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Considering the pivotal role of interfaces in controlling the performance of organic electronic 

devices, implications of metal/organic interfacial quality in Schottky barrier diode (SBD) is 

investigated. Nature of metal/organic interfaces and thin film quality of regioregular poly (3-

hexylthiophene) (RR-P3HT) based SBDs fabricated in different device architectures is 

investigated using both of the experimental and theoretical approaches. Importance of oxidized 

aluminum nanostructures as inter-layer at Schottky interface for the dramatic enhancement of the 

rectification ratio (>106 at ± 5V) has been demonstrated, which is attributed to suppressed leakage 

current due to the oxide layer and the formation of charge double layer. Furthermore, electrical 

performances of all the SBDs were modeled in terms of underlying particular phenomenon solely 

or with the combination of multiple physical phenomena. The combined modeling equation used 

in this work fits well for the different device architectures, which validates its generality in order 

to extract the device parameters. 
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I. INTRODUCTION 

 The emergence of solution processable semiconducting conjugated polymers (CPs) with 

diverse synthetic versatility and introduction of various functional groups for controllable 

optoelectronic properties have led to their vast applications in organic electronic devices.1–6 

Advent of CPs have made it possible to fabricate devices under the ambient conditions, however, 

undesired doping and trap states should be controlled efficiently for performance reproducibility.7–

10 In spite of the significant efforts that has been made in the past to interpret and solve these issues, 

there exist a big room for the improvement. Performance of the CP based electronic devices 

depends on the bulk (quality of organic thin film) and interfaces (contact resistance at the 

junctions).  Interfacial band structure is responsible for the contact resistance (RC), which can be 

tuned by the choice of metal, CP and interlayer; however, presence of trap states is well known to 

play a dominant role in deciding the RC.11–15 In this regard, Tsukagoshi and coworkers reported 

that in spite of lower work function of copper (Cu) with higher hole injection barrier at the 

Cu/pentacene interface, resultant RC with Cu top contact was smaller than corresponding Gold 

(Au) contact.12 Ideally, in the organic field effect transistors (OFETs), if there exist a barrier for 

hole injection at source contact then there should not be any barrier for hole extraction at drain 

contact considering the similar band structure. Since RC at both the interfaces are reported to be of 

the same order, therefore, dominance of the trap states in RC cannot be denied.13 In this regard, not 

only interfacial trap states are responsible for RC, the presence of trap states in bulk of the film 

arising at the boundaries also play a crucial role, which stringently depends on the film 

crystallinity.9,16–18 Bulk resistance (RB) inversely depends on the film crystallinity because with 

decrease in film crystallinity effective carrier mobility decreases19 and current in forward bias 

(when applied forward bias (Va) exceeds the built-in voltage (Vbi)) is governed by well-known 
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Mott-Gurney relation regarding space charge limited current (SCLC).20–23 There are numerous 

reports in which the physical phenomena occurring in the organic diodes were interpreted by 

comparing the experimental observations through theoretical models. These models were 

developed considering the bulk phenomena (SCLC or drift current region) and the interface 

dependent charge injection phenomena (at the Ohmic contact), either one at a time or by combined 

effect as a function of applied voltage.7,24–28 However, device structure dependent deviation of the 

physical model from practical electrical characteristics still remains a chalange.26,29,30 Here in we 

are reporting a general/robust model considering the whole interface and bulk phenomena of an 

organic Schottky barrier diode (OSD), irrespective of the device architecture.  

In this work, OSDs were fabricated with different interfacial structure and film morphology. 

Their electrical characteristics were analyzed to investigate the combined effect of interface and 

bulk on the device performance in terms of thermionic emission and Mott-Gurney SCLC equations. 

Schottky diodes consist of a semiconductor layer placed between the Ohmic and Schottky contacts,  

which allow injection and blocking of the current flow under the forward and reverse biasing, 

respectively.31 Resultant rectification ratio (RR) of the diode depends on the nature of Schottky 

contact, and large Schottky barrier is desired for high RR. Since most of the CPs in pristine state 

show p-type behavior, which reflects the relative carrier mobility in the organic layer; therefore, 

low work-function cathode such as calcium, magnesium, etc. is recommended to block hole 

injection efficiently under reverse bias. Although they provide larger Schottky barrier with 

decrease in work-function, their air-stability also decreases resulting in to rapid device 

deterioration.32 Thus to achieve optimum device performance, Aluminum (Al) was chosen as 

electrode material to make Schottky contact with poly (3-hexylthiophene) (P3HT) and Ohmic 

contact was formed utilizing Au.33 On oxidation, work-function of Al decreases unlike other 
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metals, and this exceptional property was exploited to improve RR of the OSDs.34–36 Presence of 

a thin oxidized Al (AlOX) interlayer between P3HT and Al led to investigate its influence on the 

electrical characteristics of the OSDs. AlOX layer formed on the CP film under similar conditions 

was also characterized through atomic force microscopy (AFM), X-ray and ultraviolet 

photoelectron spectroscopy (XPS and UPS) for better interpretation of its effect on the OSD’s 

electrical characteristic. Further, the effect of film crystallinity on the device performance was also 

investigated and for that, films were cast by the two different methods such as spin-coating and 

drop-casting, which provided different film crystallinity as verified by grazing incidence X-ray 

diffraction (GIXD) measurement. This work deals with investigations pertaining to the 

implications of the AlOX interlayer and film crystallinity on the device performance along with 

the analysis of the observed results through different modeling equations. The modeling equations 

were designed by integrating the possible physical phenomena occurring in the device at the 

electrode/organic interfaces and inside the bulk (CP film). 

II. Experimental Section 

A. Materials and Device fabrication 

Electronic grade regioregular P3HT and super dehydrated chlorobenzene were purchased from 

Sigma Aldrich and used as received. P3HT was dissolved in chloroform (1.5% w/w) and 

chlorobenzene (0.2% w/w) to fabricate thin films by spin-coat and drop casting, respectively. 

Metal deposited glass substrates were used for device fabrication. Drop-casted films were prepared 

by dropping the polymer solution on metal patterned substrates covered with petri-dish to facilitate 

slow solvent evaporation.  On the other hand, spin-coated films were prepared at spin speed of 800 

rpm for 5 s followed by 1500 rpm for 40 s. Both types of P3HT films were fabricated under ambient 
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conditions and then vacuume (⁓10-3 Torr) dried for 30 min. Then films were annealed at 150 ℃ 

for 20 min in argon atmosphere followed by thermal evaporation of top metal pads under high 

vacuum (below 10-6 Torr) using shadow masks. In this work, OSDs with cross-sectional area 4 

mm2 (except when it is mentioned) were fabricated using P3HT as the active semiconductor while 

thermally evaporated Al and Au metal were utilized for making Schottky and Ohmic contacts, 

respectively. The OSDs were fabricated in three different device architectures such as with Al as 

top contact with and without AlOX interlayer and Au as top contact as shown in Figure 1.  In the 

case, when OSDs were fabricated with AlOX interlayer (Figure 1 (b)), at first a thin (10 nm) Al 

layer was thermally evaporated on P3HT under high-vacuum followed by exposing them to 

ambient condition for ⁓ 1 hour to facilitate the oxidation of Al forming AlOx. Later, 60 nm thick 

Al was thermally evaporated on AlOX under high vacuum to complete the device fabrication. It is 

worth mentioning here that this 10 nm of AlOX layer was not continuous as characterized by AFM 

and will be discussed later.    

 

FIG. 1. Schematic illustration of the device architectures with top Al contact pristine (a)  and with 
AlOX interlayer (b) and with Al contact at the bottom (c). 
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B. Characterization 

Electrical characterizations (current − voltage) of the OSDs were performed using a source-

measure unit (Keithley 2612). For the estimation of switching speed of the OSDs, output voltage 

of the OSD was measured by placing it in series with a load resistor (2 kΩ) and a variable frequency 

AC-voltage source (Multi-Function Generator, WF1974). An oscilloscope (Agilent MSO-X 

2004A) was connected across the resistor to monitor the ripple voltage. GIXD (in-plane and out-

of-plane) measurements of similar spin coated and drop casted P3HT films were carried with 

Rigaku smart Lab. Photoelectron spectroscopy (XPS and UPS) measurements were performed 

using Shimadzu Kratos Axis-Nova spectrometer. Al Kα excitation source was used at pass energy 

of 80 eV with the energy resolution of 1000 meV. Samples of XPS and UPS characterization were 

prepared by thermal evaporation of 10 nm of Al on top of the P3HT film and they were kept in 

ambient conditions for 1 h before the measurement. Depth profiling by XPS and UPS was also 

conducted by etching with Ar+ ions for different time intervals varying from 0-60 s. The AFM 

images of similarly prepared films were obtained using a scanning probe microscope (JSPM5200, 

Shimadzu, Japan).  

 

III. RESULTS AND DISCUSSION 

A. Current-Voltage Characteristics of OSDs 

The current density-voltage (J –V ) characteristic of OSDs fabricated in different device 

architectures are shown in Figure 2 (a). This asymmetric J –V characteristic clearly reveals the 

facile flow of current in the forward bias and blocking of current in the reverse bias conditions, 

which can be attributed to the formation of Schottky barrier at the Al/P3HT interface. Thermionic 
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emission model as given in Eq. 1 was proposed for inorganic Schottky diodes but it has been 

widely accepted for organic semiconductors as well.21,33,37,38  

 𝐽𝐽 = 𝐽𝐽0 �exp �
𝑞𝑞𝑞𝑞

𝜂𝜂𝜂𝜂𝜂𝜂
� − 1� (1) 

Where, 𝐽𝐽0 = 𝐴𝐴∗𝑇𝑇2 exp �−
q𝜙𝜙B

𝑘𝑘𝑘𝑘
� (2) 

Where, J and V represent current density and applied voltage, respectively. The constant terms 

are A* (Richardson constant), k (Boltzmann constant), T (ambient temperature) and q (electronic 

charge). η, J0 and 𝜙𝜙B are device parameters representing ideality factor, reverse saturation current 

density and barrier height respectively. J0 and η  were calculated from the intercept and slope of 

lnJ –V  plot and the RR was calculated from the ratio of current flowing through the device under 

forward and reverse bias at the same applied potential. All of the calculated parameters for different 

devices structures are summarized in Table I.  Asymmetric J –V characteristics with high RR is 

among the most important criterion for a practical diode. Therefore, state-of-art work reported by 

other groups in the literature is also listed in Table II for the comparison. A perusal of Figure 2 

and Table I clearly corroborates that RR of the OSD having pristine Al top contact is similar to 

that of devices in Al as bottom contact (in the order of 104). This can also be understood from the 

statistical distribution of J –V characteristics of multiple devices of each type as shown in Figure 

S1 and Table SI (Supplementary Information). 
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FIG. 2. J – V characteristics of the Schottky diodes (a) along with the device architectures shown 
in the inset. Energy band diagram for the different layers in the OSD with pristine Al and AlOX 
interlayer (nano-structures of AlOX with the 10 nm thick Al) at the Schottky contact (b, d) and 
Energy band diagram of the corresponding OSDs in forward bias (Va > Vbi) (c, e). Energy levels 
are shown with respect to the vacuum level.  

 

Interestingly, there was a remarkable enhancement in the RR (~ 2 orders of magnitude) of the 

OSD with top Schottky contact having an interfacial layer of AlOX (with optimized thickness of 

10 nm as shown in Figure S2). This enhancement in RR can be attributed to the optimal interfacial 

band structure at the Schottky contact. Upon oxidation, the work function of Al decreases at the 

Schottky interface,34 which favors the holes transport under forward bias but blocks in the reverse 

direction leading to enhancement in the ON-current (Ion), while OFF-current (Ioff) was reduced 

more effectively. Low RR was observed for OSDs with Al at bottom, where the formation of thin 

oxide layer at the interface in ambient condition naturally occurs. Therefore, the effect of device 

architecture on the performance of OSDs was also probed in detail. Since the pristine Al surface 

cannot oxidize fully, therefore, an arbitrary state ‘x’ is considered to represent the oxidized Al 

layer (AlOX) and its corresponding work-function was drawn less than that of pristine Al in Figure 
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2 (d,e). The oxide growth saturates towards depth due to limited penetration of aerial oxygen 

irrespective of the exposer time and it has been reported to be ⁓2 nm for Al. Nonetheless, the work-

function of AlOX also starts to increase with ageing.34 Considering both of these points, the 

interfacial Al layer was exposed to the ambient condition for 1 h. Schematic representation of 

energy band structure of the OSDs with and without AlOX layer has been shown in Figure 2(b-e). 

The increasing trend of work-function of AlOX towards the depth of interfacial layer represents 

the lesser oxidized region. To construct the energy band diagram, the work functions of Au and 

Al, along with the energy of highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) of P3HT was taken from the literature.39,40 After the inception of CPs 

and demonstration of their semiconducting behavior, Schottky model based on thermionic 

emission developed for the silicon has been quite frequently used straightway for the organic 

diodes to deduce electronic parameters like ideality factor.41 Standard Schottky model predicts that 

the depletion region should be confined to the small part of the film thickness. However, in OSDs, 

low carrier concentration leads to the extension of depletion region throughout the film thickness 

(≈100 – 200 nm).  This poses limitation to the straightforward use of thermionic emission model 

for OSDs leading to the proposal of other models like metal-insulator-metal (MIM) without having 

partial depletion region.27,42–44 This was further validated through small value of experimentally 

calculated Richardson constant (2 × 10-9 Acm-2K-2) obtained by temperature dependent J –V  

characteristics of OSDs, which is far from the typical value of Richardson contestant (120 Acm-

2K-2) used for inorganic semiconductors.33,45 Keeping these arguments in mind, energy band 

diagram for the OSD as shown in Figure 2 (c, e) was constructed considering the MIM model.  
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TABLE I. Electronic parameters calculated for the OSDs fabricated in different device 
architectures. AFM image (Figure 3) shows nanostructures of AlOX for the corresponding 
thickness of 10 nm of Al shown by thickness monitor.  

Diode configuration Rectification ratio (RR) 
(at V = ± 5 V) 

Ideality factor (𝜂𝜂) 

Al-top contact (without AlOX) 4.01 × 104 ± 32.23% 1.48 ± 15.2% 

Al-top contact (with 10 nm AlOX) 1.11 × 106 ± 14.63% 1.70 ± 33.8% 

Al-bottom contact 4.73 × 104 ± 57% 1.48 ± 10.5% 

 

Contrary to OSDs fabricated with Al top contact as shown in Figure 1, J –V characteristics were 

noisy and suffered with the reproducibility issues with Au top contact as shown in Figure 2(a) and 

Figure S1. The non-repetitive J –V curves in combination with pronounced leakage current for 

OSDs with Au top contact could be attributed to the diffusion of heavy and hot Au atoms into the 

soft polymeric semiconductor film. Which is supposed to cause large Au−thiol chemical 

interaction and damaged Au/P3HT interface.46,47   

TABLE II. Summary of previously published characteristics of organic Schottky diodes and recent 
progress of printable inorganic Schottky diode is also included for comparison  

Structure RR J (A/cm2); 
corresponding 

V (V) 

Publication 
year 

Reference 

Cu/CuTCNQ/pentacene/Al 2 × 106 0.51; 5 2010 48 

Au/PEDOT:PSS/P3HT/Al 3 × 104 0.1; 3 2009 49 

Cu/PTAA/Ag 105 ⁓ 0.1; 5 2011 15,50 
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Cr/Au/C16IDT-
BT/MoO3/Ag 

˃ 106 ⁓ 5; 5 2017 51 

Pt/InGaZnO/Al 2.2 × 104 0.65; 1 2016 52 

Ti/Pd/InGaZnO/Mo 108 300; 1 2013 53 

Au/P3HT/AlOX/Al (1.11× 106  ± 
14.63%); at ± 5V  

(0.053 ± 
28.75%); 5 

This work 

 

B. Morphological characterization 

In order to visualize the surface morphology of the optimized AlOX interlayer (10 nm), AFM 

measurement was conducted and the obtained images are shown in Figure 3. From the perusal of 

Figure 3 (a, b), small islands of Al (≈ 100 nm wide) was clearly observed from the height image 

with root mean square (RMS) surface roughness of ≈ 2.61 nm. Minimization of surface energy 

might have assisted this formation of islands during thermal evaporation since the metal deposition 

occurs as a tiny cluster of atoms. Moreover, less freedom to rearrange themselves on the polymer 

surface could also have assisted the formation of such nanostructured interface. This can be 

understood by the fact that when the similar or even lower thickness of Al was coated on bare 

Si/SiO2 substrate in same deposition condition, continuous Al film was observed as shown in 

Figure S3. Despite the fact that islands partially cover the underneath polymer layer (≈30%, as 

shown in Figure S4), the RR for the OSDs with AlOX interlayer was found to be dramatically 

improved compared to that of devices without AlOX interlayer with Al at top (Figure 2 (a)). As 

already stated, oxidation of the exposed surface of Al continues up to around 2 nm in depth, but 

the nano-islands of AlOX play a dominant role in the device performance due to increase in their 

effective surface area. When the Al surface is exposed to air, a large amount of oxygen is also 
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expected to be trapped on the oxide surface. The empty levels of the adsorbed oxygen are filled by 

the electron tunneling from the underlying Al atom, concomitantly a charge double layer is formed 

with a negative charge on the external surface as schematically shown in Figure 3(c). It can also 

be noticed that resultant electric field due to this charge double layer assist the hole transport in 

the forward direction; however, it hinders the hole transport with Al at bottom contact as shown in 

Figure 3(c). Thus it can be said that the optimum thickness of AlOX interlayer is controlled by 

three parameters, which are the optimum coverage of the underlying CP layer, the presence of 

pristine Al below the AlOX layer for charge double layer formation and the distance of the charge 

double layer from the underlying CP layer for optimum effect on the charge transport. It is worth 

to note here that during optimization, thickness shown by the Quartz crystal monitor was 

considered without commenting on its continuity but considering its effect on the J –V 

characteristics. Therefore, from now on, this thickness value will be used for the device 

nomenclature.               

 

FIG. 3. AFM images of the 10 nm oxidized Al deposited on top of the spin-coated P3HT film 
exhibiting height (a) and phase (b) images. Inset of (a) depicts the schematic for partially oxidized 
Al-island. (c) Schematic representation for the formation of charge double layer due to adsorbed 
oxygen on AlOX layer.  
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C. Interfacial characterization 

To have in-depth insight about interfacial chemical composition and electronic band structure 

of AlOX on P3HT, XPS and UPS depth profiling was conducted with the sample as shown 

schematically in Figure 4 (a). Wide-energy XPS spectrum for the sample is shown in Figure 4 (b) 

exhibiting peaks corresponding to Al 2p, Al 2s, C 1s and O 1s at binding energy of 75 eV, 120 eV, 

287 eV and 533 eV, respectively. A similar XPS profile for wide scan of AlOX layer generated 

upon variously oxidized Al surfaces has also been reported by Gupta et al.54 Presence of the weak 

XPS peak corresponding to C 1s along with peaks corresponding to O 1s and Al 2p is attributed 

to the presence of hydrocarbon impurity at the surface of oxidized Aluminum (AlOX).55 Complete 

disappearance of C 1s peaks just after 10 s of Ar+ ion etching from top further supports the presence 

of hydrocarbon impurity. It can be seen in the Figure 4 (d, e) that as a function of etching time (i.e. 

sample depth), there is an increase in the counts of Al 2p and concomitantly decrease in the O 1s 

atomic peak indicating a relative reduction in the extent of AlOX. In XPS measurement, the 

incident source was of very high energy (1486.6 eV), therefore, the obtained signal contains the 

corresponding peaks of elements present up to ~ 5 – 10 nm depth.35 Since the height of Al-islands 

are also of the same order (rms surface roughness ≈ 2.61 nm as observed in AFM measurement), 

therefore, change in the ratio of the XPS signal corresponding to Al 2p and O 1s was considered 

for probing the AlOX layer formed after the aerial oxidation of Al. 
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FIG. 4. (a) Schematic representation of sample geometry used for the depth profiling of AlOX 
interlayer by XPS and UPS and the inset shows the set of ligands corresponding to graphs in (b − 
e). (b) Wide scan XPS spectral profile before etching and narrow scan elemental profiling with 
Ar+ ion etching from top for (c) Carbon, (d) Aluminum and (e) Oxygen. (f) Probing AlOX interlayer 
represented in terms of ratio of percentage contribution in XPS spectrum corresponding to Al 2p 
and O 1s as a function of etching time.   

 

A perusal of Figure 4(f) clearly corroborates that initially Al 2p to O 1s ratio was increasing, which 

corresponds to a decrease in oxygen contents with depth followed by a decrease after 50 sec of 

etching. Although only limited penetration of oxygen is possible inside the Al islands, some 

amount of oxygen is always present in the underlying polymer film due to its processing under 

ambient conditions, therefore, Al 2p peak intensity decreases after certain depth but that of O 1s 

saturates which might be the reason for the decrease in Al to O ratio (Figure 4 (f)).  
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The sample was further subjected to UPS measurement before and after consecutive Ar+ ion 

etching from the top and the obtained results are shown in Figure 5. In the UPS spectra at the 

secondary electron cutoff position (corresponding spectra magnified in right inset), the binding 

energy of the sample decreases with depth. They were found at the binding energy of 17.81 eV, 

17.81 eV, 17.65 eV and 17.45 eV for 0 s, 20 s, 40 s and 60 s of sample etching, respectively. The 

valence band edge (represented by the intersecting lines) shifts towards higher energy with 

increase in sample etching and were found to be 4.24 eV, 4.83 eV, 4.90 eV and 4.90 eV for samples 

before and after 20 s, 40 s and 60 s of etching, respectively. These shifts correspond to an increase 

in the work-function of the AlOX interlayer, which has been shown schematically in the band 

diagram after inserting the AlOX layer in Figure 2 (e).35 

 

 

FIG. 5. UPS spectral profile for AlOX island layer on P3HT before and after Ar+ ion etching 
(Incident beam energy (He−I) = 21.2 eV). Sample geometry for this was also the same as shown 
in the Figure 4 (a). 
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D. Microstructural characterization 

Encouraged by implication of device architecture on the performance of OSDs, where 

bottom Au and top Al contacts having 10 nm of AlOX-islands gave the best device performance, 

effort was directed to examine the influence of film crystallinity and macromolecular conformation 

on the performance of OSDs. To accomplish this, OSDs were fabricated in the optimized device 

architecture using thin films of P3HT prepared by spin-coating and drop-casting as described in 

experimental section. The obtained J −V characteristics along with device architecture used are 

shown in Figure 6 (a) and the device parameters obtained by fitting the linear region of lnJ −V 

characteristics are summarized in Table III. It can be clearly seen that in spite of having similar 

device architecture and fabrication conditions, OSDs having spin-coated thin films exhibited 

improved device performance as compared to the case of drop-casted thin films.   

 

 

FIG. 6. (a) J -V characteristics of OSDs fabricated using thin films of P3HT prepared by spin-
coated and drop-casted films along with the device structures shown in the insets. (b) Out-of-plane 
and (c) in-plane GIXD pattern for spin-coated and drop-casted films of P3HT. Inset of (b) shows 
the enlarged view of 100 peak in both the cases. Inset of (c) shows 15 times resolved peak of the 
in-plane GIXD pattern and schematic representation for edge-on conformation of P3HT molecules. 
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TABLE III. Electronic parameters calculated for the OSDs fabricated using spin coated and drop 
cast P3HT films in the device configuration Al-(top)/AlOX (10 nm)/P3HT/Au-(bottom).  

P3HT thin film  
fabrication 
method 

d-spacing 
(Å) 

Rectification ratio 
(RR) (at V = ± 5 V) 

Ideality 
factor (𝜂𝜂) 

Spin-coating 16.95 1.11 × 106 ± 14.6% 1.70 ± 33.8% 

Drop-casting 17.34 3.04 × 103 ± 17.9% 3.28 ± 18.5% 

 

In order to understand such a marked difference in the device performance for the P3HT thin films 

fabricated by spin-coating and drop-casting methods, these films were subjected to out-of-plane 

and in-plane GIXD measurements. As can be seen in Figure 6 (b) that in out-of-plane mode GIXD 

spectra, all the peaks corresponding the lamellar-stacking of the alkyl side-chains appeared at 4.75°, 

9.97° and 15.29°. The d-spacing calculated from the difference between 100 and 200 peak 

positions was found to at 16.95 Å and 17.34 Å for the spin-coated and drop-casted P3HT films, 

respectively. A small shift in 100 peak position (2𝜃𝜃 ≈ 0.1°) towards the lower angle in drop-casted 

film also corresponds to increase in d-spacing, i.e., the alkyl side-chains are more stretched as 

compared to the spin-coated one, which causes hindrance in out-of-plane charge transport. From 

the Figure 6(b), it can also be clearly seen that all the peaks corresponding to the lamella formation 

via alkyl side-chain stacking were more pronounced up to higher orders for the films prepared 

using spin coating as compared to the drop-casting method. In general, the position of the peak 

represents the lamellar stacking distance, whereas the sharpness of the peak is associated with the 

crystallinity and grain size. Therefore, it can be concluded that in the present case the spin coated 

films possessed higher degree of crystallinity as compared to that of the drop-casted films. 

Moreover, in the in-plane GIXD pattern, the presence of peak corresponding to π-π stacking at 

2𝜃𝜃 = 23.17° and absence of any (h00) peaks related to alkyl-stacking in both of the films clearly 
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suggest the edge-on conformations of the polymeric backbones on the substrate as schematically 

shown in the inset of Figure 6(c).  

 

Since the thickness of the films prepared by both the methods were of the same order (≈ 

200 nm), it is worth mentioning here that films prepared by spin coating by two-successive spin 

speed were of high crystallinity as compared to the drop-casted method. The edge-on conformation 

and high-crystallinity of the spin-coated samples prepared here is attributed to the low spin-speed 

(800 rpm) in combination with relatively higher polymer concentration (2% w/w), which gave 

enough time to the macromolecules to obtain thermodynamically favored conformation as reported 

earlier.16,56–58 At the same time, spin coated films possess high film uniformity with minimum 

surface roughness due to the absence of coffee ring effect, the drop-casted film possess non-

uniform thickness distribution. Due to presence of coffee ring effect, the dissolved polymer 

molecules moves towards the edges of the drop-casted area, which lead to inhomogeneity in dried 

film.59,60 When the top electrode is deposited, diffusion of metal in the pinholes leads to short 

resistive path resulting in increased IOFF as depicted in Figure 6(a). Since devices were processed 

in ambient conditions, therefore, due to high surface roughness at the metal/organic interface, 

effective surface area for gas-adsorption would increase leading to an increase in interfacial trap 

states.8 These effects could have played a dominant role in the relatively hampered device 

performance of OSDs with drop-casted film. Other than these, the bulk resistance due to SCLC, 

which depends on film crystallinity also affect the J −V characteristics. It is also worth to mention 

here that unlike planar devices such as OFET, charge transport in the vertical devices like diodes 

and solar cells ideally takes place in the out-of-plane direction, therefore, a good crystallinity in 

the transverse direction is required. Otherwise when the charge carrier enters in the bulk of 
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semiconducting thin film it has to spend larger amount of time inside the film due to increase in 

intermolecular hopping and scattering centers at grain boundaries before being collected at the 

other electrode.9 The charge carriers residing in the organic film creates space charge, applying 

repulsive force for further charge injection and with increase in charge carrier inside the film the 

resultant repulsive force increases, interpreted as SCLC.   

 

E. Analytical Modeling  

In the ideal OSDs, under forward bias there should not be any injection barrier but practically 

it is present due to formation of charge accumulation region in the organic thin film near Ohmic 

contact and the charge carriers overcome this barrier through thermionic emission effect.28,43 

Therefore, under forward bias, J –V  characteristics of an OSD is analyzed through comparing it 

with the approximated thermionic emission model as written in Eq. 3 (approximation of Eq. 1 for 

V > (3kT/q)).21,33,37,38 

 𝐽𝐽 = 𝐽𝐽0 �exp �
𝑞𝑞𝑞𝑞

𝜂𝜂𝜂𝜂𝜂𝜂
�� (3) 

Using Eq. 3, 𝐽𝐽0 is obtained by extrapolating the linear part of the lnJ –V plot to V = 0 V, where 

the value of 𝜂𝜂 is obtained from its slope with the help of Eq. 4. The deviation of 𝜂𝜂 from the ideal 

value (= 1) can be attributed to the occurrence of tunneling phenomena or scattering of the charge 

carriers due to presence of trap states in the devices along with the interfacial non-uniformity.7,21  

 
𝜂𝜂 =

𝑞𝑞
𝑘𝑘𝑘𝑘

d𝑉𝑉
d(ln𝐽𝐽)  

(4) 
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The above discussed model was originally proposed for inorganic devices, thus before 

generalizing it for organic device, it should be scrutinized extensively. In this regard, calculation 

of 𝜂𝜂 is an appropriate example which can be calculated from either of the two linear regions with 

distinguishable slopes present in the lnJ –V plots as shown in Figure 7. The higher slope value 

(present at lower voltage region) is expected to provide the lower value of 𝜂𝜂.  The same trend was 

followed in the present case as well to obtain the device parameters as summarized in Table-I,III.61 

To verify the calculated physical parameters, corresponding regions on linear scale J –V  plot were 

analyzed as shown in the inset of Figure 7. It is clear that in higher voltage region, the thermionic 

emission phenomena is reflected through non-linear region in J –V plot (red color segment in the 

inset of Figure 7) and device parameters obtained from this region is summarized in Table SIII. 

Furthermore, to understand the correlation between the device parameter and electrical 

characteristic, thorough analysis of J –V curve has to be done through a general physical equation, 

which can incorporate all physical phenomena occurring in the device.   

 

FIG. 7. log-linear (lnJ –V ) plot for the OSDs along with device structure and device parameters 
(shown in inset) obtained from slopes of the linear regions and the inset represents the 
corresponding J –V  plot on linear scale which was fitted the thermionic equation model with J0 
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obtained previously from lnJ –V plot and the 𝜂𝜂 were 1.81 and 3.54 in the lower (green) and higher 
(red) voltage range, respectively.     

 

In OSDs, various types of physical phenomena occur in different region of the OSD as 

discussed in earlier section and their contribution in overall J –V characteristic is also a function of 

voltage. Therefore, modeling of whole J –V characteristic will be more reliable as compared to that 

of the linear part of the  lnJ –V  plot only. In this regard, there are some reports, where the overall 

J –V  analysis has been done by integrating the sectional analysis using different physical 

phenomena or by considering one phenomenon and neglecting other.7,24–28 For instance, in one of 

the analytical model proposed by Blom and coworkers, the effects of bulk and injection contacts 

were combined as drift (bulk effect) and diffusion (interface effect) contributions as a function of 

applied voltage.28 The clear demarcation between the contributions of bulk and interface at certain 

applied voltage can lead to under estimation of their relative effect in some cases. Moreover, device 

structure dependent deviation of the physical model from practical electrical characteristics still 

remains a chalange.26,29,30  However, being implicit function of voltage, the effective contribution 

of the physical phenomena in overall J –V characteristic varies with applied bias. Which is also 

non-uniformly distributed in the whole device architecture as a function of regional/local non-

linear resistances such as RC and RB. Thus, drawing a boundary between the effects of physical 

phenomena on voltage-scale/device-architecture seems improper since they can occur 

simultaneously. To address this issue, J –V characteristic of any two terminal device can be 

interpreted through following relation,  

 𝐽𝐽 =
𝑉𝑉

𝑅𝑅total × 𝑎𝑎
 (5) 
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Where, 𝑅𝑅total = 𝑅𝑅C + 𝑅𝑅B 

Here a is the cross-sectional area of the device and Rtotal is the total resistance present in the device 

at any point of time and it consists of two parts, RC and RB. RC and RB are not simply Ohmic but 

they are also generated due to various non-Ohmic physical phenomena occurring in the device, 

such as band-bending due to charge accumulation, SCLS, trap states etc.28 At lower forward bias 

(Va < Vbi), the injection barrier at the Ohmic contact (here Au-P3HT contact) and at higher bias (Va 

>Vbi) mainly SCLC governs the device J –V characteristics. Scattering centers present at grain 

boundaries and trap states are exponentially distributed from contact towards the bulk and they 

contribute to both of the RC and RB, as shown in Figure 8 (a – c). Thus, all the phenomena should 

be combined to frame an analytical model equation, where Ohmic and non-Ohmic part of Rtotal can 

be divided into three parts i.e. resistance due to nonlinear injection barrier, resistance due to SCLC 

and Rseries (Ohmic loss throughout the device). Since trap states and scattering centers hamper the 

overall hole mobility thus their effect can be considered as Rseries and effect of charge double layer 

can also be accounted in the same. The RC and RB are nonlinear function of voltage drops across 

contact and bulk of the OSD and in-situ measurement of these voltage distributions are not possible 

but macroscopic current density is same at any bias. Henceforth, interpreting their effect with 

current as a forcing function would provide an ease to interpret the effect of bulk and contact in 

one simple equation. Following our previous work, the analytical modeling equation is written 

with current as forcing function as Eq. 6.62 For comparative study, some of the other equations as 

listed in Table IV, were also used to analyze the J –V characteristics.21,62 
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𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series  

Where, Rseries is taken in the unit of ‘Ωcm2’. 

(6) 

L is the effective channel length, which is the film thickness in the present case (≈ 200 nm). 𝜖𝜖 

and µ are relative permittivity and effective hole mobility with approximate values of 3 and 3×10-

4 cm2V-1s-1, respectively were taken from previous reports.63,64      

 

FIG. 8. (a) Energy band structure of the OSD (Al/P3HT/Au) in forward bias (Va > Vbi) along with 
the physical different phenomena occurring in its different parts, (b) schematic representation for 
effect of trap sites in charge-scattering (the broken line represents the actual path of chrge flow in 
absence of scattering center or trap sites) and (c) Schematic illustration for exponential distribution 
of trap states in the device. 

 

The experimental J –V characteristics and the simulated models with different modeling 

equations (Table IV) are depicted in Figure 9. The constant/s J0/(and 𝜂𝜂 when kept constant) 

was/were obtained from the linear region (with lower slope as shown in Figure 7) of the lnJ –V 

plot. The best fit of the experimental characteristics in different device architecture were analyzed  

through the simulated model based on Eq. 6 and the corresponding obtained device parameters are 

summarized in Table V. Hence Eq. 6 can be considered as general equation for the OSDs. As 
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already discussed, 𝐽𝐽0 and 𝜂𝜂 should be calculated from the low slope region of J –V plot. To 

strengthen this discussion, comparison between the two linear regions (Figure 7) is also 

presented by fitting the experimental J –V plots with the general analytical model (Eq. 6) as shown 

in Figure S5, where 𝐽𝐽0 obtained from lower slope region fits better. 

 

TABLE IV. The set of equations21,62 followed for the comparative analysis of the experimental J 
–V  characteristics 

Equation type Equation in mathematical form with J  as forcing 
function; V( J ) 

Fitting 
Parameters 

Thermionic 
Emission (Th. Em.) 𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� 𝜂𝜂 

Th. Em. + SCLC + 
Ohmic Loss(Rseries); 

(constant 𝜂𝜂) 
𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series 

Rseries 

Th. Em. + SCLC 
𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
 

𝜂𝜂 

Th. Em. + SCLC + Ohmic 
Loss(Rseries); [Eq. 6] 𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series 

𝜂𝜂, Rseries 
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FIG. 9. (a) Schematic representation for occurrence of linear and nonlinear (function of J ) 
resistance in different parts of the OSD (Al/P3HT/Au) and (b) set ligands for the experimental and 
fitted J –V characteristics (c-g) the corresponding equations are written in Table 3. Inset of (e) 
represents the magnified part of fitted data at higher voltage. The constant values J0 (and 𝜂𝜂 only 
when mentioned) was (were) taken from partial linear fitting of lnJ –V plot (Table 1,2 and Figure 
7). The device structures are shown in the corresponding insets and all the OSDs were fabricated 
with spin-coated P3HT films except when it is mentioned.      

 

Table V gives the understanding about the influence of metal/organic interfaces on the overall 

device resistance. The calculated value of Rseries decreased by one order of magnitude in the case 

of 10 nm AlOX interlayer as compared to that having only Al to make Schottky contact. On the 

other hand, it was of the same order in case of the bottom Al electrode and top Al electrode without 

AlOX layer. In forward bias, at Va > Vbi, space charge is being formed in the organic layer, which 

triggers tunneling of the charge carriers through the AlOX layer. In addition to this, when charge 

double layer is closer to the film, tunneling will be speedup due to favorable Coulombic interaction. 
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At the same time, modified interfacial band structure due to AlOX layer will be improving the 

charge transport, when it is near to the organic layer. The nanostructured AlOX islands also 

improves the effective contribution of the charge-double layer. However, with increase in its 

thickness (for instance 16 nm), Rseries increases due to the buried oxide layer, which is ineffective 

to support forward charge transport. This is also reflected in the obtained device parameters from 

fitted plot Rseries (Table V) and the corresponding RR (Table I,III,SII). Precise observation in the 

case of 10 nm AlOX interlayer shows that the experimental data is well fitted by the model without 

inclusion of Rseries, however, inclusion of Rseries provides better fit (Figure 9(e)). Unlike other cases, 

where the deviation is distinguishable due to the presence of comparatively lower Rseries, this 

reduction can be attributed to favor the effective field due to charge double layer (Figure 3 (c)) and 

vice-versa in the case of Al as bottom contact.   

TABLE V. Set of device parameters (𝜂𝜂 and Rseries) obtained by fitting the experimental J –V 
characteristics of different devices using Equation 6. The constant values of J0 were taken from 
linear fitting of lnJ –V plot (lower slope region, shown by red Figure 7). All the OSDs were 
fabricated with spin-coated P3HT films except when it is mentioned. 

Device Structure Ideality factor (𝜂𝜂) Rseries (Ω.cm2) 

Al (bottom contact) 2.84 ± 3.6% 844.6 ± 31.5% 

Al (top contact) 0 nm AlOX  2.95 ± 4.2% 113.6 ± 42.8% 

Al (top contact) 10 nm AlOX 3.54 ± 18.2% 32.7± 32.7% 

Al (top contact) 16 nm AlOX 15.63 ± 36.7% 3.39×105 
± 42.8% 

Al (top contact) 10 nm AlOX 
(P3HT drop-casted) 5.85 ± 24.5% 728.7 ± 30.0% 
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In order to demonstrate the application the OSDs in practical circuits, OSDs in device 

architecture exhibiting the best RR, was subjected to determine their maximum switching speed. 

For this measurement, the simplest circuit of a half-wave rectifier was designed. The OSD with 

dimension 100 µm × 500 µm (top Al contact and 10 nm of AlOX interlayer) was connected in 

series with an AC-voltage source (VAC) of a Function Generator and a load resistance (RLoad). The 

switching speed was obtained by comparing the output signal measured by an Oscilloscope across 

RLoad at varying input voltage frequency. By increasing the frequency of VAC beyond maximum 

switching speed of the diode, it acts as a capacitor and cannot rectify the input signal. The 

maximum switching speed obtained for the test-OSD was 40 kHz as shown in Figure S6 

(supplementary information). It might be limited by the large displacement current from their 

capacitor behaver. To increase the switching speed further, the geometric configuration (cross-

sectional area and film thickness) of the diode is currently under optimization and will be reported 

separately.43 However, for other applications, where fast switching is not needed but significantly 

suppressed leakage current and high rectification ratio is desired, they can be better option, for 

instance to fabricated display backplanes with reduced crosstalk.43   

 

IV. CONCLUSION  

OSDs were fabricated using thin films of P3HT prepared by spin-coating and drop-casting 

methods in different device architectures. The implication of device architecture with the 

presence/absence of island deposited AlOX interlayer on device performance has been investigated 

in detail using experimental data and analytical modeling. The metal/organic interface was 
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characterized through various techniques like XPS, UPS and AFM while nature of the organic thin 

film was characterized by GIXD. Here, application of AlOX interlayer at the Schottky interface in 

order to enhance the RR of the OSDs was also successfully demonstrated. GIXD results revealed 

the edge conformation of P3HT for both of the spin coated and drop casted films, where, former 

exhibited relatively high crystallinity. Incorporation of 10 nm AlOX interlayer in OSDs having top 

Al as Schottky contact led to the tremendous boost in the RR reaching > 106 at ± 5V.  This 

enhancement was attributed to suppressed leakage current due to AlOX interlayer at the Schottky 

interface as well as favored charge transport due to the formation of charge double layer. 

Furthermore, integration of equations pertaining to the various physical phenomena like 

thermionic emission and space charge limiting current led to the single general equation capable 

of modeling and interpretation of charge transport characteristics arising in OSDs fabricated in 

different architectures.  

  

SUPPLEMENTARY INFORMATION 
The J –V characteristics for multiple device structure to represent the device to device statistical 
variation, the list of obtained device parameters, the optimization of AlOX layer, the AFM image 
of AlOX layer on bare SiO2 substrate, the distribution map for AlOX layer covering the 
underlying P3HT layer, comparison between𝐽𝐽0 obtained from different voltage region in terms of 
agreement between experimental and simulated J –V characteristics, discussion and result of 
switching speed of the OSD.     
 
ACKNOWLEDGMENT 
One of the authors (NK) is thankful to Japan Student Services Organization and Kanazawa 
Memorial Foundation for supporting the research activity. 
 
 
REFERENCES 
1 H. Klauk, Chem. Soc. Rev. 39, 2643 (2010). 
2 K. Tremel and S. Ludwigs, Adv. Polym. Sci. 265, 39 (2014). 
3 C. Adachi, Jpn. J. Appl. Phys. 53, 060101 (2014). 
4 T. Berzina, K. Gorshkov, A. Pucci, G. Ruggeri, and V. Erokhin, RSC Adv. 1, 1537 (2011). 
5 S. Lizin, S. Van Passel, E. De Schepper, W. Maes, L. Lutsen, J. Manca, and D. Vanderzande, 
Energy Environ. Sci. 6, 3136 (2013). 



30 

 

6 S. Holliday, Y. Li, and C.K. Luscombe, Prog. Polym. Sci. 70, 34 (2017). 
7 C. Hyun Kim, O. Yaghmazadeh, Y. Bonnassieux, and G. Horowitz, J. Appl. Phys. 110, 093722 
(2011). 
8 S.D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and J.X. Tang, Appl. Phys. Lett. 94, 083309 
(2009). 
9 S.D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 
(2008). 
10 W. Zhang, J. Smith, S.E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, 
T. Anthopoulos, M. Heeney, and I. McCulloch, J. Am. Chem. Soc. 132, 11437 (2010). 
11 M.T. Greiner, M.G. Helander, W.M. Tang, Z. Bin Wang, J. Qiu, and Z.H. Lu, Nat. Mater. 11, 
76 (2012). 
12 S.D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 
(2007). 
13 P. V. Pesavento, K.P. Puntambekar, C.D. Frisbie, J.C. McKeen, and P.P. Ruden, J. Appl. Phys. 
99, 094504 (2006). 
14 C. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, and D. Zhu, Adv. Mater. 20, 1286 (2008). 
15 K.E. Lilja, H.S. Majumdar, K. Lahtonen, P. Heljo, S. Tuukkanen, T. Joutsenoja, M. Valden, R. 
Sterbacka, and D. Lupo, J. Phys. D. Appl. Phys. 44, 295301 (2011). 
16 M. Pandey, A. Gowda, S. Nagamatsu, S. Kumar, W. Takashima, S. Hayase, and S.S. Pandey, 
Adv. Mater. Interfaces 5, 1700875 (2018). 
17 M. Pandey, S. Nagamatsu, S.S. Pandey, S. Hayase, and W. Takashima, Org. Electron. 38, 115 
(2016). 
18 M. Pandey, S. Nagamatsu, W. Takashima, S.S. Pandey, and S. Hayase, J. Phys. Chem. C 121, 
11184 (2017). 
19 R.R. Lunt, J.B. Benziger, and S.R. Forrest, Adv. Mater. 22, 1233 (2010). 
20 M.A. Lampert and P. Mark, Current Injection in Solids (Academic Press, 1970). 
21 S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, New 
Jersey, 2007). 
22 D. Braga, N. Battaglini, A. Yassar, G. Horowitz, M. Campione, A. Sassella, and A. Borghesi, 
Phys. Rev. B 77, 115205 (2008). 
23 J. Sworakowski and K. Pigoń, J. Phys. Chem. Solids 30, 491 (1969). 
24 M. Soylu, I.S. Yahia, F. Yakuphanoglu, and W.A. Farooq, J. Appl. Phys. 110, 074514 (2011). 
25 M. Kuik, G.-J.A.H. Wetzelaer, H.T. Nicolai, N.I. Craciun, D.M. De Leeuw, and P.W.M. Blom, 
Adv. Mater. 26, 512 (2014). 
26 A. Haldi, A. Sharma, W.J. Potscavage, and B. Kippelen, J. Appl. Phys. 104, 064503 (2008). 
27 L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, and P.W.M. Blom, Phys. Rev. B 72, 085205 
(2005). 
28 P. De Bruyn, A.H.P. Van Rest, G.A.H. Wetzelaer, D.M. De Leeuw, and P.W.M. Blom, Phys. 
Rev. Lett. 111, 186801 (2013). 
29 P.W.M. Blom, C. Tanase, D.M. de Leeuw, and R. Coehoorn, Appl. Phys. Lett. 86, 092105 
(2005). 
30 H.T. Nicolai, G.A.H. Wetzelaer, M. Kuik, A.J. Kronemeijer, B. de Boer, and P.W.M. Blom, 
Appl. Phys. Lett. 96, 172107 (2010). 
31 B.G. Streetman and S. Banerjee, Solid State Electronic Devices, 7th ed. (Oxford:Pearson, n.d.). 
32 H. Aziz, Z. Popovic, C.P. Tripp, N.-X. Hu, A.-M. Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 
(1998). 



31 

 

33 K. Kaneto and W. Takashima, Curr. Appl. Phys. 1, 355 (2001). 
34 Y.I. Semov, Phys. Status Solidi 32, K41 (1969). 
35 M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, and Z.H. Lu, Adv. Funct. Mater. 22, 4557 
(2012). 
36 V.K. Agarwala and T. Fort, Surf. Sci. 45, 470 (1974). 
37 O. Güllü, S. Aydoǧan, and A. Türüt, Solid State Commun. 152, 381 (2012). 
38 B. Gunduz, I.S. Yahia, and F. Yakuphanoglu, in Microelectron. Eng. (2012), pp. 41–57. 
39 Y. Shi, S.-C. Luo, W. Fang, K. Zhang, E.M. Ali, F.Y.C. Boey, J.Y. Ying, J. Wang, H. Yu, and 
L.-J. Li, Org. Electron. 9, 859 (2008). 
40 S.-W. Oh, H. Woo Rhee, C. Lee, Y. Chul Kim, J. Kyeong Kim, and J.-W. Yu, Curr. Appl. Phys. 
5, 55 (2005). 
41 A. Moliton and J.-M. Nunzi, Polym. Int. 55, 583 (2006). 
42 C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001). 
43 T.M. Kraft, P.R. Berger, and D. Lupo, Flex. Print. Electron. 2, 033001 (2017). 
44 C.H. Kim, O. Yaghmazadeh, D. Tondelier, Y. Bin Jeong, Y. Bonnassieux, and G. Horowitz, J. 
Appl. Phys. 109, 083710 (2011). 
45 G. Gustafsson, O. Inganäs, M. Sundberg, and C. Svensson, Synth. Met. 41, 499 (1991). 
46 T. Jiang, W. Malone, Y. Tong, D. Dragoe, A. Bendounan, A. Kara, and V.A. Esaulov, J. Phys. 
Chem. C 121, 27923 (2017). 
47 V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, and K. Kaneto, Org. Electron. 9, 790 (2008). 
48 Hong Wang, Zhuoyu Ji, Liwei Shang, Xinghua Liu, Yingquan Peng, and Ming Liu, IEEE 
Electron Device Lett. 31, 506 (2010). 
49 C. Kang, S. Kim, Y. Hong, and C. Lee, Thin Solid Films 518, 889 (2009). 
50 K.E. Lilja, H.S. Majumdar, F.S. Pettersson, R. Österbacka, and T. Joutsenoja, ACS Appl. Mater. 
Interfaces 3, 7 (2011). 
51 S.G. Higgins, T. Agostinelli, S. Markham, R. Whiteman, and H. Sirringhaus, Adv. Mater. 29, 1 
(2017). 
52 J. Zhang, H. Wang, J. Wilson, X. Ma, J. Jin, and A. Song, IEEE Electron Device Lett. 37, 389 
(2016). 
53 A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, and P. 
Heremans, IEEE Trans. Electron Devices 60, 3407 (2013). 
54 S. Gupta, S. Hannah, C.P. Watson, P. Šutta, R.H. Pedersen, N. Gadegaard, and H. Gleskova, 
Org. Electron. 21, 132 (2015). 
55 A. Wan, J. Hwang, F. Amy, and A. Kahn, Org. Electron. 6, 47 (2005). 
56 M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, and W. Takashima, Org. Electron. 43, 240 
(2017). 
57 H. Yang, S.W. Lefevre, C.Y. Ryu, and Z. Bao, Appl. Phys. Lett. 90, 172116 (2007). 
58 J.F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. Sölling, M. Giles, I. McCulloch, and H. 
Sirringhaus, Chem. Mater. 16, 4772 (2004). 
59 R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, Phys. Rev. E 
62, 756 (2000). 
60 J. Perelaer, P.J. Smith, E. Van Den Bosch, S.S.C. Van Grootel, P.H.J.M. Ketelaars, and U.S. 
Schubert, Macromol. Chem. Phys. 210, 495 (2009). 
61 A.K. Singh, A.D.D. Dwivedi, P. Chakrabarti, and R. Prakash, J. Appl. Phys. 105, 114506 (2009). 
62 A.K. Mukherjee and N. Kumari, Phys. Lett. A 382, 1413 (2018). 
63 O. Armbruster, C. Lungenschmied, and S. Bauer, Phys. Rev. B 84, 085208 (2011). 



32 

 

64 S.A. Choulis, Y. Kim, J. Nelson, D.D.C. Bradley, M. Giles, M. Shkunov, and I. McCulloch, 
Appl. Phys. Lett. 85, 3890 (2004). 
 


