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This paper reports the study of an anode-supported SOFC cell containing an LSCF-SDC composite cathode. The SOFC cell was
tested at different temperatures and reactant flow rates. After testing, the cell was sectioned and characterized using SEM/EDS. Such
analysis indicated that no structural damage and no significant interdiffusion of elements among the layers occurred.Themeasured
electrochemical performance data at different temperatures indicate an Arrhenius behavior or temperature activated processes.The
low-porosity anode functional layer appears to be very sensitive to low hydrogen contents.The electrochemical performance is also
affected by changing air flow rates.

1. Introduction

Solid oxide fuel cells (SOFCs) are electrochemical devices
that convert directly the chemical energy of a fuel without
the combustion step. It is common knowledge that they
are highly efficient, fuel flexible, and modular and have
cogeneration capabilities [1–4]. Significant progress in this
technology has occurred over the years, including commer-
cialization efforts; however, improvements are still possible.
For instance, the oxygen electrode or cathode still limits
the performance capabilities of SOFCs especially at lower
temperatures [5, 6]. One approach to improve the cathode
performance is to use functional layers to improve the
oxygen reduction reaction kinetics andmass transfer [7, 8]. A
different approach is the use of composite cathodes where an
electrolyte phase is mixed with the cathode material [9, 10].
Others have used infiltration techniques to again enhance
the oxygen reduction reaction kinetics in the cathode [11,
12]. Regardless of the approach used, chemical compatibility
and long-term performance need to be better understood
to ensure that SOFC systems can compete with existing
technologies. In this work, we report thematerial and electro-
chemical characterization of LSCF-SDC composite cathode
tested at different temperatures, hydrogen flow rates, and
air flow rates. The effects of these parameters on the cell

performance are discussed in detail as well as the postmortem
characterization of the tested cell.

2. Experimental

Commercial anode-supported bilayers were purchased with
a diameter of about 25.4mm.They consist of a highly porous
Ni-YSZ bulk support anode where a thin layer of lower
porosity acts as a functional layer. A dense YSZ layer acts
as the electrolyte. A commercial SDC ink is screen-printed
onto the electrolyte and fired at 1240∘C for 2 hours. The SDC
layer acts as a barrier layer between YSZ and LSCF cathodes
to prevent unwanted chemical reactions. A mixture of LSCF-
SDC is subsequently screen-printed and fired at 1110∘C for
1 hour. Current collectors were applied on both sides with
an ink and fired at 850∘C for 1 hour. The cell active area is
measured to be 2.5 cm2.

The SOFC cell was tested in the test rig shown in Figure 1.
The temperature was varied between 500 and 750∘C and
closely monitored by placing a thermocouple near the cell.
On the anode side, humidified hydrogen was used at room
temperature with a flow rate ranging from 0.05 to 1.0 SLPM.
At room temperature, the water content is around 3% [1]. On
the cathode side, air was used as an oxidant with a flow rate
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Figure 1: Schematics of the button cell testing setup used for this
work.

ranging from 0.1 to 1.0 SLPM. Voltage-current density curves
as well as impedance measurements were made using a PAR-
STAT 2273 apparatus coupled with a power booster obtained
fromAMETEK Princeton Applied Research. Voltage-current
density curves were obtained at a scan rate of 3mV/s between
open-circuit voltage down to 0.3 V. Impedance data were
obtained at open-circuit voltage. The frequency range was
between 0.01Hz and 1MHz with AC amplitude of 10mV
and 12 datum points per frequency decade. An analytical
Quanta 200 s Environmental Scanning Electron Microscope
produced by the Phillips Electron Optics company was
used for the postmortem characterization for the high-
magnification picture and chemical maps.

3. Results and Discussion

Figure 2 reports SEM pictures of the SOFC cell after the
completion of all testing. The anode support layer is very
porous with a thin, less porous, functional layer with a
thickness of around 8 micrometers. The highly dense YSZ
layer is also around 8 micrometers thick. The SDC layer is
around 4 micrometers and is somewhat a dense layer. The
LSCF-SDC composite cathode is highly porous and is around
20 micrometers in thickness. The SEM images show that the
cell is intact and well preserved as no discernible damage or
delamination of layers can be observed.

In addition to the cell structural integrity, interdiffusion
of elements among all layers needs to be avoided. EDS was
performed on the cross section shown in Figure 2 to obtain
chemical maps. Figure 3 illustrates the chemical elements
that comprise the cathode, namely, La, Sr, Co, and Fe. La
is uniformly distributed in the cathode, and the sharp line
near the SDC layer would indicate negligible diffusion into
the barrier layer. La is one of the most abundant elements
in the cathode, Fe being the other one. The SEM was not
able to detect Sr in meaningful quantities. This was mostly

because X-ray lines overlap between Sr and Y. In addition,
the amount of Sr in the cathode is not very large and, in
general, SEM machines do not have a very high resolution.
Co is also present in small amounts, and it is reasonably
well distributed within the cathode. Again, within the SEM
resolution, Co did not move into the barrier layer either.
Lastly, Fe is uniformly distributed in the cathode; however,
small amounts are present in the SDC layer. Iron is used
as a sintering aid to obtain dense ceria layers, and some
commercial suppliers will add small amounts of iron oxide
in the SDC ink [13]. Because of this, it is hard to distinguish if
iron has migrated from the cathode to the SDC layer as some
of it is already there.

Figure 4 shows the chemical maps for Sm and Ce. Both
elements are uniformly distributed within the SDC layer, and
as expected it extends uniformly into the composite cathode.
Neither element has migrated into the YSZ electrolyte as
sharp edges can be clearly observed. Noticeable is some
background noise in the Sm map, but none is observed
with the Ce map. Figure 5 reports the chemical maps for
Y, Zr, and Ni. Y and Zr are uniformly observed in the
electrolyte layer. The sharp edge near the SDC layer indicates
no interdiffusionwith the barrier layer. Y andZr are, however,
not uniformly distributed in the anode.The anode functional
contains more Y and Zr than the bulk anode in order to
increase the three-phase boundary, thereby increasing the
electrochemical reactions in the fuel side [14]. Ni is uniformly
distributed in bulk anode in order to increase electrical
conductivity, but less Ni is present in the anode functional
layer where a mixed conductivity is desired [15].

Interdiffusion between SDC and YSZ layer has been
recently reported for SOFC cells fired at 1400∘C and occurs
at firing temperatures above 1200∘C [16]. Similar behavior has
been reported for a ceria barrier layer dopedwith gadolinium
as well [17]. For SDC/YSZ bilayers where the SDC layer
is deposited, using a Pulsed Laser Deposition technique
avoids the high temperature firing step, and the interdiffusion
between the two layers has not been observed [18]. Additional
studies report that the dissolution of Sm into the YSZ
phase can also result in decreased ionic conductivity in the
electrolyte [19, 20]. The reason that interdiffusion between
SDC and YSZ layer is not observed in the tested cell is likely
due to the low firing temperature of the SDC layer (1240∘C).
Though interdiffusion may have not been completely pre-
vented, the effects are very small and cannot be detected using
conventional SEM/EDS techniques.

Figure 6 presents the voltage-current density character-
istics of the tested cell measured from 500 to 750∘C at 50∘C
intervals. The cell power density increases with temperature
and reaches a maximum of about 1.2 W/cm2. The cell open-
circuit voltage at 750∘C is around 1.1 V which is slightly lower
than the Nernst voltage of 1.110 V at the same temperature
[15]. This slight difference is due to minor leakages through
the seal in the setup. As it can be seen, the cell performance at
750∘C is quite good but becomes irrelevant as the temperature
reaches 500∘C. At high current densities, the voltage does not
drop rapidly which suggests that diffusion losses are not very
large at all temperatures.
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Figure 2: SEM cross section images of the tested SOFC cell.
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Figure 3: EDS chemical maps for La, Sr, Co, and Fe elements.

Impedance data at OCV were collected at the same
temperatures, and the Nyquist plots are shown in Figure 7.
The data show that the performance decline is mostly due
to electrode polarization because the low frequency intercept
becomes larger and larger as temperature decreases. In other
words, the cathode electrochemical activity or capability is
severely diminished with lowering temperatures. The ohmic

portion of the cell can be found from the high frequency
intercept. The ohmic contribution to the lowered cell perfor-
mance is smaller than the electrode polarization; however, a
significant increase in ohmic resistance is still present. See
inset in Figure 7. To further demonstrate the above, Table 1
reports the ohmic resistance and total electrodes polarization
estimated from the impedance data shown in Figure 7. At
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Figure 4: EDS chemical maps for Sm and Ce elements.
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Figure 5: EDS chemical maps for Y, Zr, and Ni elements.

each temperature, the percentage ohmic contribution to the
total resistance is much smaller. Also noticeable is that both
resistances are temperature activated processes, and they
follow anArrhenius behavior.This is shown in Figure 8where
the logarithm of both resistances is plotted against the inverse

of temperature. The observed linear behavior of the data
confirms the Arrhenius behavior.

To further characterize the cell performance, the hydro-
gen flow rate was varied from 0.05 to 1.0 standard liters per
minute at 750∘C. The voltage-current density characteristics
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Figure 6: Voltage and power density curves versus current density
at different temperatures.

Table 1: Ohmic resistance and electrodes polarization estimated
from the impedance data shown in Figure 7.

𝑇 (∘C) Ohmic Resistance
(ohm cm2)

Electrodes
Polarization
(ohm cm2)

Percent
Ohmic

Percent
Polarization

500 1.5 17 8% 92%
550 1.0 6.5 13% 87%
600 0.6 3.1 16% 84%
650 0.4 1.9 17% 83%
700 0.2 1.2 14% 86%
750 0.1 0.8 11% 89%

are shown in Figure 9. The cell performance is not affected at
large flow rates or between 1 and 0.5 SLPM. At 0.25 SLPM,
the cell performance starts to be affected at high current
densities. Some small data oscillation is also observed for this
set of data. Further decrease in the hydrogen flow rate affects
the performance sooner and sooner (or at lower current
densities). The data oscillation also becomes more evident
and significant. To the authors’ knowledge, this behavior has
not been reported in the literature. However, this could be a
significant finding as it indicates that the low-porosity anode
functional layer may affect how fast hydrogen may diffuse
(or water diffuses out) through the three-phase boundary
especially at lower hydrogen concentrations. This behavior
could be a concern in a stack operating at high fuel utilization
in locations where the hydrogen concentration becomes low
and the water concentration becomes high. For this set of
tests, the impedance data collected at OCV are shown in
Figure 10.The ohmic portion or high frequency intercepts do
not change with changing hydrogen flow rate as expected.
Except for the lowest two flow rates, the low frequency
intercepts are reasonably the same. This behavior indicates
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Figure 7: Impedance curves at different temperatures.
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Figure 8: Logarithm of resistances as a function of the inverse
temperature.

that the circles at low frequency are related to diffusion
processes.

Finally, the dependence on air flow rate was also studied.
Figure 11 presents the voltage-current density characteristics
for an air flow rate between 0.1 and 1.0 SLPM at 750∘C.
The curves are affected at all flow rates, though the loss of
performance is larger at the lowest flow rates. For this set
of tests, the impedance data collected at OCV are shown in
Figure 12. Again, the ohmic portion does not change with
changing flow rates. However, the low frequency circles do
not seem to increase significantly and donot capture verywell
what is observed with the voltage-current density curves.
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Figure 9: Voltage and power density curves versus current density
at different hydrogen flow rates at 750∘C.
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Figure 10: Impedance curves at different hydrogen flow rates at
750∘C.

4. Conclusion

In this work, an anode-supported SOFC cell has been tested
and characterized at different temperatures and reactant flow
rates. SEM/EDS analysis indicates no significant interdiffu-
sion of the elements has occurred. In addition, the tested cell
preserved its structural integrity and shows no damage or
delamination. Voltage-current density and impedance data
at different temperatures indicate an Arrhenius behavior or
temperature activated processes. Variation in hydrogen flow
rates indicates concerns with the low-porosity anode func-
tional layer especially at low hydrogen contents. Variation in
air flow rates also lowers the cell performance.
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Figure 11: Voltage and power density curves versus current density
at different air flow rates at 750∘C.
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Figure 12: Impedance curves at different air flow rates at 750∘C.

Nomenclature

LSCF: Lanthanum strontium cobalt ferrite
SOFCs: Solid oxide fuel cells
Ni: Nickel
YSZ: Yttria stabilized zirconia
SDC: Samaria doped zirconia
SEM: Scanning electron microscope
EDS: Energy dispersive spectroscopy
OCV: Open-circuit voltage
SLPM: Standard liters per minute
Al: Alumina or aluminum oxide.
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