See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of 2-[(1*E*)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl]-5-(dodecyloxy)benzen-1-olate, C₂₃H₃₉NO₅

https://doi.org/10.1515/ncrs-2019-0523 Received July 22, 2019; accepted October 2, 2019; available online October 14, 2019

Abstract

C₂₃H₃₉NO₅, monoclinic, P_{21}/c (no. 14), a = 26.1698(4) Å, b = 9.4863(2) Å, c = 9.0929(2) Å, $\beta = 97.376(2)^{\circ}$, V = 2238.67(8) Å³, Z = 4, $R_{gt}(F) = 0.0539$, $wR_{ref}(F^2) = 0.1580$, T = 100(2) K.

CCDC no.: 1957130

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crvstal:	Yellow prism
Size:	$0.13 \times 0.03 \times 0.02$ mm
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	0.68 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	27272, 4004, 0.040
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 3452
N(param) _{refined} :	275
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

The melting point of the compound was measured on a Mel-Temp II digital melting point apparatus and was uncorrected. The IR spectrum was recorded using a Perkin-Elmer RX1 spectrophotometer as a Nujol mull in a KBr cell from 4000 to 400 cm^{-1} . The ¹H NMR spectrum was recorded in CDCl₃ solution on a Jeol JNM-ECA 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane.

4-Dodecyloxy-2-hydroxybenzaldehyde was synthesized according to a literature procedure [5]. The prepared aldehyde (0.31 g, 1.0 mmol) was added to an ethanolic solution (10 mL) of tris(hydroxymethyl)aminomethane (Tokyo

дореп Access. © 2019 See Mun Lee et al., published by De Gruyter. Сорву License.

*Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway

University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia,

e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline

Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

1401-1520

This work is licensed under the Creative Commons Attribution 4.0 Public

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _e
01	0.89812(5)	1.10031(14)	0.50569(14)	0.0184(3
H10	0.8900(9)	1.055(2)	0.4268(18)	0.028
02	0.93683(5)	1.17452(14)	0.86963(15)	0.0192(3
H20	0.9203(9)	1.236(2)	0.911(3)	0.029
03	0.97309(5)	0.82780(15)	0.93578(15)	0.0231(3
H30	1.0012(6)	0.829(3)	0.991(3)	0.035
04	0.87899(6)	0.57144(14)	0.78365(15)	0.0230(3
05	0.75800(6)	0.30758(15)	0.45315(16)	0.0247(3
N1	0.89831(6)	0.83173(16)	0.70445(17)	0.0160(3
H1N	0.9040(9)	0.7597(17)	0.764(2)	0.019
C1	0.93071(7)	0.95905(19)	0.7299(2)	0.0146(4
C2	0.94145(7)	1.0290(2)	0.5849(2)	0.0172(4
H2A	0.9698	1.0977	0.6078	0.021
H2B	0.9534	0.9558	0.5195	0.021
С3	0.90380(7)	1.05744(19)	0.8288(2)	0.0166(4
H3A	0.8708	1.0908	0.7747	0.020
H3B	0.8964	1.0065	0.9187	0.020
C4	0.98251(7)	0.9067(2)	0.8083(2)	0.0182(4
H4A	0.9997	0.8465	0.7405	0.022
H4B	1.0053	0.9878	0.8385	0.022
C5	0.86144(7)	0.8098(2)	0.5962(2)	0.0170(4
H5	0.8521	0.8854	0.5296	0.020
C6	0.83438(7)	0.6815(2)	0.5712(2)	0.0172(4
C7	0.84556(7)	0.5621(2)	0.6670(2)	0.0174(4
C8	0.81897(8)	0.4341(2)	0.6276(2)	0.0195(4
H8	0.8253	0.3535	0.6892	0.023
C9	0.78412(7)	0.4261(2)	0.5006(2)	0.0189(4
C10	0.77303(8)	0.5445(2)	0.4064(2)	0.0212(4
H10	0.7487	0.5375	0.3197	0.025
C11	0.79790(8)	0.6684(2)	0.4427(2)	0.0204(4
H11	0./906	0.7480	0.3801	0.024
	0.76677(8)	0.1823(2)	0.5427(2)	0.0238(5
HIZA	0.7570	0.1989	0.6428	0.029
HIZB	0.8036	0.1557	0.5530	0.029
	0.73421(9)	0.0668(2)	0.4658(3)	0.0323(5
	0.7410	-0.0217	0.5220	0.039
(14)	0.7440	0.0519	0.3002	0.039
U14	0.07041(9)	0.0907(3)	0.4465(5)	0.05620.0
H14A	0.6583	0.1840	0.3011	0.040
C15	0.653/(1(9)	0.0107	0.5903(3)	0.040
H15Δ	0.05541(5)	0.1199(9)	0.5505(5)	0.00000
H15R	0.6668	0.0049	0.6388	0.048
(16	0 59630(10)	0 1175(4)	0 5752(3)	0.0480(7
H16A	0.5848	0.1952	0.5063	0.058
H16B	0.5835	0.0287	0.5264	0.058
C17	0.57043(11)	0.1349(4)	0.7065(4)	0.0597(9
H17A	0.5798	0.2295	0.7474	0.072
H17B	0.5857	0.0654	0.7806	0.072
C18	0.51451(11)	0.1220(4)	0.6989(3)	0.0540(8
H18A	0.4994	0.1906	0.6234	0.065
H18B	0.5054	0.0271	0.6585	0.065
C19	0.48748(11)	0.1401(5)	0.8267(4)	0.0707(11
H19A	0.4950	0.2370	0.8636	0.085
H19B	0.5040	0.0754	0.9041	0.085

Table 2 (continued)
-----------	------------

Atom	X	у	Z	U _{iso} */U _{eq}
C20	0.43222(10)	0.1204(4)	0.8214(3)	0.0542(8)
H20A	0.4244	0.0245	0.7820	0.065*
H20B	0.4156	0.1872	0.7464	0.065*
C21	0.40593(12)	0.1355(5)	0.9530(4)	0.0708(11)
H21A	0.4110	0.2342	0.9872	0.085*
H21B	0.4245	0.0751	1.0311	0.085*
C22	0.35122(12)	0.1044(5)	0.9484(4)	0.0739(12)
H22A	0.3420	0.1169	1.0499	0.089*
H22B	0.3461	0.0035	0.9228	0.089*
C23	0.31410(12)	0.1865(4)	0.8462(4)	0.0554(8)
H23A	0.3146	0.2851	0.8784	0.083*
H23B	0.2794	0.1477	0.8466	0.083*
H23C	0.3237	0.1812	0.7456	0.083*

Chemical Industry, 0.12 g, 1.0 mmol) and refluxed for 3 h. The filtrate was evaporated slowly until a yellow precipitate was formed. The precipitate was recrystallized from methanolhexane by slow evaporation to yield yellow crystals. Yield: 0.16 g (39.1%). **M.pt:** 383–384 K. **IR** (cm⁻¹) 3233 (br) v(O–H), 1634 (s) v(C–N), 1525 (s) v(C–O), 1047 (s) v(C–O), 1016 (m) v(C–O). ¹H **NMR** (CDCl₃, ppm): δ 0.86 (s, 3H, CH₃), 1.24–1.79 (m, 20H, CH₂), 3.70–4.00 (m, 8H, OCH₂), 6.40 (d, 1H, Ph–H), 6.51 (d, 1H, Ph–H), 7.37 (1H, Ph–H), 8.41 (s, 1H, N= CH); OH and NH protons were not observed.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95-0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O- and N-bound H-atoms were located in a difference Fourier map but were refined with distance restraints of $O-H = 0.84\pm0.01$ Å and $N-H = 0.88\pm0.01$ Å, respectively, and with $U_{iso}(H)$ set to $1.5U_{eq}(O)$ and $1.2U_{eq}(N)$, respectively. As evident from the figure, the long chain suffers from typical disorder. Careful modelling did not reveal any chemically useful information and so, the simpler model was retained.

Comment

In connection with recent studies of diorganotin Schiff bases derived from tris[(hydroxymethyl)aminomethane] [6, 7], largely motivated by the promising cytotoxicities they exhibit [6], the structure of the title tris[(hydroxymethyl) aminomethane] Schiff base derivative, featuring an appended *n*-dodecyl substituent, was prepared and studied crystallographically.

The molecular structure is shown in the figure (50% displacement ellipsoids) and crystallography confirms the molecule existing as a zwitterion in the solid-state.

Proton transfer has occurred from the phenol group to the imine-nitrogen atom (see the figure). An intramolecular, charge-assisted medium-strong imine-N-H···O actions in (phenoxide) hydrogen bond is evident [N1-H1n···O4: the N1-C5-C6-C11 and N1-C5-C6-C7 torsion angles being This notwing by H···H control to the structure of the transfer has occurred from the phenol group to the pheno

-175.12(18) and $0.5(3)^{\circ}$, respectively. The alpha-methylene atom of the *n*-dodecyl chain is co-planar with the phenyl ring as seen in the values of the C12-O5-C9-C8 and C12-O5-C9-C10 torsion angles of 0.9(3) and $-179.71(17)^{\circ}$, respectively. A kink is then evident in the chain with the O5-C12-C13-C14 and C12-C13-C14-C15 torsion angles of -61.5(2) and $-61.9(3)^{\circ}$, respectively, being indicative of - syn-clinal conformations. The remaining methylene atoms of the chain have an almost all-trans conformation with the maximum deviation in torsion angles being $-169.7(2)^{\circ}$, for C13-C14-C15-C16.

There is a single literature precedent for the structure reported herein, that is, with a methyl rather than a *n*-dodecyl substituent [8]. This is also zwitterionic and was characterised as a monohydrate.

In the crystal, the O1-hydroxy group forms a chargeassisted hydrogen bond with the phenoxide-O atom [O1– H10···O4ⁱ: H10···O4ⁱ = 1.766(18) Å, O1···O4ⁱ = 2.5927(19) Å with angle at H10 = 167.5(18)° for symmetry operation (i) *x*, 3/2 - y, -1/2 + z] while the other hydroxy groups participate in hydroxy–O–H···O(hydroxy) hydrogen bonds [O2– H20···O1ⁱⁱ: H20···O1ⁱⁱ = 1.90(2) Å, O2···O1ⁱⁱ = 2.7279(19) Å with angle at H20 = 166(2)° and O3–H30···O2ⁱⁱⁱ: H30···O2ⁱⁱⁱ = 1.93(2) Å, O3···O2ⁱⁱⁱ = 2.7600(19) Å with angle at H30 = 176(3)° for (ii) *x*, 5/2 - y, 1/2 + z and (iii) 2 - x, 2 - y, 2 - z]. The molecules assemble head-to-head to form a bi-layer, in the *bc*-plane, sustained by the aforementioned hydrogen bonding interactions. This allows for the inter-digitation of the *n*-dodecyl chains.

Using established procedures [9] and Crystal Explorer 17 [10], the calculated Hirshfeld surfaces were analysed as were the full and delineated two-dimensional fingerprint plots. The presence of multiple conventional hydrogen bonding interactions is reflected in a significant contribution of $H \cdots O/O \cdots H$ contacts, that is, 15.4% to the overall surface.

This notwithstanding, by far the greatest contribution is made by H····H contacts, at 72.9%, reflecting the hydrophobic interactions in the inter-layer region. The only other contribution to the surface contacts of note are from H····C/C···H contacts of 10.9%, which arise largely from methylene-C3– H··· π (phenyl) and methyl-C23–H··· π (phenyl) interactions within the bi-layer constructed from the O–H···O hydrogen bonding.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- Lai, C. K.; Chang, C.-H.; Tsai, C.-H.: Liquid crystalline properties of bis(salicylaldiminato)copper(II) complexes: the first columnar discotics derived from salicylaldimine. J. Mater. Chem. 8 (1998) 599–602.
- Lee, S. M.; Sim, K. S.; Lo, K. M.: Synthesis, characterization and biological studies of diorganotin(IV) complexes with tris [(hydroxymethyl)aminomethane] Schiff bases. Inorg. Chim. Acta 429 (2015) 195–208.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of (2-([1,1-bis(hydroxymethyl)-2-oxyethyl]iminomethyl)-5-(n-decyl) phenolato)-dimethyl-tin(IV), C₂₃H₃₉NO₅Sn. Z. Kristallogr. NCS 234 (2019) 1337–1340.
- Li, Z.-Y.; Jia, G.-K.; Yuan, L.; Bai, P.-F.; He, H.; Zhou, Q.: Syntheses, crystal structures and biological activities of three new Schiff bases derived from substituted salicylaldehyde and tris base. Chin. J. Struct. Chem. **36** (2017) 1797–1802.
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).