See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of chlorido-diphenyl-(isopropyl (propyl)carbamodithioato-κ²*S*,*S'*)tin(IV), C₁₉H₂₄ClNS₂Sn

https://doi.org/10.1515/ncrs-2019-0578 Received August 11, 2019; accepted October 3, 2019; available online October 18, 2019

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 See Mun Lee et al., published by De Gruyter. (ෆා by License.

Abstract

C₁₉H₂₄ClNS₂Sn, triclinic, $P\bar{1}$ (no. 2), a = 10.1894(1) Å, b = 14.0236(2) Å, c = 14.5114(2) Å, $\alpha = 91.070(1)^{\circ}$, $\beta = 96.997(1)^{\circ}$, $\gamma = 98.222(1)^{\circ}$, V = 2035.59(5) Å³, Z = 4, $R_{\rm gt}(F) = 0.0211$, $wR_{\rm ref}(F^2) = 0.0556$, T = 100(2) K.

CCDC no.: 1957378

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.16 \times 0.09 \times 0.06 \text{ mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	13.1 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	48998, 7265, 0.034
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 7034
N(param) _{refined} :	439
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined on a Meltemp II digital melting point apparatus and was uncorrected. The IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer from 4000 to 400 cm⁻¹.

The dithiocarbamate ligand was prepared *in situ* (methanol) from the reaction of CS_2 (Merck 0.25 mmol) with isopropyl(*n*-propyl)amine (Alfa Aesar, 0.25 mmol) and KOH (0.03 mL; 50% *w*/*v*); CS_2 was added drop-wise into the methanolic solution (15 mL). The resulting mixture was kept at 273 K for 0.5 h. Diphenyltin dichloride (0.25 mmol, 0.09 g) in methanol (10 mL) was added to the prepared potassium isopropyl-*n*-propyl dithiocarbamate. The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Table 2 (continued)

isotropic displacement parameters (A ²).										
					Atom	X	у	Z	U _{iso} */U _{eq}	
Atom	x	У	Z	U _{iso} */U _{eq}	H21A	0.187042	0.110172	1.008808	0.023*	
Sn1	0.29681(2)	0.50913(2)	0.20104(2)	0.01305(5)	H21B	0.289763	0.139921	1.100485	0.023*	
Cl1	0.20862(5)	0.58071(4)	0.05728(3)	0.01851(11)	C22	0.2729(2)	-0.00537(18)	1.06352(17)	0.0261(5)	
S1	0.51360(5)	0.54532(4)	0.14276(4)	0.01681(11)	H22A	0.262791	-0.044303	1.004799	0.031*	
S2	0.48866(5)	0.44108(4)	0.31606(4)	0.01597(11)	H22B	0.358837	-0.014245	1.099730	0.031*	
N1	0.72222(16)	0.49820(12)	0.25025(12)	0.0135(3)	C23	0.1592(3)	-0.0408(2)	1.1184(2)	0.0409(7)	
C1	0.59125(19)	0.49484(14)	0.24007(15)	0.0137(4)	H23A	0.169768	-0.003012	1.177081	0.061*	
C2	0.80146(19)	0.54385(15)	0.17977(15)	0.0158(4)	H23B	0.160405	-0.108958	1.131519	0.061*	
H2A	0.751369	0.528051	0.117246	0.019*	H23C	0.073857	-0.033189	1.082226	0.061*	
H2B	0.886377	0.516830	0.182353	0.019*	C24	0.5044(2)	0.19648(17)	1.03192(16)	0.0204(5)	
C3	0.8326(2)	0.65321(16)	0.19414(16)	0.0186(4)	H24	0.5/1350	0.205541	0.986660	0.025^	
H3A	0.749904	0.679685	0.203196	0.022*	U25	0.5638(2)	0.14378(19)	1.11376(18)	0.0295(5)	
H3B	0.897730	0.669757	0.250525	0.022*		0.503/58	0.139210	1.101893	0.044*	
C4	0.8902(2)	0.69760(17)	0.11006(17)	0.0232(5)		0.050909	0.179303	1.139100	0.044*	
H4A	0.967137	0.666869	0.097754	0.035*	(26	0.574844	0.078838	1.093002	0.044	
H4B	0.918710	0.766856	0.122525	0.035*	H26A	0.4773(2)	0.225542	1 008195	0.0255(5)	
H4C	0.821735	0.687643	0.055785	0.035*	H26R	0.562325	0.336504	1.000175	0.038*	
(5	0 7909(2)	0 44837(15)	0 32799(15)	0.0164(4)	H26C	0.420390	0 289737	1 111310	0.038*	
H5	0 735014	0 445690	0 380232	0 020*	C27	0.2554(2)	0.19319(15)	0.60531(14)	0.0146(4)	
6	0 7961(2)	0 34522(17)	0 29588(17)	0.0227(5)	C28	0.1354(2)	0.18840(16)	0.54688(16)	0.0193(4)	
H60	0.70/070	0.312152	0.27500(17)	0.0227(5)	H28	0.067778	0.134397	0.548131	0.023*	
	0.704979	0.312132	0.2//23/	0.034	C29	0.1140(2)	0.26208(18)	0.48688(17)	0.0248(5)	
	0.0392/1	0.311320	0.340044	0.034	H29	0.031710	0.258643	0.447554	0.030*	
110C	0.047242	0.545755	0.242000	0.034	C30	0.2125(2)	0.34059(16)	0.48420(16)	0.0223(5)	
	0.9266(2)	0.50159(19)	0.36431(17)	0.0257(5)	H30	0.197925	0.390870	0.442903	0.027*	
	0.988322	0.499751	0.316327	0.039*	C31	0.3323(2)	0.34577(16)	0.54178(17)	0.0223(5)	
	0.964951	0.470538	0.419793	0.039*	H31	0.399977	0.399531	0.539671	0.027*	
H/C	0.921900	0.568//0	0.380212	0.039^	C32	0.3538(2)	0.27265(16)	0.60262(15)	0.0179(4)	
68	0.16850(19)	0.3/313(15)	0.18152(15)	0.0146(4)	H32	0.435819	0.276851	0.642449	0.021*	
(9	0.0589(2)	0.36164(16)	0.11294(15)	0.01/3(4)	C33	0.4408(2)	-0.01222(16)	0.65181(15)	0.0178(4)	
H9	0.043024	0.413287	0.073630	0.021*	C34	0.4109(3)	-0.11193(17)	0.64007(18)	0.0269(5)	
C10	-0.0277(2)	0.27468(17)	0.10167(16)	0.0209(5)	H34	0.323774	-0.143426	0.646799	0.032*	
H10	-0.101443	0.266933	0.053980	0.025*	C35	0.5085(3)	-0.16546(18)	0.61846(19)	0.0325(6)	
C11	-0.0069(2)	0.19963(16)	0.15952(16)	0.0203(5)	H35	0.488397	-0.233714	0.612151	0.039*	
H11	-0.066588	0.140654	0.152002	0.024*	C36	0.6336(3)	-0.12066(19)	0.60616(17)	0.0283(5)	
C12	0.1018(2)	0.21081(16)	0.22874(17)	0.0212(5)	H36	0.699650	-0.157813	0.591201	0.034*	
H12	0.116048	0.159600	0.268970	0.025*	C37	0.6635(3)	-0.0215(2)	0.6156(2)	0.0407(7)	
C13	0.1896(2)	0.29704(16)	0.23909(16)	0.0191(4)	H37	0.749332	0.009961	0.605666	0.049*	
H13	0.264544	0.304041	0.285818	0.023*	C38	0.5668(3)	0.03219(19)	0.6397(2)	0.0360(7)	
C14	0.25981(19)	0.61706(15)	0.29714(15)	0.0157(4)	H38	0.588175	0.100249	0.647869	0.043*	
C15	0.1999(2)	0.69557(16)	0.26487(17)	0.0213(5)						
H15	0.178060	0.702168	0.199991	0.026*						
C16	0.1719(2)	0.76427(17)	0.32719(18)	0.0252(5)						
H16	0.129483	0.816824	0.304647	0.030*						
C17	0.2054(2)	0.75657(17)	0.42163(18)	0.0249(5)	slowly	y until a colou	urless precipitate	e was formed. '	The precip-	
H17	0.186454	0.803622	0.464100	0.030*	itate v	was recrystal	lised from its ac	etone-methan	ol solution.	
C18	0.2669(2)	0.67945(18)	0.45377(17)	0.0265(5)				du at /in commis		
H18	0.291197	0.674272	0.518589	0.032*	The u	tie compound	u was a side-pro	auct/incomple	ele reaction	
C19	0.2932(2)	0.60985(16)	0.39238(16)	0.0211(5)	product obtained from the slow evaporation of the solvent.					
H19	0.334301	0.556901	0.415427	0.025*	Yield: 0.02 g (17%). M.pt: 381–383 K. IR (cm ⁻¹) 550 (w)					
Sn2	0.29554(2)	0.07307(2)	0.68663(2)	0.01405(5)	v(Sn-	-S), 1477 (s) ν	(C—N), 1187 (m)	v(C—S), 1048 (s) ν (C–N).	
Cl2	0.09550(5)	-0.04057(4)	0.62779(4)	0.02780(13)	*					
S 3	0.21280(5)	0.05799(4)	0.83896(4)	0.01713(11)	Eve	imontal data	vile			
S 4	0.47280(5)	0.17403(4)	0.81987(3)	0.01521(10)	Exper	mental deta	1115			
N2	0.37993(17)	0.13865(13)	0.98338(12)	0.0157(4)	The	C-bound H	atoms were	e geometrical	ly placed	
C20	0.36089(19)	0.12676(14)	0.89191(15)	0.0142(4)	(С—Н	= 0.95-1.00	Å) and refined	as riding with	$U_{\rm iso}({\rm H}) =$	
C21	0.2754(2)	0.10127(16)	1.04139(15)	0.0188(4)	1.2-1.5	$5U_{\rm eq}(\rm C)$.				
	. /									

Comment

Molecules/complexes of the general formula R_2Sn ($S_2CNR'R''$)Cl have been the subject of structure determinations by both X-ray crystallography and computational chemistry for nearly 20 years [5, 6]. These studies showed that tin-ligand parameters were sometimes influenced significantly by the crystalline/solid state environment, often leading to non-systematic variations that were not evident in their calculated gas-phase structures. Interest in this area continues [7, 8] and indeed, there are now over 70 mononuclear species of this type in the crystallographic literature [9]. Herein, a new derivative, $Ph_2Sn[S_2CN(i-Pr)n-Pr]Cl$, (I), is described, which was synthesised in the context of evaluating the biological potential of organotin dithiocarbamates [10].

The molecular structures of the two independent molecules comprising the asymmetric unit of (I) are shown in the figure (70% displacement ellipsoids). The tin atom in each molecule is penta-coordinated by two ipso-carbon atoms of the phenyl groups, a chloride and two sulphur atoms derived from an asymmetrically chelating dithiocarbamate ligand. The asymmetry in the Sn-S bonds [Sn1-S1, S2 = 2.4501(5), 2.7049(5) Å and Sn2-S3, S4 = 2.4622(5), 2.7058(5) Å] is reflected in the magnitude of Δ (Sn–S) = (Sn–S_{long} – Sn–S_{short}) = 0.25 and 0.26 Å, respectively. There is a small disparity in the Sn1–Cl1 [2.4591(5) Å] and Sn2–Cl2 [2.4534(5) Å] bond lengths. The asymmetric mode of coordination of the dithiocarbamate ligand influences the C-S bond lengths with the C-S bonds associated with the more tightly bound sulphur atoms [C1-S1 = 1.745(2) Å and C20-S3 = 1.752(2) Å] being longer than the C-S bonds involving the less tightly bound sulphur atoms [C1-S2=1.722(2) Å and C20-S4=1.712(2) Å]. Typically for dithiocarbamate ligands [11], the relatively short C1-N1 [1.319(3)] and C20-N2 [1.322(3) Å] bond lengths are indicative of significant contributions of the dithiolate, $-S_2C=N^+(i-1)$ Pr)n-Pr, canonical form to the electronic structure of the ligand.

The resulting C₂ClS₂ donor set is highly distorted and this is seen in a quantitative measure of a five-coordinate geometry, i.e. τ [12]. For an ideal square-pyramidal geometry, $\tau = 0.0$ whereas for an ideal trigonal-bipyramidal geometry, $\tau = 1.0$. In the present study, the values of τ compute to 0.49 and 0.58 for the Sn1 and Sn2 atoms, respectively. The distortions arise partly to the acute chelate angles: S1–Sn1–S2 [69.663(16)°] and S3–Sn2–S4 [69.447(16)°] as reflected, for example, in the trans Cl1–Sn1–S2 [154.209(16)°] and Cl2–Sn2–S4 [154.996(18)°] angles. The molecular structures described herein conform to the motif always seen for mononuclear molecules/complexes of the general formula R₂Sn(S₂CNR'R'')Cl [10].

The molecular packing is largely devoid of directional points of contact between atoms/residues [13], with the exception of methyl- and phenyl-C-H··· π (phenyl) interactions $[C6-H6c\cdots Cg(C8-C13)^{i}: H6c\cdots Cg(C8-C13)^{i} = 2.93 \text{ Å},$ $C6 \cdots Cg(C8 - C13)^{i} = 3.784(2)$ Å with angle at $H6c = 146^{\circ}$ and $C36-H36\cdots Cg(C27-C32)^{ii}$: $H36\cdots Cg(C27-C32)^{ii} = 2.68$ Å. $C36 \cdots Cg(C27 - C32)^{ii} = 3.489(3)$ Å with angle at H36 = 143° for symmetry operations (i) 1 + x, y, z and (ii) 1 - x, -y, 1 - z]. Each of these interactions occurs between likemolecules. In the case of the Sn1-molecule, the result of these contacts is the formation of a linear supramolecular chain along the a-axis direction. For the Sn2-molecule, the specified interaction leads to a centrosymmetric dimer. The dimers stack in columns parallel to the chains. Globally, the crystal comprises alternating layers of chains and dimers stacked along the *b*-axis.

A further analysis of the intermolecular connectivity was performed by evaluating the calculated Hirshfeld surfaces using Crystal Explorer 17 [14] following literature procedures [15]; the full and decomposed two-dimensional fingerprint plots were also calculated. There are four dominant contacts to the Hirshfeld surface for the entire asymmetric unit in (I), namely $H \cdots H$ [55.5%], $H \cdots C/C \cdots H$ [23.9%], $Cl \cdots H/H \cdots Cl$ [9.2%] and $S \cdots H/H \cdots S$ [8.7%] but, generally beyond the sum of the respective van der Waals radii. A recent study [16] emphasised how different molecules/complexes comprising the asymmetric unit could present different percentage profiles depending on the intermolecular interactions they form. Accordingly, each of the Sn1- and Sn2molecules/complexes in (I) were analysed separately. Not surprisingly, the same major contributions are evident but, in different percentages, i.e. H···H [59.1% for the Sn1-molecule and 52.8% for the Sn2-molecule/complex], $H \cdots C/C \cdots H$ [23.5 and 24.6%], Cl···H/H···Cl [9.0 and 8.3%] and S···H/H···S [7.1 and 10.6%]. Thus, small differences between the independent molecules are seen in the percentage contributions for the $H \cdots H$ and $S \cdots H/H \cdots S$ contacts. Further, for the Sn2molecule, C···C contacts amounts to 2.3% of the Hirshfeld surface contacts compared with 0.2% for the Sn1-molecule complex.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{pRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.

- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Crystallogr. 45 (2012) 849–854.
- Buntine, M. A.; Hall, V. J.; Kosovel, F. J.; Tiekink, E. R. T.: Influence of crystal packing on molecular geometry: a crystallographic and theoretical investigation of selected diorganotin systems. J. Phys. Chem. A **102** (1998) 2472–2482.
- Tiekink, E. R. T.; Hall, V. J.; Buntine, M. A.: An examination of the influence of crystal structure on molecular structure. The crystal and molecular structures of some diorganotinchloro-(*N*,*N*-dialkyldithiocarbamate)s, R₂Sn(S₂CNR'₂)Cl, R = Me, tBu, Ph, Cy; R'₂ = (Et)₂, (Et, Cy) and (Cy)₂: a comparison between solid state and theoretical structures. Z. Kristallogr. – Cryst. Mat. **214** (1999) 124–134.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-*S,S*)tin(IV), C₁₃H₁₉ClN₂S₂Sn. Z. Kristallogr. NCS **234** (2019) 1309–1311.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of (*N-n*-butyl, *N*-methyl-dithiocarbamato-*S*,*S*)-chloridodimethyl-tin(IV), C₈H₁₈ClNS₂Sn. Z. Kristallogr. NCS 234 (2019) 1313–1315.
- 9. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. **B72** (2016) 171–179.

- Tiekink, E. R. T.: Tin dithiocarbamates: applications and structures. Appl. Organomet. Chem. 22 (2008) 533–550.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of *N*-methyl-*N*-phenyl(methylsulfanyl)carbothioamide, C₉H₁₁NS₂.
 Z. Kristallogr. NCS 234 (2019) 1325–1327.
- Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7bis(*N*-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]-copper(II) perchlorate. J. Chem. Soc. Dalton Trans. (1984) 1349–1356.
- 13. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. **D65** (2009) 148–155.
- 14. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.
- Jotani, M. M.; Wardell, J. L.; Tiekink, E. R. T.: Supramolecular association in the triclinic (Z' = 1) and monoclinic (Z' = 4) polymorphs of 4-(4-acetylphenyl)piperazin-1-ium 2-amino-4-nitrobenzoate. Z. Kristallogr. CM 234 (2019) 43–57.