: “Compute, for each drug, the total cost
of treatments during the effect delay period between Sept. 1 and Sept. 15”. To evaluate the query, we
need to suitably apply different temporal operators, before applying the last aggregation. More precisely,
we have first to derive the DailyCost of the drug considering the telic measure Cost and the related RPTD
DrugPeriod, by applying the To Atelic operator

Treat′ = τA(Treatment,Cost,DrugPeriod,DailyCost)

Then, we need to derive a further telic measure from the atelic DailyCost by considering RPTD EffectDelay
through the To Telic operator

Treat′′ = τT (Treat’,DailyCost,EffectDelay,EffectCost)

Such cube Treat′′ will be used throughout the following examples, to show the kind of temporal queries
we are able to define, based on the suitable composition of different temporal operators.

15

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 16

Finally, we apply the @ operator as follows:

TreatItvl = @(Treat′′,EffectDelay, [Sept 1,Sept 15])

Figure 6 graphically depicts the results. Dashed lines represent cell intervals, or part of them, that have
been discarded. Solid lines represent cell intervals, or part of them, intersected by [Sept. 1, Sept. 15]. Only
the telic measure Cost has been adjusted: e.g., for the tuple (1, P1, Tylenol, 65, 40) whose administration
started on Aug. 16, ended on Sept. 07, and whose effects started on Sept. 3, the original Cost of 65 was
adjusted to a DailyCost as 65

(Sept.07−Aug.16+1) = 2.826; the cost during the EffectDelay over the interval [Sept.

1, Sept. 15] is then computed as 2.826× (Sept.3− Sept.1 + 1) = 5.652.

Time
Aug 16 Sept 1 Sept 15

(3, P2, Aspirin, 10.526, 30)

(1, P1, Tylenol, 5.652, 40)

(4, P3, Tylenol, 30, 30)

(6, P4, Aspirin, 13.125, 50)

(2, P1, Tylenol, 12, 20)

@(Sept 01, Sept 15)

(5, P4, Tylenol, 0, 40)

Aug 20

Figure 6. Result of the application of the @ operator @(Treat′′,EffectDelay, [Sept 1, Sept 15]) starting from the Treatment cube,
to evaluate a measure over a given temporal interval

At this point, the results evaluated over all the tuples can then be grouped by Drug dimension members
(Tylenol and Aspirin) leading to the values (Tylenol, 47.652) and (Aspirin, 23.651) (not shown in the figure).

A similar approach can be taken for instant-based queries.

Example 4. Consider the example of Figure 4. DrugStart and EffectStart have been combined to create
the interval-based RPTD EffectDelay. Let us consider the query: “Compute, for each drug, the total cost of
treatments during the effect delay on Sept. 5”. To evaluate this query, the @ operator must be applied as
follows:

TreatInst = @(Treat′′,EffectDelay, [Sept 5,Sept 5])

Figure 7 graphically depicts the result. Dashed lines represent cell intervals that have been discarded.
Filled diamonds represent time points within the interval. Only the Cost measure has been adjusted, since it
is a telic one. We have two tuples whose EffectDelay includes Sept. 05: (3, P2, Aspirin) and (4, P3, Tylenol)
whose DailyCost are 2.105 and 3.75, respectively.

The result over all the drugs is thus computed as 2.105 + 3.75 = 5.855

Example 5. Consider the example of Figure 4. DrugStart and EffectStart have been combined to create
the interval-based RPTD EffectDelay. Let us consider the query: “For each administered drug, compute the
total costs up to Sept. 5 between the beginning of the drug administration and Sept. 5, where the effect still
is unobserved as of Sept. 5”. To perform the query we apply the Σ operator still still using cube TreatFinal
as:

TreatSigma = Σ(Treat′′,EffectDelay,Sept 5)

Figure 8 graphically depicts the result. Dashed lines represent cell intervals, or part of them, that have
been discarded: e.g. the tuple (1, P1) is discarded because, on September 5, the effect of the administration

16

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 17

Time
Aug 16 Sept 1 Sept 10

(3, P2, Aspirin, 2.105)

(4, P3, Tylenol, 3.75)

@(Sept 5)

Aug 20 Sept 4

Figure 7. Result of @(Treat′′,EffectDelay, [Sept 5,Sept 5]). Dashed intervals represent cells that have been discarded. The
remaining intervals represent cells intersected by the selected time point. Only the telic measure EffectCost has been considered.

is visible. Solid lines represent cell intervals, or part of them, containing the temporal instant Sept. 5: e.g.
only a part of the tuple (4, P3) is considered, because the effect of the administration will start to be visible
on Sept. 12.

Only the telic measure Cost has been adjusted: e.g., for the tuple (4, P3) whose administration started
on Sept. 04, ended on Sept. 19, and whose effects started on Sept. 12, the original Cost of 60 was converted
to a DailyCost as 60

(Sept.19−Sept.04+1) = 3.75; the cost during the EffectDelay up to Sept. 05 is then computed

as 3.75 × (Sept.5 − Sept.4 + 1) = 7.5. For the tuple (3, P2) whose administration started on Sept. 01,
ended on Sept. 08, and whose effects started on Sept. 06, the original Cost of 80 was converted to a
DailyCost as 80

(Sept.08−Sept.01+1) = 10; the cost during the EffectDelay up to Sept. 05 is then computed as

2.105× (Sept.5− Sept.1 + 1) = 10.526.

Time
Aug 16 Sept 1 Sept 10

(3, P2, Aspirin, 10.526, 30)

(4, P3, Tylenol, 7.50, 30)

Aug 20 Sept 4

Σ(Sept 5)

(5, P4, Tylenol, 6.67, 40)

(1, P1, Tylenol, 50.87, 40)

Figure 8. Result of the application of the Σ operator Σ(Treat′′,EffectDelay,Sept 5), based on the Treatment cube. Dashed
lines represent cell intervals, or part of them, that have been discarded. Solid lines represent cell intervals, or part of them,
containing Sept. 5. The telic measure EffectCost has been considered according to given portion of intervals containing Sept 5.

Example 6. Let us consider Figure 4 and the query “Compute the total cost of treatment per drug during
the effect delay period”. To perform this query, we first need the temporal roll-up ρ operator as:

TreatRollUp = ρ(Treat′′,EffectDelay, {All, . . . ,Drug, . . .All})
The EffectDelay RPTD is used by the ITA algorithm to create the temporal groups. The only considered

instant-based dimension is the Drug one. Figure 9 shows the result of the application of the ρ operator: two
17

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 18

aggregation groups have been created, one for every Drug (i.e., Tylenol and Aspirin). Within each group, the
ITA algorithm identifies the intervals for which the measure value is constant. Since Cost is a telic measure,
its value has been adjusted to the length of the new intervals.

For instance, the Tylenol case of patient (1, P1) has a Cost value (i.e. 65) which has been split according
to the length of intervals: the DrugPeriod original interval is (Sept.07−Aug.16 + 1) = 23 days long and the
DailyCost is thus 65

23 = 2.826. Tuple (1, P1) has been divided into four parts, since it contains the treatment
of patient (5,P4) and overlaps with the treatment of patient (3, P2):

i. the first subinterval is computed as (Aug.20−Aug.16) = 4 days long (we consider the closed interval
[Aug. 16 ÷ Aug. 19]): the measure has been adjusted according to the formula 65× 4

23 = 11.304;

ii. the second subinterval, i.e. the one that contains (5, P4), is computed as (Aug.22−Aug.20) = 2 days
long (we consider the closed interval [Aug. 20 ÷ Aug. 21]): for patient P1 the measure has been
adjusted according to the formula 65 × 2

23 = 5.652. During this interval, (5, P4) produces a cost for
Tylenol of 30× 2

9 = 6.67;

iii. the third subinterval, i.e. the one that ends as (3, P2) starts, is computed as (Sept.1− Aug.22) = 10
days long (we consider the closed interval [Aug. 22 ÷ Aug. 31]): for patient P1 the measure has been
adjusted according to the formula 65× 10

23 = 28.267;

iv. the fourth subinterval, i.e. the one that ends as the effect starts and partially overlaps (3, P2), is
computed as (Sept.3− Sept.1) = 2 days long (we consider the closed interval [Sept. 01 ÷ Sept. 02]):
for patient P1 the measure has been adjusted according to the formula 65× 2

23 = 5.652.

Figure 9 depicts the complete costs of Tylenol: for [Sept. 04 ÷ Sept. 05] tuple (4, P3) produces a cost of
60× 2

16 = 7.50; for [Sept. 06 ÷ Sept. 09] tuple (4, P3) produces a cost of 60× 4
16 = 15.00; for [Sept. 10 ÷

Sept. 11] tuple (4, P3) produces a cost of 60× 2
16 = 7.50 and tuple (2, P1) produces a cost of 20× 2

5 = 8.00;
for [Sept. 12 ÷ Sept. 12] tuple (2, P1) produces a cost of 20× 1

5 = 4.00.

Time
Aug 16 Aug 20 Sept 1 Sept 4 Sept 10 Sept 13 Oct 2

(6, P4, Aspirin, 35, 50)(5, P4, Tylenol, 30, 40)

(4, P3, Tylenol, 60, 30)

(3, P2, Aspirin, 80, 30)

(2, P1, Tylenol, 20, 20)(1, P1, Tylenol, 65, 40)

Tylenol

11.30 5.65+

6.67=
12.31

28.26+5.65=33.91 7.50+

15.00=

22.50

7.50+

8.00=

15.50

4.00

Figure 9. Graphical representation of a part of the result for the query “Compute the total cost of treatment per drug during
the effect delay period”. It has been computed by applying the temporal roll-up ρ algorithm in case of instant temporal
aggregation. Two aggregation groups have been created, one for each drug (i.e., Tylenol, Aspirine). Within each group (Tylenol
in the figure), the ITA algorithm found the intervals for which the measure value is constant. The measure values have been
adjusted according to interval lengths. Bullets on the X-axis depict remarkable timestamps of EffectDelay period as stored in
Treat” cube

.

18

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 19

Example 7. Let us consider Figure 4 and the query “Compute the total cost of treatments for each drug
administered during the weeks which entail the effect delay period”. We may apply the temporal roll-up ρ
operator as:

TreatRollWeek = ρ(Treat”,EffectDelay, {All, . . . ,Drug, . . .All},Week)

In this example, Week is used by STA to create the temporal groups. Then, STA performs the aggre-
gation as depicted in Figure 10. The time axis is equally divided according to the Week granularity, every
week starting on Sunday. Each cell, represented by an interval, is assigned to the intersected granules.
Consequently, measure values are adjusted according to the new interval lengths.

For instance, the treatment (2, P1) belongs to two consecutive granules (weeks), the first granule being
shared with the treatment (4, P3), the second granule being shared with the treatment (6, P4). Telic
measures are proportionally adjusted on how long the interval spans in every granule. The treatment (2,
P1) spans in the granule [Sept. 04 ÷ Sept. 10] (we use closed intervals) for one day. The Cost measure is
20, where the DrugPeriod is 5 days long ([Sept. 10 ÷ Sept. 14]) and the EffectStart is Sept. 13. Adjusting
the cost according to the formula of Definition 3, the value is computed as 20 × 1

5 = 4.00 over the granule
[Sept. 04 ÷ Sept. 10].

Likewise, the treatment (4, P3) spans in the granule [Sept. 04 ÷ Sept. 10] (we use closed intervals) for
7 days. The Cost measure is 60, where the DrugPeriod is 16 days long ([Sept. 04 ÷ Sept. 19]) and the
EffectStart is Sept. 12. Adjusting the cost according to the formula of Definition 3, the value is computed
as 60× 7

16 = 26.25 over the granule [Sept. 04 ÷ Sept. 10]. Thus, the grand total value for the [Sept. 04 ÷
Sept. 11] granule for Tylenol is 4.00 + 26.25 = 30.25.

Figure 10 depicts the complete costs of Tylenol and Aspirin over the week granules as follows:

i. for [Aug. 14 ÷ Aug. 20] tuple (1, P1, Tylenol) produces a cost of 65× 5
23 = 14.13 and (5, P4, Tylenol)

produce a cost of 30× 1
9 = 3.33;

ii. for [Aug. 21 ÷ Aug. 27] tuple (1, P1, Tylenol) produces a cost of 65× 7
23 = 19.78 and (5, P4, Tylenol)

produces a cost of 30× 1
9 = 3.33;

iii. for [Aug. 28 ÷ Sept. 03] tuple (1, P1, Tylenol) produces a cost of 65 × 6
23 = 16.95 and tuple (3, P2,

Aspirin) produces a cost of 80× 3
38 = 6.31;

iv. for [Sept. 04 ÷ Sept. 10] tuple (3, P2, Aspirin) produces a cost of 80 × 2
38 = 4.21 and tuple (4, P3,

Tylenol) produces a cost of 60× 7
16 = 26.25;

v. for [Sept. 11 ÷ Sept. 17] tuple (2, P1, Tylenol) produces a cost of 20 × 2
5 = 8.00 and tuple (4, P3,

Tylenol) produces a cost of 60× 1
16 = 3.75 and tuple (6, P4, Aspirin) produces a cost of 35× 5

8 = 21.75;

vi. for [Sept. 18 ÷ Sept. 24] tuple (6, P4, Aspirin) produces a cost of 35× 2
8 = 8.75.

6. Expressing Temporal OLAP Operations in SQL

This section describes how all the OLAP operators have been implemented by SQL scripts. As language
of reference, we consider here SQL-92. More particularly we introduce and discuss the implementation
of operators by considering the examples provided in the previous section. With respect to the operators
introduced, we now consider, for sake of simplicity, only those table attributes, relevant to the discussed
queries (all the other attributes of fact and hierarchy tables will be omitted). The basic approach we follow,
consists of defining suitable views corresponding to the different operators introduced in the previous sections.
Thus, we will introduce examples related to views corresponding to operators τA and τT , allowing us to move
from telic to atelic data and viceversa, to operator @, to operator Σ, and to operator ρ with different kinds
of temporal aggregation. The different adjustment functions are embedded whithin the proposed views.

6.1. Conversion operators and Interval Slice

According to Example 3, we want to “Compute, for each drug, the total cost of treatments during the
effect delay period between Sept. 1 and Sept. 15” (closed interval), as in Figure 6. To do it, we will specify
operators τA, τT , and @ through suitable views, respectively. More precisely, views Treat1 and Treat2,

19

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 20

Time
Aug 21 Sept 4 Sept 11 Sept 18 Oct 2

Aspirin

6.31 4.21 21.875 8.75

Tylenol

Aug 28

14.13+

3.33=

17.46

19.78+

3.33=

23.11

16.95 4.00+

26.25=

30.25

8.00+

3.75=

11.75

Aug 14

(6, P4, Aspirin, 35, 50)(5, P4, Tylenol, 30, 40)

(4, P3, Tylenol, 60, 30)

(3, P2, Aspirin, 80, 30)

(2, P1, Tylenol, 20, 20)(1, P1, Tylenol, 65, 40)

Figure 10. Graphical representation of the result of the query “Compute the total cost during the effect delay per drug”.
This result has been computed by applying the ρ algorithm in case of span temporal aggregation. As one may notice, two
aggregation groups have been created, one for each drug (i.e., Tylenol and Aspirine). The time line has been divided in equally
sized granules by the STA algorithm according to the Week granularity: bullets on the X-axis depict the beginning timestamp
of every granule. Within each granule, the measure EffectCost has been adjusted according to how long the interval spans in
every granule

correspond to the application of operators τA and τT to the data discussed in Example 4, respectively.
Listing 1 provides the corresponding SQL code.

Then, view TreatItvl implements the Interval Slice operator, i.e.@, as detailed in Listing 2. In this view,
both the condition of intersection between RPTD values and the given interval, in the WHERE condition,
and the adjustment function, in the CASE part of SELECT clause), are expressed.

1

2 c r e a t e view Treat1 (Drug , Patient , DailyCost , Ef fectDelayS , Ef fectDelayE) as
3 s e l e c t Drug , Patient , Cost / (DrugEnd − DrugStart + 1) , DrugStart , E f f e c t S t a r t − 1
4 from Treatment ;
5

6 c r e a t e view Treat2 (Drug , Patient , Ef fectCost , Ef fectDelayS , Ef fectDelayE) as
7 s e l e c t Drug , Patient , Dai lyCost ∗(Ef fectDelayE − EffectDe layS + 1) , Ef fectDelayS ,

Ef fectDelayE
8 from Treat1 ;

Listing 1. Conversion operators

1 with v a r i a b l e s (var1 , var2) as va lue s (’ 2016−09−01 ’ , ’ 2016−09−15 ’)
2 c r e a t e view T r e a t I t v l (Drug , Patient , Ef fectCost , Ef fectDelayS , Ef fectDelayE) as
3 s e l e c t Drug , Patient ,
4 Ef f ec tCos t / (Ef fectDelayE − EffectDe layS +1) ∗
5 ((case
6 when (EffectDelayE < var2) then EffectDelayE
7 e l s e var2
8 end) −
9 (case

10 when (Ef fectDe layS >= var1) then Ef fectDe layS
11 e l s e var1
12 end) + 1)) , Ef fectDelayS , Ef fectDelayE
13 from Treat2 , v a r i a b l e s
14 where EffectDelayE >= var1 and Ef fectDe layS <= var2 ;
15

16 s e l e c t Drug , sum(Ef f e c tCos t)
17 from T r e a t I t v l

20

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 21

18 group by Drug ;

Listing 2. Interval Slice and final query

Finally, the last query in Listing 2 sums up the tuples of view TreatItvl, grouping them by Drug.

The interval slice operator @ can also evaluate the measure over a given granule (see Example 4 and
Figure 7). In this case, lower bound (start timestamp) and upper bound (end timestamp) specify the same
granule value, i.e. lower bound = upper bound. Listing 2 still applies, by only changing the values for var1
and var2, corresponding to the interval bounds.

6.2. Cumulative Sum

The cumulative sum operator Σ evaluates the cumulative value of a measure over a given interval. Even
in this case, we define a corresponding suitable view, using the view already built and corresponding to
the conversion operator τT . Such view contains both the computation of the cumulative sum and the
condition, verifying the containment relation between the given timestamp and the considered RPTD value.
Focusing on Example 5, let us consider the query “For each administered drug, compute the total costs up
to September 5 between the beginning of the drug administration and September 5, where the effect still is
unobserved” (Sept 5 included), as in Figure 8. According to the adopted approach, view (TreatSigma) stores
the cost of the treatment of that drug during the part of the effect delay, which spans up to the required
timestamp. Finally, the last query sums up the tuples of view TreatSigma, grouping them by Drug, as in
Listing 3.

1 with v a r i a b l e s (var1) as va lue s (’ 2016−09−05 ’)
2 c r e a t e view TreatSigma (Drug , Patient , CostCumulative , Ef fectDelayS , Ef fectDelayE) as
3 s e l e c t Drug , Patient ,
4 Ef f ec tCos t ∗ ((case
5 when (EffectDelayE <= var1) then EffectDelayE
6 e l s e var1
7 end) − EffectDe layS + 1) , Ef fectDelayS , Ef fectDelayE
8 from Treat2 , v a r i a b l e s
9 where Ef fectDe layS <= var1 and EffectDelayE > var1 ;

10

11 s e l e c t Drug , sum(CostCumulative)
12 from DrugCostCumulative
13 group by Drug ;

Listing 3. Cumulative Sum

6.3. Roll Up

To specify Roll Up operator ρ in SQL, we need some intermediate views to build up the right intervals to
consider for the following temporal aggregation. Such intervals are built according to the lower and upper
bounds of RPTD intervals associated to the measures we are interested in.

To analyze in detail the different intermediate views we need to define, let us consider Example 6, where
we want to “Compute the total cost of treatment per drug during the effect delay period”, as in Figure 9.
The first view (RollUpInterval) has to contain the suitable closed intervals, over which we have to compute
then the temporal aggregation. Such intervals are depicted for the given example in Figure 9. Every
closed interval stored in view RollUpInterval is defined by a starting timestamp (lower bound) and an ending
timestamp (upper bound). Within view RollUpInterval, every starting timestamp has a corresponding ending
timestamp, which is the day before the beginning timestamp of the adjacent, right-hand side interval.

The time points used to compute such view in our example are represented as bullets over the time-axis
of Figure 9. To build view RollUpInterval we need to derive before an intermediate view RollUpTimestamp.
It stores any starting timestamp of an RPTD interval and any timestamp immediately following any ending
timestamp of the given RPTD interval. In our example, such view stores any EffectDelayS or the successive
time point of an EffectDelayE timestamp for the considered tuples (for drug Tylenol in the example). In our

21

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 22

case, the suitable timestamps we have to identify are Aug. 16 (EffectDelayS for P1), Aug. 20 (EffectDelayS
for P5), Aug. 22 (EffectdDelayE+1 for P5), Sept 03 (EffectdDelayE+1 for P1), and so on.

The intermediate view (RollUpTimestamp) is based on view Treat2 (corresponding to conversion operator
τT), as in the previous examples, and the timestamps for (StartPoint) are computed by considering upper
and lower bounds of EffectDelay.

1 c r e a t e view RollUpTimestamp (Star tPo int) as
2 s e l e c t T1 . Ef fectdDelayS as Star tPo int
3 from Treat2 as T1
4 union
5 s e l e c t T2 . Ef fectDelayE + 1 as Star tPo int
6 from Treat2 as T2 ;

Listing 4. View RollUpTimestamp

Thus, the suitable intervals we have to identify are [Aug. 16 ÷ Aug 19] (from EffectdDelayS of P1 to
EffectdDelayS of P5 - 1), [Aug. 20 ÷ Aug. 21] (from EffectdDelayS of P5 to EffectdDelayS of P5 - 1), [Aug.
22 ÷ Sept. 02] (from EffectdDelayE of P5 to EffectdDelayE of P1), and so on. Over these intervals we shall
then compute the cost per drug during the effect delay.

We build up the intermediate view (RollUpInterval), storing the beginning timestamp and the ending
timestamp of the intervals. In such case a nested query is needed, to find the corresponding ending timestamp
of any given starting timestamp.

1 c r e a t e view Rol lUpInterva l (BeginTimestamp , EndTimestamp) as
2 s e l e c t RUT1. Star tPo int as BeginTimestamp ,
3 RUT2. Star tPo int − 1 as EndTimestamp
4 from RollUpTimestamp as RUT1, RollUpTimestamp as RUT2
5 where RUT1. Star tPo int < RUT2. Star tPo int
6 and not e x i s t s (s e l e c t RUT3. Drug
7 from RollUpTimestamp as RUT3
8 where RUT1. Star tPo int < RUT3. Star tPo int and
9 RUT3. Star tPo int < RUT2. Star tPo int) ;

Listing 5. View RollUpInterval

Moving from view RollUpTimestamp, view RollUpInterval picks the StartPoints from two subsequent tuples
in RollUpTimestamp (namely, RUT1 and RUT2 in the from clause of Listing 5), on condition that no tuple
exists in the RollUpTimestamp view in between RUT1 and RUT2 (not exists command of Listing 5).

We build up one more intermediate view (RollUpIntervalCost), which computes, for every drug and for
every interval in RollUpInterval, the cost of the administration during the part of the EffectDelay contained
in that interval. It mainly consists in the application of the adjustment function previously introduced.

1 c r e a t e view Rol lUpInterva lCost (BeginTimestamp , EndTimestamp , Drug , Patient ,
2 CostDur ingInterva l) as
3 s e l e c t RUI . BeginTimestamp , RUI . EndTimestamp , T. Drug , T. Patient ,
4 (T. E f f e c tCos t /(T. Ef fectDelayE − T. Ef fectDe layS + 1)) ∗
5 (RUI . EndTimestamp − RUI . BeginTimestamp + 1)
6 from Rol lUpInterva l as RUI , Treat2 as T
7 where (T. Ef fectDe layS <= RUT1. Star tPo int and RUT1. Star tPo int < RUT2. Star tPo int
8 and RUT2. Star tPo int <= T. EffectDelayE) ;

Listing 6. RollUpIntervalCost

The view RollUpIntervalCost computes a Cartesian product between RollUpInterval and Treat2, and re-
quires the EffectDelay interval [T.EffectDelayS ÷ T.EffectDelayE] to contain the interval [RUT1 ÷ RUT2]
(where clause of Listing 6). The CostDuringInterval is then computed for every drug and every selected
interval.

Finally, the query of Listing 7 selects the tuples from the view RollUpIntervalCost of Listing 6, groups
them by interval (RUIC.BeginTimestamp, EndTimestamp), and sums up the CostDuringInterval. To increase
readability, the query also sorts tuples by beginning timestamp.

22

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 23

1 c r e a t e view TreatRollUp as
2 s e l e c t RUIC. Drug , RUIC. BeginTimestamp , RUIC. EndTimestamp ,
3 sum(CostDur ingInterva l) as CostDuringSubPeriod
4 from Rol lUpInterva lCost as RUIC
5 group by RUIC. Drug , RUIC. BeginTimestamp , RUIC. EndTImestamp
6 order by RUIA. BeginTimeStamp , RUIA. Drug ;

Listing 7. Query RollUp

After this example of ITA, let us consider, as a final case, an example of STA. According to Example 7,
we want to “Compute the total cost of treatments for each drug administered during the weeks which
entail the effect delay period”, as in Figure 10. Analogously to the previous case, we need to derive some
intermediate views, collecting in this case the bounds of all the required weeks. In order to do it, view
(WeekRollUpInterval) stores the suitable closed intervals, as those depicted in Figure 10 for the considered
example. Every closed interval stored in the view WeekRollUpInterval defines one week, starting on Sunday.
For the given example, every Sunday is depicted by a bullet over the X-axis. The corresponding ending
timestamp is the day before the adjacent, right-hand side bullet.

View WeekRollUpInterval is specified by leveraging the intermediate view WeekRollUpTimestamp. In our
case, it stores the bullets over the X-axis of Figure 9 and contains any DrugStart or EffectStart timestamp.
Thus, view WeekRollUpInterval, defined as in Listing 8, includes the first day of the weeks (Sunday) during
which we have either a DrugStart or an EffectStart, or both of them. The SQL weekday function returns the
day of the week specified as a number (Sunday is 1, Saturday is 7).

1 c r e a t e view WeekRollUpTimestamp (Star tPo int) as
2 s e l e c t T1 . DrugStart − weekday (T1 . DrugStart) + 1 as Star tPo int
3 from Treat2 as T1
4 union
5 s e l e c t T2 . E f f e c t S t a r t − weekday (T2 . E f f e c t S t a r t) + 1 as Star tPo int
6 from Treat2 as T2 ;

Listing 8. View WeekRollUpTimestampl

As in the previous case, we then define view WeekRollUpInterval of Listing 9, storing the granules (weeks)
over which we shall then aggregate data. Every week starts with the Sunday defined in the view WeekRollUp-
Timestamp of Listing 8.

1 c r e a t e view WeekRollUpInterval (BeginTimestamp , EndTimestamp) as
2 s e l e c t WRUT. Star tPo int as BeginTimestamp , WRUT. Star tPo int + 7 as EndTimestamp
3 from WeekRollUpTimestamp as WRUT

Listing 9. View WeekRollUpInterval

We build up one more intermediate view (WeekRollUpIntervalCost) of Listing 10, which computes, for
every drug and for every week in the view WeekRollUpInterval of Listing 9, the cost of the administration of
that drug during the part of the EffectDelay contained in that week.

1 c r e a t e view WeekRollUpIntervalCost (BeginTimestamp , Drug , Patient , CostDur ingInterva l) as
2 s e l e c t WRUI. BeginTimestamp as BeginTimestamp , T. Drug as Drug ,
3 T. Pat ient as Patient ,
4 (T. Cost / (T. DrugEnd − T. DrugStart + 1)
5 ∗ ((case
6 when (T. E f f e c t S t a r t <= WRUI. BeginTimestamp + 7) then
7 T. E f f e c t S t a r t
8 e l s e WRUI. BeginTimestamp + 7
9 end)

10 −
11 (case
12 when (T. DrugStart > WRUI. BeginTimestamp) then T. DrugStart
13 e l s e WRUI. BeginTimestamp
14 end))
15 as CostDur ingInterva l
16 from WeekRollUpInterval as WRUI, Treat2 as T
17 where ((T. DrugStart <= WRUT. Star tPo int + 7) and

23

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 24

18 (T. E f f e c t S t a r t >= WRUT. BeginTimestamp)) ;

Listing 10. WeekRollUpIntervalCost

The where clause of Listing 10 requires that either the DrugStart timestamp or the EffectStart timestamp
(or both of them) fall within the considered week.

Finally, the query of Listing 11 selects the tuples from the view WeekRollUpIntervalCost of Listing 10,
groups them by drug (WRUIC.Drug) and by interval (WRUIC.BeginTimestamp), and sums up the CostDuring-
Interval. To increase readability, the query also sorts tuples by beginning timestamp and drug name (order
by clause on WRUIC.BeginTimeStamp, WRUIA.Drug).

1 c r e a t e view TreatRollWeek as
2 s e l e c t RUIC. Drug , RUIC. BeginTimestamp , sum(CostDur ingInterva l) as CostDuringWeek
3 from WeekRollUpIntervalCost as RUIC
4 group by WRUIC. Drug , WRUIC. BeginTimestamp
5 order by WRUIC. BeginTimeStamp , WRUIA. Drug ;

Listing 11. Query TreatRollWeek

7. Related Work

In this section, we will describe and discuss some proposals presented in the literature in the context of
temporal models for multidimensional data, and aggregation and analysis of temporal data.

7.1. Temporal models for multidimensional data

Temporal aspects are a very important issue to deal with in the data warehouse context. The extension
of conceptual data models for considering also time has been considered in different proposals [18]. Designers
need to distinguish between telic and atelic data, in order to allow the system to retrieve information that
accurately reflect the real world.

Khatri et al. [21] proposed a mechanism for representing telic/atelic temporal semantics at the conceptual
level by using temporal annotations. Instead of defining additional constructs in the conceptual model, they
proposed an annotation-based approach. They started from a conventional conceptual model for capturing
the reality, then temporal features are specified on top of the initial abstraction. The authors argued that
the proposed approach was not specific for the adopted conventional model,bat it can be applied to other
models as well. In T+MultiDim Model, we use a hybrid technique that extends the MultiDim conceptual
model and also uses annotation-based techniques. In particular, we allow the designer to annotate in a
multidimensional schema the telicity properties of measures.

The T+MultiDim Model shows some features similar to those introduced in [25]. Koncilia et al. presented
a formal temporal model, and its implementation, called I-OLAP, to enable users to analyze sequences
interpreted as interval-based data. The model was based on several different approaches to analyze sequential
data (e.g. the one discussed in [5, 19, 26, 27]). The authors considered tuples, and their attributes, from a
transactional dataset: each tuple was referred to as event. In the model, intervals corresponded to the “gap”
between two consecutive events. By considering a class of event, intervals were defined according to changes
of an attribute value that quantifies an event. For instance, the event Light might be characterized by its
status, on or off. An interval was defined over changes of such status. The I-OLAP model was based on the
notions of dimensions, hierarchies, and dimension members. The authors defined the iCube (i.e., interval
cube), enabling users to analyze interval-based data. iCube was characterized by user-defined functions to
compute values over intervals. Indeed, these functions are similar to the adjustment function we propose in
this paper, as both estimate values from two consecutive events (i.e., an interval start and end). The authors
also introduced temporal operations to analyze interval data in an iCube. In particular, they defined an
operator to select cells and to compute measure values over interval sequences. Indeed, such an operator is
similar to the @ operator we define in this paper. Both operators allow one to select fact instances according
to a temporal point or to a temporal interval. The model of Koncilia et al. differs from T+MultiDim Model
since they explicitly deal with sequential data, while our proposal conceptually defines relationship between
point-based data, indicating that several combinations can be considered as intervals.

24

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 25

7.2. Temporal data aggregation and analysis

In a data warehouse context, analysts are interested in analyzing and aggregating data (measures)
w.r.t. various dimensions, which may be temporal. Performing temporal aggregation means grouping tuples
according to their temporal dimension (typically their timestamp) and apply aggregate functions to measures
within groups. Various kinds of temporal aggregation have been proposed in the literature [6, 10, 17, 22,
28, 31, 40]. The most relevant ones are the following:

• Instant Temporal Aggregation (ITA) computes the aggregate value at a given time instant t from the
set of tuples whose timestamp contains t.

• Moving-Window Temporal Aggregation (MWTA) that, given a time interval w, computes the aggre-
gate value at a given time instant t from the set of tuples whose timestamp is in the interval [t−w, t].

• Span Temporal Aggregation (STA), on the contrary, allows the query to specify the time intervals for
which to report result tuples, e.g., for each year from 2000 to 2005.

• Temporal Multidimensional Aggregation (TMDA) generalizes a variety of the previously proposed
aggregation operators and offers orthogonal support for two aspects of aggregation: the first one is
the definition of result groups, for which to report one or more aggregate values; the second one is the
definition of aggregation groups.

• Parsimonious Temporal Aggregation (PTA) overcomes the major limitations and combines the best
features of instant and span temporal aggregations. PTA computes compact aggregation summaries
that reflect the most significant changes in the data over time. Users may specify the desired result
size, in the same way they do when using STA. PTA produces a result with a predictable size, and
minimizes the approximation error.

In [7], the authors pretesented a general framework for temporal aggregation that accommodates existing
kinds of aggregation. The proposed framework was based on Klug’s work for conventional non-temporal
aggregation [23]. Like in [6], the framework of [7] provided orthogonal support for the definition of result
and aggregation groups. The general temporal aggregation framework subsumed different types of temporal
aggregation, such as ITA, STA, and MWTA: the authors pointed out open research challenges, such as
the definition of an efficient evaluation algorithm for their framework, and applications involving higher-
dimensional temporal data. In [7], the authors dealt with a point-based view, while in our proposal, the
new conceptual multidimensional data model T+MultiDim allows the specification of connections between
temporal dimensions. By combining temporal dimensions, we provide an interval-based semantics, instead
of the instant-based one.

In [36], the author presented a general and application-independent method for temporal aggregation on
user-defined granularities. The author analyzed the impact of the telic/atelic distinction on the problem of
temporal aggregation between different temporal granularities. In particular, two types of information split
were considered: information split occurs when some data can potentially be part of two different aggregates.

Classical OLAP operators limit the use of temporal dimensions as instant-based coordinates, but data
analysts often need to combine time related dimensions within multidimensional cubes, to consider domain-
related meaningful time periods. In this paper, we start from the MultiDim model and extend it to the
new conceptual multidimensional data model T+MultiDim by introducing connections between temporal
dimensions.

Literature considered different proposals for querying sequential data [4, 24]. Classical tools for data
analytics allow one to analyze set-oriented data, without considering their order. By analyzing both data
and their order dependencies, one could detect new knowledge. The focus of these approaches relates to
sorting data, and thus temporal aspects are considered and discussed within this particular field.

In [24], the authors presented a novel approach, allowing one to analyze simple and complex sequences
of events that are contained in a subcube specifically generated. Moreover, they created an additional
dimension, Relative Time Axis, enabling the user to analyze data in a very flexible way. The generated

25

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 26

subcubes can be analyzed using standard OLAP operators. The approach proposed in [24] could be placed
at logical level, since they defined an extension of the standard star schema model by introducing the concept
and the definition of a relative (time) axis storing the difference between a given event and any other event.
In [4], the authors proposed an SQL-like query language to analyze sequential data in an OLAP-like manner.
Again, the proposed approach can be placed at logical level since it was based on a Relational Database
Management System (RDBMS) and its related query language.

In our proposal, we consider both conceptual and logical levels, and allow designers to combine temporal
dimensions to analyze data in a suitable way. Starting from the conceptual level, we allow designeres and
analysts with a high-level representation of the considered domain, and provide an abstraction from the
underlaying technology. This means that conceptual schema represented by the T+MultiDim data model
can be mapped to various logical models.

A different proposal was related to sequenced temporal queries, i.e., queries that were evaluated at each
time point, and aims at using an RDBMS to process sequenced queries. In [13], the authors proposed
an extension to the relational database engine to implement sequenced temporal queries. The proposed
approach reduced temporal queries to nontemporal ones over data with adjusted intervals, and it did not
affect the processing of nontemporal queries. This was achieved by using a four-step transformation of
the relations, that were considered in temporal queries, encompassing timestamp propagation, interval
adjustment, attribute value scaling, and operator transformation. The query with temporal operator was
transformed into a query which was able to treat intervals as atomic values, since adjusted intervals could
be compared using equality, and could be processed natively by the DBMS.

8. Discussion and Conclusions

Data analysts often need to combine time related dimensions within multidimensional cubes, to consider
domain-related meaningful time periods. However, data analysts are limited by OLAP operators in using
temporal dimensions as instant-based coordinates, only. In this paper, we showed that the inclusion of
interval-based temporal dimensions in the navigation of data cubes provides the analysts with the capability
to view and analyze data that otherwise would not be available. We proposed the new conceptual multidi-
mensional data model T+MultiDim that allows the specification of connections between temporal dimensions.
These links indicate that users can use an interval-based semantics, instead of the usual instant-based one,
by combining connected temporal dimensions. Such a combination generates interval-based dimensions.
Moreover, T+MultiDim allows the user to specify whether measures are either telic or atelic on the specific
interval dimension. Standard OLAP operators do not provide the capabilities to exploit such dimensions.
New temporal operators able to support interval-based analyses have been proposed and defined. Such
operators allow the derivation of new telic/atelic measure values from the existing ones, possibly consider-
ing new interval values associated to the derived measures. Moreover, they have also been specified at a
(relational) logical level in SQL, providing different examples in the healthcare domain. Such approach may
be applied to different technological architectures and could be also useful for the design and representation
of temporal data that need to be analyzed/classified according to AI-based techniques [14, 20].

As an overall view of the main features of our proposal, we argue that our data model addresses and
provides some original contribution in five of the eleven modeling requirements for multidimensional data
models, Pedersen et al. discussed in [32].

• Explicit hierarchies in dimensions: dimension hierarchies should be captured explicitly by the schema.
Our model fulfills this point, since they are intuitively represented both in the schema and in the
graphical representation.

• Multiple hierarchies in each dimension: a single dimension could have several paths for aggregating
data. Our model fulfills this point, since multiple paths may be modeled. A fact may also use a
dimension multiple times (by playing different roles), or consider a dimension starting from any of its
level.

26

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 27

• Many-to-many relationships between facts and dimensions: relationships between fact and dimensions
may not always be the classical many-to-one. Our model fulfills this point, since fact-dimension and
fact-fact relationships may be one-to-one, many-to-one, and many-to-many.

• Support for aggregation semantics: a data model is required to act as a “safety net” that catches
queries that might give as results erroneous data, avoids double-counting, and allows users to specify
which aggregations to consider. Our proposal fulfills this point, and also takes into account measure
telic/atelic distinction. The supported aggregation semantics have been extended by T+MultiDim. In-
deed, T+MultiDim supports the derivation of new aggregated telic/atelic measure values from existing
telic/atelic ones. Deriving telic measures from atelic ones (and viceversa) over different intervals, by
also considering aggregation, is a new relevant feature of T+MultiDim.

• Handling change and time: a data model is required to allow users to perform meaningful analysis
across time when data change. It should be possible to easily combine data across changes over time.
Our proposal partially fulfills this point, since changes are not taken into account, but we do allow
users to perform meaningful analysis across various time interval-based dimensions. On this matter,
the model proposed by [32] allows one to combine two time dimensions. Intuitively, the union is
performed on member sets of the two dimensions. In our model, instead, the combination of two
point-based time dimensions spawns an interval-based one.

As for ongoing work, we are applying our approach to the analysis of pharmacovigilance data [11, 12],
similar to the one we used in the proposed motivating scenario. More specifically we are defining some
suitable dashboards allowing users to specify temporal analyses based on the proposed OLAP operators.
In this direction we are going to consider different possible implementations of OLAP operations based
on temporal aggregation, evaluating the performances of both standard SQL specifications and of ad-hoc
prototype extensions for sequenced temporal queries [13], within OLAP tools. A further research direction
we are following deals with the application of such proposal to store and query trends, derived from clinical
data to support medical decision-making tasks [11].

Acknowledgments

This work has been partially funded by the University of Verona, within 2017-2019 RIBA project “Ex-
tending OLAP data analysis with temporal and statistical operators”.

[1] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843, 1983.
[2] Aristotle. Categories. On Interpretation. Prior Analytics. Harvard University Press, Cambridge, MA, 1938.
[3] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual Database Design: An Entity-Relationship Approach.

Benjamin/Cummings, 1992.
[4] Bartosz Bebel, Tomasz Cichowicz, Tadeusz Morzy, Filip Rytwiński, Robert Wrembel, and Christian Koncilia. Sequen-

tial data analytics by means of seq-sql language. In Qiming Chen, Abdelkader Hameurlain, Farouk Toumani, Roland
Wagner, and Hendrik Decker, editors, Database and Expert Systems Applications, pages 416–431, Cham, 2015. Springer
International Publishing.

[5] Bartosz Bebel, Mikolaj Morzy, Tadeusz Morzy, Zbyszko Królikowski, and Robert Wrembel. OLAP-like analysis of time
point-based sequential data. In Silvana Castano, Panos Vassiliadis, Laks V. S. Lakshmanan, and Mong-Li Lee, editors,
Advances in Conceptual Modeling - ER 2012 Workshops CMS, ECDM-NoCoDA, MoDIC, MORE-BI, RIGiM, SeCoGIS,
WISM, Florence, Italy, October 15-18, 2012. Proceedings, volume 7518 of Lecture Notes in Computer Science, pages
153–161. Springer, 2012.

[6] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Multi-dimensional aggregation for temporal data. In
Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons
Kemper, Torsten Grust, and Christian Böhm, editors, Advances in Database Technology - EDBT 2006, 10th International
Conference on Extending Database Technology, Munich, Germany, March 26-31, 2006, Proceedings, volume 3896 of
Lecture Notes in Computer Science, pages 257–275. Springer, 2006.

[7] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Towards general temporal aggregation. In W. Alex Gray,
Keith G. Jeffery, and Jianhua Shao, editors, Sharing Data, Information and Knowledge, 25th British National Conference
on Databases, BNCOD 25, Cardiff, UK, July 7-10, 2008. Proceedings, volume 5071 of Lecture Notes in Computer Science,
pages 257–269. Springer, 2008.

[8] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of data. ACM Transactions on Database
Systems (TODS), 1(1):9–36, 1976.

27

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 28

[9] Carlo Combi, Massimo Franceschet, and Adriano Peron. Representing and reasoning about temporal granularities. Journal
of Logic and Computation, 14(1):51–77, 2004.

[10] Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala, Francesco Amaddeo, Ugo Moretti, and Giuseppe Pozzi.
Mining approximate temporal functional dependencies with pure temporal grouping in clinical databases. Comp. in Bio.
and Med., 62:306–324, 2015.

[11] Carlo Combi, Giuseppe Pozzi, and Rosalba Rossato. Querying temporal clinical databases on granular trends. Journal of
Biomedical Informatics, 45(2):273–291, 2012.

[12] Carlo Combi, Margherita Zorzi, Gabriele Pozzani, Ugo Moretti, and Elena Arzenton. From narrative descriptions to
MedDRA: automagically encoding adverse drug reactions. Journal of Biomedical Informatics, 84:184 – 199, 2018.

[13] Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending the kernel of a relational DBMS
with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst., 41(4):26:1–26:46, November
2016.

[14] Cao-Tri Do, Ahlame Douzal Chouakria, Sylvain Marié, Michèle Rombaut, and Saeed Varasteh. Multi-modal and multi-
scale temporal metric learning for a robust time series nearest neighbors classification. Inf. Sci., 418:272–285, 2017.

[15] Andrew Gemino and Yair Wand. Evaluating modeling techniques based on models of learning. Commun. ACM, 46(10):79–
84, 2003.

[16] Matteo Golfarelli and Stefano Rizzi. Temporal data warehousing: Approaches and techniques. In David Taniar and
Li Chen, editors, Integrations of Data Warehousing, Data Mining and Database Technologies - Innovative Approaches.,
pages 1–18. Information Science Reference, 2011.

[17] Juozas Gordevicius, Johann Gamper, and Michael H. Böhlen. Parsimonious temporal aggregation. VLDB J., 21(3):309–
332, 2012.

[18] Heidi Gregersen and Christian S. Jensen. Temporal entity-relationship models - A survey. IEEE Trans. Knowl. Data
Eng., 11(3):464–497, 1999.

[19] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin W. Wah, Jianyong Wang, and Y. Dora Cai. Stream cube: An
architecture for multi-dimensional analysis of data streams. Distributed and Parallel Databases, 18(2):173–197, 2005.

[20] Bobo Huang, Li Jin, Zhihui Lu, Ming Yan, Jie Wu, Patrick C. K. Hung, and Qifeng Tang. Rdma-driven mongodb: An
approach of RDMA enhanced nosql paradigm for large-scale data processing. Inf. Sci., 502:376–393, 2019.

[21] Vijay Khatri, Sudha Ram, Richard T. Snodgrass, and Paolo Terenziani. Capturing telic/atelic temporal data semantics:
Generalizing conventional conceptual models. IEEE Trans. Knowl. Data Eng., 26(3):528–548, 2014.

[22] Nick Kline and Richard T. Snodgrass. Computing temporal aggregates. In Philip S. Yu and Arbee L. P. Chen, editors,
Proceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages
222–231. IEEE Computer Society, 1995.

[23] Anthony C. Klug. Equivalence of relational algebra and calculus query languages having aggregate functions. J. ACM,
29(3):699–717, 1982.

[24] Christian Koncilia, Johann Eder, and Tadeusz Morzy. Analyzing sequential data in standard olap architectures. In Yannis
Manolopoulos, Goce Trajcevski, and Margita Kon-Popovska, editors, Advances in Databases and Information Systems,
pages 56–69, Cham, 2014. Springer International Publishing.

[25] Christian Koncilia, Tadeusz Morzy, Robert Wrembel, and Johann Eder. Interval OLAP: Analyzing interval data. In Ladjel
Bellatreche and Mukesh K. Mohania, editors, Data Warehousing and Knowledge Discovery - 16th International Confer-
ence, DaWaK 2014, Munich, Germany, September 2-4, 2014. Proceedings, volume 8646 of Lecture Notes in Computer
Science, pages 233–244. Springer, 2014.

[26] Mo Liu and Elke A. Rundensteiner. Event sequence processing: New models and optimization techniques. In Proceedings
of the Fourth SIGMOD PhD Workshop on Innovative Database Research, IDAR ’10, pages 7–12, New York, NY, USA,
2010. ACM.

[27] Mo Liu, Elke A. Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang, Ismail Ari, and Abhay Mehta. E-Cube:
multi-dimensional event sequence analysis using hierarchical pattern query sharing. In Timos K. Sellis, Renée J. Miller,
Anastasios Kementsietsidis, and Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 889–900. ACM, 2011.

[28] Inés Fernando Vega López, Richard T. Snodgrass, and Bongki Moon. Spatiotemporal aggregate computation: a survey.
IEEE Trans. Knowl. Data Eng., 17(2):271–286, 2005.

[29] Riccardo Lora, Alberto Sabaini, Carlo Combi, and Ugo Moretti. Designing the reconciled schema for a pharmacovigilance
data warehouse through a temporally-enhanced ER model. In Proceedings of the 2012 international workshop on Smart
health and wellbeing, pages 17–24. ACM, 2012.

[30] Elzbieta Malinowski and Esteban Zimányi. Advanced Data Warehouse Design - From Conventional to Spatial and
Temporal Applications. Data-Centric Systems and Applications. Springer, 2008.

[31] Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. Efficient algorithms for large-scale temporal aggre-
gation. IEEE Trans. Knowl. Data Eng., 15(3):744–759, 2003.

[32] Torben Bach Pedersen, Christian S. Jensen, and Curtis E. Dyreson. A foundation for capturing and querying complex
multidimensional data. Inf. Syst., 26(5):383–423, 2001.

[33] Yoav Shoham. Temporal logics in AI: Semantical and ontological considerations. Artif. Intell., 33(1):89–104, 1987.
[34] Arie Shoshani. Summarizability. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages

2880–2884. Springer US, 2009.
[35] Armin Skrbo, Begler Begovi, and Selma Skrbo. [classification of drugs using the atc system (anatomic, therapeutic,

chemical classification) and the latest changes]. Medicinski arhiv, 58(1 Suppl 2):138141, 2004.
[36] Paolo Terenziani. Temporal aggregation on user-defined granularities. J. Intell. Inf. Syst., 38(3):785–813, 2012.

28

Carlo Combi et al. / Information Sciences 00 (2019) 1–29 29

[37] Paolo Terenziani and Richard T. Snodgrass. Reconciling point-based and interval-based semantics in temporal relational
databases: A treatment of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng., 16(5):540–551, 2004.

[38] Francesco Di Tria, Ezio Lefons, and Filippo Tangorra. Cost-benefit analysis of data warehouse design methodologies. Inf.
Syst., 63:47–62, 2017.

[39] Alejandro A. Vaisman and Esteban Zimányi. Data Warehouse Systems - Design and Implementation. Data-Centric
Systems and Applications. Springer, 2014.

[40] Jun Yang and Jennifer Widom. Incremental computation and maintenance of temporal aggregates. In Dimitrios Geor-
gakopoulos and Alexander Buchmann, editors, Proceedings of the 17th International Conference on Data Engineering,
April 2-6, 2001, Heidelberg, Germany, pages 51–60. IEEE Computer Society, 2001.

29

