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Abstract: Metabolic pathway analysis is increasingly promising for assessing inherent network properties in 
biochemical reaction networks. Metabolic pathways are series of chemical reactions occurring within a cell. 
Pathways are the reaction sets linked by having the product of one reaction be the reactant of the next reaction in the 
chain. Enzymes catalyze these reactions, and often require dietary minerals, vitamins, and other cofactors in order to 
function properly. The collection of pathways is called metabolic network. A challenging task for the future is the 
calculation and study of the complete set of pathways at a genomic scale, and its combination with cellular 
regulation to obtain the whole picture. Metabolic engineering strives to use this knowledge to manipulate metabolic 
reaction networks in order to achieve some objectives of complex biochemical reaction networks. The ultimate goal 
of metabolic engineering is to be able to produce valuable substances on reaction networks in a cost effective 
manner. Various metabolic engineering strategies have been widely applied for the more efficient production of 
desired metabolites and biomolecules. In this paper, we demonstrate some methodologies have been developed to 
describe for systematic organization and to analyze the metabolic behavior (networks) of an organism or a living cell 
depending on the goals of the metabolic pathway analysis to understanding the complex metabolic network. 

Key words: Metabolic Engineering, Metabolic Flux Analysis, Flux Balance Analysis, 13C-Metabolic Flux Analysis, 
Elementary Mode Analysis, Extreme Pathway Analysis. 

1.  Introduction 

A cell is a complex system composed of a large number of molecular components, including nucleic acids, proteins, 
and metabolites (Caspi et al., 2010). Metabolic pathway analysis is the discovery and analysis of meaningful routes 
in metabolic networks. Metabolic pathway is a series of chemical reactions occurring within a cell, catalyzed by 
enzymes, and resulting in either the formation of a metabolic product to be used or stored by the cell or the initiation 
of another metabolic pathway. Intuitively, a pathway should be a set of connected reactions; it is rather more 
complicated to give an exact definition of ‘meaningful’, which should cover physiological as well as 
biotechnological aspects (Klamt and Stelling 2003). Pathway analysis undoubtedly has great potential for 
biotechnology and metabolic engineering. It helps us gain a better understanding of the cellular metabolism and to 
find possible targets for manipulation in complex metabolic networks. First attempts to analyze the pathway 
structure in complex networks, partially by subdividing them, reveal interesting results (e.g. on pathway 
redundancy) that are useful for comparing different networks. Cellular metabolism is most often described and 
interpreted in terms of the biochemical reactions that make up the metabolic network. The underlying pathway 
structure that is determined from the set of extreme pathways now provides us with the ability to analyze, interpret, 
and perhaps predict metabolic function from a pathway-based perspective in addition to the traditional reaction 
based perspective. Metabolism is broadly defined as the complex of physical and chemical processes involved in the 
maintenance of life. It is comprised of a vast repertoire of enzymatic reactions and transport processes used to 
convert thousands of organic compounds into the various molecules necessary to support cellular life. Metabolic 
engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin 
point parts of the network that constrain the production of these products(Yang et al., 1998).  
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In the above reaction network, S is changed into A (this may consider as the intake of substrate from outside of the 
cell), A is converted to B and C through reaction v1 and v2, B is converted to D by reaction v3, and C is converted to 
E through reaction v4. Therefore, the mas balance equation for intracellular metabolites A, B and C can be written as 
a matrix form as follows: 
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Where S is the stoichiometric matrix and V is the reaction rector or flux vector. We illustrate the procedures used for 
the calculation of MFA using the simple example pathway shown in Fig.1. In the case where v0 and v3 are 
measurable (known) in the intracellular metabolites A, B and C, the stoichiometric matrix can be separated into 
known and unknown parts: 
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By moving the known part to the right side of the equation and multiplying by the inverse of the unknown part of 
the stoichiometric matrix on both sides of the equation, the unknown fluxes (v1, v2, and v4) can be expressed as a 
function of the measurable (known) fluxes (v0 and v3): 
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At this stage, the unknown flux vector can, in principle, be solved using the stoichiometry and the known 
measurable fluxes. However, before actually solving for the fluxes, we must consider the degrees of freedom of the 
network (Stephanopoulos et al., 1998).The number of degrees of freedom is the number of independent fluxes and is 
calculated as follows: 

                                          d=n-k-m         (4) 

where d is the degrees of freedom, n is the number of fluxes, k is the number of constraints, and m is the number of 
measurable fluxes. If the number of degrees of freedom is 0 (a “determined system”), the fluxes are determined as a 
unique solution; that is, the solution is the intersection of the lines which represent constraints. Furthermore, if the 
number of degrees of freedom is less than 0 (an “overdetermined system”), then the minimum norm and least-
squares solution can be calculated using the Moore-Penrose pseudo inverse method (Penrose, 1955 and 
Stephanopoulos et al., 1998). However, if the number of degrees of freedom is greater than 0 (an “underdetermined 
system”), then immense solutions exist because of the lack of constraints. Therefore, we can determine the unknown 
fluxes using MFA quite easily when the system is either determined or overdetermined. Underdetermined systems 
require more constraints to reach a particular confined solution. 

The primary challenge in the use of MFA is that many biological networks are underdetermined systems. To 
overcome this problem we can apply Flux Balance Analysis (FBA) and 13C-Metabolic Flux Analysis (13C-MFA), 
both of which are frequently used to solve such underdetermined systems. There are two major approaches to 
applying MFA to such underdetermined systems: (1) prediction of flux distribution based on an objective function 
by flux balance analysis (FBA) and (2) the monitoring of flux distribution by MFA employing a 13C-labeling 
technique, alternatively known as 13C-metabolic flux analysis. 
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4.  Flux Balance Analysis  

Flux Balance Analysis (FBA) is a constraint-based approach used to predict the (quasi-) steady state fluxes by 
applying mass balance constraints and objective functions (Varma and Palsson 1994; Feist and Palsson, 2010). To 
predict fluxes in the exponential growth phase, maximization of the biomass yield orAdenosine-5'-triphosphate 
(ATP) yield is frequently used as the objective function (Van Gulik and Heijnen, 1995). We can evaluate the 
maximum yield of the specific compound using maximization of the target production rate as the objective function. 
Because FBA can be performed from the network information alone and without the enzyme kinetics, many FBA 
studies use genome-scale metabolic pathways rather than a small pathway alone, such as the central carbon 
metabolism pathway. To predict metabolic fluxes using FBA, a stoichiometric model is first constructed, as in 
general MFA. The solution space is then limited by the addition of constraints, such as the upper or lower bounds of 
each flux, and a unique flux distribution is then predicted by applying an objective function. Because a linear 
objective function is generally used, the flux distribution that maximizes or minimizes the objective value can be 
solved by linear programming. 
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Where ck is a weight coefficient for flux vk, and the superscripts lb and ub represent lower and upper boundaries, 
respectively. Although FBA is a powerful method of solving underdetermined systems, the choice of an appropriate 
objective function can be subjective and requires careful consideration. While the maximization of biomass yield is 
frequently used as the objective function in many studies, it is not certain whether a single objective function can be 
universally applicable, especially for gene knockout mutants (Toya et al., 2010). To solve this problem, advanced 
FBA have been proposed. Minimization of metabolic adjustment (MOMA)( Segre et al., 2002) and regulatory on/off 
minimization (ROOM)( Shlomi et al., 2005) are such methods that can be used for gene knockout mutants, building 
from a wild type solution obtained previously by FBA. However, it should be noted that these methods are based on 
some assumptions. How, then, can more reliable fluxes be obtained? In this context, we introduce another method 
that employs a 13C-labeling technique to measure the metabolic fluxes indirectly known as 13C-Metabolic Flux 
Analysis (13C-MFA).  

5.  13C-Metabolic Flux Analysis 
13C-Metabolic Flux Analysis (13C-MFA) is frequently used when the systems of stoichiometric modeling are 
underdetermined (lack of constraints). Carbons atoms are naturally found in 3 forms; 12C with 6 protons and 6 
neutrons, 13C with 7 neutrons and 14C with 8 neutrons exist in trace amounts. 13C is useful in MFA, because it can be 
distinguished from 12C through techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass 
spectrometry (MS) (Shimizu, 2004). A typical 13C-MFA procedure consists of the following steps: (1) determine the 
analytical pathways and the substrate-labeling pattern from the prospective metabolism (2) conduct a 13C-labeling 
experiment under the steady state condition, and measure the labeling patterns of proteinogenic amino acids using 
gas chromatography-mass spectrometry (GC-MS) and/or nuclear magnetic resonance (NMR) spectroscopy 
(Shimizu, 2004); (3) construct a stoichiometric model and the isotopomer balance equations for intracellular 
metabolites based on the network determined in step 1 and (4) optimize the flux distribution by determining the 
labeling patterns of proteinogenic amino acids computed from the assumed fluxes in step 3 as the best fit to the 
experimental data obtained in step 2 (Zhao and Shimizu 2003). Several methods have been proposed to express the 
isotope labeling pattern of compounds, including the isotopomer method (Schmidt et al., 1997) and the elementary 
metabolite units method (Antoniewicz et al., 2007). In this section, we describe the isotopomer method using a 
simple example (Fig.2) pathway (Toya, et al., 2011). The pathway consists of two reactions (v1 and v2), that 
metabolizes two substrates (S1 and S2) to the same product (P) via the same intermediate (X). In this model, the 13C-
labeling pattern of each compound is expressed as an isotopomer distribution vector (IDV). Each IDV contains the 
molar fractions of the 2nisotopomers and the sum of each vector is 1.  
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The i-th column for the P matrix is the i-th EM vector: ei = (e1i, e2i, ... ,eni)
t. The flux distribution can be also 

represented as a superposition of the EM vectors with non-negative 

EMCs as follows: 
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EM analysis is a useful metabolic pathway analysis tool to identify the structure of a metabolic network. The EM 
analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely 
organized pathways. These pathways, consisting of a minimal set of enzymes that can support steady state operation 
of cellular metabolism, represent independent cellular physiological states (Trinh et al., 2009). However, EM 
analysis does not decompose the reversible reactions into two irreversible reactions in calculating EMs and 
introduces a systematic way of extracting biologically meaningful pathways from an intricate metabolic network. In 
this context, an alternative approach is Extreme pathway analysis (Schilling et al., 2000).   

Extreme pathway analysis concept is closely related to EM analysis because extreme pathways are a subset of 
elementary modes. The extreme pathway analysis can be considered as a hybrid between stoichiometric network 
analysis and EM analysis. In calculating extreme pathways (ExPas), the analysis splits only the internal reversible 
reaction into two irreversible reactions while it does not decompose reversible exchange reaction (Trinh et al., 
2009). Different from EM analysis, extreme pathway analysis contains one additional constraint to make all extreme 
pathways systematically independent (Schilling et al., 2000). The metabolic flux vector can be expressed as a 
nonnegative linear combination of extreme pathways or elementary modes in metabolic reaction networks. The 
extreme pathways are the systematically independent subset of elementary modes; that is, no extreme pathways can 
be represented as a nonnegative linear combination of any other extreme pathways. The two sets extreme pathways 
and elementary modes are identical when all reactions including both internal and exchange reactions are 
irreversible in metabolic networks. Therefore, the identification of extreme pathways depends on the reconfiguration 
of the metabolic network analyzed, while the identification of elementary modes does not. For instance, extreme 
pathways identified in a metabolic network whose reversible exchange reactions split into two irreversible reactions 
may not be extreme pathways to any further extent in the original metabolic networks whose reversible exchange 
reactionsdo not split (Klamt and Stelling 2003). EM analysis used in order to understand regulation of a human red 
blood cell metabolism using singular value decomposition (price et al., 2003). 

7.  Concluding Remarks 

Metabolic engineering provide clear and insightful information regarding the activity of metabolic complex reaction 
networks from an individual reaction based perspective. The metabolic pathway is a collection of step by step 
modification. The initial substance used as substrate by the first enzyme is transformed into a product. This product 
will then be the substrate for the next reaction. MFA is a promising method for quantitative estimation of the flux 
distribution of the enzymatic pathway network and provides important clues for the understanding of metabolism. 
MFA is performed using the stoichiometric model of the pathway network, which is constructed from pathway 
databases and does not require a priori knowledge of detailed enzyme kinetics. Therefore, we can determine the 
unknown fluxes using MFA quite easily when the system is either determined or overdetermined. In biological 
pathways, the majority are underdetermined systems. In this context, there are two approaches; FBA and 13C-MFA 
are commonly applied to such underdetermined systems. FBA is a convenient means for the prediction of the flux 
distribution from network information alone, but it is based on an empirically selected objective function. Although 
13C-MFA requires expensive labeling experiments and complex calculations using an isotopomer model, it provides 
much more reliable results, revealing more realistic intracellular fluxes of enzymatic reactions. Metabolic pathway 
analysis can identify all metabolic flux vectors that exist in a metabolic network without requiring knowledge of any 
fixed flux or imposing any objective function to cellular metabolism. Two most promising concepts for pathway 
analysis, one relies on elementary mode analysis and other on extreme pathway analysis. These concepts are closely 
related but not identical although extreme pathways are a subset of elementary modes. Two are identical when all 
reactions including both internal and exchange reactions are irreversible in a metabolic networks. 
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