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Abstract

The investigation of the pupillary light reflex (PLR) is a well-known
method to provide information about the functionality of the autonomic ner-
vous system. Pupillometry, a non-invasive technique, was applied to study the
PLR alterations in a new, schizophrenia-like rat substrain, named WISKET.
The pupil responses to light impulses were recorded with an infrared camera;
the videos were automatically processed and features were extracted from
the pupillograms. Besides the classical statistical analysis (ANOVA), feature
selection and classification were applied to reveal the significant differences
in the PLR parameters between the control and WISKET animals. Based
on these results, the disadvantages of this method were analyzed and the
measurement setup was redesigned and improved. The pupil segmentation
method has also been adapted to the new videos. 2564 images were an-
notated manually and used to train a fully-convolutional neural network to
produce pupil mask images. The method was evaluated on 329 test images
and achieved 4% median relative error. With the new setup, the pupil de-
tection became reliable and the new data acquisition offers robustness to the
experiments.
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1 Introduction

Patients with schizophrenia, besides the well-known behavioral symptoms, also
show autonomic dysregulation, including impaired pupillary function, which is a
sensitive and reliable source of information about the function of the nervous sys-
tem [1].

Pupillometry is a simple, non-invasive technique for the assessment of the auto-
nomic nervous system function by testing the pupillary light reflex (PLR), meaning
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the contraction of the pupil in response to light. During the test, the changes of
the pupil diameter are recorded and the size of the pupil is measured offline in each
video frame, producing the pupillogram.

The measurement of the diameter in each frame manually is a labor-intensive
and slow process. Automated, software-based methods can speed-up the detection
and improve the analyzing process.

Our recent research investigated the PLR to reveal the schizophrenia-related al-
terations in the autonomic nervous system of WISKET rats and the related medical
results were published in [3]. Contributions in the current work: the explanation
of novel pupillogram features; presentation of a decision tree based classifier and
the discussion of the results; introduction of a redesigned measurement setup and
process; description and evaluation of the new pupil segmentation method.

Related works are summarized in Section 2. The experiments, the novelties of
the feature extraction method and data analysis are described in Section 3. In
Section 4 the results of the analysis and classification are presented and discussed.
Section 5 describes the redesigned measurement setup and a manually annotated
pupil segmentation dataset. A deep learning based pupil detection algorithm and
the detection results on a test dataset are shown in Section 6. Section 7 concludes
the paper.

2 Related works

Developing reliable and predictive animal models for any complex psychiatric dis-
eases, such as schizophrenia, is essential to understand the neurobiological basis of
the disorder. Recently, a new, selectively bred rat model of schizophrenia has been
developed, named WISKET [7, 8, 11, 19].

Clinical studies in schizophrenic patients using pupillometry revealed impaired
autonomic regulation [1, 2, 6, 13, 22]. PLR was also investigated in rodents [16];
however, only our recent study provided data from animal models of schizophre-
nia [3].

Speeding-up pupillometry with automated softwares is essential because manual
methods are slow and labor-intensive. In cases, when the image quality is accept-
able, circle or ellipse detection algorithms can be used [15, 21]. These methods
rely on simple techniques, e.g. the Hough-transform with an ellipse model. When
low contrast and reflections occur, complex and more sophisticated algorithms are
needed [14, 23]. These solutions combine several simple methods with specialized
extensions, e.g. in [14], the simple Hough-transform based ellipse detection was
extended with randomization and was implemented in an iterative scheme to filter
out the noise and to handle outliers. The recent rapid development of artificial
intelligence and machine learning led to more accurate solutions to the pupil detec-
tion problem [4, 5]. Among these methods, the convolutional neural networks are
particularly interesting as they can treat their inputs as images. When the expected
outputs are binary masks, which is a common goal in biomedical applications, fully-
convolutional neural networks are used. They utilize ’de-convolutional’ layers to
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up-sample and combine feature maps with low resolutions to binary masks having
the same sizes as the input images. The most popular such a network structure,
the U-Net, was introduced in [20].

3 Automated pupillometry

3.1 Data acquisition

As it was described recently [3], two series of experiments were performed in sedated
(n=54) and anesthetized (n=20) control Wistar, and WISKET rats. After a 10-
minute long dark adaptation period, the recordings lasted for 15s in sedated, and
for 60s in anesthetized animals. The animals were positioned close to a camera,
and an intensive visible light stimulus (approx. 300cd/m2 for 600ms) was flashed
into their left eyes. The IR-camera recorded pupillary responses at a speed of 24
frames-per-second under infrared illumination.

During the PLR measurements, the rats showed several minor movements,
which affected the quality of the recorded videos. Furthermore, albino rats lack
pigments in their body including their eyes, which reduces the contrast between
the iris and the pupil. A specifically designed pupil detection and measurement
algorithm was used to handle these quality drawbacks [10]. The input of the al-
gorithm was the video recording; and the output was a curve of the determined
relative pupil diameters in each frame - the pupillogram. The relative pupil diam-
eter is the ratio of the pupil and iris diameters, expressed in percentage.

3.2 Feature extraction

To compare the responses of the animals, descriptive features from the PLR curves
were extracted, which are relevant from the pathophysiological point of view and
suitable to emphasize the differences between the groups regarding the autonomic
nervous system activities.

An automated feature extraction method was designed, which produced 40 fe-
atures from the pupillogram. Many of them were basic, traditional parameters like
the initial diameter, which is the size of the pupil before the light impulse; minimum
diameter; reaction time; maximum of the redilated diameter; etc. Several new fea-
tures were implemented to obtain information about the dynamics of the response,
thus 11 velocity related descriptors were introduced including, the average and the
maximal contraction velocities and the times required to reach the latter. The
velocities of the redilation phase at different time points were also calculated.

Novel, smoothness related descriptors were introduced, as well. A polynomial
curve with a given order was fitted to the redilation part of the response. The
area between the original and fitted curves served as a measure of non-smoothness.
Fifth order polynomials were chosen, which were flexible enough to follow the slow
perturbations of the original curve and indicated only the short, abnormal swings.
In Figure 1, a representative response curve and a marked subset of the extracted
features are presented.
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Figure 1: Pupillary light response curve and a marked subset of the 40 features.

3.3 Data analysis

The sedated and the anesthetized animals were analyzed separately.
One-way ANOVA was used for the analysis of differences between the control

and test groups. The relationships between pupil parameters were assessed by linear
regression analysis and calculation of the Pearson correlation coefficient. Only
probabilities lower than 0.05 were considered significant.

Besides the investigation of the differences in PLR parameters, the other goal
was to use pupillometry as a quick examination to facilitate the selection of the
animals during the breeding process. Therefore, a binary decision tree was trained
to investigate the possibility of classification and the model was evaluated by using
cross-validation.

4 Evaluation

4.1 Classification results

The detailed discussion of the results of the statistical analysis is found in our recent
study [3]. In accordance with these results, the trained decision tree selected almost
the same features as predictor variables as the statistical analysis suggested.

In the sedated group, which has the greater cardinality, the fitted decision tree
achieved 71% accuracy measured by cross-validation. The algorithm selected the
following predictors: minimum diameter (relative pupil size); initial diameter (rel-
ative pupil size), and average redilation speed (change of relative pupil size/frame
time). Figure 2 shows the fitted decision tree.

With the combination of the two analysis methods (statistical analysis, decision
tree), significant differences were noticed between the control and test groups. The
initial and minimum pupil diameters were larger and the degree of the constriction
was lower in the WISKET rats. The flatness of the curve (length of the minimum
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Figure 2: Decision tree fitted to the sedated group data. Leaf nodes containing 0
correspond to control group and nodes with values 1 correspond to the test group.

region) and the contraction time were shorter in the control group. These results
are in accordance with previous studies mentioned in Section 2.

The analysis of the anesthetized animals showed that they cannot be divided
into two classes reliably. It is assumed that while anesthesia can prevent stress and
allows a convenient investigation of pupillary reactions for a longer period, it also
diminishes the differences between the two groups in this autonomic response. The
classifier achieved only 60% accuracy. The selected predictors were the amplitude
of contraction, the average redilation speed and the time required to reach the
maximal redilation speed.

4.2 Discussion

The results showed that anesthetized animals cannot be used in these experiments,
so the attention was focused on the sedated animals. However, the sedated animals
were still able to move their heads during the experiments, which affected negatively
the recording of the pupil with the closely placed camera.

Based on the decision tree analysis, the initial diameter and the minimum di-
ameter seemed to be the most reliable features for the classification, although the
dynamic, time-related features seemed to be less relevant (or more samples (rats)
are required to detect the potential differences).

From these observations, it could be concluded that a more robust measurement
process was required, which had a relatively short period and provided multiple light
stimuli to induce reoccurring reflex responses and minimum diameter occasions.
thus enabling a complex and more detailed analysis.
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5 Improved pupillometry

5.1 Improved data acquisition

To improve the robustness of the recordings, the measurement setup was redesigned.
Around the camera lens, an IR LED (infrared light-emitting diode) ring was at-
tached, setting the camera and the illuminating IR LEDs (nearly) on the same
optical axis. With this setting, the camera is able to detect the light reflected
from the retina, causing the so-called ’Bright pupil effect’ [17], and the camera can
be placed farther from the animal, thus tiny animal movements do not affect the
recording quality. In Figure 3 the differences between the old and new setups are
presented.

A new embedded system was also developed to schedule the experiments, which
is controlled from a graphical user interface on the PC to initiate different visible
light impulse sequences. This scheduler implements accurate time synchronization
and manages the timing of light stimuli. The system uses an RGB LED, which
allows us to produce different light intensities and colors.

With these improvements, the signal-to-noise ratio was enhanced (the pupil is
better detectable) in these images and the recordings are more robust and precise.
The improved image quality can be observed in Figure 3.b.

Figure 3: Difference between the old (a) and new (b) measurement setups. a)
The camera is close to the eye and the illuminating infrared LED placed far from
the camera’s optical axis. The camera records black pupil region (reflected light
never reaches the camera). b) The camera is placed farther from the eye and the
illuminating LEDs are close to the optical axis. The camera records bright pupil
region (reflected light reaches the camera).
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5.2 Pupil segmentation dataset

The images recorded with the new measurement setup have a completely differ-
ent nature, as it can be seen in Figure 3.b. Therefore, our previously developed
method [10] cannot be used (different intensity levels, different resolution, etc.). To
support the development of a new pupil segmentation algorithm and to validate the
new setup, 56 experimental videos were recorded each containing more than 5000
frames. From these videos, 2564 randomly chosen frames were manually annotated
(ellipses manually fitted to the pupil regions). An additional set of 329 images were
selected and annotated to form a challenging test dataset.

Traditional image preprocessing methods were implemented to detect the eye
region in the image, crop it and enhance the contrast. The preprocessed dataset
contains 128×128 pixels-sized images and the corresponding binary pupil masks.
Figure 4 shows some samples and the corresponding pupil masks from the pupil
segmentation dataset.

The dataset is publicly available [9].

Figure 4: Example samples from the pupil segmentation dataset. Top row: original
samples. Bottom row: corresponding pupil mask images.

6 Pupil segmentation

6.1 Pupil segmentation using neural network

A modern way to solve a segmentation problem is to use neural networks. Fully-
convolutional networks are frequently used in segmentation problems as was ex-
plained in Section 2. In this paper, a U-shaped structure designed for biomedical
applications, the U-Net structure [20] was used to perform the pupil segmentation
task – the calculation of binary pupil masks. The training of the network required
manually annotated data.

Our dataset contains input images with 128×128 resolutions. The originally
published version on the U-Net worked with different input sizes, thus adaptations
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were required. Three layers (each performs convolution and max-pooling) were
applied and the number of channels was doubled after each pooling, as the original
paper suggested. At the bottom of the U-shaped structure, 512 pieces of 16×16
sized feature maps were calculated. The abstract visualization of the used structure
can be observed in Figure 5. Instead of random initialization, the ”de-convolution”
layers’ weights were initialized to perform bilinear up-sampling. To compare the
predicted and ground-truth pupil masks, binary cross-entropy was used as the loss
function. Adam method [12] was used as the optimizer and the batch size was 64.

Data augmentation was employed to prevent model overfitting (random flips,
random crop and resize). No other regularization techniques were used. The train-
ing process was optimized by the analysis of the training loss and validation loss
curves. 10% of the training dataset served as the validation set. Early-stopping
was applied to terminate the training process when the validation loss stopped
decreasing. This setup was tested with different learning rates. The best perform-
ing model ran for 200 epochs, with the learning rate of 0.001. The algorithm was
implemented in PyTorch [18].

The output of the neural network was an almost binary image. The pixel values
were close to 1.0 when a pixel was considered as part of the pupil. The output was
binarized with an empirically set threshold value. In the resulting binary images,
contours were found and ellipses were fitted on these points. The final output was
the mask of the fitted ellipse. If multiple ellipses were identified, the false detections
were filtered out by simple rules based on the sizes, shapes, and locations of the
ellipses. A set of example images and the predicted ellipses (without false detection
filtering) are presented in Figure 6.

Figure 5: The neural network structure similar to [20].
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Figure 6: Example result images. Red ellipses present the predicted ellipses’ bor-
ders.

6.2 Results

The trained model was evaluated on the test dataset containing 329 images. The
Jaccard-index (Intersection of Union) was determined to compare the ground-truth
and predicted pupil masks. The average Jaccard-index value on the test dataset was
0.815. This test set is challenging and there were samples, which were completely
misclassified by the algorithm. Therefore the median value, which is more robust
to these outliers was calculated too. The median relative error was 0.883.

Besides the pupil masks, the major axes lengths (diameters) of the annotated
and predicted ellipses were also compared, which was important, because the orig-
inal output of the system was the pupillogram, the curve of pupil diameters. The
average relative diameter error was 12%, the median relative error was 4%. In
Figure 7.a the sorted original and the corresponding predicted diameters are pre-
sented. It can be seen that most of the errors occurred when the pupils’ diam-
eters were smaller than 20 pixels. This information loss might be caused by the
down-sampling section of the U-shaped structure. In Figure 7.b the relationship
between the Jaccard-index and the relative diameter error can be observed. Small
Jaccard-index value not necessarily implies considerable relative error. This can be
explained because if only a small part of the mask is missing, this will reduce the
Jaccard-index value (error of the masks). However, it is possible that the missing
part only has an influence on the minor axis length of the ellipse, and the major
axis length – the extracted diameter value – remains the same.

The diameter measurement accuracy can be improved with post-processing be-
cause additional filtering is available while the algorithm is being run on consecutive
video frames. This time domain correlation could be utilized in more complex neu-
ral network structures too, which could accept a part of a video as their input. This
possibility will be investigated in our future work.

Besides the objectively measured improvements, the pupillometry with the new
measurement setup and segmentation algorithm will have a positive effect on the
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Figure 7: a) Sorted original diameters and the corresponding predicted diameters.
b) Sorted Jaccard-indecies and the corresponding relative diameter errors.

classification of the animals too. As the former setup (one impulse/experiment)
is inherited in the current measurements (impulse sequences), at least the same
features can be extracted. However, the relations between the consecutive impulse
responses will unfold more complex details about the alterations of the autonomic
nervous system.

7 Concluding remarks

Pupillometry was applied to study the potential schizophrenia-like alterations in
the PLR in WISKET rats. A 40-dimensional feature vector was assigned to each
recorded video and the dataset was analyzed with decision tree-based classifica-
tion. The results suggested that pupillary control showed significant alterations in
WISKET rats, and the classification based on pupillometry might be applied as
an additional examination during the breeding process. Based on the observations,
the measurement process was redesigned to induce the ”bright pupil effect”, which
offers more robustness to the experiments. To develop a new pupil segmentation
algorithm, a publicly available pupil segmentation dataset was created. A fully-
convolutional neural network was trained to produce binary pupil masks. On the
test dataset, the relative pupil diameter predictor achieved low, 4% median error.
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