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Abstract: One of the ultimate goals of microarray gene expression data analysis in bioinformatics is to identify 
individual genes or gene-sets which influence the gene expression patterns. There are several research areas in 
bioinformatics, where data analysis offers a challenging statistical problem due to their high dimensionality with 
small sample of sizes. Clustering is one of the most popular statistical techniques to addressing these challenges. 
Nowak and Tibshirani (2008) proposed complementary hierarchical clustering (CHC) for sequential exaction of 
several gene-sets having relatively low expressions than highly expressed genes. However it produces misleading 
clustering results for sequential exaction of several gene-sets if there exist some contaminations (outliers) in the 
gene expression data, which is an important issue in gene expression data analysis research field. Therefore, in this 
paper we proposed a robust statistical clustering technique based on the value of tuning parameter β, we called β-
CHC for sequential extraction of biologically important gene-sets has similar expression patters with proper groups 
of individuals the genes expression data analysis in bioinformatics from the robustness points of view. The proposed 
robust method reduces to the traditional method when we put the value of tuning parameter β→0. Simulation gene 
expression data clustering results show that the performance of the proposed method is better than performance of 
the traditional method in the case of data contaminations; otherwise, it shows almost equal performance. 

Key words: Gene expression, complementary hierarchical clustering based on β (β-CHC), Minimum β-divergence, 
Robustness. 

1  Introduction 

Bioinformatics is the science of storing, extracting, organizing, analyzing, interpreting and utilizing information 
from biological sequences and molecules. It is the hybrid version of molecular biology, statistics and computer 
technology. Gene expression data analysis by statistical algorithms might be playing the significant task to reach the 
final goal. High dimensional gene expression microarray data throw the challenge to multivariate analysis and to 
develop effective ways to analyze gene expression data. Now a day’s DNA microarray tools make it easy to monitor 
the millions of gene expressions simultaneously during important biological processes. One of the ultimate goals of 
microarray gene expression data analysis in bioinformatics is to identify individual genes or gene-sets which 
influence the gene expression patterns. However, millions of genes and their complex functions in gene expression 
analysis gradually increasing the challenges for interpreting the results from the high dimensional data. For gene 
expression data analysis, the data are arranged in a matrix form, where the rows represent the genes and the columns 
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represent the individuals. There are several research areas in bioinformatics, where data analysis offers a challenging 
statistical problem due to their high dimensionality with small sample of sizes. Clustering is one of the most popular 
statistical techniques to addressing these challenges. Many clustering methods have been proposed for gene 
expression data analysis (Terry Speed 2003). Differential regulation often means differential expression, and a 
number of useful methods for identifying differentially expressed (DE) genes or gene sets are available (Datta et al., 
2004; Allison et. al., 2006; Barry et. al., 2008; Ho et al., 2007; Newton et. al., 2007; Tracy and Wilson 
2011).Detailed discussions about statistical analysis of gene expression microarray data are given (Datta 2003). 

Hierarchical clustering (HC) algorithm is the most widely used unsupervised statistical technique for analyzing 
microarray gene expression data. It becomes a very useful popular tool for analyzing microarray gene expression 
data from the research works of Eisen et al. (1998). In Hierarchical clustering, the number of classes is determined 
by cutting the tree structure at certain level chosen subjectively by the user. When applying HC algorithm to the 
gene expression data to cluster individuals or phenotypic outcomes, the HC algorithms produce clusters based on the 
highly differentially expressed (DE) genes those have very similar expression patterns. These types of highly DE 
genes sometimes may not be relevant in the biological process. Therefore, we have to need to explore another low 
expressed gene or gene-sets having important biological functions. In this context, Nowak and Tibshirani (2008) 
proposed the CHC for sequential exaction of several gene-sets having relatively low expressions than highly 
expressed genes. However it produces misleading clustering results for sequential exaction of several gene-sets if 
there exist some contaminations (outliers) in the gene expression data, which is an important issue in gene 
expression data analysis research field. In gene expressions microarray data are often contaminated by outliers due 
to the many steps involved in the experimental process from hybridization to image processing for producing data. 
For example, an outlying data value could occur because of scratches or dust on the surface, imperfections in the 
glass, imperfections in the array production (Gotterdo et al. 2006). Therefore, in this context we proposed a robust 
statistical clustering technique based on the value of the tuning parameter β we called β-CHC for sequential 
extraction of biologically important gene-sets has similar expression patters with proper groups of individuals by 
minimizing β-divergence(Minami and Eguchi 2002) for the genes expression data analysis. The proposed method 
reduces to the traditional method when we put the value of tuning parameter β→0. 

2.  Proposed Model and Parameter Estimation 

Let us consider the dummy variable regression model in matrix notation written as  

Yg=Dkδgk+єgk          (1) 

Where Yg=gth gene expression, Dk= dummy variables, δgk=the regression coefficient of the dummy variables 
regression model which would be estimated, єgkN (o,σgk

2) is the error term. Then the probability density function 
(pdf) for the i-th component ygi of Yg for the k-th cut is given by 
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Maximization of β-likelihood function is equivalent to the minimization of β-divergence for estimating the model 

parameters ghφ
 (Mollah et. al., 2007 and 2009). The  -likelihood function is used in several statistical algorithms 
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for robustification (Mollah et. al., 2007 and 2009). It is highly robust against outliers. To estimate the parameters

),( 2
gkgkgk δφ 

, we minimize the β-divergence which equivalent to maximize the β-likelihood function (3) with 

respect to parameters gkδ
 and

2
gkσ

, respectively. Then the maximum β-likelihood estimator for the parameters gkδ
 

and 
2
gkσ

 obtained iteratively as follows: 
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   (In matrix notation)                                                                              (4) 
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which is called a β-weight vector (Mollah et. al., 2007 and 2009). It produces almost zero weight for outlying gene 
expressions.  

3. Proposed Methodology 

In microarray gene expression data analysis important is to identify sequential exaction of individual genes or gene-
sets which influence the gene expression patterns from the robustness point of view. We develop complementary 
hierarchical clustering technique based on β (β-CHC)by minimizing the β-divergence (Minami and Eguchi 2002) for 
sequential extraction of important genes sets influencing patients groups in the genes expression microarray data 
analysis. First we calculated robust correlation matrix using robust covariance matrix (Mollah et al., 2009). Then we 
calculated robust dissimilarity matrix using robust correlation matrix. Perform clustering algorithms on this 
dissimilarity matrix. Then it is known as robust hierarchical clustering (RHC) (Mollah et al., 2009). The proposed β-
CHC procedure performs within 3 different steps. First, apply RHC on the original dataset. After applying RHC the 
results can be represented by a dendrogram. For every cut between two heights in the dendrogram in a particular 
gene we can get group labels of samples. Then we fit a dummy variable linear regression model using this group 
labels for each gene. We estimate the model parameter by minimizing the β-divergence. Secondly, compute the 
residual matrix which we call modified data, and finally apply β-CHC on the modified data. We also calculate gene-
sets which influence the gene expression clustering patterns using gene important (GI). GI shows that corresponding 
gene-set is important for this clustering pattern. The proposed method performs with a weight function called β-
weight function (Mollah et al., 2007). It plays the key role on the performance of the proposed method.  It produces 
almost zero weights for outlying gene expressions. Thus estimates become robust. When we put the value of tuning 
parameter β→0, it reduces to the classical CHC. The robustness of the proposed method we can be test using 
influence function (not shows this paper).  The values of the tuning parameter β play a key role on the performance 
of the proposed method. It controls the balance between the robustness and efficiency of the estimators. Smaller β 
produces more efficient results than larger β, while larger β produces more robust results than smaller β. In the 
simulation study we select β using cross-validation Mollah et al., (2007).  
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