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ABSTRACT 

 

GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST 

PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) 

 

Tiffany L. Birge 
Old Dominion University, 2019 
Advisor: Dr. Kent E. Carpenter 

 

 

Conserving biodiversity is one of the greatest ethical responsibilities and challenges 

humans face. Understanding the conservation status of taxonomic groups provides a systematic 

way to prioritize efforts to combat biodiversity loss. The 405 species within the order 

Clupeiformes are the herrings, shads, sardines, anchovies, menhadens and relatives that 

include many of the most important marine forage fishes. These small, schooling fishes are 

economically, ecologically and culturally significant globally. Despite their contribution to global 

fisheries and our increasing reliance on these fishes for food and industrial commodities, they 

are generally poorly known with limited information regarding basic biology and population 

trends. I applied IUCN Red List methodology, a comprehensive and systematic approach to 

assessing extinction risk of species, to all clupeiform species. I then used these assessments to 

synthesize and address their global conservation status and to highlight the potential for 

improvements to conservation and fisheries management. The best estimate of nearly 11% of 

species are of elevated conservation concern, although this could be as high as 34% if Data 



 
 

Deficient species are all threatened. The Caribbean and the Indo-Malay-Philippine Archipelago 

both have high concentrations of either threatened or Data Deficient species and are areas of 

particular conservation concern. Major threats include exploitation, pollution and habitat 

modification for human use although the intensity of a specific threat differs between 

freshwater, estuarine and marine environments. Life history and ecological traits of threatened 

and Near Threatened species were characterized between primary habitat systems. Immediate 

conservation priorities include: 1) the evaluation of current fisheries management strategies, 

with a strong recommendation toward ecosystem-based management protocols that 

incorporate group-specific life history traits, and 2) local, intensive habitat restoration to reduce 

pollution and remove dams. These extinction risk assessments and subsequent analyses should 

be used to monitor conservation progress and as an informative tool for fisheries and 

conservation managers.   
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CHAPTER 1 

 

INTRODUCTION 

 

Global biodiversity is under threat. From grasses and dragonflies to sharks and 

mangroves, and nearly all taxa in between, there is growing concern regarding the survival 

status of biodiversity. Population declines have been documented in such diverse taxa as 

mammals (Davidson et al., 2009; Ripple et al., 2016), birds (Dunn et al., 2002), large predatory 

fishes (Myers and Worm, 2005), amphibians (Bielby et al., 2008), flying insects (Hallmann et al., 

2017) and plants (Willis, 2017), leading to local extirpations and global extinctions (Young et al., 

2016). Although up to 100 million species are estimated as extant (May, 1992; Mace et al., 

2005), with the best working estimate between 8 – 9 million species (Chapman, 2009; Hilton-

Taylor et al., 2009; Mora et al., 2011), only around 2 million species have been described to 

date (Hilton-Taylor et al., 2009). As a result, there is risk that species will disappear before we 

are aware they exist. Given that current rates of extinction are over 1000 times that of the 

background rate of extinction (Pimm et al., 2014), the future of biodiversity is bleak.  

Despite the dominant aquatic global surface area (~ 71% of earth’s surface) and even 

larger inhabitable volume (Polidoro et al., 2009; Darwall et al., 2009), our knowledge of and 

concern for these ecosystems lags far behind that of terrestrial systems. Historically, active 

conservation of aquatic resources lags behind terrestrial conservation effort. This is partly due 

to proximity and ease of study of terrestrial systems, but also because the aquatic realm is a 
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vast environment, whose size alone was thought to be a buffer to impacts (Myers and Worm, 

2005). As a result, global species conservation status is heavily biased towards terrestrial 

vertebrates and plants (Hilton-Taylor et al., 2009; Polidoro et al., 2009). Presently, major 

anthropogenic threats to marine and freshwater species are recognized (Young et al., 2016), 

particularly from the fishing sector (e.g., Atlantic cod: Shelton et al., 2006).   

Fisheries are important to the financial and nutritional security of billions of people 

globally (FAO, 2018). Capture fisheries generate substantial local and national revenue (total 

estimated at USD 130 billion in 2016: FAO, 2018), mostly from landings of marine fisheries 

(FAO, 2018). These landings play a vital role in global nutritional security by providing a valuable 

source of protein and micronutrients (FAO, 2018). Fish provide over 3.2 billion people with 

about 20% of their average per capita animal protein intake (FAO, 2018) and consumption has 

steadily grown in developing regions and low-income food-deficit countries (FAO, 2018). 

However, overharvesting of our fish stocks has resulted in population declines up to 90% for 

pelagic fish species (Sadovy, 2001; Myers and Worm, 2003; Pauly et al., 2005; Sadovy et al., 

2013). Taxa- and region-specific studies increasingly express that exploitation is the most 

prominent threat and is of growing concern as our reliance on fishery resources continues to 

expand (Sadovy et al., 2013; Lynch et al., 2016; FAO, 2018).  

One extremely important, but often underappreciated, component of fisheries are the 

forage fishes. These highly numerous small- and medium-sized, pelagic species support global 

economies through direct fisheries exploitation and also by serving as a major food source for 

higher predators that are important to these economies as well (Pikitch et al., 2014). Forage 

fishes comprise over 30% of the total global marine fish catch (Alder et al., 2008; Smith et al., 
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2011). Species of the order Clupeiformes, including herrings, shads, menhadens, sardines, 

anchovies, and their relatives, make up a major component of forage fishes and dominate 

worldwide forage fish landings (Tacon and Metian, 2009a). Three distinct contributions of 

forage fishes have been recognized, including: 1) ecological support for predators as a vital food 

resource, 2) economic value to forage fisheries, and 3) support for the catch and value of other 

commercially targeted predators, such as fishes, mammals and squid (Cury et al., 2011; Smith 

et al., 2011; Pikitch et al., 2014; Hilborn et al., 2017). 

Clupeiform fisheries have a long history of nutritional, cultural and economic 

importance (Whitehead, 1985; Alder, et al., 2008). Their presence has been associated with 

persistent human settlement, growth and survival for thousands of years (Finney et al., 2002; 

Bassett, 2014) and is well documented in the northeastern Pacific (Thornton et al., 2010; Levin 

et al., 2016), the northwestern (Bassett, 2014) and northeastern Atlantic (Bloch, 1809; Coull, 

2003) and the tropical western Pacific (Ruddle and Ishige, 2010). Due to their overall 

importance and abundance, some have been considered as cultural keystone species and have 

been given local nicknames like 'silver of the sea’ and ‘silver darlings’ (Coull, 2003; Smyllie, 

2004; Murray, 2015; Levin et al., 2016) to reflect the important status of these species.  

Today, many millions of people rely on clupeiform catches across the world for food, 

industrial commodities, and everyday items. The majority of clupeiform resources are ‘reduced’ 

or processed and turned into fishmeal and related products (van der Meer et al., 2015), which 

makes them one of the largest species groups targeted for non-food uses (Tacon and Metian 

2009a, 2009b). Currently, the largest consumer of reduced fish product is the aquaculture 

sector (Tacon and Metian, 2009b), which is rapidly increasing to keep pace with the growing 



4 
 

demand for fish products (FAO, 2018). Aside from aquaculture, agricultural industries use 

reduced material as fertilizer and as fishmeal or fish oil to support livestock in direct or 

compound animal feed (Tydemers, 2004; Tacon and Metian, 2009a; Pikitch et al., 2012; FAO, 

2016a). Fish oil is also used in a wide array of industrial applications including fuel, glue 

production, paint manufacture, and as a vitamin supplement (Tydemers, 2004).  

To keep up with the high demand for these products, clupeiforms comprise some of the 

world’s largest fisheries and continue to be the principal group of non-domesticated 

vertebrates harvested by man (Whitehead, 1985; Tacon and Metian, 2009a, 2009b; FAO, 2018). 

In general, the largest fisheries exploit cold-water clupeoids, such as species of Sardinops and 

Clupea (Whitehead, 1985; FAO, 2018). Historically, the largest fishery by volume was the 

famous Peruvian anchoveta (Engraulis ringens), which contributed an annual estimated 16 

million tonnes during peak harvest years (Castillo and Mendo, 1987; Tsukayama and Palomares, 

1987; Pikitch et al., 2012).  

Of growing concern to fisheries and conservation managers is the tendency, particularly 

of the cold-water species that support large fisheries, to exhibit highly variable, albeit natural, 

population fluctuations (Whitehead, 1985; McKechnie et al., 2013). The episodic trends in 

population fluctuations are thought to be heavily influenced by environmental conditions 

(Pikitch et al., 2014), such as long-term, decadal-scale physical processes (e.g., El Niño: Alheit et 

al., 2009). Knowledge is limited on how the excessive removal of these species by fisheries may 

impact aquatic ecosystems (Alder et al., 2008). However, heavy industrial fishing pressure is 

known to exacerbate the population flux and has recently been shown to increase the 
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likelihood of population collapse in small pelagic fishes that have been exploited by long-term 

fisheries (Pinsky et al., 2011).  

The overwhelming importance of cold-water clupeoid fisheries often overshadows the 

contributions of tropical and freshwater clupeiform fisheries (Whitehead, 1985). These warm-

water fisheries tend to dominate the landings of artisanal and subsistence sectors, rather than 

the industrial sector (Whitehead, 1985). When reported in fisheries landings, multiple species 

are often lumped in landings data (e.g., Stolephorus spp., FAO, 2018), making analysis of 

species-specific trends problematic.  

Aside from most cold-water species that tend to represent the landings of the larger 

fisheries, we know very little about clupeiforms globally despite our overwhelming reliance on 

them and their known importance in nearly every aquatic ecosystem (Whitehead, 1985). 

Research has been hindered by confusing taxonomy and challenging identifications 

(Whitehead, 1985). Overall, it is relatively easy to distinguish clupeiforms from other fish groups 

because nearly all lack a visible lateral line on the body; however, it is difficult to tell them apart 

from each other, particularly in regions where clupeiform species richness is high (Whitehead, 

1985). Ironically, these areas coincide with the fastest growing human populations and their 

reliance on fisheries, and often these ecosystems represent regions most in need of 

conservation (Darwall et al., 2009).  

The Clupeomorpha (Greenwood et al., 1966), along with Alepocephali and Ostariophysi 

make up the Otocephala, one of four extant lineages of Teleostei (Nelson et al., 2016). 

Representatives of the Order Clupeiformes are characterized within two suborders: the 
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Denticipitoidei, a monotypic group with only one extant representative, Denticeps clupeoides 

Clausen 1959, and the Clupeoidei which comprises all other extant species in the Order 

Clupeiformes (Whitehead, 1985; Grande, 1985; Di Dario, 2004; Di Dario and de Pinna, 2006; 

Lavouè et al., 2014; Bloom and Egan, 2018). Since Fowler’s attempt to list all valid clupeoid 

species (Fowler, 1973), Whitehead (1985) and Whitehead et al., (1988) have been the only 

comprehensive works to compile species-specific information on valid species in the suborder 

Clupeoidei, representing nearly the entire Order Clupeiformes.  

Historically, clupeiform systematics largely relied on morphometric, meristic, and other 

morphological characters, which sometimes classified taxa based more on overall similarity or 

geographical convenience rather than on rigorous scientific support (Bloom and Egan, 2018). 

Grande’s (1985) five proposed subfamilies of Clupeidae (Alosinae, Clupeinae, Pellonulinae, 

Dorosomatinae and Dussumieriinae), and the description of what is now considered to be a 

species-complex of the genus Sardinops (Whitehead, 1985), are examples of such taxonomic 

convenience. Further, given that numerous and often similar species are known in many 

genera, some valid species may have long been obscured within the synonymies of others, and 

many more proposed names exist than are needed (Whitehead, 1985).   

Current advancement of molecular and genetic methods and recent morphological 

analyses aided in the description of several species and rearrangement of groups (e.g., Loeb et 

al., 2017; Li and Ortí, 2007; Lavouè et al., 2014; Di Dario, 2009; Hata and Motomura, 2018; 

Bloom and Egan, 2018). However, some systematic relationships remain unresolved (Malabara 

and Di Dario, 2016; Bloom and Egan, 2018). Given this taxonomic and systematic uncertainty, 

for the purposes of this thesis, I followed the family group names outlined in the study by Van 
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der Laan et al., (2014) that recognizes seven families (Denticipitidae, Clupeidae, Engraulidae, 

Pristigasteridae, Chirocentridae, Dussumieriidae and Sundasalangidae). Recent and ongoing 

analyses, including the reassignment of the Sundasalangidae within the Clupeidae (Lavoué et 

al., 2014), elevation of the subfamily Spratelloidinae to the family Spratelloididae (Bloom and 

Egan, 2018) and re-examinations of genera (e.g., revision of Sardinella and Stolephorus by Hata 

and Motomura, 2017, 2018, and 2019; revision of Anchoviella by Loeb et al., 2017) will likely 

improve our understanding of the taxonomic and systematic relationships within the Order 

Clupeiformes.  

Given the taxonomic challenges presented by the clupeiforms, species-specific threats 

can go undocumented particularly in face of overexploitation and in their dependence on often 

degraded coastal ecosystems. Information about which species are at risk and what factors are 

most threatening is particularly important to successfully and strategically plan and implement 

conservation management policies (Venter et al., 2006). Therefore, to evaluate the 

conservation status of clupeiform fishes, I used the most widely accepted standard for 

assessing the symptoms of extinction risk, the International Union for Conservation of Nature 

(IUCN) Red List Criteria (Hoffman et al., 2008). This thesis analyzes the conservation status of 

the clupeiforms, accounting for species-specific characteristics and population trends. In 

Chapter 2, I evaluated the global extinction risk for all species using the IUCN Red List 

methodology. I hypothesized that major threats would vary by family group and by the primary 

habitat type occupied by the species. In Chapter 3, I used data and results from the Red List 

Assessments to test the influence of habitat type and natural history traits on susceptibility to 

threats. I hypothesized that species can be characterized into groups based on these ecological 
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and natural history traits, and that such analyses could be used to inform management 

measures.  

  

 

  



9 
 

CHAPTER 2 

 

GLOBAL CONSERVATION STATUS OF THE WORLD’S MOST PROMINENT FORAGE 

FISHES (TELEOSTEI: ORDER CLUPEIFORMES)  

 

INTRODUCTION 
 

Forage fishes directly link primary production to keystone predators in marine 

environments (Pikitch et al., 2014). These small- to medium-sized, typically very numerous 

pelagic species also support the global economy by directly and indirectly sustaining many 

fisheries (Pikitch et al., 2014). Forage fishes make up over 30% of the global marine catch (Alder 

et al., 2008; Smith et al., 2011). They also play a key role as prey for many commercially 

targeted predators, such as fishes, mammals and squids (Cury et al., 2011; Smith et al., 2011; 

Pikitch et al., 2014; Hilborn et al., 2017).  

Species of the order Clupeiformes, including herrings, shads, menhadens, sardines, 

anchovies, and their relatives, are a major component of forage fishes and dominate worldwide 

forage fish landings (Tacon and Metian, 2009a). Additional to providing ecological and 

economic support, clupeiforms contribute to food security worldwide given their abundance, 

access and exceptionally high nutrient content (FAO, 2018); in some communities, clupeiforms 

make up the major or the sole protein source (Mohan Dey et al., 2005; Alder et al., 2008; 

Kawarazuka and Béné, 2011; Mohanty et al., 2019). Historically, clupeiform presence has been 

associated with persistent human settlement, growth and survival for thousands of years 
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(Bloch, 1809; Coull, 2003; Thornton et al., 2010; Ruddle and Ishige, 2010; Bassett, 2014; Levin et 

al., 2016). To meet the needs of a projected rising human global population (United Nations, 

Department of Economic and Social Affairs, Population Division, 2017), demand for fisheries 

resources is expected to continue to grow (FAO, 2018). Given the overall ecological, cultural, 

nutritional, and economic importance of clupeiforms worldwide, their conservation status 

warrants greater attention.  

The teleost fish order Clupeiformes includes 405 species that are globally distributed 

with tropical, temperate and sub-Arctic representatives (Whitehead, 1985; Blaber et al., 1996; 

Wongratana et al., 1999; Munroe et al., 1999; Lavoué et al., 2013; Pikitch et al., 2014). 

Members of this Order are ecologically diverse and span all aquatic habitats, including 

freshwater rivers and lakes, estuaries, coastal marine areas, and the open ocean (Whitehead, 

1985; Lavoué et al., 2013; Bloom and Egan, 2018). Clupeiform species can be restricted to fresh, 

estuarine, or marine waters, or they can exhibit diadromy (Whitehead, 1985). This ability to 

navigate between marine and freshwater habitats is shared with other groups such as stingrays, 

needlefishes, silversides, drums and pufferfishes (Lovejoy et al., 2006; Bloom and Lovejoy, 

2017; Bloom and Egan, 2018). Strictly marine clupeiforms (32% of all species) are distributed in 

every ocean, except for the Southern Ocean (Whitehead, 1985), strictly freshwater species 

(18% of all species) are found on every continent except for Antarctica (Bloom and Lovejoy, 

2012, 2014; Bloom and Egan, 2018). 

In general, life history traits such as high fecundity, widespread distributions, 

adaptability to diverse habitats, and high dispersal ability are features that are thought to 
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increase survivability in face of anthropogenic stresses (Stearns, 1992; Hutchins, 2000; Sadovy, 

2001; Denney et al., 2002; Reynolds et al., 2005; Alder et al., 2008; Comeros-Raynal et al., 

2016). In contrast, slow growth, large body size, and high longevity are life history features 

thought to increase a species’ vulnerability to extinction (Roberts and Hawkins, 1999; Reynolds 

et al., 2005; Harnik et al., 2012; Juan-Jorda et al., 2015; Comeros-Raynal et al., 2016). These 

innate traits have also been used to determine a species’ ability to cope with, and recover from, 

human-induced and environmental disturbances (Cardillo et al., 2005, 2008; Reynolds et al., 

2005). However, high fecundity, early age at maturation and similar demographic traits do not 

reliably predict a species’ vulnerability to, or ability to recover from, overexploitation (Jennings 

et al., 1998; Kindsvater et al., 2016; Sadovy, 2001; Juan-Jorda et al., 2012, Comeros-Raynal et 

al., 2016).  

Despite the global importance of clupeiforms, basic biological information, fisheries 

data, and management efforts are severely deficient compared to those of other commercially 

important fishes such as tunas and billfishes. This disparity may be due in part to perception of 

extinction resistant traits and taxonomic complexity of clupeiforms (Whitehead, 1985; Alder et 

al., 2008). Clupeiform value per pound is also far less than that for other commercial fishes, 

which may further disincentivize the contribution of resources to research and conservation for 

the clupeiform fishes. For example, the average commercial landed value of all tunas in the U.S. 

for 2017 was about USD $ 2.8/pound, while the average value for clupeiforms was roughly USD 

$0.09/pound (NOAA Fisheries, 2019). The paradox between worldwide clupeiform importance 

and lack of available study resources and reliable data reinforces the need to invest effort into 

understanding the current conservation status of species within the Order. The International 
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Union for Conservation of Nature Red List of Threatened Species provides an ideal starting 

point for highlighting and addressing conservation needs for fish species, including the 

clupeiforms (Mace et al., 2008).  

The IUCN Red List is a comprehensive repository of open-access, species-specific 

assessments that conveys a species’ symptoms of extinction (Rodrigues et al., 2006; Vié et al., 

2009). Red List assessments are the most widely accepted standard for species-level risk 

evaluations (Hoffman et al., 2008). By illuminating knowledge gaps regarding the conservation 

status of species (e.g., Carpenter et al., 2008; Schipper et al., 2008; Polidoro et al., 2010; Short 

et al., 2011), the assessments can be used to inform and influence decisions regarding 

biodiversity conservation (Rodrigues et al., 2006; Mace et al., 2008; Vié et al., 2009).  

Limited species-specific information on the conservation status of clupeiforms hampers 

our ability to proactively manage and conserve these essential components of aquatic food 

webs. Therefore, the extinction risk of all 405 species within the Order was evaluated following 

the IUCN Red List methodology to provide a baseline from which to monitor changes. The 

resulting information was then used to evaluate: 1) variability in the proportion of species at an 

elevated risk of extinction as a function of family (Denticipitidae, Pristigasteridae, Engraulidae, 

Chirocentridae, Clupeidae, Dunssumieriidae, Sundasalangidae), and as a function of habitat 

(freshwater, marine and euryhaline); 2) major threats to all species; and 3) spatial trends in 

clupeiform species richness. 
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METHODS 
 

Red List Methods 

A comprehensive species list was compiled based on the online version of the Catalog of 

Fishes (Eschmeyer et al., 2017) and in consultation with taxonomic experts. Individual 

clupeiform species assessments were collated from information on the geographic distribution, 

population status, life history, utilization and quality of habitat, potential threats and the 

conservation measures of each species. The assessment process required input and 

involvement from 132 international experts from more than 20 countries who systematically 

evaluated extinction risk indicators for all 405 species. Three nominal species recently described 

after December 2018 as new or elevated as distinct from synonymy with another species are 

not included within these analyses, but Red List assessments have been completed for these 

species (Appendix A). 

The IUCN Red List includes eight levels of extinction risk (Fig. 1): Extinct (EX), Extinct in 

the Wild (EW), Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened 

(NT), Least Concern (LC), and Data Deficient (DD: IUCN, 2012). A species can qualify for a 

threatened category (CR, EN, VU) by meeting at least one of the five quantitative thresholds 

that fall under IUCN Criteria (A – E: Mace et al., 2008). The criteria evaluate population decline 

(A), restricted geographic distribution (B), small population size and decline (C), very small or 

restricted population size (D), and the high probability of potential extinction (E: Akçakaya et 

al., 2000; Mace et al., 2008). 
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Fig. 1. The nine extinction risk categories from the IUCN Red List of Threatened Species.  

 

 

A category of NT can be applied if the quantified estimates of population decline or 

range size nearly meet the thresholds for assigning a threatened category under at least one of 

the criteria. The DD category is applied if a species is only known from few specimens, lacks 

available information to assess under any of the criteria, or if there is uncertainty regarding its 

taxonomic status. This category can also be applied if declines are likely due to a known threat 

(e.g., fishing pressure), but the threat could not be quantified, such that a more appropriate 

category could be applied.  
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All five Red List Criteria were considered during the assessment process; however, 

almost all species were assessed under criteria A (population decline) or B (restricted range). 

Data required to assess a species under the remaining criteria (C, D or E) were often unavailable 

given the difficulty of quantifying the number of mature individuals present in fish populations. 

As of July, 2019, all species are published on the Red List website (www.iucnredlist.org), where 

species data, maps and extinction risk categories are freely available. 

Quantifying Threats  

As part of the Red List process, threats were identified for each species based on the 

published literature and in consultation with experts. Threats were quantified within the Red 

List assessments using a hierarchal process by coding an individual threatening event to the 

finest resolution level possible (IUCN, 2016). Major threats were then summarized and the 

proportion of threatened and near threatened species was explored for all species, as well as by 

clupeiform family and major habitat system. The proportion of threatened and NT species is 

expressed using both a midpoint and a range to address the uncertainty surrounding the true 

status of a DD species. The midpoint was calculated by removing the species listed as DD, 

whereas the lower and upper bound were calculated by either excluding or including the DD 

species with the threatened species, respectively. The lower bound assumes that none of the 

DD species are threatened, while the upper bound assumes that all DD species are threatened.  

A species was assigned a major habitat category using the information in the Red List 

assessments. Given the known or suspected tolerance for salinity fluctuations exhibited by 

many clupeiforms, I modified the IUCN Red List classification scheme from two aquatic 
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categories (freshwater, including inland estuarine waters, and marine, including coastal 

estuarine waters) to three categories. Therefore, the freshwater system includes those known 

to occupy only freshwater environments and the marine system includes species restricted to 

marine waters. I added a third, euryhaline category that includes estuarine species, diadromous 

species, and species known or suspected to tolerate changes in salinity. 

Distribution Mapping Methodology 

Maps were created for each species using ArcMAP 10.3 by compiling data from 

published and grey literature, expert knowledge, and online databases (e.g., FishNet2; OZCAM; 

GBIF) on known occurrence along with habitat and depth limits. As marine clupeiforms are 

primarily coastal, the distribution polygons for strictly marine species were standardized using a 

base map that represents either the 200 m bathyline or 100 km from the shore, whichever is 

further from the coast. Bathymetric layers were extracted from two global level sources, the 

National Geophysical Data Center’s ETPO1 (Amante and Eakins, 2008) and the General 

Bathymetric Chart of the Oceans (GEBCO: IOC et al., 2003). Maps for freshwater species were 

created using hydrobasins because these areas are considered as minimum management units 

for freshwater conservation (Lévêque et al., 2008; Carrizo et al., 2013). For species that utilize 

both marine and freshwater habitats (e.g., diadromous species), maps separately followed the 

marine and freshwater protocols, and were then combined to encompass the entirety of the 

species’ range. 
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Species Richness Analyses 

Global maps of overall species richness, Data Deficient richness, and richness of 

elevated concern species were created using ArcMap 10.3 based on two biogeographic 

systems. Species with a freshwater extent (n = 74) were summarized within the Global 

HydroBASINS (Leher and Grill, 2013), using Level 3, the largest river basins of each continent. 

Species with a marine extent (n = 130) were summarized within the Marine Ecosystems of the 

World at the province level (Spalding et al., 2007). This shapefile was modified to include a 

region for the Caspian Sea, as it is excluded from the Global HydroBASINS and Marine 

Ecosystems of the World. Freshwater and marine layers were merged to summarize species 

with both a freshwater and marine extent (n = 201).   

RESULTS 
 

Global IUCN Red List status of clupeiforms 

The best estimate of the proportion of elevated concern for clupeiforms species is 11% 

(n = 33), which includes those assessed as threatened or Near Threatened. Given the 

uncertainty of an appropriate Red List Category for all Data Deficient (DD) species, the true 

proportion of elevated concern species could lie between 8 – 34%. Of all species (n = 405), 

three (0.7%) are listed as Critically Endangered (CR), 11 (2.7%) as Endangered (EN), 13 (3.2%) as 

Vulnerable (VU) and six species (1.5%) as Near Threatened (NT) (Fig. 2). Species are primarily 

listed as threatened or Near Threatened due to a restricted range size with an ongoing threat 

(criterion B; n = 18) or due to population decline (criterion A; n = 10); two species (Sardinella 

tawilis and Alosa vistonica) are listed as threatened under both criteria A and B (Appendix A). 
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Three species are listed as Vulnerable (VU) given that they have a very restricted range and a 

serious plausible future threat (criterion D). Of the remaining 372 species, 266 (65.7%) are 

categorized as Least Concern (LC) and another 106 (26.2%) are considered as Data Deficient 

(DD).   

 

 

Fig. 2. Proportion of species (n = 405) listed in each Red List Category. Abbreviations of Red List 
Categories are as follows: CR = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = 
Near Threatened, LC = Least Concern and DD = Data Deficient. 

 

 

Among the families of clupeiform fishes, the family Denticipitidae consists of only one 

species (Denticeps clupeoides), which is listed as VU; as such, it is the family with the highest 

proportion of elevated concern overall (Fig. 3). However, excluding D. clupeoides, the Clupeidae 

CR: 0.7 %
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(26 of 195 species; midpoint = 16.6%) has the highest proportion of elevated concern species, 

followed by the Engraulidae (5 of 154 species; midpoint = 4.9%) and the Pristigasteridae (1 of 

36 species; midpoint = 3.8%). None of the Chirocentridae (n = 2), Dussumieriidae (n = 10) or 

Sundasalangidae (n = 7) are considered threatened. However, the high proportion of DD 

species, especially within the Sundasalangidae, may be obscuring trends in threat patterns and 

compromising the accuracy of the overall conservation status estimated for these species.  

 

 

Fig. 3. Proportion of species listed in each Red List Category separated by family. The total 
number of species in each family is represented by the number at the top of each bar. 
Abbreviations of Red List Categories are as follows: CR = Critically Endangered, EN = 
Endangered, VU = Vulnerable, NT = Near Threatened, LC = Least Concern and DD = Data 
Deficient. The midpoint is represented by the black bar and was calculated by the following 
equation: (CR + EN + VU)/ (Total – DD).  
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Species classified as euryhaline (i.e., diadromous or estuarine) constituted nearly half of 

the species within the order (n = 201; 49.6%), followed by marine (n = 130; 32.1%) and 

freshwater species (n = 74; 18.3%) (Fig. 4). Euryhaline species have the largest proportion of 

Least Concern species (n = 147; 73.1%) followed by marine (n = 80; 61.5%), and then by 

freshwater species (n = 39; 52.7%). Overall, despite having the lowest number of 

representatives, the freshwater inhabitants have the highest proportion of elevated concern 

species (n = 16; 21.6%), more than double that of the species inhabiting marine and euryhaline 

habitats combined (5.4% and 5.0%, respectively). Additionally, all species assessed as CR, the 

highest threat level, are found in freshwater habitats.  

Major threats 

Of the 405 species, 144 have at least one coded threat; the remaining 261 species either 

have no major threats causing significant impacts or threats are unknown for these species. 

Overall, the most prominent threat by a significant margin impacting all clupeiforms, is 

exploitation (Fig. 5). Pollution and natural system changes (e.g., dams) impact nearly the same 

number of species (47 and 42, respectively). Despite having the highest proportion of LC 

species, euryhaline species are disproportionately impacted by pollution and natural system 

modifications relative to freshwater and marine species. For example, the number of euryhaline 

species impacted by one of these threats is more than 1.5 times the number of fresh and 

marine species combined. Likewise, euryhaline species impacted by both threats (pollution and 

natural system modifications) is double that of the combined number of marine and freshwater 

species impacted by these factors. Climate change and invasive species make up the fourth and 
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fifth most common threat to all species, respectively. However, invasive species impact more 

threatened and NT species than climate change.  

Spatial Analyses 

Global species richness follows two general distribution patterns; a longitudinal 

gradient, where the highest tropical richness is within the Indo-West Pacific, and a latitudinal 

gradient where richness decreases with an increasing latitude from the tropics. The highest 

global species richness of all 405 clupeiforms is located along the coast of India and throughout 

the Indo-West Pacific from the eastern Andaman Sea, east to the Philippines, Indonesia and 

northeastern Papua New Guinea (Fig. 6A). High richness also occurs in the central eastern 

Pacific from Mexico to northern Peru, and the central western Atlantic from the greater 

Caribbean to northern Brazil. Areas of lowest species richness are within the southern and 

northernmost limits of the global range for species of this order (e.g., the Arctic and sub-Arctic 

region, and north of the Southern Ocean), further inland (e.g., the rivers of China, Australia, and 

parts of Africa), and off Polynesian Islands in the central and south Pacific (e.g., Hawaii, New 

Zealand, Society Islands, etc.).  
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Fig. 4. Proportion of species listed in each Red List Category by major habitat (fresh, 
euryhaline or marine). The total number of species is represented by the number at the top 
of each bar. Abbreviations of Red List Categories are as follows: CR = Critically Endangered, 
EN = Endangered, VU = Vulnerable, NT = Near Threatened, LC = Least Concern and DD = Data 
Deficient. The midpoint is represented by the black bar and was calculated by the following 
equation: (CR + EN + VU)/ (Total – DD). 
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Fig. 5. Number of species impacted by major threats. Each threat is represented by the number 
of species listed in each Red List category. Threats that impact less than five species (Human 
intrusion and Transportation) are excluded. Abbreviations of Red List Categories are as follows: 
CR = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = Near Threatened, LC = 
Least Concern and DD = Data Deficient. 

 

 

In general, richness of DD species closely follows that of the total species richness (Fig. 

6C). However, the richness of DD species is higher in northern Australian rivers relative to the 

total species richness. In contrast, the high species richness in Europe, eastern United States 

and South American rivers is not mirrored by high DD species richness.   
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 Fig. 6. Number of clupeiforms in each Large Marine Ecoregion (LME) and freshwater 
hydrobasin for A) All species, B) all species of elevated concern (CR, EN, VU, NT), and C) 
all Data Deficient species. Colors correspond to the number of species listed at the 
bottom of each map. The Marine Ecosystems of the World (MEOW) at the province level 
was used for marine species, Hydrobasins of the world at level three was used for 
freshwater species. The freshwater and marine extents were created separately and 
merged to represent the total global extent for euryhaline species. 
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Conversely, the highest richness of species of elevated concern (threatened and NT, n = 

33) occurs within the greater Caribbean (Fig. 6B). Other areas of high richness of species of 

elevated concern are along the western Pacific continental coast (Russia south to Indonesia), 

and inland areas including the Caspian Sea, rivers of Croatia to Greece and Bulgaria, the Congo 

River in Central Africa, and the rivers of Borneo. A low richness of species of elevated concern is 

found along the northeastern United States, within Central America, along the eastern and 

southern coasts of South America, the western coast of Africa, parts of Europe including the 

Mediterranean and Black Seas, southern Australia, and within some freshwater areas in China 

and Russia. 

DISCUSSION 
 

When compared to other economically and ecologically important fish groups globally 

assessed using the IUCN Red List methodology (e.g., Collette et al., 2011; Sadovy de Mitcheson 

et al., 2013; Comeros-Raynal et al., 2016), clupeiforms have the lowest percentage of 

threatened and Near Threatened (NT) species overall. Just over 8% are currently known to be at 

high risk of potential future extinction as compared to roughly 18% of tunas and billfishes 

(Collette et al., 2011), 26% of groupers (Sadovy de Mitcheson et al., 2013) and 17% of sparids 

(Comeros-Raynal et al., 2016). However, major threats to clupeiforms are nearly identical to 

those found in previous analyses of the conservation status of other fishes (e.g., Roberts and 

Hawkins, 1999; Reynolds et al., 2005; Dulvy et al., 2009; Harnik et al., 2012), with exploitation 

as the leading threat for all clupeiforms in all habitats. While exploitation may be the most 

prolific threat by impacting the highest number of clupeiforms, pollution may be the most 
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detrimental, as it affects a greater number of species assessed as Critically Endangered (CR) 

(Fig. 5). 

The lower proportion of threatened species in clupeiforms compared to other bony 

fishes may be a function of uncertainty of conservation status and is likely an underestimate of 

the true threatened status. The high percentage of data deficiency in clupeiforms (26.2%) 

surpasses that of the tunas and billfishes (Collette et al., 2011) and sparids (Comeros-Raynal et 

al., 2016), which have less than 20% of species that are DD. A DD listing is most often related to 

taxonomic uncertainty, low number of known specimens, unknown geographical range, or 

inability to quantify a threat or decline in population (IUCN, 2012), all of which occur within the 

clupeiforms.  

For individual species, the paucity of data on distribution, status, ecology and threats 

may be a consequence of taxonomic uncertainty (IUCN, 2017). For example, Alosa curensis is 

DD because it was previously recognized as a synonym of Alosa brashnikowi and is known only 

from a few specimens. Thus, information associated with what was previously thought to be 

the single global population of the nominal A. brashnikowi, may not also be applicable to A. 

curensis. Challenges associated with taxonomic uncertainty or recent revision, such as 

estimating decline or geographic range, may allow species-specific threats to go 

undocumented.  

The high proportion of DD clupeiform species coincides with geographic areas of both 

dense clupeiform biodiversity and areas of depressed economic status. In general, global 

biodiversity is unevenly distributed; the most biodiverse places are often areas of high human 
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populations of relatively low per capita income (Baille et al., 2004; Brooks et al., 2006) and tend 

to have the highest number of threatened species (Hoffmann et al., 2010). This pattern is 

reflected in clupeiforms. Countries with high human populations and high biodiversity are less 

likely to have financial resources available for research and conservation purposes (Baille et al., 

2004). In contrast, countries such as those in the advanced economies of Europe invest 

substantially in conservation research and management and have few globally threatened 

species (Baille et al., 2004), including clupeiforms.  

In many parts of the world, particularly in highly biodiverse areas, stock assessments 

and fishery effort data are lacking or unreported for many clupeiforms. Where data are 

available, it is often in the form of raw fishery landings (FAO, 2016) or reconstructed catches 

(Pauly and Zeller, 2016a). These landings often include many species lumped together because 

many clupeiforms that co-occur look very similar, are difficult to identify taxonomically, and are 

known to school together in some cases (e.g. sardines and anchovies: Bakun and Cury, 1999). 

Teasing apart landings from multi-species fisheries is a difficult task and when identifications 

contain many errors can lead to a false estimation of species-specific catch data (Gaichas et al., 

2012). Exploitation is a major threat to over 25% of clupeiform species and this may be an 

underestimate given uncertainties in catch data and the population status of DD species 

(26.2%). Clupeiforms also contribute to many unreported artisanal fisheries (Whitehead, 1985; 

Whitehead et al., 1988), represent a significant portion of bycatch in other industrial trawl 

fisheries (e.g., Stobutzki et al., 2001) and are taken in illegal, unreported and unregulated 

fisheries (IUU: Agnew et al., 2009). Accidental and IUU fishing, along with lumped landings 

adversely affect our ability to quantify global fishing pressure on these species. It can further 
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impact conclusions drawn regarding population trends by underestimating true catches (Pauly 

and Zeller, 2016b) and ultimately impacting the efficacy of conservation or management 

decisions. 

 The highest concentration of threatened species in this analysis is centered in the 

Caribbean region, but this estimate does not take into consideration uncertainty concerning 

species listed as DD. The highest species richness and number of species listed as DD is 

concentrated in the central Indo-West Pacific region. Given that the Caribbean and the Indo-

West Pacific are both areas of high species richness, but that about one-tenth of the Caribbean 

species are assessed as DD compared to roughly one-third of Indo-West Pacific species, we 

therefore know more about the species in the Caribbean in general. Currently, clupeiforms in 

the Caribbean would benefit most from threat mitigation as this region has the highest number 

of threatened and NT species present. It has been noted that the most diverse areas often have 

the highest number of threatened species (Baille et al., 2004). As data become available to 

adequately assess species currently listed as DD, it is possible that we may find a higher 

proportion of threatened and NT species within the Indo-West Pacific rather than within the 

Caribbean. However, currently clupeiforms in the Indo-West Pacific region may benefit most 

from emergent research to fill in our knowledge gaps presented by the high number of DD 

species. 

In addition to the high proportion of DD species, traditional perceptions of intrinsic life 

history traits have been an impediment to the conservation concerns of clupeiforms overall.  

Their typical high fecundity, multiple spawning, and early age at maturation are regarded as 

resilience factors even though these traits often do not reflect vulnerability to extinction 
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(Jennings et al., 1998; Kindsvater et al., 2016; Sadovy, 2001; Juan-Jorda et al., 2012; Comeros-

Raynal et al., 2016). For example, the Pacific herring (Clupea pallasii) is a widely distributed 

species that is exploited to a varying degree throughout a large portion of its range. In some 

regions where this species has experienced drastic declines, subpopulations have not recovered 

even decades after fishing pressure has ceased (see Hay et al., 2001 for description of Yellow 

Sea and Hokkaido – Sakhalin herring). Overall, the intrinsic life history characteristics of many 

clupeiforms may be providing them with a buffer against extinction relative to other taxa such 

as sharks, rays, tunas, billfishes and groupers, but this buffer does not hold for all clupeiform 

subpopulations. 

Synergistic influences of threats can be detrimental to the survival of a population 

(Brook et al., 2008). Often, a freshwater or euryhaline species is threatened by both pollution 

and natural system modifications, indicating a potential cumulative effect between threats. This 

interaction was not explored in this study. Genera with many anadromous representatives such 

as Alosa and Tenualosa appear to be most negatively impacted by one or both threats (e.g., 

Freyhof and Kottelat, 2008b; NatureServe, 2013; Di Dario, 2018b; Mohd Arshaad et al., 2018). 

In line with previous studies of other freshwater fishes (e.g., Collen et al., 2014), freshwater 

clupeiforms have over double the proportion of threatened and NT species compared with 

marine and euryhaline clupeiform species combined (% threatened and NT = 21.6% of FW, 5.4% 

for marine, and 5.0% for euryhaline). Given that all species listed as Critically Endangered (CR) 

are freshwater clupeids, the responses of these fishes to stresses should be examined more 

closely.  
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Given the overall importance of clupeiform fishes and their ubiquity as an important 

fishery resource, there should be concern regarding these species despite the lower percentage 

of threatened species compared to other fish groups of higher economic value. Many species 

threatened with exploitation have monitoring in place, which may not be sufficient; therefore, 

it is urgent that the efficiency of current management measures is evaluated. An increase in 

species-specific landings and catch statistics would also further improve our abilities to assess 

exploitation as a threat for a larger number of species. Additionally, a few large-scale industrial 

fisheries, such as those for the Peruvian anchoveta (Engraulis ringens) and for the Pacific 

herring (Clupea pallasii), may benefit from increased multi-national cooperative regulations. 

Species listed as an elevated conservation concern should be monitored more closely and 

anthropogenic pressure strictly managed although prioritizing research and conservation 

initiatives in areas of high biodiversity can be difficult given limited resources. Fishery managers 

in areas with a large proportion of exploited DD species should prioritize research initiatives to 

fill gaps in our understanding of these species. At a local level, species with limited ranges, such 

as Alosa killarnensis (Freyhof and Kottelat, 2008) and Sardinella tawilis (Santos et al., 2018), 

should be a priority for stringent protection, especially regarding habitat quality, which impacts 

mainly freshwater and estuarine species. 
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CHAPTER 3 

 

CHARACTERIZING CLUPEIFORM THREATS, LIFE HISTORY TRAITS, AND HABITAT 

PREFERENCE TO INFORM MANAGEMENT OF DATA DEFICIENT SPECIES 

 

INTRODUCTION 
 

Aquatic biodiversity supports ecosystem health and the ecosystem services we rely 

upon (Brooks et al., 2006). Covering more than 71% of the Earth’s surface and even more 

inhabitable space by volume, freshwater, estuarine and marine environments supply more than 

40 million jobs with an estimated contribution of several trillion dollars annually to the global 

economy (Darwall et al., 2011; FAO, 2018). The services provided by our aquatic ecosystems 

include food provisioning, climate and atmospheric regulation, carbon sequestration, flood 

control, storm protection, nutrient cycling and waste removal (Aladin et al., 2005; Worm et al., 

2006; Palumbi et al., 2009). Despite our reliance on aquatic resources, conservation initiatives 

have lagged far behind those of the terrestrial realm (Hilton-Taylor et al., 2009; Polidoro et al., 

2009; Darwall et al., 2011). Resource limitation and exigent needs have resulted in prioritized 

conservation within marine and freshwater environments to support species groups such as 

mammals (Freeman, 2008), sharks (Dulvy et al., 2008) and turtles (Seminof and Shanker, 2008), 

or regions of most concern such as the Mediterranean Sea (Smith and Darwall, 2006; Abdul 

Malak et al., 2011). However, the conservation and management dilemmas of priority species 

cannot be solved without also incorporating the complexities and trade-offs of the ecosystem, 
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including the effects of predator-prey interactions. Thus, recent interest has shifted toward 

ecosystem-based management to account for ecological, economic and societal challenges 

associated with fisheries management (Link, 2002; Pikitch et al., 2004, 2012, 2014; Palumbi et 

al., 2009).  

Clupeiforms, including herrings, shads, sardines, anchovies and their relatives make up 

the bulk of what we consider to be forage fishes (Whitehead, 1985) as they are a major food 

source for many aquatic predators (Pikitch et al., 2012). In addition to providing support for 

many other, often commercially important species, clupeiforms make up lucrative fisheries on 

every continent where they are distributed (Whitehead, 1985). They have supported the 

world’s largest fishery in history (the Peruvian anchoveta, Engraulis ringens: Whitehead, 1985) 

and continue to support substantial fisheries worldwide (FAO, 2018). Clupeiform fisheries make 

major contributions to international industrial commodities and provide nutritional security for 

billions of people globally each year (Alder, 2008; Tacon and Metian, 2009).  

Management and conservation regulations for clupeiforms are often lacking in the 

places where needed most, such as in tropical areas of highest biodiversity with the lowest 

capacity to fund such initiatives (Worm and Branch, 2012). Current management efforts are 

often species-specific for the well-known or heavily exploited species of clupeiforms. 

Management objectives using Maximum Sustainable Yield, biomass cutoff limits, or gear 

restrictions have worked well for managing and rebuilding some stocks including, for example, 

the Pacific herring, Clupea pallasii (WDFW, 2018) which is in a low biodiversity temperate 

region. However, regions of high biodiversity of clupeiforms generally lack species-specific 

management capabilities. 
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In tropical regions with high biodiversity, multispecies catches of clupeiforms are often 

very difficult to identify to the species level (Whitehead, 1985; FAO, 2018) confounding fishery 

management efforts. Instead, species are categorized with variable resolution into taxonomic 

groups by genus or family, or into functional groups such as ‘forage fishes’ or ‘small-to medium-

sized pelagics’, with similar management strategies applied to all species in the group 

(Beverton, 1990; Patterson, 1992). However, clupeiforms express an extensive spectrum of 

diversity of life history features among species (Whitehead, 1985; Bloom and Egan, 2018). For 

example, maximum known lengths vary from about 2 cm in species of Sundasalanx (Roberts, 

1981) to 100 cm in Chirocentrus nudus and C. dorab (Munroe et al., 1999) with known 

longevities spanning from less than one year in Spratelloides gracilis (Milton et al., 1991; 

Meekan et al., 2006) to up to 25 years in Sardinops sagax (Whitehead, 1985). Total geographic 

distributions extend from a single small lake as in the case of Alosa killarensis (Freyhof and 

Kottelat, 2008) to the entire Indo-West Pacific in Sardinella gibbosa (Whitehead, 1985). 

Clupeiforms span maximum depths from less than 10 meters in Anchoa analis (Whitehead et 

al., 1988) to more than 400 meters in Clupeonella grimmi (Aliasghari et al., 2017). Habitat 

preference and tolerance of ecological conditions also vary widely in species throughout the 

order with representatives from freshwater, estuarine, marine and diadromous groups 

(Whitehead, 1985).  

The highly variable life history traits of clupeiforms suggests that diverse management 

approaches that account for this variation may help solve management hurdles in data poor 

fisheries (Siple et al., 2018). Identifying differences and similarities among species to group 

them based on shared life history, ecological characteristics, and response to threats may 
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provide tractable management strategies. Particularly in areas of high clupeiform diversity 

where ecological and biomass data are relatively limited, traditional management strategies are 

challenged by data limitation (Smith et al., 2009; Carruthers et al., 2014). Methods dealing with 

data-poor fisheries are often in the form of a ‘Robin-hood’ approach, where borrowed 

information from a similar, well-known species is used to make decisions for the lesser known 

species (Smith et al., 2009). However, given the diversity of clupeiforms, (Whitehead, 1985; 

Bloom and Egan, 2018) information from many of the well-known species may not be 

applicable to those that are data limited. Therefore, an alternative ‘basket’ approach, where 

similar, data-poor species are binned and managed together (Smith et al., 2009), may prove to 

be the more useful management approach.  

METHODS 
 

The IUCN Red List is a globally recognized standard for assessing species-level extinction 

risk and acts as a baseline from which to monitor change (Vié et al., 2009). IUCN Red List 

assessments were conducted for the 405 valid clupeiform species following Eschmeyer et al., 

(2017) and taxonomic expertise (Appendix A). Four nominal species were described as new or 

elevated from synonymy since December 2018; species Red List assessments for these taxa 

have been completed, but the information from these assessments is not included in this 

analysis. Each assessment includes expert-vetted information on geographic distribution, 

population trends, ecology, potential threats and existing conservation measures (for detailed 

Red List methodology, see Ch. 2 and Appendix B). 
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Multivariate analyses are widely used in ecology to address increasingly complex 

questions and are used here to explore patterns within available clupeiform data. These 

sophisticated ordination techniques are required to reduce dimensionality and visualize 

patterns in multivariate data (Anderson and Willis, 2003). Analysis options include 

unconstrained methods such as principal component analysis, principal coordinate analysis and 

nonmetric multidimensional scaling, whereas constrained methods include such analyses as 

canonical discriminant analysis, canonical correlation analysis and canonical analysis of principal 

coordinates (Anderson and Willis, 2003). Unconstrained methods are typically used to discover 

unknown or suspected patterns in data (Anderson and Willis, 2003). In general, constrained 

ordinations use a priori hypotheses from which to produce a plot so that a matrix of response 

variables such as community or species data can be related to some predictor variable or 

variables, such as measured ecological data. Canonical analysis of principal coordinates (CAP) is 

a flexible constrained method that allows the use of any distance or dissimilarity measure and 

accounts for underlying correlation structuring among response variables (Anderson and Willis, 

2003).  

To explore which known characters from well-studied species can be used to help bin 

together and possibly improve conservation measures for poorly-known species, two CAP 

analyses were conducted. Species-specific data were exported from the International Union for 

Conservation of Nature (IUCN) Red List of Threatened Species open-sourced database (available 

at: www.iucnredlist.org) and organized into matrices. These matrices of species data were then 

imported into PRIMER-e with PERMANOVA+, a multivariate statistical software for ecological 

sciences (Anderson et al., 2008; Clarke and Gorley, 2015). A Bray-Curtis similarity test was then 
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run on the matrix data to quantify the similarities between species relative to the input 

variables. I tested for significance between groups in a priori hypotheses using a permutational 

multivariate analysis of variance (PERMANOVA). Finally, CAP was used to visually compare 

species assemblages and to ascertain which axes in a multivariate space effectively discriminate 

between a priori groups. A unit circle and vectors of the response variables were overlaid on 

the CAP figure to determine which variables most influence the observed patterns.  

Additionally, I explored the effects of habitat on the maximum size of 394 exploited and 

non-exploited species (all species for which maximum size data were available).  I used a two-

way analysis of variance (ANOVA), followed by a Tukey HSD post-hoc test for pairwise 

comparisons. Analyses were completed using the R Project version 3.4.3 (R Core Team, 2017) 

and RStudio.   

To determine how major threats vary as a function of the primary occupied habitat 

system (freshwater, marine or euryhaline), the species with major threats identified as part of 

the IUCN Red List assessments (n=144) were included in a CAP analysis. The remaining 261 

species have either no major threats identified, or threats are suspected but unconfirmed. The 

threats identified for each species were organized based on the IUCN threat classification 

hierarchy (IUCN, 2012) and include exploitation, climate change, mining, human disturbance, 

invasive species, natural system modifications, which primarily refers to dam placement or 

water abstraction, pollution, residential and commercial development, and transportation 

corridors.  
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I included two explanatory variables: the IUCN Red List categories and the primary 

occupied habitat system (freshwater, marine, euryhaline). The IUCN Red List categories include 

Data Deficient (DD), Least Concern (LC), Near Threatened (NT) and the threatened categories: 

Vulnerable (VU), Endangered (EN), Critically Endangered (CR) Extinct in the Wild (EW) and 

Extinct (EX) (IUCN, 2012; Chapter 2, Fig. 1). Given the high degree of plasticity in salinity 

tolerance that is known or suspected for many clupeiforms, I modified the habitat system 

classification used in the IUCN Red List methodology. Instead of including just two aquatic 

categories (freshwater, including inland, brackish and upper estuarine waters, and marine, 

including coastal or lower estuarine waters: IUCN, 2013), I added a third, euryhaline category 

that separates the estuarine component from the Red List classifications. Therefore, the 

freshwater system refers to species currently known to occupy freshwater habitats with no 

documented tolerance of an increased salinity; marine species are known to tolerate only 

marine waters. The euryhaline category comprises a variety of species including strictly 

estuarine species, diadromous species and those known or presumed to tolerate wide salinity 

fluctuations. Separating estuarine and diadromous groups was problematic as several species 

could not be easily classified into one of these two groups. For example, a species may be 

known to tolerate a wide range in salinity with records from both marine and freshwaters, but 

diadromy is unconfirmed. Therefore, a single, euryhaline category was implemented to account 

for all estuarine species and those known to withstand salinity fluctuations to a varying degree.    

To address which life history characteristics are most important in determining 

clustering of species of elevated conservation concern, life history and ecological traits of all 

threatened and NT species (n=33) were included in a second CAP analysis. I included the 
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following as response variables: maximum standard length, number of coded threats, habitat 

system preference (freshwater, marine or euryhaline), habitat specificity (generalist or 

specialist) and proxies for distribution and relative clupeiform richness in an area where a 

species is found.  Habitat system preference and habitat specificity (generalist or specialist) are 

numerical variables coded within the input matrix. Habitat system data were carried over from 

the species-threat matrix. Within Red List assessments, the number and type of habitats 

occupied by a species are coded based on information from available literature; this 

information was pulled from assessments and used to assign a species as either a habitat 

generalist or specialist. The attribution of a species to one of the two categories follows Stump 

et al., (2018); if a species occupies only one coded habitat type (i.e., freshwater lakes/rivers) it 

was considered a specialist and if it occupies more than one habitat type (i.e., freshwater rivers 

and coastal marine waters), it was considered a generalist. A numerical estimate of total 

geographic distribution area was measured by determining the number of countries where a 

species is known, inferred or suspected to occur. Using the distribution shapefiles of each 

species, estimated clupeiform diversity in an area where a species is found was measured in 

ArcMAP 10 by adding the number of other clupeiforms that have an overlapping distribution 

with an individual species.  

 

RESULTS 
 

For clupeiforms with at least one identified threat (n = 144), the CAP analysis revealed a 

separation of species assemblages as a function of habitat system, specifically between threats 
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impacting freshwater and marine species (Fig. 7). The euryhaline species assemblage overlaps 

with both the freshwater and marine species clusters. This partitioning is supported by a 

significant difference between habitat systems (PERMANOVA, p = 0.001, 999 permutations).  A 

pair-wise comparison indicates that threats experienced by marine species are significantly 

different from those of both freshwater (p = 0.001) and euryhaline species (p = 0.001), but 

euryhaline and freshwater threats are not significantly different from each other (p = 0.432).  

 Three of the nine major threats identified were highlighted as the most pervasive by 

examining the vector length of explanatory variables: exploitation, pollution and natural system 

modifications. In general, the primary threat to marine species is exploitation, impacting 34 out 

of 38 species (89.5%) impacted by a threat. Comparatively, freshwater species tend to be more 

collectively impacted by pollution and natural system modifications than marine species (Fig. 

7), both of which individually affect 37.5% of the freshwater species that are impacted by at 

least one major threat. However, exploitation is the most prevalent threat to freshwater 

clupeiforms, impacting 62.5% (20 of 32 species) of those with a recorded threat. Euryhaline 

species are impacted by all three major threats. Exploitation impacts the largest proportion of 

euryhaline species (70.3%), while the proportion affected by pollution and natural system 

modifications (41.9% and 36.5%, respectively) rivals that of the freshwater species. Of the 

marine species with a recorded threat, only two, Harengula jaguana and Sardinella maderensis, 

are impacted by pollution (Tous et al., 2015; Munroe et al., 2019). Both species occur at or near 

estuary mouths and are impacted by various sources of pollution, such as agricultural and 

industrial effluents. Likewise, an additional two marine species, Anchoa helleri and Nemalosa 
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japonica, are impacted by natural system modifications that include heavy coastal land 

reclamation and water diversions (Iwamoto et al., 2010; Di Dario, 2018a).  

Seven distinct groups have been identified among the clupeiforms with major known 

threats based on the string of threats impacting each species (Fig. 7). Except for group 7, at 

least one species from each primary habitat (freshwater, euryhaline or marine) is represented 

in every group. All species within a group share similar threats. For example, groups 1, 3, and 6 

represent 14, 64, and 12 species, respectively that are all impacted by one of the most 

prominent threats (natural habitat system changes, exploitation, or pollution). Species within 

group 1 are primarily only impacted by changes to the natural habitat such as dams and water 

abstraction. Group 3 represents species that are all primarily threatened by exploitation and 

group 6 represents those mostly impacted by pollution. Groups 2 and 7 are characterized by 

species likely impacted by two of the most prominent threats, pulling them in between the two 

threat vectors in space. For example, group 2 represents 11 species threatened by both 

exploitation and natural system modifications, whereas species in group 7 are impacted by 

natural system changes and pollution. Groups 4 and 5 include species threatened by two of the 

most prominent threats and by at least one of the less influential threats, such as climate 

change or mining. 
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Fig. 7. Canonical Analysis of Principal Coordinates (CAP) ordination of species with known 
threats in multivariate threat space by primary habitat system (n = 144). Habitat system 
abbreviations are E = Euryhaline, F = Freshwater and M = Marine. The three most 
prominent threats – Exploitation, Pollution and Natural system modifications are labelled; 
major threats including climate change, mining, human disturbance, invasive species, 
residential/commercial development and transportation corridors impact a smaller 
proportion of species and are not labelled. Each species is represented by a single symbol; 
however, as there is substantial overlap, symbol transparency was set at 50% to indicate 
where overlaps occur. Thus, symbols that appear darker in color represent more species 
than lighter symbols. Each group of species, indicated by the numerical value above the 
group, represents a different number of species: group 1 – 14 species (E = 7, F = 6, M = 1); 
group 2 – 11 species (E = 6, F = 4, M = 1); group 3 – 64 species (E = 25, F = 9, M = 30); group 
4 – 21 species (E = 16, F = 2, M = 3); group 5 – 18 species (E = 10, F = 6, M = 2); group 6 – 12 
species (E = 7, F = 4, M = 1); group 7 – 4 species (E = 3, F = 1, M = 0). The direction and 
length of the vectors represent the relationship between the ordination axes and threat 
type.  
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Results of the CAP analysis on known life history characteristics of elevated concern 

species (n = 33) show slight partitioning between the three habitat systems (freshwater, 

marine, euryhaline), but is most notable between marine and freshwater fishes (Fig. 8). A 

significant difference occurs between characteristics of species within the three habitat systems 

(PERMANOVA, p = 0.001, 999 permutations). Based on a pair-wise comparison, characters 

exhibited by freshwater species are significantly different from those of both euryhaline (p = 

0.001) and marine (p = 0.002) species, whereas marine and euryhaline species are not 

significantly different from each other (p = 0.079).  

Two explanatory variables, maximum standard length and relative clupeiform diversity, 

have the most influence on the species assemblage pattern. In general, freshwater species of 

concern tend to have smaller maximum standard lengths compared to euryhaline and marine 

species. Clupeonella grimmi, Anchoa choerostoma and Opisthonema berlangai are the only 

three marine species that cluster with the freshwater species, likely because they are some of 

the smallest marine species included in the study and are also those with the lowest number of 

other clupeiforms present in their ranges.  
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Fig. 8. Canonical Analysis of Principal Coordinates (CAP) ordination of threatened and Near 
Threatened species-specific life history and ecological traits in multivariate space by primary 
habitat system (n = 33). Habitat system abbreviations are E = Euryhaline, F = Freshwater and 
M = Marine. The two most prominent traits – maximum size in cm (MaxSL) and number of 
other clupeiforms within a species distribution (Richness) are labeled; additional traits 
represented by the unlabeled vectors include habitat requirements (e.g., generalist or 
specialist), the number of country waters a species is distributed within and total number of 
threats known to impact a species. Individual symbols represent a single species; symbol 
transparency was set a 50% to indicate where species are overlapping. The direction and 
length of the vectors represent the relationship between the ordination axes and the life 
history and ecological characters. 
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Fig. 9. Mean maximum standard length (cm) of clupeiforms (n = 394) as a function of primary 

habitat system (marine, euryhaline, freshwater) and exploitation status (exploited or not 

exploited). Grey bars indicate mean size of exploited species; white bars represent mean size of 

unexploited species. Standard error is indicated by the black vertical lines. 

 

 

Table 1 

Tukey HSD pair-wise comparisons of exploited vs. non-exploited species within each primary 
habitat system. Difference is the difference in means of standard length, Lower bound and 
Upper bound refer to the lower and upper confidence intervals, and p-adjusted indicates the 
adjusted p-values for the possible pairs. The marine and euryhaline systems show a significant 
difference between the size of exploited vs. non-exploited species; the difference in size 
between exploited and non-exploited freshwater species is not significant.  

Habitat Difference Lower bound Upper bound P-adjusted 

Marine  12.73 5.82 19.64 <<0.05 
Euryhaline  13.81 8.04 19.58 <<0.05 
Freshwater  -0.01 -9.22 9.20 1.00 
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DISCUSSION 
 

Marine, freshwater and euryhaline clupeiforms are influenced by threats differently. 

Additionally, life history characteristics influencing susceptibility to threats also differ according 

to these major habitat types.  In general, marine and freshwater species exhibited different 

responses to threats, and were influenced by different life history characteristics. Euryhaline 

species had similar responses to threats as freshwater species but were more similar to marine 

species in susceptible life history characteristics. Some shared threats such as exploitation 

affect species differently among these habitat systems.  

Within each habitat system, size can influence how threats impact species. While 

exploitation affects species of all sizes within each habitat system, larger-bodied species are 

more impacted in marine and euryhaline systems (Fig. 8 and 9). For example, large-scale 

commercial fisheries often target the larger-bodied marine and euryhaline species (e.g., 

Atlantic herring, Clupea harengus) or multi-species groups and genera (e.g., Stolephorus spp.). 

Some of the largest-bodied exploited clupeiforms tend to be diadromous species in euryhaline 

waters where the passage through narrow estuaries makes them easily harvestable and 

increases their vulnerability as many are purposely targeted throughout various stages of 

ontogeny (McDowall, 1999). For example, the anadromous Tenualosa macrura (NT) and T. toli 

(VU) are a delicacy in Malaysia and Indonesia where small males are fished in marine waters 

and large ripe females are targeted for roe during spawning runs (Di Dario, 2018b; Mohd 

Arshaad et al., 2018) limiting their ability to repopulate. In contrast, freshwater species tend to 

be exploited based on geographic availability instead of size; the smallest known exploited 

clupeiform, Nannothrissa stewarti, is a freshwater species with a maximum known standard 
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length of 2.3 cm. Freshwater and inland fisheries typically support small-scale commercial, 

artisanal and subsistence fisheries of clupeiforms for food rather than reduction-type fisheries.  

For clupeiforms, exploitation is the most important threat in all three habitats both in 

terms of numbers of species listing fisheries as the most prominent threat (Chapter 1) and in 

numbers of species corresponding to the exploitation axis in the CAP analysis (Fig. 7). However, 

30 out of 38 (79%) marine species with a known threat are only or mostly impacted by 

exploitation (group 3 in Fig. 7) making this group proportionately the most heavily impacted by 

fisheries among the three habitats, compared to less than 40% of euryhaline species and less 

than 30 % of freshwater species in group 3. Fishery collapse of low trophic-level species has 

been linked to high fishing mortality and a long history of a developed fishery (Pinsky et al., 

2011), as is the case for many clupeiforms. For example, the Pacific herring, Clupea pallasii, a 

temperate marine species widely distributed in the northern Pacific Ocean, has a complex 

population structure with multiple spawning stocks that have been fished for millennia and 

have supported industrial fisheries since the early 1900s (Hay et al., 2001). Despite long-term 

management and monitoring throughout most of its range, some spawning stocks are 

increasing in abundance (e.g., Quilicene Bay stock: WDFW, 2018), while a neighboring stock 

may be in a critically low state even after long periods of closed fisheries (e.g., Cherry Point 

stock: WDFW, 2018). In contrast, the world’s only freshwater sardine (Bombon sardine, 

Sardinella tawilis) is a tropical species endemic to a single lake in the Philippines (Whitehead, 

1985; Papa et al., 2008) and is one of the most commercially important fish in the country 

(Mutia, 2015) with limited monitoring and regulation until relatively recently (Villanueva et al., 

1996; Willette et al., 2011; Mutia, 2015). Illegal and over-fishing practices have resulted in 
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declining catches of S. tawilis since the late 1990s (Marmaril, 2001; Mutia et al., 2004, 2015). An 

example of estuarine species that also appear to by heavily exploited with inadequate 

management are the anadromous species of Tenualosa in Malaysia and Indonesia (Di Dario, 

2018b; Mohd Arshaad et al., 2018). These three ecologically different species (C. pallasii, S. 

tawilis and Tenuolosa spp.) have responded similarly to exploitation with apparently 

unsustainable population declines in some cases, both with and without long-term complex 

fisheries management. It is suspected that the response of other, lesser-known clupeiforms to 

high fishing pressure across habitat systems is comparable. 

Exploitation is a much more prevalent threat for marine clupeiforms than freshwater 

and estuarine clupeiforms even though exploitation is the most ubiquitous threat in all three 

major habitat types. In IUCN Red List assessments, exploitation threats are essentially nullified 

if the population is managed sustainably. Typical fisheries management practices such as those 

based on Maximum Sustainable Yield, fishing effort, or gear restrictions may not be appropriate 

for some exploited clupeiforms, particularly data-limited species that are targeted in un- or 

poorly regulated fisheries. Instead, simple strategies based on what is known about species 

such as primary habitat type and other easily recognizable traits such as body size may be a 

useful approach to manage clupeiforms. This may allow management measures to be tailored 

to species groups with limited data if the response to threats within the group is similar to what 

we observe for other data-rich clupeiforms within the same habitat.  

Grouping species for management purposes using readily available traits as I show here 

in an exploratory CAP approach is consistent with existing fisheries management schemes. 

Recent proposed management methods are shifting from single-species to multi-species and 
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ecosystem-based management which would better support the trophic interactions of forage 

fishes and their predators (Coll et al., 2008; Pikitch et al., 2012, 2014; Essington et al., 2015; 

Siple et al., 2018). However, the complex data needed to implement these strategies is only 

available for data-rich forage fishes. Recent work by Siple et al., (2018) suggests that the best 

management strategies for forage fishes incorporate species-specific life history traits. Given 

that life history data are limited for the majority of clupeiforms, this exploratory CAP analysis 

shows that groups can be separated as a function of habitat system and available natural 

history traits. By binning the data-limited clupeiforms into simple, discrete groups based on 

what we currently know, our ability to efficiently manage and conserve these species may 

improve. Similar approaches may also be useful for other ‘small pelagic’ taxa characterized by 

high ecological diversity and data-limitations.  

Aside from the threat of exploitation, pollution and natural system modifications that 

degrade habitats and their ecosystem services are most detrimental to freshwater, euryhaline, 

and some nearshore marine species. Neither of these threats show size-specificity; however, 

larger euryhaline species likely experience threats differently than smaller freshwater species. 

For example, dams indiscriminately impact freshwater and euryhaline species of all sizes by 

fragmenting suitable habitat and preventing migration away from a threat (van Puijenbroek et 

al., 2019). However, typically large diadromous species would be heavily impacted by dams 

during spawning runs (McDowall, 1999; Marmulla et al., 2001). For example, severe reductions 

in population abundance and local extirpations were observed in the American shad, Alosa 

sapidissima because of damming (Haro and Castro-Santos, 2012). Similar trends have been 

reported for the Pontic (Alosa pontica) and Allis (Alosa alosa) shads in Europe (van Puijenbroek 
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et al., 2019) as well as for the tropical Hilsa shad (Tenualosa ilisha) in the Indian Ocean (Hossain 

et al., 2019). Dam modifications (e.g., fish passages) to accommodate shad spawning migrations 

have existed for more than 250 years (Haro and Castro-Santos, 2012); however, these 

mitigations do not help spawning populations already driven away from natal streams 

(Sprankle, 2005; Monk et al., 1989).   

Maximizing differences among groups using CAP (Anderson and Willis, 2003) helps 

examine conservation questions of clupeiforms; however, it is not without its limitations. This 

method has been used previously in conservation studies of a regional assemblage of all 

threatened and NT shallow water bony fishes (Linardich et al., 2019) and a variety of imperiled 

Canadian species (McCune et al., 2013). Here it was applied to a single Order of predominantly 

forage fishes with a more limited variability of natural history characteristics than what is 

observed in a diverse regional group of species. In addition, data is limited by information 

compiled in the IUCN Red List species accounts. Common life history traits used to assess 

population trends in the Red List assessments (e.g., age or size at maturity, fecundity, longevity, 

etc.) are unknown for many clupeiforms. Therefore, only widely available natural history traits 

were used, such as maximum length, number of threats, habitat system preference, habitat 

specialization, and proxies for distribution and relative clupeiform diversity.  

Assigning habitat system categories was also challenging, particularly when 

distinguishing between true diadromous and salinity-tolerant species. Many species were 

lumped into a single euryhaline category because the existence of diadromy is possible, but 

unknown for many clupeiforms. Additional research on habitat requirements and basic biology 

would greatly benefit our ecological understanding of this group and improve future analyses of 
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threats and conservation needs. A high degree of local knowledge is suspected to be 

sequestered in unpublished and gray literature. Efforts to make local and indigenous knowledge 

accessible to the public would also work to expand our understanding of the conservation 

status of this group.  

Threats to clupeiform fishes will continue to worsen without comprehensive mitigation 

and improved fisheries management should be highest priority given its prevalence while 

remaining cognizant of other threats. While more information is needed regarding the negative 

impacts of processes like climate change, this analysis suggests that short-term conservation 

efforts should also focus on minimizing localized threats in all habitats. Specifically, national and 

local measures should be taken to reduce the impact of habitat degradation on freshwater, 

euryhaline, and nearshore marine fishes. By mandating local pollution mitigation and dam 

removals, suitable habitat can be restored, which can substantially contribute to the local 

economy by increasing recreational use and ecotourism. Compounding strategies that limit 

pollution and remove multiple dams have shown to restore natural fish populations in the 

Cuyahoga River, Ohio after many years of severe degradation (State of Ohio Environmental 

Protection Agency, 2008) and may also prove successful for clupeiform fishes.  

Given that our reliance on clupeiform fishery resources is expected to increase, future 

work should build upon the CAP results by refining the characters used as an approach to 

develop new or improve existing management of similar data-limited fisheries. A broad 

management scheme that provides at least somewhat effective regulation to many similar 

species is preferred over a complete lack of management or monitoring, as is currently the case 
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for many of these clupeiform fisheries. Following this approach, we may also inch closer to the 

goal of ecosystem-based fisheries management. 
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CHAPTER 4 

 

DISCUSSION AND CONCLUSIONS 

 

This thesis represents the first evaluation of the global conservation status of all 

members of the Order Clupeiformes and the first attempt to characterize known threats and 

life history traits by preferred habitat system. Despite many recent morphological, phylogenetic 

and group-specific works (e.g., Di Dario, 2004; Lavoué et al., 2013, 2014; Hata and Motomura 

2017; Loeb et al., 2018; Bloom and Egan, 2018), the compiled species-specific IUCN Red List 

assessments represent the first review of all species since Whitehead (1985) and Whitehead et 

al., (1988) assembled taxonomic and biological information on all valid clupeoid species.    

This also represents the first initiative to synthesize conservation information from IUCN 

Red List assessments for a single aquatic taxonomic group with representatives of all habitat 

types and a particularly high number of diadromous species. Many Red List assessments exist 

for diadromous species, including representatives of sturgeons, salmons, lampreys, anguillid 

eels and now, clupeiforms. However, except for the global conservation status of the mostly 

catadromous, anguillid eels (n = 13: Jacoby et al., 2015), diadromous species are often included 

within regional freshwater initiatives (e.g., Freyhof and Brooks, 2011; Kottelat et al., 2008), 

even if they are anadromous and spend most of their life cycle in marine waters. While this 

method may work to address major regional and system-wide conservation issues, it can 
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undermine the true conservation status of specific taxonomic groups by excluding part of their 

range from analyses. For example, because all anadromous lampreys were assessed with the 

European freshwater fishes (Freyhof and Brooks, 2011), the respective European marine fishes 

initiative did not include them (Nieto et al., 2015), despite that their marine ranges were 

excluded from freshwater analyses (Freyhof and Brooks, 2011—Appendix 4). The addition of 

clupeiforms to the IUCN Red List increases the representation of diadromous species within 

global analyses of overall species conservation.  

Highlighting large-scale species patterns from a conservation perspective is a beneficial 

tool that can answer broad questions with more certainty. By looking at these patterns across 

an entire taxonomic group, underlying relationships have been uncovered (e.g., widespread 

major threats, geographic areas of most concern). Ultimately, this synthesized information may 

be used to influence management and implement better informed conservation measures with 

a higher probability of success. For example, we now know which threats are the most 

pervasive to all clupeiforms globally – exploitation, pollution and natural system modifications, 

and that the impacts of these threats are heavily influenced by primary habitat system and the 

size of the species. This highlights strategies to address specific threats within each habitat 

system.  

The geographic areas of most concern for clupeiforms (e.g., the Caribbean and the Indo-

Malay-Philippine Archipelago) were also identified in this study and support the findings of 

other Red List syntheses of taxonomic groups, including the groupers (Sadovy de Mitcheson et 

al., 2013), coastal sharks and rays (Dulvy et al., 2013), freshwater fishes (Collen et al., 2014), 
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and bonefishes (Adams et al., 2014). Across all assessed taxa, it is becoming increasingly 

apparent that these large regions with the highest biodiversity warrant management 

prioritization, especially given that these areas are also where cumulative human impacts are 

increasing (Halpern et al., 2015). Resources are needed both in research, because of the high 

number of species and subsequent large proportion of Data Deficient species, and for 

conservation planning, due to the high number of threatened and Near Threatened species. 

These emphasized patterns and subsequent increases in our knowledge base will allow us to 

direct attention to overexploited stocks, heavily degraded waterways and regions most in need 

of conservation.  

Piecing together patterns at a global scale can be extremely useful in assessing broad 

consistencies but is not without its challenges. Limited by the underlying data, results are 

subject to shift in response to an increase in available information. Aside from missing data, a 

plethora of relevant and potentially useful information remains sequestered in unpublished or 

gray literature. An increase in open-access knowledge regarding geographic distribution, 

habitat utilization (specifically for spawning and migratory behavior), and total catches would 

elevate our understanding of clupeiform conservation status. Also, increased impact 

assessments of local threats on biodiversity would provide opportunity to better quantitatively 

assess threats to the clupeiforms present in those areas. Additional to insufficient data for 

many species, the methodology and level of detail, length and consistency of monitoring 

available are sources of variation both within and between countries, which can make an 

accurate synthesis of conservation status difficult.  
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As with many taxonomic groups, clupeiforms have long been plagued with unresolved 

taxonomy (Whitehead, 1985), hindering biological assessments. Despite recent attempts to 

untangle taxonomic relationships, some species-level distinctions are still questioned, such as 

those within the genus Sardinops (Whitehead, 1985; Parrish, 1989) and new species continue to 

be described such as within the genera Sardinella and Stolephrous (Hata and Motomura, 2018, 

2019a, 2019b). While taxonomic changes advance our understanding of a species group, they 

can have implications within extinction risk assessments. For example, the two most important 

criteria of distribution and population size often change with information provided in 

taxonomic revisions and decreases in either of these criteria may result in an increase of risk of 

extinction.  

In this study, the challenges stemming from data limitation and taxonomic uncertainty 

resulted in many clupeiform species assessed as Data Deficient. The resulting uncertainty in the 

overall threat status of clupeiforms presents faults in our understanding of conservation status 

for these species. Uncertainty may result in an underestimate of the true risk of extinction, 

leading to missed opportunities to apply appropriate mitigation (Davidson et al., 2012; Bland et 

al., 2014; Dulvy et al., 2014). Therefore, threatened and DD species impacted by multiple 

threats, particularly those that migrate between habitat systems, should take priority for future 

research and re-assessments similar to what was determined for the porgies (Comeros-Raynal 

et al., 2016). 

This study represents the current picture of conservation status of clupeiforms based on 

the best available data. It is a starting point and will provide a more comprehensive 
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representation as more data are funneled into the species-specific re-assessments. By 

monitoring changes in conservation status of many taxa and continuing to add whole 

taxonomic groups onto the IUCN Red List, we can refine and enrich our understanding of 

biodiversity conservation and redress the declining state of biodiversity across the globe by 

providing better information for making more informed decisions. Outside of the scientific 

community, the IUCN Red List assessments and subsequent analyses may inform all 

stakeholders and end-users, including, fishers, processers, and consumers. Embracing 

biodiversity conservation will allow us to see maximum benefits for all parties, including the 

long-term sustainable use of our aquatic resources as well as helping to maintain or replenish 

the balance of the ecosystem. 

Addition of this group to the Red List acts as further evidence in support of overarching 

conservation dilemmas and as a catalyst for change such as decreasing local human impact on 

aquatic ecosystems and resources. For example, a common finding among these species-

specific initiatives is that the major threats most prevalent to clupeiforms are also those that 

negatively impact many other taxa. While the individual effects and the intensity of the threat 

may vary by species and locality, the overall outcomes tend to be similar, further supporting the 

need for local as well as multinational threat mitigation. It will not only benefit clupeiforms to 

revisit management protocols as well as water use and waste removal protocols, but it will also 

benefit many other important freshwater, estuarine and marine taxa and fishery resources.  
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APPENDIX A 

 

LIST OF ALL CLUPEIFORM IUCN RED LIST CATEGORIES 

Table A1: List of all 405 clupeiforms alphabetical by family and then by species name. The 

global IUCN Red List categories and criteria are listed: CR = Critically Endangered, EN = 

Endangered, VU = Vulnerable, NT = Near Threatened, LC = Least Concern, DD = Data 

Deficient, NE = Not Evaluated. Criterion A = population decline in the past, present or 

future, B = restricted range, C = small population size and decline, D = very small or 

restricted population, E = quantitative analysis of extinction probability. For further 

information available on categories and criteria, visit the IUCN Red List website 

(www.iucnredlist.org). The preferred habitat system is also listed; F = Freshwater, M = 

Marine, E = Euryhaline which includes estuarine species and diadromous species.  

FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Chirocentridae  Chirocentrus dorab LC M 

Chirocentridae  Chirocentrus nudus LC M 

Clupeidae  Alosa aestivalis VU A2b E 

Clupeidae  Alosa agone LC F 

Clupeidae  Alosa alabamae NT A2ac E 

Clupeidae  Alosa algeriensis DD E 

Clupeidae  Alosa alosa LC E 

Clupeidae  Alosa braschnikowi DD E 

Clupeidae  Alosa caspia LC E 

Clupeidae  Alosa chrysochloris LC E 

Clupeidae  Alosa curensis DD E 

Clupeidae  Alosa fallax LC E 

Clupeidae  Alosa immaculata VU B2ab(v) E 

Clupeidae  Alosa kessleri LC E 

Clupeidae  Alosa killarnensis CR B1ab(iii) F 

Clupeidae  Alosa macedonica VU D2 F 

Clupeidae  Alosa maeotica LC E 

Clupeidae  Alosa mediocris LC E 

Clupeidae  Alosa pontica LC E 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Clupeidae  Alosa pseudoharengus LC E 

Clupeidae  Alosa sapidissima LC E 

Clupeidae  Alosa saposchnikowii DD E 

Clupeidae  Alosa sphaerocephala LC E 

Clupeidae  Alosa suworowi DD E 

Clupeidae  Alosa tanaica LC E 

Clupeidae  Alosa vistonica CR A2ace; B1ab(iii,v) F 

Clupeidae  Alosa volgensis EN B2ab(iii,v) E 

Clupeidae  Amblygaster clupeoides LC M 

Clupeidae  Amblygaster indiana DD M 

Clupeidae  Amblygaster leiogaster LC M 

Clupeidae  Amblygaster sirm LC M 

Clupeidae  Anodontostoma chacunda LC E 

Clupeidae  Anodontostoma selangkat LC E 

Clupeidae  Anodontostoma thailandiae LC E 

Clupeidae  Brevoortia aurea LC E 

Clupeidae  Brevoortia gunteri LC M 

Clupeidae  Brevoortia patronus LC E 

Clupeidae  Brevoortia pectinata LC E 

Clupeidae  Brevoortia smithi LC E 

Clupeidae  Brevoortia tyrannus LC E 

Clupeidae  Clupanodon thrissa LC E 

Clupeidae  Clupea harengus LC M 

Clupeidae  Clupea pallasii DD M 

Clupeidae  Clupeichthys aesarnensis LC F 

Clupeidae  Clupeichthys bleekeri VU B1ab(iii) F 

Clupeidae  Clupeichthys goniognathus LC E 

Clupeidae  Clupeichthys perakensis LC E 

Clupeidae  Clupeoides borneensis LC E 

Clupeidae  Clupeoides hypselosoma DD F 

Clupeidae  Clupeoides papuensis DD F 

Clupeidae  Clupeoides venulosus VU B2ab(iii,v) F 

Clupeidae  Clupeonella abrau CR B1ab(ii,iii,v)+2ab(ii,iii,v) F 

Clupeidae  Clupeonella caspia LC E 

Clupeidae  Clupeonella cultriventris LC E 

Clupeidae  Clupeonella engrauliformis EN A2bde M 

Clupeidae  Clupeonella grimmi EN A2bde M 

Clupeidae  Clupeonella muhlisi EN B1ab(iii)+2ab(iii) F 

Clupeidae  Clupeonella tscharchalensis LC E 

Clupeidae  Congothrissa gossei DD F 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Clupeidae  Corica laciniata DD F 

Clupeidae  Corica soborna LC E 

Clupeidae  Dayella malabarica LC E 

Clupeidae  Dorosoma anale LC F 

Clupeidae  Dorosoma cepedianum LC E 

Clupeidae  Dorosoma chavesi NT B1ab(iii) F 

Clupeidae  Dorosoma petenense LC E 

Clupeidae  Dorosoma smithi DD F 

Clupeidae  Dussumieria acuta LC M 

Clupeidae  Dussumieria elopsoides LC M 

Clupeidae  Ehirava fluviatilis DD E 

Clupeidae  Escualosa elongata DD M 

Clupeidae  Escualosa thoracata LC E 

Clupeidae  Ethmalosa fimbriata LC E 

Clupeidae  Ethmidium maculatum DD M 

Clupeidae  Etrumeus acuminatus LC M 

Clupeidae  Etrumeus golanii DD M 

Clupeidae  Etrumeus jacksoniensis LC M 

Clupeidae  Etrumeus makiawa LC M 

Clupeidae  Etrumeus micropus LC M 

Clupeidae  Etrumeus sadina LC M 

Clupeidae  Etrumeus whiteheadi LC M 

Clupeidae  Etrumeus wongratanai DD M 

Clupeidae  Gilchristella aestuaria LC E 

Clupeidae  Gonialosa manmina LC E 

Clupeidae  Gonialosa modesta DD E 

Clupeidae  Gonialosa whiteheadi DD E 

Clupeidae  Gudusia chapra LC F 

Clupeidae  Gudusia variegata LC F 

Clupeidae  Harengula clupeola LC E 

Clupeidae  Harengula humeralis LC E 

Clupeidae  Harengula jaguana LC M 

Clupeidae  Harengula thrissina LC E 

Clupeidae  Herklotsichthys blackburni DD E 

Clupeidae  Herklotsichthys castelnaui LC E 

Clupeidae  Herklotsichthys collettei LC M 

Clupeidae  Herklotsichthys dispilonotus LC M 

Clupeidae  Herklotsichthys gotoi LC E 

Clupeidae  Herklotsichthys koningsbergeri LC E 

Clupeidae  Herklotsichthys lippa LC M 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Clupeidae  Herklotsichthys lossei LC M 

Clupeidae  Herklotsichthys ovalis DD M 

Clupeidae  Herklotsichthys punctatus LC M 

Clupeidae  Herklotsichthys quadrimaculatus LC M 

Clupeidae  Herklotsichthys spilurus LC M 

Clupeidae  Hilsa kelee LC E 

Clupeidae  Hyperlophus translucidus LC E 

Clupeidae  Hyperlophus vittatus LC E 

Clupeidae  Jenkinsia lamprotaenia LC M 

Clupeidae  Jenkinsia majua LC M 

Clupeidae  Jenkinsia parvula DD M 

Clupeidae  Jenkinsia stolifera LC M 

Clupeidae  Konosirus punctatus LC E 

Clupeidae  Laeviscutella dekimpei LC E 

Clupeidae  Lile gracilis LC E 

Clupeidae  Lile nigrofasciata LC E 

Clupeidae  Lile piquitinga LC E 

Clupeidae  Lile stolifera LC E 

Clupeidae  Limnothrissa miodon LC E 

Clupeidae  Limnothrissa stappersii DD F 

Clupeidae  Microthrissa minuta VU D2 F 

Clupeidae  Microthrissa royauxi LC F 

Clupeidae  Microthrissa whiteheadi LC F 

Clupeidae  Minyclupeoides dentibranchialus LC E 

Clupeidae  Nannothrissa parva LC F 

Clupeidae  Nannothrissa stewarti EN B1ab(v) F 

Clupeidae  Nematalosa arabica DD M 

Clupeidae  Nematalosa come LC M 

Clupeidae  Nematalosa erebi LC F 

Clupeidae  Nematalosa flyensis DD F 

Clupeidae  Nematalosa galatheae LC E 

Clupeidae  Nematalosa japonica DD M 

Clupeidae  Nematalosa nasus LC E 

Clupeidae  Nematalosa papuensis DD F 

Clupeidae  Nematalosa persara DD M 

Clupeidae  Nematalosa resticularia DD M 

Clupeidae  Nematalosa vlaminghi LC E 

Clupeidae  Odaxothrissa ansorgii LC F 

Clupeidae  Odaxothrissa losera DD F 

Clupeidae  Odaxothrissa mento LC F 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Clupeidae  Odaxothrissa vittata LC F 

Clupeidae  Opisthonema berlangai VU D2 M 

Clupeidae  Opisthonema bulleri LC M 

Clupeidae  Opisthonema libertate LC M 

Clupeidae  Opisthonema medirastre LC M 

Clupeidae  Opisthonema oglinum LC E 

Clupeidae  Pellonula leonensis LC E 

Clupeidae  Pellonula vorax LC E 

Clupeidae  Platanichthys platana LC E 

Clupeidae  Pliosteostoma lutipinnis LC E 

Clupeidae  Poecilothrissa centralis LC F 

Clupeidae  Poecilothrissa congica LC F 

Clupeidae  Poecilothrissa moeruensis VU B1ab(v) F 

Clupeidae  Potamalosa richmondia NT B2ab(I,ii,iii,iv,v) E 

Clupeidae  Potamothrissa acutirostris LC F 

Clupeidae  Potamothrissa obtusirostris LC F 

Clupeidae  Potamothrissa whiteheadi DD F 

Clupeidae  Ramnogaster arcuata LC M 

Clupeidae  Ramnogaster melanostoma LC F 

Clupeidae  Rhinosardinia amazonica LC E 

Clupeidae  Rhinosardinia bahiensis LC E 

Clupeidae  Sardina pilchardus LC M 

Clupeidae  Sardinella albella LC M 

Clupeidae  Sardinella atricauda LC M 

Clupeidae  Sardinella aurita LC M 

Clupeidae  Sardinella brachysoma LC M 

Clupeidae  Sardinella brasiliensis DD E 

Clupeidae  Sardinella dayi DD M 

Clupeidae  Sardinella electra NE M 

Clupeidae  Sardinella fijiense LC M 

Clupeidae  Sardinella fimbriata LC E 

Clupeidae  Sardinella gibbosa LC M 

Clupeidae  Sardinella goni DD M 

Clupeidae  Sardinella hualiensis LC M 

Clupeidae  Sardinella jussieu DD M 

Clupeidae  Sardinella lemuru NT A2bd M 

Clupeidae  Sardinella longiceps LC M 

Clupeidae  Sardinella maderensis VU A2d M 

Clupeidae  Sardinella marquesensis LC M 

Clupeidae  Sardinella melanura LC E 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Clupeidae  Sardinella neglecta LC M 

Clupeidae  Sardinella pacifica NE M 

Clupeidae  Sardinella richardsoni DD M 

Clupeidae  Sardinella rouxi DD M 

Clupeidae  Sardinella sindensis LC E 

Clupeidae 
 

Sardinella tawilis  
EN A2bd; 
B1ab(iii,v)+2ab(iii,v) F 

Clupeidae  Sardinella zunasi LC M 

Clupeidae  Sardinops sagax LC M 

Clupeidae  Sauvagella madagascariensis LC E 

Clupeidae  Sauvagella robusta EN B2ab(iii) F 

Clupeidae  Sierrathrissa leonensis LC F 

Clupeidae  Spratelloides atrofasciatus LC M 

Clupeidae  Spratelloides delicatulus LC M 

Clupeidae  Spratelloides gracilis LC M 

Clupeidae  Spratelloides lewisi LC M 

Clupeidae  Spratelloides robustus LC E 

Clupeidae  Spratellomorpha bianalis DD E 

Clupeidae  Sprattus antipodum LC M 

Clupeidae  Sprattus fuegensis LC M 

Clupeidae  Sprattus muelleri LC M 

Clupeidae  Sprattus novaehollandiae LC E 

Clupeidae  Sprattus sprattus LC E 

Clupeidae  Stolothrissa tanganicae LC F 

Clupeidae  Strangomera bentincki LC M 

Clupeidae  Tenualosa ilisha LC E 

Clupeidae  Tenualosa macrura  NT B2ab(iii) E 

Clupeidae  Tenualosa reevesii DD E 

Clupeidae  Tenualosa thibaudeaui VU A2bcd F 

Clupeidae  Tenualosa toli VU B2ab(iii,v) E 

Clupeidae  Thrattidion noctivagus DD F 

Denticipitidae  Denticeps clupeoides VU B2ab(iii) F 

Engraulidae  Amazonsprattus scintilla LC F 

Engraulidae  Anchoa analis DD E 

Engraulidae  Anchoa argentivittata LC M 

Engraulidae  Anchoa belizensis LC F 

Engraulidae  Anchoa cayorum LC M 

Engraulidae  Anchoa chamensis DD M 

Engraulidae  Anchoa choerostoma EN B1ab(v)+2ab(v) M 

Engraulidae  Anchoa colonensis LC M 
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FAMILY 
 

SPECIES NAME 
GLOBAL CATEGORY & 

CRITERIA SYSTEM 

Engraulidae  Anchoa compressa LC E 

Engraulidae  Anchoa cubana LC E 

Engraulidae  Anchoa curta LC E 

Engraulidae  Anchoa delicatissima LC E 

Engraulidae  Anchoa eigenmannia LC M 

Engraulidae  Anchoa exigua LC M 

Engraulidae  Anchoa filifera LC E 

Engraulidae  Anchoa helleri LC M 

Engraulidae  Anchoa hepsetus LC E 

Engraulidae  Anchoa ischana LC M 

Engraulidae  Anchoa januaria LC E 

Engraulidae  Anchoa lamprotaenia LC M 

Engraulidae  Anchoa lucida LC E 

Engraulidae  Anchoa lyolepis LC M 

Engraulidae  Anchoa marinii LC E 

Engraulidae  Anchoa mitchilli LC E 

Engraulidae  Anchoa mundeola LC E 

Engraulidae  Anchoa mundeoloides LC E 

Engraulidae  Anchoa nasus LC M 

Engraulidae  Anchoa panamensis LC E 

Engraulidae  Anchoa parva LC E 

Engraulidae  Anchoa pectoralis LC E 

Engraulidae  Anchoa scofieldi LC E 

Engraulidae  Anchoa spinifer LC E 

Engraulidae  Anchoa starksi LC E 

Engraulidae  Anchoa tricolor LC E 

Engraulidae  Anchoa trinitatis DD M 

Engraulidae  Anchoa walkeri LC E 

Engraulidae  Anchovia clupeoides LC E 

Engraulidae  Anchovia landivarensis DD E 

Engraulidae  Anchovia macrolepidota LC E 

Engraulidae  Anchovia surinamensis LC E 

Engraulidae  Anchoviella alleni LC F 

Engraulidae  Anchoviella balboae DD M 

Engraulidae  Anchoviella blackburni DD E 

Engraulidae  Anchoviella brevirostris LC E 

Engraulidae  Anchoviella carrikeri LC F 

Engraulidae  Anchoviella cayennensis LC E 

Engraulidae  Anchoviella elongata LC E 

Engraulidae  Anchoviella guianensis LC F 
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CRITERIA SYSTEM 

Engraulidae  Anchoviella hernanni LC F 

Engraulidae  Anchoviella jamesi LC F 

Engraulidae  Anchoviella juruasanga LC F 

Engraulidae  Anchoviella lepidentostole LC E 

Engraulidae  Anchoviella manamensis LC F 

Engraulidae  Anchoviella miarcha DD E 

Engraulidae  Anchoviella perezi DD F 

Engraulidae  Anchoviella perfasciata LC M 

Engraulidae  Anchoviella sanfranciscana DD E 

Engraulidae  Anchoviella vaillanti LC F 

Engraulidae  Cetengraulis edentulus LC E 

Engraulidae  Cetengraulis mysticetus LC M 

Engraulidae  Coilia borneensis DD E 

Engraulidae  Coilia coomansi DD E 

Engraulidae  Coilia dussumieri LC E 

Engraulidae  Coilia grayii LC E 

Engraulidae  Coilia lindmani LC E 

Engraulidae  Coilia macrognathos DD E 

Engraulidae  Coilia mystus EN A2bd E 

Engraulidae  Coilia nasus EN A2bd E 

Engraulidae  Coilia neglecta LC E 

Engraulidae  Coilia ramcarati DD E 

Engraulidae  Coilia rebentischii DD E 

Engraulidae  Coilia reynaldi LC E 

Engraulidae  Encrasicholina auster DD M 

Engraulidae  Encrasicholina gloria DD M 

Engraulidae  Encrasicholina heteroloba LC M 

Engraulidae  Encrasicholina intermedia DD M 

Engraulidae  Encrasicholina macrocephala DD M 

Engraulidae  Encrasicholina oligobranchus DD M 

Engraulidae  Encrasicholina pseudoheteroloba LC M 

Engraulidae  Encrasicholina punctifer LC M 

Engraulidae  Encrasicholina purpurea LC E 

Engraulidae  Engraulis albidus DD E 

Engraulidae  Engraulis anchoita NT A2bd M 

Engraulidae  Engraulis australis LC E 

Engraulidae  Engraulis capensis LC M 

Engraulidae  Engraulis encrasicolus LC E 

Engraulidae  Engraulis eurystole LC M 

Engraulidae  Engraulis japonicus LC M 
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Engraulidae  Engraulis mordax LC M 

Engraulidae  Engraulis ringens LC M 

Engraulidae  Jurengraulis juruensis LC F 

Engraulidae  Lycengraulis batesii LC E 

Engraulidae  Lycengraulis figueiredoi LC F 

Engraulidae  Lycengraulis grossidens LC E 

Engraulidae  Lycengraulis limnichthys DD E 

Engraulidae  Lycengraulis poeyi LC E 

Engraulidae  Lycothrissa crocodilus LC F 

Engraulidae  Papuengraulis micropinna DD E 

Engraulidae  Pseudosetipinna haizhouensis DD M 

Engraulidae  Pterengraulis atherinoides LC E 

Engraulidae  Setipinna breviceps LC E 

Engraulidae  Setipinna brevifilis DD F 

Engraulidae  Setipinna melanochir DD E 

Engraulidae  Setipinna paxtoni DD M 

Engraulidae  Setipinna phasa LC E 

Engraulidae  Setipinna taty LC E 

Engraulidae  Setipinna tenuifilis DD E 

Engraulidae  Setipinna wheeleri DD F 

Engraulidae  Stolephorus advenus DD M 

Engraulidae  Stolephorus andhraensis LC E 

Engraulidae  Stolephorus apiensis LC M 

Engraulidae  Stolephorus baganensis LC M 

Engraulidae  Stolephorus brachycephalus LC E 

Engraulidae  Stolephorus carpentariae LC E 

Engraulidae  Stolephorus chinensis LC E 

Engraulidae  Stolephorus commersonnii LC M 

Engraulidae  Stolephorus continentalis DD M 

Engraulidae  Stolephorus dubiosus LC E 

Engraulidae  Stolephorus holodon LC E 

Engraulidae  Stolephorus indicus LC E 

Engraulidae  Stolephorus insignus NE M 

Engraulidae  Stolephorus insularis LC E 

Engraulidae  Stolephorus multibranchus DD M 

Engraulidae  Stolephorus nelsoni DD E 

Engraulidae  Stolephorus oceanicus DD M 

Engraulidae  Stolephorus pacificus DD M 

Engraulidae  Stolephorus ronquilloi DD E 

Engraulidae  Stolephorus shantungensis DD E 
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Engraulidae  Stolephorus teguhi DD E 

Engraulidae  Stolephorus tri LC M 

Engraulidae  Stolephorus waitei DD M 

Engraulidae  Thryssa adelae DD M 

Engraulidae  Thryssa aestuaria LC E 

Engraulidae  Thryssa baelama LC E 

Engraulidae  Thryssa brevicauda LC E 

Engraulidae  Thryssa chefuensis DD E 

Engraulidae  Thryssa dayi DD M 

Engraulidae  Thryssa dussumieri LC E 

Engraulidae  Thryssa encrasicholoides DD M 

Engraulidae  Thryssa gautamiensis DD E 

Engraulidae  Thryssa hamiltonii LC E 

Engraulidae  Thryssa kammalensis DD E 

Engraulidae  Thryssa kammalensoides DD E 

Engraulidae  Thryssa malabarica DD E 

Engraulidae  Thryssa marasriae LC E 

Engraulidae  Thryssa mystax LC E 

Engraulidae  Thryssa polybranchialis DD M 

Engraulidae  Thryssa purava DD M 

Engraulidae 
 

Thryssa rastrosa 
EN 
B1ab(i,ii,iii,v)+2ab(i,ii,iii,v) F 

Engraulidae  Thryssa scratchleyi DD E 

Engraulidae  Thryssa setirostris LC E 

Engraulidae  Thryssa spinidens DD M 

Engraulidae  Thryssa stenosoma DD M 

Engraulidae  Thryssa vitrirostris LC E 

Engraulidae  Thryssa whiteheadi LC M 

Pristigasteridae  Chirocentrodon bleekerianus LC E 

Pristigasteridae  Ilisha africana LC E 

Pristigasteridae  Ilisha amazonica LC F 

Pristigasteridae  Ilisha compressa LC M 

Pristigasteridae  Ilisha elongata LC E 

Pristigasteridae  Ilisha filigera DD E 

Pristigasteridae  Ilisha fuerthii LC E 

Pristigasteridae  Ilisha kampeni LC E 

Pristigasteridae  Ilisha lunula DD E 

Pristigasteridae  Ilisha macrogaster DD E 

Pristigasteridae  Ilisha megaloptera LC E 

Pristigasteridae  Ilisha melastoma LC E 
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Pristigasteridae  Ilisha novacula LC F 

Pristigasteridae  Ilisha obfuscata DD M 

Pristigasteridae  Ilisha pristigastroides DD E 

Pristigasteridae  Ilisha sirishai DD M 

Pristigasteridae  Ilisha striatula DD E 

Pristigasteridae  Neoopisthopterus cubanus VU B2ab(i,ii,iii) E 

Pristigasteridae  Neoopisthopterus tropicus LC E 

Pristigasteridae  Odontognathus compressus LC E 

Pristigasteridae  Odontognathus mucronatus LC E 

Pristigasteridae  Odontognathus panamensis LC E 

Pristigasteridae  Opisthopterus dovii LC E 

Pristigasteridae  Opisthopterus effulgens DD E 

Pristigasteridae  Opisthopterus equatorialis LC M 

Pristigasteridae  Opisthopterus macrops LC M 

Pristigasteridae  Opisthopterus tardoore LC E 

Pristigasteridae  Opisthopterus valenciennesi DD E 

Pristigasteridae  Pellona castelnaeana LC E 

Pristigasteridae  Pellona dayi DD M 

Pristigasteridae  Pellona ditchela LC E 

Pristigasteridae  Pellona flavipinnis LC F 

Pristigasteridae  Pellona harroweri LC E 

Pristigasteridae  Pristigaster cayana LC F 

Pristigasteridae  Pristigaster whiteheadi LC F 

Pristigasteridae  Raconda russeliana LC E 

Sundasalangidae  Sundasalanx malletti DD F 

Sundasalangidae  Sundasalanx megalops DD F 

Sundasalangidae  Sundasalanx mekongensis LC F 

Sundasalangidae  Sundasalanx mesops DD F 

Sundasalangidae  Sundasalanx microps DD F 

Sundasalangidae  Sundasalanx platyrhynchus DD F 

Sundasalangidae  Sundasalanx praecox LC F 
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APPENDIX B 

 

IUCN RED LIST METHODS AND DATA USE 

To supplement the Red List methods described in Chapter 2, further information on 

important terminology, threat classifications, distribution mapping methodology and the 

estimation of declines used in the Red List assessments and the thesis are outlined. Further 

information regarding the uncertainty within the Red List assessments is also expressed below.   

Red List terminology 

Within the scope of the Red List methodology, specific definitions are used. The term 

population refers to the total number of individuals of a species throughout its global 

distribution, while population size is the total number of mature individuals (e.g., those capable 

of reproduction). Both terms, population and population size, are required for criteria A, C and 

D (IUCN Standards and Petitions Subcommittee, 2017). Generation length is applicable to 

criteria A, C1 and E, and is the average age of parents of the current cohort (i.e., recruited 

individuals in the population) and serves as a measure of the turnover rate of breeding 

individuals within the population (IUCN Standards and Petitions Subcommittee, 2017). The pre-

disturbance generation length was used to account for potential variation under threat such as 

exploitation (IUCN Standards and Petitions Subcommittee, 2017). Declines must be calculated 

over a period of time equal to three generation lengths or ten years, whichever is longer (IUCN, 

2012). The equation used in the assessments to calculate generation length is as follows: 

Generation Length =  
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Age at first reproduction + (age at last reproduction – age at first reproduction) / 2 

Location defines a geographically or ecologically distinct area where a single threatening 

event can rapidly impact all individuals of the taxon present and is necessary for the application 

of criteria B and D (IUCN Standards and Petitions Subcommittee, 2017). The known geographic 

extent of a species is quantitatively expressed in two ways: Extent of Occurrence (EOO) used for 

criteria A and B and Area of Occupancy (AOO) used for criteria A, B and D (IUCN Standard and 

Petitions Subcommittee, 2017). The EOO is defined by the smallest, continuous imaginary 

boundary that can be drawn around the area where the species is known, inferred or suspected 

to be present. It is also referred to as the ‘minimum convex polygon’ and represents the degree 

to which threatening factors are spatially spread across a taxon’s geographic range. The AOO is 

the area within the species’ EOO that is actually occupied, accounting for the fact that the EOO 

likely contains unoccupied or unsuitable habitat. A 2x2 km grid is used to standardize estimates 

of AOO (IUCN, 2017). 

Threat classifications 

Major threats used in analyses follow the hierarchal threat schematic provided by the 

IUCN Red List. Major threats were coded within a species assessment only if confirmation of 

impact on the species or locality within its range exists. Many clupeiform species have limited 

data available regarding their conservation status. Therefore, for threats that were only 

suspected to impact a species, the threat was neither coded within the species assessment, nor 

included in the analyses.  
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Major threats known to impact clupeiforms include biological resource use (n = 106), 

pollution (n = 47), natural system modifications (n = 42), climate change (n = 23), invasive 

species and diseases (n = 15), energy production (n = 7), residential or commercial development 

(n = 5), human intrusions (n = 1) and transportation service corridors (n = 1). Within these major 

threats, sub-threats were also coded to specify the source of the major threat (IUCN, 2019). For 

clupeiforms, biological resource was coded for species impacted by bycatch, subsistence, 

artisanal, recreational, commercial and industrial exploitation. Pollution as a major threat is 

sourced from agricultural, domestic, industrial and/or military effluents but also includes 

sedimentation. Large and small dams as well as water management/use (e.g., water 

abstraction) are included under natural system modifications. Climate change is broken down 

into specific impacts, which include droughts, habitat shifting and temperature extremes. The 

invasive species and diseases category include both native, and non-native problematic species 

or diseases. Energy production exclusively refers to impacts from mining and quarrying for this 

taxa. Threats known to impact five or less species but ultimately may disturb critical habitats 

include residential and commercial development (e.g., commercial, industrial or housing 

development projects), transportation corridors (e.g., shipping lanes) and human intrusions 

which stem from recreational activities. For further detailed information regarding IUCN Red 

List threat schemes, see the IUCN Red List website (www.iucnredlist.org). 

Distribution maps 

A species-specific distribution map is a depiction of a taxon’s native geographic range or 

limits of distribution and can be helpful in communicating and/or addressing conservation 
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planning. These maps are used for visualization and spatial analyses and can also be used in 

different types of analyses that can identify gaps in knowledge and conservation priority areas 

by, for example, highlighting areas with a high number of threatened or Data Deficient species. 

However, the polygons neither depict the potential spread of extinction risk nor do they 

represent that a species is uniformly distributed throughout. They can be used to support the 

estimate of AOO or EOO, but do not represent either parameter.  

Estimates of decline 

Time series data of spawning stock biomass (SSB), catch-per-unit effort (CPUE), total 

landings reported to the FAO (FAO, 2016) and reconstructed catches (Pauly and Zeller, 2016a), 

where available, were used as indices of abundance to estimate population decline. If available, 

estimated biomass (e.g., SSB) from fishery stock assessments took priority over other data 

types, such as landings, when calculating declines. Fishery-dependent data (e.g., reported 

landings or reconstructed catches) were reported to the species, genus or family level.  

Uncertainty within Red List data 

Data were often pieced together from various sources to determine the species’ 

conservation status; it is understood that there is inherent uncertainty within the available data 

and thus, the resulting conclusions. Uncertainty may arise from factors including natural 

variation, vagueness of terms and definitions or measurement error (Akçakaya et al., 2000; 

IUCN, 2012) and can be managed by using parameter estimates from expert knowledge and 

data to produce a range of plausible categories (Mace et al., 2008; IUCN, 2012; Collen et al., 

2016; IUCN, 2017). The level of uncertainty within the data was expressed using the terms 
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observed, estimated, inferred or suspected, following guidelines defined by the Red List (IUCN 

Standards and Petitions Subcommittee, 2017).  
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APPENDIX C 

 

LIST OF ALL SPECIES WITH KNOWN THREATS USED IN CAP ANALYSIS 

List of all 144 clupeiform species with known threats alphabetical by family and then by species 

name. Threats are coded with 1 if impacted by the threat and 0 if not impacted. The primary 

habitat system (SYS) is listed; F = Freshwater, M = Marine, and E = Euryhaline, which include 

estuarine species as well as anadromous species. The global IUCN Red List categories (RL CAT) 

are also listed; EC = elevated conservation concern and include all threatened (Critically 

Endangered, Endangered and Vulnerable) and Near Threatened species, LC = Least Concern, DD 

= Data Deficient.  
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Clupeidae Alosa aestivalis E EC 0 0 0 0 1 1 1 0 0 

Clupeidae Alosa alabamae E EC 1 1 0 1 0 1 1 0 1 

Clupeidae Alosa alosa E LC 1 0 1 0 0 1 1 0 0 

Clupeidae Alosa braschnikowi E DD 1 0 0 0 0 0 1 0 0 

Clupeidae Alosa fallax E LC 1 0 0 0 0 1 1 0 0 

Clupeidae Alosa immaculata E EC 1 0 0 0 0 1 0 0 0 

Clupeidae Alosa kessleri E LC 1 0 0 0 0 1 0 0 0 

Clupeidae Alosa killarnensis F EC 0 0 0 0 1 0 1 0 0 

Clupeidae Alosa macedonica F EC 1 1 0 0 0 0 1 0 0 

Clupeidae Alosa maeotica E LC 0 0 0 0 0 1 0 0 0 

Clupeidae Alosa 
pseudoharengus 

E LC 0 0 0 0 0 1 0 0 0 
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Clupeidae Alosa sapidissima E LC 1 0 0 0 0 1 1 0 0 

Clupeidae Alosa 
saposchnikowii 

E DD 1 0 0 0 0 0 1 0 0 

Clupeidae Alosa 
sphaerocephala 

E LC 1 0 0 0 0 0 1 0 0 

Clupeidae Alosa tanaica E LC 0 1 0 0 0 1 1 0 0 

Clupeidae Alosa vistonica F EC 1 1 0 0 0 0 1 0 0 

Clupeidae Alosa volgensis E EC 1 0 0 0 0 1 0 0 0 

Clupeidae Anodontostoma 
chacunda 

E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Brevoortia gunteri M LC 1 0 0 0 0 0 1 0 0 

Clupeidae Brevoortia patronus E LC 1 0 0 0 0 0 1 0 0 

Clupeidae Brevoortia tyrannus E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Chirocentrus dorab M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Clupea harengus M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Clupea pallasii M DD 1 1 0 0 1 0 0 0 0 

Clupeidae Clupeichthys 
bleekeri 

F EC 0 0 0 0 0 1 1 0 0 

Clupeidae Clupeoides 
papuensis 

F DD 0 0 1 0 0 0 1 0 0 

Clupeidae Clupeoides 
venulosus 

F EC 0 0 1 0 0 0 1 0 0 

Clupeidae Clupeonella abrau F EC 0 0 0 0 1 1 0 0 0 

Clupeidae Clupeonella 
engrauliformis 

M EC 1 1 0 0 1 0 0 0 0 

Clupeidae Clupeonella grimmi M EC 1 1 0 0 1 0 0 0 0 

Clupeidae Clupeonella muhlisi F EC 1 0 0 0 0 0 1 0 0 

Clupeidae Corica laciniata F DD 0 0 0 0 0 1 0 0 0 

Clupeidae Dayella malabarica E LC 0 0 0 0 1 0 1 0 0 

Clupeidae Dorosoma 
cepedianum 

E LC 1 0 0 0 0 1 0 0 0 

Clupeidae Dorosoma chavesi F EC 0 0 0 0 0 1 0 0 0 
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Clupeidae Dorosoma 
petenense 

E LC 0 1 0 0 1 0 0 0 0 

Clupeidae Ethmalosa fimbriata E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Ethmidium 
maculatum 

M DD 1 1 0 0 0 0 0 0 0 

Clupeidae Etrumeus 
acuminatus 

M LC 1 1 0 0 0 0 0 0 0 

Clupeidae Etrumeus 
whiteheadi 

M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Gilchristella 
aestuaria 

E LC 0 0 0 0 0 1 0 0 0 

Clupeidae Gonialosa 
whiteheadi 

E DD 0 0 0 0 0 1 0 0 0 

Clupeidae Gudusia chapra F LC 1 0 0 0 0 0 1 0 0 

Clupeidae Harengula clupeola E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Harengula 
humeralis 

E LC 0 0 0 0 0 0 1 0 0 

Clupeidae Harengula jaguana M LC 0 0 0 0 0 0 1 0 0 

Clupeidae Jenkinsia 
lamprotaenia 

M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Jenkinsia majua M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Konosirus punctatus E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Laeviscutella 
dekimpei 

E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Lile gracilis E LC 0 1 0 0 0 0 0 0 0 

Clupeidae Lile piquitinga E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Limnothrissa 
miodon 

E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Microthrissa minuta F EC 1 0 1 0 0 1 0 0 0 

Clupeidae Microthrissa royauxi F LC 1 0 0 0 0 0 0 0 0 

Clupeidae Minyclupeoides 
dentibranchialus 

E LC 0 0 0 0 0 1 0 0 0 

Clupeidae Nannothrissa parva F LC 1 0 0 0 0 0 0 0 0 
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Clupeidae Nannothrissa 
stewarti 

F EC 1 0 0 0 0 0 0 0 0 

Clupeidae Nematalosa come M LC 1 0 0 0 0 1 1 1 0 

Clupeidae Nematalosa erebi F LC 1 0 0 0 0 1 0 0 0 

Clupeidae Nematalosa 
japonica 

M DD 1 0 0 0 0 1 0 1 0 

Clupeidae Nematalosa nasus E LC 1 0 0 0 0 1 0 0 0 

Clupeidae Odaxothrissa 
ansorgii 

F LC 1 0 0 0 0 0 0 0 0 

Clupeidae Odaxothrissa mento F LC 1 0 0 0 0 0 1 0 0 

Clupeidae Opisthonema 
berlangai 

M EC 0 1 0 0 0 0 0 0 0 

Clupeidae Opisthonema 
libertate 

M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Opisthonema 
medirastre 

M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Opisthonema 
oglinum 

E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Opisthopterus 
effulgens 

E DD 0 1 0 0 0 0 0 0 0 

Clupeidae Pellonula leonensis E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Pellonula vorax E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Poecilothrissa 
centralis 

F LC 1 0 0 0 0 0 0 0 0 

Clupeidae Poecilothrissa 
moeruensis 

F EC 1 0 0 0 0 0 0 0 0 

Clupeidae Potamalosa 
richmondia 

E EC 0 0 0 0 0 1 1 0 0 

Clupeidae Potamothrissa 
obtusirostris 

F LC 1 0 0 0 0 0 0 0 0 

Clupeidae Sardina pilchardus M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Sardinella aurita M LC 1 0 0 0 0 0 0 0 0 
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Clupeidae Sardinella 
brasiliensis 

E DD 1 0 0 0 0 0 0 0 0 

Clupeidae Sardinella lemuru M EC 1 0 0 0 0 0 0 0 0 

Clupeidae Sardinella longiceps M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Sardinella 
maderensis 

M EC 1 1 0 0 0 0 1 0 0 

Clupeidae Sardinella rouxi M DD 1 0 0 0 0 0 0 0 0 

Clupeidae Sardinella tawilis  F EC 1 0 0 0 1 1 1 0 0 

Clupeidae Sardinella zunasi M LC 1 0 0 0 1 0 0 0 0 

Clupeidae Sardinops sagax M LC 1 1 0 0 0 0 0 0 0 

Clupeidae Sauvagella 
madagascariensis 

E LC 1 0 0 0 0 0 0 0 0 

Clupeidae Sauvagella robusta F EC 1 0 0 0 1 1 0 0 0 

Clupeidae Setipinna phasa E LC 0 0 0 0 0 0 1 0 0 

Clupeidae Setipinna tenuifilis E DD 1 0 0 0 0 0 1 0 0 

Clupeidae Sierrathrissa 
leonensis 

F LC 1 0 0 0 0 0 0 0 0 

Clupeidae Spratelloides 
delicatulus 

M LC 1 0 0 0 0 0 0 0 0 

Clupeidae Spratellomorpha 
bianalis 

E DD 1 0 0 0 1 0 0 0 0 

Clupeidae Sprattus sprattus E LC 1 0 0 0 0 1 1 0 0 

Clupeidae Stolothrissa 
tanganicae 

F LC 1 0 0 0 0 0 1 0 0 

Clupeidae Strangomera 
bentincki 

M LC 1 1 0 0 0 0 0 0 0 

Clupeidae Tenualosa ilisha E LC 1 0 0 0 0 1 1 0 0 

Clupeidae Tenualosa macrura  E EC 1 0 0 0 0 0 1 1 0 

Clupeidae Tenualosa reevesii E DD 1 0 0 0 0 1 1 0 0 

Clupeidae Tenualosa 
thibaudeaui 

F EC 1 0 0 0 0 1 0 0 0 

Clupeidae Tenualosa toli E EC 1 0 0 0 0 0 1 0 0 
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Clupeidae Thrattidion 
noctivagus 

F DD 0 0 0 0 0 1 0 0 0 

Denticipitidae Denticeps 
clupeoides 

F EC 0 0 1 0 0 0 1 1 0 

Engraulidae Anchoa analis E DD 0 0 0 0 0 0 1 0 0 

Engraulidae Anchoa belizensis F LC 1 0 0 0 1 0 0 0 0 

Engraulidae Anchoa chamensis M DD 0 1 0 0 0 0 0 0 0 

Engraulidae Anchoa 
choerostoma 

M EC 1 0 0 0 0 0 0 0 0 

Engraulidae Anchoa 
delicatissima 

E LC 1 0 0 0 0 0 0 0 0 

Engraulidae Anchoa 
eigenmannia 

M LC 1 1 0 0 0 0 0 0 0 

Engraulidae Anchoa helleri M LC 0 1 0 0 0 1 0 0 0 

Engraulidae Anchoa 
mundeoloides 

E LC 0 1 0 0 0 0 0 0 0 

Engraulidae Anchoa panamensis E LC 1 1 0 0 0 0 0 0 0 

Engraulidae Anchoa scofieldi E LC 0 1 0 0 0 0 0 0 0 

Engraulidae Anchoa spinifer E LC 0 0 0 0 0 0 1 0 0 

Engraulidae Anchoa starksi E LC 1 0 0 0 0 0 0 0 0 

Engraulidae Anchoa tricolor E LC 1 0 0 0 0 1 1 0 0 

Engraulidae Anchovia 
surinamensis 

E LC 0 0 0 0 0 1 0 0 0 

Engraulidae Anchoviella 
lepidentostole 

E LC 1 0 0 0 0 0 0 0 0 

Engraulidae Cetengraulis 
mysticetus 

M LC 1 0 0 0 0 0 0 0 0 

Engraulidae Coilia grayii E LC 1 0 0 0 0 0 1 0 0 

Engraulidae Coilia lindmani E LC 1 0 0 0 0 0 1 0 0 

Engraulidae Coilia mystus E EC 1 0 0 0 0 1 1 0 0 

Engraulidae Coilia nasus E EC 1 0 0 0 0 1 1 0 0 

Engraulidae Coilia neglecta E LC 1 0 0 0 0 0 0 0 0 
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Engraulidae Coilia ramcarati E DD 1 0 0 0 0 0 0 0 0 

Engraulidae Encrasicholina 
punctifer 

M LC 1 0 0 0 0 0 0 0 0 

Engraulidae Engraulis anchoita M EC 1 0 0 0 0 0 0 0 0 

Engraulidae Engraulis 
encrasicolus 

E LC 1 0 0 0 1 0 0 0 0 

Engraulidae Engraulis japonicus M LC 1 0 0 0 0 0 0 0 0 

Engraulidae Engraulis mordax M LC 1 0 0 0 0 0 0 0 0 

Engraulidae Engraulis ringens M LC 1 1 0 0 0 0 0 0 0 

Engraulidae Lycengraulis 
grossidens 

E LC 0 0 0 0 0 0 1 0 0 

Engraulidae Pterengraulis 
atherinoides 

E LC 0 0 0 0 0 1 0 0 0 

Engraulidae Stolephorus 
commersonnii 

M LC 1 0 0 0 0 0 0 0 0 

Engraulidae Stolephorus 
ronquilloi 

E DD 1 0 0 0 0 1 1 0 0 

Engraulidae Thryssa mystax E LC 1 0 0 0 0 0 0 0 0 

Engraulidae Thryssa rastrosa F EC 0 0 1 0 1 0 0 0 0 

Engraulidae Thryssa scratchleyi E DD 1 0 1 0 0 0 1 0 0 

Engraulidae Thryssa vitrirostris E LC 1 0 0 0 0 0 0 0 0 

Pristigasteridae Ilisha africana E LC 1 0 0 0 0 0 0 0 0 

Pristigasteridae Ilisha elongata E LC 1 0 0 0 0 1 0 0 0 

Pristigasteridae Ilisha novacula F LC 0 0 0 0 0 1 0 0 0 

Pristigasteridae Neoopisthopterus 
cubanus 

E EC 0 0 0 0 0 0 1 1 0 

Pristigasteridae Pristigaster 
whiteheadi 

F LC 0 0 0 0 0 1 0 0 0 

Pristigasteridae Raconda russeliana E LC 1 0 0 0 0 0 0 0 0 
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APPENDIX D 

 

LIST OF ALL SPECIES OF ELEVATED CONSERVATION CONCERN USED IN CAP 

ANALYSIS 

List of the 33 clupeiform species assessed as threatened (Critically Endangered, 

Endangered and Vulnerable) or Near Threatened alphabetical by family and then by 

species name. The primary habitat system is coded with 0’s and 1’s for marine and 

freshwater species; euryhaline species are characterized by a 1 in both columns. Habitat 

refers to whether a species is a habitat generalist, coded with a 1 or a specialist, coded 

with a 0. The maximum known standard length (MaxSL) in centimeters, number of 

countries a species is known to be distributed within (COO) as a proxy for geographic 

distribution and the number of other clupeiforms within an individual species range as a 

proxy for relative diversity are listed. The number impacting a species and the global 

categories are also listed: CR = Critically Endangered, EN = Endangered, VU = Vulnerable, 

NT = Near Threatened, LC = Least Concern, DD = Data Deficient. 
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Clupeidae Alosa aestivalis VU 1 1 1 35.0 2 27 3 

Clupeidae Alosa alabamae NT 1 1 1 51.0 1 20 6 

Clupeidae Alosa immaculata VU 1 1 1 37.0 8 4 2 

Clupeidae Alosa killarnensis CR 0 1 0 20.0 1 0 2 

Clupeidae Alosa macedonica VU 0 1 0 35.0 1 0 3 

Clupeidae Alosa vistonica CR 0 1 0 17.0 1 0 3 

Clupeidae Alosa volgensis EN 1 1 1 35.0 5 13 2 

Clupeidae Clupeichthys bleekeri VU 0 1 0 6.0 1 7 2 

Clupeidae Clupeoides venulosus VU 0 1 0 9.0 2 6 2 

Clupeidae Clupeonella abrau CR 0 1 0 9.5 1 0 2 

Clupeidae Clupeonella engrauliformis EN 1 0 0 15.5 3 36 3 
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Clupeidae Clupeonella grimmi EN 1 0 1 14.5 3 10 3 

Clupeidae Clupeonella muhlisi EN 0 1 0 6.0 1 0 1 

Clupeidae Dorosoma chavesi NT 0 1 1 18.0 2 0 1 

Clupeidae Microthrissa minuta VU 0 1 1 3.5 1 12 3 

Clupeidae Nannothrissa stewarti EN 0 1 0 2.3 1 1 1 

Clupeidae Opisthonema berlangai VU 1 0 0 26.0 1 8 1 

Clupeidae Poecilothrissa moeruensis VU 0 1 0 3.5 2 1 1 

Clupeidae Potamalosa richmondia NT 1 1 1 32.0 1 13 2 

Clupeidae Sardinella lemuru NT 1 0 1 23.0 10 102 1 

Clupeidae Sardinella maderensis VU 1 0 1 30.0 44 32 3 

Clupeidae Sardinella tawilis  EN 0 1 0 13.6 1 0 4 

Clupeidae Sauvagella robusta EN 0 1 1 4.7 1 0 3 

Clupeidae Tenualosa macrura  NT 1 1 1 52.0 2 59 3 

Clupeidae Tenualosa thibaudeaui VU 0 1 1 26.0 4 8 2 

Clupeidae Tenualosa toli VU 1 1 0 50.0 1 48 2 

Denticipitidae Denticeps clupeoides VU 0 1 0 13.0 3 4 3 

Engraulidae Anchoa choerostoma EN 1 0 1 7.5 1 4 1 

Engraulidae Coilia mystus EN 1 1 1 20.0 4 55 3 

Engraulidae Coilia nasus EN 1 1 1 41.0 4 51 3 

Engraulidae Engraulis anchoita NT 1 0 0 17.0 3 27 1 

Engraulidae Thryssa rastrosa EN 0 1 0 11.6 1 5 2 

Pristigasteridae Neoopisthopterus cubanus VU 1 1 1 9.0 1 20 2 
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