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ABSTRACT 

 

NUMERICAL MODELING AND FIELD INVESTIGATION OF NEARSHORE NONLINEAR 

WAVE PROPAGATION 

 

Elham Sharifineyestani 

Old Dominion University, 2019 

Director: Dr. Navid Tahvildari 

 

First, a phase-resolving frequency-domain wave model that solves nonlinear wave-wave 

interactions is improved to account for wave dissipation and modulations over viscoelastic mud 

layer. Model results show satisfactory agreement with laboratory measurements. The model is 

then used to investigate the combined effect of mud viscoelasticity and nonlinear wave-wave 

interactions on surface wave evolution using cnoidal and random wave simulations. In general, 

qualitative measures such as shape of cnoidal waves or pattern of variation in 𝐻𝑟𝑚𝑠 of random 

waves are dictated by direct mud-induced damping which, due to resonance effects, has a 

substantially different structure over viscoelastic mud compared to viscous mud. Nonlinear 

interactions affect spectral shape and distribution of energy loss across the spectrum. 

Subharmonic interactions cause indirect damping of high frequencies but ameliorate damping of 

harmonics around mud’s resonance frequency. Therefore, neglecting mud elasticity can result in 

significant errors in estimation of bulk wave characteristics and spectral shape. 

Next, a phase-resolving frequency-domain model for wave-current interaction is 

improved to account for wave modulations due to viscoelastic mud. Results indicates that 

copropagating currents decrease frequency-dependent damping at low frequencies while they 

increase it at higher frequencies. The opposite is true for counterpropagating currents. The 

impact of currents at high frequency increases with increase in mud shear modulus and it is 

observed in both monochromatic and random wave simulations. The Performance of two mud-



  

 

induced wave evolution models are compared. One model assumes that the mud layer is thin and 

the other is applicable to mud of arbitrary depth. It is found that a model based on thin-mud 

assumption overestimates damping over viscous mud in both monochromatic and random wave 

scenarios. However, for viscoelastic muds, this model slightly underestimates and overestimates 

damping for monochromatic and random wave scenarios, respectively. 

Finally, a preliminary field measurement and data analysis of wave and flow over a 

seagrass meadow is conducted. In addition, a computational model for hydrodynamics of wave-

vegetation interaction is linked to a computational biophysical model for seagrass growth. As a 

result of this integration, the wave-vegetation model provides improved information on leaf 

orientation to the seagrass growth model.  

 



  

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright, 2019, by Elham Sharifineyestani, All Rights Reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

v 

This dissertation is dedicated to my family who encouraged me to pursue my dreams: my 

mother who always encourages me to be a strong woman, my father who always works hard to 

support his family and encourages his kids to be more and more successful, my sister who is my best 

friend and my emotional supporter, my older brother who always encourages me to be more 

successful and gives me brilliant ideas, my younger brother who always gives me more hope and 

energy in my life, and my husband who is my love. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

vi 

ACKNOWLEDGMENTS 

 

 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Navid Tahvildari 

for the continuous support of my Ph.D. study and related research. His guidance helped me in all 

the time of research and writing of this dissertation.  

Besides my advisor, I would like to thank the rest of my dissertation committee: Dr. 

Gangfeng Ma and Dr. Richard P. Hale, for their time and constructive comments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

vii 

TABLE OF CONTENTS 

               Page 

LIST OF FIGURES ....................................................................................................................... ix 

1. INTRODUCTION .......................................................................................................................1 

Chapter 

2. MODEL FOR WAVE PROPAGATION OVER VISCOELASTIC MUD .................................8 

2.1. Wave Model ......................................................................................................................... 8 

2.2. Model for Mud-Induced Surface Wave Evolution ............................................................ 10 

2.3. Model Results .................................................................................................................... 16 

2.3.1. Model validation ......................................................................................................... 16 

2.3.2. Permanent form waves ................................................................................................ 20 

2.3.3. Random waves ............................................................................................................ 28 

2.4.  Discussion and Conclusions ............................................................................................. 39 

3. MODEL FOR WAVE PROPAGTION OVER MUD IN THE PRESENCE OF CURRENT ..45 

3.1  Nonlinear Wave-Current Interaction Model ...................................................................... 45 

3.2 Model for Surface Wave Evolution over Viscoelastic Mud ............................................... 47 

3.2.1 Macpherson (1980) Model ........................................................................................... 48 

3.2.2 Liu and Chan(2007) Model .......................................................................................... 49 

3.2.3 Comparison between Viscoelastic mud models .......................................................... 50 

3.3  Model results ...................................................................................................................... 53 

3.3.1 Model validation .......................................................................................................... 53 

3.3.2 Effect of current on propagation of monochromatic waves over mud ........................ 56 

3.3.3 Effects of currents on the propagation of random wave spectra over mud ................. 61 

3.4 Summary and Conclusions ................................................................................................. 70 

4. THE RELATIONSHIPS BETWEEN HYDRODYNAMIC AND BIOLOGICAL 

PROPERTIES OF SEGRASSES USING FILED DATA ANALYSIS AND COMPUTATIONAL 

STUDIES .......................................................................................................................................75 

4.1 Study Area and Instrumentation ......................................................................................... 76 



  

 

viii 

4.1 Field Data Analysis ............................................................................................................. 77 

4.1.1 Methods ........................................................................................................................ 77 

4.2 Field Data ............................................................................................................................ 78 

4.2.1 Wave characteristics and dissipation using spectral analysis method ......................... 78 

4.3 Computational Modelling ................................................................................................... 82 

4.3.1 Results of linking biological and hydrodynamic computational models ..................... 83 

4.4 Summary and Conclusions ................................................................................................. 84 

5. CONSLUSION AND RECOMMENDATION FOR FUTURE RESEARCH ..........................88 

6. REFERENCES ..........................................................................................................................90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

ix 

LIST OF FIGURES   

Figure                         Page 

1. Variation of analytical damping rate of surface waves with frequency for different values 

of mud shear modulus. ...................................................................................................... 14 

2. (a) Variation of analytical surface wave damping rate with frequency for small values of 

mud shear modulus, (b) variation of the frequency associated with peak damping with 

different mud shear moduli and three values of mud viscosity. ....................................... 18 

3. Comparison between model results and laboratory experiments ..................................... 19 

4. Evolution of cnoidal waves over viscoelastic mud ........................................................... 21 

5. (a) Cnoidal waves over viscoelastic mud with shear moduli of 𝐺 = 0 − 25 Pa, (b) 

variation of real component of surface wave number of frequency 𝑓 = 0.50 𝐻𝑧 with mud 

shear modulus ................................................................................................................... 23 

6. (a) Evolution of frequency amplitudes in a cnoidal wave spectrum over muds with 

difference shear moduli. The initial spectrum at 𝑥 = 0 and the spectra at the end of mud 

patch (𝑥 = 800 m) are shown, (b) variation of analytical damping rate against frequency.

........................................................................................................................................... 25 

7. Evolution of the cnoidal wave spectrum over viscoelastic and viscous muds with 

subharmonic interactions deactivated. .............................................................................. 27 

8. Evolution of frequency amplitudes in a cnoidal wave spectrum over elastic mud with 

different shear moduli.. ..................................................................................................... 27 

9. Spectral evolution of a random wave over muds .............................................................. 30 

10. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic muds with shear moduli of 𝐺 =
0 − 300 Pa.. ...................................................................................................................... 32 

11. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic muds with shear moduli of 𝐺 =
0 − 100 Pa. ....................................................................................................................... 33 

12. Spatial evolution of spectral energy density over muds with shear moduli of 𝐺 = 0, 50 

and 100 Pa.. ....................................................................................................................... 35 

13. Surface wave spectrum over viscous (solid line) and viscoelastic (dashed line) mud with 

shear modulus of 𝐺 = 100 (dashed line), at several locations. ........................................ 36 

14. Spatial evolution of spectral energy density over muds with shear moduli ..................... 37 

15. Surface wave spectrum over viscous (solid line) and viscoelastic (dashed line) mud with 

shear modulus of 𝐺 = 100 𝑃𝑎 (dashed line), at discrete locations.. ................................ 38 

16. Surface wave damping rate as a function of frequency for different shear moduli of mud 

using formulation of Liu and Chan(2007) (solid line), Macpherson(1980) (dashed line) 

and Piedra-Cueva (1993) (dot line) ................................................................................... 52 



  

 

x 

17. Surface wave damping rate as a function of frequency for different shear moduli of mud 

in the presence of co-propagating current with 𝑈 = +0.15 m/s (solid line), without 

current (dot line), and in the presence of counter-propagating current with 𝑈 = −0.15 

m/s (dashed line). .............................................................................................................. 53 

18. Comparison between the attenuation rate from the present model and laboratory 

experiments of Zhao et al. (2006). .................................................................................... 55 

19. Comparison between the attenuated wave heights from the present model (black line) and 

experiments of Zhao et al. (2006) (squares). .................................................................... 55 

20. Propagation of cnodial wave spectrum over mud with shear moduli of 𝐺 = 0 − 200 Pa.

........................................................................................................................................... 59 

21. Evolution of a cnoidal wave spectrum over muds with subharmonic interactions 

deactivated.. ...................................................................................................................... 60 

22. Spatial variation of cnodial wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with 

shear moduli of 𝐺 = 50 − 300 Pa.. .................................................................................. 60 

23. Variation of surface wave damping rate with frequency for different values of mud shear 

modulus. ............................................................................................................................ 62 

24. Evolution of random wave spectra with peak frequency of 𝑓𝑝 = 0.0625 Hz for two 

values of mud shear modulus of 𝐺 = 0 and 100 Pa ......................................................... 64 

25. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic mud with shear moduli of 𝐺 =
0 − 300 Pa with 𝐹𝑟 = +0.15 (solid line), F𝑟 = 0 (dot line), and 𝐹𝑟 = -0.15 (dashed 

line).. ................................................................................................................................. 65 

26. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic mud with shear moduli of 𝐺 =
0 − 300 Pa in presence of currents with 𝐹𝑟 = +0.15 (solid line), 𝐹𝑟 = 0 (dot line), and 

𝐹𝑟 = -0.15 (dashed line) ................................................................................................... 65 

27. Variation of surface wave damping rate with frequency for mud with shear modulus 𝐺 =
0 and 200 Pa. ..................................................................................................................... 67 

28. Propagation of cnodial wave spectrum over mud with shear modulus of 𝐺 = 0,200 Pa, 68 

29. Spatial variation of cnodial wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with 

shear modulus of 𝐺 = 200 Pa.  ........................................................................................ 69 

30. Propagation of random wave spectrum over mud with shear modulus of 𝐺 = 0,200 Pa. 69 

31. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with 

shear modulus of 𝐺 = 200 Pa. ......................................................................................... 70 

32. The study area in the Eastern Shore of Virginia (Google Maps) ...................................... 76 

33. The variation of significant wave height with time for two RBRs of No. 1615, and No. 

1707................................................................................................................................... 79 

34. Variation of significant wave height with ......................................................................... 80 

35. Variation of wave dissipation with significant wave height ............................................. 80 

36. Wave dissipation versus frequency for three different bursts ........................................... 81 



  

 

xi 

37. Energy density spectrum of water elevation spectra versus frequency for three different 

wave bursts........................................................................................................................ 81 

38. The blade shape after current and wave action; every blade is divided by 10 segments. . 83 

39. Variation of leaf bending angle with time without wave .................................................. 85 

40. Impact of leaf bending angle under waves on daily biomass-specific photosynthesis of the 

simulated seagrass canopy with time. ............................................................................... 86 

41. Variation of leaf bending angle with time in the presence of wave .................................. 86 

42. Impact of leaf bending angle on daily biomass-specific photosynthesis of the simulated 

seagrass canopy. ................................................................................................................ 87 



  

 

1 

CHAPTER 1 

 INTRODUCTION 

 

Cohesive sediments are ubiquitous in coastal waters. The mud deposited in river deltas is 

distributed in the nearshore by waves, tides, and wave-induced, storm-driven, and ambient 

currents. As a result, sediments in the majority of the world’s coasts are heterogeneous and 

mixed mud/sand sediment composition is common (Holland and Elmore, 2008). Therefore, to 

reliably estimate wave energy and wave-induced coastal erosion, it is essential to characterize 

mud behavior and its influence on surface waves accurately. 

Field and laboratory experiments have shown stronger wave dissipation over mud 

compared to sandy beaches. Observations of Ardhuin et al. (2003) show 50-75% loss in swell 

energy over 100-km wide sandy beaches on the North Carolina Virginia continental shelf. In 

contrast, Wells and Coleman (1981) documented a 90% wave energy loss over a 20-km distance 

on the muddy coast of Surinam. High wave damping rates over mud have also been observed in 

laboratory experiments of Gade (1958), where 80% of surface wave energy was dissipated by 

fluid mud over only 2.6 wavelengths. 

A reliable model for wave evolution over mud requires an accurate characterization of 

mud behavior. Different rheological models have been adopted for mud behavior, from which 

the most common ones are viscous fluid (e.g. Gade, 1958; Dalrymple and Liu, 1978; Ng, 2000), 

viscoelastic medium (e.g. Macpherson, 1980; Hsiao and Shemdin, 1980; Maa and Mehta, 1990; 

Jiang and Mehta, 1995; Zhao et al., 2006; Liu and Chan, 2007; Mei et al., 2010), and Bingham 

plastic (Mei and Liu, 1987; Chan and Liu, 2009). It should be noted that all these theoretical 

models are based on linearized equations of motion. Dalrymple and Liu (1978) developed a 
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theory for waves propagating over a mud layer of arbitrary depth topped by a layer of water. In 

most shallow coastal areas, the mud layer is typically much thinner than the overlying layer of 

water and this allows for derivation of approximate analytical solutions for surface wave-mud 

interactions (Mei and Liu, 1987; Ng, 2000; Mei et al., 2010). Ng (2000) obtained an analytical 

solution for the case where the mud layer is thin and is of the same order of magnitude as the 

bottom boundary layer. The same thin mud assumption was applied by Liu and Chan (2007) to 

viscoelastic mud. In a viscoelastic medium, viscosity dissipates wave energy while elasticity acts 

as a restoring force that modulates frequencies (Macpherson, 1980). Viscoelastic media are 

particularly significant due to the possibility of resonance. The resonance effect, which is due to 

elasticity in the Voigt model (Macpherson, 1980; Maa and Mehta, 1990; Piedra-Cueva, 1993), 

increases the dissipation rate of surface waves with frequencies around the natural frequency of 

oscillation of the mud layer. The impact of resonance in viscoleastic mud is beyond wave 

dissipation and modulation. Ng and Zhang (2007) developed an analytical formulation for mass 

transport under progressive waves over a thin layer of viscoelastic mud and showed that 

resonance in the mud layer can substantially decrease or increase transport in the water layer 

compared to viscous mud, and may even change the direction of the drift. 

Surface waves can lose energy over mud through direct and indirect pathways. In direct 

damping, surface wave energy that moves the mud layer is dissipated within the layer due to 

mud viscosity. However, field and laboratory experiments indicate that both high (Sheremet and 

Stone, 2003; Almashan and Dalrymple, 2015) and low (Elgar and Raubenheimer, 2008) surface 

wave harmonics exhibit higher damping than what is anticipated merely from direct coupling of 

waves with muddy seabed. Torres-Freyermuth and Hsu (2014) discuss that low-frequency wave 

dissipation dominated by nonlinear energy transfer occurs in low Ursell numbers. Ursell number 
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is defined as 𝑈𝑟 = 𝛿/𝜇2, where 𝛿 = 𝐻𝑟𝑚𝑠/2ℎ, 𝜇 = 𝑘ℎ, and 𝐻𝑟𝑚𝑠 is root mean square of wave, h 

is depth of water, and k is wave number. An additional pathway of indirect energy dissipation is 

the generation and damping of interfacial waves. The two-layer clear water/mud system supports 

the generation of interfacial waves a t water/mud interface (lutocline) which can grow to the 

point of breaking and cause mixing in the water column. Theoretical and laboratory studies show 

that a surface waves can trigger a pair of opposite-traveling oblique interfacial waves through 

subharmonic interactions (e.g. Hill and Foda, 1996; Jamali et al., 2003a; Tahvildari and Jamali, 

2012). Tahvildari et al. (2016) studied this interaction among long waves and showed that 

accounting for damping in interfacial boundary layers is essential for adequate estimation of 

interfacial wave damping, which can affect surface damping rate through nonlinear energy 

transfer. These studies assume that the water/mud system behave as a two-layer inviscid or 

lightly viscous fluid. Hill and Foda (1999) examined the phenomenon in a system of clear water 

overlying viscoelastic medium and showed that viscoleasticity reduces interfacial wave growth 

rate. 

Numerical wave models have enabled studying wave-mud interaction in complex wave 

conditions. Among rheological models of mud, the viscous model is most commonly used in 

numerical models due primarily to straightforward implementation. The Ng (2000) mechanism 

has been incorporated in operational phase-averaged models SAWN (Winterwerp et al., 2007; 

Kranenburg et al., 2011) and WAVEWATCH III (Rogers and Orzech, 2013) as well as 

frequency-domain phase-resolving models (e.g. Kaihatu et al., 2007; Kaihatu and Tahvildari, 

2012; Safak et al., 2017). Simulations using phase-resolving models confirm that nonlinear 

interactions can cause energy transfer from high to low frequencies. Mud-induced wave 

dissipation mechanism has also been incorporated in phase-resolving time-domain models. 
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Torres-Freyermuth and Hsu (2010) developed a two-dimensional model based on Reynolds-

averaged Navier-Stokes equations and used two-phase flow equations for fine sediment transport 

in turbulent flow. It was shown that second-order energy transfer across the spectrum causes 

stronger wave dissipation rate at lower and higher harmonics compared to principal harmonics. 

Mud was assumed to be a viscous fluid. 

As noted by Chou et al. (1993), mud demonstrates complicated rheological behavior and 

idealizing it as a homogenous viscous fluid can result in inaccuracies in predicting wave 

propagation. For instance, Hsu et al. (2013) show that although viscous fluid assumption can 

describe mud behavior under energetic waves, the mud layer exhibits non-Newtonian behavior in 

low energy conditions. Jain and Mehta (2009) discuss that among various proxies assumed for 

mud behavior, viscoelastic medium assumption can predict wave attenuation over the widest 

range of wave action and sediment properties. Several previous studies have used viscoelastic 

models to mimic mud behavior. Macpherson (1980) studied surface wave attenuation in a two-

layer system where the bottom layer is described by the viscoelastic Voigt model. It was shown 

that for a given mud viscosity, wave frequency, and water depth, increasing elasticity can 

decrease wave dissipation. Piedra-Cueva (1993) extended the work of Macpherson (1980) to 

include boundary layer effects at water/mud interface. More recently, Liu and Chan (2007) 

(hereafter referred to as LC) developed an analytical solution for wave damping over a thin 

viscoelastic layer. It was shown that the balance between mud viscosity and elasticity results in 

complexities in predicting wave dissipation rate. This model has recently been implemented in 

the phase-averaged model SWAN (Beyramzade and Siadatmousavi, 2017). However, in shallow 

waters, strong nonlinear triad interactions may result in inaccuracies in phase-averaged wave 

models and phase-resolving wave models can simulate wave propagation more reliably. The 
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combined effect of nonlinear wave-wave interactions and wave coupling with viscoelastic mud 

on evolution of surface wave spectrum has not yet been studied. 

In the first part of this research (Chapter 2), we develop a new numerical wave-mud 

interaction model by coupling a mechanism for wave dissipation and modulation evolution by 

viscoelastic muds in a numerical wave model. The model results for dissipation of 

monochromatic surface waves is validated with laboratory experiments of Soltanpour and 

Samsami (2011) and Zhao et al. (2006). To the best of our knowledge, detailed measurements of 

surface wave spectrum over viscoelastic mud is not currently available, thus it is not possible to 

validate the model for its performance on spectral evolution. The coupled model is then used to 

examine nonlinear evolution of monochromatic and random surface waves. In addition to 

reliable wave prediction, a numerical wave model with a more versatile mud-induced wave 

dissipation/modulation mechanism enables a more comprehensive approach for inverse 

deduction of mud parameters from wave data. For instance, Tahvildari and Kaihatu (2011) use 

the Kaihatu et al. (2007) wave-mud interaction model, which includes a viscous mud damping 

mechanism, as the forward model in their inversion scheme. Such an inverse model becomes 

more versatile if a viscoelastic forward model is used instead. 

Although wave-mud interaction has been the subject of many recent studies (Kaihatu et 

al., 2007; Tahvildari and Kaihatu, 2011; Liao et al., 2015; Safak et al., 2017; Tahvildari and 

Sharifineyestani, 2019), only a few studies consider the effect of currents on wave-mud 

interaction. However, substantial mud deposition occurs in river deltas and strong currents can 

interact with wave and mud in the vicinity of river inlets. Therefore, a model that incorporates 

current effects on waves can better predict mud-induced wave attenuation. Interaction between 

waves and currents change the linear and nonlinear properties of surface waves (Bretherton and 
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Garrett, 1968). Doppler shifting of frequencies is a linear effect of currents on waves that can 

result in nonlinear energy transfer across the wave spectrum (Kaihatu, 2009). Other nonlinear 

effects of currents have been previously studied focusing on large amplitude waves in the 

presence of adverse currents (Smith, 1976), waves near blocking condition (Crapper, 1972; 

Chawla and Kirby, 2002), and deep water waves (Turpin et al., 1983; Kirby, 1986)) and wave-

wave iterations in shallow water for regular (Chen et al., 1999) and irregular (Kaihatu, 2009) 

waves. 

In the second part of this research (Chapter 3), we extend the model developed in Chapter 

2 to include the effect of currents and eliminates the limitation of thin-mud-layer assumption 

imposed by the Liu and Chan (2007) formulation. Therefore, the model proposed in Chapter 3 

provides a more comprehensive predictive tool for wave propagation in coastal waters. For this 

purpose, we extend the model of Kaihatu and Tahvildari (2012) by generalizing the mud 

rheology to a viscoelastic solid. We utilize two models to represent mud-induced damping and 

modulation of surface wave in the wave model, namely Liu and Chan (2007) and Macpherson 

(1980), which enables applying the model to muds of arbitrary thickness.  

In addition to muddy seafloors, hydrodynamic and wave energy in coastal areas could be 

affected by submerged aquatic vegetation (SAV). SAV is a critical habitat that can stabilize 

sediments, and attenuate storm surge and wave energy. While most previous studies on seagrasses 

have been focused on ecology of seagrasses, recent works suggest that SAV meadows can dissipate 

surface water waves (Nowacki et al., 2017). Biological properties of seagrasses such as shoot 

density (number of shoots per unit area), distribution, and length of shoots affect wave dissipation 

capacity of SAV. On the other hand, water depth and hydrodynamic variables, namely flow 

velocity and wave height, impact photosynthesis by affecting seagrass shoots orientation thus its 
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capacity to absorb light. Therefore, it is imperative to understand the two-way interactions between 

flow dynamics and seagrass biology. There has been a disconnect between models that simulate 

flow processes around vegetation and models that simulate seagrass photosynthesis that affect its 

capacity to modify flow. Therefore, representation of waves and flow in current SAV growth 

models (e.g. Zimmerman, 2003) are very limited. In chapter 4 we conducted an interdisciplinary 

study in which we focus on exploring the relationships between hydrodynamic and biophysical 

properties of seagrasses through field data analysis and computational studies. 

This research is structured as follows. Following this introduction, Chapter 2 discusses 

the wave-current-mud interaction model, Chapter 3 presents the wave-current-mud interaction 

model. The model results for evolution of monochromatic and random surface waves, discussion 

and conclusions are outlined at the end of each chapter. Chapter 4 presents the relationships 

between hydrodynamic and biophysical properties of seagrasses using field data analysis and 

computational studies. Finally, the conclusion and recommendations for future research is 

provided in Chapter 5.  
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CHAPTER 21  

MODEL FOR WAVE PROPAGATION OVER VISCOELASTIC MUD  

 

 This wave-mud interaction model is comprised of a wave model based on the nonlinear 

spectral frequency-domain phase-resolving model of Kaihatu and Kirby (1995) and the 

mechanism for mud-induced wave dissipation and modulation is based on the LC model. For 

viscoelastic muds, these effects include wave attenuation and frequency modulation. The 

attenuation effect is represented by an added term to the equation that governs wave propagation, 

and frequency modulation is accounted for by correcting the wavenumbers computed by the 

wave model in the absence of mud. 

2.1. Wave Model 

The wave model of Kaihatu and Kirby (1995) is based on a nonlinear frequency-domain 

mild-slope formulation which solves the second-order nonlinear wave-wave interactions. The 

model uses parabolic approximation, thus is applicable to weakly two-dimensional waves 

(Radder, 1979), and assumes irrotational flow and mildly varying depth in the horizontal plane, 

h(x,y). We outline the essential components of the numerical model here and refer the interested 

reader to Kaihatu and Kirby (1995) for a comprehensive description of the wave model. In this 

model, the free surface, η, is expressed as, 

𝜂(𝑥, 𝑡) = ∑𝑁
𝑛=1

𝐴𝑛

2
𝑒𝑖(∫ 𝑘𝑛𝑑𝑥−𝜔𝑛𝑡) + 𝑐. 𝑐., (1) 

 

1 This paper is based on the paper Tahvildari N, Sharifineyestani E. 2019. A numerical study on nonlinear surface 

wave evolution over viscoelastic mud. 154:103557. doi: https://doi.org/10.1016/j.coastaleng. 
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where 𝐴𝑛 and 𝜔𝑛 are the amplitude and angular frequency of the 𝑛th harmonic, 𝑔 is the 

gravitational acceleration, 𝑖 = √−1, and 𝑐. 𝑐. denotes the complex conjugate. Wavenumber 𝑘𝑛 is 

associated with 𝜔𝑛 through the dispersion relation:  

𝜔𝑛
2 = 𝑔𝑘𝑛tanh(𝑘𝑛ℎ), (2) 

 

where ℎ is the depth of clear water above the muddy bed. The frequency-domain model for wave 

propagation over mildly varying depth in one horizontal dimension is given by Kaihatu and 

Kirby (1995):  

𝐴𝑛𝑥 +
(𝐶𝐶𝑔)

𝑛𝑥

(2𝐶𝐶𝑔)
𝑛

𝐴𝑛 + 𝐷𝑛𝐴𝑛                            (3) 

=
−𝑖

8(𝑘𝐶𝐶𝑔)
𝑛

(∑

𝑛−1

𝑙=1

𝑅𝐴𝑙𝐴𝑛−𝑙𝑒
𝑖Θ𝑙,𝑛−𝑙 + 2 ∑

𝑁−𝑛

𝑙=1

𝑆𝐴𝑙
∗𝐴𝑛+𝑙𝑒𝑖Θ𝑛+𝑙,−𝑙) 

  

where 𝐶 is phase velocity, 𝐶𝑔 is the group velocity, and 𝐷𝑛 is the dissipation rate. The subscript 𝑥 

refers to spatial gradient in 𝑥 direction. The nonlinear interaction coefficients 𝑅 and 𝑆 govern the 

superharmonic and subharmonic interactions, respectively, and are given by,  

 𝑅 = (
𝑔

𝜔𝑙𝜔𝑛−𝑙
) [𝜔𝑛

2𝑘𝑙𝑘𝑛−𝑙 + (𝑘𝑙 + 𝑘𝑛+𝑙)(𝜔𝑛−𝑙𝑘𝑙 + 𝜔𝑙𝑘𝑛−𝑙)]      (4) 

 −
𝜔𝑛

2

𝑔
(𝜔𝑙

2 − 𝜔𝑙𝜔𝑛−𝑙 + 𝜔𝑛−𝑙
2 ), 

 𝑆 = (
𝑔

𝜔𝑙𝜔𝑛+𝑙
) [𝜔𝑛

2𝑘𝑙𝑘𝑛+𝑙 + (𝑘𝑛+𝑙 − 𝑘𝑙)(𝜔𝑛+𝑙𝑘𝑙 + 𝜔𝑙𝑘𝑛+𝑙)]      (5) 

 −
𝜔𝑛

2

𝑔
(𝜔𝑙

2 − 𝜔𝑙𝜔𝑛+𝑙 + 𝜔𝑛+𝑙
2 ), 

 and the phase mismatches Θ𝑙 ,𝑛−𝑙 and Θ𝑛+𝑙,−𝑙 are given by:  
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Θ𝑙,𝑛−𝑙 = ∫ (𝑘𝑙 + 𝑘𝑛−𝑙 − 𝑘𝑛)𝑑𝑥, (6) 

Θ𝑛+𝑙,−𝑙 = ∫ (𝑘𝑛+𝑙 − 𝑘𝑙 − 𝑘𝑛)𝑑𝑥. (7) 

 The energy dissipation in equation (3) is represented by the term 𝐷𝑛𝐴𝑛 which can be due 

to wave breaking (e.g. Kirby and Kaihatu, 1997), wave-mud interaction (Kaihatu et al., 2007), 

wave-vegetation interaction (Kaihatu et al., 2018), or any other dissipative mechanism. It is 

noted that this approach does not account for turbulence-sediment interactions (e.g. Torres-

Freyermuth and Hsu, 2010) or the feedbacks from the mud layer to surface forcing such as 

harmonic generation at water-mud interface (lutocline) (e.g. Tahvildari et al., 2016). However, 

the model is adequate for this study as the focus is to investigate the impact of mud 

viscoelasticity on surface wave evolution. 

2.2. Model for Mud-Induced Surface Wave Evolution 

In this section, we discuss the mechanism for wave dissipation and frequency modulation 

by viscoelastic muddy beds. The general approach is to compute wave dissipation rates and 

modulated frequencies by solving the complex dispersion relation of a two-layer system 

composed of a layer of clear water overlying a layer of mud. In general, the dispersion relation is 

a function of wave frequency, wavenumber, and thicknesses, densities and viscosities of the 

layers, and shear modulus of mud. 

The wavenumber in dissipative systems is a complex number with the real part governing 

frequency modulation and the imaginary part resulting in wave dissipation (e.g. Macpherson, 

1980). Finding the roots of the general dispersion relation in which no assumption is applied on 

the depth of the fluid layer involves a numerical search in the complex plane (e.g. Dalrymple and 

Liu, 1978; Piedra-Cueva, 1993), and since the roots are non-unique, obtaining the desired 
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solution can be challenging. Alternatively, the dispersion relation can be simplified by assuming 

that the mud layer is relatively thin (Ng, 2000; Liu and Chan, 2007), and derive an explicit 

solution to the dispersion relation which can be implemented in numerical wave models in a 

straightforward manner (e.g. Kaihatu et al., 2007; Beyramzade and Siadatmousavi, 2017). 

In this study, we use the LC model for wave evolution over viscoelastic mud. Similar to 

the Ng (2000) model, the mud layer is assumed to be thin with respect to water depth and to be 

of the same order of magnitude as the mud boundary layer. The mud boundary layer is defined 

as: 

𝛿𝑚𝑒 = √
2|𝜈𝑚𝑒|

𝜔
                     (8) 

 where 𝜈𝑚𝑒 is the effective kinematic viscosity of mud given by Macpherson (1980),  

𝜈𝑚𝑒 = 𝜈𝑚 +
𝑖𝐺𝑚

𝜔𝜌𝑚
,            (9) 

 where 𝜈𝑚, 𝐺𝑚, and 𝜌𝑚 are mud viscosity, shear modulus, and density, respectively. This 

equation describes a Voigt solid. LC derived the dispersion relation for a two-layer system 

composed of inviscid water overlying a thin layer of viscoelastic mud and obtained and 

analytical solution for complex wavenumber. The dimensionless real part of the wavenumber, 

𝑘𝑟, and the surface wave dissipation rate, 𝐷𝑚, are given by,  

 𝑘𝑟ℎ = 𝑘1ℎ −
(𝑘1ℎ)2𝛾(

𝛿𝑚𝑒
ℎ

)

sinh2𝑘1ℎ+2𝑘1ℎ
[2𝜆 −

Ω𝑀sinh2𝜆Ω𝑀+Ω𝑃sin(2𝜆Ω𝑃)

cosh(2𝜆Ω𝑀)+cos(2𝜆Ω𝑃)
]  (10) 

 𝐷𝑚 =
(𝑘1ℎ)2𝛾(

𝛿𝑚𝑒
ℎ

)

sinh2𝑘1ℎ+2𝑘1ℎ
[

Ω𝑃sinh2𝜆Ω𝑀−Ω𝑀sin(2𝜆Ω𝑃)

cosh(2𝜆Ω𝑀)+cos(2𝜆Ω𝑃)
]                          (11) 

where  
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𝜔2 = 𝑔𝑘1tanh𝑘1ℎ,                 (12) 

𝜆 =
𝑑

𝛿𝑚𝑒
                            (13) 

Ω𝑃 = cos
𝜃

2
+ sin

𝜃

2
,               (14) 

Ω𝑀 = cos
𝜃

2
− sin

𝜃

2
,         (15) 

tan𝜃 =
𝐺𝑚

𝜔𝜌𝑚𝜈𝑚
,          (16) 

𝛾 =
𝜌𝑤

𝜌𝑚
                                   (17) 

where 𝑘1 is the surface wavenumber in the absence of mud, and ℎ and 𝑑 are the thicknesses of 

the water and mud layers, respectively. The damping rate, 𝐷𝑚, depends on wave frequency. 

Figure (1) shows the variation of analytical damping rate with surface wave frequency for 

various values of mud shear modulus. In this figure, 𝜁 = √𝜈𝑚/𝜈𝑤 = 100, where 𝜈𝑤 is the 

kinematic viscosity of water, 𝑑 = 0.20 m, ℎ = 2.00 m, 𝜌𝑚 = 1111 kg/m 3, and density of 

water, 𝜌𝑤, is 1000 kg/m 3. 

Wave damping over viscoelastic mud is considerably different from viscous mud (Figure 

(1)). In the case of purely viscous mud, the damping rate is smallest in the low and high end of 

the frequency range and varies relatively mildly in between. The variation of damping rate for 

viscoelastic muds is more pronounced around a certain frequency due to the resonance effect. 

Resonance occurs when the surface wave frequency approaches the natural frequency of 

oscillation in the mud layer and results in amplification of interfacial waves. As a result, a high 

shear stress is developed within the mud layer and the surface wave is dissipated at a high rate 

due to mud viscosity. 
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The maximum damping rate varies non-monotonically with shear modulus. As seen in 

Figure (1), for the parameters used here, the maximum damping rate increases with mud shear 

modulus over 𝐺 = [50,300] Pa up to 𝐺𝑚 = 100 Pa and decreases thereafter. On the other hand, 

the frequency at which the maximum damping rate occurs (𝑓𝑚) increases monotonically with 𝐺 

in this range. However, the variation of damping rate with 𝐺 is more complex in lower 𝐺 values 

(Figure (2)). Figure (2a) shows that while increase in 𝐺 is still associated with increase in 

maximum damping rate in this range of 𝐺, the trend in variation of 𝑓𝑚 with 𝐺 becomes non-

monotonic such that 𝑓𝑚 decreases up to a certain 𝐺 and increases thereafter. This pattern is 

consistent at low 𝐺𝑠 is consistent irrespective of mud viscosity. As seen in Figure (2b), the 

minimum 𝑓𝑚 occurs at around 11, 4, and 1 Pa, for mud viscosity of 𝜈𝑚 = 0.0130, 0.0072, and 

0.0013 m 2/s, respectively.  

In addition to direct viscous damping, which is computed by analytical damping rates, the 

ultimate dissipation rate of frequencies depends on nonlinear energy transfer across the spectrum 

(Kaihatu et al., 2007). Therefore, it is essential to study wave evolution using a spectral model 

that resolves nonlinear wave-wave interactions. The approach taken in development of this 

model is similar to that in Kaihatu et al. (2007). The analytical solution for direct damping rates, 

which is computed from equation (11), is used in equation (4) which is then solved numerically 

for spatial evolution of harmonic amplitudes over a domain.  

The wave and mud models have several underlying assumptions that need to be 

preserved for the coupled model to be valid. This is particularly important as the resonance 

phenomenon can induce relatively large interfacial oscillations and velocities within the mud and 

water layers. The wave model is based on weakly nonlinear fully dispersive mild slope 

equations, and the analytical LC model is derived from linear equations of motion. In this study, 
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the depth of the mud layer is assumed to be constant, and bottom slope is zero. Furthermore, we 

limit the study to one-dimensional wave propagation to focus on energy transfer across the 

spectrum and eliminate complications due to two-dimensional effects such as diffraction, hence 

the parabolic approximation made in the derivation of the wave model holds. Therefore, the 

limiting condition for the coupled model is based on the condition for validity of the LC model, 

i.e. the flow needs to be almost linear. 

 

Figure 1. Variation of analytical damping rate of surface waves with frequency for different values of mud shear 

modulus. (𝜁 =  100, ℎ = 2.00 𝑚, 𝑑𝑚 = 0.20𝑚, 𝜌𝑚 = 1111 𝑘𝑔 ⁄ 𝑚3 ) 

 

The horizontal momentum equation for flow in the mud layer is given by: 

𝜕𝑢𝑚

𝜕𝑡
+ 𝑢𝑚

𝜕𝑢𝑚

𝜕𝑥
= −

1

𝜌𝑚

𝜕𝑝𝑚

𝜕𝑥
+ 𝜈𝑚𝑒 (

𝜕𝑢𝑚
2

𝜕𝑥2
+

𝜕𝑢𝑚
2

𝜕𝑧2
) (18) 

where 𝑢𝑚 is the velocity in the mud layer. Using the following dimensionless variables,  

 𝑢∗𝑚 =
𝑢𝑚

𝑈
,    𝑥∗ = 𝑘𝑥,    𝑡∗ = 𝜔𝑡,    𝑝∗ =

𝑝

𝜌𝑔ℎ
,    𝑧∗ =

𝑧

ℎ
, (19) 
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 where subscript asterisk shows dimensionless values and 𝑈 is the characteristic velocity in the 

mud layer, the momentum equation becomes,  

 
𝜕𝑢∗𝑚

𝜕𝑡∗
+ (𝑢∗𝑚

𝑘𝑈

𝜔
)

𝜕𝑢∗𝑚

𝜕𝑥∗
= (−

𝑘𝑔ℎ

𝑈𝜔
)

𝜕𝑝∗𝑚

𝜕𝑥∗
+ (

𝜈𝑚𝑒𝑈

𝜔
) (𝑘2 𝜕𝑢∗𝑚

2

𝜕𝑥∗
2 +

1

ℎ2

𝜕𝑢∗𝑚
2

𝜕𝑧∗
2 ). (20) 

 Therefore, the momentum equation can be linearized if 𝑘𝑈/𝜔 << 1. This inequality can 

be examined using the expression for the velocity in mud layer. LC provides an equation for 𝑢̂𝑚 

which is the velocity amplitude after factoring out the temporal and spatial oscillatory term. 

Using this expression, we find that the largest value of 𝑘𝑢𝑚/𝜔 is 0.058 for the range of 

parameters used in this study, thus the coupling of the wave and mud-induced wave damping 

model is acceptable. 

We note that theoretically, the thin-mud-layer assumption is valid if the mud layer 

thickness is small relative to wavelength, i.e. 𝑘𝑑 ∼ 1, and 𝒪(𝑑) ∼ 𝒪(𝛿), where 𝛿 is the thickness 

of bottom boundary layer in mud. For the mud and water depths used to obtain the damping rates 

shown in Figure (1), 𝑘𝑟𝛿 varies in [0.126, 0.32] and 𝑘𝑟𝑑 varies in [0.037, 0.80] as surface wave 

frequencies vary in [0.1, 1.0] Hz. The thin-mud-layer assumption is valid for most of this 

frequency range. We note that while the mud layer may not seem to be relatively thin for high 

frequencies, e.g. 𝑓 = 1 from the range of frequencies used here, the wave-mud interaction model 

may still perform satisfactorily. Kaihatu et al. (2007) shows that the wave-mud interaction model 

which has incorporated the viscous Ng (2000) model compares well with experiments even when 

the thin-mud-layer assumption is obviously violated. This observation may suggest that the 

portion of the mud layer that actively interacts with waves can still be considered thin even when 

the total thickness mud layer thickness is relatively large. The parameters used in Figure (1) are 
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the same as those used in Kaihatu and Tahvildari (2012), where waves over viscous mud 

underwent substantial dissipation. 

2.3. Model Results 

We demonstrate the results of the numerical model in this section. First, we validate the 

model with laboratory experiments and then utilize the model to show the effect of mud 

viscoelasticity on wave evolution. Monochromatic and random wave scenarios are simulated. 

2.3.1. Model validation 

As discussed earlier, mud can demonstrate different rheological behaviors under varying 

wave conditions. Additionally, mud properties such as density, viscosity, and layer thickness 

depend on hydrodynamic conditions. While these parameters may vary widely in the field, their 

values are measured only at a limited number of stations. In laboratory experiments, in contrast, 

the degree of uncertainty in parameter values and complexities in flow conditions are smaller and 

it is more realistic to assume spatially uniform quantities along and across a wave flume. 

Similarly, numerical wave models including the present model generally prescribe a certain mud 

rheology and assume constant mud characteristics over space and time. Therefore, it is more 

straightforward to obtain a quantitative comparison between numerical model results and 

laboratory data than field data. There are several experimental datasets on wave attenuation over 

mud (e.g. De Wit, 1996; Jiang and Mehta, 1996; Soltanpour and Samsami, 2011; Zhao et al., 

2006). Here we validate the wave-mud interaction model with experiments of Soltanpour and 

Samsami (2011) and Zhao et al. (2006). Soltanpour and Samsami (2011) conducted a series of 

rheological tests and laboratory experiments on wave dissipation using natural and commercial 

muds. Using the tests which were carried out in oscillatory mode, they provided mud viscosity 
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and shear modulus as a function of water content and wave period. Here we use wave dissipation 

measurements over kaolinite with water content ratio of 99.3 %. Based on the empirical 

relationships provided in Soltanpour and Samsami (2011), mud kinematic viscosity and shear 

modulus are 0.038 𝑚2/𝑠 and 1852 Pa, respectively. The initial wave height, prior to propagating 

over the mud patch varies from 2.40 cm to 9.00 cm in different experiment runs. Figure (3a) 

shows that the attenuated wave height in the lee of a mud patch as computed from the numerical 

model (𝐻𝑚𝑜𝑑) compared well with measurements (𝐻𝑚𝑒𝑎𝑠) for both viscous and viscoelastic mud 

scenarios. However, the model with the viscoelastic mud-induced wave evolution shows and 

advantage over the model with viscous mud-induced wave dissipation. The Root Mean Square 

Error (RMSE) for simulated wave heights using viscoelastic and viscous mud models are 0.252 

cm (𝑅2  =  0.955) and 0.535 cm (𝑅2  =  0.845), respectively. 

For further validation, we use the laboratory results of Zhao et al. (2006). They conducted 

several tests in a wave flume and measured wave attenuation over mud in the absence and 

presence of currents. Among their experiments, only six were carried out using pure oscillatory 

flow and the rest included currents and waves simultaneously. In these six experiments, which 

are used here for model validation, the range of parameters are ℎ = 24 − 28 cm, 𝑑𝑚 = 6 − 12 

cm, 𝜌𝑚 = 1190 − 1350 kg/m 3, and 𝐺 = 0.4 − 25 Pa. Waves are monochromatic and mud 

shear modulus is estimated using a field-based empirical function obtained by Zhao et al. (2006). 

To compare model results with these experiments, we calculate the numerical spatial attenuation 

rates of wave height as,  

𝐻(𝑥) = 𝐻0𝑒−𝐷𝑠𝑥 , (21) 

where 𝐻0 is the incident wave height, 𝐻(𝑥) is wave height over mud, and 𝐷𝑠 is the spatial 

damping rate of wave height. The equation assumes exponential attenuation of incident wave 
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height and is the same as that used by Zhao et al. (2006). Figure (3b) shows how the damping 

rate from the model compares with the data. Model runs with viscous mud mechanism are also 

included to assess improvement achieved through including mud’s elastic effects. The RSME for 

the model with viscoelastic and viscous mud is 0.000759 m −1 (𝑅2 = 0.998) and 0.00172 m −1 

(𝑅2 = 0.99), respectively. 

 

Figure 2. (a) Variation of analytical surface wave damping rate with frequency for small values of mud shear 

modulus, (b) variation of the frequency associated with peak damping with different mud shear moduli and three 

values of mud viscosity. (ζ =  100, h = 2.00 m, dm = 0.20m, ρm = 1111 kg ⁄ m3) 

 

 

(b) 

(a) 
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 Therefore, both experimental sets confirm that the wave-mud interaction model that 

accounts for mud’s elasticity can perform better compared to the wave-mud model with viscous 

mud mechanism. 

 

 

Figure 3. Comparison between model results and laboratory experiments: (a) Simulated attenuated wave heights 

(𝐻𝑚𝑜𝑑) is compared with experiments of Soltanpour and Samsami (2011) (𝐻𝑚𝑒𝑎𝑠), (b) Simulated wave attenuation 

rates (𝐷𝑠,𝑚𝑒𝑎𝑠) is compared with experiments of Zhao et al. (2006) (𝐷𝑠,𝑚𝑒𝑎𝑠). 

 

 

(a) 

(b) 
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2.3.2. Permanent form waves 

  The model is used to study the effect of viscoelasticity on surface wave evolution. To 

minimize complexities of wave characteristics, we first simulate the propagation of 

monochromatic waves over mud, which are described by cnoidal waves in the model. Cnoidal or 

permanent form waves are nonlinear canonical solutions of the Korteweg-deVries (KdV) 

equation in which various harmonics travel at the same speed. In this set of simulations, we use 

the permanent form solution developed by Kaihatu et al. (2007) for equation (3). Since the 

current model is in frequency domain, a cnoidal wave is generated by superposing the 

component amplitudes that are harmonics of a base frequency. 

The simulations are conducted in a domain of length 1000 m with grid resolution Δ𝑥 =

0.025 m. A total of 10 harmonics are used to generate a cnoidal wave with the base frequency of 

𝑓 = 0.10 Hz, and the mud patch is placed between 𝑥 = 300 m and 𝑥 = 800 m. The waveheight 

is 𝐻 = 0.10 m, and the depth of water and mud layer are 1.00 m and 0.20 m, respectively. Figure 

(4) shows the combined effect of viscosity and elasticity on cnoidal waves for two values of mud 

viscosity, 𝜈𝑚 = 1.30 × 10−2 m 2/s and 1.30 × 10−4m 2/s, and three values of shear modulus 

𝐺 = 0,50 and 100 Pa. In the case with lightly viscous mud (𝜁 = 10), increase in shear modulus 

reduces the overall wave dissipation such that the spectrum does not exhibit noticeable energy 

loss over mud with 𝐺 = 100 Pa (Figure 4a). The maximum dissipation occurs over purely 

viscous mud (𝐺 = 0) and the difference between waveheights over muds with shear moduli 𝐺 =

50 and 100 Pa is negligible. As seen in Figure (4b), an increase in mud viscosity not only 

increases attenuation of wave amplitudes, as expected, but also makes the difference between 

wave amplitudes over muds with 𝐺 = 50 Pa and 100 Pa more pronounced, such that the wave 

over 𝐺 = 100 Pa is clearly less damped.  
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Figure 4. Evolution of cnoidal waves over viscoelastic mud with shear moduli of G = 0, 50, and 100 Pa, and 

viscosity of (a) 𝜗𝑚 = 1.30 × 10−4  𝑚
2

𝑠⁄  and (b) 𝜗𝑚 = 1.30 × 10−2  𝑚
2

𝑠⁄  

 

In addition to impact on wave height attenuation rates, mud’s elasticity results in 

frequency modulation which can manifest itself through modification in shape and phase of 

surface waves. Comparison between Figures (4a) and (4b) shows that increase in viscosity 

results in increase in phase difference between surface wave amplitudes (𝜂). Furthermore, 𝜂 over 

viscoelastic muds show a phase lag relative to 𝜂 over viscous mud. It is noteworthy that this 

phase lag is larger over mud with 𝐺 = 50 Pa. This variability in phase shift occurs over 

viscoelastic mud regardless of 𝜈 and 𝐺 values. In Figure (5a), we examine phase variation of 

surface waves amplitude over muds with 𝜁 = 10, 𝑑𝑚 = 0.02 m, ℎ = 1 m, and five values of 
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shear modulus in low-𝐺 range, namely 𝐺 = 0,1,3,5, and 25 Pa. Phase variation for higher 𝐺 

values for this parameters set was found to be negligible. We choose a low value for mud 

viscosity to isolate the effect of elasticity on phase shift. As seen, the phase difference between a 

wave over mud with 𝐺 = 1 and viscous mud is negative while waves over muds with larger 𝐺s 

shows a positive phase shift relative to the wave over mud with 𝐺 = 1 Pa. The phase of 𝜂 

depends on 𝑘𝑟 and wave frequency which is a function of 𝑘𝑟 through the dispersion relation. 

Thus, we can examine variation of 𝑘𝑟 with 𝐺 to explore variations in wave phase. LC show how 

dimensionless 𝑘𝑟 changes with dimensionless 𝐺 (𝐺 ∗= 𝐺/(𝜌𝑚𝑔ℎ)) for cases in which 𝑑/ℎ =

0.072, 𝜌𝑚/𝜌𝑤 = 0.50, and 𝜔 ∗= 𝜔/(𝜌𝑚𝑔ℎ) = 0.50 (their Figure (12)). They show that over 

𝐺 ∗= [10−5, 10−2], 𝑘𝑟 gradually decreases to reach a minimum, then suddenly increases to reach 

a maximum, and decreases thereafter. We illustrate 𝑘𝑟 − 𝐺 variation for the parameters used in 

Figure (5a) in Figure (5b) for 𝑓 = 0.50 Hz as an example. Other frequencies in the spectrum 

follow a qualitatively similar pattern with different 𝑘𝑟 values and the 𝐺 at which the sudden jump 

in 𝑘𝑟 occurs. This non-monotonic variation of 𝑘𝑟 with 𝐺 in the low-G range is a driver of the 

non-monotonic variation in phase shift. However, it should be noted that there are additional 

processes at play that complicate the connection between theoretical wave number of individual 

harmonics and the phase of 𝜂. As discussed earlier and shown in Figure (2b), there is another 

critical shear modulus before which 𝑓𝑚 decreases and increases thereafter. Furthermore, each 

curve in Figure (5a) is a superposition of 15 coupled harmonics, thus nonlinear interactions 

between harmonics in the presence of mud can play a role in the phase of the cnoidal wave. 
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Figure 5. (a) Cnoidal waves over viscoelastic mud with shear moduli of 𝐺 = 0 − 25 Pa, (b) variation of real 

component of surface wave number of frequency 𝑓 = 0.50 𝐻𝑧 with mud shear modulus, 𝜁 = 10, 𝑑𝑚 = 0.02, and 

ℎ = 1.00 m. 

 

Since the present model is phase-resolving, it enables investigating the combined effect 

of mud-induced dissipation and nonlinear wave-wave interactions on amplitude and phase of 

(a) 

(b) 
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frequency components in addition to bulk spectral characteristics. In the spectrum used here, the 

frequency range is [0.10, 1.00] Hz corresponding to 0.20 ≤ 𝑘ℎ ≤ 4.03. Figure (6a) shows the 

variation of amplitude spectrum of cnoidal waves for a case with 𝜁 = 100 and four values of 

shear modulus 𝐺 = 0,50,100, and  200 Pa. The figure shows the initial spectrum at 𝑥 = 0 and 

the spectrum at the end of the mud patch at 𝑥 = 800 m. As seen, regardless of the magnitude of 

shear modulus, high frequencies that are not long enough to interact with the bottom still 

undergo considerable damping. The damping of theses frequencies was also seen in the 

numerical simulation waves over viscous mud (Kaihatu et al., 2007; Safak et al., 2017). 

The evolution of wave spectrum over viscoelastic mud can be analyzed by examining the 

dependency of analytical damping rates on frequency, which is strongly affected by resonance in 

the mud layer, and nonlinear energy transfer across the spectrum. Figure (6b) shows the variation 

of the analytical damping rate as a function of frequency over [0,1.00] Hz, for the same 

parameter values used in Figure (6a). The damping rates over muds with 𝐺 = 50, 100, 200 Pa are 

smaller than those over purely viscous mud up to frequencies 0.19 Hz, 0.27 Hz, and 0.38 Hz, 

respectively, and surpass them beyond these frequencies. However, as seen in Figure (6a), 

frequency amplitudes are consistently larger over viscoelastic muds compared to viscous mud in 

low-frequency range. At higher frequencies, wave spectra over muds with 𝐺 = 50,100,200 Pa 

intersect with the wave spectrum over viscous mud at 0.68 Hz, 0.80 Hz, and 0.95 Hz, 

respectively, which differ from the intersections between curves of analytical damping rates. As 

the analytical damping rates are obtained from linearized equations of motion, it can be inferred 

that this difference is due to nonlinear wave-wave interactions. To identify the source of this 

discrepancy more precisely, we run the model with subharmonic interactions deactivated (𝑆 = 0 

in Equation 3). 
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Figure 6. (a) Evolution of frequency amplitudes in a cnoidal wave spectrum over muds with difference shear moduli. 

The initial spectrum at 𝑥 = 0 and the spectra at the end of mud patch (𝑥 = 800 m) are shown, (b) variation of 

analytical damping rate against frequency, 𝜗𝑚 = 1.30 × 10−2  𝑚
2

𝑠⁄ , 𝑑𝑚 = 0.02, ℎ = 1.00 m, and 𝐺 =0, 50, 100, 

and 200 Pa. 

 

 

(a) 

(b) 
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The results, shown in Figure (7), indicate that the variation of frequency amplitudes can 

be described by the pattern of damping rate in low-frequency end of the spectra. As seen, the 

frequency amplitudes over viscoelastic muds with 𝐺 = 50, 100, 200 Pa fall below the 

amplitudes over viscous mud at 0.145 Hz, 0.25 Hz, and 0.36 Hz, respectively, which are close to 

the frequencies at which the analytical damping rates of viscoelastic and viscous muds equate. 

Furthermore, the minimum frequency amplitude occur at 0.30 Hz (for 𝐺 = 50, 100 Pa) and 0.40 

Hz (for 𝐺 = 200 Pa) which are close to frequencies that experience maximum damping rates. 

Note that the frequency increment in our numerical simulations is 0.1 Hz. On the high-frequency 

end of the spectrum, the change in frequency amplitudes with respect to incident wave spectrum 

is small. This is in agreement with the findings of Kaihatu et al.(2007) for viscous mud and 

suggests that damping of higher frequencies are due to subharmonic interactions regardless of 

the magnitude of mud shear modulus. Therefore, subharmonic interactions are the primary 

process that change the pattern of damping in high and low frequencies. The small difference 

between frequencies at which 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 − 𝑓 and 𝐷𝑚 − 𝑓 curves intersect in the absence of 

subharmonic interactions can be attributed to superharmonic interactions.  

At the extremely small viscosity values, mud acts as a purely elastic solid and its effect 

on surface wave is confined to frequency modulation. Figure (8) illustrates the evolution of a 

cnoidal eave spectrum over elastic muds with 𝐺 = 50,100 Pa. Effect of subharmonic 

interactions is evident as low frequencies slightly gain energy at the expense of higher 

frequencies’ loss of amplitude. The total damping rate over the spectrum is zero as expected. 
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Figure 7. Evolution of the cnoidal wave spectrum over viscoelastic and viscous muds with subharmonic interactions 

deactivated. Wave and mud parameters and water depth are the same as those in Figure (6). 

 

 

Figure 8. Evolution of frequency amplitudes in a cnoidal wave spectrum over elastic mud with different shear 

moduli. The initial spectra at 𝑥 = 0 and the spectra at the end of mud patch (𝑥 = 800 m) are shown, 𝑑𝑚 = 0.20, ℎ =
1.00 m, and 𝐺 = 50, 100, and 200 Pa. 

 



  

 

28 

2.3.3. Random waves 

 In this section, we investigate the effect of mud viscoelasticity on evolution of random 

waves. We set up the model for a case that yields relatively high dissipation rates (𝜁 = 100 and 𝑑 

= 0.20 m) and use different values of shear modulus. The wave spectrum used here has the TMA 

form (Bouws et al., 1985). We study spectral evolution over mud by investigating the variation 

of root-mean-square waveheight (𝐻𝑟𝑚𝑠), as a bulk measure of wave characteristics, and examine 

alterations in spectral energy density over muds with different shear moduli. The 𝐻𝑟𝑚𝑠 of the 

initial spectrum is 0.34 m and two peak frequencies 𝑓𝑝 = 0.06 and 0.40 Hz are chosen, resulting 

in Ursell numbers 𝑈𝑟 = 2.92 and 0.04, where  

𝑈𝑟 = 𝛿/𝜇2, (22) 

where 𝛿 = 𝐻𝑟𝑚𝑠/2ℎ, and 𝜇 = 𝑘ℎ. We increase the length of domain to 4900 m for random wave 

simulations which corresponds to ∼ 70 wavelength of the spectral peak for 𝑓𝑝 = 0.06 Hz. As 

noted by Kaihatu and Tahvildari (2012), the spectrum reaches an equilibrium over this length 

and does not exhibit significant evolution beyond this point in the absence of mud. The mud 

patch is placed at 𝑥 = 1000 − 1500 m. 

As discussed earlier, linear wave theory for a two-layer water/Voigt solid system shows 

that resonance in the bottom layer results in significant dissipation of certain frequencies over the 

free surface. To highlight the impact of resonance in viscoelastic mud on random waves, we 

investigate the evolution of two spectra with peak frequencies 𝑓𝑝 = 0.06 and 0.40 Hz. The mud 

and water layer specifications are 𝐺 = 100 Pa, 𝑑 = 0.20 m, 𝜁 = 100, and ℎ = 2.00 m, resulting 

in the resonance frequency of 𝑓𝑟 = 0.40 Hz. Figure (9a) compares the evolution of a spectrum 

with peak frequency 𝑓𝑝 = 0.06 Hz over a viscous mud and a viscoelastic mud with 𝐺 = 100 Pa. 



  

 

29 

The initial spectrum and the spectrum at the end of the mud patch are shown. As seen, all the 

frequencies in the spectrum experience a higher rate of dissipation over viscous mud, and the 

resonance frequency does not affect the spectrum since it is outside the frequency range. 

Evolution of a random wave spectrum with a peak frequency, 𝑓𝑝 = 0.40 Hz, is shown in Figure 

(9b). In contrast to the case with 𝑓𝑝 = 0.06 Hz, low frequencies undergo weaker dissipation over 

the viscoelastic mud compared to the viscous mud. However, the dissipation around the spectral 

peak, which corresponds to the resonance frequency, is significantly larger in the viscoelasic 

mud compared to the viscous one. The frequencies in the tail of the spectrum do not experience 

significant change over neither viscous nor viscoelastic mud. It is noteworthy that the spectral 

energy density, 𝑆(𝑓), over viscoelastic mud drops below that of viscous mud at 𝑓 = 0.27 Hz 

which is equal to the frequency at which the damping rate over viscoelastic mud with 𝐺 = 100 

Pa becomes larger than that for the viscus mud (see Figure (1)). The spectra over viscous and 

viscoelastic muds converge at the end of the mud patch at 𝑓 ∼ 0.60 Hz which is consistent with 

the frequency at which the analytical damping rates for muds of different shear moduli become 

nearly equal. Therefore, direct damping by bed appears to be the dominant factor in overall 

pattern of damping across the spectrum. 

Engineering designs are most commonly based on first-order bulk statistical measures of 

waves such as root-mean-square wave height (𝐻𝑟𝑚𝑠). Here we examine the effect of mud shear 

modulus on 𝐻𝑟𝑚𝑠 computed by the model. Figure (10) shows the spatial variation of 𝐻𝑟𝑚𝑠 with 

shear modulus for a wave spectra with peak frequencies 0.06 Hz and 0.40 Hz. The pattern of 

reduction in 𝐻𝑟𝑚𝑠 as a function of mud shear modulus follows the pattern of change in direct 

mud-induced wave damping (Figure (1)). 
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Figure 9. Spectral evolution of a random wave over muds with shear modulus of 𝐺 = 0, and 100 Pa, 𝜁 = 100, 𝑑𝑚 = 

0.20 m, and ℎ = 2.00 m. The resonance frequency is 𝑓𝑟 = 0.40 Hz and the peak frequencies are (a) 𝑓𝑝 = 0.06 Hz and 

(b) 𝑓𝑝 = 0.40 Hz. Solid line shows the initial spectrum and the dotted and dashed lines show the spectra at the end of 

the mud patch (𝑥 = 1500 m). 

 

As seen in Figure (1) which has the same water depth and mud properties as in these 

random wave simulations, the damping rate is maximum for purely viscous mud and 

(a) 

(b) 
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monotonically decreases with increase in 𝐺 in low frequencies. This pattern results in monotonic 

increase in 𝐻𝑟𝑚𝑠 damping with increase in 𝐺 for the spectrum with the peak frequency of 𝑓𝑝 =

0.06 Hz (Figure (10a)). Direct damping also dictates the pattern of variation of 𝐻𝑟𝑚𝑠 with 𝐺 for 

the spectrum with peak frequency at 0.40 Hz, in which 𝐻𝑟𝑚𝑠 initially decreases with increase in 

𝐺 up to 𝐺 = 100 Pa and increases thereafter (Figure (10b)).  

In order to examine the practical importance of mud viscoelasticity in realistic conditions, 

we study the attenuation of 𝐻𝑟𝑚𝑠 using the field parameters presented in Liao et al. (2015) where 

the effect of wave directionality on mud-induced wave dissipation was investigated in the central 

Chenier plain coast, Western Louisiana Shelf, USA. In the study, the range of parameters are 

ℎ = 2.89 − 4.16 m, 𝑑𝑚 = 0.03 − 0.12 m, 𝜈𝑚 = 0.079 − 3.17 × 10−3 m 2/s, and 𝜌𝑚 =

1095 − 1206 kg/𝑚3. We selected a parameter set as model input that is within this range to 

assess mud impacts on dissipation of random waves, namely ℎ = 2.89 m, 𝑑𝑚 = 0.12 m, 𝜈𝑚 =

2.5 × 10−3 m 2/s, and 𝜌𝑚 = 1200 kg/m 3. We vary 𝐺 values from 0 to 100 Pa following LC 

and use an initial TMA spectrum in the model based on the spectral peak amplitude and period 

measured in the field. As seen in Figure (11), the attenuation rate of 𝐻𝑟𝑚𝑠 is largest over viscous 

mud (exceeding 50%) and decreases with increase in shear modulus to the point that no 

attenuation is seen over a mud with 𝐺 = 100 Pa. Therefore, over this realistic set of values, 

disregarding mud elasticity can result in more than 50% error in 𝐻𝑟𝑚𝑠 prediction. 

We now investigate the spatial evolution of surface wave spectrum in more details to 

highlight how mud elasticity affects nonlinear energy transfer among frequencies. Figure (12) 

shows the evolution of spectral energy density in the spectrum with 𝑓𝑝 = 0.06 Hz over mud with 

𝐺 = 0, 50 and 100 Pa. Prior to the mud patch, transfer of energy to higher harmonics 2𝑓𝑝 and 3𝑓𝑝 

occurs through superharmonic interactions. 
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Figure 10. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic muds with shear moduli of 𝐺 = 0 − 300 Pa. 

The mud patch is located at 𝑥 = 1000 − 1500 𝑚, 𝜁 =  100, 𝑑𝑚 = 0.20𝑚, ℎ = 2.00 𝑚, and the peak frequency of 

initial spectrum is (a) 0.06 Hz and (b) 0.40 Hz. 𝐻𝑟𝑚𝑠0 is 𝐻𝑟𝑚𝑠 at 𝑥 = 1000 m. 

(a) 

(b) 
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Figure 11. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic muds with shear moduli of 𝐺 = 0 − 100 Pa. 

The mud patch is located at 𝑥 = 1000-1500 m, 𝑑𝑚 = 0.12𝑚, ℎ = 2.89 𝑚, 𝜗𝑚 = 2.5 × 10−3 and 𝜌𝑚 =
1200 𝑘𝑔 𝑚3⁄ . 𝐻𝑟𝑚𝑠0 is 𝐻𝑟𝑚𝑠 at 𝑥 = 1000 m. 

 

These harmonics propagate beyond the mud patch only over viscoelastic muds which 

induce lower damping rates than viscous mud. As seen, the spectral energy density in higher 

frequencies is largest over the mud with 𝐺 = 100 Pa, while strong damping across the spectrum 

over viscous mud suppresses the generated harmonics. Figure (13) shows further details of the 

spectral evolution at 100 m increments over muds with 𝐺 = 0 and 100 Pa. Over the distance 

from 𝑥 = 0 up to the mud patch at 𝑥 = 1000 m, nonlinear interactions act to transfer energy 

from the spectral peak to higher and lower frequencies to achieve a nearly uniform energy 

distribution across the spectrum. Higher spectral energy density (𝑆(𝑓)) at superharmonics 2𝑓𝑝 

and 3𝑓𝑝 compared to neighbouring frequencies is evident. Over viscous mud, spectral energy 

density levels at the range 𝑓 > 𝑓𝑝 drop below those in the initial spectrum at around 𝑥 = 1400 

m. In contrast, 𝑆(𝑓) values in this range of frequencies remain higher than those in the initial 
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spectrum over the viscoelastic mud. As seen in Figure (12c), the spectral peak is shifted towards 

higher frequencies over viscoelastic mud at 𝑥 = 1500 m. Over both viscous and viscoelastic 

muds, damping is pronounced when 𝑓𝑝 < 𝑓 range while if 𝑓 < 𝑓𝑝, energy dissipation is not 

significant regardless of the magnitude of mud shear modulus. 

Expectedly, resonance in viscoelastic mud strongly affects spectral evolution if the 

surface wave energy is concentrated around the resonance frequency. Figure (14) shows the 

spatial variation in spectral energy density over muds with shear moduli 𝐺 = 0, 50, and 100 Pa 

for a spectrum with 𝑓𝑝 = 0.40 Hz, and Figure (15) shows the spectra at the same stations as in 

Figure (13). The spectral evolution differs from the case with 𝑓𝑝 = 0.06 Hz in several ways. 

First, the damping of the peak frequency is high over viscoelastic mud and is the highest over the 

mud with 𝐺 = 100 Pa which has the resonance frequency of 0.40 Hz. This intense damping is 

evident from the beginning of the mud patch (Figure (15b)). On the other hand, the spectrum 

over viscous mud exhibits the lowest rate of dissipation such that peak frequency continues to 

have the highest energy density up to around 𝑥 = 1400 m. Second, the energy level at the tail of 

the spectra suggests that the elasticity of the mud layer does not alter frequencies in this range 

significantly (Figure (15b-f)). Third, lower frequencies undergo weaker damping over 

viscoelastic mud, as evident in the spectra at 𝑥 = 1200 m station and forward. 
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Figure 12. Spatial evolution of spectral energy density over muds with shear moduli of 𝐺 = 0, 50 and 100 Pa. 𝑓𝑝 = 

0.06 Hz,  𝜁 =  100, ℎ = 2.00 𝑚, 𝑑𝑚 = 0.20𝑚. 
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Figure 13. Surface wave spectrum over viscous (solid line) and viscoelastic (dashed line) mud with shear modulus 

of 𝐺 = 100 (dashed line), at several locations. The initial spectrum is shown by a dotted line, 𝑓𝑝 = 0.06 𝐻𝑧,  𝜁 =

 100, ℎ = 2.00 𝑚, 𝑑𝑚 = 0.20𝑚. 
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Figure 14. Spatial evolution of spectral energy density over muds with shear moduli of 𝐺 = 0, 50 and 100 Pa, 𝑓𝑝 = 

0.40 Hz, 𝜁 = 100, 𝑑𝑚 = 0.20 m, ℎ = 2.00 m. 
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Figure 15. Surface wave spectrum over viscous (solid line) and viscoelastic (dashed line) mud with shear modulus 

of 𝐺 = 100 𝑃𝑎 (dashed line), at discrete locations. The initial spectrum is shown by a dotted line,  𝑓𝑝 = 0.40 Hz, 𝜁 = 

100, 𝑑𝑚 = 0.20 m, ℎ = 2.00 m. 
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It is noted that while the analytical damping rates are obtained using linear equations for 

a two-layer water/mud system, the wave model is based on the mild-slope equation for a 

homogeneous fluid thus the feedback from the mud layer to wave forcing is not considered. 

Previous research by Tahvildari et al. (2016) shows that transient nonlinear interactions between 

surface and interfacial waves over lutocline can result in significant damping of surface wave. 

We note that surface-internal wave interaction is a second-order phenomenon and direct damping 

by viscosity may dominate the process. However, over long distance and time, the process has 

the potential to drain considerable amount of energy from surface waves. Thus a comprehensive 

wave-mud interaction model should account for this high-order tow-layer process. 

2.4.  Discussion and Conclusions 

 In this chapter, the effects of mud viscoelasticity on evolution of surface waves is studied 

through numerical simulations. A new numerical wave-mud interaction model is developed by 

implementing an analytical model for mud-induced wave dissipation and modulation into a 

nonlinear frequency-domain phase-resolving model for surface wave propagation. The model 

enables studying the combined effect of mud viscoelasticity and nonlinear wave-wave 

interactions on evolution of surface wave spectrum. We compare the model with two 

experimental datasets and shows that not only the model compares well with laboratory 

measurements, but also its performances is superior to the model with viscous mud damping 

mechanism. 

The model is used to simulate propagation of cnoidal waves over mud. The results show 

a strong dependency for wave amplitudes and phases on mud viscoelasticity. An earlier study by 

Kaihatu et al. (2007) shows that mud viscosity introduces a positive phase shift in surface wave 
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amplitude which is an increasing function of viscosity. In contrast, our results indicate that 

variation of phase difference can be non-monotonic over viscoelastic mud and depends on mud 

shear modulus for a given mud viscosity. The variability in wave phase can be attribute to non-

monotonocity in variation of real part of surface wave number with mud shear modulus. 

Numerical simulations show that the evolution of the cnoidal wave spectrum over mud cannot be 

explained solely by examining the analytical damping rates of individual frequencies and 

nonlinear wave-wave interactions significantly affect frequency amplitudes. It was shown that, in 

agreement with previous studies that used viscous mud damping mechanism, subharmonic 

interactions can describe high damping in the high-frequency tail of the spectrum. The present 

work shows that this phenomenon is also present over viscoelastic muds, and may be 

independent of mud rheological model. It was also shown that the frequency-dependent damping 

in low-frequency end of the spectrum is dominated by the analytical damping rate of individual 

frequencies, which is highly affected by resonance in the mud layer. 

Model results suggest that subharmonic interactions play a significant role in evolution of 

wave spectra through transfer of energy from high to low frequencies regardless of the 

magnitude of mud shear modulus. The results also indicate that in the absence of subharmonic 

interactions, low frequencies are damped substantially more strongly over viscoelastic muds 

compared to viscous mud indicating that subharmonic interactions substantially reduce damping 

of low frequencies in the presence of elastic effects. 

The model is also applied to simulate random wave propagation. The pattern of spatial 

variation of 𝐻𝑟𝑚𝑠 over muds with different shear moduli can be explained by examining the 

distribution of analytical dissipation rates over frequencies. The highest analytical dissipation 

rates in the parameter space studied here belong to the mud with 𝐺 = 100 Pa and the largest 
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reduction in 𝐻𝑟𝑚𝑠 is observed over mud with the same shear modulus. Resonance of the mud 

layer significantly affects the shape of random wave spectra, and intensity of this impact depends 

on the proximity of the spectral peak to resonance frequency; frequencies equal to resonance 

frequency experience the highest rate of dissipation. Similarly, the survival of higher harmonics 

which are triggered through superharmonic interactions largely depends on the relative 

magnitude of spectral peak and resonance frequencies. In the case where resonance frequency of 

the mud layer is out of the frequency range of the spectrum, superharmonics can maintain 

relatively high spectral energy density beyond mud patch only over the mud with a relatively 

high shear modulus. In contrast, if the spectral peak coincides with the resonance frequency, 

viscous mud damps the surface wave frequencies at a higher rate compared to viscoelastic mud 

only in low-frequency end of the spectrum and other frequencies experience higher damping 

over viscoelastic mud. The relatively weak damping of low frequencies over viscoelastic mud in 

this case can have implications in assessment of storm damage on coastal infrastructure as low 

frequencies in the spectrum have a higher likelihood of propagating to upland (e.g. Nwogu and 

Demirbilek, 2010). We note that dramatic spectral modulation as shown in Figure (9b) has not 

been documented in laboratory or field measurements. Therefore, these results call for new 

experiments to assess the impact of idealized viscoelastic bed or realistic mud that exhibits 

viscoelastic solid behavior on random surface wave spectrum. 

The wave-mud interaction processes, including mud-induced wave attenuation, mud 

rheological behavior, and wave-induced mud fluidization, depend on wave properties, and bed 

permeability and porosity among other factors. The same mud specimen can exhibit different 

behaviors under different wave forcing and consolidation states making it challenging or even 

impossible to assign a single rhological model to mud. This underscores the need for models that 
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can simulate wave and mud behavior over a wide range of wave and mud parameters so that 

changing mud conditions can be captured. Jain and Mehta (2009) discuss the range of 

applicability of several mud rheological models for predicting surface wave attenuation as a 

function of solid volume fraction, 𝜙 = 1 − 𝑛, where n is porosity, and a characteristic Pèclet 

number, which is defined as 𝑃𝑒 = 𝜎𝑑𝑝/𝐾𝑝 where 𝜎 is wave frequency, 𝑑𝑝 is grain size, and 𝐾𝑝 

is permeability. They discuss that for relatively low values of 𝑃𝑒, as 𝜙 decreases, mud behavior 

progressively changes from viscoplastic solid to viscolestic solid to viscoleastic fluid and 

eventually to viscous fluid. This decrease in 𝜙 is accompanied by decrease in mud density. As 

𝑃𝑒 increases, the muddy bed behavior resembles a poroelastic solid. They also discuss that in 

low to moderate 𝑃𝑒 values, viscoelastic solid (e.g. Voigt model) and fluid models (e.g. Maxwell 

model) can predict wave attenuation over the widest range of 𝜙 values. It is noted that in 

addition to mud porosity and permeability, the boundaries where mud transfers from one 

rheology to another is dependent on wave frequency. Jain and Mehta (2009) also compared the 

performance of fluid mud models, namely Maxwell and Jeffreys viscoelastic models and viscous 

model with laboratory measurement of wave attenuation. They shows that the Jeffreys model, 

which is a coupling of the Kelvin-Voigt model to a Maxwell element, outperforms the Maxwell 

model and both viscoelastic models compared better to experiments than the viscous model. 

Consequently, if 𝜙 is in moderate range of ∼ 0.20 − 0.40, a viscoelastic solid model such as 

Voigt can represent mud behavior. If mud is in fluid state but solid volume fraction is small such 

that 𝜙 ∼ 0.06 − 0.20, a viscoelastic fluid model such as Jefferys or Maxwell would presumably 

be more appropriate, and if mud is in nearly complete fluid state such that 𝜙 < 0.06, the viscous 

model should be more applicable. 
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The mud-induced wave evolution formulations used in the present wave-mud interaction 

model assumes the mud layer is thin. We examined the relevance of this assumption using 

reported field data reported in Liao et al. (2015). Their observed peak frequency of 0.15 Hz and 

total depths between 3.23 m and 3.76 m, result in a wavenumber of 4.53 rad/m which 

corresponds to 0.14 ≤ 𝑘𝑑 ≤ 0.54. The spectral peak in their measurements is near the short 

wave range and since frequencies smaller than 0.10 Hz contain energy of an order of magnitude 

smaller than frequencies higher than the peak, most of the energy is confined in the range that 

mud can be considered thin. It should also be noted that although LC model is formally valid for 

thin mud layers, it may be applicable beyond this range. Through comparison with laboratory 

experiments, Kaihatu et al. (2007) showed that a wave-mud interaction that uses Ng (2000) 

mechanism (the 𝐺 = 0 extreme of the LC model) performs well for relatively thick mud layers. 

This observation may indicate that even in thick mud layers, a thin top portion interacts with 

surface waves. 

The results of the present work show that adequate characterization of mud layer and 

nonlinear wave processes are critical for accurate prediction of surface wave spectrum in the 

nearshore. By adding the effect of mud elasticity, the present model provides a more versatile 

predictive tool for wave propagation over muddy seabeds. There are several directions that the 

numerical model can be improved. In a comprehensive view, evolution of surface waves over 

mud is due to the combined effect of direct mud-induced dissipation and frequency modulation, 

nonlinear interactions among surface wave frequencies, wave-current interactions (e.g. Kaihatu 

and Tahvildari, 2012), and nonlinear interactions between surface and interfacial wave over 

lutocline (e.g. Hill and Foda, 1996; Jamali et al., 2003b; Tahvildari et al., 2016). The latter two 

processes are not considered in the chapter. Furthermore, the viscoelastic mud representation in 
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the present model assumes that the mud layer is thin. The expressions for damping rates and 

wavenumbers based on this assumption are straightforward to incorporate in a spectral wave 

model, and the coupled model may remain valid for thick mud layers. However, this wave-mud 

interaction model is formally limited to relatively thin layer of mud. Extension of the work to 

mud layer of arbitrary depth will involve finding the roots to a complex two-layer dispersion 

relation (Macpherson, 1980) using numerical methods. Extension of the model in these 

directions is studied in the next chapter. 
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CHAPTER 3 2 

MODEL FOR WAVE PROPAGTION OVER MUD IN THE PRESENCE OF CURRENT 

 

The coupled wave-current-mud interaction model integrates the wave-current interaction 

model of Kaihatu (2009) which simulates nonlinear propagation of waves in the presence of 

currents, and two mechanisms for mud-induced surface wave evolution formulated by 

Macpherson (1980) and Liu and Chan (2007). 

3.1  Nonlinear Wave-Current Interaction Model 

The wave-current interaction model is based on the Kaihatu (2009) model. In this model, 

second-order effects are added to the wave-current interaction model of Kaihatu and Kirby 

(1995) and energy transfer calculations in high frequencies are improved. This model is based on 

the mild-slope equations (Smith and Sprinks, 1975)  and solves the nonlinear interactions among 

resonant triads (e.g. Philips, 1981). Since the model uses parabolic approximation, it is 

applicable to weakly two-dimensional waves (Radder, 1979). The governing equations assume 

irrotational flow and slow-varying depth. The ambient current, 𝑈, is constant in the vertical 

direction, 𝑧, but can change in the horizontal directions (𝑥, 𝑦). Here we only describe the main 

components of the model and refer the reader to Kaihatu and Kirby (1995) and Kaihatu (2009) 

for more details. The velocity potential function is given by,  

 𝜙(𝑥, 𝑦, 𝑧) = 𝜙0(𝑥, 𝑦) + 𝑓𝑛(𝑘𝑛, ℎ, 𝑧)𝜙𝑛(𝑘𝑛, 𝜔𝑛, 𝑥, 𝑦, 𝑡), (23) 

 

2 This chapter is based on the manuscript “Numerical modeling of current effects on nonlinear surface wave 

propagation over viscoelastic mud”, Sharifineyestani E., Tahvildari N., in review in Ocean Modeling Journal 
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where subscript 𝑛 denotes the 𝑛th harmonic, the derivative of the zeroth order term, 𝜙0, in the 

horizontal direction gives the ambient current: 𝑈 = ∇𝜙0, ℎ is water depth, 𝑘 is wavenumber, 𝜔 

is wave frequency. The time-periodicity and the vertical variability of the flow are represented 

by 𝜙𝑛 and 𝑓𝑛, respectively and are given by,   

𝑓𝑛(𝑧) =
cosh𝑘𝑛(ℎ+𝑧)

cosh𝑘ℎ
, (24) 

𝜙𝑛 = −
𝑖𝑔𝐴𝑛

2𝜎𝑛
𝑒𝑖 ∫ 𝑘𝑛𝑑𝑥−𝜔𝑛𝑡 + 𝑐. 𝑐. (25) 

where 𝐴𝑛 is the amplitude of the 𝑛th surface wave harmonic, 𝜎𝑛 is the intrinsic frequency of the 

𝑛th harmonics, 𝑔 is the gravitational acceleration, 𝑖 = √−1, and 𝑐. 𝑐. shows the complex 

conjugate. The propagation of surface waves over slowly varying depth in one horizontal 

dimension is given (e.g. Eldeberky and Battjes, 1996) in frequency domain as,  

 
𝜕𝐴𝑛

𝜕𝑥
+

𝜎𝑛

2(𝐶𝑔𝑛+𝑈)
[

𝜕

𝜕𝑥
(

𝐶𝑔𝑛+𝑈

𝜎𝑛
)] 𝐴𝑛 + 𝐷𝑛𝐴𝑛 (26) 

 =
−𝑖

8(𝐶𝑔𝑛+𝑈)𝜎𝑛
(∑𝑛−1

𝑙=1 𝑅𝐴𝑙𝐴𝑛−1𝑒𝑖Θ𝑙,𝑛−1 + 2 ∑𝑁−𝑛
𝑙=1 𝑆𝐴𝑙

∗𝐴𝑛+1𝑒𝑖Θ𝑛+𝑙,−1) 

where 𝐶𝑔𝑛 and 𝐷𝑛 are the group velocity and the dissipation rate of the 𝑛th harmonic, 

respectively. The nonlinear interaction coefficients 𝑅 and 𝑆 represent the super- and sub-

harmonic interactions, respectively. The Kaihatu (2009) model includes a correction to 𝐴𝑛 to 

account for second-order effects in the dynamic free-surface boundary condition. The resulting 

corrected harmonic amplitude, 𝐵𝑛, is calculated as,   

 𝐵𝑛 = 𝐴𝑛 +
1

4𝑔
[∑𝑛−1

1 𝐼𝐴𝑙𝐴𝑛−𝑙𝑒
Θ𝑙,𝑛−𝑙 + 2 ∑𝑁−𝑛

1 𝐽𝐴𝑙
∗𝐴𝑛+𝑙𝑒

Θ𝑛+𝑙,𝑙] (27) 

where 𝐼 and 𝐽 are nonlinear interaction coefficients. 
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At the leading order, ambient currents modify wave frequencies through Doppler shift. 

Two frequencies need to be defined to quantify this effect. The absolute frequency, 𝜔, is 

measured with respect to a fixed reference frame, and the intrinsic frequency, 𝜎, is measured 

with respect to the coordinate system that is moving at the speed of the background current. The 

relationship between these two frequencies is,   

𝜔 = 𝜎 + 𝑘𝑈 (28) 

where 𝜎2 = 𝑔𝑘𝑡𝑎𝑛ℎ(𝑘ℎ). The term 𝐷𝑛𝐴𝑛 in equation (26) represents energy dissipation which 

can be due any interaction between waves and the surrounding environment, e.g. depth-limited 

breaking, mud, or aquatic vegetation.  

3.2 Model for Surface Wave Evolution over Viscoelastic Mud 

The effect of viscoelastic muds on surface waves include viscous dissipation and 

frequency modulation due to elasticity. In dissipative media, the wave number or frequency is 

considered to be a complex wave number and their imaginary part represents a spatial or 

temporal damping rate, respectively (e.g. Macpherson, 1980). Frequency modulation is 

represented by changes in the real part of wave number or frequency. Therefore, solving wave 

evolution over mud require solving a complex dispersion relation of a two-layer mud/water 

system which depends on wave characteristics, and properties of water and mud layers. In this 

study, we use the viscoleastic mud models of (Macpherson, 1980) and (Liu and Chan, 2007) to 

investigate current effects on mud-induced wave evolution. Since the model of (Liu and Chan, 

2007) is a the thin-mud limit of (Macpherson, 1980), comparison between results using these two 

models sheds light on the effect of thin-mud-layer assumption on surface wave evolution. 
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3.2.1 Macpherson (1980) Model 

 Macpherson (1980) investigated surface wave attenuation in a two-layer system 

composed of an inviscid water overlaying a viscoelastic layer of solid that represented sediment 

and was described by the Voigt model. He used the Navier-Stokes equations but substitution 

mud viscosity with a complex number that represented viscoelasticity 𝜈𝑚𝑒 formulated as,  

𝜈𝑚𝑒 = 𝜈𝑚 +
𝑖𝐺𝑚

𝜎𝜌𝑚
, (29) 

 where the real and imaginary parts represent mud’s viscosity and elasticity, respectively. In this 

equation, 𝜈𝑚, 𝐺𝑚, 𝜌𝑚 are mud’s viscosity, shear modulus of elasticity, and density, respectively. 

The viscosity of the water is neglected and it is assumed that its density is smaller than that of 

mud. Also, shear stress and mixing at water-mud interface are neglected. The dispersion relation 

for this two-layer system is given by,  

𝜌𝑤(𝜎4−𝑔2𝑘2)tanh(𝑘ℎ)

𝑔𝑘tanh(𝑘ℎ)−𝜎2 + 𝜌𝑚𝑔𝑘 + 𝑇′𝑘3 (30) 

+𝜌𝑚(2𝑘2𝜈𝑚𝑒 − 𝑖𝜎)2 [
(2𝑘2 −

𝑖𝜎
𝜈𝑚𝑒

) [𝑙𝐶𝑚𝐶𝑙 − 𝑘𝑆𝑚𝑆𝑙] − 2𝑘2𝑙

(2𝑘2 −
𝑖𝜎

𝜈𝑚𝑒
) [𝑙𝑆𝑚𝐶𝑙 − 𝑘𝐶𝑚𝑆𝑙]

] 

−4𝜌𝑚𝑘3𝜈𝑚𝑒
2𝑙 [

(2𝑘2 −
𝑖𝜎

𝜈𝑚𝑒
) − 2𝑘[𝑘𝐶𝑚𝐶𝑙 − 𝑙𝑆𝑚𝑆𝑙]

2𝑘[𝑙𝑆𝑚𝐶𝑙 − 𝑘𝐶𝑚𝑆𝑙]
] = 0 

 where 𝐶𝑚 = cosh(𝑘𝑑), 𝐶𝑙 = cosh(𝑙𝑑), 𝑆𝑚 = sinh(𝑘𝑑), 𝑆𝑙 = sinh(𝑙𝑑), 𝑙 = (𝑘2 −
𝑖𝜎

𝜈𝑚𝑒
)0.5 and 

𝑇′ is the surface tension which is assumed to be negligible here. Solving this dispersion relation 

for wave number, 𝑘, gives the modulated frequency, 𝑘𝑟 (Re(𝑘)) and damping rate, 𝐷𝑚 (Im(𝑘)). 

This dispersion relation should be solved numerically, and it should be noted that the roots in the 
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complex plane may be non-unique making the solution procedure at times laborious and the 

correct root ambiguous (Mendez and Losada, 2004). This non-uniqueness problem can make 

implementation into predictive wave models difficult, unless relevant roots are precalculated and 

implemented (Ng and CHIU, 2009).  

 3.2.2 Liu and Chan(2007) Model 

In the Liu and Chan(2007) model for viscoelastic mud, the dispersion relation has been 

simplified by assuming that the mud layer is thin. This assumption allows derivation of explicit 

solutions for real and imaginary part of the wave number from a complex dispersion relation and 

eliminates the possibility of obtaining multiple roots. The implementation of the solution in 

spectral wave models is straightforward (Tahvildari and Sharifineyestani, 2019). The basic 

assumption in this formulation is that the mud layer is thin and is of the same order of magnitude 

as the bottom boundary layer within mud:  

𝑘𝑟𝑎 ≈ 𝑘𝑟𝑑𝑚 ≈ 𝑘𝑟𝛿𝑚𝑒 ≪ 1 (31) 

 where 𝑘𝑟 is the real part of wave number and in non-dimensional form is as follows:  

𝑘𝑟ℎ = 𝑘1ℎ −
(𝑘1ℎ)2𝛾(

𝛿𝑚𝑒
ℎ

)

sinh2𝑘1ℎ+2𝑘1ℎ
[2𝜆 −

Ω𝑀sinh2𝜆Ω𝑀+Ω𝑃sin(2𝜆Ω𝑃)

cosh(2𝜆Ω𝑀)+cos(2𝜆Ω𝑃)
], (32) 

 and 𝛿𝑚𝑒 is the mud boundary layer given by,  

𝛿𝑚𝑒 = √
2|𝜈𝑚𝑒|

𝜎
, (33) 

where 𝜈𝑚𝑒 is the effective kinematic viscosity of mud (e.g. Macpherson, 1980). Liu and Chan 

(2007) (referred to as LC hereafter) derived the dispersion relation for a two-layer system 

composed of inviscid water overlying a relatively thin layer of viscoelastic mud and obtained an 
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analytical solution for the complex wavenumber. The imaginary part of the complex wave 

number is the spatial damping rate, 𝐷𝑚, and in non-dimensional form is given by,  

𝐷𝑚ℎ =
(𝑘1ℎ)2𝛾(

𝛿𝑚𝑒
ℎ

)

sinh2𝑘1ℎ+2𝑘1ℎ
[

Ω𝑃sinh2𝜆Ω𝑀−Ω𝑀sin(2𝜆Ω𝑃)

cosh(2𝜆Ω𝑀)+cos(2𝜆Ω𝑃)
] (34) 

 where  

𝜎2 = 𝑔𝑘1tanh𝑘1ℎ, (35) 

𝜆 =
𝑑𝑚

𝛿𝑚𝑒
,              (36) 

Ω𝑃 = cos
𝜃

2
+ sin

𝜃

2
, (37) 

Ω𝑀 = cos
𝜃

2
− sin

𝜃

2
, (38) 

tan𝜃 =
𝐺𝑚

𝜎𝜌𝑚𝜈𝑚
, (39) 

𝛾 =
𝜌𝑤

𝜌𝑚
                          (40) 

where 𝑘1 is the surface wavenumber for a single layer fluid in the absence of mud, and ℎ and 𝑑𝑚 

are the depth of water and mud layers, respectively.  

3.2.3 Comparison between Viscoelastic mud models  

The damping rates obtained from three viscoelastic mud models is shown in Figure (16). 

The figure shows variation of damping rates for viscous and viscoelastic mud with shear 

modulus of 𝐺=100 Pa using formulations of Liu and Chan (2007) (equation 34) and Macpherson 

(1980) (equation 30), and values extracted from Piedra-Cueva(1993). In this figure, is 𝜁 =

√𝜈𝑚/𝜈𝑤 =100, where 𝜈𝑤 is the kinematic viscosity of water, 𝑑𝑚 = 0.06 m, ℎ = 0.30 m, 𝜌𝑚 =

1370 kg/m 3, 𝜌𝑤 = 1000 kg/m 3and frequency changes between 0 − 1.7 𝐻𝑧. As seen, the 
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variation of damping with 𝑑𝑚. √𝜔/𝜈𝑚 is non-monotinic for both viscous and viscoelastic 

scenarios and resonance effect, which is manifested by intensified damping, is evident for the 

viscoelastic case at 𝑑𝑚. √𝜔/𝜈𝑚 of around 2. A surface wave with a frequency equal to the 

natural frequency of oscillation in the mud layer resonates with the mud layer and amplifies 

interfacial motions which results in intensified viscous damping. All the three formulations show 

the resonance effect and agree well in the range of parameters used. 

Figure (17) shows the variation of damping rate (𝐷𝑚) with surface wave frequency (𝑓) 

for various values of mud shear modulus and currents. The damping rates shown in this figure 

assume that relative viscosity is 𝜁 = √𝜈𝑚/𝜈𝑤 = 100, 𝑑𝑚 = 0.12 m, ℎ = 1.00 m, 𝜌𝑚 = 1111 

kg/m 3, the density of water is 𝜌𝑤 = 1000 kg/m 3. The damping rates are smallest at the low and 

high ends of the frequency range and their variation depends on mud shear modulus and current 

velocity. Viscous mud consistently causes the highest dissipation rate at low frequencies, 

regardless of the current magnitude. As seen in the figure, the variation of 𝐷𝑚 with 𝑓 is stronger 

over viscoelastic muds compared to viscous mud. The highest damping over viscoelastic mud 

occurs at a frequency equal to mud’s resonance frequency as it triggers large oscillations and 

subsequent viscous damping within the mud layer. As seen in Figure (17), for the parameters 

studied here, the maximum damping rate consistently increases with mud shear modulus up to 

𝐺𝑚 = 100 Pa and decreases thereafter. The effect of currents on damping rate is shown in the 

same figure. Three current magnitudes of 𝑈 = 0, ±0.15 m/s corresponding to Froude numbers 

𝐹𝑟 = 𝑈/√𝑔ℎ = 0, ±0.05 are used. As seen, for the viscous case and when 𝑓 < 0.5 Hz, the wave 

damping rate over opposing current is larger than both the cases without current and with co-

propagating current. This trend is reversed for 𝑓 > 0.5 Hz. The case with viscous mud damping 

is the same as that studied in Kaihatu and Tahvildari(2012) but with thinner mud layer. The same 
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trend in 𝐷𝑚 − 𝑓 variation is seen for viscoelastic muds as seen in Figure (17), and it is noted that 

reversal in trend occurs at 0.5 Hz regardless of the value of mud shear modulus. As mud shear 

modulus increases, current effects on damping rates become more pronounced for frequencies 

larger than 0.5 Hz. 

The total energy of a frequency over mud depends on direct damping, which is calculated 

using equations (30), and (34), and its energy loss or gain due to nonlinear energy transfer across 

the spectrum (Kaihatu et al., 2007; Safak et al., 2017; Tahvildari and Sharifineyestani, 2019). 

Therefore, the evolution of surface waves over mud is adequately understood only if a spectral 

model with capability of resolving nonlinear wave interactions is utilized. To address this, we 

incorporate mechanisms for viscoelastic mud-induced evolution in a nonlinear frequency-domain 

spectral model for wave-current interaction developed by Kaihatu (2009), and apply the coupled 

model to solve the spatial evolution of surface waves. 

 

Figure 16. Surface wave damping rate as a function of frequency for different shear moduli of mud using formulation 

of Liu and Chan(2007) (solid line), Macpherson(1980) (dashed line) and Piedra-Cueva (1993) (dot line), 𝜁 = 100, 

ℎ = 0.30 m, 𝑑𝑚 = 0. .09 m, and 𝜌𝑚 = 1370 kg/m 3. 
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Figure 17. Surface wave damping rate as a function of frequency for different shear moduli of mud in the presence 

of co-propagating current with 𝑈 = +0.15 m/s (solid line), without current (dot line), and in the presence of 

counter-propagating current with 𝑈 = −0.15 m/s (dashed line), 𝜁 = 100, ℎ = 1.00 m, 𝑑𝑚 = 0.12 m, and 𝜌𝑚 =
1111 kg/m 3. 

 

3.3  Model results 

The results of the numerical model are presented in this section. First, we validate the 

model with laboratory experiments and then utilize the model to show the effect of mud 

viscoelasticity on wave evolution in the presence of currents. Monochromatic and random wave 

scenarios are simulated. 

3.3.1 Model validation 

 As discussed earlier, mud can show different rheological properties under various wave 

conditions. Properties of bottom mud layer such as density, viscosity, and thickness can vary 

widely in the filed depending on hydrodynamic conditions and consolidation. There is no control 

over these conditions in the field making comparison between field data and numerical models 

complicated. In contrast, the uncertainty in properties of the mud layer and complexities in flow 
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conditions are smaller in laboratory experiments. Therefore, there is closer correspondence 

between laboratory experiments and numerical wave models as they generally assume that the 

mud rheology and properties are constant over time and space. While there are some labrotary 

datasets on wave dissipation over mud (e.g. De Wit, 1996; Jiang and Mehta, 1996; Soltanpour 

and Samsami, 2011) there are a limited number of studies on the wave-mud interactions in the 

presence of currents. Here we utilize the experimental data in Zhao et al. (2006) to validate our 

model. The range of parameters used in their experiments is: 𝑑𝑚 = 06 − 12 cm, ℎ = 24 − 28 

cm, 𝜌𝑚 = 1190 − 1400 kg/m 3, 𝐺 = 0.4 − 25 Pa, wave period = 0.82 − 1.61 s, and wave 

height 1.8 − 10 cm. The damping rate is calculated using the following equation and compared 

with reported values in Zhao et al. (2006):  

𝐻(𝑥) = 𝐻0𝑒−𝐷𝑠.𝑥, (41) 

where 𝐷𝑠 indicates surface wave damping rate. Figure (3) shows the comparison between the 

damping rates acquired from the wave-current-mud interaction model, in viscous and 

viscoelastic modes, and the laboratory experiments of Zhao et al. (2006). While the model 

compares well with lab data using either viscous and viscoelastic mud mechanisms, the model 

with viscoelastic mechanism shows a slightly better performance. The RMSE of the viscoelastic 

and viscous mud models are 0.00255 𝑚−1 (with 𝑅2 = 0.99) and 0.00342 𝑚−1 (with 𝑅2 = 0.98), 

respectively. We also compared the attenuated height of monochromatic waves as reported from 

several experiments of Zhao et al. (2006) with those obtained from the present model. Figure 

(19) shows a satisfactory comparison between the model and experimental data.  
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Figure 18. Comparison between the attenuation rate from the present model and laboratory experiments of Zhao et al. 

(2006). 

 

Figure 19. Comparison between the attenuated wave heights from the present model (black line) and experiments of 

Zhao et al. (2006) (squares). 

 

 



  

 

56 

3.3.2 Effect of current on propagation of monochromatic waves over mud 

In this section, the wave-current-mud interaction model is utilized to assess the impact of 

currents on wave energy dissipation due to a viscoelastic mud layer. Consistent with the 

underlying assumption in the model for mud behavior, the mud layer is assumed to be relatively 

thin. We simulate the evolution of monochromatic waves using cnodial waves. While multiple 

frequencies are present, they propagate at the same speed and their superposition creates the 

permanent form solution to equations (26) and (27) (Kaihatu, 2001). Investigating the evolution 

of permanent wave solution is informative since we can assess the combined effect of 

nonlinearity and frequency-dependent mud-induced dissipation without the complexities that an 

irregular wave spectrum, containing numerous frequencies, introduces in wave evolution. The 

permanent form solution used in our simulations is developed by Kaihatu (2009) (equation 26) 

and is produced by superposition of the component amplitudes that are harmonics of a 

fundamental frequency. 

   The variation of amplitude spectrum of cnoidal waves with frequency for different 

magnitudes of shear modulus, 𝐺 = 0 − 200 Pa, is shown in Figure (20). The simulations are 

performed in a domain of length 1000 m in which the mud patch is placed at 𝑥 = 300 − 800 m 

and the grid resolution is Δ𝑥 = 0.025 m. A total of 10 harmonics are utilized for generation of a 

cnoidal wave with the fundamental frequency of 𝑓 = 0.10 Hz. The wave height is 𝐻 = 0.1 m, 

and the current has three values of 0, ±0.15 m/s corresponding to the Froude numbers 𝐹𝑟 =

𝑈/√𝑔ℎ = 0, ±0.05. The values of mud layer thickness and water depth are 0.12 and 1.00 m, 

respectively, and the relative viscosity is 𝜁 = √𝜈𝑚/𝜈𝑤 = 100. The range of frequency is 0.10 ≤

𝑓 ≤ 1 Hz corresponding to 0.20 ≤ 𝑘ℎ ≤ 4. This range of frequencies, mud properties, and water 

depth were selected such that mud layer remains dynamically thin, consistent with the LC model. 
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The initial spectrum at 𝑥 = 0 and the spectrum in the lee of the mud patch at 𝑥 = 800 m are 

shown in the figure. Generally, it is seen that damping decreases as 𝐺 increases regardless of the 

direction of the current. For viscous mud, frequencies smaller than 𝑓 = 0.6 Hz experience 

stronger damping in the presence of an opposing current than a following current. However, this 

trend changes in larger frequencies such that opposing current results in weaker dissipation. As 

mud’s shear modulus increases, the frequency at which the change in dissipation trend occurs 

increases to 𝑓 = 0.82 Hz for 𝐺 = 50 Pa and 𝑓 = 0.92 Hz for 𝐺 = 100 Pa. No change in trend is 

observed for a mud with 𝐺 = 200 Pa. 

The trend in dependency of mud-induced dissipation on mud’s shear modulus cannot be 

explained entirely by frequency-dependent damping rates (Figure (17)). As discussed earlier, the 

damping rates in the presence of an opposing current is stronger than those in the presence of 

following current for frequencies less than ≈ 0.5 Hz regardless of shear modulus. However, the 

point of reversal in this trend is ≈ 0.60 Hz which shifts to higher frequencies as 𝐺 increases. 

Since the damping rates of LC are computed using linearized equations of motion, it can be 

concluded that nonlinear wave-wave interactions are responsible for this slight inconsistency. To 

better understand the reason of this difference, the model is run with subharmonic nonlinear 

interactions deactivated. Model simulation results for cases with and without currents with 

subharmonic interactions are deactivated are shown in Figure (21). Figure (21) indicates that the 

variation of amplitudes with frequency follows the pattern of direct damping rate. As seen, when 

there is no current the amplitude spectrum over viscous mud intersect with viscoleatsic mud with 

shear modulus 𝐺 = 100, and 200 Pa at 0.5 Hz and 0.65 Hz respectively, which are close to the 

intersection frequencies of viscoelastic and viscous damping rates in Figure (17). The intensity of 

damping across frequencies can shift to lower or higher end of the spectrum depending on the 
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direction of the current. As seen in the Figure (21), for a viscoelastic mud with G = 100 Pa, 

damping in the presence of a following current is stronger than that in  the presence of an 

opposing current in the range of mid to high frequencies as a following (opposing) current shifts 

more energy to higher (lower) frequencies where they experience higher (weaker) damping 

(Figure 17). It is also noted that on the high-frequency end of the spectrum, the change in 

frequency amplitudes with respect to incident wave spectrum is small. This is in agreement with 

findings of Tahvildari and Sharifineyestani (2019) for waves over viscoelastic mud in the 

absence of currents and with Kaihatu and Tahvildari (2012) for waves over viscous mud in the 

presence of currents indicating that damping of higher frequencies are due to subharmonic 

interactions regardless of the magnitude of mud shear modulus, and presence and direction of 

currents.  

Figure (22) shows the spatial variation of the root-mean-square wave height (𝐻𝑟𝑚𝑠) of the 

spectrum shown in Figure (20) for different values of mud shear modulus. As expected, 𝐻𝑟𝑚𝑠 

follows the pattern reported in Kaihatu and Tahvildari (2012) for viscous mud where damping in 

the presence of the following current is less than that in the presence of opposing current. For 

scenarios with 𝐺 = 50,100 Pa, 𝐻𝑟𝑚𝑠 shows undulations with 𝑥 and at the end of the mud patch 

the wave is most heavily and most weakly damped in the presence of a following and an 

opposing current, respectively. The trend in 𝐻𝑟𝑚𝑠 variation reverts to that over viscous mud for a 

viscoelastic mud with 𝐺 = 200 Pa, in which the opposing and following current results in low 

damping but damping in the presence of opposing current is more than that than the following 

current. The variation of 𝐻𝑟𝑚𝑠 with space is attributed to frequency-dependent damping rate 

(Figure (17)). Most of the energy in the cnoidal wave spectrum is confined in frequencies lower 

than 0.50 Hz where 𝐷𝑚 is consistently higher for opposing currents for viscous mud and 
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viscoelastic mud with 𝐺 = 200 Pa. However, as discussed earlier, 𝐷𝑚 is larger for opposing 

currents for muds with 𝐺 = 50 and 100 Pa over low frequencies while 𝐷𝑚 for a following 

currents exceeds that of an opposing current for larger frequencies in the 0 < 𝑓 < 0.50 Hz 

range. 

 

Figure 20. Propagation of cnodial wave spectrum over mud with shear moduli of 𝐺 = 0 − 200 Pa. Blue-solid-x line: 

the initial spectrum at 𝑥 = 0, black-solid line: the spectrum for 𝑈 = +0.15 m/s, black-dashed line: the spectrum for 

𝑈 = −0.15 m/s, and black-dot line: the spectrum for 𝑈 = 0, at the end of mud patch (𝑥 = 800𝑚). ℎ = 1.00 m, 

𝑑𝑚 = 0.12 m, and 𝜌𝑚 = 1111 kg/m 3. 
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Figure 21. Evolution of a cnoidal wave spectrum over muds with subharmonic interactions deactivated. Wave and 

mud parameters and water depth are the same as those in figure (20). 

 

Figure 22. Spatial variation of cnodial wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with shear moduli of 

𝐺 = 50 − 300 Pa. dot-line: 𝑈 = 0, solid-line: 𝑈 = +0.15 m/s , and dashed-line: 𝑈 = -0.15 m/s. The mud patch is 

located at 𝑥 = 300-800 m, 𝜁 = 100, ℎ = 1.00 m, 𝑑𝑚 = 0.12 m, and 𝜌𝑚 = 1111 kg/m 3. 
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3.3.3 Effects of currents on the propagation of random wave spectra over mud 

The impacts of currents on the random wave evolution over viscoelastic mud is 

investigated in this section. The simulations use the TMA form spectrum (Bouws et al., 1985) 

and are performed in a domain of length 4900 m in which mud is placed between 1000 − 1500 

m. The 𝐻𝑟𝑚𝑠 of initial spectrum and depth of water are 0.24 m and 2.00 m, respectively 

resulting in the Ursell number of 2.08, where   

𝑈𝑟 =
𝛿

𝜇2, (42) 

where 𝛿 =
𝐻𝑟𝑚𝑠

2ℎ
, and 𝜇 = 𝑘ℎ.  

The evolution of two spectra with peak frequencies 𝑓𝑝 = 0.0625 and 0.26 Hz are 

investigated. The mud and water layer properties are 𝑑 = 0.20 m, and 𝜁 = 100 which result in 

the resonance frequency of 𝑓𝑟 = 0.26 Hz for 𝐺 = 50 Pa. We used the mud properties that result 

in relatively high damping rates (𝜁 = 100 and 𝑑 = 0.20 m) and ran the model for various 

magnitudes of shear modulus. With these specifications, we chose the frequencies in a range 

which results in 𝑘𝑟 . 𝑑𝑚 < 1 corresponding to a relatively thin mud layer. 

The evolution of random wave spectra with peak frequency of 𝑓𝑝 = 0.0625 Hz over 

viscous and viscoelastic muds is shown in Figure (24) and the corresponding damping rate is 

shown in figure (25). As seen in Figure (24), the initial spectrum and the spectrum at the end of 

the mud patch (𝑥 = 1500 m) are shown for 𝐹𝑟 = ±0.15 and shear moduli of 𝐺 = 0,100 Pa. In 

the scenario with viscous mud (Figure (24a)), while energy level in low to mid-range frequencies 

in the presence of opposing current is comparable to that in the presence of following current at 

the end of the mud patch, higher frequencies clearly undergo stronger damping in the presence of 

an opposing current. The difference between wave damping in the presence of following and 
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opposing currents is smaller over viscoelastic mud compared to viscous mud (Figure (24b)). It is 

noted that spectrum expands quickly in frequency regardless of mud shear modulus and current 

direction and there is no apparent peaks in the spectrum at the lee of mud. Kaihatu and 

Tahvildari (2012) simulation also indicate that the spectrum with relatively high 𝑈𝑟 (2.08) 

undergoes rapid broadening over frequency while a spectrum with a smaller 𝑈𝑟 (e.g. 0.78) 

maintains its structure. 

The spatial evolution of several frequencies, namely the subharmonic (𝑓𝑝/2), first (𝑓𝑝), 

second (2𝑓𝑝), and third (3𝑓𝑝) harmonics of peak frequency is shown in Figure (24c-f). As 

expected, the spectra undergoes some evolution initially where the subharmonic gains some 

energy at the expense of the first three harmonics, but the subharmonic and harmonics reach an 

equilibrium state. The dissipation is stronger over viscous mud compared to viscoelastic mud, 

particularly for higher harmonics.  

 

Figure 23. Variation of surface wave damping rate with frequency for different values of mud shear modulus. Solid 

line: Fr = +0.15 m/s, dot line: Fr = 0, and dashed line: Fr = −0.15 m/s. (ζ = 100, h = 2.00 m, dm = 0.20 m, and 

ρm = 1111 kg/m 3). 
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Figure (25) shows the spatial variation of 𝐻𝑟𝑚𝑠. Similar to the case with cnoidal waves, 

the damping due to opposing current is stronger than that in the following current over viscous 

mud while the trend reverses as mud shear modulus increases. It is noteworthy that this reversal 

in trend is consistent with 𝑥 for all 𝐺 values for a random wave spectrum and the undulations 

seen for a cnoidal wave (Figure (22)) are not present.  

As discussed earlier, a significant property of viscoelastic mud is its capacity to resonate 

with the surface wave. To better evaluate the resonance effects on a random wave spectrum, we 

simulated the propagation of a spectrum with peak frequency at 𝑓 = 0.28 Hz which is equal to 

the frequency at which maximum direct damping occurs due to resonance for a mud layer with 

shear modulus of 𝐺 = 50 Pa. Figure (26) shows the spatial variation of 𝐻𝑟𝑚𝑠 of this spectrum for 

various values of shear modulus of elasticity (𝐺 = 0 − 300 Pa) and currents with 𝐹𝑟 = 0, ±0.15. 

As seen, 𝐻𝑟𝑚𝑠 initially decreases over mud with increase in 𝐺 up to 𝐺 = 50 Pa and the opposing 

current results in more damping for muds with 𝐺 up to 100 Pa along the domain consistently. 

However, 𝐻𝑟𝑚𝑠 damping decreases for 𝐺 higher than 50 Pa and for 𝐺 = 200 Pa, a following 

currents results in more damping in the beginning of the mud patch whereas the opposing 

currents results in stronger damping from 𝑥 = 1250 m and onward. The following current 

intensifies mud-induced damping along the domain consistently over a mud with 𝐺 = 300 Pa. It 

is apparent that the strongest overall damping occurs when the random wave is propagating over 

a mud with shear modulus 𝐺 = 50 Pa as expected from the pattern of direct mud-induced wave 

damping (Figure (23)). It is noteworthy that spatial variability in damping rate of 𝐻𝑟𝑚𝑠 is 

affected by 𝐺 and 𝑈 such that for 𝐺 = 0 and 50 Pa, initial damping rate of 𝐻𝑟𝑚𝑠 is stronger at 
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the beginning of the mud patch compared to the rate at its end where the 𝐻𝑟𝑚𝑠 curve becomes 

nearly horizontal. However, this variability is weaker for muds with 𝐺 = 0,200 and 300 Pa.  

 

Figure 24. Evolution of random wave spectra with peak frequency of 𝑓𝑝 = 0.0625 Hz for two values of mud shear 

modulus of 𝐺 = 0 and 100 Pa (𝑈𝑟 = 2.08, ℎ = 2.00 m, 𝑑𝑚 = 0.20 m, and 𝜌𝑚 = 1111 kg/m 3). In (a) and (b): dot-

line is initial spectra at 𝑥 = 0, solid-line is spectra at 𝑥 = 21𝐿𝑝 for 𝐹𝑟 = +0.15, and dashed-line is spectra at 𝑥 =

21𝐿𝑝 for 𝐹𝑟 = −0.15 (𝐿𝑝 is the wavelength of spectral peak). (c-f) show energy density at spectral peak (dot-line), 

second (dashed line), and third (dashed-dot line) harmonic of the peak, and subharmonic of the peak (𝑓𝑝/2) (solid 

line). 
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Figure 25. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic mud with shear moduli of 𝐺 = 0 − 300 Pa with 

𝐹𝑟 = +0.15 (solid line), F𝑟 = 0 (dot line), and 𝐹𝑟 = -0.15 (dashed line). Simulation parameters are the same as in 

Figure (24). 

   

 

Figure 26. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscoelastic mud with shear moduli of 𝐺 = 0 − 300 Pa in 

presence of currents with 𝐹𝑟 = +0.15 (solid line), 𝐹𝑟 = 0 (dot line), and 𝐹𝑟 = -0.15 (dashed line). Simulation 

parameters are the same as those in Figure (25) but the spectral peak frequency is 0.28 Hz. 
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3.3.4 Propagation of cnodial and random wave spectra over a mud layer of  arbitrary depth 

 In this section, the model is used to investigate the effect of mud layer thickness on wave 

dissipation and evolution. As discussed earlier in the section 2.2.2, the damping mechanism of 

Liu and Chan (2007) is applicable when the thickness of mud layer is as the same order of 

magnitude as the thickness of mud boundary layer. However, the Macpherson (1980) model does 

not apply such limitation on mud layer thickness. To assess the effect of mud layer thickness on 

waves, we use the dissipation mechanicsm of Macpherson (1980) as the damping coefficient in 

the model (equation 26) and compare the results with the model that uses the thin-mud model of 

Liu and Chan (2007). As before, we use both monochromatic and random wave scenarios. 

As mentioned in the section 2.2.3, for a thin mud layer the damping rates obtained from 

the LC and Macpherson (1980) models are similar (Figure (16)). However, the damping rates 

diverge for the relatively thick mud layer as expected. As shown in Figure (27), damping rates 

from the Liu and Chan (2007) model are larger than those obtained from the Macpherson (1980) 

model for viscous mud. For viscoelastic mud with shear modulus of 𝐺 = 200 Pa, the damping 

rate from Macpherson (1980) is slightly larger than that calculated from the Liu and Chan (2007) 

for frequencies smaller than 0.22 Hz. However, 𝐷𝑚 from the LC model is larger than that from 

the Macpherson (1980) model for frequencies larger than 0.22 Hz and this difference is most 

substantial around the resonance frequency, which is 0.26 Hz in this case.  

Figure (28) shows the variation of a cnoidal wave spectrum with frequency for 𝐺 = 0 and 

200 Pa. Mud specifications are the same as those used to calculate 𝐷𝑚 in Figure (17) while water 

depth and mud thickness are 0.8 m and 0.4 m, respectively. Also, a wider range of frequency 

(0 − 1.85 Hz) is considered. The figure shows the initial spectrum at 𝑥 = 0 and the spectrum in 

the end of the mud patch at 𝑥 = 800 m. Over viscous mud, the LC model (which becomes 
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identical to the Ng (2000) model when 𝐺 =0) clearly overestimates damping in low frequencies 

while it slightly underestimates it in high tail of the spectrum. Over a viscoelastic mud with 𝐺 =

200 Pa, the LC and Macpherson (1980) models give comparable damping rates over high and 

low frequencies but differ considerably over 0.5 < 𝑓 < 1 Hz range. 

 

Figure 27. Variation of surface wave damping rate with frequency for mud with shear modulus 𝐺 = 0 and 200 Pa. 

Solid line: LC model, dashed line: MacPherson (1980) (𝜁 = 100, ℎ = 0.8 m, 𝑑𝑚 = 0.4 m, and 𝜌𝑚 = 1111 

kg/m 3). 

 

Figure (29) shows the corresponding spatial variation of cnodial 𝐻𝑟𝑚𝑠 of the viscous and 

viscoelastic muds. The figure shows that for the viscoelastic case with 𝐺 = 200 Pa, the 

Macpherson (1980) and LC models are almost identical while for the viscous case, the 

Macpherson (1980) model shows weaker damping than the LC model. The damping rate from 

both models converge for long mud patches.  

Next, we investigate the evolution of random waves over relatively thick mud. The shear 

moduli used are 𝐺 = 0,200 Pa and other mud properties are the same as those used in results 
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shown in Figure (28). Figure (30) shows that in the scenario with viscous mud the wave model 

with the LC mud model overestimates damping across the spectrum compared to the one with 

Macpherson (1980) model, consistent with damping pattern of permanent form waves shown in 

figure (27). The pattern is more complex for the viscoelastic case such that for low frequencies 

(𝑓 < 0.22 Hz), the Macpherson (1980) model results in more slightly stronger damping 

compared to the LC model while it results in weaker damping over higher frequencies (𝑓 > 0.22 

Hz). As seen, the distinction between two models is stronger for the case with viscous mud 

compared to viscoelastic mud. The same result is seen in the Figure (29) which shows the spatial 

variation of random wave 𝐻𝑟𝑚𝑠 over viscous and viscoelastic muds. As seen, similar to cnodial 

scenario for the viscoelastic case with 𝐺 = 200 Pa, the Macpherson (1980) and LC models are 

almost identical while for the viscous case, the LC model shows stronger damping than the 

Macpherson (1980) model.  

 

Figure 28. Propagation of cnodial wave spectrum over mud with shear modulus of 𝐺 = 0,200 Pa, ℎ = 0.80 m, 

𝑑𝑚 = 0.40 m, and 𝜌𝑚 = 1111 kg/m 3 
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Figure 29. Spatial variation of cnodial wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with shear modulus of 

𝐺 = 200 Pa. solid-line: Liu and Chan, dashed-line: MacPherson. The mud patch is located at 𝑥 = 300-800 m, 𝜁 = 

100, ℎ = 0.80 m, 𝑑𝑚 = 0.40 m, and 𝜌𝑚 = 1111 kg/m 3. 

   

 

Figure 30. Propagation of random wave spectrum over mud with shear modulus of 𝐺 = 0,200 Pa. ℎ = 0.80 m, 

𝑑𝑚 = 0.40 m, and 𝜌𝑚 = 1111 kg/m 3.  
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Figure 31. Spatial variation of random wave 𝐻𝑟𝑚𝑠 over viscous (𝐺 = 0) and viscoelastic mud with shear modulus of 

𝐺 = 200 Pa. 𝜁 = 100, ℎ = 0.80 m, 𝑑𝑚 = 0.40 m, and 𝜌𝑚 = 1111 kg/m 3. 

  

   3.4 Summary and Conclusions 

  In this chapter, we investigate the wave propagation over viscoelastic muds in the 

presence of currents numerically. A nonlinear frequency-domain phase-resolving wave-current-

mud interaction model is improved in two aspects. First, the mud-induced wave mechanism in 

the model is improved to account for mud elastic effects, thus enabling simulation of wave 

propagation over viscoelastic muds. Second, a requirement in earlier similar models that 

assumed the mud layer to be thin is eliminated by incorporating a mechanism for mud-induced 

wave evolution for mud of arbitrary thickness. The model shows satisfactory comparison with 

published laboratory data on wave dissipation over mud in the presence of currents. Furthermore, 

the model compares better with laboratory data on wave height compared to a wave model with 

viscous mud-induced wave damping mechanism. 



  

 

71 

The frequency-dependent damping obtained from the thin-mud wave damping model 

(LC) compares well with the model for arbitrary depth Macpherson (1980) if the mud layer is 

thin. For viscous muds, the thin-mud model slightly underestimates damping rates while for 

viscoelastic muds, it yields smaller damping rates than the Macpherson (1980) model in lower 

frequencies and larger damping rates over higher frequencies. The thin-mud model substantially 

overestimates damping over viscoelastic mud around the resonance frequency, thus using the LC 

model or its widely used viscous equivalent, the Ng (2000) model, can result in overestimation 

or underestimation of wave damping if mud layer is dynamically thick. Co-(counter-)propagating 

currents decrease (increase) frequency-dependent damping at low frequencies while they 

increase (decrease) it at higher frequencies. The impact of currents at high frequency increase 

with increase in mud shear modulus. This effect is observed in both monochromatic and random 

wave spectra. 

First, we investigated the propagation of monochromatic waves over viscoelastic muds. 

With increasing in shear modulus 𝐺, damping decreases regardless of the direction of the current. 

For 𝐺 < 200 Pa it was observed that there is a frequency before which counter-propagating 

currents results in stronger dissipation than co-propagating currents while after which the 

opposite happens. As mud shear modulus increases, this frequency shifts to higher frequencies 

until it is not seen any longer for the case with shear modulus of 𝐺 = 200 Pa. The trend in 

dependency of mud-induced dissipation on mud’s shear modulus cannot be illustrated only by 

direct damping and frequency amplitudes are affected by the nonlinear wave-wave interactions. 

In fact, with deactivating the subharmonic interactions, the frequency amplitudes follows the 

pattern of direct damping rate. Also, it was shown that the variation of amplitude with frequency 

is small on the high-frequency tail of the spectrum as reported by earlier studies in the 
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propagation of waves over viscoelastic mud in the absence of currents (Tahvildari and 

Sharifineyestani (2019)) and over viscous mud in the presence of currents (Kaihatu and 

Tahvildari (2012)), denoting that the subharmonic interactions are responsible for damping of 

higher frequencies regardless of the magnitude of mud shear modulus, presence or direction of 

currents. Spatial variation of 𝐻𝑟𝑚𝑠 over muds with different shear moduli is described by 

frequency-dependent damping rate. For viscous mud, the pattern in 𝐻𝑟𝑚𝑠 follows the pattern 

reported in Kaihatu and Tahvildari (2012) where the opposing currents results in more 

dissipation than following currents. However, for the viscoelastic muds the pattern was different 

than the viscous mud such that for the cases with smaller shear moduli (here 𝐺 = 50, 100 Pa), 

some spatial undulations were seen at the end of mud patch at which mud is most heavily and 

most weakly dissipated in the presence of a following and an opposing current, respectively. 

With increasing in shear modulus, (here 𝐺 = 200 Pa), the opposing as well as following current 

results in low damping but damping in the presence of opposing current is more than that than 

the following current. 

The model is then applied to simulate random wave propagation. For the viscous mud, 

while there was a comparable damping in the presence of opposing current in low to mid-range 

frequencies, stronger damping was observed in the presence of opposing current at the end of 

mud patch as earlier studies were indicated. The distinction between wave damping in the 

presence of following and opposing currents was smaller over viscoelastic mud in comparison 

with viscous mud. Since a spectrum with high 𝑈𝑟 (2.08) was utilized in the simulations, it 

expands quickly in frequency regardless of mud shear modulus and current direction and there 

was not observed apparent peaks in the spectrum at the lee of mud in agreement with the earlier 

studies indicating that the spectrum with relatively high 𝑈𝑟 (2.08)  undergoes rapid broadening 
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over frequency while an spectrum with a smaller Ur (e.g. 0.78) maintains its structure. Like the 

cnodial scenario, the opposing currents results in more damping than the following currents for 

the viscous mud while the opposite happens when mud shear modulus increases. It is noteworthy 

to mention that the spatial undulations seen for a cnoidal wave were not observed for the random 

waves and this reversal in trend was consistent spatially for all 𝐺 values. 

Resonance is an important property of viscoelastic mud that affects the shape of random 

wave spectra. We simulated the propagation of a spectrum with a peak frequency equal to 

resonance frequency which results in highest rate of dissipation and considered the resulted 

significant wave height. 𝐻𝑟𝑚𝑠 spatially follows the pattern in direct damping such that with 

increasing in shear modulus up to 𝐺 = 50 Pa it increases and after that decreases. Furthermore, 

with increasing in shear modulus up to 𝐺 = 100 Pa the opposing current results in more 

damping than the following current over the domain consistently. However, for 𝐺 = 200 Pa this 

trend only is seen in the end part of mud patch and the following currents results in more 

damping in the beginning part of the mud patch. With increasing in shear modulus (here 𝐺 =

300 Pa), the following current strengthens mud-induced damping consistently over the mud 

patch. It is notable to mention that spatial variability in damping rate of 𝐻𝑟𝑚𝑠 is influenced by 𝐺 

and 𝑈 such that for 𝐺 = 0 and 50 Pa, initial damping rate of 𝐻𝑟𝑚𝑠 is stronger at the beginning of 

the mud patch in comparison with the rate at its end where the 𝐻𝑟𝑚𝑠 curve becomes nearly 

horizontal. However, this variability is weaker for muds with 𝐺 = 0, 200 and 300 Pa. 

To investigate the wave propagation over a mud layer of arbitrary depth, both cnodial and 

random wave solutions were examined for two cases of viscous and viscoelastic mud with 𝐺 =

200 Pa. The distinction between two models is more stronger for viscous mud compared to 

viscoelastic mud. In the cnodial scenario, for the viscous mud, the LC model overestimates 
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damping in lower frequencies and underestimate slightly over higher frequencies compared to 

the Macpherson (1980) model. This overestimation in damping by LC model is seen across the 

spectrum for viscous mud in the random wave scenario. The pattern is more complicated for the 

viscoelastic case. In the permanent form solution, while two models show a comparable damping 

over low and high frequencies, they show considerably different damping over mid-range 

frequencies (0.5 < 𝑓 < 1). In the random scenario, the Macpherson (1980) model shows slightly 

stronger damping compared to LC model in low frequencies and weaker damping over higher 

frequencies. Also, the spatial variation of cnodial and random wave were considered for both 

viscous and viscoelastic muds. 𝐻𝑟𝑚𝑠 is almost identical for both LC and Macpherson (1980) 

models for viscoelastic mud while the LC model shows stronger dissipation over the viscous 

mud compared to Macpherson (1980) model. 
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CHAPTER 4 

THE RELATIONSHIPS BETWEEN HYDRODYNAMIC AND BIOLOGICAL 

PROPERTIES OF SEGRASSES USING FILED DATA AND COMPUTATIONAL 

MODELING 

 

 In this chapter, we carry out preliminary field data acquisition and analysis of wave and 

flow in a sheltered estuary over a seagrass meadow in the South Bay, located in the Eastern 

Shore of Virginia. An array of sensors including pressure gauges and an acoustic doppler 

velocimeter were deployed to obtain variations in important hydrodynamic variables over the 

meadow. Furthermore, a computational model for hydrodynamics of wave-vegetation interaction 

is linked with a computational biophysical model for seagrass growth. This integration results in 

improvement in prediction of SAV growth as the wave-vegetation model improved information 

on leaf orientation that controls photosynthetic light absorption by the submerged plant canopy. 

It is stressed that both field measurements and computational model coupling are 

preliminary steps that are taken in investigation of the role of seagrasses in mitigating climate 

change and sea level rise impacts on coastal infrastructure. Although the present work is limited 

in scope, it served to build the expertise needed to carry out more comprehensive research in the 

area. For example, field measurements are carried out only in two areas and detailed field 

planning was not conducted for the study. However, the field equipment acquired through the 

study, preliminary design of field work and the subsequent data analysis built the capacity to  

carry out more detailed field exploration that is currently undergoing in PI’s lab. 
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   4.1 Study Area and Instrumentation 

The study area is a restored seagrass meadow in the South Bay, located in the Eastern 

shore of Virginia. Two RBR-SoloD|Wave pressure sensors and one Nortek Aquadopp Acoustic 

Doppler Current Profiler (ADCP) were deployed in the study site south of an inlet between the 

wreck island and the Cobb Island as seen in Figure (32). Field measurement were carried out 

meadow from July 16th to August 16th, 2018. The instruments were deployed in the direction of 

dominant waves, i.e. northeast/southwest and the distance between instruments was about 10 m. 

 

 

Figure 32. The study area in the Eastern Shore of Virginia (Google Maps) 

 

The Aquadopp collected the current profiles data every 10 minutes and is also equipped with 

a pressure sensor that measures pressure at 2 Hz frequency over burst (durations at which data is 
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collected continuously, the sensor goes dormant between bursts) of 5000 seconds. The RBR 

sensors recorded pressure continuously at the rate of 8 Hz.  

   4.1 Field Data Analysis 

4.1.1 Methods 

The data from pressure sensors is processed to obtain instantaneous wave height and 

wave spectral characteristics. The following equation was applied to calculate the significant 

wave height (average of top 1/3 of wave height in the record), 𝐻𝑠: 

𝐻𝑠 = 4√𝑚0                       (43) 

where 𝑚0 is the variance of the water surface elevation spectra 𝑆(𝑤), which is defined as: 

𝑚0 = ∫ 𝑆(𝑤) 𝑑𝑤                  (44) 

and the mean wave period, 𝑇𝑚, represent the following ratio: 

𝑇𝑚 =
𝑚0

𝑚1
                                (45) 

where 𝑚1 is the first moment of  𝑆(𝑤), defined as: 

𝑚1 = ∫ 𝑆(𝑤)2 𝑑𝑤                (46) 

In this study, the following formula is applied to compute wave energy density flux, 𝐹, 

for all frequencies at two RBR locations: 

𝐹 =
1

2
𝜌𝑔𝑎𝑖

2𝐶𝑔,𝑖                     (47) 

Where 𝜌, 𝑔, 𝑎𝑖, and 𝐶𝑔,𝑖 are water density, gravitational acceleration, amplitude of frequency i, 

and group velocity of frequency i, respectively. The amplitude of wave frequency i is defined as: 
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𝑎𝑖 =
𝐻𝑖

2
= √2 𝑆(𝑤)𝑑𝑤                (48) 

Wave dissipation between two RBR’s locations is computed as (e.g. Nowachi et al., 2017): 

𝜖𝑖 =
𝐹𝑛−𝐹𝑛−1

∆𝑥 𝑐𝑜𝑠𝜃
                                   (49) 

where ∆𝑥 is the distance between two points and 𝜃 is the angle between the direction of 

dominant wave and the transect orientation. The total wave energy dissipation is determined by 

the summation of energy dissipation of each frequency i.  

   4.2 Field Data  

4.2.1 Wave characteristics and dissipation using spectral analysis method 

Wave characteristics and spectra were calculated with Oceanlyz code version 1.4 

(Karimpour, 2017) from water level data measured using RBR pressure sensors. To utilize the 

code, the record is divided into bursts of 30-minute duration. Variation of significant wave height 

against time (30 days) for two locations (RBR1615 and RBR1705) are shown in Figure (33).  Per 

this figure, the wave height has a range of 0-0.22 meter at both sites, and as seen, two major 

events occur in days 26th and 27th of deployment. Wave heights do not show a considerable 

difference in two locations due to proximity of the deployment points. The variation of wave 

height against water depth is shown in the Figure (34). As seen, the largest waves occur the 

largest depth. This is expected as the larger depth can support propagation of larger waves 

without breaking. 

Wave dissipation was computed using Equation 49 and its variation with wave height is 

shown in Figure (35). The record shows that larger waves undergo stronger dissipation. It is 
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noted that some waves exhibit negative dissipation which indicates their gain of energy between 

the two wave gauge locations.  

For a more detailed analysis, we selected three different wave bursts and investigated the 

variation of dissipation with frequency for these bursts. Figure (36) shows the wave dissipation 

versus frequency for three different times (Burst 895, 1138, and 1316). As seen in the figure, 

most dissipation occurs in the frequency range of 0.5-0.8 Hz for the bursts 895 and 113 while in 

burst 1316, most dissipation is seen in the frequency range of 0.4-0.7 Hz. Next, we calculated the 

wave spectra for these bursts (Figure (37)). As seen in the figures, most of the wave energy was 

in the range of 0.5-0.8 Hz at both sites. It is seen that there is not a considerable dissipation 

between two sites as the energy in the two spectra are comparable. 

 

Figure 33. The variation of significant wave height with time for two RBRs of No. 1615, and No. 1707 
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Figure 34. Variation of significant wave height with 

 

 

Figure 35. Variation of wave dissipation with significant wave height 
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Figure 36. Wave dissipation versus frequency for three different bursts 

 

 

Figure 37. Energy density spectrum of water elevation spectra versus frequency for three different wave bursts 
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   4.3 Computational Modelling  

A computational model for hydrodynamics of wave-vegetation interaction is coupled 

with a computational model for biophysics of seagrass growth. The wave-vegetation interaction 

model is developed by Tahvildari (2016) and the biophysical seagrass model is the GrassLight 

model developed by Zimmerman and Gallegos (2016) and Zimmerman, (2003). The GrassLight 

model is a numerical model of radiative transfer and photosynthesis in submerged plant canopies 

and has been used to explore the relationship between plant canopy architecture, irradiance 

distribution, and photosynthesis within plant canopy. In the GrassLight model, the bending angle 

of the seagrass canopy 𝛽 is defined as the angle between the canopy orientation and vertical axis 

and is dependent on the current velocity and initial bending angle. Zimmerman (2003) showed 

the nonlinear relationship between the leaf bending angle of the seagrass canopy, the total 

amount of irradiance absorbed (∑ 𝐸𝑑), and the biomass-specific photosynthesis (𝑃𝑑) within the 

simulated canopies. Zimmerman (2003) quantified the increase in light absorbed by the 

simulated canopy with increase in leaf bending angle as the horizontal area of projected leaf 

increases. Furthermore, increasing in the leaf bending angle results in initial increase and 

eventual decrease in canopy photosynthesis. 

With understanding the importance of the leaf bending angle on photosynthesis and light 

absorbed within the plant, we investigated the effect of leaf bending angle of flexible plant stem 

in the presence of both current and waves on photosynthesis within the plant. We used the 

numerical model of Zeller et al. (2014) to simulate the motion of flexible plants under waves and 

currents. The model uses linear wave theory to force the stems and solves the instantaneous 

position of vegetation stems. Tahvildari (2016) incorporated this model into a nonlinear 

Boussineq-type wave model (e.g. Wei et al., 1995, Shi et al., 2013) to enable application of the 



  

 

83 

Zeller et al. (2014) model for the wave propagation problem. In this preliminary study, we use 

the basic model of Zeller et al. (2014) and will leave more sophisticated study of nonlinear wave 

propagation for future studies. In the vegetation stem dynamics model of Zeller et al. (2014), 

every plant stem is divided in a few segments connected by joints by which the plant stem 

rigidity is determined. Since there is no limitation on the rigidity of plant segments, the 

vegetation dynamic model can simulate the motion of arbitrary flexible plants in the presence of 

wave action. Different forces such as gravity, buoyancy, inertial, drag, lift, and skin fraction were 

considered in the model. The leaf bending angle was calculated and averaged between segments 

and used as input in the biological model of GrassLight (Zimmerman, 2003; Zimmerman and 

Gallegos, 2016) which solves seagrass biomass growth. Other parameters that impact flow input 

to the GrassLight model such as current velocity, significant wave height, and initial wave period 

were obtained from our field measurements explained earlier in section 4.2.  

4.3.1 Results of linking biological and hydrodynamic computational models 

In the hydrodynamic model, each blade is divided to 10 segments (Figure (38)). The current 

velocity, significant wave height, and initial wave period were measured at 0.1 m/s, 𝐻𝑚𝑜 = 0.16 

m, 𝑇0  =  1.66 s, respectively. These values are calculated using our field data analysis. 

 

Figure 38. The blade shape after current and wave action; every blade is divided by 10 segments. 
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Figures (39) and (40) show the variation of leaf bending angle with time in two 

conditions: without wave (Figure (39)), and with wave action (Figure (40)). As seen in the 

figures, the numerical model predicts β at a value that is close to the GrassLight model in the 

presence of uniform currents. But the flow model used in GrassLight underpredicts the blade 

angle, thus the photosynthesis rate it predicts can be inaccurate. Leaf bending angle changes due 

to the oscillatory flow by surface waves is shown in Figure (40), and as seen, the error in the 

GrassLight model estimates for β grows under wave crest. This can intensify the errors in 

prediction of photosynthesis in submerged seagrass canopies.  

Figure (41) shows the variation of the daily biomass-specific photosynthesis of the 

simulated seagrass canopy with time. As seen in the figure, the daily biomass-specific 

photosynthesis is constant with time when there is no wave. However, wave velocity results in 

the sinusoidal variation of daily biomass-specific photosynthesis. The relationship between the 

leaf bending angle of blade with daily biomass-specific photosynthesis of the seagrass canopy is 

shown in Figure (42). As seen, photosynthesis decreases with increasing in the leaf bending 

angle. 

   4.4 Summary and Conclusions 

In conclusion, the existing flow model in the GrassLight model is simplistic and can 

results in inaccuracies in prediction of seagrass blade bending angle. We show that using realistic 

parameters obtained from field in this project, the flow in GrassLight underpredicts bending 

angle by around 10%. If the measured wave action is added to the blade dynamics model, this 

underprediction can grow up to 25% under wave crest. This discrepancy is translated to 
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GrassLight model’s prediction of biomass-specific photosynthesis (𝑃𝑑) such that 𝑃𝑑 becomes 

oscillatory with time and peak under wave crest. We note that the average 𝑃𝑑 over a wave period 

is comparable to the average value obtained from uniform currents. However, it should be noted 

that light irradiance, which is of paramount importance in photosynthesis, is a function of time in 

the day. Therefore, simple averaging of 𝑃𝑑 under waves and comparing it with its values under 

uniform flow will not reflect the impact of light availability, thus it is imperative to incorporate a 

time-varying function for blade orientation in models for seagrass photosynthesis for more 

accurate predictions of 𝑃𝑑. We also note that the seagrass dynamics model used here is for a 

single blade and the impact of neighboring blades in a canopy on blade orientation is not 

considered. In a future research, we will investigate vertical variability in the flow on canopy-

scale seagrass growth and flow and seagrass impact on sediment resuspension. 

 

Figure 39. Variation of leaf bending angle with time without wave 
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Figure 40. Impact of leaf bending angle under waves on daily biomass-specific photosynthesis of the simulated 

seagrass canopy with time. 

 

 

Figure 41. Variation of leaf bending angle with time in the presence of wave 
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Figure 42. Impact of leaf bending angle on daily biomass-specific photosynthesis of the simulated seagrass canopy. 
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CHAPTER 5 

 CONSLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 

 

In this research, the effects of mud viscoelasticity on the evolution of nonlinear waves are 

investigated through numerical modeling. First, a mud-induced model based on a thin-mud 

assumption is incorporated in a phase-resolving frequency-domain model to study the mud 

elastic effect on the propagation of nonlinear wave over viscoelastic muds. Model results 

indicate that ignoring mud's shear modulus can result in substantial errors in predicting bulk 

wave characteristics, such as root-mean-square wave height, as well as nonlinear energy transfer 

across a spectrum that affects the shape of the spectrum. Therefore, adequate characterization of 

the mud layer and nonlinear wave processes are essential for reliable prediction of surface wave 

spectrum in the nearshore. Next, the model is improved to include the effect of currents and 

eliminate the limitation of thin-mud-layer assumption. For this purpose, two models, one based 

on thin-mud assumption and one for mud of arbitrary thickness, are used to represent mud-

induced damping and modulation of surface wave in the wave model. Therefore, the model is a 

more comprehensive predictive tool for wave propagation in coastal waters. The results show 

that the effect of opposing and following currents is highly dependent on wave frequency. 

Following (opposing) current decrease (increase) frequency dependent damping at low 

frequencies while they increase (decrease) it at higher frequencies. Also, the model based on 

thin-mud assumption may overestimate or underestimate wave damping. Understanding the 

interaction between waves, current and mud enable coastal engineers and scientists to better 

estimate wave forces, understand the fate of sediments in the coastal zone, and predict shoreline 

erosion. 
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There are several directions that the present model can be improved. In the present wave-

current interaction model, the effect of a boundary layer at water/mud interface is ignored which 

can be included in the future researches. Furthermore, the results of the present model can be 

compared with the results of phase-averaged wave model SWAN. As discussed earlier, mud can 

show various rheological characteristics under different wave conditions. Properties of bottom 

mud layer such as density, viscosity, and thickness can vary broadly in the filed depending on 

hydrodynamic conditions and consolidation. Verifying the existing model with field 

measurements can be the subject of future research. 

Last but not least, a preliminary field measurement of wave and flow over a seagrass 

meadow is conducted. In addition, a computational model for hydrodynamics of wave-vegetation 

interaction is linked to a computational biophysical model for seagrass growth. As a result of this 

integration, the wave-vegetation model provides improved information on leaf orientation that 

controls photosynthetic light absorption by the submerged plant canopy. Future research can 

investigate vertical variability in the flow on canopy-scale seagrass growth and flow and seagrass 

impact on sediment resuspension. 
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