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Abstract 

In this work, the microstructure and thermal properties of lithium-niobium-titanium-oxide 

(Li-Nb-Ti-O) solid-solution ceramics were investigated using the X-ray diffraction (XRD), 

Raman spectroscopy, scanning electron microscopy (SEM), and differential scanning 

calorimetry (DSC) techniques. XRD and SEM analysis confirmed that Li-Nb-Ti-O ceramic 

sample synthesized by solid-state method reaches the desired composition of so-called M-

phase of the Li2O-Nb2O5-TiO2 ternary system (Li6.87Nb2.34Ti5.78O21) that should have 

excellent microwave dielectric properties. The M-phase was obtained with lower than 1000ºC 

sintering temperature by doping with MoO3 as flux material, which makes this kind of 

ceramic material suitable for the low temperature co-fired ceramic (LTCC) technology 

applications. The heat flow data obtained from DSC measurement were used to calculate the 

specific heat capacity (Cp) of synthesized Li6.87Nb2.34Ti5.78O21 solid-solution ceramics, which 

is the property of a material that tells about its stability and functionality. 

 

Introduction 

The modern wireless communications, such as mobile systems and its technology, is always 

searching for ways to miniaturize the mobile device's size. The LTCC technology offers the 

possibility of fabricating the highly integrated substrates and radio-frequency microwave 

circuits using a special combination of the ceramic materials and multi-layer/firing 

techniques. Co-fired ceramic devices are made by processing several layers independently 

which are assembled into a device as a final step. This allows co-firing the highly conductive 

materials (like silver) with passive ceramic elements (resistors, capacitors, and inductors). 

Silver is often used as a metallic electrode in such electrical systems because of its high 

conductivity and low cost. However, as Ag melting point is low (about 961 ºC) the dielectric 

ceramics used in the co-fired technology with silver has to have besides the required dielectric 

properties for the desired application also a low sintering temperature [1]. The ternary Li2O-

Nb2O5-TiO2 material system has been an attractive potential candidate for the LTCC 

applications for many years now. Especially, its so-called M-phase, which is described by the 

general formula Li1+x-yNb1-x-3yTix+4yO3 (0.05<x<0.3, 0<y<0.182). As M-phase ceramics 

usually needs higher than 1100 ºC synthesis temperature, the small additions of low-melting-

temperature-oxides such as MoO3 (795 °C) are added as a flux material to lower the synthesis 

temperature by mechanisms of liquid-phase sintering [2]. The M-phase compounds refer to 

the series of solid-solutions in the middle of the Li2O-Nb2O5-TiO2 ternary phase diagram. The 

M-phase grows into the large oriented anisotropic plate-like particles. Some describe the M-

phase structure as the homologous series of solid-solutions phases (in trigonal crystal 

symmetry) with commensurate intergrowth LiNbO3 layers separated by a single [Ti2O3]
2+

 

corundum-type layer. Such M-phase type Li-Nb-Ti-O materials are featured with excellent 

and tuneable microwave dielectric properties (permittivity from 20 to 80) depending on the 

applied synthesis method, and the type and concentration of the functional additives used [3]. 
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Various dielectric permittivity values of the dielectric ceramics used in LTCC are equally 

desirable. For example, the low permittivity dielectric ceramics with the fast signal 

transmission are used as microwave packaging substrates, while the medium dielectric 

permittivity (20-50) ceramics are used in the dielectric resonators/filters. Besides, studying the 

thermal properties of this kind of materials is of great interest as well, because the electronic 

systems, where these materials find applications, are often exposed to different and frequently 

extreme environmental conditions. The specific heat capacity and enthalpy change during the 

melting process were calculated using the obtained heat flow curve from DSC recordings [4]. 

 

Experimental 

The Li-Nb-Ti-O ceramic sample was synthesized using a solid-state method. Starting 

precursors, the commercial powders of anatase TiO2, Nb2O5, and LiCO3 (all purchased from 

Sigma-Aldrich), were mixed in a molar ratio to reach the desired composition with the 

addition of not more than 0.5 wt. % of MoO3 (sample is further marked in the text as Li-Nb-

Ti-O-Mo). The mixed powders were milled in the planetary ball mill (Retsch GmbH PM100) 

in zirconia vial and by zirconia balls of 5 mm diameter. The ball milling was performed in 

ethanol for 4 h with the use of standard balls to powder mass ratio of 10:1 and 100 rpm speed 

rate. The obtained powder mixture was dried on air for 24 h and calcinated at 650 °C for 4h. 

The mechanically activated powder mixture was pressed by 10 mm diameter mold to form 

stable pellet that was finally sintered at 900 °C for 4h. XRD analysis was used for structural 

characterization and was performed on a MiniFlex600 (Rigaku, Japan) X-ray diffractometer 

with Cu-K radiation ( = 1.5406 Å) at a tube voltage of 40 kV and a tube current of 15 mA, 

with steps of 0.02° and a counting time of 1°/min, in the 2θ angular range from 10° to 80°. 

With scanning electron microscope (JEOL JSM-6460LV), the morphology of the sample was 

investigated. The Raman spectrum was measured using the Centice MMS Raman 

spectrometer equipped with a CCD detector and a diode laser, operating at 785 nm (1.58 eV) 

with the power of 70 mW, as the excitation source. Non-isothermal differential scanning 

calorimetry (DSC) measurements were performed using NETZSCH STA 449 F3 Jupiter, 

equipped with DSC sample holders and using Al2O3 crucibles and samples in a powder form 

with a mass around 20 mg in an inert atmosphere of N2 with a control flow rate of 20 ml/min. 

Temperature and heat flow calibration was performed for all the heating/cooling rates used in 

this research. Specific heat capacity measurements procedure used a sapphire crystal as 

reference material. The heating started at room temperature up to 40 ºC with a hold for 30 

min, then the heating continued up to 1200 ºC with a heating rate of 10 K/min and hold for 30 

min before the final cooling to room temperature. 

 

Results and discussion 

The obtained Li-Nb-Ti-O-Mo sample microstructure (Fig. 1) is characterized by the plate-like 

particles that strongly resemble the microstructure already described for the M-phase 

materials [1]. The obtained XRD result (Fig. 2) supports results from SEM findings (Fig. 1) 

that M-phase of LiO2-Nb2O3-TiO2 system was formed. Majority of XRD peaks were indexed 

according to COD reference card no. 1533457 that describes Li6.87Nb2.34Ti5.78O21 solid-

solution crystal system with P3̅c1 (no. 158) space group symmetry. Few impurity related 

diffraction peaks belong to LiNbO3 and TiO2 anatase (marked in Fig. 1) and no XRD peaks 

were found to relate to added MoO3 compound. 
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Figure 1. SEM images of synthesized Li-Nb-Ti-O-Mo ceramic sample 

 

 
Figure 2. XRD pattern of synthesized Li-Nb-Ti-O-Mo ceramic sample 

 

The Raman spectrum obtained by 785 nm excitation wavelength is shown in Fig. 3. The exact 

Raman peak positions (shift in cm
-1

), intensity (counts) and full width at half maximum 

(FWHM) were determined by the amplitude version of Gaussian line-shape multi-peak fitting 

procedure (inset in Fig. 3). There are no past reports, as far as we know, on Raman spectrum 

for Li6.87Nb2.34Ti5.78O21 M-phase in the P3̅c1 space group symmetry obtained by 785 nm 

excitation wavelength. 

The DSC curve recorded for Li-Nb-Ti-O-Mo sample is shown in Fig. 4. The DSC spectrum 

features the endothermic peak at 1177 ºC that characterizes the melting of Li6.87Nb2.34Ti5.78O21 

compound. There was no change in mass. The DSC recording was used to calculate the 

specific heat capacity (Cp) of Li6.87Nb2.34Ti5.78O21. The melting enthalpy (Hm) is calculated 

as the area below the heat capacity vs. temperature curve in the area where the change of this 

parameter is significant (the shaded area in the inset in Fig. 4) as 𝐻𝑚 = ∫ 𝐶𝑝(𝑇)𝑑𝑡
𝑇2

𝑇1
. 
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Figure 3. Raman spectrum of synthesized Li-Nb-Ti-O-Mo ceramic sample at room 

temperature obtained by 785 nm excitation wavelength 

 

In the case of DSC measurement, the specific heat capacity of the sample at a given 

temperature and constant pressure, 𝐶𝑝 , was calculated by a simple comparison of the heat 

flow rates into the sample and reference material (etalon-sapphire) [5] 𝐶𝑝 =
Φ𝑠−Φ0

Φ𝑟𝑒𝑓−Φ0
∙

𝑚𝑟𝑒𝑓

𝑚𝑠
𝐶𝑝
𝑟𝑒𝑓

, where Φ𝑠, Φ𝑟𝑒𝑓 and Φ0 represent heat flow rates through crucible loaded with 

sample material, crucible loaded with reference material and empty crucible, respectively. 𝑚𝑠 

and 𝑚𝑟𝑒𝑓 represent the mass of the sample and reference material respectively, while 𝐶𝑝
𝑟𝑒𝑓

 is 

the specific heat capacity of the reference material. Values for the heat capacity of sapphire 

between 200 °C to 2200 °C, required for specific heat calculation, are available in the 

NETZSCH Proteus software suite. The variation of the heat capacity with the temperature in 

Li6.87Nb2.34Ti5.78O21 crystalline solid is characterized by the melting temperature of 1177 ºC 

and its belonging heat capacity maximum of Cp = 18.7 J/gK (shown as an inset in Fig. 4). By 

integrating the Cp melting peak area, the enthalpy change per unit weight of approximately 

Hm = 364.7 J/g was calculated for this thermal event (inset in Fig. 4). 
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Figure 4. DSC curve of Li6.87Nb2.34Ti5.78O21 ceramic sample (inset shows the calculated 

variation of the specific heat capacity (Cp) with the temperature) 

 

Conclusion 

In this work, the Li-Nb-Ti-O ceramic was synthesized by the solid-state method and its 

microstructure and thermal properties were investigated. Synthesized Li-Nb-Ti-O is specially 

featured by 900 ºC synthesis temperature (achieved by adding MoO3 as flux material) and M-

phase like superstructure, which makes it applicable for the LTCC technology. The 

microstructure analysis confirmed the formation of a member of the M-phase wherein the 

general formula Li1+x-yNb1-x-3yTix+4yO3, the x = 0.12 and y = 0.18 give the final composition of 

LiNb0.34Ti0.84O3 which is equal to Li6.84Nb2.34Ti5.78O21 found by XRD. The results presented 

here give a good starting insight into the possible use of this kind of material. Exploring the 

obtained Li-Nb-Ti-O ceramics needs further electrical characterization, which will give a 

complete picture of the applicability of this material in the modern electrical devices. 
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