DE GRUYTER

brought to you by provided by Sunway Institutional R

പ

See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of bromido-dimethyl-4-tolyl-(triphenylphosphine oxide)tin(IV), C₂₇H₂₈BrOPSn

https://doi.org/10.1515/ncrs-2019-0553 Received August 1, 2019; accepted August 25, 2019; available online September 14, 2019

Abstract

 $C_{27}H_{28}BrOPSn$, monoclinic, $P2_1/n$ (no. 14), a = 10.9369(1) Å, c = 18.8402(1) Å, $\beta = 91.869(1)^{\circ}$, b = 12.2170(1) Å, $V = 2516.01(3) \text{ Å}^3$, Z = 4, $R_{\text{gt}}(F) = 0.0279$, $wR_{\text{ref}}(F^2) = 0.0754$, T = 100(2) K.

CCDC no.: 1949171

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.12\times0.09\times0.05~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54178 Å)
μ:	10.7 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	30870, 4495, 0.042
Criterion for I _{obs} , N(hkl) _{gt} :	$l_{\rm obs} > 2 \ \sigma(l_{\rm obs})$, 4337
N(param) _{refined} :	283
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Source of material

All chemicals and solvents were used as purchased without purification. The melting point of the compound was measured on a Mel-Temp II digital melting point apparatus and was uncorrected. The elemental analysis was performed on a Perkin-Elmer EA2400 CHN analyser. The IR spectrum was recorded using a Perkin-Elmer RX1 spectrophotometer as a Nujol mull in a KBr cell from 4000 to 400 cm^{-1} .

Dimethyldi(4-tolyl)tin (2.0 g, 6 mmol) in dry dimethylformamide (30 mL) was prepared from the reaction of dimethyltin dichloride and 4-tolylmagnesium bromide in a 1:2 molar ratio. A chilled dimethylformamide solution (5 mL) of bromine (0.97 g, 6 mmol) was added dropwise into the solution followed by stirring at room temperature for 1 h. Triphenylphosphine oxide (Sigma-Aldrich, 1.67 g, 6 mmol) in chloroform (25 mL) was added into the mixture which was then refluxed for 1 h. After filtration, the filtrate was evaporated slowly until colourless crystals were formed. These were filtered, washed with a minimum amount of hexane and airdried. Yield: 0.34 g (62%). M.pt: 398-400 K. Anal. Calc. for C27H28BrOPSn: C 54.23; H 4.69%. Found: C 54.70; H 5.08%. IR (cm^{-1}) 1600 (m) v(C-C), 1180 (m) v(P-O), 1087 (s) v(C-O), $1011 (m) \nu(C-0), 485 (w) \nu(Sn-0).$

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95 - 0.98 Å) and refined as riding with $U_{iso}(H) = 1.2 - 1.2$ $1.5U_{eq}(C)$. Owing to poor agreement, two reflections, i.e. $(-1\ 0\ 7)$ and $(1\ 1\ 6)$, were omitted from the final cycles of

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Ореп Access. © 2019 See Mun Lee et al., published by De Gruyter. Сорву License.

164 — Lee et al.: C₂₇H₂₈BrOPSn

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
Sn	0.02929(2)	0.84769(2)	0.61965(2)	0.01561(8)
Br1	-0.09685(3)	1.02526(3)	0.65607(2)	0.02819(10)
P1	0.24204(7)	0.62021(6)	0.56279(4)	0.01706(16)
01	0.1374(2)	0.68686(19)	0.58834(12)	0.0225(5)
C1	-0.0219(3)	0.7513(3)	0.70769(17)	0.0233(7)
H1A	0.0508	0.7159	0.7290	0.035*
H1B	-0.0807	0.6953	0.6916	0.035*
H1C	-0.0595	0.7983	0.7431	0.035*
C2	-0.0636(3)	0.8264(3)	0.51999(18)	0.0266(7)
H2A	-0.0190	0.8647	0.4832	0.040*
H2B	-0.1464	0.8564	0.5222	0.040*
H2C	-0.0681	0.7482	0.5086	0.040*
С3	0.2009(3)	0.9286(2)	0.62478(16)	0.0171(6)
C4	0.2567(3)	0.9601(3)	0.56236(17)	0.0202(6)
H4	0.2160	0.9476	0.5178	0.024*
C5	0.3707(3)	1.0092(3)	0.56474(17)	0.0221(7)
H5	0.4065	1.0310	0.5217	0.026*
C6	0.4342(3)	1.0275(2)	0.62886(18)	0.0215(7)
C7	0.3771(3)	0.9979(3)	0.69132(18)	0.0238(7)
H7	0.4177	1.0109	0.7359	0.029*
C8	0.2621(3)	0.9500(3)	0.68939(17)	0.0220(7)
H8	0.2246	0.9316	0.7326	0.026*
C9	0.5622(3)	1.0747(3)	0.6307(2)	0.0290(7)
H9A	0.6219	1.0151	0.6280	0.044*
H9B	0.5763	1.1154	0.6750	0.044*
H9C	0.5712	1.1241	0.5902	0.044*
C10	0.3890(3)	0.6785(3)	0.58721(17)	0.0199(6)
C11	0.4762(3)	0.7036(3)	0.53737(17)	0.0227(7)
H11	0.4603	0.6875	0.4886	0.027*
C12	0.5867(3)	0.7521(3)	0.55885(19)	0.0268(7)
H12	0.6456	0.7697	0.5247	0.032*
C13	0.6106(3)	0.7746(3)	0.6293(2)	0.0307(8)
H13	0.6860	0.8075	0.6438	0.037*
C14	0.5249(3)	0.7495(3)	0.6792(2)	0.0347(9)
H14	0.5420	0.7652	0.7280	0.042*
C15	0.4140(3)	0.7013(3)	0.65867(18)	0.0294(8)
H15	0.3556	0.6841	0.6932	0.035*
C16	0.2389(3)	0.6062(3)	0.46734(16)	0.0189(6)
C17	0.2626(3)	0.5076(3)	0.43386(17)	0.0253(7)
H17	0.2770	0.4435	0.4615	0.030*
C18	0.2655(4)	0.5019(3)	0.36059(19)	0.0296(8)
H18	0.2828	0.4342	0.3382	0.035*
C19	0.2431(3)	0.5948(3)	0.31973(17)	0.0248(7)
H19	0.2445	0.5909	0.2694	0.030*
C20	0.2188(3)	0.6930(3)	0.35292(17)	0.0233(7)
H20	0.2037	0.7567	0.3251	0.028*
C21	0.2163(3)	0.6994(3)	0.42593(17)	0.0214(6)
H21	0.1992	0.7673	0.4481	0.026*
C22	0.2394(3)	0.4838(3)	0.59848(16)	0.0197(6)
C23	0.1263(3)	0.4352(3)	0.61167(16)	0.0230(7)
H23	0.0530	0.4763	0.6055	0.028*
(24	0.1214(3)	0.3270(3)	0.63378(17)	0.0253(7)
H24	0.0447	0.2946	0.6431	0.030*
C25	0.2272(3)	0.2661(3)	0.64233(17)	0.0247(7)

|--|

Atom	x	у	Z	U _{iso} */U _{eq}
H25	0.2230	0.1916	0.6565	0.030*
C26	0.3399(3)	0.3140(3)	0.63007(17)	0.0257(7)
H26	0.4128	0.2723	0.6363	0.031*
C27	0.3464(3)	0.4223(3)	0.60876(16)	0.0228(7)
H27	0.4237	0.4549	0.6011	0.027*

refinement. The maximum and minimum residual electron density peaks of 1.03 and 0.79 $eÅ^{-3}$, respectively, were located 0.99 and 0.89 Å from the Sn atom, respectively.

Comment

There are over 30 crystal structure determinations of phosphineoxide adducts of organotin species in the crystallographic literature [5]. Of these, there are only two examples of triorganotinbromido adducts with monofunctional phosphineoxides, namely $Ph_3SnBr\cdotO=PPh_3$ [6] and (3-thienyl)₃SnBr·O=PPh₃ [7]. The crystal and molecular structures of the title compound, $Me_2(Ph)SnBr\cdotO=PPh_3$ (I), a non-symmetric triorganotin compound, were determined as part of a wider, on-going study of related phosphineoxide [8] arsineoxide [9] and sulphoxide [10, 11] adducts of organotin derivatives.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids). The tin atom is penta-coordinated by a bromide atom [2.6725(4) Å], two methyl-carbons [Sn-C1 = 2.124(3) Å and Sn-C2 = 2.121(3) Å], the *ipso*-carbon atom of the 4-tolyl substituent [Sn-C3 = 2.120(3) Å] and the phosphineoxide-O1 atom [2.378(2) Å]. The tin-bound organo substituents occupy equatorial positions in a distorted trigonal-bipyramidal geometry, with the Sn atom lying 0.1854(19) Å out of the equatorial plane in the direction of the Br1 atom. The Br1–Sn–O1 axial angle is 178.54(6)°, and the Sn-O1-P1 angle is 157.10(15)°. Despite the difference between the tin-bound organo substituents, the angles subtended at the tin atom are close to the ideal value of 120°, *i.e.* 118.58(12)° for C1-Sn-C3 to 119.66(13)° for C2-Sn-C3. An intramolecular $\pi \cdots \pi$ interaction is noted as the C3-tolyl and phosphine-C10 ring are aligned and close to parallel. The inter-centroid separation is 3.699(2) Å and the angle of inclination is 9.79(16)°.

In the crystal, tolyl-C-H··· π (phenyl) and phenyl-C-H··· π (tolyl) [C8-H8···*Cg*(C22-C27)ⁱ: H8···*Cg*(C22-C27)ⁱ = 2.87 Å, C8···*Cg*(C22-C27)ⁱ = 3.690(3) Å with angle at H8 = 145° and C25-H25···*Cg*(C3-C8)ⁱⁱ: H25···*Cg*(C3-C8)ⁱⁱ = 2.86 Å, C25···*Cg*(C3-C8)ⁱⁱ = 3.658(4) Å with angle at H25 = 143° for symmetry operations (i) 1/2 - *x*, 1/2 + *y*, 3/2 - *z* and (ii) *x*, -1+*y*, *z*] interactions lead to a helical supramolecular chain along the *b* axis direction. Weak phenyl-C–H···Br interactions $[C20-H20···Br1^{iii}]$ H20···Br1ⁱⁱⁱ = 2.94 Å, C20···Br1ⁱⁱⁱ = 3.693(4) Å with angle at H20 = 138° for (iii) -x, 2 - y, 1 - z] are noted. These connect the chains into a supramolecular layer parallel to (-1 0 1). Layers stack without directional interactions between them.

The Hirshfeld surfaces and the overall and delineated two-dimensional fingerprint plots for (I) was calculated using Crystal Explorer 17 [12] and literature procedures [13]. There are only three contributing contacts to the overall Hirshfeld surface of (I). In descending order these are $H \cdots H$ [65.2%], $C \cdots H/H \cdots C$ [23.1%] and $Br \cdots H/H \cdots Br$ [11.6%].

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. B72 (2016) 171–179.

- 6. Ng, S. W.: Bromotriphenyltin-triphenylphosphine oxide (1/1). Acta Crystallogr. **C51** (1995) 2563–2565.
- Allen, D. W.; Derbyshire, D. J.; Nowell, I. W.; Brooks, J. S.: Crystal and molecular structure of the triphenylphosphine oxide adduct of tri-3-thienyltin bromide, Ph₃PO·SnBr(C₄H₃S)₃. J. Organomet. Chem. **260** (1984) 263–270.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of iodido-triphenyl-(triphenylphosphine oxide) tin(IV), C₃₆H₃₀IOPSn. Z. Kristallogr. NCS 235 (2019) 179–181.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of dichlorido-bis(4-methylphenyl-κ*C*)-bis(triphenylarsine oxideκ*O*)tin(IV), C₅₀H₄₄As₂Cl₂O₂Sn. Z. Kristallogr. NCS 235 (2019) 183–185.
- Amin, N. A. B. M.; Hussen, R. S. D.; Lee, S. M.; Halcovitch, N. R.; Jotani, M. M.; Tiekink, E. R. T.: *trans*-Di-chlorido-bis(dimethyl sulfoxide-κ*O*)bis(4- fluorobenzyl-κ*C*¹)-tin(IV): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E73** (2017) 667–672.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of (dibenzyl sulphoxide-κ*O*)bis(2-chlorobenzyl- κ*C*¹)dichloridotin(IV), C₂₈H₂₆Cl₄OSSn. Z. Kristallogr. NCS 234 (2019) 787–789.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.