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ABSTRACT 

CATALYTIC TRANSFER HYDROGENATION REACTIONS OF LIPIDS 

Catalytic transfer hydrogenation (CTH) of lipids was investigated using 2-propanol as hydrogen 

donor for producing liquid hydrocarbons, e.g. jet fuels. The main sources of lipids selected in 

this study were waste cooking oil (WCO) and oil-laden algae-derived biofuel intermediate (BI).  

Two different catalysts were employed in this study, namely activated carbon and trimetallic-

doped zeolite.  

The CTH reaction was between WCO and 2-propanol in a continuous flow reactor over a 

packed-bed activated carbon at near atmospheric pressure. Results revealed a high level of 

alkenes and aromatics compounds, which are not stable and are not environmentally unfriendly. 

To reduce these compounds in the liquid fuel, trimetallic catalyst was prepared and the reaction 

was by optimizing the reaction variables (temperature, pressure, weight hourly space velocity, 

and oil-2-propanol ratio). Results from the second study were better than that of the first, as the 

level of aromatics and alkenes was lower in the second study. However, the amount of branched 

and cyclo-alkanes (high octane rating compounds) was insignificant. 

Lipids from algae-derived oil-laden BI were extracted by 2-propanol and without evaporation of 

alcohol; the pregnant 2-propanol was subjected to CTH over the prepared trimetallic catalyst in a 

batch reactor. The liquid fuel product from this third study produced significant branched and 

cyclo-alkanes (serendipity).  

 Finally, technoeconomic analysis (TEA) and life cycle assessment (LCA) of CTH reaction were 

conducted. The results were compared, with a conventional hydroprocessed renewable jet fuels 

(HRJ) process. Results showed that the economic performance of CTH was lower than that of 

 



 
 

HRJ, due to the large volume of 2-propanol employed in the CTH. However, the environmental 

performance of CTH was very impressive, compared to that of HRJ. 

Chapter 1 of this study describes the rationale for selecting WCO and 2-propanol as the potential 

hydrogen donor. 

In Chapter 2, 2-propanol was used the react with waste cooking oil by considering four reaction 

parameters: temperature, oil flow rate, WHSV, and pressure.  Finally, the kinetics of the reaction 

were ascertained, in order to estimate reaction order, activation energy, and kinetic rate constant.  

Chapter 3 employed commercial catalyst doped with transition metals which catalyzed the 

reaction between waste cooking oil and 2-propanol. Optimization of the reaction was studied by 

varying temperature, WHSV, pressure, and oil-2-propanol ratio. The percent of transition metal 

employed remained constant.  

Chapter 4, on the other hand, explored the possibility of using oil-laden biofuel intermediate 

from flash hydrolyzed algae. The purpose was to utilize 2-propanol as oil extract and hydrogen 

donor in CTH reaction of the oil.  

Finally, Chapter 5 thoroughly discussed the technoeconomic and environmental performance of 

the CTH reaction of waste cooking oil and 2-propanol. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.0. Introduction 

 

The US annual energy consumption was estimated at 99.3 quadrillion Btu in the year 2018, 

comprising 37% petroleum, 31% natural gas, 13%  coal, 8% nuclear, 7% renewable, 3% 

hydroelectric, and 1% biofuels [2]. With an increase in primary energy consumption, and its 

attendant environmental concerns due to the use of fossil fuels, a lot of effort is being made to 

develop renewable and sustainable biofuels using organic feedstock, such as non-food biomass, 

oil seeds, municipal solid waste, algae, cyanobacteria, fats, grease, and waste cooking oils 

(WCOs). The organic matter that is being considered for biofuels primarily contains four major 

components: carbohydrates, proteins, lignin, and lipids. The last category, i.e. lipids or lipid-

based feedstock, is of primary interest in this chapter. Biofuels derived from non-food lipid-rich 

biomass such as microalgae, fats, and oils are considered as one of the important options of 

producing drop-in liquid fuels.  

There is a large quantity of triglycerides available that can be used for biofuel production. The 

world production of plant oil rose to 175 million tonnes in 2014. Despite this rise, production of 

“first generation” biofuel (e.g. biodiesel) from crude plant oil is hindered by the fact that most of 

these oils are edible. However, waste lipids, such as waste cooking oil (WCO), waste fish oil, 

and acid oil from soap stock are important renewable feedstocks. These feedstocks have no 

competition from human consumption or agriculture, and their use can also solve environmental 
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issues associated with disposal of waste organic materials. As of June 2016, there were 95 

biodiesel producers across the United States, with a total annual production capacity of 2.1 

billion gallons per year. These are from an increasingly diverse mix of resources, such as 

recycled cooking oil, soybean oil and animal fats. Biodiesel is the first and the only commercial-

scale fuel produced across the US to meet the Environmental Protection Agency’s (EPA’s) 

definition of an Advanced Biofuel, i.e. it reduces greenhouse gas emissions (GHGs) by more 

than 50 percent, compared with petroleum diesel. The successful commercial-scale production of 

biodiesel indicates that the feedstock logistics is reasonably well established. 

The aviation sector faces fuel cost and environmental and energy security challenges that arise 

from the use of petroleum-based jet fuels. Sustainable alternative jet fuels (biojet fuels) from 

renewable resources can play a key role in addressing these challenges. The development of 

biojet fuels could reduce emissions that impact surface air quality and global climate, while 

expanding domestic energy sources that diversify fuel supplies, stabilizing price and supply and 

generating economic development in rural communities. The strategies for reducing CO2 

emission from land or water transportation include an array of options, ranging from improving 

engine efficiency and blending bioethanol/biodiesel with gasoline/diesel to using plug-in electric 

vehicles [3]. Aviation fuels pose a unique problem, because of stringent specifications that 

require oxygen-free compounds, and they are often characterized as a pure hydrocarbon with an 

aggregate composition of C12H23. Aircraft engines are designed to burn only a narrow range of 

fuels; therefore, using fuels with characteristics that fall outside this range will detract from 

safety, efficiency, and/or operability [4]. Bioethanol and biodiesel blending components have 

dominated consideration as alternative transportation fuels for ground vehicles, but these fuels 

are not suitable for aviation. In view of these issues, the Federal Aviation Administration’s 
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(FAA) Environment and Energy Division has undertaken several initiatives, including the 

Continuous Lower Energy, Emissions, and Noise (CLEEN) program that provides leadership in 

this evolving field of biojet fuels. 

The fuels derived from non-food-based lipid biomass, such as waste fats, oils, greases, and non-

food plant-derived oils grown on marginal lands, are being viewed as cost-competitive options 

for producing drop-in sustainable alternative jet fuel(s), SAJF. As of April 2016, the FAA has 

approved five (Table 1.1) biojet fuels under ASTM D7566 for blending with conventional 

petroleum-based jet fuels. Each of the five approved pathways for biojet fuels uses one of the 

following renewable feedstocks: sugar, agricultural/forest residues, municipal solid wastes, fats, 

oils and greases. For biojet fuels, depending upon the feedstock and conversion processes, 

reductions in CO2 emissions, relative to conventional jet fuel, range from 41 to 89 percent [5]. 

 

Table 1.1. The FAA’s approved biojet fuels pathways [5] 

Process Brief Description Qualification 

Date 

Blend 

Limit (%) 
FT-SPK Fischer-Tropsch conversion of syngas to synthetic paraffinic 

kerosene 

September 2009 50 

HEPA-SPK Hydroprocessed esters and fatty acids (lipids from plant and 

animal sources) to synthetic paraffinic kerosene 

July 2011 50 

HES-SIP Hydroprocessed fermented sugars to synthesized isoparaffins June 2014 10 

FT-SPK/A Fischer-Tropsch conversion of syngas to synthetic paraffinic 

kerosene and aromatics 

November 2015 50 

ATJ-SPK Thermochemical conversion of alcohols (isobutanol only 

initially) to paraffinic kerosene 

April 2016 30 

 

 

However, due to the low hydrogen-to-carbon ratio of all the biomass/lipid feedstocks, hydrogen 

gas, a key input, is needed for almost all biojet fuels production pathways; this represents a 

significant portion of operating cost. Most of these pathways to produce biojet fuel require a 

considerable amount of hydrogen gas for the conversion; this leads to the tremendous cost of 
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hydrogen gas handling. Hydrogen gas, being immiscible with fatty acid, is forced to react with 

oil by applying significant amount of pressures. The most viable option to avoid handling of H2 

gas is to employ catalytic transfer hydrogenation (CTH), which is the reduction and 

hydrogenation of the oil by using a solvent as in situ hydrogen donor.  

In this work, the application of 2-propanol as the hydrogen donor over selected catalysts was 

extensively explored. Chapter 2 reports the CTH of WCO over activated carbon in a continuous 

flow reactor near atmospheric pressure and temperature range of 360-400 oC. The kinetics of the 

reaction were studied, in order to measure the reaction rate equation, activation energy, and order 

of reaction. Because of high level of oxygenated compounds and aromatics in obtained in 

Chapter 2, Chapter 3 reduces these parameters by conducting the CTH over commercially 

available trimetallic catalyst, which was significantly active, compared to the activated carbon. 

The kinetics of the reaction were studied to estimate the reaction rate equation, rate constant, 

energy of activation, and order of reaction. Optimization of the CTH was studied by design of 

experiment (DOE) to determine the optimum parameters that lead to maximum yield and 

conversion.  

The most essential components of jet fuel are branched, and cyclo-alkanes, which are less 

significant in the Chapter 2 and 3, are explored in Chapter 4. In this case, oil-laden biofuel 

intermediate from flash hydrolyzed microalgae was used to produced liquid branched and cyclo-

alkanes, which could be blended with the fuel obtained from the WCO. Optimization of oil 

extraction from the BI was conducted using 2-propanol and, without evaporation, the pregnant 2-

propanol was subjected to CTH. CTH reaction kinetics were explored to ascertain the rate 

equation, rate constant, activation energy, and reaction order.  
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Chapter 5 deals with the economic and environmental performance of CTH. The results were 

compared to that of hydroprocessed renewable jet (HRJ), which used gaseous hydrogen to 

hydrogenate the oil and produced biojet fuel. Economic indicators, such as net present value 

(NPV), the internal rate of return (IRR), and the payback period (PBB) were used to assess the 

viability of the two processes. Evidently, the fixed capital investment for CTH was 3% that of 

HRJ.  The environmental performance of CTH was assessed by life cycle assessment (LCA) that 

considered the cradle-to-use conditions. Monte Carlo simulation was employed to evaluate the 

total greenhouse gas emissions, which was connected to the thermal energy consumption of the 

two processes.  

Recommendations and suggestions for future work for this study are highlighted in Chapter 6. 
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CHAPTER 2 
 

WASTE COOKING OIL TO JET-DIESEL FUEL RANGE USING 

2-PROPANOL VIA CATALYTIC TRANSFER HYDROGENATION REACTIONS 
 

Note: The contents of this chapter were published in the Biofuels Journal. 

 

Asiedu, A.; Barbera, E.; Naurzaliyev, R.; Bertucco, A.; Kumar, S., Waste cooking oil to jet-diesel fuel 

range using 2-propanol via catalytic transfer hydrogenation reactions. Biofuels 2019, 1-14. 

https://doi.org/10.1080/17597269.2018.1532754 

 

 

 

 

2-propanol (99.9 wt%) was used as a H-donor to produce jet/diesel fuel range from waste 

cooking oil (WCO) over a fixed bed of granular activated carbon in a continuous flow reactor.  

The reactions were carried out at 2 bar and at a temperature range of 300-400 oC with weight 

hourly space velocity (WHSV) of 6.7 h-1. An optimum yield of 72% liquid hydrocarbon (LHC) 

at 380 oC was observed. The LHC contained 32% alkanes, 16% aromatics, and 37% alkenes at 

the optimum temperature. Using 2-propanol as an in-situ hydrogen source will potentially reduce 

volume ratio of hydrogen source to oil (0.4 liter 2-propanol per liter WCO), compared to what is 

reported in literature for conventional use of hydrogen gas at high pressures. Kinetics evaluation 

revealed that the rate of catalytic transfer hydrogenation of WCO is second order, with an 

activation energy of 53 kJ/mol. With 10 hours of continuous catalytic transfer hydrogenation 

(CTH) of WCO, the catalyst still maintained its catalytic activity, despite the inherent coke 

formation. 

 

Keywords:  Waste cooking oil, catalytic transfer hydrogenation, Hydrocarbon, jet fuel, Kinetics, 

coke formation. 
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Catalytic Transfer Hydrogenation of waste cooking oil (70% C18:2 & C18:1) using 2-propanol 

at 2 bars and 380 oC over activated carbon 

Waste 
cooking oil 

1kg 

2-propanol 

0.342 kg 
Reactor 

Jet fuel 

0.53 kg 

Catalyst   + Coke 

0.825kg 

Diesel 

0.13 kg 
Oxygenates 

0.065 kg 

Water 

0.065 kg 

Gas 

0.4 kg 

Unaccounted 

0.14 kg 

INPUT OUTPUT 

 
Catalyst (0.8 kg) 
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2.0. Introduction 

 

The dwindling fossil fuels and their attendant environmental impacts in our time have given 

impetus to researchers in the energy sector to delve into different sustainable energy sources. 

These attendant problems are driven by the fact that the world population has been forecast to 

grow by 0.9% per year, from 7.3 billion in 2014 to 9.2 billion in 2040. Population growth will 

evidently trigger an increase in global energy consumption by approximately 29% in 2040. Its 

attendant CO2 emission will increase as well, from 32381-36673 million tonnes [6].  In USA 

alone, 103 trillion MJ (transportation provides 29%) were consumed in 2016. According to U.S. 

Energy Information Administration (EIA), energy consumption will increase by 5% in US from 

2016 to 2040.  One of the energy consuming industries is the aviation sector, which the EIA 

predicts approximately a 45% increase (2.5-3.6 trillion MJ) in jet fuel consumption between 

2016 and 2040 [7]. Furthermore, in its report in 2016, the Air Transport Action Group claimed 

that 278 billion liters of jet fuel were consumed by commercial operators; this led to 781 million 

tonnes of CO2 emission [8].  

Typical commercial or military jet fuel constitutes alkanes, cycloparafins, and aromatics (with 

carbon atom range: C8-C16), while road transportation constitutes diesel alkanes, cycloparafins, 

aromatics, and some oxygenates (with carbon atoms >C16) [9]. This range of carbon atoms can 

be obtained from the conversion of waste triglyceride (renewable and sustainable), as the 

aviation industry has targeted 50% reduction in carbon emission by 2050.  There are almost 300 

types of fatty acid sources (mainly from animal fat or plant lipids) that can be harnessed for the 

production of jet/diesel fuel range [10]. However, some researchers have raised concerns about a 

potential interference with nutritional consumption if virgin fatty acids were employed in the 

jet/diesel fuel production [11, 12]. In view of this, there is continuous research for non-edible oil 
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as a feedstock for jet/diesel fuel. A few of the proven non-edible oils as jet/diesel feedstock are 

jatropha [13]; bio-oil [14]; fatty acid distillates [15]; and microalgae [16].  

In the quest for non-edible oil as jet/diesel fuel range feedstock, waste cooking oil (WCO) is no 

exception. WCO is produced by continuous oxidation reaction of virgin cooking oil via a typical 

free radical mechanism after an open-air frying process. The main oxidation product is 

hydroperoxide, which may further oxidize to toxic products, such as 4-hydroxy-2-alkenal, 

thereby rendering WCO a hazardous waste [17]. Moreover, it has been reported that WCO is 

considered non-edible, as it poses harmful diseases, such as dyspepsia, diarrhea, stomachache, 

and gastric cancer [18].  

There are a few reasons why WCO oil should be considered as jet/diesel fuel feedstock. First, it 

is in large quantity around the globe, with an annual global generation of 29 million tons [19]. As 

consumption of edible oil will increase from 145 million to 660 million tons by 2050, its disposal 

will  pose enormous challenges [20]. Second, a liter of WCO, when discharged to waterways, 

can pollute approximately 500,000 liters of water by obstructing sunlight penetration and oxygen 

exchange between the aquatic living things and the atmosphere [21]. Third, WCO is three times 

cheaper than virgin cooking oil, i.e. WCO costs 224 US dollar/ton compared to 771 US 

dollar/ton  of virgin soybean oil [22]. Fourth, reusing WCO saves the environment and reduces 

the cost of wastewater treatment [23]. Lastly, the fatty acids composition of WCO contains 

approximately 14-22 carbon atoms. In addition, the carboxylic acid is the only functional group 

in the waste triglycerides, as compared to other biomass. With reference to these properties, it is 

easy to upgrade triglycerides into hydrocarbon fuels [24]. In view of these factors, WCO has 

been a feedstock for the commercial production of biodiesel with well-established processing 
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facilities in the USA. This implies that there is a viable feedstock logistics and that there is the 

possibility of tailoring the current infrastructure to produce fuel for the aviation industry [22, 25]. 

In order to convert WCO into liquid hydrocarbon (LHC), whose cold properties are similar to 

that of the convention jet/diesel fuel, the WCO must be subjected to deoxygenation (oxygen 

removal from the triglyceride structure in the presence of hydrogen gas) via hydrodeoxygenation 

(HDO) and decarbonylation (DCO), and without hydrogen gas via decarboxylation (DCO2) [26]. 

Thus, oxygen is removed from the oil in the form of water and carbon monoxide, and carbon 

dioxide, respectively. Conventionally, oxygen is removed from triglycerides using large volumes 

of gaseous hydrogen. Much research has been done to produce jet/diesel fuel range with 

hydrogen gas. Nearly 300-400 m3 H2/m
3 of vegetable oil is required to obtain a desirable LHC 

fuel (aromatic, alkanes, iso-alkanes, and cycloalkanes) [15]. A batch deoxygenation of soybean 

oil was performed at 300oC using 1 wt% Pd-supported on montmorillonite at an optimum time of 

6 hours and H2 gas pressure of 30 bars [27]. Mordechay et al. treated vegetable and animal oil in 

a batch reactor using Pt/SAPO-11. In addition, 800-1200 liters of H2 gas per liter of oil was used 

[15]. Moti et al. also used 550 liters of H2 gas to convert one liter of vegetable oil over Pt/SAPO-

11 in a batch reactor at a reaction time of 150 hours and a temperature range of 375-380 oC [28]. 

Kim et al. reported the deoxygenation of soybean oil over Ni and CoMoSx catalyst by employing 

a H2/oil molar ratio of 30-46 at a reaction temperature range of 300-400 oC and at a pressure 

range of 2.5-15 MPa (25-150 bar) [29]. Lu Li et al. cracked WCO over an ultra-stable zeolite 

(USY) catalyst in a pyrolytic reactor at a reaction time of 100 minutes and a temperature of 430 

oC, and produced alkanes and alkenes with no aromatics [30]. A batch process of WCO to 

produce jet biofuel range using three different types of zeolite catalysts (Meso-Y, SAPO-34, and 

HY) loaded with nickel, and deoxygenation was achieved by H2 gas at 30 bar in eight hours [31].  
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Based on the preceding laboratory hydrogenation work, many oil companies have scaled up the 

results of these studies to commercial levels. Among these companies are UOP/Eni (Ecofining 

process), Haldor Topsøe, The Neste Oil. (NExBTL process), Tyson Foods Inc. and Syntroleum 

Corporation, Valero Energy Corporation, ConocoPhillips, Toyota Motor Corporation, Hino 

Motors, and Nippon Oil Corporation. These companies employ a two-step process: 

hydrodeoxygenation to produce long-chain paraffins followed by hydroisomerization-

hydrocracking, in order to improve the cold properties of the fuel in a different reactor. These 

two steps utilize large volumes of gaseous hydrogen at an inordinate pressure of 150 bar [32]. 

All of the above-mentioned processes require a long reaction time, high pressure, and most of all 

a very large amount of hydrogen gas. Although hydrogen is produced at the refinery industries 

and is considered to be the best raw material for hydrotreating conventional fuel, it is in short 

supply and it is of fossil-fuel base [33]. This means that relying on gaseous hydrogen from the 

refining industry to hydrogenate and deoxygenate triglycerides will be unsustainable. 

Additionally, employing a large volume of hydrogen gas in the deoxygenation process poses 

handling problems that require a potentially huge fixed capital investment. Besides, gaseous 

hydrogen (nonpolar) is not all that soluble in triglyceride at near atmosphere. Hence, there is an 

inherent problem of mass transfer and diffusion of hydrogen during deoxygenation. To overcome 

the problem of diffusion and mass transfer, some researchers have carried out the deoxygenation 

reaction at the high pressure range of 25-100 bar [34], [35], [36], [37]. Running deoxygenation at 

such a high-pressure range may pose probable safety concerns with high energy input, and may 

put significant stress on the deoxygenation reactors and their ancillary equipment that could lead 

to considerable maintenance cost and an attendant short project life span. Lastly, one of the 

major problems with gaseous hydrogen is its ability to diffuse through stainless steel to decrease 
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its plasticity and toughness, which leads to a phenomenon known as hydrogen embrittlement, 

leading to cracks and unpredictable fractures in the walls of reactors [38], [39]. Consequently, all 

of these factors may increase the unit cost and price of the fuel, and may finally render the 

process unsustainable.  

Most of these potential problems can be solved or reduced by the application of CTH, which is a 

reduction of unsaturated organics (such as oleic acid), using hydrogen-donating compounds, that 

catalytically produces hydrogen in situ. As opposed to hydrotreating, that uses gaseous hydrogen 

to remove sulfur, nitrogen, and aromatics from organics [40], CTH uses a hydrogen-donating 

solvent as a reducing agent by producing hydrogen in situ in the presence of a catalyst. CTH is 

advantageous over hydrogenation using gaseous hydrogen, since CTH can address most of the 

above-mentioned disadvantages of hydrogenating triglyceride with gaseous hydrogen  [41]. In 

addition to reducing inconvenient transportation and high cost of hydrogen storage [42], CTH 

addresses most of the above-mentioned potential problems associated with gaseous hydrogen.  

    With exception of WCO, a large amount of biomass was subjected to CTH by using different 

solvents: dehydrogenation of lignin with decalin and tetralin [43]; stearic acid was hydrotreated 

with tetralin [44]; heavy crude oil was upgraded with tetralin, decalin and naphthalene [45]; oil 

palm fruit bunch was liquefied with sub- and supercritical tetralin and n-dodecane [46]; crude 

Jatropha oil [13], levulinic acid [47], and furfural [48] were deoxygenated with formic acid; the 

effect of cyclohexane as hydrogen donor has been reported [49]; atmospheric residue was treated 

with tetrahydronaphthalene [50]; sunflower [51], allylic alcohol [52]; carbonyl compounds, 

alkenes, and nitrobenzene [53] were deoxygenated with glycerol; coal was liquefied by 9,10-

dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydro-6-

naphthol and 1,2,3,4,5,6,7,8-octahydroanthracene [54]. One of the advantages of using 
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hydrocarbons as in situ hydrogen donors lies in the fact that the bond energy of C-H is lower 

than that of the H-H bond in H2 [55]. However, most of these hydrogen donors are costly, toxic, 

and volatile. The most available, less toxic, and less costly are the common alcohols (methanol, 

ethanol, n-propanol and 2-propanol), which have been reported to be effective hydrogen donors. 

Methanol has been used to hydrogenate styrene and nitrobenzene [41]. Ethanol and 2-propanol 

were used to deoxygenate levulinic acid over 5% Pd/C [56]. Among these common alcohols, the 

primary alcohols are generally less active than the secondary alcohols, due to the smaller 

electron-releasing inductive effect of one alkyl group as against two [41]. For example, the two 

methyl groups in 2-propanol donate more electrons to weaken the O-H bond, compared to the 

lower electron-donating ability of one methyl group and one ethyl group in methanol and ethanol 

respectively. This premise makes 2-propanol a better CTH solvent than the other common 

alcohols. 2-propanol is inexpensive ( $1.80/kg [57]) compared to gaseous hydrogen ($3-12.85/kg 

[58] [59, 60]); it is non-toxic, and it possesses good solvent properties [61] (e.g. miscible with 

triglycerides). Lastly, 2-propanol can be produced from renewable feedstocks: acetone that can 

be hydrogenated to 2-propanol [62-64]; glycerol that can be converted catalytically to propylene 

that, in turn, undergoes hydration to produce 2-propanol [65, 66].  Since no work has been done 

on the reaction between 2-propanol and waste cooking oil, we take advantage of CTH by 

employing the hydrogen-donating capacity of 2-propanol, which produces acetone and hydrogen 

upon decomposition, as reported in literature Eq.(2.1-2.2) [67]. 

C3H7OH ⟶CH3C(O)CH3 + H2                                                                                                  (2.1)  

C3H7OH ⟶ CH2C(OH)CH3 + H2                                                                                              (2.2) 

To the best of our knowledge, 2-propanol has not been used for the hydrogenation and 

deoxygenation of WCO. Hence, in this study, catalytic transfer hydrogenation of WCO to 
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produce LHC fuels was performed, using 2-propanol as a H-donor in a continuous flow reactor 

over a fixed bed of activated carbon. The selected catalyst in this study is relatively inexpensive 

and is renewable [68], [34]. The kinetics of CTH, comprising a lump reaction order for WCO 

conversion, was elucidated. The lump reaction rate equation was assumed to be controlled by 

hydrogen produced by 2-propanol. The catalyst in this study was characterized using 

thermogravimetric and surface area analysis. This work addresses the problems of high-pressure 

hydrogenation, the high volume of gaseous H2 handling, and the inherently low mass transfer of 

gaseous H2 in a conventional hydrogenation. It should be noted that a rigorous proof of the 

occurrence of CTH, which requires isotope labeling, and the rate of mass transfer of H2 produced 

by 2-propanol is beyond the scope of this work. Summarily, the novelty of this work lies in the 

fact that catalytic transfer hydrogenation of WCO was carried out near an atmospheric pressure 

that is impossible by using gaseous hydrogen. Besides, CTH was executed by using non-toxic 

and non-acidic 2-propanol as an in-situ hydrogen donor.  

2.1. Material and Methods 

 2.1.1. Materials 

The granular activated carbon (8-20 mesh), 2-propanol (99.5 wt%) and dichloromethane, diethyl 

ether, and anhydrous sodium sulfate were purchased from Fisher Scientific Company. The WCO 

was obtained from a local restaurant in Norfolk, Virginia. 

2.1.2. Characterization of WCO 

 Determination of fatty acid composition of WCO 

1 mL of WCO was measured into a 20-mL test tube. The tube and its contents were placed in a 

water bath and allowed to heat to the required 60 oC. Then, 1.2 wt.% catalyst (NaOH) (1.2% of 

WCO) was dissolved in 0.397 mL of methanol to obtain approximate molar ratio of methanol to 

oil of 10 [69].  The basic methanol was added to the oil in the test tube. The test tube was then 



15 
 

 

capped, and the transesterification reaction was allowed to proceed. The test tube and its contents 

were agitated intermittently with a vortex mixer to enhance the reaction. The reaction was 

stopped in one hour and was allowed to cool to room temperature. The FAME and the glycerol 

were separated by centrifugation. The FAME was pipetted into a separating funnel, and 2 mL of 

diethyl ether was added to the FAME, followed by several washings, using distilled water to 

remove excess base. The solvent was then dried over anhydrous sodium sulfate. The ether was 

separated from the oil by vacuum (0.1 bars) evaporation. The oil was poured into small 

aluminum can and was dried for two hours at 60 oC in an oven. The FAME was then poured into 

a vial and was refrigerated prior to FAME analysis by gas chromatography mass spectroscopy 

(GCMS). The experiment was conducted in triplicate. 

Thermogravimetric-Differential Analysis (TGA-DTA) of WCO 

TGA-DTA analysis was carried out using Shimadzu TGA 50-50H. Approximately 0.1 mL of 

WCO was placed into a Pt sample pan. The experiment was conducted in a nitrogen atmosphere 

at a flow rate of 10 mL/min. The sample was heated from 20 to 900 oC at a heating rate of 10 

oC/min, and was held at 900 oC for 5 min. The experiment was repeated in triplicate. 

2.1.3. Characterization of Catalyst 

To assess the stability of the catalyst, the surface area, the pore volume, and the pore size of the 

new and used catalyst were measured by using Quantachrome NOVA 200e surface area 

analyzer. Catalyst samples were cleaned in hexane, dried, and degassed at 300 oC for three hours. 

Samples were cooled to room temperature after which nitrogen adsorption-desorption isotherms 

at -196 oC were measured. The surface area was evaluated using the multi-point Brunauer-

Emmett-Teller (BET) model, as it considers both monolayer and multilayer adsorption, which 

gives better results, as opposed to monolayer adsorption models, which give a lower surface area 
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than the actual value [70]. The pore size distribution was obtained from the desorption isotherm 

using the Barret-Joyner-Halenda (BJH) model, while the total pore volume was calculated at 

relative pressure range of 0.0-1.0. All of these models were embedded in the NovaWin Software. 

The amount of coke formation was determined using TGA-DTA, by measuring the percent mass 

loss of the catalyst. The procedure is the same as the one described in the section above. In this 

case, approximately 10 mg of catalyst was used in the analysis. 

 

2.1.4. CTH Experiments 

The CTH experiments were carried out in a packed bed continuous flow reactor. The stainless-

steel tubular reactor of dimension 360 x 15 mm was placed inside an 8-kW heating furnace with 

an automatic temperature control (Figure 2.1). Flow rates of both 2-propanol and WCO were 

controlled by high-performance liquid chromatography (HPLC) pumps.  

Figure 2.1. Experimental set-up for a continuous-flow fixed bed for deoxygenation of waste 

cooking oil. PG-Pressure gauge; TG-Digital temperature gauge. 
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The CTH reaction was carried out at 2 bar, a temperature range of 300-400 oC, a weight hourly 

space velocity (WHSV) of 6.8 h-1, and WCO:2-propanol ratio of 2.5. The WHSV, pressure, and 

WCO:2-propanol ratio were kept constant. To ensure low reaction pressure, the back-pressure 

regulator was open to the fullest, which gave a minimum pressure of 2 bar at feed flow rate of 

0.7 mL/min (WCO:2-propanol = 0.5:0.2). The ratio of WCO to 2-propanol was calculated based 

on the amount of hydrogen required to saturate or hydrogenate the two double bonds in the C18 

fatty acid. The pressure (2 bar) was maintained using a back-pressure regulator located at the 

outlet of the reactor. As a control experiment, 78 mL of WCO was placed in a vertical tube 

connected to a piston and was run through a tubular reactor at a flow rate of 0.5 mL/min without 

a catalyst. Pump 1 was used to pump the water, which acted as a hydraulic fluid that pushed a 

piston that, in turn, pushed the WCO through the reactor.  Liquid products were sampled every 

30 minutes for 2.5 hours per run at different temperatures (Table 2.1). The reactor was then 

loaded with 5.5 g of granulated activated carbon, and the procedure was repeated. Next, 2-

propanol and WCO were run through the reactor without a catalyst.  

  
Table 2.1 Conditions for Control Experiments. 

Experimental Run Temperature (oC) Pressure (bar) Run time (h) 

1 300 2 2.5 

2 340 2 2.5 

3 360 2 2.5 

4 380 2 2.5 

5 400 2 2.5 
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Table 2.2. CTH Experimental Conditions 
Experimental 

Run 
Temperature 

(oC) 
Pressure 

 (bar) 
WHSV 
(h-1) 

Run time 
(h) 

1 300 2 6.8 2.5 

2 300 2 6.8 2.5 

3 340 2 6.8 2.5 

4 340 2 6.8 2.5 

5 360 2 6.8 2.5 

6 360 2 6.8 2.5 

7 380 2 6.8 2.5 

8 380 2 6.8 2.5 

9 400 2 6.8 2.5 

10 400 2 6.8 2.5 

 

 After these runs, the CTH of WCO was run using 2-propanol (99.5 wt%) by flowing 0.5 

mL/min WCO and 0.2 mL/min 2-propanol over 5.5-g catalytic fixed bed while keeping the 

weight hourly space velocity (WHSV) of 6.8 h-1. The CTH was run at different temperatures 

while keeping the pressure constant (Table 2.2). The amount of liquid fuel obtained from each 

run was collected and measured in each case. 

2.1.5. Product Analysis 

 

Liquid fuel products were analyzed by the Shimadzu GCMS-QP2010SE and Gas 

chromatography GC2010 plus. The following were the settings of the instrument: inlet pressure 

45 kPa; column flow 0.94 mL/min; split ratio 25; injection temperature-250 oC; GC-MS interface 

temperature 280 oC; ion source temperature-225 oC; sample ionization method: electron 

ionization. The column specifications were as follows: column type SH-Rxi-5Sil MS; length 30 

m; internal diameter 0.25 mm; film thickness 0.25 µm. The temperature program for the column 

were initial temperature 40 oC, ramp 12 oC/min, and final temperature of 300 oC at a hold time of 
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8 minutes. The gaseous products were detected by SRI model 8610C gas chromatography (GC) 

with a TCD and dual 3 feet x 1/8-inch OD packed column. Carrier gas used was helium at a flow 

rate of 10 mL/min. The initial oven temperature was set at 40 oC and ramped at 20 oC/min to 250 

oC. All products analyses were performed in triplicates. With the results from the GCMS, the 

WCO conversion X (%) was calculated as Eq. (2.3): 

Conversion = 
[(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑊𝐶𝑂)−(𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑊𝐶𝑂)]×100%

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑊𝐶𝑂
                                         (2.3) 

It was assumed that the fatty acids obtained in the GCMS results represented the unreacted 

WCO. 

The liquid fuel yield was also calculated as Eq. (2.4): 

Yield = 
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑊𝐶𝑂
× 100%                                                                              (2.4) 

Moreover, the total amount of coke formed was calculated as Eq. (2.5): 

Total coke formed = (% mass loss) × (total mass of catalyst)                                                 (2.5) 

 

2.2. Results and Discussions 

 2.2.1. Characterization of WCO 

The analysis of WCO showed 70.34% unsaturated (compose one or two −𝐶 = 𝐶 − bonds) in the 

carbon chain, while the rest was saturated (contained only −𝐶 − 𝐶 − bond) (Table 2. 3). This 

value of unsaturation can be compared to what is in the literature: 87.18 % [71]; 91.5% [72]; 

88.3% [73]; 48.1% [74]. The discrepancy in the degree of unsaturation might be traceable to the 

degree of degradation of the oil during deep frying. Also, their respective virgin oils could have 

different fatty acid compositions. It could also be attributed to the degree of hydrolysis that the 

oil underwent during its use 
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Table 2.3. Fatty Acid Composition of WCO 

Compound wt% 

9-Hexadecenoic acid-(C16H30O2) 1.36 

Pentadecanoic acid (C15H30O2) 16.96 

Heptadecanoic acid(C17H34O2) 0.25 

8,11 Octadecadienoic acid (C18H32O2) 49.57 

9-Octadecenoic acid (C18H34O2) 17.8 

Stearic acid (C18H36O2) 10.68 

9,11-Octadecadienoic acid (C18H32O2) 0.69 

11-eicosenoate(C20H38O2) 0.92 

Nonadecanoic acid(C20H40O2) 0.76 

Heneicosanoic acid (C21H42O2) 0.10 

Docosanoic acid(C22H44O2) 0.65 

Tricosanoic acid(C23H46O2) 0.07 

Tetracosanoic acid(C24H48O2) 0.19 
 

The unsaturated nature, or the presence of carbon-carbon double bond of the WCO, renders it 

reactive when subjected to hydrogenation [75]. Table 2.3 shows that 78% of the fatty acid 

comprises eighteen carbon atoms (C18), and 16% contains less than eighteen carbon atoms 

(C15-C17), while 2.7% contains more than eighteen carbon atoms (C19-C24). This means that 

the average molecular weight of fatty acid in the WCO was estimated to be 280 g/mol. To further 

understand the possible deoxygenation temperature range of the WCO, TGA-DTA was 

performed. It was revealed that, at a temperature range of 300-460 oC, the chemical bonds of 

WCO could be broken. Within this temperature range, 98% of the mass of the WCO was 

vaporized (Figure 2.2). The free fatty acid of and the density of WCO were determined to be 

1.41 and 0.92 g/mL, respectively. The presence of FFA in the WCO signifies that it has 

undergone some hydrolysis, and it is, no more, a triglyceride. 
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Figure 1.2. Thermal gravimetric analysis of WCO 

 

 

2.2.2. CTH of WCO 

Conversion 

It was observed that running only WCO through the reactor at a temperature range of 300-400 oC 

caused some chemical changes, in the absence of a hydrogen donor. Increasing the temperature 

from 300-400 oC produced alkenes, oxygenates (alcohols, ketones, acetates and aldehydes), and 

an insignificant amount of alkanes (Figure A1). A progressive decrease in fatty acid gave rise to 

the production of more oxygenates, which comprise alcohols, ketones, acetates and aldehydes 

(Figure A2). As the temperature increased, the acetates decomposed to produce more alcohols 

and an insignificant amount of aldehydes and ketones. The result of this control experiment can 

be compared to that found in literature [20]. 

Also, running the reaction with WCO and catalyst without 2-propanol did not produce many 

alkanes (24%) and aromatics (2.5%) at 380 oC, because there was H-donor to supply hydrogen to 
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catalyst produced just 18% alkanes, 10% aromatics, and high level of oxygenates at 380 oC 

(Figure A4-A5) because there was no catalyst to facilitate the transfer of H2 to the oil.  

The catalytic transfer hydrogenation of WCO using 2-propanol as the hydrogen donor revealed 

different kinds of products based on the results from the GCMS analysis. The main components 

in the liquid fuel are aromatics (toluene, xylene and naphthalene), alkanes (n-alkanes, iso-

alkanes, and cyclo-alkanes), alkenes (straight chain alkenes and cyclo-alkenes), oxygenates 

(alcohol, ketones and aldehydes), and unreacted fatty acids (Tables A2-A6, supplementary 

sheet). These results could be compared to the deoxygenation of oleic acid over activated carbon 

in the presence of formic acid as a hydrogen donor that resulted in cyclization and hydrogenation 

[76]. Gaseous products revealed in the GC analysis contained H2, CO, CO2 and C1-C3 gaseous 

products (Table A1). The material balance shows that 30% of the total material input produced 

gaseous products; 54% was liquid fuel, 4.8% was water, and 1.8% was coke formation at the 

optimum operating temperature of 380 oC (see graphical abstract).  The presence of H2O, CO 

and CO2 was a clear evidence that WCO underwent hydrodeoxygenation, decarbonylation, and 

decarboxylation, respectively [77-79].  

 

Figure 2.2. Conversion of WCO by CTH at different reaction temperatures 
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Evidently, the conversion of WCO did increase from 87-99.9% as the temperature increased 

from 300-400 oC (Figure 2.3) by keeping the pressure and the WHSV at 2 bar and 6.8 h-1, 

respectively. Other studies obtained similar WCO conversions over a NiMo-CoMo-NiW/SiO2-

Al2O3 catalyst using gaseous H2 for hydrogenation at a pressure range of 70-100 bar: 99.8% [71]; 

85.7 [80]; 83% [73]. The level of conversion in the current study was comparable to the 

published results of work probably because of the easy mass transfer of the H2 produced by 2-

propanol due to the premixed nature of the two reactants (liquid-liquid mixture). The increase in 

WCO conversion was due to the increasing C-C and C-O bonds breaking as the temperature 

increased [81, 82]. Consequently, liquid fuel yield also increased from 58% to 72% with an 

increase in temperature (Figure 2.4). The liquid fuel peaked at 380 oC and dipped as temperature 

increased above 380 oC, as more thermal cracking led to more gaseous products. 

 

Figure 2.3. Overall liquid fuel yield from CTH of WCO at different reaction temperatures 
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A7). C6-C14 was classified as being short because the shortest carbon chain in the triglyceride 

used in this study was C15. This means that any number of carbon chain below C15 was 

obtained by cleavage during the reaction. From 300-340 oC, it could be inferred that most of the 

fuel composition remained somehow constant except for the oxygenates and short-chain (SC) 

alkenes; these changed sharply due to C-O and C-C-bond cleavages, respectively. As the 

RCOOH degraded via C-O bond scission, which gave rise to long-chain(LC) alkenes, the LC 

alkenes, in turn, cleaved, to produce more SC alkenes that decreased the LC alkenes from 300-

340 oC[81]. It was also observed that, at higher temperatures, aromatics increased due to 

dehydrogenation of alkanes to form alkenes leading aromatization (Figure 2.5) since 

dehydrogenation is endothermic [81]. Figure 2.6 shows the distillates obtained from raw fuels at 

different temperatures.  

 

Figure 2.4. Liquid fuel composition at different temperatures 
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Figure 2.5. Products: (a) raw product fuel obtained at 2 bar; (b) fuel distillate from raw product 

distilled under vacuum (0.2 bar) at 90 oC; (c) tar obtained after vacuum distillation of raw 

product fuel.  

  

Table 2.4 compares the physical properties of the liquid fuel to those of ASTM standard [83]. 

Simulated distillation (Figure 2.7) of the fuel product at 380 oC revealed that approximately 95% 

of the fuel is recovered below 200 oC, signifying the lightness of the fuel. 

Table 2.4. Physical Properties of the Liquid Hydrocarbon Compared to that of ASTM standards 

Physical properties Current study 

 

ASTM[83] 

Test 

method 

Acidity, mg KOH/g 0.11 max 0.1 D3242 

Aromatics(%v/v) 20 max 25 D1319 

Distillation temperature, oC     

%10 recovered 54 max 200  

%50 recovered 74  Report  

%90 recovered 172  Report  

Final boiling point oC 403 max 300  

Density @ 15 oC, kg/m3 790-820  775-840 D1298 

Freezing point (oC) -46  -40-47 D5972 

Viscosity (mm2/s) 6.6  8 D445 

Net Heat of Combustion, MJ/kg 44  42.8 D4529 

 

   
(a) (b) (c) 
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Figure 2.6. Simulated distillation of the liquid fuel product obtained at 380 oC. 
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Figure 2.7. Liquid Fuel fractions at different temperatures 
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short-chain alkanes. The short-chain alkanes also underwent cyclization (12) to produce 

cycloalkanes. Finally, by catalytic dehydrogenation [84] to release H2, cyclo-alkanes produced 

aromatics and polyaromatics such as naphthalene. 

 

Figure 2.8. Possible WCO deoxygenation routes using 2-propanol and formic acid as H-donors. 

The red dash lines represent the C-O cleavage route, while the violet lines depict the C-C 

cleavage routes.  

2.2.4. Reaction Kinetics. 

The CTH rate was assessed by lumping the complex reaction into a single reaction as shown in 

Eq. (2.6), which was obtained from the elementary reactions in Table 2.5. The following 

elementary assumptions were made: (i) one-dimensional flow; (ii) isothermal and steady state 

conditions; (iii) mathematical expression, which was assumed to be independent of kinetic 

mechanism or proposed reaction path; (iv) the gaseous phase reaction, which was assumed at 

such a near atmospheric pressure; (v) the lump reaction, which was assumed to composed of the 

elementary reactions of conventional fatty acids (Table 2.5); (vi) it was assumed that 
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compressibility factor of species in the reactor does not change significantly; and [85] perfect 

plug flow and absence of temperature gradients inside the catalyst particles were assumed.  

Table 2.5. Stoichiometric reactions of conversion of WCO to C12H26, C8H16 and C17H36 

  REACTIONS           

1.a C18H34O2+4H2→C12H26+CO+H2O+C3H8+C2H6   

1.b C18H34O2+H2→ 2C8H16+CO2+CH4    

1.c C18H34O2+2H→ C17H36+CO+H2O    

1.total C18H34O2+(4a+b+2c)H2→ aC12H26+2bC8H16+cC17H36+(a+c)CO+(a+c)H2O+bCO2+aC3H8+aC2H6+bCH4 

 
2.a C18H32O2+5H2→ C12H26+CO+H2O+C3H8+C2H6   

2.b C18H32O2+2H2→ 2C8H16+CO2+CH4    

2.c C18H32O2+3H2→C17H36+CO+H2O    

2.total C18H32O2+(5a+2b+3c)H2 → aC12H26+2bC8H16+cC17H36+(a+c)CO+(a+c)H2O+bCO2+aC3H8+aC2H6+bCH4 
 
3.a C18H36O2+3H2→ C12H26+CO+H2O+C3H8+C2H6   

3.b C18H36O2→ 2C8H16+CO2+CH4     

3.c C18H36O2+H2→ C17H36+CO+H2O    

3.total C18H36O2+(3a+0b+1c)H2 → aC12H26+2bC8H16+cC17H36+(a+c)CO+(a+c)H2O+bCO2+aC3H8+aC2H6+bCH4 
 
4.a' C15H30O2+2H2→ C12H26+CO+H2O+C2H6    

4.b' C15H30O2+2H2→ C8H16+CO2+C3H8+C2H6+CH4   

4.total C15H30O2+(2a'+2b')H2 → a'C12H26+b'C3H8+a'CO+a'H2O+(a'+b')C2H6 + b'CO2+b'CH4   

GLOBAL  4 WCO+11 H2 → 17.5 Products  
(a = 0.56; b = 0.28; c = 0.12; a’ = 0.52; b’ = 0.48) 

 The critical temperature (no liquid exists above this) of the reactants was estimated to be 440 oC; 

this was slightly higher than reaction temperature. This was estimated from the average critical 

temperature of WCO (based on C15-C18) and that of 2-propanol [86]. Moreover, this critical 

value was based on a pure components mixture. In a real case, where the catalyst is present to 

enhance chemical reaction or bond disruption at 380 oC, there is a high possibility of a more 

gaseous phase than liquid phase present. Also, the reaction occurred in the gaseous phase 

because 40% of the pure WCO existed in the gaseous phase (Figure 2.2), meaning that the likely 

boiling point of WCO was 380 oC. In addition, the boiling point of 2-propanol was 

approximately 81oC (from the material data sheet). Therefore, a mixture of 0.5 mL WCO and 0.2 
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mL 2-propanol would have a boiling point of 295 oC. Hence, gaseous reactants at 380 oC (and at 

such a low pressure (2 bar)) could be assumed.  

Furthermore, it was assumed that 2-propanol thermally decomposes in the first section of the 

reactor to release H2 according to Eq. (2.1), and that acetone is further degraded to give CH4, 

C2H6 and CO (Eq. (A2)) [87] .  

4WCO + 11H2 
𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡
→       17.5 Products                                                                                                (2.6)       

The above overall stoichiometry was determined by considering the inlet composition and the 

products distribution reported in the graphical abstract and in Tables A2-A7 (for liquid products). 

Regarding the latter, only the most representative components (having a boiling point Tb and 

molecular weight similar to the average ones of naphtha, diesel and kerosene) were considered. 

i.e. C8H16, C12H26 and C17H36, C3H8, C2H6, CH4, CO, CO2, H2O.  

The material balance in terms of WCO conversion in a packed bed plug-flow reactor could be 

written as shown in Eq. (2.7) [88]. 

𝑟𝑇𝐺 = 𝐹𝑇𝐺0
𝑑𝑋

𝑑𝑊
                                                                                                                           (2.7)               

where 𝐹𝑇𝐺0 is the molar flowrate of the WCO; W is the mass of the catalyst; 𝑋 is the conversion 

of WCO. Considering a second order reaction kinetics, 𝑟𝑇𝐺 can be written as shown in Eq. (2.8). 

𝑟𝑇𝐺 = 𝑘𝐶𝑇𝐺𝐶𝐻2 = 𝑘 
(1−𝑋)

(1+𝜀𝑋)
 𝐶𝑇𝐺0

(𝑅𝐻20−
𝜐𝐻2
𝜐𝑇𝐺

𝑋)

(1+𝜀𝑋)
  𝐶𝑇𝐺0                                                                (2.8)                                  

where ε is the expansion coefficient of the reaction; 𝐶𝑇𝐺0 is the inlet concentration of WCO; RH20  

is the molar ratio of H2 over WCO at the inlet; νH2 and νTG are hydrogen and WCO stoichiometric 

coefficients; 𝑘 is the reaction constant. Since 𝑘 is dependent on temperature according to the 

Arrhenius equation, the rate can be written as shown in Eq. (2.9). 
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𝑟𝑇𝐺 = 𝐴𝑒
(
−𝐸𝑎

𝑅𝑇⁄ ) (1−𝑋)

(1+𝜀𝑋)
 
(𝑅𝐻20−

𝜐𝐻2
𝜐𝑇𝐺

𝑋)

(1+𝜀𝑋)
  𝐶𝑇𝐺0

2                                                                               (2.9)                                                                  

where A is the pre-exponential factor; Ea is the activation energy (J/mol); R is the molar gas 

constant (8.314 J/mol.K).  Accordingly, Eq. (2.7) can be re-written as: 

𝑑𝑋

𝑑𝑧
= 𝐴 𝑒(

−𝐸𝑎

𝑅 𝑇
)  
𝑆 (1− ℇ𝑔𝑎𝑠 )𝜌𝑐𝑎𝑡

𝐹𝑇𝐺0
 𝐶𝑇𝐺0
2

(𝑅𝐻20−
𝜐𝐻2
𝜐𝑇𝐺

𝑋)(1−𝑋)

(1+𝜀𝑋)2
                                               (2.10)

      

where S is the cross-sectional area of the reactor (m2), 𝜀𝑔𝑎𝑠 is the void fraction, and 𝜌𝑐𝑎𝑡 is the 

catalyst density. The differential equation (Eq. (2.10)) was solved by using ode15s in the 

MATLAB software by integrating the function (𝑑𝑋 𝑑𝑧⁄ ) to obtain Xcal (conversion as a function 

of temperature). Next, the Fminsearch function in the MATLAB software was employed to 

minimize the error function (Eq. (2.11)) to evaluate the parameters Ea (activation energy) and A 

(frequency factor). 

SSE =∑(𝑋𝑐𝑎𝑙𝑐 − 𝑋𝑒𝑥𝑝)
2                                                            (2.11) 

where Xcal  and  Xexp are the calculated and the experimental values, respectively, of the percent 

conversion of WCO. 

The values of Ea and A were found to be 53.7 kJ/mol and 4.32 s-1, respectively, by minimizing 

the SSE, which turned out to be 2.74 ∙ 10-4. The result of the regression was plotted with its 

ordinary residuals, as shown in Figure 2.10. The residuals were plotted to check the adequacy of 

the kinetic model. It could be inferred that the fitted results were close to experimental results 

since all of the points were located within a standard deviation of 0.75 (less than unity), based on 

standardized residuals [89].  
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Figure 2.9. Regression of the kinetic equation using Least Square Method 

 

The value of the activation energy obtained was comparable to that obtained from studies that 

used gaseous hydrogen for the conversion of different triglycerides: 26 kJ/mol [90, 91], 31 

kJ/mol  [92], 115 kJ/mol[93], and 57.3 kJ/mol [94].  

With the knowledge of the kinetic rate constant at the optimum operating condition, the amount 

of catalyst required to process, for example, 60 barrels of WCO per day could be estimated. 

Furthermore, knowing the kinetics assisted in predicting the effect of pressure and particle size 

of the catalyst on the weight of catalyst required to process a given amount of WCO (Table A9 & 

A10). The effect of pressure and WHSV on the reaction rate was not considered in the current 

study. These are considered in the next chapter, which considers the optimization studies in 

which both normal alkanes and iso-alkanes were maximized.   

2.2.5. BET Analysis of Catalyst 

To assess the performance of the catalyst (activated carbon) used in this work, BET analysis was 

performed. The fresh catalyst, with surface area of 930 m2/g, was reduced to a surface area of 2.1 

m2/g after three cycles of run (Table 2.6). The pore width distribution (Figure 2.11) of the fresh 
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catalyst ranges from 18.8-70 Å, which classifies the fresh catalyst as both micropore and 

mesopore, with modal pore size of 18.8 Å [70].  

 

Figure 2.10. Pore size distribution of fresh and used catalyst at 380 oC. 

 

Comparatively, the used catalyst has a somehow wider range of pore width (20-388 Å), with 

most of the pores clustered around 20-115 Å having a modal pore width of 34 Å. This means that 

the catalyst maintained its mesoporous structure during the reaction. Evidently, the used catalyst 

peaked at 26 Å and 49 Å. It was highlighted in Figure 2.11 that the used catalyst showed four 

different ranges of pore width distributions (20-27 Å, 24-44 Å, 44-116 Å, and 116-388 Å) while 

the fresh catalyst showed a close-range pore size distribution (19-49 Å, 49-58 Å, and 58-70 Å). 

Large pore size distribution of the used catalyst might be due to formation of coke on the catalyst 

surface, which reduced the effective surface area and, consequently, increased the average pore 

radius or diameter. 

Table 2.6. Surface Area Determination of Used Catalyst at Different Reaction Temperatures 

Temperature (oC) 300 340 360 380 400 Fresh catalyst 

BET surface area (m2/g) 0.030 0.034 0.048 0.085 2.093 930 
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It is widely accepted that there is a correlation between the shape of the hysteresis loop 

(adsorption-desorption loop) and the texture (pore size distribution, pore geometry etc.) of the 

mesopore catalyst. Figure 2.12 highlights the adsorption-desorption isotherms for both fresh and 

used catalyst at 380 oC. Increasing the relative pressure from 0.05-0.99 filled the pores with N2 

(adsorption) until the pores were condensed. Decreasing the pressure from 0.99-0.4 evaporated 

(desorption) the adsorbed N2 that closed that loop at a pressure of 0.45 for the fresh catalyst, 

while that for the used catalyst closed at 0.04. This means that almost all of the adsorbed N2 was 

evaporated from the mesoporous structure of the used catalyst since the large pored could not 

hold fluid due to low adhesive force. Conversely, there remained some amount of N2 in the pores 

of the fresh catalyst after the loop closed, since small pores retained fluids due to the presence of 

high adhesive forces.  

 

Figure 2.11. Nitrogen adsorption/desorption 77.35 K of fresh and used catalyst at 380 oC. 

 

The hysteresis loop for the fresh catalyst showed type 1 and 4 isotherms, according to the 

International Union of  Pure and Applied Chemistry [70], which buttresses the fact that there 

exist both micropores and mesopores in the fresh catalyst. Increasing the pressure from 0.05-0.45 

enhanced the adsorption and the desorption of the micropores, whereas pressure between 0.45-

0.99 aided the filling of the mesopores in the fresh catalyst. It was also observed that the total 
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amount of N2 adsorbed within the relative pressure range of 0.05-0.99 equaled 124 cm3/g fresh 

catalyst, while the used catalyst, which depicted type 4 isotherm, adsorbed barely 0.18 cm3/g 

catalyst. This implies that the catalyst suffered deactivation after the CTH of the WCO oil.  

2.2.6. Coke formation  

The total amount of coke formed in 10 hours of CTH of WCO was determined by TGA-DTA. 

Figure 2.13 and Table 2.7 showed the rate of mass loss by subjecting the used catalyst to TGA-

DTA. Arguably, at low temperature, weight loss was observed, probably due to refractory 

volatiles, which were not cleaned by the hexane.  

 

Figure 2.12. First Derivative of TGA of used catalyst at different reaction temperatures 

 

It is evident that coke formed at 380 oC was the highest, compared to those below 380 oC. Coke 

formation has been attributed to poly-alkyl-aromatic [95-97]. The highest coke formation at 380 

oC proves the fact that aromatization produced poly-alkyl aromatics (e.g. benzene, 1-ethyl-3-

methyl and naphthalene, 2-methyl (Table A3)) at this temperature (Figure 2.5). As the 

temperature increased, the amount of poly-alkyl aromatics also increased (Table A2). 

Paradoxically, the amount of coke formed at 400 oC was lower than that at 380 oC, even though 
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the amount of aromatics formed at 400 oC was more than the amount formed at 380 oC. This be 

might be traceable to the fact that the coke formed on the surface of the catalyst might have been 

burned off at 400 oC.  

Table 2.7. Weight Loss of Used Catalyst Using TGA  
 

Reaction Temperature (oC) 300 340 360 380 400 

Using 

Isopropanol 

% weight loss 26.3 41.3 27.7 95.1 5.8 

Temperature range (oC) 249-500 224-470 230-480 210-536 Not appreciable 

 

This might be the reason why the surface area of the used catalyst at 400oC was larger than that 

at 380 oC and below (Table 2.6). Figure 2.14 highlights the total amount of coke formed during 

ten hours of running the reaction at different temperatures. The total coke formed at the optimum 

reaction temperature is 5.2 g per 5.5 g of catalyst used after ten hours of run. After three cycles 

of using the catalyst, it was observed that the conversion of WCO declined from 99 to 

78% (Figure 2.15), due to the deactivation by coke deposition on the surface of the catalyst [98]. 

Figure 

2.13. Total coke formed from running after 10 hours of reaction 
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Figure 2.14. Effect of coke formation on WCO conversion at 380 oC after 10 hours’ (3 cycles) 

use of the catalyst. 

 

2.3. Conclusions 

2-propanol (isopropanol) was used to convert waste cooking oil to jet-diesel range fuel over 

granular activated carbon near atmospheric pressure. The maximum liquid hydrocarbon fuel 

yield 72% occurred at 380oC. The study shows an alternative to hydrogen gas in such processes, 

which can help in reducing the cost of hydrogen handling and the associated capital cost. The 

flow properties of the fuel are comparable to those of conventional Jet/diesel fuel. The presence 

of oxygenates and low levels of iso-cyclo alkanes in the liquid fuel product, compared to ASTM 

fuel, shows the need of continued research to minimize oxygenates and to maximize iso-cyclo 

alkanes.   

2-propanol has proven to be a potential hydrogen donor, which  hydroprocessed WCO without 

the use of gaseous hydrogen. On a commercial scale, there is, therefore, a potential reduction in 

the cost of hydrogen handling that could lead to reduction in unit cost and the price of jet-diesel 

fuel using 2-propanol as a hydrogen source. Based on the reported annual WCO production (29 

million tons), this process could produce an annual jet-diesel fuel of approximately 20 million 
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tons; if a more stable catalyst were employed on a commercial scale, this could provide a 

considerable amount of renewable transportation fuel.  

The novelty and the feasibility of converting WCO to jet-diesel range by using 2-prpoanol as an 

in-situ hydrogen donor have been proven at the laboratory level. Commercialization or 

technoeconomic analysis (i.e. process and equipment design, capital and operational cost) and 

environmental performance (life cycle analysis) of this process, which requires extensive work, 

will be carried out in the subsequent study, so that stakeholders in the biofuel market can make 

an informed decision. 
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  CHAPTER 3 
 

KINETICS AND OPTIMIZATION OF CATALYTIC TRANSFER HYDROGENATION 

OF WCO USING 2-PROPANOL AS H-DONOR OVER NiOX-MoOX-CoOX/ZEOLITE 

 

Note: The contents of this chapter were published in the Journal of Industrial & Engineering 

Chemistry Research, DOI: 10.1021/acs.iecr.9b00648 

 Alexander Asiedu, Sandeep Kumar, Kinetics and Optimization of Catalytic Transfer 

Hydrogenation of WCO Using 2-propanol as H-donor over NiOx-MoOx-CoOx/Zeolite, Ind. Eng. 

Chem. Res.  (2019) 

 

The process optimization and the reaction kinetics of catalytic transfer hydrogenation (CTH) of 

waste cooking oil (WCO) into jet fuels using zeolite-supported Ni-Co-Mo-oxides catalyst in a 

packed-bed reactor were studied. Experiments were conducted at three different temperatures 

(360 oC, 390 oC, and 420 oC) to determine the rate constants, the order of reaction, and the 

activation energy. The kinetics study showed a first-order reaction, with the activation energy 

estimated to be 84±18.7 kJ/mol WCO, with 95% confidence. Design of Experiment (DOE) was 

employed to estimate the optimum reaction parameters (383.7 oC; 14.8 bar; WCO-to-2-propanol 

ratio = 1.57 mL/mL; and weight hourly space velocity (WHSV) = 6.7 h-1) using a polynomial 

model. Validation of the model at the optimum operating conditions generated 80% yield of 

liquid products, with 77% alkanes, 3.8% alkenes, and 12.3% aromatics composition, and 6.7% 

gases, and 100% conversion of WCO. The catalyst was prepared by the wet impregnation 

method and was characterized by X-ray diffraction (XRD),  

Fourier transform infrared spectroscopy (FTIR), Brunaeur-Emmett-Teller (BET) adsorption and 

desorption, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and 

thermogravimetric analysis (TGA). Characterization of the catalyst revealed a cubic structure, 

which was maintained after one cycle of CTH reaction. Present in both the fresh and the used 
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catalysts were Na2O, K2O, MgO, Al2O3, SiO2, CaO, FeO, Fe2O3, which highlighted the 

composition of zeolite. The active sites were dominated by Co3+, Ni2+, and Mo6+ that were 

respectively present in the form of Co2O3, NiO, and MoO3.  

3.0. Introduction 

In recent times, globally declining fossil fuel reserves and the concomitant challenges associated 

with greenhouse effects have challenged energy researchers. Because of this potential future 

energy deficit, researchers have focused much attention on green fuel from triglycerides, the 

main constituents of vegetable oils [99]. Waste cooking oil (WCO), which contains 4-hydroxy-2-

alkenal (toxin and pollutant) [17] and is abundant globally (29 million tons/year) [100], has been 

used to produce liquid hydrocarbon fuel via decarboxylation (CO2 release), decarbonylation (CO 

release), and hydrodeoxygenation (CO2 and H2O release), with an appropriate catalyst and 

hydrogen gas [101-109]. Reported processes of WCO require a large volume of hydrogen 

handling, with a H2-WCO ratio in the range of 300-1200 m3/m3 oil, which creates potential 

hydrogen handling and inherent safety costs [32, 110, 111]. Although hydrogen gas is the best 

reagent for hydrotreating conventional fuel, it is in short supply, and it comes from fossil fuel. 

Since gaseous hydrogen is non-polar and immiscible with triglycerides at low pressures, there is 

a problem of mass transfer and diffusion during hydrogenation of triglyceride. However, the 

problem of mass transfer and diffusion can only be overcome by applying inordinately high 

pressures (25-100 bar) that require enormous energy and that task the processing equipment [35, 

112]. 

 The above-mentioned problems can be alleviated by employing catalytic transfer hydrogenation 

(CTH) reactions, which are a reduction of unsaturated organics (such as oleic acid) using 

hydrogen-donating compounds that catalytically produce hydrogen in situ. CTH is advantageous 
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to conventional hydrogenation (use of gaseous hydrogen) because CTH reduces the high cost of 

transporting and storing large volumes of gaseous hydrogen [113]. Among the hydrogen-

donating compounds that have been studied are tetralin, decalin, naphthalene, n-dodecane, 

formic acid, cyclohexane, and a whole list of hydrocarbon solvents [100]. One of the advantages 

of using hydrocarbons as in situ hydrogen donors is the lower bond energy of C-H in these 

solvents, compared to that of the H-H bond in H2. [114]. However, most of these hydrogen 

donors are costly, toxic, acidic (e.g. formic acid), and volatile. The most available, less toxic and 

less costly are the common alcohols (methanol, ethanol, n-propanol and 2-propanol), which have 

been reported to be effective hydrogen donors. Most effective hydrogen-donating among the 

preceding alcohols is 2-propanol, since the two methyl groups in 2-propanol donate more 

electrons to weaken the O-H bond compared to the lower electron-donating ability of one methyl 

group and one ethyl group in methanol and ethanol, respectively. 2-propanol is not only the best 

hydrogen-donating compound among the alcohols, but it is also less expensive ($1.8/kg) [57]. 

with respect to gaseous hydrogen ($3-12.85/kg) [58, 59, 115]. Since it is non-toxic with good 

solvent properties, 2-propanol can potentially be produced from renewable feedstocks, such as 

glycerol and acetone [62-66]. 

Our previous work was focused on CTH of WCO using 2-propanol as an in-situ hydrogen donor 

over activated carbon at near atmospheric pressure [100]. However, the clarity of the liquid fuel 

required improvement by further distillation. Moreover, there were high levels of olefins and 

oxygenates, signifying incomplete hydrogenation and deoxygenation respectively, due to 

unstable catalysts and the extremely low pressure of the process, which contributed to a large 

amount of gaseous products [100]. 
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The purpose of the current study is to improve the product quality (lower unsaturated and oxygen 

compounds), and to optimize variables (pressure, weight hourly space velocity (WHSV), and 2-

propanol-WCO ratio) that were employed in the previous work. Consequently, it was important 

to select a catalyst that was mechanically and hydrothermally stable in hydrotreating WCO.  

Numerous catalysts have been employed to hydrotreat triglycerides, with significantly successful 

results.  Sulfided catalysts, such as Ni–W/SiO2–Al2O3 and Ni–Mo/Al2O3, were used for 

hydrocracking and hydrotreating waste soya oil [116]. Sulfided NiMo/γ-Al2O3 and CoMo/γ-

Al2O3 have been reported to hydrogenate methyl esters, and the effects of H2S and CS2 on the 

hydrodeoxygenation (HDO) of aliphatic esters and on the catalysts have been investigated in a 

fixed-bed flow reactor [117]. Olive oil has been hydrogenated with sulfided CoMo catalyst, 

which was biased toward hydrodeoxygenation and could not cleave C-C bond and, therefore, 

required constant replenishment of the sulfur via external sulfiding agents, such as H2S, CS2 and 

ammonium thiosulfate ((NH4)2S2O3) [118]. In addition, the use of these sulfiding agents caused 

sulfur residues in the final product, promoted the emission of  gaseous H2S , and engendered 

corrosion, due to the acidic nature of sulfur [119]. 

Noble metal (Palladium (Pd), Platinum (Pt), Rhodium (Rd), Ruthenium (Ru), etc.) catalysts 

supported on alumina, carbon, and zeolite have been used to hydrotreat vegetable oil [120-124]. 

Although catalytic activities of these metals have proven effective, they are costly and short-

lived [125].  

Surfactant-mediated mesoporous catalysts, such as SBA-1, HMS, and SBA-15 with high surface 

area, large pore structure, and well-ordered morphology, have been used to hydrotreat vegetable 

oil. However, they possess weak hydrothermal and mechanical stability, and they have reduced 

acidity, leading to retardation of their practical application [126, 127]. 
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Other emerging surfactant-mediated catalysts, such as SAPO (silicoaluminophosphate), SAPO-5, 

SAPO-11, SAPO-31, et cetera, have also been used to hydrotreat triglyceride [111, 128-132]. 

These catalysts proved to be mainly effective for isomerization of linear alkanes [133-135] and 

seem promising. However, they are not stable in the presence of oxygen-containing compounds 

[28]. Their relatively low hydrothermal stability in HDO of vegetable oils is due to the water 

vapor produced, which results in desilication of SAPO framework and leads to the loss of 

acidity. This problem is offset by adding more surfactant, which renders this catalyst 

economically inviable. [136]  In addition, SAPO has a relatively weaker acidity, which is a 

disadvantage to the family of bi-functional catalysts that usually need stronger acid sites for 

HDO of WCO [137, 138]. It has been reported that Pt-SAPO-11 and  Ni-SAPO-11 have low 

hydrothermal stability during the hydrodeoxygenation of vegetable oils, due to the production of 

water, which deactivates the catalyst at temperature > 200 oC and at autogenic pressure PH2O > 17 

bar where the catalyst framework degrades from aluminum phosphate tridymite structure [136]. 

Considering the problems associated with the aforementioned catalysts, we selected 

commercially available non-sulfided Co-Mo-Ni-zeolite catalyst that has proven to be effective in 

hydroprocessing vegetable oil commercially at the refinery level by prominent refinery 

companies, such as ConocoPhillips (United States, Ireland), Universal Oil Products (UOP)-Eni 

(UK, Italy), Nippon Oil (Japan), SK Energy (Korea), and Syntroleum (United States) [125].  

Apart from being economically viable and available, it is a trimetallic catalyst that is resistant to 

coking, compared to the mono-metallic catalyst. It is well established that catalytic activity and 

resistance to coke formation by HDO catalysts increases in the following order: mono-metallic < 

bimetallic < trimetallic [139-142]. Zeolite (being inexpensive and environmentally benign, 

having uniform pore structure with high attrition resistance, and recyclability) [143] has been 
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selected as a support in this work because it has the highest acidity (which is suitable for 

deoxygenation) compared to other supports reported in the literature (with order of  decreasing 

acidity:H-ZSM-5 > H-Beta >HY >Al2O3> TiO2> ZrO2> CeO2> SiO2) [144]. 

The current work focuses on the CTH reaction kinetics and optimization of process parameters 

via the DOE method by using commercially viable catalyst to produce high quality hydrocarbon 

fuel. For the first time, optimization of a CTH reaction over oxides of Co-Mo-Ni-zeolite catalyst 

was used to convert WCO using 2-propanol in a continuous flow reactor, in order to obtain clean 

liquid fuel that does not necessarily require purification or distillation. 

3.1. Materials and Methods 

Sodium-aluminosilicate pellets (-600 mesh), 2-propanol (99.5 wt %) and dichloromethane, 

nickel nitrate (II) hexahydrate (99.9%), Cobalt (II) molybdenum oxide hydrate (99% metal 

basis), and diethyl ether were purchased from Fisher Scientific. The WCO was collected from a 

local restaurant at Norfolk, Virginia. 

3.1.1. Determination of Fatty Acid Composition of WCO 

The object of determining the fatty acid composition of WCO was to ascertain the level of 

saturation, which was used to estimate the amount of 2-propanol required for the CTH reaction. 

The results of this section helped to elucidate the length of the carbon chain in the WCO. 

1 mL of WCO was measured into a 20-mL test tube. The tube and its content were placed in a 

water bath and allowed to heat to 60 oC. 1.2 wt % catalyst (NaOH) (1.2% of WCO) was 

dissolved in 0.397 mL of methanol in order to obtain approximate  molar ratio of methanol to oil 

of 10 [69].  The basic methanol was added to the oil in the test tube. The test tube was then 

capped, and a transesterification reaction was allowed to proceed. The test tube and its contents 

were agitated intermittently with a vortex mixer to enhance the reaction. The reaction was 
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stopped in one hour and was allowed to cool to room temperature. The fatty acid methyl ester 

(FAME) and the glycerol were separated by centrifugation. The FAME was pipetted into a 

separating funnel and 2 mL of diethyl ether was added to the FAME followed by several 

washings using distilled water to remove excess base. The solvent was then dried over anhydrous 

sodium sulfate. The ether was separated from the oil by vacuum (0.1 bar) evaporation. The oil 

was poured into an aluminum can and dried for 2 hours at 60 oC in an oven. The FAME was then 

poured into a vial and refrigerated prior to FAME analysis by gas chromatography mass 

spectroscopy (GCMS). The experiment was conducted in duplicate. 

3.1.2. Thermal Analysis of WCO by TGA-DTA 

This step was aimed at determining the rate of thermal decomposition of WCO without a 

catalyst, and consequently at ascertaining the average boiling point range of WCO that served as 

a guide for selecting the reaction temperature CTH. From the kinetics of the thermal 

decomposition of WCO, the CTH reaction order was guessed. 

To study the thermal performance of the WCO, TGA-DTA was performed in a nitrogen 

atmosphere at a flow rate of 30 mL/min with a heating rate of 5-30 oC/min. Within this 

atmosphere, approximately 5 mg of WCO was placed in a platinum cup and was heated to 900 

oC.  From the DTA plots, the temperature at which the maximum thermal decomposition rate 

occurred served as a guide in choosing the CTH reaction temperature range, and from the 

kinetics of thermal decomposition of WCO, the order of thermal decomposition and activation 

energy were obtained. 
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3.1.3. Catalyst Preparation 

NiO-MoOx-CoOx-zeolite was prepared by wet-impregnating the zeolite (support) with Ni-Co-

Mo precursors (nickel nitrate (II) hexahydrate and cobalt (II) molybdenum oxide hydrate).   

In this process, 1.9 g of CoMoO4.H2O (5 wt % of support) was dissolved in 1000 mL of 

deionized water at 80 oC. A given amount of the support (sodium aluminosilicate) was added to 

the prepared solution and the content was stirred overnight. The loaded zeolite was removed by 

filtration and was dried in an oven at 105 oC. A solution of nickel nitrate (II) hexahydrate was 

prepared by dissolving 5.16 g of it in 1000 mL of deionized water at 80 oC. The dried catalyst 

was added to the nickel solution and was stirred overnight under a hood. The loaded catalyst was 

then separated from the solution and was dried. The dried catalyst was calcined in a furnace at 

500 oC for 2 h. 

 3.1.4. Catalyst Characterization 

The purpose of this section was to assess the stability of the catalyst by determining the surface 

area, the crystallinity, the chemical position of the fresh and the used catalysts, and to ascertain 

the level of coke formation. 

The catalysts (both fresh and used) were characterized by the following technique: BET, XRD, 

SEM, EDS, FTIR, TGA, and differential thermal analysis (DTA). The XRD patterns were 

recorded on a Bruker D8 diffractometer using Cu Kα radiation (λ = 0.154056 nm) operating at 

40 kV and 40 mA. Diffractograms were recorded from 5o-80o (2θ value in discrete mode with a 

step of 0.1o). The morphologies of the catalysts were analyzed with SEM using Hitachi S‐3400N 

operated with beam energy of 15 kV. Imbedded in the SEM was EDS, which was used to 

determine the elemental composition of the catalyst. The FTIR spectra of the catalysts (fresh and 
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used) were recorded at room temperature and the wavenumber range of 480-4000 cm-1 by diffuse 

reflectance, using a ThermoNicolet Avatar 370 DTGS spectrometer. 

The BET surface area, the pore volume, and the pore size of the new and used catalysts were 

measured by using Quantachrome NOVA 200e surface area analyzer after degassing the catalyst 

at 300 oC for three hours and adsorbing and desorbing it with N2 at -196 oC. The surface area was 

evaluated using a multi-point BET model. The pore size distribution was obtained from the 

desorption isotherm using Barret-Joyner-Halenda (BJH) model, while the total pore volume was 

calculated at a relative pressure range of 0.0-1.0.  The amount of coke formation on the surface 

of the catalyst was determined using TGA-DTA, by measuring the percent mass loss and the rate 

of thermal decomposition of the catalyst.  

3.1.5. Kinetics of CTH 

The kinetics of the CTH were run at 360 oC, 390 oC, and 420 oC by keeping the pressure and 

weight hourly space velocity (WHSV) at 15 bar and 6.7 h-1, respectively. The WHSV (Eq. (3.1)) 

and the pressure were selected, based on the preliminary trials. The CTH experiments were 

carried out in a packed bed continuous flow reactor. A stainless-steel tubular reactor (360 mm 

long and 15 mm inside diameter) was placed inside an 8-kW heating furnace with an automatic 

temperature control (Figure 2.1). The flow rates of both 2-propanol and WCO were controlled by 

high performance liquid chromatography (HPLC) pumps.  Pump 1 was used to pump the water, 

which served as hydraulic fluid. This water pushed a piston that, in turn, pushed the WCO 

through the reactor. Pump 2 also pumped 2-propanol to meet the water at a mixing point before 

both entered the reactor.  The liquid products were sampled every 30 min for 2.5 h per run. The 

liquid products were analyzed by gas chromatography mass spectrometer (GCMS), while the 

gaseous products were analyzed by gas chromatography (GC). The amount of liquid fuel 
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obtained from each run was collected and measured in each case, and the alkane yield was 

calculated (see Eq. (2)). The reaction mechanism, the reaction rate equations, the activation 

energy, the order of reaction, and the rate constants were determined, based on the results 

obtained from the GCMS analysis. 

WHSV = 
mass of feed flow rate (g h⁄ )

mass of catalyst in the reactor (g)
                                                                                     (3.1) 

Yield = 
Total mass of alkanes in liquid product

Mass of WCO
× 100%                                                                  (3.2)               

3.1.6. D-optimal Design 

Design of experiment method was employed to assess the effect of four independent variables on 

the alkanes’ production (dependent variable) from CTH of WCO using the prepared NiO-MoOx-

CoOx-zeolite catalyst. Factorial design of experiment was used in this process, as shown in Table 

3.1.  3-level fractional factorial experimental design was used by considering four factors: 

temperature, pressure, WCO-to-2-propanol ratio, and WHSV. The effects of these factors on the 

alkane yield during the CTH reaction were assessed by using the MATLAB software to generate 

coded values and their respective real values (Table B1) by using D-optimal design syntax. 25 

different runs of experiments were performed, using the same experimental set-up described 

above. 

Table 3.1. Design of experiment (34). 

Factors   Levels  

  Low (-1) Medium High (+1) 

Temperature (A), oC  300 370 420 

Pressure (B), bar  2 15 25 

WCO/2-propanol (C)  0.8 1.5 3 

WHSV (D), h-1  2 6 10 
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Based on D-optimal design, a polynomial model was proposed (Eq. (3.3)) and then, using the 

analysis of variance (ANOVA) with experimental data, the coefficients, βs, were evaluated. 

Y = β0 + β1A+ β2B + β3C + β4D+ β5AB+ β6AC+ β7AD+β8BC+ β9BD 

      + β10CD+ β11A2 + β12B2 + β13C2+ β14D2 + β15ABD                                                   (3.3) 

The optimum values of the independent factors (Temperature (A), pressure (B), WCO/2-

propanol(C), and WHSV(D)) were determined by both analytical and 3-dimensional surface 

response plots. Analytically, the partial derivative of Eq. (3.3) and application of the MS-Excel 

solver facility were employed. The optimum values were validated by performing the CTH 

reaction at these optimum values, and the percentage of alkanes was calculated. The physical 

properties of the liquid product were determined according to the American Standard for Testing 

and Materials (ASTM)[84, 145-150]. 

 

3.2. Results and discussions 

3.2.1. WCO Characterization 

Figure 3.1 highlights the characterization of WCO: (a) TGA analysis at different heating rates 

(HR); (b) DTA showing different maximum rates of thermal decomposition at different 

temperatures; (c) kinetics of TGA to determine the order of thermal decomposition of WCO; (d) 

Activation energy profile at different reaction orders. 
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Figure 3.1. Characterization of WCO: (a) TGA analysis at different heating rates (HR); (b) DTA 

showing different maximum rates of thermal decomposition at different temperatures; (c) 

kinetics of TGA to determine the order of thermal decomposition of WCO; (d) Activation energy 

profile at different reaction orders. 

 

The WCO was characterized by determining the fatty acid composition to assess the degree of 

saturation. It was evident that the carbon number of the oil ranged from C16 to C20, which 

showed an unsaturated level of approximately 72%. This information was significantly helpful in 

determining the amount of hydrogen required to hydrogenate and saturate the oil. In this work, 

based on the WCO characterization, 12 moles of 2-propanol were required to saturate the oil, on 

the condition that one mole of WCO (triglyceride) contained six moles of carbon-carbon double 

bonds (C18:2) (Figure B1) and six moles of oxygen atoms, and that every mole of 2-propanol 

produced one mole of hydrogen gas  [100]. 

As an effective method in determining the thermal stability or decomposition via mass-loss 

monitoring and the programmed temperature process [151], TGA showed that the thermal 

degradation of WCO occurred in two stages: 212 oC-359 oC and 359 oC-471 oC (Figure 3.1(a)). 
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The first stage corresponded to a mass loss of nearly 15% that could be attributed to the 

degradation of C15-C16 fatty acid (approximately 15% (Figure B1)) in the WCO. The second 

stage could also be traceable to C17-C20 that represented approximately 85% of the fatty acid. 

By varying the heating rate (5 oC/min, 10 oC/min, 15 oC/min), the maximum rate of WCO 

decomposition occurred at 399 oC, which remained unaltered (Figure 3.1(b)). These values were 

comparable to those reported in the literature [151, 152]. Results from the TGA were utilized as 

blueprint in selecting the reaction temperatures (360 oC, 390 oC, 420 oC) in developing the 

kinetics of CTH. To further estimate the minimum energy required to thermally decompose the 

WCO, the universal integral method [153] was employed, in order to determine both activation 

energy and the reaction order the of thermal decomposition of WCO (Table B2 & Eq. (B1)). 

Using the experimental data (Table B3-B6), the thermal decomposition proved to be second 

order, having activation energy of 210 kJ/mol (Figure 3. 1 (d)). This could be compared to the 

pyrolysis of olive oil and the thermal analysis of sunflower, with the activation energy of 194.6 

kJ/mol and 201 kJ/mol, respectively. [154]  R-squared of 0.9989 signifies the goodness of model 

fit compared to the first order, with R-squared of 0.9958 (Figure 2(c) and Table B7). This 

information was useful in guessing the order of reaction for the CTH. It was postulated that the 

order of reaction for CTH could be nearly one, since a catalyst would be employed to expedite 

the reaction. Moreover, it was anticipated that the activation energy for CTH would be less than 

230 kJ/mol, since the catalyst would lower the activation energy barrier for the reaction path. 

[155] 

3.2.2. TGA of Catalyst 

Figure 3.2, which highlights TGA profiles for the fresh catalyst, the used catalyst, and the zeolite 

(support), elucidates three stages of weight loss. The first stage (below 200 oC) showed 
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approximately 13%, 16%, and 10% weight loss for zeolite, fresh catalyst, and the used catalyst, 

respectively. 

Figure 3.2. TGA of fresh catalyst and used catalyst at optimum reaction condition. 

These losses could be traceable to the loss of loosely bonded water. The fresh catalyst showed 

the highest weight loss, probably due to adsorption of the water employed in the wet 

impregnation. Counterintuitively, the used catalyst showed the lowest weight loss in the first 

stage, presumably due to the displacement of water molecules by the fuel products that diffused 

to displace the water molecules in the zeolite structure during the CTH reaction. In the range of 

200-400 oC, roughly 3%, 2%, and 3% weight loss for the zeolite, fresh, and used catalysts, 

respectively, were experienced, which could be ascribed to strongly bonded water that resides in 

the first coordination sphere that could not be removed under mild thermal treatment [156]. The 

next weight loss (1% for both zeolite and fresh catalyst, and 5% for used catalyst) occurred 

between 400-900 oC. This loss could be attributed to the structural hydroxyl group that 

condenses and dehydrates at 500 oC and above. The 5% weight loss by the used catalyst could be 

traceable to the coke formed from carbonized hydrocarbon or poly-alkyl aromatic hydrocarbon 

[96, 97], which provoked catalyst deactivation. The presence of this carbonized carbon was 

80

82

84

86

88

90

92

94

96

98

100

0 100 200 300 400 500 600 700 800 900

%
 M

as
s 

re
m

ai
n

in
g

Temperature (oC)

Zeolite

Fresh Ni-Co-Mo-Zeolite

Used Ni-Co-Mo-Zeolite



53 
 

 

confirmed by the FTIR (Figure 3.5). It could be inferred that the overall weight loss from the 

used catalyst after thermal decomposition was estimated to be 19%, compared to what had been 

reported in the literature. For example, the TGA of coke-laden NiO-CaO5/SiO2-Al2O3 catalyst 

showed a weight loss of 15% [157], while 20Ni-6Cu-5Mo/γ-Al2O3 catalyst exhibited a weight 

loss of 22-25% [158]. 

3.2.3. SEM and EDS of Catalyst 

Elemental composition of the zeolite and the fresh and used Ni-Co-Mo-zeolite catalysts were 

analyzed by the EDS, which accompanies the SEM facility. Figure 3.3 highlights the spectrum 

obtained from the analysis of elemental composition of the fresh and used Ni-Co-Mo-zeolite 

catalysts. Evidently, nine different elements were observed in the raw zeolite, while twelve 

elements were observed in both the fresh and used Ni-Co-Mo-Zeolite. These elements were 

carbon, oxygen, sodium, magnesium, aluminum, silicon, potassium, calcium, iron, cobalt, nickel, 

and molybdenum (Table 3.2). 

Figure 3.3. SEM (with accelerating Voltage: 15.0 kV, magnification: 2000) and EDS analysis 

for fresh and used catalyst (A) Fresh Ni-Co-Mo-Zeolite, (B) used Ni-Co-Mo-zeolite at the 

optimum CTH reaction condition. 
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Table 3.2. EDS of zeolite, fresh Ni-Co-Mo-zeolite and used Ni-Co-Mo-zeolite at the optimum 

CTH conditions (380 oC & 14 bar). 

Elements  C O Na Mg Al Si K Ca Fe Co Ni Mo 

Raw Zeolite (wt.%) 3.92 48.35 10.7 1.74 13.75 19.5 0.3 0.62 1.00 0.00 0.00 0.00 

Fresh Ni-Co-Mo-

zeolite (wt.%) 4.37 44.55 4.26 1.43 11.84 16.17 0.3 0.44 1.04 4.71 7.86 3.05 

Used Ni-Co-Mo-

zeolite (wt.%) 12.4 39.79 4.49 1.28 10.54 16.86 0.3 1.06 1.00 3.24 6.70 2.33 

 

 The presence of these nine elements in the raw zeolite announces the possible presence of the 

oxides of these elements (Na2O, K2O, MgO, Al2O3, SiO2, CaO, FeO, Fe2O3) [159], while the 

presence of Ni, Co, and Mo foreshadowed the likely presence of NiO, CoxOy, and MoxOy, 

respectively. The possible presence of these oxides was inevitable, as the catalyst was not 

reduced after calcination. These oxides were preferable to their reduced form because they 

offered a higher level of acidity than their metal counterparts, as reported in the literature. 

Besides, these oxides introduced metal support interaction for the activation of oxygen-

containing compounds, and enhanced direct scission of C-O in WCO [144]. Moreover, without 

the reduction of the catalyst, the cost of catalyst preparation could reduce. The presence of 

sodium and calcium predicted the zeolite to be A-type [156] with cubic crystal structure [160], as 

could be observed in the SEM results. The analysis showed that the raw zeolite was weakly 

acidic, since Si/Al = 1.4 < 1.5 [161]. However, with Si/Al < 5 renders the zeolite hydrophobic, 

porous, alkaline, and more adsorbent [162]. Doping the zeolite with Ni, Co, and Mo did not 

impact the acidity significantly, as Si/Al = 1.36.  The composition of the active metals (Ni, Co, 

and Mo) suffered a slight reduction after the catalyst was used for one cycle (2.5 hours of 

reaction at the optimum condition). This could be traceable to the rise in the carbon content (8% 

increase), as shown in the first column of Table 3.2.  
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3.2.4. X-ray Diffraction of Catalyst 

X-ray diffraction patterns were observed for the zeolite, the fresh, and the used Ni-Co-Mo-

zeolite catalysts, as shown in Figure 3.4, with significant characteristic peaks observed at 7.4o, 

10.7o, 12.6o, 16.6o, 17.8o, 21.9o, 24.4o, 27.6o, and 30.4o for zeolite, according to the Joint 

Committee on Powder Diffraction Standards (JCPDS File no. 43-0142 ) [156].  

 
  

Figure 3.4. XRD pattern for the zeolite, the fresh and the used Ni-Co-Mo-zeolite catalysts with 

intensity measured in arbitrary units (a.u.), and X-ray incident angle in degrees.  

These results were in accord with what were in the literature [163, 164]. Obviously, the zeolite 

had high crystallinity prior to doping it with the metal precursors. Its crystallinity diminished 

tremendously due to the interaction between the Si-O and Ni, Co, and Mo at 2θ =7.8o, 12.6o, 

24.4o, 27.6o, and 53o. The peaks at these angles could be ascribed to the oxides of molybdenum 

in the following crystallographic directions: MoO3 [100], MoO3 [001], MoO3 [100], MoO3 [021], 

and MoO2 [311], respectively [165-171]. Further interaction from the oxides of cobalt (CoxOy) 

found at 16.6o, 21.9o, and 41.9o decreased the crystallinity of the zeolite [172]. Lastly, the oxides 

of nickel (Ni2O3 [002], NiO [222], NiO [111]), at 30.4o, 34.7o, and 44.5o respectively, contributed 

to the lowering of crystallinity of the zeolite [171, 173, 174].  
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3.2.5. FTIR Analysis of Catalyst 

FTIR spectra were recorded for zeolite (support), fresh Ni-Co-Mo-Zeolite, and used Ni-Co-Mo-

zeolite in a frequency range of 400-4000 cm-1 (Figure 3.5).  

                                                                                                  
 

Figure 3.5.  FTIR for the zeolite, the fresh Ni-Co-Mo-Zeolite, and the used Ni-Co-Mo-zeolite 

catalysts at 380 oC and at 14 bar CTH. 

 

The spectrum for the zeolite exhibited frequencies of 460, 540, 668, 972, 1650, and 3340 cm-1.                                                                                                                                                                                                                                                                       

Spectrum peaks at 460 cm-1 could be attributed to the bending vibration of T-O-T (T=Al, Si 

groups) in the zeolite structure. [175, 176] This band also depicted the bending vibration of 

internal tetrahedron TO4 of the zeolite structure [177]. This also showed the presence of Al+3 and 

Si4+ in the zeolite. The bands around 540, 668, and 752 cm-1 could be attributed to internal and 

external linkage symmetrical stretching vibrations. The band 972 cm-1 highlighted the 

symmetrical stretching vibration and the tetrahedron vibration of the Si-O bond [177]. The peak 

at 1650 cm-1 could be attributed to the bending vibration of O-H in the adsorbed water (H2O) on 

the zeolite surface [156].  3340 cm-1 could be ascribed to Si-OH in the nest defects and the 
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hydrogen bonding of loosely held water molecules [178]. Evidently, the metal-doped zeolite 

(fresh catalyst) exhibited the lowest intensity (absorbance) and a slight shift in frequencies due to 

Co3+, Ni2+, and Mo6+ interactions with O-H, Si-O, and the Al-O bond during the doping process. 

Spectra at 2003, 2126, and 2355 cm-1 could be attributed to the interaction between Ni-Co-Mo 

ions and TO4 in the zeolite during the doping process. Disappearance of the wavenumber 1650 

cm-1 in the fresh catalyst indicated sufficient calcination, which removed water molecules that 

caused agglomeration of active metal and consequent deactivation of the catalyst [156]. The 

appearance of the frequency range of 2750-3000 cm-1 evidenced the stretching modes of CHx, 

showing the formation of hydrocarbon species on the used catalyst [179]. 

3.2.6. Surface Area Analysis 

The performance of the catalyst was assessed by BET analysis (Figure 3.6), which highlighted 

the hysteresis loop for both the fresh and the spent catalyst. The catalyst surface area was 

reduced from 250 m2/g to 180 m2/g after 2.5 hours of CTH reaction. The reduction in the surface 

area was due to coke formation that could be corroborated by an increase in carbon (4.4-12.4 

wt.%) content in the EDS analysis (Table 2). While the pore volume changed from 0.164 cm3/g 

to 0.04 cm3/g, the pore width increased from 19.6 Å to 70 Å.  The surface coke formation caused 

an increase in the pore width of the catalyst, due to the reduction of effective surface area and, 

consequently, increased the average pore radius or diameter. 
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Figure 3.6. BET for the raw and the used catalyst at 380 oC and at 14 bar CTH. 

 

The shapes of the hysteresis loop for both the used and the spent catalysts appeared parallel, 

which meant that there was not much change in the texture, pore size distribution, and pore 

geometry. Evidently, at a relative pressure of 0.44, the loop closed at a point where pore 

condensation and evaporation of N2 occurred, which gave adsorption and desorption isotherm of 

type 1 and 4,  according to the International Union of Pure and Applied Chemistry [180]. 

3.2.7. Kinetics 

Reaction Mechanism 

To render this work beneficial and of broad application to stakeholders in the biofuel 

community, the kinetics of CTH were performed at temperatures (360, 390, and 420 oC), since 

important products (e.g. iso-alkanes, cyclo-alkanes, etc.) were formed at different temperatures. 

Based on the products obtained from the GCMS, the reaction mechanism was proposed (Figure 

3.7). C6-C14 was classified as short-chain hydrocarbon because the shortest carbon chain in the 

WCO used in this study was C15 (Figure B1).  
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Figure 3.7. Possible reaction pathway for catalytic transfer hydrogenation of WCO. SC= short-

chain (C6-C14); LC= long-chain (C15-C18) 

 

Evidently, WCO could produce oxygenates (k1), long-chain (LC) alkane (k2) and LC alkenes 

(k3) via decarboxylation, hydrogenation, and dehydrogenation. There could be a reversible 

reaction (k4, k5) between LC-alkenes and LC-alkanes (LC alkenes could undergo hydrogenation 

and give rise to LC-alkanes, while LC-alkanes could undergo dehydrogenation to produce LC-

alkenes). LC-alkanes could crack catalytically or thermally (k6) to produce short-chain (SC)-

alkanes. LC-alkenes also cracked thermally (k7) to produce SC-alkenes. There could be a 

reversible reaction between SC-alkenes and SC-alkane (k8, k9) via dehydration and 

hydrogenation. SC-alkenes presumably underwent cyclization (k11) and isomerization (k10) to 
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produce cyclo-alkanes and iso-alkanes, respectively. Finally, cyclo-alkanes produced aromatics 

via aromatization (k12).  

3.2.8. Kinetic Model 

The following elementary assumptions were made: (i) one-dimensional flow; (ii) isothermal and 

steady state conditions; (iii) perfect plug flow and absence of temperature gradients inside the 

catalyst particles were assumed [85]; (iv) for the sake of simplicity, possible conversion of short 

chains olefins and paraffins to long-chain olefins and paraffins were excluded; (v) the rate of 

coke and gaseous products formation were not considered, as the amounts produced were 

considered insignificant compared to that of the liquid products; (vi) intraparticle mass transfer 

resistance was assumed to be negligible as diffusion was very fast, such that the overall rate was 

not affected by mass transfer in any fashion [85];[181]; [85] the rate of adsorption and desorption 

of products and reactants were not considered. 

The concentrations of the products were represented as follows: C1 = WCO; C2 = oxygenates; C3 

= long-chain alkanes; C4 = long-chain alkenes; C5 = short-chain alkenes (C6-C14); C6 = short-

chain alkanes (C6-C14); C7 = iso-alkanes; C8 = cyclo-alkanes, C9 = aromatics. The rate of 

formation or disappearance of these products was represented by Eq. (3.4-3.12), where τ 

represented the space time or the mean residence time (s), which equaled the volume of the 

reactor divided by the volumetric flow rate. First order rate equation was assumed, since this 

reaction was facilitated by a catalyst and, therefore, the rate was assumed to be faster than the 

rate of thermal decomposition of WCO, which was second order, as observed from the previous 

section. 
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𝑑𝐶1
𝑑𝜏

= −(𝑘1 + 𝑘2 + 𝑘3)𝐶1                                                                                      (3.4) 

𝑑𝐶2
𝑑𝜏

= 𝑘1𝐶1                                                                                                                  (3.5) 

𝑑𝐶3
𝑑𝜏

= 𝑘3𝐶1 − (𝑘6 + 𝑘4)𝐶3 + 𝑘5𝐶4                                                                      (3.6) 

𝑑𝐶4
𝑑𝜏

= 𝑘2𝐶1 − (𝑘5 + 𝑘7)𝐶4 + 𝑘4𝐶3                                                                       (3.7) 

𝑑𝐶5
𝑑𝜏

= 𝑘7𝐶4 − (𝑘9 + 𝑘10 + 𝑘11)𝐶5 + 𝑘8𝐶6                                                       (3.8) 

𝑑𝐶6
𝑑𝜏

= 𝑘6𝐶3 + 𝑘9𝐶5 − 𝑘8𝐶6                                                                                     (3.9) 

𝑑𝐶7
𝑑𝜏

= 𝑘10𝐶5                                                                                                                (3.10) 

𝑑𝐶8
𝑑𝜏

= 𝑘11𝐶5 − (𝑘12)𝐶8                                                                                          (3.11) 

𝑑𝐶9
𝑑𝜏

= 𝑘12𝐶8                                                                                                                 (3.12) 

 

The kinetic rate constants (k1-k12) of the developed models were estimated using the 

experimental data (Tables B8, B9, & B10) at three temperatures 360, 390, and 420 oC by 

nonlinear regression using Levenberg-Marquardt algorithm in MATLAB software [182]. The 

optimum values were estimated using the least-square method by minimizing the objective 

function, as shown in 𝐸𝑞. (3.13).                                                                                   

𝑓 =∑[(𝐶𝑝𝑟𝑒𝑑)𝑖 − (𝐶𝑒𝑥𝑝)𝑖]
2

𝑛

𝑖=1

                                                                                                     (3.13) 

With the known values of rate constants, the activation energy (Ea, kJ/mol) and their respective 

pre-exponential factors (A, s-1) were evaluated using the Arrhenius equation (Eq. (3.14)).  Eq. 

(3.14) was selected, based on the assumption that the rate constant depends on the temperature 
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only. Besides, this equation has been verified empirically, to give the temperature behavior of 

most reaction rate constants within experimental accuracy over fairly large temperature ranges 

[181].  

𝑘 = 𝐴 𝑒
(
−𝐸𝑎
𝑅 𝑇

)
                                                                                                             (3.14) 

The activation energy, defined as the minimum energy required by reacting molecules before 

reaction could occur, was evaluated at 360, 390, and 420 oC by taking the natural logarithm of  

Eq. (3.14) that gave Eq. (3.15), and by plotting (𝑙𝑛 𝑘) versus (1/T) (Figure B2), which showed  

straight lines whose slopes were proportional to the activation energy, while the pre-exponential 

factors, A, were obtained from  different intercepts from the  (𝑙𝑛 𝑘)-axis. 

𝑙𝑛 𝑘 = 𝑙𝑛 𝐴 −
𝐸𝑎
𝑅
(
1

𝑇
)                                                                                              (3.15) 

Figure 3. 8 showed the results of the fit of the kinetic model by employing the experimental data 

at a temperature of 360 oC (Table B8-B10 (Supporting Information)). The main composition 

(80%) of the liquid products were SC alkanes (C6-C14) and LC alkanes (C15-C18), while the 

minor products (20%) were iso-alkanes, aromatics, and oxygenates. The kinetics depicted 98.9% 

conversion of WCO in approximately 1200 s (0.33 h), compared to published reports [72]. 
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Figure 3.8. Kinetic fit of the experimental data from CTH at 360 oC and 14 bar; dashed and 

continuous lines represent the estimated values while dots represent the experimental values. 

 

 The long-chain alkanes (LCALK) level peaked at 320 s and gave way to short-chain alkanes 

(SCALK) via catalytic cracking with SCALK that plateaued at 1220 s. Iso-alkanes were 

insignificant, due to low temperature of operation in this work. Increasing the temperature to 390 

oC (Figure 3.9) shortened the conversion time of WCO to 900 s (0.25 h), with 99.6% conversion, 

compared to what had been reported. [24, 71, 183-186] Evidently, LCALK started cracking 

catalytically and thermally at 180 s, compared to that of the reaction at 360 oC.  An increase in 

temperature increased the production of iso-alkanes (24%) and aromatics (16%), while the 

SCALK dipped by 14%. Further increase in temperature to 420 oC shortened WCO conversion 

(99.7%) further to 360 s, while LCALK started cracking at 36 s and produced nearly 50% 

SCALK in 270 s. 
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Figure 3.9. Kinetic fit of the experimental data from CTH at 390 oC and 14 bar; dashed and 

continuous lines represent the estimated values, while dots represent the experimental values. 

  

Progressively, SCALK dropped and yielded to short-chain (SC)-alkenes that underwent 

isomerization and cyclization and produced a high level of aromatics (45%) and iso-alkanes 

(35%) (major products in the liquid fuel at 420 oC) (Figure 3.10). Evidently, prolonging the time 

could eventually convert the majority of the iso-alkanes to aromatics; this could pose 

environmental issues, due to the release of volatile organics during the combustion of the fuel 

[187, 188].  
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Figure 3.10. Kinetic fit of the experimental data from CTH at 420 oC and 14 bar; dashed and 

continuous lines represent the estimated values while dots represent the experimental values. 

 

Table 3.3. Kinetic rate constant, activation energy and pre-exponential factors calculated at 

different temperatures. 

Kinetic rate constants (s-1)  Activation energy 

(kJ/mol) 

Pre-exponential factor 

(s-1) 

Temperature 

(oC) 

360 390 420   

k1 0.00032 0.00065 0.00095 70.37 2.03E+2 

k2 0.00326 0.00410 0.00810 54.87 1.01E+2 

k3 0.00094 0.00126 0.00421 90.31 2.27E+5 

k4 0.04310 0.08700 0.10100 52.23 9.53E+2 

k5 5.02100 7.02100 11.2100 48.67 5.07E+4 

k6 0.00083 0.00121 0.00871 141.32 2.91E+8 

k7 0.31200 0.40100 0.85100 60.49 2.80E+4 

k8 0.00038 0.00113 0.00413 144.73 3.17E+8 

k9 0.06800 0.10100 0.20100 65.57 1.65E+4 

k10 0.01740 0.09961 0.10995 113.49 5.17E+7 

k11 0.02200 0.03900 0.09390 87.87 3.69E+5 

k12 0.00250 0.00460 0.01046 86.75 3.44E+4 

 

Table 3.3 highlights the kinetic parameters obtained from fitting Eq. (3.4-3.12). The minimum of 

energy (activation energy) required to initiate the CTH was found to be 84±18.7 kJ/mol WCO, 
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with 95% confidence (predetermined value). The activation energy was less than that obtained 

from the pyrolysis of WCO (without a catalyst), as shown in the preceding section. Reported 

energy of activation for the hydroprocessing of jatropha oil was 115 kJ/mol [92], and that of  

CTH of WCO over activated carbon was 53 kJ/mol. The average activation energy in this study 

was (59%) higher than what had been reported in our last work, because the kinetic models 

employed in the current study were rigorous and exhaustive compared to the lumped model 

employed in the last work (Table B12) [100]. Producing LC alkanes from LC-alkenes was faster 

(k5 = 5.02 s-1) and required the lowest energy (Ea = 48 kJ/mol). This explains why LC-alkenes 

were produced, in the early stages, at 360 oC. Producing SC-alkanes via LC-alkanes’ route was 

slower (k6=0.00083-0.00871 s-1) and required higher energy (Ea = 141kJ/mol) than that through 

the SC-alkenes’ route, which was faster (k7=0.312 s-1) and required lower energy (Ea = 60 

kJ/mol). The reason is that the C=C bond (π--bond) in LC-alkenes can be more reactive than the 

C-C bond (𝜎 -bond) in the LC-alkanes. The k-values also showed that the rate of formation of 

long-chain olefins and paraffins, oxygenates, and short-chain paraffins to short-chain olefins was 

higher than the rate of formations of other species. The assumption of first order could be 

justified by the R-squared value of 0.989, which took care of 98 percent of variability in the 

model. Figure B2 (Supporting Information) highlights the plot of (𝑙𝑛 𝑘) against inverse of 

temperature (Eq. (3.15)). The linear plots obtained buttressed the goodness of fit of the kinetic 

models. 

3.2.9. Optimization of CTH 

D-optimal Design and Regression Model 

Results from the optimal design of CTH are shown in Table B11, which highlights the process 

variables (A, B, C, and D) and the experimental and calculated percent alkanes. The values in 
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Table B11 were employed in determining the coefficients in Eq. (3.3) and the interactions 

among the process variables. Eq. (3.16) highlights the polynomial obtained by multiple 

regression using MATLAB software. Eq. (3.16) represents the final and appropriate equation 

that best fits the experimental data, after testing other models.  

 Y = -3429.8 + 18.5A - 8.4B + 39.8C - 5.8D + 0.03AB - 0.09AC+ 0.028AD + 0.73BC+ 0.87BD 

      + 1.65CD - 0.025A2 - 0.19B2 - 8.98C2 - 0.52D2 - 0.0024ABD                                     (3.16)         

ANOVA was used to assess the goodness of fit (Table B13) for the polynomial, using the 

experimental data. The goodness of fit for the regression model was determined by the R-

squared value (0.999) and the R2-adjusted value (0.986). R-squared was used to judge the 

adequacy of the model by measuring the variability in the data. In this case, the chosen model 

accounted for the 99.9% of the variability in the experimental data. The R-squared statistic 

proved to be somewhat problematic or deceptive as a measure of the quality of fit for multiple 

regression, because it never decreased when a variable was added to the model. To alleviate this 

problem, R2-adjusted (0.986) was employed as a perfect index for assessing the quality of fit, as 

it only increased when the added variable reduced the error mean squared. The interaction of 

process variables and their effects on the model were determined by using the p-values. 

Coefficients with a p-value less than 0.05 (a rule of thumb) were considered significant. 

Essentially, all of the process variables had significant effects on the yield of alkanes, as their p-

values were less than 5%. [89] It was also evident that the degree of these effects varied with 

variable p-values. For example, the effect of A (temperature) on the model was higher than that 

of B (pressure), since the p-value of A was lower than that of B. In addition, the effect or 

interaction between AB (temperature and pressure) was more significant than that between AC 
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(temperature and WCO/2-propanol ratio). The average p-value for the polynomial model was 

4.42x10-15, signifying the goodness of the model. 

Model Validation 

The model was validated by analyzing the residuals in order to ascertain the presence of outliers 

in the experimental data. There was also the need to verify the assumption of normally 

distributed residuals. Figure 3.11 highlights the residuals of the model in different forms. Figure 

3.11 (a) shows an unpattern spread or randomly scattered points of the residuals’ plot of the 

fitted data. This showed that there were no outliers that were required to be removed from the 

data, as all of the points were within the standard deviation of 1. Figure 3.11 (b) showed that 

there was constant variance in the residuals.  

 
Figure 3.11. Diagnostic plots of the regression model: (a) residuals of fitted values; (b) residuals 

and lagged residuals; (c) normal probability; (d) histogram of residuals. 
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Figure 3.11 (c) showed that the residuals were normally distributed, as the points were close to 

the straight line of the probability plot, which was confirmed by the histogram (Figure 3.11 (d)). 

This showed that the error variances were homogeneous and independent of each other. 

Response Surface Plot 

The response surface plot assisted in determining the effect of the temperature, pressure, WCO-

2-propanol ratio, and WHSV on the alkanes production. Not only did this plot show the response 

of alkane production to changes in the process parameters, but it also provided the optimum 

parameters for producing the highest percent of alkanes. Figure 3.12 highlighted the response 

surface plot that delineated the effect of temperature, pressure, oil-2-propanol ratio, and WHSV 

on alkanes produced via CTH.  

 

 
 

 

Figure 3.12. Three-dimensional response surface showing the expected alkanes yield as a 

function of temperature, pressure, oil-2-propanol ratio, and WHSV. 
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3.2.10. Effect of Process Variables 

Temperature 

Increasing temperature from 340 oC to 380 oC (Fig.3.13 (a & d)) enhanced the yield of alkanes, 

since temperature rise promoted the cracking of the heavy hydrocarbons to light hydrocarbons or 

SC-alkanes, as was confirmed in the preceding sections. Increasing the temperature aided the 

scission of the C-C and C-O bonds, leading to hydrodeoxygenation. On the contrary, beyond a 

temperature of 380 oC, polyaromatics and cycloalkenes predominated, due to the 

dehydrogenation of alkanes to alkenes, thereby decreasing production of the alkanes [82, 189]. 

Pressure 

Figure 3.12 (a & c) highlighted the effect of pressure on alkane yield. Increasing pressure 

increased the partial pressure of the hydrogen produced by the 2-propanol, leading to enhanced 

mass transfer into the bulk of the reaction system and onto the surface of the catalyst. In addition, 

increasing pressure increased the residence time of the reacting species to react at the surface of 

the catalyst before falling into the bulk reaction domain. At inordinate pressure beyond 15 bar, 

reacting species did not possess the significant energy to detach from the surface of the catalyst, 

leading to oligomerization that decreased the percent alkanes [156]. 

WCO-2-propanol Ratio 

Increasing the WCO-to-2-propanol ratio from 0.8 to 1.5 seems to slightly increase the alkane 

yield. The low WCO-2-propanol ratio enhanced the production of hydrogen for the requisite 

hydrogenation reaction that increased the production of the alkanes. In addition, the low ratio 

lowered the viscosity of the reaction mixture that facilitated the mass transfer of the reacting 

species. Increasing the ratio beyond 1.6 decreased the amount of 2-propanol required for 
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producing hydrogen for hydrogenation of the WCO, and consequently reduced the yield of the 

alkanes, as shown in Figure 3.12(c).  

WHSV 

WHSV is the ratio of mass flow rate of feed (kg/h) to the mass (kg) of catalyst (Ni-Co-Mo-

zeolite) loaded into the reactor. Figure 3.12 (b & d) highlights WHSV effect on the yield of the 

alkanes. In this work, WHSV was chosen from 2-12 h-1, due to the dimensions of the reactor. It 

was observed at 2 h-1 that 70% of the liquid product was polyaromatics and cycloalkenes that 

were undesirable from an environmental and fuel-stability point of view. The low values of 

WHSV meant a long residence time of reacting species in the reactor, leading to 

dehydrogenation and oligomerization. The maximum percent of alkanes was obtained at 6.7 h-1, 

due to the optimum time and the other operating parameters (pressure, temperature, and WCO/2-

propanol) required for hydrodeoxygenation and cracking mechanism.  As WHSV increased to 12 

h-1, the reactants spent a short time in the reactor, resulting in incomplete CTH reaction and, thus, 

the yield of alkanes dipped. High value of WHSV in this work generated oxygenates and dense 

liquid products.  

3.2.11. Optimization and Validation 

Figure 3.13 [190] delineates the contours of the response surface in Figure 3.12. To optimize the 

CTH reaction, the method of Steepest Ascent [89] was employed, in order to reach the optimum 

parameters required to achieve the highest yield of alkanes. The optimum reaction parameters 

were temperature (383.7 oC), pressure (14.8 bar), WCO/2-propanol (1.57 mL/mL), and WHSV 

(6.7 h-1), that gave the alkanes yield of 80%. These values were verified by the analytical 

method, whereby the obtained polynomial (Eq. (3.14)) was solved by partial differentiation. 

Further experimentation was conducted at these optimum values, in order to validate the model 
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(Figure 3.14); this resulted in 77% alkanes, 3.8% alkenes, 12.3% aromatics, and 6.7% gaseous 

products. The discrepancy between the yield based on the model and the validated values could 

not be ascribed to the inaccuracy of the model, since it has been validated (Figure 3.11); it could, 

rather, be attributed to the nature of side reaction, the nature of reversible reaction, and 

inefficiency in product collection and handling at the laboratory, et cetera. 

 
Figure 3.13. Contour plot of the yield of alkane response surface in Figure 3.12. 
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Figure 3.14. Validation of experimental model with products distribution at optimum condition 

(383.7 oC, 14.8 bar, 1.57 WCO/2-propanol, and 6.7 h-1). 

 

3.2.12. Physical Properties of Liquid Fuel 

The physical properties of the liquid fuel were determined and were compared to the published 

work [100] and to the American Society for Testing and Material Standards (ASTM) (Table 3.4) 

[191]. It was observed that the final boiling point of the product obtained in this work was lower 

than that of the last work. Moreover, other flow properties of the fuel were better than those of 

the published work. Figure 3.15 highlights the results for simulated distillation of the liquid 

product. The results showed that 40% (gasoline) of the product was distilled below 170 oC, 50% 

(jet fuel) was distilled between 170 oC-230 oC, 8% (kerosene) was distilled between 230 oC- 290 

oC, and 2% (light gas oil) between 290-335oC  [192]. The final maximum boiling point of the 

fuel was 332 oC, which is lower than that (403 oC) of the last work, suggesting that the Ni-Mo-

Co-zeolite catalytically cracked heavy hydrocarbons, compared to the results from the last work. 
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Figure 3.15. Simulated distillation of liquid fuel product from optimum condition. 

 

Table 3.4. Physical properties of the liquid hydrocarbon compared to those of ASTM standards. 

Physical properties 

Current 

Work 

Published3 

Work 

 

ASTM 

Test  

Method 

Acidity, mg KOH/g 0.11 0.13 max 0.1 D3242  

Aromatics(%v/v) 15.4 20 max 25 D1319  

Distillation temperature, oC      

%10 recovered 140 54 max 200  

%50 recovered 180 74  Report  

%90 recovered 224 172  Report  

Final boiling point oC 332 403 max 300  

Density @ 15 oC, kg/m3 776 790-820  775-840 D1298  

Freezing point (oC) -47 -46  -40-47 D5972  

Viscosity (mm2/s) 6.3 6.6  8 D445  

Net Heat of Combustion, MJ/kg 45.5 44  42.8 D4529  
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3. 3. Conclusions 

Catalytic transfer hydrogenation reactions of waste cooking oil were conducted in a continuous- 

flow reactor over a commercial catalyst (Co-Mo-Ni-zeolite). Characterization the catalyst 

revealed the cubic nature of the zeolite, which slightly lost its crystallinity after one cycle run of 

the CTH reaction. This trimetallic catalyst might add extra cost to the process, but this cost could 

be covered by the comparatively inexpensive cost of handling of 2-propanol, and by the 

affordable price of WCO. 

The kinetic rate of formation of major composition of the fuel product was studied at different 

temperatures by keeping the pressure and WHSV constant. The results showed that, even at a 

temperature of 360 oC, short-chain alkane could be produced over the prepared catalyst. This 

means that stakeholders have three different temperatures to produce their preferred liquid 

hydrocarbon fuel products, depending on their goals. Optimization studies revealed that 

operating at 384 oC, 14.7 bar, WHSV of 6.7 h-1, and WCO-2-propanol ratio of 1.57 produced 

high quality liquid products with high levels of iso-alkanes and short-chain hydrocarbons fuel, 

which did not necessarily require further distillation. Not only did this study produce high quality 

fuel, it also reduced the inherent problem of handling a large volume of hydrogen gas in the 

conventional hydroprocessing of vegetable oils. 

Comparatively, it could be inferred from the current study that the use of trimetallic catalyst 

practically increased alkanes by 140%. In addition, alkenes decreased by 90%, aromatics 

decreased by 23%, and gaseous products decreased by 77%, due to the increase in the reaction 

pressure in the current work. Liquid fuel yield increased by 11% while WCO-2-propanol ratio 

dropped by 37%, signifying a decrease in 2-propanol used, compared to our last study.  The 

average activation energy of the CTH reaction was (59%) higher because the kinetic models 
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employed in the current study were rigorous and exhaustive, compared to the lumped model 

employed in the last work. 
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CHAPTER 4 
 

CATALYTIC TRANSFER HYDROGENATION AND CHARACTERIZATION OF 

FLASH HYDROLYZED MICROALGAE INTO HYDROCARBON FUELS 

PRODUCTION (JET FUEL) 

 

Note: The contents of this chapter were published in the Journal of Fuel  

DOI: https://doi.org/10.1016/j.fuel.2019.116440 

A. Asiedu, R. Davis, S. Kumar, Catalytic transfer hydrogenation and characterization of flash 

hydrolyzed microalgae into hydrocarbon fuels production (jet fuel), Fuel 261 (2020) 116440. 

 

 

 

Oil-laden biofuel intermediate (BI) from flash-hydrolyzed microalgae was characterized, 

pyrolyzed, and subjected to catalytic transfer hydrogenation (CTH) to produce both gaseous and 

liquid hydrocarbon fuels. The BI was characterized by TGA and FTIR that revealed significant 

triglycerides, as evidenced by the C=O bond with insignificant level of carbohydrates and 

proteins. Thermogravimetric analysis (TGA) indicated that the BI could be thermally 

decomposed at 400 oC. Pyrolysis of the BI engendered mainly gaseous hydrocarbon (alkenes) 

with a high heating value (HHV) of 48.5 kJ/mol at 850 oC.  Energy of activation for the pyrolytic 

process was estimated to be 115-300 kJ/mol. Optimization of oil extraction from the BI was 

performed via design of experiment. The oil was subjected to CTH over NiOx-CoOx-MoOx-

zeolite, using 2-propanol as a hydrogen donor in a 30-ml batch reactor at a temperature range of 

390-420 oC and an autogenic pressure of 24-27 bar, leading to fatty acid conversion of 99-100%. 

The main liquid products obtained from the CTH were iso-alkanes (41%), cyclo-alkanes (35%), 

https://doi.org/10.1016/j.fuel.2019.116440
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aromatics (5%), n-alkanes (14%), and alkenes (5%). Kinetics of the CTH showed first order with 

activation energy of 176 kJ/mol.  

The catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared 

spectroscopy (FTIR), Brunaeur-Emmett-Teller (BET) adsorption and desorption, scanning 

electron microscope (SEM), energy dispersive spectroscopy (EDS), and TGA. The catalyst 

revealed cubic structure, which was maintained after 5 h of CTH reaction. Present in both the 

fresh and the used catalysts were oxides of alkali and transition metals. The active sites of the 

catalyst were dominated by Co3+, Ni2+, and Mo6+.  

4.0 Introduction 

As the world’s fossil fuel reserve continues to decrease, energy researchers resolutely investigate 

more sustainable energy resources. The unavoidable decrease in fossil fuel reserves will 

continue, as the world’s population is expected to grow by 0.9% per year, from 7.3 billion in 

2014 to 9.2 billion in 2040. This population growth will be attended by an increase in global 

energy consumption of nearly 29% by 2040. Concomitant CO2 emissions will also increase from 

32-37 giga tonnes [100]. Air transportation energy increased by 5% (24856-26030 trillion Btu)  

in USA from 2009-2019 [193]. The Energy Information Administration (EIA) predicts an 

approximately 38% increase (1.25-1.73 million barrels/day) in oil consumption between 2019 

and 2050 [194].  Furthermore, global airlines’ fuel consumption has been predicted to reach 97 

billion gallons (367 billion liters) in 2019, with 1032 million tonnes of CO2 emission [195]. 

Considering this fuel consumption and its potential environmental footprint, there is a need for 

alternative, sustainable liquid fuel resources. Prominent among these energy resources are 

microalgae that are promising biomass resources and high photosynthetic efficiency and fast 

growth rate [196]. Not only do microalgae possess growth advantage, but they also eliminate 
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food-fuel competition and farmland occupation. In addition, they enhance fertilizer recycling, 

such as struvite (NH4MgPO4) [197], and act as a CO2 sink, thereby reducing greenhouse gas 

emission [198-206]. Apart from their agrarian advantages, microalgae are endowed with bio-

based resources, namely polysaccharides, proteins, and oil. The latter, which is of a lower 

percentage, has enormous level of triglycerides, which have been used to produce jet-diesel-fuel-

range hydrocarbons [207-209].  Microalgae oil has a longer carbon chain than that of vegetable 

oil, and it can produce the carbon number (C8-C16) in jet fuel [210]. A statistical summary of 

lipid contents in 19 different species of microalgae is presented in Table 4.1.  

 

Table 4.1. Lipid Contents of Different Species of Microalgae [211] 

Mean (wt. %) 23.1 

Standard Error (wt. %) 2.5 

Median (wt. %) 18.9 

Mode (wt. %) 24.0 

Standard Deviation (wt. %) 11.0 

Kurtosis 1.4 

Skewness 1.6 

Range 38.0 

Minimum (wt. %) 11.0 

Maximum (wt. %) 49.0 

Confidence Level (95.0%) 5.3 

 

Considering the moderate level of lipid contents microalgae, few processes in the literature have 

highlighted the conversion of microalgae to jet fuel. Chiefly among them are thermal and 

hydrocracking (time consuming); pyrolysis (uncontrollable, high level of N & O); Fischer 

Tropsch (costly and energy-intensive); transesterification (costly); enzymatic process (costly and 

immature); CentiaTM process (costly); plasma gasification (costly and immature) [209]. To offset 

the problems associated with the preceding processes, there is a need to concentrate the oil in the 
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microalgae for sustainability. One of the most famous ways of concentrating oil is via 

hydrothermal liquefaction with or without  a catalyst at high pressures, in order to produce 

biocrude that comprises high levels of nitrogen and oxygen [212].  The presence of significant 

levels of oxygen and nitrogen in the biocrude oil does not favor catalytic hydrogenation, as 

excessive hydrogen is required; this makes the process cost ineffective. In addition, the presence 

of nitrogen could lead to unwanted nitrogenous compounds, such as amides, in the jet fuel, 

leading to a low heating value in the resulting fuel [213].  Furthermore, biocrude oil possesses 

remarkable viscosity (high pumping cost), low pH (3.5-4.2, corrosive), and high water content 

that requires extra energy for evaporation [214].  

Considering the problems associated with the concentrated algae oil described above, flash 

hydrolysis (FH) was used to concentrate the lipids content (~10 wt. %) of Chlorella Vulgaris 

[215]. FH is a chemical-free and subcritical water-based process that fractionates the components 

of the algae, thereby increasing the lipid content to nearly 52 wt. % (Figure 4.1) [216]. The main 

objective of FH was to extract the bioactive components (proteins) from the microalgae, 

resulting in biofuel intermediate (BI); this, having limited benefit, has not been explored to 

produce jet fuel. The use of BI as raw material for hydrocarbon production has the potential of 

cost reduction concerning raw material handling, compared to the use of raw microalgae as the 

raw material.   
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Figure 4.1. Flash hydrolysis of Chlorella Vulgaris with the resulting bioproducts and biofuel 

intermediate 

 

In this study, the oil-laden BI served as raw material for the catalytic transfer hydrogenation 

(CTH) reaction over the NiOx-CoOx-MoOx-zeolite [217] catalyst, using 2-propanol as the in-situ 

hydrogen donor.   

CTH is a reduction of unsaturated organics (such as oleic acid) using hydrogen-donating 

compounds that catalytically produce hydrogen in situ. CTH is advantageous over hydrogenation 

using gaseous hydrogen, as CTH reduces the high cost of transporting and storing large volumes 

of gaseous hydrogen in the conventional process of hydrogenation, whereas CTH requires an oil-

to-2-propanol ratio of approximately 1.57 mL/mL, and conventional hydrogenation uses H2-to-

oil ratio of 200-300 mL/mL [217].  Selection of 2-propanol as hydrogen donor and oil extract is 

due its non-toxicity and its potential renewability [62, 63, 65]. Employing 2-propanol for CTH of 

algae oil enhances the mass transfer and diffusion of reacting species, as 2-propanol is polar, and 

is significantly miscible with algae oil. On the contrary, the use of gaseous hydrogen is 
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constrained by the mass transfer and diffusion of reacting species, except at high pressures 

greater than 100 bar [35, 112].  

Effective CTH reaction is underpinned by a stable and commercially available catalyst. In this 

study, a trimetallic catalyst was employed to enhance the cracking of the long-chain algae oil. 

NiOx-CoOx-MoOx-zeolite has excellent features, and it is commonly used in the petroleum 

refinery industry. Literature has shown that a mono-metallic catalyst, such as nickel, has lower 

activity toward the direct scission of  C=O and C-O bonds due to its low electrophilicity, but has 

high C-C bond scission [218].  Adding more electrophilic molybdenum to nickel improves the 

cleavage of both C=O and C-O bonds. Mono/bimetallic sulfide catalysts ( e.g. Mo2C, MoS2, Ni-

Mo-S, and Co-Mo-S) are biased towards hydrodeoxygenation and are unable to cleave C-C 

bonds because sulfided catalysts lack an acid site and deactivate in the presence of water [219].  

Additionally, sulfided catalysts require the constant replacement of sulfur by adding sulfiding 

agents such as H2S and CS2, which in turn produce both H2S emission and fuel replete with 

sulfur [119]. 

Comprehensive studies have been done on the use of noble metals catalysts (Noble metals 

(Palladium (Pd), Platinum (Pt), Rhodium (Rd), Ruthenium (Ru), etc.) supported on alumina, 

activated carbon, and zeolite. Despite their catalyst effectiveness, they are expensive and short-

lived [120-125]. Surfactant-mediated mesoporous catalysts, such as SBA-1, HMS, and SBA-15 

with their high surface area, large pore structure, and a well-ordered morphology, have been used 

to hydrotreat vegetable oil. However, they possess weak hydrothermal and mechanical stability 

and reduced acidity, leading to retardation of their practical application [126, 127]. 

Silcoaluminophosphate (SAPO-5, SAPO-11, SAPO-31, et cetera) is one of the surfactant-

mediated catalysts that has been employed in hydrotreating triglycerides [128-132]. Though 
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SAPO is micro-mesoporous and has a large surface area, it is biased towards the isomerization of 

short chain hydrocarbons [133-135]. It also has low hydrothermal stability during hydrogenation 

of triglycerides, due the production of water as a by-product [111]. This instability could be 

reduced by adding more surfactant, which would, consequently, render the catalyst expensive 

[136]. 

As a result of the problems associated with the preceding catalysts, we use the NiOx-CoOx-

MoOx-zeolite catalyst, which has been tried and tested by commercial refineries around the 

globe. A few of these refineries that have tailored the trimetallic catalyst to process triglycerides 

are ConocoPhillips (United States, Ireland), Universal Oil Products (UOP)-Eni (UK, Italy), 

Nippon Oil (Japan), SK Energy (Korea), and Syntroleum (United States) [125]. Not only is the 

NiOx-CoOx-MoOx-zeolite catalyst commercially available, it is also resistant to coking as 

trimetallic, compared to mono-bimetallic catalysts. It has been reported that the coke resistance 

of catalysts ranks in the order of mono-metallic < bimetallic < trimetallic [139]. It is worth 

selecting zeolite as the support in this work because it is environmentally benign, recyclable, 

porous, acidic, and resistant to attrition [143].  

There has not been exhaustive report on CTH of oil-laden BI from flashed hydrolyzed 

microalgae. In this study, oil-laden BI, characterized by pyro-GCMS, was employed as the raw 

material to produce jet-fuel range hydrocarbon. We used 2-propanol to extract the oil via design 

of experiment in order to obtain the maximum oil yield. Without evaporation of 2-propanol, the 

mixture was subject to CTH over the prepared catalyst in a batch reactor to produce iso-alkane, 

the major jet fuel components. Thus, 2-propanol was used as both oil extract and in-situ 

hydrogen donor and conversion of BI via CTH reaction over NiOx-CoOx-MoOx-zeolite catalyst 

was first reported. 
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4.1. Materials and Methods 

4.1.1.  Materials 

Sodium-aluminosilicate pellets (-600 mesh), 2-propanol (99.5 wt %) and dichloromethane, 

nickel nitrate (II) hexahydrate (99.9%), Cobalt (II) molybdenum oxide hydrate (99% metal 

basis), and diethyl ether were purchased from Fisher Scientific. Refrigerated BI was obtained 

from our last work on Chlorella Vulgaris [215].  

4.1.2. BI Characterization 

The purpose of the characterization of BI was to ascertain the chemical composition via ultimate 

analysis, thermogravimetric analysis (TGA), pyro-GCMS, and Fourier-transform infrared 

spectroscopy (FTIR). It was also necessary to determine the latent energy of the BI by 

determining the rate of thermal decomposition by TGA and pyro-GCMS. These techniques 

assisted in evaluating the heating value and the gaseous components of the pyrolysis products. 

The heating value obtained from this section would serve a baseline for the heating value of the 

liquid product from the CTH reaction.  

4.1.2.1. Thermal Analysis of BI 

This step was aimed at determining the rate of thermal decomposition of BI and, consequently, at 

ascertaining the average boiling point range of oil content that served as a guide for selecting the 

reaction temperature for the CTH. From the kinetics of the thermal decomposition BI, it was 

easy to postulate the CTH reaction order, as the catalyst was expected to lower the order of the 

reaction. 

To study the thermal performance of the BI, TGA and differential thermal analysis (DTA) were 

performed in a nitrogen atmosphere at a flow rate of 30 mL/min with heating rate of 5-30 
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oC/min. Within this atmosphere, approximately 5 mg of BI was placed in a platinum cup and was 

heated to 900 oC [100]. From the DTA plots, the temperature at which the maximum thermal 

decomposition rate occurred served as a guide in choosing the CTH reaction temperature range, 

and from the kinetics of the thermal decomposition of BI, the order of thermal decomposition 

and activation energy were obtained.  

4.1.2.2. FTIR Analysis of BI 

The purpose of the FTIR analysis was to determine the major components in the BI (oil, 

carbohydrate, and protein) by identifying the common functional groups. The FTIR spectra of 

the BI were recorded at room temperature and a wavenumber range of 480-4000 cm-1 by diffuse 

reflectance, using a ThermoNicolet Avatar 370 DTGS spectrometer. Each spectrum resulted 

from 128 scans to achieve an optimal signal-to-noise ratio. 

4.1.2.3. Pyro-GCMS Analysis 

To determine the nature of the gaseous products (that could not be analyzed by the TGA facility) 

obtained from the thermal decomposition of the BI, a pyro-GCMS (a pyrolysis unit connected to 

GCMS) was used to track and analyze the gaseous compounds. Figure 4.2 depicts the 

experimental set-up for the pyro-GCMS. 3 ± 0.03 mg of the BI sample was loaded into a 

platinum crucible. The crucible and its contents were placed in a 4 x 150 mm pyrolysis tube. To 

ensure inert condition in the pyrolysis unit, gaseous nitrogen with a flow rate of 20 mL/min was 

maintained. The crucible and its contents were lowered down to the pyrolysis zone by a single 

shot mechanism. The BI was pyrolyzed at a temperature range of 400-850 oC, and the gaseous 

products were analyzed by the GCMS. 
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Figure 4.2. Characterization of BI using Pyrolysis to generate gaseous product and analyze it by 

gas chromatography mass spectrum (GCMS).  

 

4.1.3. CTH of Algae Oil 

In this section, using 2-propanol as extract, the optimum oil-extraction condition was established 

via design of experiment. The oil obtained at the optimum condition was characterized and, 

without evaporation of the propanol, the oil-2-propanol mixture was subjected to CTH over 

NiOx-CoOx-MoOx-zeolite catalyst. The catalyst (fresh and used) for the CTH was characterized, 

the reaction rate equation was postulated, and the activation energy and the order of reaction 

were estimated. 

4.1.3.1. Optimization of Oil Extraction 

To convert the oil-laden to jet fuel, the oil was extracted by 2-propanol using design of 

experiment. Three factors were considered: temperature, BI-2-propanol ratio, and time of 

extraction. Table 4.2 highlights the factors considered in the 3-factor and 3-level factorial design 

of experiment. Using fractional factorial technique, 16 different experiments were conducted. To 

accomplish this, a given BI-2-propanol ratio was measured and was placed in a test tube. The 
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content was thoroughly mixed with vortex mixer and placed in a water bath with a set 

temperature. The content was agitated intermittently with the vortex mixer. The pregnant 2-

propanol was separated from the barren BI via centrifugation and decantation.  

 

Table 4.2. Factors Considered in Optimizing the Oil Extraction Process by 33 Fractional 

Factorial Design. 

Factor 

Lower level 

(-1) 

Middle level 

 (0) 

Upper level 

(+1) 

Temperature (oC), A 25 45 70 

BI-2-propanol ratio (g/g), B 0.1 0.3 0.5 

Time (min), C 30 60 120 
 

The yield of the oil was calculated for each experiment, as shown in Eq. (4.1). 

Yield = 
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐵𝐼
× 100%                                                                                              (4.1) 

Based on D-optimal design, a polynomial model was proposed (Eq. (4.2)) and, by using the 

analysis of variance (ANOVA) with experimental data, the coefficients, β’s, were evaluated. 

  Y= β0 + β1A + β2B + β3C + β4AB + β5AC + β6BC + β7ABC + β8A2 + β9B2 + β10C2     (4.2)                                                                                                                                                                      

The optimum values for the independent factors (Temperature (A), BI-2-propanol ratio (B), and 

time (C) were determined by both analytical and a three-dimensional surface response plot. 

Analytically, the partial derivative of Eq. (4.2) and applying MS-Excel solver facility were 

employed. The optimum values were validated by running an oil extraction experiment at these 

optimum values, and the percent of oil yield was calculated. The barren BI obtained at the 

optimum run was analyzed by FTIR, whereas the pregnant 2-propanol was subject to CTH. 
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4.1.3.2. Catalyst Preparation 

Figure 4.3 highlights the processes involved in the preparation of the catalyst. NiOx-MoOx-

CoOx-zeolite was prepared by wet-impregnating the zeolite (support) with Ni-Co-Mo precursors 

(nickel nitrate (II) hexahydrate and cobalt (II) molybdenum oxide hydrate). In this process, 1.9 g 

of CoMoO4.H2O (5 wt.% of support) was dissolved in 1000 mL of deionized water at 80 oC. A 

given amount of the support (sodium aluminosilicate) was added to the prepared solution, and 

the content was stirred overnight. The loaded zeolite was removed from solution and was dried 

in an oven at 105 oC.  A solution of nickel nitrate (II) hexahydrate was prepared by dissolving 

5.16 g of it in 1000 mL of deionized water at 80 oC. The dried catalyst was added to the nickel 

solution and was stirred overnight under a hood.  

Figure 4.3. Preparation of NiOx-CoOx-MoOx-zeolite catalyst 

The loaded catalyst was then separated from solution and was dried. The dried catalyst was 

calcined in a furnace at 500 oC for 2 h. 
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4.1.3.3. Catalyst Characterization 

The aim of this section was to assess the stability of the catalyst by determining the surface area, 

the crystallinity, and the chemical position of the fresh and the used catalysts and by ascertaining 

the level of coke formation. Both the fresh and the used catalyst were characterized by BET, 

XRD, SEM, EDS, FTIR, TGA-DTA. The XRD patterns were recorded on a Bruker D8 

diffractometer using Cu Kα radiation (λ = 0.154056 nm) operating at 40 kV and 40 mA. 

Diffractograms were recorded from 5o-80o (2θ values in discrete mode with a step of 0.1o). The 

morphologies of the catalysts were analyzed with SEM, using Hitachi S‐3400N operated with a 

beam energy of 15 kV. Imbedded in the SEM was EDS, which was used to determine the 

elemental composition of the catalysts. The FTIR spectra of the catalysts (fresh and used) were 

recorded at room temperature and wavenumber range of 480-4000 cm-1 by diffuse reflectance 

using a ThermoNicolet Avatar 370 DTGS spectrometer. 

The BET surface area, the pore volume, and the pore size of the new and used catalysts were 

measured by using a Quantachrome NOVA 200e surface area analyzer after degassing the 

catalyst at 300 oC for three hours and adsorbing and desorbing it with N2 at -196 oC. The surface 

area was evaluated, using a multi-point BET model. The pore size distribution was obtained from 

the desorption isotherm using Barret-Joyner-Halenda (BJH) model, while the total pore volume 

was calculated at a relative pressure range of 0.0-1.0.  The amount of coke formation on the 

surface of the catalyst was determined using TGA-DTA, by measuring the percent mass loss and 

the rate of thermal decomposition of the catalyst. 

4.1.3.4. CTH of Extracted Oil 

After establishing the optimum oil yield from the BI, the oil-2-propanol mixture (0.08 g/0.8 g) 

was placed in a 30-mL batch reactor (Figure 4.4).  1.0 g of of NiOx-CoOx-MoOx-zeolite catalyst 



90 
 

 

was added to the reactor. The reactor was placed in a sand-bath furnace, and the reaction was 

carried out at 390, 405, and 420 oC with the respective autogenic pressures of 24.8, 26.0, and 27 

bar. The reaction was stopped and was allowed to cool and, thereafter, the liquid product was 

separated from the catalyst and was analyzed with GCMS. The amount of water produced due to 

hydrodeoxygenation was separated by gravity. In all, 15 runs of experiments were conducted 

with different reaction times, as shown in Table 4.3. With the results from the GCMS, the algae 

oil conversion 𝑥 (%) was calculated as Eq. (4.3). It was assumed that the fatty acids obtained in 

the GCMS results represented the unreacted algae oil. 

 

Figure 4.4. Oil extraction and CTH reaction procedure 

 

Table 4.3. Experimental Runs of CTH of Algae Oil Using 2-propanol as H2 Donor 

Time (h) T (oC) P (bar) T (oC) P (bar) T (oC) P (bar) 

1.0 390.0 24.8 405.0 26.0 420.0 27.0 

2.0 390.0 24.8 405.0 26.0 420.0 27.0 

3.0 390.0 24.8 405.0 26.0 420.0 27.0 

4.0 390.0 24.8 405.0 26.0 420.0 27.0 

5.0 390.0 24.8 405.0 26.0 420.0 27.0 
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 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
[(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙)−(𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙)]×100%

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙
                                           (4.3)   

4.2. Results and discussions 

4.2.1. Characterization of BI 

Figure 4.5 highlights the results for the mass-loss profile for the oil-laden BI when subjected to 

TGA analysis. It was evident that the thermal decomposition of the oil-laden BI had three 

different stages. The first stage showed a weight loss of 6% at 160 oC, signifying the presence of 

bonded water molecules during the flash hydrolysis. This loss could also be attributed to the light 

organic compounds present in the BI [220].  

 

Figure 4.5. Weight loss of oil-laden BI as it was subjected to TGA at different heating rates 

(HR) of 5-30 oC/min with N2 flow rate of 20 mL/min. 

 

The second stage occurred between 160-440 oC, where the organic components (carbohydrate, 

protein and lipids) decomposed. Since the BI contains mainly oil, most of the weight loss (73%) 

at this stage could be traceable to the oil. The third stage of the weight loss occurred beyond 440 

oC; that could be carbonaceous residue which decomposes slowly, giving total weight loss of 
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approximately 10 %.  Evidently, varying the heating rate (5-30 oC/min) did not affect the mass 

loss significantly. The total mass loss at 5 oC/min was nearly 85%, whereas that at 30 oC/min 

was 89%. These results could also mean that the total volatile organic compounds in the BI 

amounted to 83%, with roughly 10% being inorganic residue (ash content). The difference in 

mass loss could be because more energy was added at the latter condition than at the start of the 

process. It could be observed from Fig. 6 that increasing the heating rate increased the maximum 

rate of thermal decomposition from 0.002-0.01 mg/min. Besides, the rate of BI thermal 

decomposition peaked at 250 oC and 400 oC; that could represent the boiling points of the oil in 

the BI.  

 

Figure 4.6. Rate of thermal decomposition of oil-laden BI at different heating rates with N2 flow 

rate of 20 mL/min. 

 

With this temperature profile obtained, the CTH reaction temperature was selected. Since there 

was no apparent CTH reaction below 390 oC from the experimental runs, it could be inferred that 

the average boiling point of the algae oil was 400 oC. 
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4.2.2. FTIR Analysis of BI 

Figure 4.7 highlighted the FTIR profile for both the oil-laden and the depleted BI. FTIR spectra 

were recorded for oil-laden and depleted BI in a frequency range of 400-4000 cm-1.  The spectra 

at 3301 cm-1 represented O-H stretching vibration of hydroxyl or carbonyl group or 

polysaccharides or phenolic compounds. There was insignificant change in the peak at 3301 cm-1 

after the oil extraction, meaning that the carbohydrate group members were not soluble in 2-

propanol. Peaks at 2857 cm-1 and 2922 cm-1 represented the asymmetrical and symmetrical C-H 

stretching vibrations of the aliphatic methylene group, such as those in alkanes or fatty acids.  

 

Figure 4.7. FTIR profile for oil-laden and depleted BI recorded at room temperature. The light 

blue and red profiles represent the depleted BI and oil-laden BI, respectively. 

 

The depleted BI signal indicated that most of these groups vanished by dissolving in the 2-

propanol. The peak registered at 1740 cm-1 depicted the C=O group stretching of acids and 

esters, which totally vanished after the oil extraction. At a frequency of 1635 cm-1, there existed 
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C=C ring stretching, signifying the presence of aromatics and a conjugated system. At this same 

frequency, there existed COO- antisymmetric stretching that announced the presence of 

carboxylate ions [221]. The intensity at 1542 cm-1 represented amides (N-H and C-N) 

deformation vibration from protein [222], which remained insoluble in the 2-propanol. It could 

also be inferred that the flash hydrolysis was not able to remove all of the proteins from the 

algae. 1462 cm-1 showed the CH2 scissoring that announced the presence of lipids, which 

vanished after the oil extraction. Also, 1377 cm-1 showed symmetric bending of the -C-H (CH3) 

that emanated from lipids. Spectra at 1155 cm-1 and 1026 cm-1 highlighted C-O-C (glycosidic 

ether) stretching of ring and -C-O stretching, respectively. These spectra showed the presence of 

cellulose or polysaccharides [223], which was insoluble in 2-propanol. Finally, spectra in the 

range of 600-800 cm-1 portrayed C-H bending vibration of aromatics, which showed slight 

solubility in 2-propanol. It could be concluded that the fresh BI was made of lipids, 

polysaccharides, and insignificant protein. 

4.2.3. Pyro-GCMS Analysis 

Figure 4.8 highlighted the gaseous components from the BI pyrolysis. At 400-550 oC, it could be 

inferred that the percent of lipids in the BI approximated 62%, as there was no degradation of 

triglyceride at that temperature (Figure 4.6). The components of the BI started to degrade 

chemically at 650 oC, where the percent of fatty acid dropped by 10%. As the temperature 

increased, dehydration of long-chain hydrocarbon resulted and gave rise to alkenes.  
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Figure 4.8. Gaseous product from the pyrolysis of BI 

 

Other components, such as aldehydes, ketones, alcohols, amides, and aromatics, increased with 

increasing temperature (Figure C1). As dehydration increased at high temperatures, the O-C ratio 

dropped, giving rise to the high heating value of the gaseous product (Figure 4.9). The heating 

values of the gaseous products were estimated, based on the percent of individual compounds 

obtained from the GCMS analysis. The calculated calorific value was higher than that obtained 

from the raw BI (33.8 MJ/kg) [215]. It was observed that the H-C ratio remained unchanged, 

although there were some losses of hydrogen via dehydration. It could be concluded that the BI 

could render huge calorific value (~ 48 MJ/kg) if upgraded by pyrolysis or any other means. 
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Figure 4.9. Heating value, O/C, and H/C of the gaseous products from the pyro-GCMS 

 

 

4.2.4. Kinetics of Pyrolysis of BI 

To determine the activation energy of the thermal decomposition of BI, two isothermal equations 

were employed: the Flynn-Wall-Ozawa (FWO) and the Kissinger-Akahira-Sunose (KAS), as 

shown in Appendix B (Eq. (B1-B3)) [224].  Given the heating rate (𝛽), fractional conversion, 

and the temperature of decomposition of BI, plots of ln(𝛽) and ln (𝛽 𝑇2)⁄  against (1 𝑇)⁄  

produced straight lines with R-squared values ranging from 0.94-0.99, which explained the 

goodness of fit (Figures B2 & B3) of these two equations (Eq. (B1-B2)). Increasing the 

fractional conversion increased the activation energy (Tables B1, B2, & Figure10).  
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Figure 4.10. Fractional conversion effect on activation energy of BI thermal decomposition. 

 

Since the lower boiling-point components in the BI were decomposed first, less energy was 

required, compared to the high boiling-point components, which required higher energy to 

decompose. Hence, the activation energy increased from 115-298 kJ/mol with increasing 

fractional conversion from 0.2-0.7. Thus, the average activation energy for thermal 

decomposition, based on the FWO and KAS equations, were 220 kJ/mol and 223 kJ/mol, 

respectively. These values could be compared to what had been reported in the literature (298-

301 kJ/mol) [224]. The lower values in the current study could be attributed to the removal of 

proteins via flash hydrolysis, whereas the study in the literature was of fresh algae with all the 

three main components (lipids, proteins, and carbohydrates) present. Summarily, this 

characterization step has revealed the dimension of energy required to convert the BI into a high-

quality fuel product. 

 

 

100

120

140

160

180

200

220

240

260

280

300

0.2 0.3 0.4 0.5 0.6 0.7

E
a,

 k
J/

m
o
l

Fractional conversion

FWO-Equation KAS-Equation FWO-Ea average KAS, Ea-average



98 
 

 

4.2.5. Optimization of Oil Extraction 

Results from the optimal design of oil extraction are shown in Table 4.4, which highlights the 

process variables (temperature (A), BI-2-propanol ratio (B), and time (C)) and the experimental 

and calculated percent oil yields. The values in Table 4.4 were employed in determining the 

coefficients in Eq. (4.2) and the interactions among the process variables. 

 

Table 4.4. Experimental Oil Yield, Yexp, and Calculated Oil Yield, Ycal. 

Experimental  

Temperature 

(oC) 

BI/2-propanol 

 (g/g) 

Time 

(min) Response 

Run x1 x2 x3 Yexp Ycal 

1 45 0.1 30  43.3 43.7 

2 70 0.3 120  42.6 42.7 

3 70 0.1 60  38.1 37.8 

4 45 0.3 60  57.6 56.9 

5 25 0.5 120  27.0 26.9 

6 25 0.1 120  36.0 35.8 

7 70 0.1 30  25.0 24.4 

8 45 0.3 120  58.4 58.4 

9 70 0.3 30  28.1 29.1 

10 45 0.5 30  45.4 45.0 

11 25 0.5 30  18.8 19.5 

12 70 0.5 120  36.0 36.1 

13 45 0.1 60  55.3 55.9 

14 25 0.3 30  23.6 22.5 

15 25 0.3 60  31.9 32.6 

16 70 0.5 60  38.8 38.4 

 

 

 After testing other polynomials, Eq. (4.4) highlighted the final and appropriate equation 

obtained by multiple regression, using the MATLAB software.  

 y = -71.2 + 3.94A+ 16.8B + 0.668C+ 0.556AB + 0.002AC – 0.073BC -0.0047ABC 

        -0.042A2 – 49B2 – 0.0036C2                                                                                             (4.4)                         
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ANOVA was used to assess the goodness of fit (Table 4.5) for the polynomial, using the 

experimental data. The goodness of fit for the regression model was determined by the R-

squared value (0.995) and R2-adjusted value (0.993). R-squared was used to judge the adequacy 

of the model by measuring the variability in the data. In this case, the chosen model accounted 

for 99.5% of the variability in the experimental data.  The R-squared statistic proved to be 

somewhat problematic or deceptive as a measure of the quality of fit for multiple regression, 

since it never decreased when a variable was added to the model. To alleviate this problem, R2-

adjusted (0.993) was employed as a perfect criterion for assessing the quality of fit, as it only 

increased when the added variable reduced the error mean squared. The interaction of process 

variables and their effects on the model were determined by using the p-values. Coefficients with 

a p-value of less than 0.05 (a rule of thumb) were considered significant. Essentially, all of the 

process variables had significant effects on the yield of oil, as their p-values were less than 5% 

[89]. It was also evident that the degree of these effects varied with variable p-values. For 

example, the effect of A (temperature) on the model was higher than that of B, since the p-value 

of A was lower than that of B (2-propanol). AB had a stronger effect on the process than did AC 

since the p-value of AB (temperature-BI-2-propanol ratio) is lower than that of AC (temperature-

time). The average p-value was 5.52 x 10-6, which signified the goodness of the model. 
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Table 4.5. ANOVA Model for BI Oil Extraction 

Coefficients Estimate Standard error tStat pValue 

b0 -71.1830 7.2691 -9.7926 0.0002 

b1 3.9391 0.1784 22.0760 0.0000 

b2 16.8310 18.7030 0.8999 0.4094 

b3 0.6679 0.0871 7.6655 0.0006 

b4 0.5562 0.2729 2.0374 0.0972 

b5 0.0021 0.0012 1.6640 0.1570 

b6 -0.0729 0.14252 -0.5113 0.6309 

b7 -0.0047 0.0033 -1.4258 0.2133 

b8 -0.0419 0.0012 -34.0810 0.0000 

b9 -49.9840 15.2020 -3.2879 0.0218 

b10 -0.0036 0.0003 -10.5650 0.0001 

 

4.2.5.1. Model Validation 

The reliability of the model used in this experiment was proved by validation, whereby data 

outliers in the residuals were examined and removed. The assumption that the residuals were 

normally distributed was verified. The residuals were plotted against the fitted values and any 

pattern and unpattern (random) distribution was investigated. Figure 4.11 shows the unpattern 

distribution of residuals, signifying an absence of outliers in the data. Moreover, the probability 

plot highlights how normally distributed the points are, because they lay close to the straight line. 

Figure 4.11. Diagnostic plot of surface response of algae oil yield 
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4.2.5.2. Effects of Process Variables 

The effects of all the three variables were examined via response surface and contour plots. 

Noticeably, increasing the temperature increased the yield of oil extraction, as the oil became 

increasingly soluble in the 2-propanol. Beyond ~ 50 oC, the oil yield began to drop due the 

evaporation of 2-propanol into empty space. The BI-2-propanol ratio increased with decreasing 

oil yield as the required amount of 2-propanol dipped, thereby limiting the solubility of the oil. 

The maximum oil yield was obtained at BI-2-propanol ratio of 0.133 g/g (Figure 4.12 (1-1 & 1-

2)).   

Increasing the time allowed a significant amount of oil to transfer from the fibrous zone into the 

2-propanol. Obviously, at infinite time, the oil yield remained unchanged, signifying that, at 1.68 

h, the oil extraction process had stopped (Figure 4.12 (2-1 & 2-2) with the maximum oil yield of 

62%. 

Figure 4.12. Surface response of oil yield from BI with optimum oil extraction condition:  

temperature (49.7 oC), BI mass-2-propanol ratio (0.133 g/g), time of extraction (101 min (1.68 

h)), and maximum oil yield (62.7 wt%). 
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4.2.6. TGA of Catalyst 

Figure 4.13 shows TGA profiles for both the fresh and the used catalysts that depicted three 

stages of weight losses. The first stage (below 200 oC) showed approximately 6%, and 3% 

weight loss for both the fresh and the used catalysts, respectively. These losses could be ascribed 

to the loss of loosely bonded water. The fresh catalyst showed the highest weight loss, probably 

due to the adsorption of water employed in the wet impregnation. Ironically, the used catalyst 

showed the lowest weight loss in the first stage, probably due to the displacement of water 

molecules by the fuel products that diffused to displace the water molecules in the zeolite 

structure during the CTH reaction. From 200-400 oC, approximately 6% and 13.3% weight loss 

for the fresh and used catalysts, respectively, were experienced. These weight losses could be 

linked to the strongly bonded water which resides in the first coordination sphere and could not 

be removed under mild thermal treatment.  

Figure 4.13. Determination coke deposition on the catalyst during via TGA during the 3 hours of 

CTH reaction of algae oil. 
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The next weight loss (3% for both fresh catalyst, and 2% for used catalyst) occurred between 

400-900 oC. This loss could be attributed to the structural hydroxyl group that condenses and 

dehydrates at 500 oC and above. Evidently, there was 4% weight loss difference between the 

used and fresh catalyst within the last stage of the TGA (400-900 oC). This weight loss 

difference was attributable to the coke formed from the carbonized hydrocarbon or the poly-alkyl 

aromatic hydrocarbon that were precursors of catalyst deactivation [96, 97].  The FTIR and EDS 

analyses (Figure 4.16 & 4.14) confirmed the presence of this carbonized components on the used 

catalyst. Conclusively, the overall weight loss from the used catalyst after TGA was estimated to 

be 4%, compared to what was reported in literature.  

Comparatively, TGA of coke-laden NiO-CaO5/SiO2-Al2O3 catalyst showed weight loss of 15% 

[157], while 20Ni-6Cu-5Mo/γ-Al2O3 catalyst exhibited weight loss of 22-25%  [158], and NiOx-

CoOx-MoOx-zeolite showed weight loss of 19% [217]. 

4.2.7. SEM and EDS of Catalyst 

Fig. 14 highlighted the spectrum obtained from the analysis of elemental composition of the 

fresh and used NiOx-CoOx-MoOx-zeolite catalysts. The analysis revealed the following elements 

common in zeolites: carbon, oxygen, sodium, magnesium, aluminum, silicon, potassium, 

calcium, and iron.  These nine elements in the raw zeolite announces the possible presence of the 

oxides (Na2O, K2O, MgO, Al2O3, SiO2, CaO, FeO, Fe2O3) [159]. The presence of cobalt, nickel, 

and molybdenum highlights the results of doping the zeolite that is filled with NiO, CoxOy, and 

MoxOy, respectively. 
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Figure 4.14. SEM (with accelerating Voltage: 15.0 kV, magnification: 4000) and EDS analysis 

for zeolite, fresh and used catalysts at the 3 hours of CTH reaction. 

 

Due to the calcination of the doped zeolite, the oxides of the active metals were prominent, since 

reduction of the catalyst was not performed. These oxides were preferable to their reduced form 

because they offered higher level of acidity than their metal counterparts, as reported in the 

literature. Also, these oxides introduced metal support interaction for activation of oxygen-

containing compounds, and improved direct cleavage of C-O in oil [144]. Moreover, without the 

reduction of the catalyst, the cost of catalyst preparation could reduce. The presence of sodium 

and calcium predicted the zeolite to be A-type [156] with cubic crystal structure [160], as could 

be observed in the SEM results. The analysis showed that the raw zeolite was weakly acidic, 

since Si/Al = 1.42 < 1.5  [161]. It was also observed that the level of acidity remained unchanged 

after the zeolite was impregnated with the active metals. Maintaining the Si/Al < 5 rendered the 

zeolite hydrophobic, porous, alkaline, and more adsorbent [162]. The percent compositions of 

the active metals (Ni, Co, and Mo) dropped by 15%, 31%, and 34%, respectively, after the 

catalyst was used for one cycle (three hours of reaction). The high reduction of cobalt and 

molybdenum might be attributed to weak interaction with the zeolite during the impregnation 
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that enhanced the leaching of the metals during the CTH reaction. It could be traceable to the rise 

in the carbon content to 12.4%, which could occlude the active metals during the CTH reaction. 

4.2.8. X-ray Diffraction of Catalyst 

Figure 4.15 highlighted the X-ray diffraction patterns observed for the zeolite and the fresh and 

used Ni-Co-Mo-zeolite catalysts with significant characteristic peaks observed at 7.4o, 10.7o, 

12.6o, 16.6o, 17.8o, 21.9o, 24.4o, 27.6o, and 30.4o for zeolite, according to the Joint Committee on 

Powder Diffraction Standards (JCPDS File no. 43-0142 ) [217]. These results were in 

consonance with what was found in the literature [163, 164]. Apparently, the zeolite had high 

crystallinity prior to doping it with the metal precursors. Its crystallinity significantly decreased 

due to the interaction between the Si-O and Ni, Co, and Mo at 2θ = 7.8o, 12.6o, 24.4o, 27.6o, and 

53o. The peaks at these angles could be traceable to the  oxides of molybdenum in the following 

crystallographic directions: MoO3 [100], MoO3 [001], MoO3 [100], MoO3 [021], and MoO2 [311], 

respectively [165-171].  

 

Figure 4.15. XRD pattern for the zeolite, the fresh and used NiOx-CoOx-MoOx-zeolite catalysts 

with intensity measured in arbitrary unit (a.u.), and X-ray incident angles in degrees.  
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Further interaction from oxides of cobalt (CoxOy), found at 16.6o, 21.9o, and 41.9o, decreased the 

crystallinity of the zeolite [172]. Oxides of nickel (Ni2O3 [002], NiO [222], NiO [111]) at 30.4o, 

34.7o, and 44.5o, respectively, contributed to the lowering of crystallinity of the zeolite [171, 173, 

174]. It could be observed that the stability of the catalyst was affected in this work, compared to 

that in the past work [217]. The intensity dropped in this work, probably, because of significant 

presence of ringed compounds (the forerunners of coke formation) observed in the products. 

4.2.9. FTIR Analysis of Catalyst 

Figure 4.16 highlights the FTIR profile for zeolite (support) and the fresh and used NiOx-CoOx-

MoOx-zeolite catalyst that was recorded in a frequency range of 400-4000 cm-1. The spectrum 

for the zeolite exhibited frequencies of 460, 540, 668, 972, 1650, and 3340 cm-1. The peak at 460 

cm-1 could be linked to bending vibration of T-O-T (T=Al, Si groups) in the zeolite structure 

[175, 176]. This band also depicted the bending vibration of internal tetrahedron TO4 of the 

zeolite structure [177], which showed the presence of Al+3 and Si4+ in the zeolite. The bands 

around 540, 668, and 752 cm-1 could be ascribed to internal and external linkage symmetrical 

stretching vibrations. The band at 972 cm-1 highlighted the symmetrical stretching vibration and 

the tetrahedron vibration of Si-O bond [177]. The peak at 1650 cm-1 could be attributed to the 

bending vibration of O-H in the adsorbed water (H2O) on the zeolite surface [156]. 3340 cm-1 

could be ascribed to Si-OH in nest defects and to the hydrogen bonding of loosely held water 

molecules [178].  
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Figure 4.16. FTIR Profile for zeolite (support) and the fresh and used catalysts. The catalyst 

used 3 h for the CTH reaction was referenced. 

 

Conspicuously, the metal-doped zeolite (fresh catalyst) exhibited the lowest intensity 

(absorbance) and a slight shift in frequencies due to Co3+, Ni2+, and Mo6+ interactions with the 

O-H, Si-O, and Al-O bond during the doping process. Spectra at 2003, 2126, and 2355 cm-1 

could be attributed to the interaction between Ni-Co-Mo ions and TO4 in the zeolite during the 

doping process. Conversely, the used catalyst did not exhibit peaks at 2003, 2126, and 2355 cm-1, 

due to deactivation. It was observed that the peak at wavenumber 1650 cm-1 disappeared after 

metal doping and calcination. This indicated the thoroughness of the calcination that removed the 

water molecules, which could promote agglomeration and consequent deactivation [156]. In 

contrast, the used catalyst showed a peak at 1650 cm-1, indicating the presence of water 

molecules that caused the catalyst deactivation during the CTH reaction. The appearance of the 
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frequency 3673 cm-1 evidenced the stretching modes of CHx, which was formed during the CTH 

reaction [179]. 

4.2.10. Surface Area Analysis of Catalyst 

Figure 4.17 shows the performance of the NiOx-CoOx-MoOx-zeolite via adsorption and 

desorption isotherm and the application of BET method. The catalyst surface area was reduced 

from 250 m2/g to 150 m2/g after three hours of CTH reaction. The reduction in the surface area 

was traceable to coke formation that could be corroborated by the increased in carbon (4.4-14.5 

wt.%) content in the EDS analysis (Figure 4.14).  

 

Figure 4.17. Surface area analysis of fresh and used NiOx-CoOx-MoOx-zeolite catalyst after 3 

hours of CTH reaction. 

 

While the pore volume changed from 0.164 cm3/g to 0.032 cm3/g, the pore width increased from 

19.6 Å to 86 Å. The surface coke formation caused this increase in the pore width of the catalyst 

due to reduction in effective surface area, and it consequently increased the average pore radius 

or diameter. The shapes of the hysteresis loop for both used and spent catalysts appeared parallel, 
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which meant that there was not much change in the texture, pore size distribution, and pore 

geometry. Evidently, at a relative pressure of 0.44, the loop closed at a point where pore 

condensation and evaporation of N2 occurred. This shape depicted adsorption and desorption 

isotherm of types 1 and 4, according to the International Union of Pure and Applied Chemistry 

[180]. These values showed how the stability of the catalyst was shaken during the CTH. 

4.2.11. CTH of Algae Oil 

Figure 4.18 showed the CTH conversion of algae oil conducted at different temperatures (390, 

405, 420 oC). It was observed that 100% conversion was achieved at all reaction temperatures. 

At a temperature of 390 oC, the conversion of the oil increased as the time of reaction from 1-5 h, 

the percent conversion increased respectively as 50, 86, 90, 99, and 100%. Most of the 

hydrocarbon produced at 390 oC were cyclo-and iso-alkanes at 3-5 h (Table B5-B7), while the 

products at 1-2 produced both hydrocarbons and oxygenates (Table B3-B4). It was observed that 

the reaction at 390 oC produced branched-chain (41%) and cyclo-alkanes (35%). These cyclo-

alkanes underwent dehydration and formed polyaromatics, which are not environmentally 

friendly during combustion. The percent of iso-cyclo alkanes produced was extraordinarily 

higher than what had been reported in the literature [100, 217].  As the temperature increased, 

the conversion increased rapidly, but the products obtained were mostly polyaromatics that 

caused catalyst deactivation (Figure B5). It was observed that the percents of coke formed at 

390, 405, and 420 oC were 4, 15, and 25%, respectively.  
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Figure 4.18. CTH conversion of algae oil at different temperatures 

 

It was observed in one hour of the CTH reaction at 390 oC that most of the products were 

nitrogenous in nature (e.g. 1-Phenazinecarboxylic acid) due to the presence of little proteins left 

in the BI after the flash hydrolysis. As time progressed, the nitrogen vanished, probably by 

converting to gaseous NH3  as the ring structure opened. It was also evident that the oxygenates 

disappeared via deoxygenation or hydrodeoxygenation, which gave the fuel a significant 

calorific value. For example, the heating value increased from 35 to 48 MJ/kg as the reaction 

progressed (Table 4.6). It was observed that the maximum heating value was obtained in 3 h of 

reaction due to the production of more branched alkanes, and this value could be compared to 

that observed at the pyrolysis of the BI. 

Figure 4.19 highlights the number of carbon distribution in the liquid products, as CTH was 

conducted at the temperature range of 390-420 oC and at an autogenic pressure of 24-27 bar. 
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Most of the carbon were in the range of C6-C9, which depicted typical jet-fuel composition 

[191]. 

Table 4.6. Evaluation of Liquid Product from CTH at 390 oC 

Time (h) 1 2 3 4 5 

C (%) 68.6 77.4 84.3 81.7 83.0 

H (%) 9.2 12.5 14.3 13.7 14.4 

O (%) 14.3 10.2 1.4 4.5 2.6 

N (%) 7.9 0.0 0.0 0.0 0.0 

HHV (MJ/kg) 35.0 42.1 48.4 46.2 47.9 

 

 

Figure 4.19. Carbon number distribution in the liquid products at 390 oC 

 

The C3-C8 highlighted the production of cyclo-alkanes and branched hydrocarbons, such as 

isomers of heptane and hexane (Tables B3-B7). The liquid fuel obtained from the CTH reaction 

contained a carbon atom range of C3-C18, with most of the hydrocarbons within C5-C8.  As the 

reaction proceeded from 1-5 hours at 390 oC, the percent of carbon atoms within C5-C8 

increased from 7 to 94%.  Since the compounds in the liquid fuel were saturated hydrocarbon, 

the CTH underwent either deoxygenation, catalytic cracking, or thermal cracking.  Moreover, the 

presence of water in the liquid products signified the hydrodeoxygenation reaction, whereby the 
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oxygen content of the oil reacted with the hydrogen produced by the 2-propanol [225].  

Summarily, the optimum process parameters for the CTH of the microalgae oil were temperature 

(390 oC), pressure (24 bar), the reaction time of 3 h, and algae oil to 2-propanol ratio (0.08g/g), It 

could be estimated that the 2-propanol-to-oil ratio was 12.2 liter 2-propanol per liter algae oil, 

compared to using a gaseous H2 as hydrogen donor, as found in literature (200-300 liters H2/liter 

oil) [25]. 

4.2.12. CTH Kinetic model 

Based on percent conversion, the kinetic parameters (reaction order, activation energy, and pre-

exponential factor) were estimated. Reaction at 390-420 oC was considered to develop the 

kinetics of CTH of algae oil, with the following elementary assumptions: 

(i) isothermal and steady-state conditions are assumed; 

(iv) for the sake of simplicity, all of the products were lumped into one product; 

(v) the rate of coke and gaseous products formation were not considered, as the amounts 

produced were considered insignificant compared to that of the liquid products;  

(vi) intraparticle mass-transfer resistance was assumed to be negligible, since diffusion was very 

fast, such that the overall rate was not affected by mass transfer in any fashion; and 

[85] the rates of adsorption and desorption of products and reactants were not considered. 

The CTH reaction was condensed, as shown in Eq. (4.5).  

𝐴
𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡
→      𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠                                                                                                           (4.5) 

Since the fatty acid could be monitored easily, the rate law could be written as shown in Eq. 

(4.6). 

−𝑟𝐴 = 𝑘𝐶𝐴
𝑛                                                                                             (4.6) 



113 
 

 

Where 𝑘 and 𝑛 are the rate constant and reaction order, respectively. Combining the rate law 

with the mole balance for a batch reactor, Eq. (4.6) could be written as shown in Eq. (4.7). 

𝑘𝐶𝐴
𝑛 = −

𝑑𝐶𝐴

𝑑𝑡
                        (4.7) 

Integrating Eq. (7) at the boundary condition (t = 0, 𝐶𝐴0; t = t , 𝐶𝐴), the instantaneous 

concentration of the fatty acid could written as in Eq. (4.8). 

𝐶𝐴 = [𝐶𝐴0
(1−𝑛)

− 𝑡𝑘(1 − 𝑛)]
1

(1−𝑛)
                                                           (4.8) 

Since conversion data was available, Eq. (8) could be written in terms of conversion, as shown in 

Eq. (4.9).  

𝑥 = 1 −
[𝐶𝐴0
(1−𝑛)

−𝑡𝑘(1−𝑛)]

1
(1−𝑛)

𝐶𝐴0
                                                         (4.9) 

Also, the rate constant is related to the temperature, as proved by Arrhenius equation (Eq. 

(4.10)). The Arrhenius equation was employed based on the assumption that the rate constant 

depended on the temperature only. Besides, this equation has been verified empirically to give 

the temperature behavior of most reaction rate constants within experimental accuracy over fairly 

large temperature ranges [217]. 

𝑘 = 𝐴𝑒
(−
𝐸𝑎
𝑅𝑇
)                                                                                 (4.10) 

With the knowledge of the initial concentration (𝐶𝐴0) of the fatty acid (0.0136 mol/L), the time 

of reaction, the temperature, the rate constant, order of reaction, and the activation energy of the 

reaction were estimated by employing POLYMATH software and the Excel Solver facility. This 

was achieved by using least square method (Eq. (4.11)) by minimizing the squared errors of 

conversion data. 
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𝑓 =∑[(𝑋𝑝𝑟𝑒𝑑)𝑖 − (𝑋𝑒𝑥𝑝)𝑖]
2

𝑛

𝑖=1

                                                                                                          (4.11) 

Table B8 and Figure B6-B8 highlight the experimental and estimated conversion of the algae oil.  

The kinetic parameters could be found from Table 4.7, which also highlighted the statistical 

parameters.  

Table 4.7. Estimated kinetic parameters 

Temperature (oC) 390 405 420 

k (s-1) 7.12E-05 1.55E-04 2.84E-04 

A (s-1) 5.85E+09 5.85E+09 5.85E+09 

Ea (kJ/mol) 176.6 176.6 176.6 

Reaction order, n 0.7681 0.8936 0.9213 

R2 0.9928 0.9993 0.9996 

R2-adj 0.9909 0.9991 0.9995 

Rmsd 0.0124 0.0039 0.0030 

Variance 0.0014 0.0001 0.0001 

 

The reaction was found to be first order (range from 0.76-0.92), whereas the activation energy 

was estimated to be 176 kJ/mol, which was lower that obtained from the pyrolysis in the 

preceding section, probably due to the use of catalyst.  This value was obtained from linearizing 

Eq. (4.10) and plotting 𝑙𝑛𝑘 against ( 1 𝑇⁄  ) (Figure B9). The reaction rate constant could be 

estimated by Eq. (4.12). The activation energy for the CTH is somewhat lower than that obtained 

from the pyrolysis of the BI.  

𝑙𝑛𝑘 = 22.5 −
21229.3

𝑇
                                                                              (4.12) 
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4.2.13. Material Balance for CTH Reaction 

To render the work beneficial to the biofuel readership, a scale-up material balance was done by 

considering processing 1.0 ton of BI (Figure 20). With 1000 kg of BI, 62% of the oil would be 

extracted as estimated during the oil extraction. To ensure an oil concentration of 0.0136 mol/L 

as used in this work, a reactor volume of 87 m3 would be required. It was estimated that the yield 

for liquid fuel was 42%, while that for the gaseous products was 46%. With the high yield of 

gaseous product, the process would be sustainable if the gas were used as the source of fuel to 

power the reactor or used to generate electricity. The material balance also revealed a water yield 

of 7.8 % that showed the presence of hydrodeoxygenation during the CTH reaction. It was also 

evident that there was a coke yield of 4.5% that required catalyst regeneration. To fully 

appreciate the sustainability of CTH reaction with BI as the feedstock, exhaustive 

technoeconomic analysis must be made, but this is outside the scope of this work. 

 

 

Figure 4.20. Material balance for scale up CTH reaction at 390 oC for 1.0 ton of BI treatment.  
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4.3. Conclusions 

2-propanol was used as both oil extract and an in-situ hydrogen donor, in order to convert oil-

laden BI into liquid hydrocarbon fuel over a trimetallic catalyst. BI (from microalgae) with 

limited usefulness was employed to produce high quality gaseous and liquid high hydrocarbon 

fuels (jet-fuel range) by employing pyrolysis and catalytic transfer hydrogenation methods. The 

BI was characterized to evaluate the oil content and the temperature at which thermal 

decomposition could occur. It was revealed that, above a temperature of 400 oC, most of the BI 

was decomposed. Below a temperature range of 400-700 oC, most of the gaseous products from 

the pyrolysis were oxygenates. However, increasing the temperature above 750 oC produced 

mainly hydrocarbon with significant alkenes, which were not chemically stable, due to their C=C 

bonds.   

Because of the high cost in handling gaseous fuel, the BI was converted to liquid hydrocarbon 

products via CTH over a NiOx-CoOx-MoOx-zeolite catalyst that produced mainly iso-cyclo 

alkanes (76%) that are chemically stable with a considerable octane rating. Above 390 oC, a 

significant amount of polyaromatics was produced, rendering the liquid products 

environmentally unfriendly. It was estimated that 2-propanol-to-oil ratio was 12.2 liter/ liter 

algae oil compared to using gaseous H2 as the hydrogen donor, as found in the literature (550 

liters H2/liter oil). This work showed a way to significantly eliminate the issue of handling a 

huge volume of gaseous hydrogen in hydrogenation reactions. 

The trimetallic nature of the NiOx-CoOx-MoOx-zeolite was understandably able to enhance the 

cyclization and the ring opening of the algae oil, with insignificant coke formation. Despite the 

production of poly-aromatics in the liquid fuel products, the TGA of showed only a 4% weight 

increase due to coke formation, which was better than what had been reported in the literature. 
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Further characterization the catalyst revealed the cubic nature of the zeolite, which slightly lost 

its crystallinity after one cycle run of the CTH reaction.  
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CHAPTER 5 
 

TECHNO-ECONOMIC ANALYSIS AND LIFE-CYCLE ASSESSMENT OF JET FUELS 

PRODUCTION FROM WASTE COOKING OIL VIA CATALYTIC TRANSFER 

HYDROGENATION 

 

Note: The contents of this chapter have been submitted to be published in the Journal of 

Renewable Energy 

Elena Barbera, Rustem Naurzaliyev, Alexander Asiedu, Alberto Bertucco, Eleazer P. 

Resurreccion, Sandeep Kumar 

 

 

This work evaluates the feasibility of renewable jet-fuel production from waste cooking oil 

(WCO) via the catalytic transfer hydrogenation (CTH), using isopropanol as hydrogen donor. 

Results were compared to a commercial hydroprocessed renewable jet (HRJ) fuel technology, 

employing a process simulation-based techno-economic analysis (TEA) and life-cycle 

assessment (LCA). The two routes were compared in process performance, economic and 

environmental metrics, and allocation methods. The total capital expenditure (CAPEX) of CTH 

plant (7.3M$) was significantly lower than that of HRJ ($149.7M$). CTH’s annual revenue 

(153.9M$/year) was close to HRJ’s (150.8M$/year), due to similar fuel yields. To be profitable, 

the liquid fuel could be sold at $3.00/gal ($0.79/L) and at $1.67/gal ($0.44/L) for CTH and HRJ, 

respectively. The cumulative fossil energy demand (CED) of HRJ was 1.6 times that of CTH, 

and the total 100-year GWP of CTH was 8% less than HRJ’s, with both systems not sequestering 

CO2 through co-product offsets. Environmental endpoints based on mass- and energy-allocations 

were similar to each other, but were remarkably different from market-value allocation. 

Sensitivity analysis indicated that both systems were driven by transportation factors and not by 

https://pubs.acs.org/author/Resurreccion%2C+Eleazer+P
https://pubs.acs.org/author/Resurreccion%2C+Eleazer+P
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process inputs. Finally, trend analysis on CTH’s energy-return-on-investment (EROI) showed 

that wide improvements could be made in energy efficiency (EROI=10.30-11.30). 

5.0. Introduction 

The progressive depletion of fossil fuels, along with its environmental impacts, has driven the 

scientific community to search for sustainable and renewable energy sources. The search has 

been compelled by the burgeoning global population at 0.9% annual rate, reaching over 9 billion 

by 2050, resulting in a 29% increase in world energy consumption [226]. One of the highest 

energy-consuming sectors is transportation. In the U.S., 92% of transportation fuels are 

petroleum-derived, while only 5% are biofuels obtained from renewable sources [227]. Among 

transportation fuels, the development of bio-based jet fuels is of tremendous interest. According 

to the U.S. Energy Information Administration, an increase of approximately 45% in jet fuels 

consumption is expected by 2040 [227]. About 278 billion liters of jet fuels were consumed by 

commercial operators in 2016, leading to 781 million tons of CO2 emissions [228].  

While other energy sources (e.g. electricity, fuel cells) are being investigated for road 

transportation, the aviation sector relies on liquid fuels, with strict quality requirements to power 

gas-turbine engines [229]. These are kerosene-range hydrocarbons with C8–C16 carbon atoms. 

These hydrocarbons can be obtained from renewable sources, such as triglycerides. Among the 

numerous fatty acid sources (mainly animal fats and vegetable oils), waste cooking oil (WCO) is 

particularly promising. Unlike virgin oils, WCO is not used in food applications and is also a 

cheaper feedstock. It is largely available in the U.S. and around the globe, with an annual global 

production of 29 million tons [19]. Moreover, WCO is already largely used in the U.S. for 

biodiesel production, so a well-developed transportation and supply infrastructure already exists 

[230].  
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Several technologies have been investigated for the conversion of fatty acids into jet fuels [229, 

231]. These involve oxygen removal from the fatty acids via hydrodeoxygenation (HY) or 

decarboxylation/decarbonylation reactions using hydrogen. Depending on the catalyst used, one 

reaction pathway can be favored over another. Most commonly used catalysts are sulfided 

bimetallic materials such as Ni-Mo or Co-Mo, characterized by their selectivity towards 

decarboxylation route, or noble metals like Pt or Pd, which favor the HDO pathway [232]. The 

hydrotreating process for biojet fuels production from triglyceride-based feedstock, known as 

hydroprocessed renewable jet (HRJ) or hydroprocessed esters of fatty acids (HEFA), is a mature 

technology and has already been commercialized. For example, Honeywell’s UOP, in 

collaboration with ENI, has successfully commercialized the Ecofining™ process that converts 

vegetable oils into green jet fuels by deoxygenation [231, 233]  as shown in Figure 1A. 

Accordingly, the distillate products are obtained from a series of two-reaction system with an 

intermediate separation of by-products. Various feedstock types, such as vegetable oils, animal 

fats, and greases, can be processed using the UOP-Eni Ecofining. The first reactor, the HDO 

reactor R1, is fed with the feedstock and hydrogen to produce n-alkanes [234, 235]. The nature 

of the product is dictated by the feedstock’s fatty acid composition, catalyst type, and operating 

conditions. The by-products are separated from the n-alkanes in a flash drum operated at the 

reaction pressure. The gaseous stream is a mixture of unreacted hydrogen, CO2, and CO. The 

liquid is an immiscible mixture of organic liquid and water. In the second reactor, the 

hydroisomerization/hydrocracking [164] reactor R2, the liquid product is isomerized and cracked 

in the presence of hydrogen [231, 233]. This step is necessary to obtain a kerosene boiling range 

and jet fuel requirements. Light fuels and residual diesel (if any), are the valuable by-products. 

The latter might be recycled to increase jet fuel production or directly sold to the market.  
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Despite its maturity level, HRJ has drawbacks associated with the use of hydrogen gas. First, H2 

is poorly miscible with oil at atmospheric conditions; thus, 25-100 bar pressure is required to 

enhance mass transfer. This results in high capital outlay and high operating costs. Second, 

storage and transportation of the hydrogen increases cost and creates safety issues, due to its high 

reactivity and flammability. Third, the production of hydrogen in refineries relies on fossil 

sources, resulting into large CO2 emissions.  

This study addresses the three issues associated with HRJ by employing catalytic transfer 

hydrogenation (CTH) as an alternative process to convert WCO into jet fuels (Figure 5.1(B)) 

[100]. CTH utilizes hydrogen-donating compounds that, in the presence of a catalyst, release H2 

to saturate and reduce triglyceride compounds in oils. We have proven, in our previous 

investigation, that CTH using isopropanol as hydrogen donor over activated carbon-based 

catalyst is effective in producing jet/diesel range fuels from waste cooking oil at nearly 

atmospheric pressure conditions. With this work, we aimed to carry out a detailed, process 

simulation-based techno-economic analysis (TEA) and life-cycle assessment (LCA) of the 

proposed CTH process at industrial-scale and to compare its market and environmental 

performance with that of commercial HRJ process.  
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Figure 5. 1. Block-flow diagram of HRJ (A) and CTH (B) processes for the conversion of 

triglyceride into biojet fuels. 

 

 

5.1. Materials and Methods 

Process simulations of renewable jet fuels production from WCO by direct hydrogenation (HRJ 

via pressurized hydrogen) and CTH were performed using Aspen Plus® software v.9. The Peng-

Robinson equation of state and NRTL were selected as thermodynamic models. The goal of this 

study was to perform a comparative TEA and LCA (attributional) between HRJ and CTH 

process. For the TEA, a basis of 1,000 ton/day WCO feedstock was employed, because this 

represents the throughput of a small- to medium- scale refinery in the U.S. [236]. The two 

processes were compared in terms of economic metrics (internal rate of return (IRR) and net 

present value (NPV)) and environmental impacts (cumulative fossil energy demand (CED) and 

life cycle greenhouse gas (GHG) emissions). All the assumptions and the methods used in the 
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analysis were described in the succeeding sections. The TEA considered a WCO feed flow rate 

of 1,000 ton/day, and the LCA adapted a 1 MJ of usable energy produced embodied in liquid 

biojet fuel.  

5.1.1. Waste Cooking Oil Feedstock 

The fatty acids composition of the WCO feedstock considered was reported in Table 5.1 [100] . 

The number of unsaturated bonds in each fatty acid was specified after the length of the carbon 

chain. Roughly 70 wt% of the oil was composed of unsaturated fatty acids (oleic and linoleic 

acids), while the remaining compounds were saturated carbon chains. 

 

Table 5.1. Fatty acids composition of waste cooking oil feedstock. 

Compound Formula wt% 

C15:0 Pentadecanoic acid C15H30O2 17.9 

C19:0 Nonadecanoic acid C16H30O2 11.3 

C18:1 Oleic Acid C18H34O2 18.6 

C18:2 Linoleic Acid C18H32O2 52.3 

 

 

5.1.2. Hydroprocessed Renewable Jet (HRJ) Process 

The process flowsheet for the HRJ process was built in Aspen Plus, based on the UOP 

commercial process (Section 1), as shown in Figure 5.2. The WCO feed was pumped and heated 

up to the operating conditions of the HDO reactor R1 (HDOR1) together with H2, which was fed 

at 2.6 wt% ratio with respect to WCO [237]. The HDO unit was modeled as a stoichiometric 

reactor RStoich. For each saturated fatty acid, the stoichiometric reactions of decarboxylation, 

decarbonylation, and hydrodeoxygenation were defined according to: 

 

CnH2nO2  → Cn−1H2n + CO2                               (5.1) 

CnH2nO2 + H2  → Cn−1H2n + CO + H2O                                        (5.2) 
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CnH2nO2 + 3H2  → CnH2n+2 + 2H2O                             (5.3) 

For the unsaturated fatty acids, additional hydrogen was consumed to hydrogenate the double 

bonds (Table D1). The operating conditions and the fatty acid conversions for the three reactions 

were taken from the works of Chu et al. [237] and Veriansyah et al. [120], which analyzed the 

conversion of vegetable oil into fuels at 400 °C, 92 bar, and 2-h reaction time over a nickel-

molybdenum catalyst. Accordingly, the extent of reaction was set equal to 0.68 for 

decarboxylation, 0.03 for decarbonylation, and 0.29 for hydrodeoxygenation, with overall oil 

conversion equal to 1. The hydrogen consumption associated with the cleavage of triglycerides 

backbone (3 moles of H2 for each triglyceride) and the corresponding formation of 1 mole of 

propane was also considered (Table D2). 

 

Figure 5.2. Process flowsheet for the HRJ process. Black solid lines indicate material flows 

while gray dashed lines indicate energy/heat flows. 

 

 

The gaseous products (CO, CO2, H2 and H2O) might give rise to Water Gas Shift (WGS) and 

Methanation reactions. However, Veriansyah et al. reported that no methanation was observed 
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over a Ni-Mo catalyst under the experimental conditions investigated. To allow for possible 

WGS, a REquil reactor unit (WGS-HDO) was added to calculate the gas phase equilibrium 

reaction (Eq.4), which was evaluated at the same operating conditions (400 °C and 92 bar). 

CO + H2O ⇌ H2 + CO2                                                    (5.4) 

A high-pressure flash was used to separate the liquid and gaseous products, and products were 

cooled to 40 °C, which rendered the water and hydrocarbons completely immiscible.  Hence, a 3-

phase adiabatic flash (HIGH-P-F) was used to achieve complete separation of water, organic 

liquids, and gases (Table D3).  

The organic liquid products were then sent to a hydrocracking unit (HCC) that cracked and 

isomerized the paraffins, in order to obtain the desired product mixture quality at 350 °C and  90 

bar [238, 239]. Because of the complexity of modelling hydrocracking reactions, the reactor was 

simulated with a RGibbs model, considering a total of 358 hydrocarbon components from the 

Aspen Plus database, including all of the isomers ranging from C1 to C18 carbon atoms. The 

validity of this approach was verified by checking the product yields (LPG, naphtha, kerosene 

and diesel ranges) with those reported in the literature [237, 240, 241]. The amount of H2 

required for hydrocracking was evaluated based on the properties of the feed, namely °API 

gravity and Watson factor (Table D4) that amounted to 84.44 Nm3 of H2 per m3 of oil (Table D5) 

[241]. Hydrogen is typically fed in large excess to absorb the heat of reaction by direct quench at 

different stages of the reactor. Therefore, a higher amount of inert hydrogen was required in the 

reactor, depending on the heat produced. The amount of hydrogen required for quench was 

estimated through an energy balance to keep the difference between inlet and outlet of reactor in 

the maximum range of 25 °C (assuming adiabatic operation). This amount of H2 was set as inert 



126 
 

 

fraction in the RGibbs unit, so it was not accounted for in the equilibrium calculation. HCC 

process input parameters in Aspen Plus are shown in Table D6. 

The products from the HCC reactor were separated by means of two flash units in series. The 

first one operated at high pressure (HP-SEP) to recover the unreacted hydrogen, while the second 

one operated at low pressure (LP-SEP) to separate C1-C4 gaseous products from the liquid 

mixture, which was to be sent to an atmospheric fractionation tower to recover the different 

product fractions. The higher the operating pressure of the LP-SEP unit, the higher the recovery 

of liquid fuels (Table D10). However, it was preferred to operate the flash at 1 bar, so that a 

higher amount of propane C3H8 (94%) was recovered in the gaseous stream, to be used as 

additional fuel. 

The liquid fuels mixture was then sent to an atmospheric fractionation tower (FRAC) to recover 

the different product fractions, i.e. naphtha and kerosene. Distillation was modelled as a RadFrac 

unit, operating with 30 ideal stages and reflux ratio of 0.8. 

The large excess of H2 recovered from the HIGH-P-F and HP-SEP flash units was valuable, so 

that high recovery from the gaseous streams was desired to maximize recycle. The gas mixture 

separated from the first flash unit was characterized by large amounts of CO and CO2, while the 

one recovered after the hydrocracking unit mostly comprised light hydrocarbons such as CH4, 

C2H6 and C3H8. Industrially, the recovery of hydrogen was performed by Pressure Swing 

Adsorption (PSA), with operating pressures varying between 10-40 bar [240, 242]. As a higher 

recovery pressure results in lower compression loads required for H2 recycling, 40 bar was 

chosen for the simulations. For the purposes of the simulations, the PSA units were modelled by 

simple SEP blocks, assuming complete H2 recovery. The H2 make-up stream was compressed up 

to 40 bar by means of a 3-stage compressor (C2, compression ratio = 3.14, which considered the 
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final temperature of each stage, not exceeding 225 °C for H2), with inter-stage cooling at 40 °C. 

The make-up and recycled H2 streams were then mixed and compressed up to the final pressure 

of 92 bar in a second single-stage compressor (C1) and were delivered to the HDO and HCC 

reactors, respectively.  

Finally, pinch analysis was performed, in order to optimize heat integration (Table D7, Figure 

D1&S3). The optimized heat exchanger networks were displayed in the process flowsheet 

(Figure 5.2), where integrated heat exchangers were connected by energy streams (dashed lines). 

Accordingly, the needed external process utilities consisted of a fired heater to achieve 400 °C 

prior to the HDO reactor, and cooling water to cool the products at 40 °C in units CW1 and 

CW2. The column reboiler and the condenser duties were also provided by external utilities. 

5.2.3. Catalytic Transfer Hydrogenation (CTH) Process 

The process flowsheet of the CTH process is shown in Figure 5.3. The simulation was based on 

the  block flow diagram (Figure 1(B)) and on the experimental data obtained in the laboratory 

using a fixed-bed tubular reactor filled with charcoal catalyst [100]. The WCO feedstock was 

mixed with isopropanol (ISO-P) at a flowrate of 341.8 ton/day (ISO-P/WCO ratio = 0.3418), and 

was heated up to the CTH reactor operating temperature (380 °C), found to be the optimal value 

[100]. The operating pressure was set to 2 bar. The reactor (CTH) was simulated using a RYield 

model. The product yields, defined as mass of product over inlet mass of reagents, were 

calculated based on the experimental material balance results (Table D19). 
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Figure 5.3. Process flowsheet for the CTH process. Black solid lines indicate material flows 

while gray dashed lines indicate energy/heat flows. 

 

The gaseous products considered were H2, H2O, CO, CO2, CH4, C2H6 and C3H8, which were 

formed either by decarboxylation, decarbonylation, or hydrodeoxygenation reactions, as well as 

by isopropanol decomposition. Concerning the liquid products, for the sake of simplicity, only 

three reference components were taken as representatives for the naphtha, kerosene and diesel 

range hydrocarbons, respectively. Based on the average properties (boiling point and molecular 

weight) of the experimental products distribution, C8H16, C12H26, and C17H36 were selected as the 

three respective liquid fuel fractions (Table D13-D18).  

Because the reaction leads to coke formation, catalyst regeneration was included by simulating 

the coke removal using a SEP unit. The composition of the outlet stream from the CTH reactor 

was characterized by a mixture of hydrocarbons (C8H16, C12H26, C17H36), water (H2O), and 

gaseous products (CO2, CO, C1-C3). The separation of the hydrocarbon mixture from gases and 

water could be achieved at low temperature, since the solubility of water is inversely dependent 

on temperature. Accordingly, a 3-phase flash model was used to simulate the required separation 

(VLL-SEP) at atmospheric pressure after cooling the products to 25 °C. For the correct 
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estimation of the vapor-liquid-liquid equilibrium at low pressure, NRTL was used as the 

thermodynamic model. The solubility of the incondensable compounds (CO, CO2 and H2) was 

determined from the Henry constants, available in the Aspen Plus database. The validity of the 

binary interaction parameters of the H2O-hydrocarbon systems was first verified against 

experimental data (Table D20-D21). Finally, the three liquid fuel fractions were separated by 

means of two atmospheric distillation columns in series: the first one (FRAC1) separated the 

naphtha from the heavier fractions, which were then separated in the second one (FRAC2). The 

column specifications were, respectively: 10 ideal stages and reflux ratio = 0.2 for the first 

separation, and 15 ideal stages and reflux ratio = 0.2 for the second one. 

Heat integration was also carried out between the cold feed and the hot products, as shown by the 

energy stream (dashed line) in Figure 3. By analyzing the vaporization range of the WCO-

isopropanol feed, the feed outlet temperature from the integrated heat exchanger was set to 300 

°C. As most of the WCO vaporized in the range of 300-350 °C (Figure D4), it was preferred to 

avoid the phase change within the heat exchanger, and to supply the latent heat duty by means of 

a fired heater. Accordingly, the external utilities were represented by the fired heater required to 

reach 380 °C and refrigerated cooling water (available at 5 °C) to cool down the products to 25 

°C, in addition to the reboiler and condenser duties of the two distillation columns. 

5.1.4. Techno-economic Analysis 

For a 1,000 ton/day WCO feed flow rate (approximately 270,000 gal/day), the economic and 

profitability analysis of both HRJ and CTH processes were performed according to the method 

proposed by Towler et al. [243] for chemical plants. Accordingly, the Fixed Capital Investment 

(FCI) and the Cost of Manufacturing (COM) were estimated together with the revenues. The FCI 

consists of the capital expenses of the plant, including construction and engineering costs 
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(CAPEX), contingency charges, and offsite infrastructure investment (OSBL) (Eq. D1). The 

CAPEX were estimated based on the Bare Module Cost of each equipment unit, evaluated using 

the correlations proposed by Guthrie [244]. According to this method, the purchase cost of the 

equipment was calculated as a function of the size, as well as the construction material and the 

operating pressure, which became particularly relevant for the HRJ process, characterized by 

high pressures. Furthermore, the material chosen for HDO and HCC reactors was stainless steel 

(SS) because of hydrogen gas in compatibility with respect to the normal carbon steel (CS) 

[245].  Moreover, to account for inflation, all of the costs were referred to the year 2017, using 

the Chemical Engineering Plant Cost Index (CEPCI).  

A rigorous sizing procedure was applied to determine the size of the HDO and HCC reactors for 

the HRJ process and that of the CTH reactor. A Trickle Bed Reactor (TBR), composed by 

adiabatic multi-stage beds, was selected as the HDO reactor [246]. Considering the properties of 

the feed, catalyst hold-up of 60%, and liquid residence time of 2 h, the resulting reactor [245]  

was determined to have four stages, each of diameter D = 3.048 m and H = 8.39 m, for a total 

volume of 245 m3 . The HCC reactor was sized as a multi-stage packed bed reactor, such as those 

used at commercial level. Taking a typical gas residence time of 1 h, the reactor volume equaled 

392.5 m3 with 5 stages of D = 3.81 m and H = 6.9 m [247]. Finally, a packed bed reactor was 

also selected for the CTH reactor. The scale-up was based on the experimental value of the 

weight hourly space velocity (WHSV) of 6.8 h-1. The resulting volume, assuming a 60% catalyst 

hold-up, was equal to 27.4 m3. Given the high coke formation, two parallel reactors were 

considered, in order to allow for a continuous operation when performing catalyst regeneration. 

The sieved tray distillation columns were sized according to the Fair Method [248]. In particular, 

the distillation tower of the HRJ process resulted as having a diameter D = 1.8 m and H = 15.7 
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m, which allowed operating at 74% of the flooding condition. The diameters and the heights of 

the columns of the CTH process were (H=17.5 m, D = 1.35 m) and (H = 17.5 m, D = 1.7 m), 

respectively (approximately 78% of the flooding). In addition, the capital cost, related to the 

building of an internal H2 production facility by Steam Methane Reforming (SMR), was 

considered for the HRJ process [243]. The capital cost of the PSA unit was instead determined 

using a capacity factor with respect to a similar reference unit [242]. According to the simplified 

procedure employed, the OSBL were estimated as 50% of the total CAPEX (with reference to 

atmospheric pressure purchase costs), while contingencies amounted to 15% of the actual 

CAPEX [243].   

The COM considered both direct and indirect manufacturing costs, as well as general expenses 

related to business administration. Direct manufacturing costs were directly correlated with the 

production rate and comprised raw materials and utilities or operations expenses (OPEX), as well 

as staff and operating labor. The OPEX were evaluated based on the results of the process 

simulations. For the estimation of natural gas utility in the fired heater unit, an efficiency of 80% 

of the thermal system was assumed. Moreover, the utility used for cooling the CTH reactor was 

hot oil or molten salts, due to the high operating temperature, i.e. 380 °C. The price of this utility 

was estimated based on the reference for Hot Oil/Molten Salts for reactor cooling [249]. More 

specifically, the cost was based on the price of natural gas that would be required to heat the hot 

oil/molten salts. The number of operators was calculated based on the number of equipment units 

and was equal to 29 for the HRJ and 26 for the CTH processes. Indirect manufacturing costs and 

general expenses were instead estimated as percentages of the FCI [241].  

The plant was assumed to operate for 8000 h/year, i.e. a stream factor of 0.913 was applied. The 

economic profitability of the processes was evaluated by means of a discounted cash flow 



132 
 

 

analysis, according to four criteria: discounted payback period (DPBP), net present value (NPV), 

internal rate of return (IRR), and present value ratio (PVR). The following additional   

assumptions were  made [250-252]: first, the useful life of the plant was taken to equal to 25 

years, the first two of which were used for construction and start-up, while full regime 

production started at Year 3. 70% of the capital was invested in the first year, while the 

remaining 30% was invested in the second year. Second, the discount rate was taken as a simple 

interest rate of 8%; hence, it was not based on loan interests or debt ratio. Third, depreciation 

was evaluated according to the Modified Accelerated Cost Recovery System (MACRS). The 

depreciation period was seven years, starting at the beginning of the third year and ending at the 

end of the tenth year. In particular, the double declining balance was applied for the first five 

years after the plant start-up, after which it was switched to the straight-line method. No salvage 

value of the plant was assumed. Thus, the total capital to be depreciated equaled the fixed capital 

investment (FCI). Fourth, the income tax rate was assumed to be 35% of the gross profit. Fifth, 

the cost of the land was not considered as it was not relevant for the sake of comparison between 

the profitability of the two processes. Finally, the amount of the annual operators’ salary was 

taken from U.S. Bureau of Labor Statistics [253]. 

The revenues were evaluated based on the wholesale prices of the refinery products, which 

included the production costs and refiner profit, while distribution and transportation costs and 

taxes were not considered. The wholesale prices, corresponding to the different refinery products 

(naphtha, kerosene, and diesel), were retrieved from the U.S. Energy Information and 

Administration [254, 255] and were equal to 0.426 $/L, 0.443 $/L, and 0.440 $/L, respectively, 

as average prices for 2017.  The large amount of fuel gases produced by both the HRJ and CTH 
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process was assumed to be sold at the same price as that of natural gas (0.13 $/m3), as their lower 

heating values (LHV) were comparable to those of natural gas. 

5.1.5. Life Cycle Assessment 

Goal and Scope 

The comparative environmental impacts of HRJ and CTH processes using WCO as feedstock 

were evaluated in terms of CED and life cycle GHG emissions. It was assumed that one 

biorefinery was located in any medium-sized U.S. city (population: 100,000-300,000 persons) 

[256]. A biorefinery serves one division for each U.S. region (e.g. one biorefinery for Division 2 

[Mid-Atlantic] of Region 1 [Northeast] which includes New Jersey, New York, and 

Pennsylvania). WCO were assumed to be collected from restaurants, hotels, casinos, malls, and 

other food providers operating in these cities. The volume of WCO generated from household 

sources was insignificant, relative to the food service industry; restaurants still dominate total 

spent oil output. The states mentioned above are ideal test locations for a WCO-based refinery 

for the following reasons. First, they are affordable, offering abundant opportunities for business 

investments. Second, these cities have numerous restaurants that can provide appreciable amount 

of WCO. They have high average number of restaurants per 1,000 people, compared to the 

national average of 1.52 for cities whose population is greater than 50,000 [257]. Third, these 

cities are not as busy as megacities, which cuts transportation costs.  Cities were assumed to be 

located within 150-mile maximum radius from a Metropolitan Statistical Area (MSA) (>1 

million population) to ensure a reliable supply of spent oil. Examples of these medium-sized 

U.S. cities are Pittsburgh (2019 population: 302, 908) serving Division 2, Region 1; Greensboro, 

North Carolina (2019 population: 292,265) serving Division 5, Region 3; and Fremont, 

California (2019 population: 238, 281) serving Division 9, Region 4 [256]. Based on the 270,000 
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gal/day (98.55 Mgal/year continuous operation) TEA basis, the nine biorefineries in the U.S. will 

require 8.87 x 108 gal/yr. The U.S. generates more than enough WCO at 3.8 Mton WCO 

annually (9.92 x 1011 gal/yr) [35], with 2.84 Mton yellow and other grease [258]. 

The system boundary for the analysis was “well-to-tank” (WTT), in which all associated energy 

and material flows were determined and quantified for each unit operation: 

hydrogenation/hydrocracking/separation for HRJ and hydrogenation/separation for CTH. Fuel 

combustion was excluded in the analysis. The WTT system boundary starts with the acquisition 

of all raw materials up to distribution of products to end-users (e.g. airports). For ease of 

analysis, HRJ was modeled as the base case using the UOP-Eni EcofiningTM process. CTH was 

considered as the alternative case.  

Functional Unit 

The functional unit (FU) chosen for this analysis was 1 MJ/year embodied energy in liquid biojet 

fuel (main product) produced from either the HRJ or the CTH process using WCO as feedstock. 

Such FU was conveniently adapted to provide a quantitative reference with which all calculated 

materials and energy flows were based. Co-products were light fuels and naphtha from HRJ and 

naphtha and diesel from CTH.  

5.1.5.1. System Boundary 

The HRJ process was divided into eight sub-systems which include WCO transport (WT), 

hydrodeoxygenation (HY), CO and CO2 flash separation [257], hydroisomerization and 

hydrocracking [164], high pressure flash [220], low pressure flash (LF), distillation (DT), and 

fuel transport (FT). Figure 1A represents hydrotreating as HY, separation as FS, hydrocracking 

as HH, and products recovery as HF, LF, and DT. In the case of CTH, there were six sub-

systems identified: WCO transport (WT), catalytic transfer hydrogenation (CH), low pressure 
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flash (LF), distillation 1 (DT1), distillation 2 (DT2), and fuel transport (FT). These sub-systems 

are represented in Figure 1B as: hydrogenation for CH, and separation for LF, and products 

recovery for DT1 and DT2. Both HRJ and CTH have identical WT and FT sub-systems. 

HRJ Sub-System 1: Waste Cooking Oil Transport (WT). This sub-system involved the systematic 

collection of WCO from restaurants and food service businesses in cities where a biorefinery was 

to be established. Additional WCO were to be collected from MSA located within 150-mile 

maximum radius of the biorefinery to meet the 1,000 ton/day biorefinery requirement used in 

TEA (approximately 270,000 gallons/day WCO). WCO were transported from sources near the 

biorefinery or from MSAs using diesel trucks with likeliest truck mileage efficiency of 6.5 

miles/gallon [259]. Diesel Class 8 heavy trucks were assumed to travel for six hours in a day at 

50 miles/hr. Material input to WT was transportation diesel, while material outputs were 

combustion products CO2 and H2O. The maximum travel distance per truck was 300 miles, and 

the mileage efficiency was taken to be 6.5 miles/gal [260]. 

HRJ Sub-System 2: Hydrodeoxygenation (HY). WCO entered the biorefinery as pretreated spent 

oil suitable for processing. Depending upon the nature of fatty acids, conversion can be 

decarboxylation, decarbonylation, or hydrodeoxygenation (Table D1). HY was adopted as the 

general term for hydrotreatment. The chemical reaction was operated at the following conditions: 

400 °C, 9.2 MPa and 2 h of residence time [120, 261] . A four-stage HY unit was utilized in this 

sub-system. Material inputs included pretreated crude oil, H2 as hydrogenating agent, and nickel-

molybdenum (NiMo) catalyst. The output from HY was a mixture of straight-chain alkanes 

consisting of tetradecane, pentadecane, heptadecane, and nonadecane. Moreover, gases such as 

CO, CO2, and propane were generated in addition to water. The amount of total H2 required and 

the propane generated were based on stoichiometry, as presented in Table D2. The energy 
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consumption for HY was attributed to: [262] pressurization assuming isentropic compression of 

H2 at 85% efficiency and (2) WCO pumping at 95% efficiency. Heat was utilized to raise the oil 

temperature from 380 to 400 °C, determined as the heat duty to be supplied resulting from heat 

integration. 

HRJ Sub-System 3: CO and CO2 Flash Separation (FS) Flash separation was performed to 

separate the gaseous by-products from the output liquid straight chain alkanes. Separation input 

parameters for FS were as follows: 9.2. MPa, 10 min liquid hold-up [244], adiabatic operation, 

and vapor-liquid-dirt water phases, employing the Peng-Robinson property method in Aspen 

Plus modeling. A single vertical-type separation vessel was used. These gases include CO, CO2, 

water vapor, propane, and H2. Along with liquid alkanes, sour water was generated. The energy 

requirement for this sub-system was attributed to the lowering of product temperature from 231 

to 40 °C (after heat integration). 

HRJ Sub-System 4: Hydroisomerization and Hydrocracking (HH). The separated liquid straight 

chain alkanes were isomerized/cracked to get smaller chains of iso-paraffines. Mild conditions 

were employed in this sub-system: 350 °C and 9.0 MPa at 1-hour HH reaction time. Detailed 

process input parameters used in Aspen Plus modeling are tabulated in Table D6. The 

hydroisomerization and hydrocracking unit comprised five stages. The properties of feed oil and 

hydrogen are presented in Tables D4 and D5, respectively. Material inputs to this sub-system 

include the alkanes, H2 for isomerization and cracking, and H2 for quenching. Output 

isoparaffins include N-paraffins (C1-C3, C4-C8, C9-C15, C16-C18) and their methylated 

counterparts (naphtha, jet fuel, and diesel). The compression energy was already accounted for in 

the HH unit. All input H2 was previously compressed and then was split into the two reactors, 

thereby making pressurization energy of this unit to be 0. Direct heat use is also 0 (i.e. reactor is 
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adiabatic) due to heat integration (See Section 1.5 of SI). The heat needed to reach the operating 

temperature was recovered from other streams.  

HRJ Sub-System 5: High Pressure Flash (HF). High-pressure flash was employed to recover H2 

and other gaseous compounds from the liquid products. Herein, the process conditions were: 9 

MPa, 10-min liquid hold-up, and no heat duty (adiabatic operation, temperature after cooling was 

stable at 40 °C). There was one vertical-type HF vessel used. Two material streams were 

produced in this sub-system: [263] the gaseous stream, consisting of the recovered H2, CO, CO2, 

N-paraffins, and methylated paraffins, and (2) the liquid stream, consisting of naphtha, jet fuel, 

and diesel. There were residual H2, CO, and CO2 present in the output liquid. Like sub-system 

FS, the energy requirement was cooling energy use, or the latent heat expelled to lower the 

product temperature from 196 to 40 °C (after heat integration) (exothermic). 

HRJ Sub-System 6: Low Pressure Flash (LF). Atmospheric sub-system LF was employed, 

following HF, to separate the light hydrocarbons to be used as fuel gas and the residual H2, CO, 

and CO2 from the liquid fraction. Process conditions for this sub-system were: 0.10 MPa, 10-min 

liquid hold-up, and no heat duty (temperature was stable at 24 °C). A horizontal vessel was used. 

The output liquid was heavy with biojet fuel, diesel, and naphtha, with very little CO2 left. There 

was no cooling energy requirement for this sub-system. 

HRJ Sub-System 7: Distillation (DT). The final stage of product recovery was atmospheric 

distillation, to separate the liquid fractions naphtha (C6-C8) from the top and the jet fuels (C9-

C15) from the bottom. DT process conditions were as follows: 0.10 MPa, 30 stages, feed input at 

the 15th stage, 0.80 reflux ratio, 164.8 °C reboiler temperature, and 65.30 °C condenser 

temperature. The reflux ratio was optimized by sensitivity analysis to maximize the recovery of 

N-octane (light-key component) in the distillate. The output distillate (naphtha) was heavy in 
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mono-x-methyl (C5-C8) (44 wt%), while the output residue (biojet fuels) was predominantly 

mono-x-methyl (C9-C15) (38 wt%) and multi-yy-methyl (C9-C15) (57 wt%). The energy use for 

this sub-system came from two sources: the heating duty at the reboiler and the cooling energy at 

the condenser; both were function of WCO feed rate. 

HRJ Sub-System 8: Fuel Transport (FT). Like WT, FT utilized diesel to transport naphtha and 

biojet fuel to distribution endpoints (i.e. gate). The designated fuel distributors were assumed to 

be located within a 150-mile maximum of WCO collection. The trucks were assumed to have a 

mileage efficiency of 6.5 miles/gallon. The distance hauled was calculated to be 300 miles/truck-

day at 6 h per truck per day at 50 miles/hr. Material input to FT was diesel, and material outputs 

were CO2 and H2O. 

CTH Sub-System 1: Catalytic Transfer Hydrogenation (CH). The CH was modeled based on the 

experimental work of Asiedu et al. [100]. Hydrogenation and deoxygenation of WCO was 

accomplished by means of a hydrogen donor solvent. Herein, gaseous H2 was replaced by 

isopropanol. Details on lab-scale reactor geometry and catalyst properties are presented in Table 

D11, and experimental conversions at different temperatures are shown in Table D12. From 

these results, an industrial model was built, based on a scale-up of the experimental reactor and 

the CH reactor material balance at T = 380 oC; this is presented in Figure D3. The reaction 

conditions for a CH sub-system were as follows: 380 °C, 2 bar, 6.8 h-1 weight hourly space 

velocity in a continuous fixed-bed plug-flow reactor (PFR). There were 2 PFRs, each with a total 

capacity of 27.4 m3, with each one to be operated alternately while the other undergoes catalyst 

regeneration. The activated carbon catalyst was assumed to be replaced every 90 days.  Material 

input streams consisted of WCO, with isopropanol as the hydrogenating agent. The main liquid 

fuel product contained C1-C3 gases, naphtha, diesel (heptadecane), and biojet fuels. Gases were 
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also generated in the reaction: CO, CO2, and H2, in addition to water and coke. Energy was 

utilized to pressurize WCO and 2-propoanol to 2 bar and heat was used to raise the feed’s 

temperature from 300 to 380 °C, after heat integration. 

CTH Sub-System 2: Low Pressure Flash (LP). Like HRJ, output liquid from the main chemical 

reaction (CH) was subjected to LP in order to separate gases from main products (naphtha, 

diesel, biojet fuels). However, unlike HRJ, CTH has three output streams: gas (mainly CO and 

CO2), organic liquid (main products), and aqueous liquid (water and residual main products). 

Conditions were like HRJ’s sub-system LF, albeit the condition was exothermic; heat was 

expelled from the system to cool the reaction products from 50 to 25 °C. The cooling down to 50 

°C was achieved by heat integration. 

CTH Sub-System 3: Distillation 1 (DT1) and Distillation 2 (DT2). Product recovery involved a 

series of successive distillations DT1 and DT2, each employing one column. In DT1, naphtha 

(C6-C8) was recovered from the top, while the heavier fuels (C9-C18) were separated from the 

residue. The residue was further distilled in DT2 to extract jet fuels as distillate and diesel from 

the bottom. Process conditions for DT1 were: 0.10 MPa, 10 stages, feed input at the third stage, 

0.20 reflux ratio, 220 °C reboiler temperature, and 130 °C condenser temperature. Process 

conditions for DT2 were: 0.10 MPa, 15 stages, feed input at the ninth stage, 0.20 reflux ratio, 

299 °C reboiler temperature, and 212 °C condenser temperature. For both distillation columns, 

heat was applied to the reboilers and heat was removed from the condensers. 

5.1.5.2. Allocation 

Allocation is a critical step in LCA, as it directly affects the results of impact assessment. 

Allocation involves the partitioning of the environmental impacts from the process based on 

product (materials output) flows [262]. Allocation is not a straightforward division of 
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environmental impacts between products and co-products; thus, protocols set forth by the ISO 

14044:2006 guidelines [263] were adapted. For this analysis, mass-, energy- and market-based 

allocation methods were necessary. In both HRJ and CTH, the products were identified as 

naphtha/gasoline (C4-C8, e.g. octane C8H18) and jet fuels (C9-C15, e.g. dodecane C12H26) 

obtained at the very last sub-system (distillation). In some intermediate sub-systems, co-products 

were generated. For example, the sub-system HF in HRJ produced output liquid (gasoline and jet 

fuel mixture) that fed into a subsequent LF sub-system. Concurrently, it also generated a co-

product output gas mixture consisting of short-chain N-paraffins C1-C3 (e.g. ethane, propane), 

short-chain N-paraffins C4-C8 (e.g. butane, octane), and mono-x-methyl or multi-yy-methyl C9-

C15 (e.g. dodecane, hexadecane or cetane), which can be pressurized and distilled into LPG, 

naphtha, and jet fuel, respectively. In the case of HRJ, the co-products were as follows: FS = 

propane; HF = [C1-C3, C4-C8, C9-C15] gaseous hydrocarbons; LF = [C1-C3, C4-C8, C9-C15] 

gaseous hydrocarbons, [C1-C3 (LPG), C16-C18 (diesel)] liquid hydrocarbons, and liquid CO2. 

For CTH, the co-products were as follows: CH = coke; LF = [C1-C3, octane, dodecane, 

heptadecane] gaseous hydrocarbons, and [C1-C3] (LPG) liquid hydrocarbons. Table 5.2 details 

the energy- and market-based allocation factors for the HRJ and CTH processes. Thus, the CED 

and life cycle GHG emissions for each process were apportioned between products and co-

products, using mass flows, lower heating values, and unit selling price at prevailing market 

conditions. 

5.1.5.3. Inventory 

Life cycle inventory [264] is the most tedious process in LCA, as it involves the acquisition of 

high-quality data essential to accurate environmental impacts assessment. The development of 
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HRJ and CTH models in this study entailed data from various sources and methods. The models 

were created and developed using an Excel spreadsheet with Crystal BallTM add-in functionality.  

 

Table 5.2. Mass-, energy-, and market-based equivalency (impact) factors used in the impact 

assessment phase of HRJ and CTH life cycle.  

Output1 Mass  Energy Market5 

HRJ Products 0.8176  0.8109 0.0254 

   Naphtha 0.2934  0.2993 0.0098 

   Jet fuel 0.5242  0.5116 0.0156 

HRJ Co-products    0.1824  0.1891 0.9746 

   Propane gas 0.0045  0.0047 0.0675 

   C1-C3 gas2 0.1070  0.1146 0.9043 

   C4-C83 0.0568  0.0569 0.0022 

   C9-C154 

   C1-C3 liquid (LPG) 

0.0013 

0.0082 

 0.0013 

0.0087 

0.0000 

0.0004 

   C16-C18 (diesel) 0.0029  0.0028 0.0001 

   Liquid CO2 0.0017  0.0000 0.0000 

CTH Products 0.7899  0.7867 0.0167 

   Naphtha 0.2428  0.2495 0.0056 

   Jet fuel 0.4200  0.4129 0.0086 

   Diesel 0.1270  0.1243 0.0026 

CTH Co-products 0.2101  0.2133 0.9833 

   Coke 0.0307  0.0201 0.0006 

   C1-C3 gas2 0.1687  0.1821 0.9823 

   Octane 0.0061  0.0062 0.0003 

   Dodecane 0.0001  0.0001 0.0000 

   C1-C3 liquid (LPG) 0.0046  0.0049 0.0002 
1Output flow rates obtained from mass balance (tons/day). 2Represented by ethanegas. 
3Represented by compressed liquid hexane. 4Represented by compressed liquid dodecane. 
5Obtained based on wholesale market price in 2019 US dollars excluding taxes. 

 

 

This allows certain material inputs and process conditions to contain probability distributions 

(Table D35) that were subsequently used stochastically for the Monte Carlo simulation, resulting 

into probabilistic outputs (“endpoints”). 

The upstream impacts of electricity and selected materials were calculated using U.S. 

equivalency factors (or European, where U.S. values were not available) and are presented in 

Table 5.3.  

The hydrodeoxygenation LCI were largely based on the experimental results of Veriansyah et al. 

[120],  appropriately scaled up to 1,000 tons/day FU. Gaseous H2 was stoichiometrically 
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supplied to crude WCO using a nickel-molybdenum (NiMo) catalyst. Pressurization electricity 

was determined from Aspen, assuming isentropic compression with H2 (85% efficiency) and 

continuous pumping of WCO (95% efficiency). LCI data for the rest of the sub-systems were 

obtained from various literature sources, and detailed technical descriptions were reported in 

Section 1 of SI. Pressurization electricity, heat, and material flows were determined from Aspen 

modeling. Compressed hydrogen gas was supplied as the make-up contribution, because part of 

the non-reacted H2 is recovered and recycled. As for CTH, large-scale LCI were based on the 

experimental study by Asiedu et al. [100]. Specifically, isopropanol was supplied in a large 

quantity (341.8 tons/day) following the scale-up of the CTH reaction of WCO at different 

temperatures. Pressurization electricity was applied to pump the WCO and isopropanol to 2 bar. 

The heat needed to increase the feed’s temperature from 300 to 380 °C was calculated by 

Aspen’s heat integration. Catalytic transfer hydrogenation output to succeeding sub-systems was 

based on experimental yields by Asiedu et. al. A full accounting of energy/materials 

inputs/outputs is presented in Table 5.4. 
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Table 5.3. Equivalency factors used in modeling HRJ and CTH processes . [265] 
Impact Value Unit Notes 

Electricity, U.S.     

Energy use 12.5747 MJ/kWh 1.43% from surface coal mining, 1.85% from transportation, and 96.72% from electricity 

generation. Normal, SD = 1. [265]  

Water use 0.00004 m3/kWh Hard coal extraction region in the U.S., low-volatile bituminous coal at LHV = 33,412 

kJ/kg. Normal, SD = 1.[266]  

CO2 to air 

 

 

SO2 to air 

1.0220 

 

 

0.0067 

kg/kWh 

 

 

kg/kWh 

0.94% from surface coal mining, 1.72% from transportation, and 97.34% from electricity 

generation. Normal, SD = 1. . [265]  

1.06% from surface coal mining, 1.42% from transportation, and 97.52% from electricity 

generation. Normal, SD = 1. . [265]  

Petro Diesel    

Energy use 51.0996 MJ/kg 47.75% domestic crude production, 45% foreign crude production, 0.27% domestic crude 

transport, 1.09% foreign crude transport, 5.38% crude refining, 0.51% diesel transport. 

Normal, SD = 1[267] 

Water use 0.0004 m3/kg Normal, SD = 1. [267]  

CO2 to air 

 

10.0476 

 

kg/kg 86.54% tailpipe fossil (combustion), 13.46% production. Normal, SD = 1. [267] 

SO2 to air 0.0027 kg/kg Normal, SD = 1. [267] 

H2, from fossil 

fuels (RER), as 

liquid H2 

Energy use 

Water use 

 

 

 

33.6420 

0.0739 

 

 

 

MJ/kg 

m3/kg 

 

 

 

As oil, crude, in ground. Normal, SD = 1. [268] 

0.000723 m3 water estimate + 0.0732 m3 cooling water, unspecified origin. Normal, SD = 

1. [268] 

CO2 to air 

 

SO4
2- to water 

1.2328 

 

0.0005 

kg/kg 

 

kg/kg 

1.23 kg fossil CO2 – 0.00278 kg biogenic CO2. Normal, SD = 1. [268] 

Normal, SD = 1. [268]  

Isopropanol    

Energy use 3.2000 MJ/kg Propylene oxide production via direct hydration demands a split of 50% natural gas, 38% 

electricity, and 12% steam. All energy used for heat of steam was obtained from natural 

gas. Lognormal, SD = 1.88. [269] 

Water use 0.0271 m3/kg 0.0032 m3 water estimate as 10x stoichiometric amount + 0.024 m3 cooling water. 

Lognormal, SD = 1.88.  

CO2 to air 0.0990 kg/kg From wastewater treatment. Lognormal, SD = 1.88. [270]  

SO4
2- to water 0.1740 kg/kg Calculated from mass balance. Lognormal, SD = 2.11.[270]  

Carbon black, at 

plant (RER) 

   

Energy use 9.8820 MJ/kg As heat from industrial furnace, >100 kW. Lognormal, SD = 1.24. [271] 

Water use 0.0000 m3/kg Uniform = 0.00 (minimum), 0.01 (maximum). [270]  

CO2 to air 1.9700 kg/kg Calculated from mass balance. Lognormal, SD = 1.38. [270]  

Cryolite (2 AlF3 • 

3NaF)* 

   

Energy use 

 

Water use 

 

CO2 to air 

3.2000 

 

0.0300 

 

0.0000 

MJ/kg 

 

m3/kg 

 

kg/kg 

2 MJ/kg natural gas and 1.2 MJ/kg electricity. Normal, SD = 1.  

24 kg/kg + 6 kg/kg cooling water. Normal, SD = 1.  

Uniform = 0.00 (minimum), 0.01 (maximum).  

Steel    

Energy use 

 

 

 

Water use 

CO2 to air 

2.1826 

 

 

 

0.0003 

1.1586 

MJ/kg 

 

 

 

m3/kg 

kg/kg 

18.66% coke-making, 9.59% sintering, 67% blast furnace, 4.75% LD steel converter. 

Cradle-to-casting plate gate (steel plates). Normal, SD = 1. [272] 

Normal, SD = 1. [51  

Normal, SD = 1. [51  

* Due to missing production data for Ni-Mo/Al2O3 catalyst, the impacts of cryolite production was adapted as a rough estimate on energy use, water 
use, and CO2 emissions according to the overall reaction: 12 HF + Al2O3 • 3H2O + 6 NaOH → 2 AlF3 • 3 NaF + 12 H2O. To produce 1 kg cryolite, 

these reactants are needed stoichiometrically: 28.580 mol HF, 2.382 mol Al2O3 • 3H2O, and 14.290 mol NaOH at 100% assumed yield. Gendorf 

(2000). 
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Table 5.4. Global LCI for HRJ and CTH detailing energy/materials inputs/outputs to and from 

the technosphere/environment based on Table D36. Energy and heat are in MJ/day and materials 

and chemicals are in tons/day. 

HRJ 

Energy, chemicals (input from technosphere) Products, co-products (output to technosphere) 

   Electricity 683,059.20    Naphtha 267.80 

   Heat 512,599.92    Jet fuel 478.37 

   Diesel 16.53    Propane gas 4.12 

   WCO 1,000.00    C1-C3 gas 97.64 

   Ni-Mo/Al2O3 3.26    C4-C8 51.81 

   H2 (gross) 83.44    C9-C15 1.19 

   H2 (net, minus recycle)* 35.20    C1-C3 liquid (LPG) 7.52 

   Steel 0.0017    C16-C18 (diesel) 2.64 

Emissions (output to environment)    Liquid CO2 1.52 

Air     Heat (cooling) 1,207,360.70 

   CO2 150.71      

   CO 11.42   

   H2 25.75   

Water    

   Pure H2O 18.69   

   Sour water (H2O+CO2) 37.77   

CTH 

Energy, chemicals (input from technosphere) Products, co-products (output to technosphere) 

   Electricity 158,696.70    Naphtha 232.86 

   Heat 485,100.00    Jet fuel 402.88 

   Diesel 14.44    Diesel 122.13 

   WCO 1,000.00    Coke 29.41 

   Isopropanol 341.80    C1-C3 gas 161.85 

   Activated carbon 0.0913    Octane 5.83 

Emissions (output to environment)    Dodecane 0.11 

Air     C1-C3 liquid (LPG) 4.40 

   CO2 210.79    Heat (cooling) 493,849.44 

   CO 127.90   

   H2 6.85   

Water    

   Pure H2O 16.26   

   Sour water (H2O+CO2) 72.06   

      *Net H2 requirement is 35.20 tons/day, of which 22.93 tons/day is consumed in the hydrodeoxygenation reactor, 11.34 

ton/day in the hydrocracking unit, and 0.93 ton/day are lost in the light gas stream separated by the low-pressure flash.  
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5.2. Results and discussions 

5.2.1. Process Performance 

The results of process simulation for the HRJ and CTH systems are summarized in Table 5.5. 

Aspen simulation resulted in an overall HRJ hydrogen consumption of 35.2 ton/day, of which 

22.93 ton/day were consumed in the HY reactor (at hydrogen conversion of 88.2%), 11.34 

ton/day in the hydrocracking unit, and 0.93 ton/day was lost in the light gas stream separated by 

the low-pressure flash. Hydrogen was assumed to be completely recycled without any losses, 

although, in practice, these may vary between 15-25% for PSA unit. Hence, the amount of 

hydrogen consumed would be slightly larger than indicated. The overall hydrogen-to-WCO ratio 

of 3.5% w/w is similar to the ones calculated by Chu et al. (2.6-3% w/w), Han et al. (2-3% w/w), 

and Pearlson et al. (4% w/w) [240, 250, 261]. Nevertheless, Chu et al. did not consider the 

amount of hydrogen used for hydrocracking reactions, assuming that it was a factor of the degree 

of cracking, instead. Pearlson et al. proposed that a 4% w/w overall process ratio is appropriate 

for maximum jet fuel production, based on data in the literature. The consumption of isopropanol 

in CTH is equal to its supply (341.8 ton/day), since it was completely decomposed inside the 

reactor and was, hence, non-recyclable.  
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Table 5.5. Process performances of HRJ and CTH systems. All specific energy consumption of 

utilities is scaled to the mass of WCO feed. 

Performance parameter HRJ CTH Unit 

Waste cooking oil basis rate 1,000 1,000 ton/day 

H2/isopropanol consumption 35.2 341.8 ton/day 

Liquid fuels products    

Liquid yield 77 76 %w/w 

Naphtha 20 30 %v/v 

Kerosene 80 60 %v/v 

Diesel 0 10 %v/v 

Energy consumption    

Heating energy 0.243  0.298 kWh/kg 

Cooling energy -0.517 -0.365 kWh/kg 

Electric energy 0.092 7.4·10-5 kWh/kg 

Maximum pressure 9.2 0.2 MPa 

Maximum temperature 400 380 °C 

 

 

The yield of liquid fuel products obtained from both systems was similar, comparable to 

previous studies [120, 237, 250, 251]  (77 wt% for HRJ and 76 wt% for CTH). The liquid 

mixture obtained from the conventional HRJ system was characterized by a larger amount of 

kerosene products, roughly 16% higher than that obtained from CTH. However, CTH produced 

more naphtha and diesel than HRJ. Both systems produced gaseous by-products. Specifically, 

about 10% of the WCO feed was converted into light gas (mostly propane) in HRJ, comparable 

to what has been reported in other studies, ranging between 7% and 10% [237, 240, 249]. This 

light gas had low LHV because it contained large amount of CO and CO2. The CTH system 

produced around 162 ton/day of fuel gas, with LHV of 21.2 MJ/kg. The thermal and electricity 

comparison between the two systems reflected their relative process conditions: temperature and 

pressure. The thermal energy (heat) consumptions were comparable between the two systems 

(513 GJ/day for HRJ, 485 GJ/day for CTH), due to the optimized heat integration network and 

the similar operating temperatures. CTH’s cooling energy requirement was 59% lower than 

HRJ’s due to the latter’s combined exothermic effect via flash separation and high-pressure 

flash. In terms of direct electricity, HRJ consumed more than four times the electricity than CTH 
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did, because of its high operating pressure and the handling of gaseous hydrogen via multi-stage 

compressors. CTH utilized low electricity because it operates at relatively low pressure and 

because pumps were employed in place of compressors to transport liquid streams. In general, 

CTH consumed far less heat and electricity than HRJ, because the number of pieces of 

equipment necessary in an HRJ reaction was much larger (two reaction systems: HY and HH), 

whereas only one reactor is used in CTH. Further, CTH does not require the large recycling of 

gaseous streams, which is beneficial in reactor sizing and operation. 

5.2.2. Capital Expenditure 

The results of CAPEX and FCI for both HRJ and CTH systems are summarized in Tables 5.6 

and 5.7, respectively. A summary of direct manufacturing costs for both systems are reported in 

Table 5.8. Moreover, the results of COM for HRJ and CTH systems were shown in Tables 5.9 

and 5.10, respectively, using direct, fixed, and general costs of manufacturing data (Table D24 

and Table D25). 
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Table 5.6. Total bare module cost in HRJ and CTH jet fuel production processes. For HRJ the 

cost at atmospheric pressure (base) is reported in addition to the final one.  

Equipment Type HRJ CTH 

Reaction System Cbm,base Cbm Reaction System Cbm 

Hydrodeoxygenation1 $      1,650,989 $    40,814,774 Hydrodeoxygenation $          132,396 

Hydrocracking2 $      2,972,309 $    76,618,490 2nd hydrodeox. regen. $          132,396 

Steam methane reform. $      3,441,561 $    16,313,000   

Heating3 $      1,450,520 $      1,675,585 Heating3 $       3,010,654 

Compression Cbm,base Cbm Pumps Cbm 

Compression 1 $         448,539 $      1,704,448 Feed pumping WCO $            12,046 

Compression 2 $      1,234,069 $      4,689,461 Feed pumping ISOP4 $            11,158 

Feed pumping WCO $           73,966 $         174,098   

Separation Cbm,base Cbm Separation Cbm 

By-P HP separation $           74,603 $         663,506 LP separation $            74,603 

Product HP separation $           53,829 $         581,562   

Product LP separation $           63,636             $           63,636   

PSA-hydrogen recov. $         889,876 $      2,936,590   

Distillation Cbm,base Cbm Distillation Cbm 

Fractionation 15 $         487,216 $         487,216 Fractionation 15 $          387,179 

   Fractionation 25 $          491,028 

Heat Exchangers Cbm,base Cbm Heat Exchangers Cbm 

Heat exchange 1 $         104,310 $         123,010 Heat exchange 1 $          469,833 

Heat exchange 2 $         157,024 $         185,174   

Heat exchange 3 $         387,390 $         456,232   

Heat exchange 4 $         159,540 $         187,891   

Cooling 16 $         139,372 $         164,358 Cooling6  $          151,479 

Colling 26 $         144,417 $         169,854   

Heating3 $      1,450,520 $      1,672,574 Heating3 $       2,446,909 

Total (2017)    $    15,383,686 $  149,681,462 Total (2017) $       7,319,681 
14x5 bed, 25x5 bed, 3Fired heater, 4Three stages 5Trays + columns 6Cooling water  

 

Table 5.7. Fixed capital investment in HRJ and CTH jet fuel production processes. 

Fixed Capital Investment HRJ CTH 

ISBL + Engineering $    149,681,462 $        7,319,681 

OSBL (50% total Cbm base) $        7,691,843 $        3,659,841 

Contingency (15% total Cbm) $      26,942,663 $        1,097,952 

Total $    184,315,968 $      12,077,474 
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Table 5.8. Summary of direct manufacturing costs. 

 Unit Value Reference 

Raw Material    

Waste cooking oil $ ton-1 150.00  

Hydrogen $ kg-1 1.60 [250, 251] 

Isopropanol $ kg-1 1.30 [252] 

Utility    

Electric power $ kWh-1 0.087 [254] 

Natural gas (LHV=38.42 MJ m-3) $ m-3 0.130 [254] 

Cooling tower water (30 °C) $ GJ-1 0.354 [244] 

Refrigerated water (5 °C) $ GJ-1 4.430 [244] 

Medium pressure steam (10 bar, 184 °C) $ GJ-1 6.870 [244] 

High pressure steam (41 bar, 254 °C) $ GJ-1 9.830 [244] 

Hot oil  $ GJ-1 f(kW) [249] 

Operators    

Salary $ year-2  60,000.00 [253] 

 

 

Table 5.9. Total cost of manufacturing in HRJ jet fuel production process. 

Raw Material (RM) Value Unit $/year 

WCO 1,000 ton/day 50,000,000 

Hydrogen 35.2 ton/day 18,773,333 

Utilities (UT) Value Unit $/year 

Compressor 1 1,196 kW 836,586 

Compressor 2 (make-up) 3,191 kW 2,230,902 

Feed WCO pump 125 kW 87,540 

Cooling water 1 6,197 kW 63,175 

Cooling water 2 5,736 kW 58,477 

Fired heater (LHV = 38.42 MJ/m3) 704 kW 85,807 

Condenser 2,042 kW 20,815 

Reboiler 4,189 kW 828,901 

Waste Treatment (WT) - - - 

DMC + FMC + GE (Table D24)   29,251,124  

Total COM (without depreciation)   102,236,661 
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Table 5.10. Total cost of manufacturing in CTH jet fuel production process. 

Raw Material (RM) Value Unit $/year 

WCO 1,000 ton/day 50,000,000 

Isopropanol 341.8 ton/day 148,113,333 

Utilities (UT) Value Unit $/year 

Hot oil CTH 9,508 kW 2,138,041 

Feed WCO pump 2.1 kW 1,458 

Feed ISOP pump 1 kW 696 

Cooling water 1 3,153 kW 32,140 

Fired heater (LHV = 38.42 MJ/m3) 5,614 kW 683,904 

Reboiler 1 5,034 kW 1,425,077 

Reboiler 2 1,747 kW 867,511 

Condenser 1 1,058 kW 10,788 

Condenser 2 1,505 kW 15,348 

Waste Treatment (WT) - - - 

DMC + FMC + GE (Table D5)   15,147,753 

Total COM (without depreciation)   218,436,050 

 

 

In both the CTH and the HRJ systems, CAPEX was controlled by their main reaction sub-

systems: 91% in HRJ and 45% in CTH, calculated in reference to the bare module cost, 

assuming a factor of 4.74 to fluid process as single Lang factor, Cbm [243]. The heating 

component in CTH’s main reactor cost over 3 M$, about 2% the cost of the heating component 

in HRJ’s main reactor. CTH required pumping, as the solvent was isopropanol, while HRJ 

required compression, as the solvent was gaseous hydrogen. Gas compression is prohibitively 

expensive, in the order of M$. Both systems needed infrastructure for separation, although CTH 

demanded a single low-pressure separator, while HRJ required multiple high- and low-pressure 

separators, including a PSA hydrogen recovery unit.  

The breakdown of CAPEX for the HRJ and CTH systems is shown in Figure 5.4 (top panel). The 

total cost of the CTH plant (7.3 M$) was significantly lower (around 98%) than the total cost of 

the HRJ plant ($149.7 M$). This was mainly due to the high operating pressure in HRJ, which 

increased the bare module cost by about ten times, relative to atmospheric conditions. Together, 
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the cost of the HY and HH reactors in HRJ represented more than three-fourths of the 2017 total 

CAPEX, or 64% of FCI. This large contribution was attributed to the slow reactions that 

unavoidably resulted in large reactor volumes and critical operating conditions. 

The SMR plant for hydrogen production substantially contributed to the overall capital 

investment, at about 11%. Fractionation in both the HRJ and the CTH systems operated 

atmospherically. HRJ’s single fractionation column had a negligible contribution to total CAPEX 

(<1%). But unlike the HRJ, the CTH system consisted of two fractionation columns in series, 

thereby doubling the cost of distillation. The contribution of these two columns to the total 

CAPEX was 12%. The CTH main reactor was comparably priced relative to other units, thanks 

to the low cost of the catalyst employed. In terms of heat exchange, CTH has one integrated heat 

exchanger, one cooling unit, and one fired-heating element, as opposed to HRJ’s four integrated 

heat exchangers, two cooling units, and one fired-heating element.  

The FCI of the two systems, accounting for the offsite and contingency contributions, are 184.3 

M$ and 12.1 M$ for HRJ and CTH system, respectively (Table 5.7). The direct manufacturing 

costs in HRJ and CTH, as summarized in Table 5.8, demonstrated that on a per kg basis, 

isopropanol and hydrogen’s unit costs were relatively similar. However, when mass flow rates 

and hours of operation were factored in, the total annual cost of isopropanol ballooned to 148.11 

M$, in comparison to hydrogen’s 18.77 M$, regardless of hydrogen’s compression requirement. 

In fact, isopropanol’s cost represented 67.8% of CTH’s total COM (without depreciation, Table 

5.10). Table 5.9, on the other hand, shows that the driver in HRJ’s total COM was WCO, not 

hydrogen. Hydrogen compression was another significant driver, in conjunction with the cost 

associated with heating the single reboiler in the HRJ system. 

 

5.2.3. Operations Expenditure 
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The breakdown of total OPEX (raw materials, utilities) for the two systems is shown in Figure 

5.4 (bottom panel). It is worth noting that the OPEX for HRJ amounted to 73 M$/year, while the 

OPEX for CTH amounted to 203 M$/year. This huge difference was determined by the cost of 

isopropanol (148 M$/year), around 68% of CTH’s total operating cost (COM without 

depreciation). In general, the feedstock supply represented the major input to both systems. The 

overall COM, accounting for operating labor, fixed cost of manufacturing, and general expenses, 

amounted to 102 M$/year and 218 M$/year for the HRJ and CTH systems, respectively. 

In terms of revenue, the two systems were very similar, i.e. 150.8 M$/year for HRJ and 153.9 

M$/year for CTH (Table 5.11). By comparing the revenues with the total COM, CTH generated 

a negative gross profit, with most of the income offset by the cost of supplying isopropanol. 

 

Table 5.11. Product incomes and gross profits in HRJ and CTH jet fuel production processes. 
 HRJ          CTH  

Fuel Product Produced Unit Income ($/yr) Produced Unit Income ($/yr) 

Fuel gas  6,969 Nm3/hr 9,433,018 12,978 Nm3/hr 13,497,224 

Naphtha 8,041 L/hr 27,405,246 12,042 L/hr 41,038,506 

Kerosene 32,166 L/hr 113,969,798 24,084 L/hr 85,333,119 

Diesel - L/hr - 4,014 L/hr 13,997,406 

Total revenue (R)    150,808,063  153,866,254 

Cost of manufacturing (COMd)    102,236,661  218,436,050 

Gross profit (GP)      48,571,402  -64,569,796 
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Figure 5.4. Capital expenses of HRJ (above left) and CTH (above right) systems. Operating 

expenses for raw materials and utilities of HRJ (below left) and CTH (B) systems. 

 
 

5.2.4. Break-even Analysis 

Break-even analysis was performed to ascertain the profitability of CTH and HRJ systems using 

total CAPEX (CTH=$7.3M, HRJ=$149.7M), annual total COM (without depreciation) 

(CTH=$218.4M, HRJ=$102.2M), revenues from liquid fuel (CTH=$140.4M, HRJ=$141.4M), 

revenues from gaseous fuel (CTH=$13.5M, HRJ=$9.4M), and depreciation (use MACRS for 7 

years). With these inputs, the net present value (NPV) for both processes under a ten-year debt 
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financing term was evaluated (CTH=-$216.6M, HRJ=$6.4M). Thereafter, the break-even point 

(i.e. time in years at NPV=0) for the 10-year term was calculated for both systems by setting the 

NPV=0 and by generating a new annual cumulative NPV profile (0-25 years) with Year 10 as the 

break-even point. This method was repeated for other break-even points: 5, 15, 20, and 25 years 

for both CTH and HRJ systems. The results are plotted in Figure 5.5. 

 

Figure 5.5. Cumulative NPV profiles for CTH (left) and HRJ (right) systems at various debt 

financing terms showing corresponding break-even points (5, 10, 15, 20, and 25 years). 

 

The 25-year NPV profiles of the CTH (left) and the HRJ (right) systems reveal the general trend 

in cumulative NPV across all financing terms. The initial dip in NPV from 0-2 years indicates 

the M$ initial investment. Seventy percent of the initial investment was spent in the first year and 

the remaining 30% in the second year. At Year 2, the profile vertically dips even further with 

magnitude corresponding to the working capital. From Year 2 onward, the profile increases until 

it hits the break-even point. Thus, DPBP coincided from Year 2 to the break-even point. This 

discounted cash flow analysis revealed that the cumulative cash flow became positive past the 

break-even point. Depreciation was factored in from Year 4 to Year 11, and the tail end of the 

profile shows the NPV of each system at the end of its life. For example, CTH’s end-of-life 

NPVs were as follows: 35.29 M$, 8.01 M$, 3.05 M$, 1.04 M$, and 0 M$ for financing term of 5, 
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10, 15, 20, 25 years, respectively. In both the CTH and the HRJ systems, the salvage value of the 

project decreased as the financing term increased. 

Negative cumulative NPV indicated that any system was deemed unprofitable, while positive 

cumulative NPV indicated otherwise. For a system to be viable using the break-even analysis, 

one must understand that the current cumulative NPV at year n is a function of revenue, total 

COM, and depreciation at that year, including the initial investment. The break-even point is the 

time at which the annual revenue equals the total business costs (total COM, depreciation) 

progressively achieved by paying a fraction of the initial investment year after year. Typically, 

the break-even point in most economic analyses determines the amount or the volume of product 

sales in a year that equals total dollar sales to total dollar COM (i.e. gross profit = $0). In this 

analysis, however, the break-even point was calculated as the year beyond which total dollar 

sales exceeded total dollar COM, coinciding with cumulative NPV > $0. There was no set break-

even point for which a business model ensured profitability; however, if total COM were higher 

than expected total sales, the business plan could be re-examined, and alternative strategies must 

be implemented. This study determined that, if the biojet fuel were sold at $2.99/gal ($0.79/L) 

and $1.32/gal ($0.35/L) for CTH and HRJ, respectively, it would take 25 years to break even.  

Since most corporations prefer break-even points to be less than ten years, it would, therefore, be 

profitable to sell biojet fuel at $3.00/gal ($0.79/L) and $1.67/gal ($0.44/L) for CTH and HRJ, 

respectively. At these rates, and for a project life of 25 years, the NPV for CTH and HRJ were 

estimated to be 8 M$ and 121 M$, respectively. It was observed that the biojet fuel selling price 

for the CTH system was higher than that of HRJ, due the higher operation cost associated with 

CTH. However, as the break-even point approached five years, the biojet fuel selling price for 

HRJ ($2.70/gal) and that for CTH ($3.10/gal) converged (12.94% difference) such that, in the 
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long run, CTH fuel would be affordable as a result of its low total CAPEX. It appears that CTH 

would recover its initial investment faster than HRJ through faster payment of its CAPEX. As 

capital recovery within five years appears ambitious, maintaining DPBP (8 years after the 

construction) and an interest rate of 8% for both processes would be ideal. 

An IRR analysis was performed for both the CTH and the HRJ systems, covering interest rates 

from 1-50% for the entire 25-year life. The inputs to this analysis were base case inputs; that is, 

CTH-NPV was negative and HRJ-NPV was positive at the end of 25 years under a 10-year 

financing term. The results are presented in Figure 5.6. The IRR is an index of the investment 

risk, a method used in capital budgeting to estimate the profitability of investments. It refers to 

the discount rate that makes NPV of all cash flows equal to 0. IRR calculations followed the 

same method as NPV. As the interest rate increased, HRJ-NPV decreased, while CTH-NPV 

increased. Since HRJ-based biojet fuel production is a mature technology with low risk, its IRR 

of 15.91% represents an attractive value for the investment. As of the current market without any 

subsidies, incentives, or any of the investigated case scenarios from Table D34, CTH’s IRR 

profile seems to suggest that the system is untenable. 

 

 
Figure 5.6. IRR profiles for CTH and HRJ systems under 10-year debt financing term. 
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At the present state, the CTH process, based on the experimental conditions investigated, has the 

potential to be economically profitable, despite the large input cost associated with isopropanol. 

Given that the isopropanol cost represents 68% of CTH’s total COM, total COM must be 

reduced by around 30% to even start realizing net profit. This can be done using a combination 

of two strategies: (1) reduce both isopropanol cost and total direct/fixed/general cost by 60%, 

and (2) reduce isopropanol cost by 55%. It is highly unlikely that a 60% reduction in staff 

salaries, plant overhead, and distribution/selling costs can be achieved, because these variables 

are set by prevailing market conditions and, for an emerging technology such as CTH-based 

biojet fuel, these costs will be slightly elevated, leaving the latter option to be realistically 

feasible. It was calculated that, to obtain the same Present Value Ratio of HRJ (a more 

meaningful index than the NPV when two processes with very different capital investments are 

compared), the price of the isopropanol should not exceed 0.735 $ kg-1 (i.e., a 43.5% reduction 

from current cost) (Table D34). Alternatively, at the current market price, the maximum 

isopropanol inlet was calculated to be 196.54 ton/day (isopropanol/WCO feed ratio of 0.204 by 

weight) in order to be profitable. However, performances and product yields should be verified, 

in this scenario. 

5.2.5. Environmental Metrics 

The results of the inventory analysis described in Section 5.2.5.5 were used in a life cycle 

impacts assessment, a step in LCA that quantifies the environmental impacts, selects priorities 

from these environmental impacts, and transforms these priorities into meaningful environmental 

endpoints (a damage category or a forecast). In this study, two major environmental endpoints 

were identified: CED and life cycle greenhouse gas.  GHG emissions using the Eco-Indicator 99 

method [273] and the equivalency factors (damage factors) detailed in Table 5.3. CED represent 
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the cumulative non-renewable fossil energy requirement of the entire process in MJ per 1,000 

tons WCO. Life cycle GHG emissions were reported as having 100-year global warming 

potential (GWP) in kg CO2 equivalents per 1,000 tons WCO. 

Figure 5.7 and Table 5.12 depict the characterization results in the production of biojet fuel from 

WCO via the CTH and HRJ processes. The left pane demonstrates the environmental endpoints 

(CED and GWP, positive bar) and the environmental credits (negative bars). The right pane 

shows the energy distribution of fuel products produced from CTH and HRJ processes, including 

the energy-return-on-investment (EROI), defined as the ratio of the total energy output from the 

system to the total energy input into the system. 

 

 

Figure 5.7. Results of characterization in the production of CTH- and HRJ-based biojet fuel 

from 1,000 tons WCO. Left pane corresponds to environmental endpoints (CED and GWP) and 

right pane corresponds to distribution of output energy. Energy-return-on-investment (EROI) is 

included in the right pane. 
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Table 5.12. Characterization results of Figure 5.7. Cumulative fossil energy demand (CED) and 

output fuel energy (OUT) are expressed as × 106 MJ/1,000 tons WCO and global warming 

potential (GWP) is expressed as 106 kg CO2-equivalents/1,000 tons WCO. 

Input (CED/GWP) Operations Direct Heat Upstream 

CED-CTH 1,625,836 -447,771 583,780 1,489,773 

CED-HRJ 2,539,483 -804,010 793,395 2,550,098 

GWP-CTH 327,414 192,557 0 134,240 

GWP-HRJ 356,414 137,451 0 218,686 

Output (Fuel 

Energy) 
Naphtha Diesel Jet Fuel Total 

OUT-CTH 9,485,084 4,720,114 15,716,052 29,921,250 

OUT-HRJ 10,908,355 0 18,660,657 29,569,011 

 
 

To facilitate analysis, it was important to note that CTH operation includes the pressurization 

energy required to pump WCO and isopropanol to the CTH reactor at 2-bar pressure, the cooling 

energy (negative energy) needed to cool reaction products in low-pressure flash unit, the 

distillation units (by heat integration), and the heat input. On the other hand, HRJ operations 

involved hydrogen pressurization energy in HY and HH units, assuming isentropic compression 

(85% efficient) and WCO pumping (95% efficient). It also included cooling energy in the flash 

separator, a high-pressure flash unit, a distillation column (exothermic conditions), and heat 

input. From a gross operations perspective, HRJ exhibits 1.6 times the CED of CTH. This was 

not surprising, given that it has greater upstream fossil energy brought about by the production, 

pressurization, and delivery of hydrogen. Gaseous hydrogen was primarily produced from stream 

reforming of natural gas. Isopropanol was the main upstream driver in CED of CTH, albeit of an 

insufficient amount to cause a higher CED of HRJ.  

Direct CED of CTH and HRJ systems were negative; that is, surplus electricity was generated by 

the system. The energy generated from cooling the reactor was re-captured and utilized as in-

process energy. HRJ operated at higher temperature than CTH, enabling larger energy release. It 

also had more reactor units. Consequently, HRJ’s net heat consumption was 26% higher than 
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CTH’s. HRJ’s direct heat use comes from heating the oil from 380 to 400 °C plus the heat duty 

of the distillation column. Although the CTH consisted of two distillation units in series needing 

heating of WCO from 300 to 380 °C, the combined heat demand was still lower than HRJ’s.  

Total CED was equal to operations CED plus infrastructure CED. The results suggest that the 

total CED for both systems is equal to their operations CED, due to the minuscule contributions 

of steel. Reactor steel demand for both systems is between 33-177 kg/yr, annualized over a 30-

year period. 

The results of operations GWP were consistent with the results of operations CED in both 

systems, i.e. operations GWP-CTH < operations GWP-HRJ; however, the difference was low, at 

around 8%. This result considers that the net GHG emissions has two components – direct GHG 

emissions and upstream GHG emissions. Both CTH and HRJ systems did not sequester CO2 

through co-product offsets because there was no biogenic carbon embodied in the final fuel, 

unlike jet fuel from algae or switchgrass. While it is true that some WCO are plant-based (olive 

oil, palm oil, soybean oil, or canola oil), others are animal-derived (butter, lard) or synthetic. In 

fact, even if this study assumed that all WCO were plant-derived, it is still outside its scope to 

identify which location produced waste olive oil or canola oil. Thus, this analysis does not 

consider carbon sequestration. Direct GHG emissions from CTH were higher than direct GHG 

emissions from HRJ, mainly due to higher CO2 emissions from CTH reaction. Evidently, there 

are three moles of carbon in 2-propanol, while gaseous hydrogen has zero carbon. Hence, there is 

high propensity of some of the carbon from 2-propanol converting to CO2 during the triglyceride 

reduction process. However, upstream GHG emissions from CTH were 26% lower than HRJ’s, 

because of the considerable emissions associated with hydrogen production. Total GWP is equal 

to operations GWP, due to the insignificant GHG emissions associated with steel in the reactors. 
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Further, both CTH and HRJ systems had no heat offset, i.e. total heat use equals net heat use. 

The hydrodeoxygenation reaction in HRJ consumed more heat than the CTH reaction.  

The conversion of 1,000 tons/day WCO generated approximately 60 x 106 MJ usable fuel energy 

in the form of jet fuel, naphtha, and diesel, from both the CTH and the HRJ systems. As is 

evident in the right pane of Figure 5.7, the relative magnitudes of these energies were similar, 

except that the HRJ reaction did not produce a diesel product. HRJ had a slightly lower total 

energy than CTH despite its higher jet fuel and naphtha production, because HRJ did not produce 

diesel. The EROI of both systems were calculated using total energy output and total energy 

input. EROI is the system’s energy efficiency measured in terms of energy productivity 

normalized by energy expenditure. It is used as a decision tool in adapting any process from an 

energetic standpoint with EROI > 1 to be desirable (i.e. energy break-even =1, total energy 

output = total energy input). However, different EROIs can be calculated from the same dataset, 

as a result of dissimilar energy accounting methods [274]. In this study, EROI was evaluated as 

the ratio of the summation of all energy embodied in the main product and co-products plus 

surplus electricity (if any), and, the summation of net energy (if any), net heat, upstream energy, 

and infrastructure energy consumption. Although both energy platforms were energetically 

favorable, CTH’s EROI was 1.8 times higher than HRJ’s, attributable to its lower heat and 

upstream impacts.  

Figure 5.8 shows that CTH had lower electricity and heat consumption than HRJ; in fact, CTH’s 

negligible electricity use was credited to pressurization, while the rest of the sub-processes 

yielded in-process heat. Both systems had comparable direct heat use. Because CO2 separation, 

high-pressure separation, and fractionation units in HJR operate at high temperatures, a large 
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amount of heat was expended to the lower product temperature. HRJ’s single fractionation unit 

consumed more than twice the electricity of CTH’s. 

 

Figure 5.8. Electricity and heat use breakdown among sub-processes in the production of CTH- 

and HRJ-based biojet fuel from 1,000 tons WCO. 

 

 
 

Figure 5.9. GWP breakdown among sub-processes in the production of CTH- and HRJ-based 

biojet fuel from 1,000 tons WCO. 
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The relative global warming potential (GWP) contributions reported as kg CO2 

equivalents/1,000 tons WCO of the different sub-processes for CTH and HRJ systems are 

presented in Figure 5.9. The results indicate that both systems create similar warming within 100 

years (CTH=376,403. HRJ=375,420). CTH’s GWP is dominated by emissions from low-

pressure flash, while HRJ’s is driven by WCO transport emissions. This is surprising, given that 

the CED of HRJ is 1.56 times that of the CED of CTH. A closer look at the GWP breakdown 

reveals that the main reaction in CTH produces half the GHG emissions of HRJ’s main reaction. 

Nonetheless, the sum of GHG emissions associated with the sub-processes in CTH, except for 

WCO/fuel transport and diesel emissions, was higher than HRJ’s by 33%. Beyond CTH’s main 

reactor, the low-pressure flash generated the most emissions among all of the sub-processes, at 

169,390 kg CO2-eq/1,000 tons WCO. Such a phenomenon is associated with: (1) the atmospheric 

3-phase (VLLE) flash unit following CTH that separates gaseous products from the liquid 

organic fraction and water, and (2) the large temperature differential in cooling the reaction 

products. The system has neither the provision for recouping this large emission for re-use, nor a 

method of sequestration. In contrast, emissions associated with low-pressure flash in HRJ were 

one-fifth that for CTH’s, as exhibited by the stable reactor temperature of HRJ at 24 oC.  

5.2.6. Effect of Allocation Method 

The allocation methods were analyzed in the context of understanding the relative effect on CED 

and GWP (Figure 5.10). For CTH, the CED for main products via mass- and energy-allocations 

was in the order of millions, while the CED for main products via market-allocation was in the 

order of thousands. Conversely, the CED for co-products via mass- and energy-allocations were 

two orders of magnitude greater than the CED for co-products via market-allocation. This was 

due to mass rates (tons/day) corresponding to energy rates (MJ/day) and the LHVs (MJ/kg) 
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among fuel products, and the fact that the co-products were close to each other (min = 42.791, 

max = 47.206).  Yet, market-allocation was based on price ($/gal) and density (kg/m3). Hence, 

the resulting allocation was remarkably different from the mass- and energy-allocations. In the 

case of CTH, 28.20 M$ was attributed to co-products, of which 28.17 M$ was generated by the 

sales of gaseous products (C1-C3 gas). Consequently, 98.33% was allocated to co-products, 

while only 1.67% was allocated to main products. A similar trend was observed in HRJ main 

products: 2.08 MMJ/1,000 tons WCO and 2.06 MMJ/1,000 tons WCO for mass- and energy-

allocations, respectively, while 0.06 MMJ/1,000 tons WCO for market-allocation. In the case of 

co-products, mass- and energy-allocations were in the order of a hundred thousand, while 

market-allocation was in the order of millions. A similar trend was observed in GWP. From an 

environmental life cycle perspective, price and density have more pronounced effects on impact 

assessment than LHV. Because this analysis pertains to comparing an emerging energy platform 

to a more established conventional processing, reporting CED and GWP impacts based on the 

three allocation methods was vital. 

Figure 5.10. Analysis of CED and GWP in the production of CTH- and HRJ-based biojet fuel 

from 1,000 tons WCO using mass rate (MRA), energy rate (ERA), and market value (MVA) 

allocations. 
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5.2.7. Sensitivity 

The construction of the CTH and HRJ models required the incorporation of materials and 

process inputs with distributions (“assumptions”) obtained from this study’s experimental results 

and from various literature sources (Table D35). The models also applied the equivalency factors 

in Table 5.3 during life cycle impacts assessment. These factors contain distributions. When 

analyzing a model, it is useful to know which input variables have the greatest impact on the 

model’s result (endpoint or forecast). The goal is to determine the driver of a forecast, while 

ignoring inconsequential inputs.  

The tornado plots presented in Figure 5.11 are the result of independently testing each input 

variable one at a time against the target forecast, CED and GWP for CTH. The Monte Carlo 

simulation of the models utilized assumptions and generated several charts that depicted the 

relationships between the assumptions and the target. It is evident that CED and GWP of CTH 

were dependent on transportation – hauling of WCO/fuels and not on process parameters. For 

example, a 9% increase in truck mileage efficiency from the 5.50 mi/gal base case to the 6.05 

mi/gal resulted in a 2.4% decrease in CED, from the median value of 0.0835 MJ/MJ WCO. The 

results revealed that, as the truck mileage efficiency increased, CED and GWP decreased; 

whereas, as distance hauled increased, both CED and GWP increased.  

Of special case is the GHG emissions associated with the electricity equivalency factor (U.S. 

grid). The base case is 1.0220 kg/kWh and SD = 1. A 125% decrease in electricity equivalency 

factor resulted in a 68% increase in GWP (0.015 to 0.047 kg CO2 eq/MJ WCO). Similarly, a 

51% decrease in electricity equivalency factor caused a negligible increase in GWP (0.015 to 

0.016 kg CO2 eq/MJ WCO).  
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Figure 5.11. Tornado plots depicting drivers in CED and GWP of CTH. Dotted bars indicate +5-

10% change in assumption from base case and lined bars indicate -5-10% change in assumption 

from base case. Bar labels show the test range for each input variable. Tornado method used is 

percentiles of the variables and test range is between 10% to 90%. Explained variation in 

forecast is cumulative. 

 

 

Results of the sensitivity analysis highlighted two key findings: (1) fossil energy consumption 

and GWP are highly sensitive to externalities associated with transportation of WCO and fuels, 

and (2) the relative contributions of surface coal mining, transportation, and electricity 

generation to GWP are insignificant because the combined effects of these processes tend to 

amplify GHG emissions. The first finding has an advantage and a disadvantage. The advantage 

relates to the minimal influence of CTH’s reaction chemistry on the environment, which allows 

any research and development to further enhance energy and emissions performance. The CTH-

based biofuel plant did not require reconfigurations of the main reactor to cut costs, increase 

profits, and improve sustainability, other than those that were detailed in this analysis. Because 

the CED and GWP drivers are transportation-related and not process-related, the disadvantage 

would be the effect of diesel fuel used in heavy trucks on the circular bioeconomy, to the extent 

that diesel’s volatile market creates a gap between any gain or loss incurred by the plant. Such a 
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disadvantage would have a more pronounced impact on the TEA aspect than the environmental 

outcome.   

Given the knowledge that the environmental impacts of CTH are driven by externalities, it is 

essential to examine the CTH model regarding variations in truck mileage efficiency and in 

distance hauled. There are two types of variations: uncertainty and variability. Uncertainty is the 

lack of pertinent information about the driver, while variability is the characteristic spread of the 

driver in a set of observations or population. Truck mileage efficiency has variability [259, 260], 

while distance hauled has uncertainty. The current state of the trucking industry in the U.S. has 

been essentially stable and, therefore, emphasis must be placed on distance traveled, which is a 

function of the study’s scope. This analysis determined that the most optimal hauling distance is 

300 mi/truck-d (6 h per truck per day at 50 miles/hr), obtained from the four-region, nine-

division scheme (Section 5.2.5.1). 

To capture CTH’s energy outlook as a function of distance hauled and truck mileage efficiency 

across all regions using the process conditions and reaction chemistry described herein, a trend 

analysis on CTH’s EROI was made on a single CTH-based biojet fuel plant. This plant was 

assumed to transition from HRJ to CTH in one year. The results are presented in Figure 5.12. 

HRJ’s median EROI of 10.5 lay within the 25% certainty band (range: 10.4-10.6). In other 

words, HRJ will have a 25% probability of enhancing EROI to 10.6, from the median value of 

10.5. It also has a 90% chance of improving EROI to 11.30, from the median value of 10.5. 

Clearly, the latitude on improvement (or deterioration) of energy efficiency through optimization 

in the HRJ system is limited (EROI=10.30-11.30). In contrast, the range by which CTH’s EROI 

could be improved is quite wide, from 18.6 to a maximum of 25. This finding is significant, 

considering that, on a per volume WCO basis, CTH yields statistically equivalent biofuel energy 
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as HRJ, expends half the fossil energy as HRJ, and creates 92% GWP of HRJ’s. Despite 

isopropanol’s high cost in the TEA (Section 5.3.3), it only accounts for 57% of CTH’s total CED 

and, surprisingly, around 9% of CTH’s total GWP. 

The contributions between the CTH’s main reaction system versus the HRJ’s on EROI 

projections are evident in their individual CED. While isopropanol’s CED represents 99% of 

CTH’s main reaction system (activated carbon’s CED is merely 1% of CTH’s main reaction 

system and is assumed to be regenerated and replaced every 90 days), CTH reaction constitutes 

half the CED of HY and HH reactions combined. More importantly, isopropanol’s CED in 

producing CTH biojet fuel is less than hydrogen’s CED in producing HRJ biojet fuel by a factor 

of 0.5. Clearly, the environmental opportunities in using an alcohol-based solvent remarkably 

outweigh any cost barrier.   

 
Figure 5.12. Trend chart showcasing the shift in EROI from HRJ to EROI at median EROI 

values (HRJ-EROI=10.5, CTH-EROI=18.6. 
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5.3. Conclusions 

This study analyzed the techno-economic and environmental life-cycle implications of biojet fuel 

production from WCO via the CTH process. The results, then, were compared to the 

conventional HRJ process. The TEA demonstrates that the CTH process, based on experimental 

conditions, has the potential to be economically profitable despite the large input cost associated 

with isopropanol.  

The LCA results reveal that the environmental opportunities in using an alcohol-based solvent 

remarkably outweigh any cost barriers. The latitude on the improvement (or the deterioration) of 

energy efficiency through optimization of CTH’s process parameters are wide. Despite 

isopropanol’s restrictive cost, CTH outperforms HRJ, regardless of the allocation method 

employed. The fossil energy consumption and the GWP are highly sensitive to externalities 

associated with transportation of WCO and fuels, and the relative contributions of surface coal 

mining, transportation, and electricity generation to GWP are insignificant because the combined 

effects of these processes tend to amplify GHG emissions. 
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CHAPTER 6 

RECOMMENDATION FOR FUTURE WORK 

The purpose of this study was to explore the potential hydrogen-donating capacity of 2-propanol 

to reduce waste oil. However, the quantity of 2-propanol employed in all of the reactions was 

comparatively significant. Moreover, the catalyst employed in all the reaction was not 

exhaustively explored, as far as preparations and characterization were concerned. 

In Chapter Two, 2-propanol was used the react with waste cooking oil by considering four 

reaction parameters: temperature, oil flow rate, WHSV, and pressure.  Finally, the kinetics of the 

reaction were ascertained, in order to estimate reaction order, activation energy, and kinetic rate 

constant. As all but the temperature was kept constant, it is worthwhile to run optimization to 

assess the effect of the rest of the three parameters on the results. To minimize the volume of the 

2-propanol used, it would be advisable to use aqueous 2-propanol, which might reduce the 

potential cost of production. Not much work has been done on the kinetics of catalyst 

deactivation. With a detailed assessment of catalyst deactivation study, stakeholders would be 

risk-free as they embark upon commercial scale CTH reactions. 

Chapter Three employed a commercial catalyst doped with transition metals, which catalyzed the 

reaction between waste cooking oil and 2-propanol. Optimization of the reaction was studied by 

varying temperature, WHSV, pressure, and oil-2-propanol ratio. The percent of transition metal 

employed remained constant. It would be important to optimize the percent of transition metal 

used to dope the zeolite.  As the modified catalyst could be amenable to deactivation, a thorough 

study could be undertaken to assess the catalyst deactivation kinetics. Also, it would be 
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worthwhile to use aqueous 2-propanol at different concentrations to reduce the amount of 2-

propanol per liter of oil used. 

Chapter Four, on the other hand, explored the possibility of using oil-laden biofuel intermediate 

from flash hydrolyzed algae. The purpose was to utilize 2-propanol as oil extract and hydrogen 

donor in CTH reaction of the oil. It was observed that a considerable amount of 2-propanol was 

used in the CTH, leading to the production of branched and cyclo-alkanes. However, a 

significant level of gaseous products was produced, rendering the process unsustainable. It was 

proposed that process optimization could be employed to find the best oil-to-2-propanol ratio 

that would produce significant branched and cyclo-alkanes and low gaseous products. In 

addition, it is well-advised to optimize the amount catalyst, the percent metal precursors for 

doping. 

Finally, Chapter Five thoroughly treated the technoeconomic and the environmental performance 

of the CTH reaction of waste cooking oil and 2-propanol. Results were compared to HRJ and it 

was concluded that HRJ, economically, performed better than CTH, due to significant amount of 

2-propanol utilization. To reduce the operational cost, future work should focus on researching 

different hydrogen donors that are recyclable. Or, with the proposed exploration of aqueous 2-

propanol, if viable, a thorough assessment of technoeconomic and environmental performance of 

CTH should be performed. 
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APPPENDIX A 

 

Waste Cooking Oil to Jet-Diesel Fuel Range Using 2-Propanol via Catalytic Transfer 

Hydrogenation Reactions: Supplementary documents 

 

List of Figures  

 

 

Figure A1. Heating WCO in the tubular reactor without 2-propanol and catalyst as a control 

experiment for CTH.  
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Figure A2. Heating WCO in the tubular reactor without 2-propanol and catalyst as a control 

experiment for CTH. Resulting oxygenates in the product at different reaction temperatures.  

  

 

 

Figure A3. Heating WCO over catalyst in the tubular reactor without 2-propanol as a control 

experiment for CTH.  
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Figure A4. Deoxygenation of WCO with 2-propanol and without a catalyst as a control 

experiment for CTH. Resulting oxygenates in the product at different reaction temperatures.  

  

 

 

Figure A5. Deoxygenation of WCO with 2-propanol and without a catalyst as a control for 

CTH. Resulting oxygenates in the product at different reaction temperatures.  
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Figure A6. Alkanes composition in the liquid fuel from CTH at different reaction temperatures.   

  

  

 

 

Figure A7. Alkenes composition in the liquid fuel from CTH of WCO at different reaction 

temperatures.   

  

 

0

5

10

15

20

25

30

300 340 360 380 400

%
A

re
a

Temperature(oC)

C6-C14(Jet Fuel) Cycloalkanes C15-C17(Diesel fuel) Iso-alkanes

0

5

10

15

20

25

30

300 340 360 380 400

%
A

re
a

Temperature(oC)

C6-C14) C15-C17 Cyclo-alkenes



193 
 

 

Table of Values 

Table A1. Gas Composition Obtained from CTH Using 2-propanol as H-donor at 380 oC 

Gas H2 CO CO2 CH4 C2H6 C3H8 

Volume (%) 21 26 22 10 10 11 
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Table A2.  Main Chemical compositions of LHC using 2-propanol as H-donor @ 400 oC 

Composition %Area Composition %Area 

Short Chain n-alkane(C6-C14) 23.4 Short Chain n-alkene(C6-C14) 17.1 

Heptane(C7H14) 3.5 2-Hexene, (E)-(C6H12) 0.6 

Octane(C8H18) 4.4 2-Hexene, (Z)-(C6H12) 0.4 

Nonane(C9H20) 3.0 1,3,5-Hexatriene, (Z)-(C6H8) 0.2 

Decane(C10H22) 2.4 1-Heptene(C7H14) 2.2 

Indane(C9H10) 1.8 2-Heptene(C7H14) 1.4 

Undecane(C11H24) 2.1 1-Octene (C8H16) 2.0 

Tridecane(C13H28) 2.0 2-Octene(C8H16) 1.0 

Tetradecane(C14H30) 1.5 2-Octene, (Z)-(C8H16) 0.5 

Pentane, 2,4-dimethyl(C7H16) 2.6 2,4-Octadiene(C8H14) 0.5 

Cyclo-alkanes 1.9 1-Nonene(C9H18) 1.5 

Cyclopentane, methyl-(C6H12) 0.2 2-Nonene, (E)-(C9H18) 0.5 

Cyclohexane, methyl-(C7H14) 0.3 1-Decene(C10H20) 1.3 

Cyclopentane, ethyl-(C7H14) 0.3 trans-3-Decene(C10H20) 0.5 

Cyclopropane, 1-ethyl-2-heptyl-(C12H24) 1.0 1-Undecene(C11H22) 0.5 

Long Chain alkanes(C15-C17) 8.9 1-Dodecene(C12H24) 2.2 

Hexadecane (C16H34) 4.8 1-Tetradecene(C14H28) 1.9 

Heptadecane(C17H36) 3.0 Cyclo-alkenes 3.2 

Aromatics-32.9% 32.9 1,3-Cyclopentadiene, 1-methyl-(C6H8) 0.2 

Benzene(C6H6) 1.8 Cyclopentene, 3-methyl-(C6H10) 0.8 

Toluene(C7H8) 4.6 Cyclohexene(C6H10) 0.5 

Ethylbenzene(C8H10) 3.7 Cyclobutane, (1-methylethylidene)-(C7H12) 0.3 

o-Xylene(C8H10) 1.8 1-Ethylcyclopentene(C7H12) 0.6 

p-Xylene(C8H10) 3.7 Cyclohexene, 1-methyl-(C7H12) 0.4 

Benzene, propyl-(C9H12) 1.4 Cyclooctene(C8H14) 0.3 

Benzene, 1-ethyl-2-methyl-(C9H12) 3.6 1-Propylcyclopentene(C8H14) 0.2 

Benzene, 1-ethyl-4-methyl-(C9H12) 0.5 Oxygenates-7.7% 7.7 

Benzene, n-butyl-(C10H14) 1.6 2-Pentanone(C5H10O) 0.6 

Benzene, 1-methyl-2-propyl-(C10H14) 1.4 2-Hexanone(C6H12O) 0.6 

Benzene, pentyl-(C11H16) 2.9 2-Heptanone(C7H14O) 0.9 

Naphthalene, 2-methyl-(C11H10) 1.8 Phenol(C6H6O) 0.5 

Naphthalene, 1-methyl-(C11H10) 1.6 2-Octanone(C8H16O) 1.6 

Naphthalene, 1-ethyl-(C12H12) 1.1 Phenol, 2-ethyl-(C8H10O) 0.4 

Fluorene(C13H10) 1.0 2-Nonadecanone(C19H38O) 2.0 

9H-Fluorene, 1-methyl-(C14H12) 0.3 2-Nonadecanone(C19H38O) 1.2 

Pyrene(C16H10) 0.4   

Long Chain alkenes(C15-C17) 4.9   
1-Pentadecene(C15H30) 2.6   
8-Heptadecene(C17H34) 1.3   
3-Heptadecene, (Z)-(C17H34) 0.8   
9-Tricosene, (Z)-(C23H46) 0.2   
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Table A3. Main Chemical compositions of LHC using 2-propanol as H-donor @ 380 oC 

Composition %Area Composition %Area 

Short Chain n-alkane(C6-C14) 24.4 Short chain alkenes(C6-C14)-28.5% 25.6 

n-Hexane(C6H12) 2.1 1-Heptene (C7H14) 2.9 

Heptane (C7H16) 3.2 2-Heptene, (E)-(C7H14) 1.2 

Octane(C8H18) 3.6 2-Heptene(C7H14) 0.4 

Nonane( C9H20) 2.8 1-Octene (C8H16) 2.6 

Undecane(C11H24) 1.6 2-Octene, (E)-(C8H16) 1.7 

Indane(C9H10) 0.8 Cyclooctene(C8H14) 0.4 

Undecane(C11H24) 2.2 2,4-Octadiene(C8H14) 0.5 

Dodecane(C12H26) 3.9 1-Nonene(C9H18) 2.1 

Tridecane(C13H28) 2.4 1-Decene(C10H20) 1.5 

Tetradecane(C14H30) 1.8 2-Decene, (Z)-(C10H20) 0.4 

Aromatics 20.0 1-Undecene(C11H22) 4.8 

Benzene(C6H6) 0.8 2-Undecene, (E)- (C11H22) 1.4 

Toluene(C7H8) 3.2 1-Dodecene(C12H24) 3.2 

Ethylbenzene(C8H10) 1.7 1-Tetradecene(C14H28) 2.7 

p-Xylene(C8H10) 2.9 Cyclo-alkenes 2.6 

Benzene, propyl-(C9H12) 1.0 Cyclopentene, 3-methyl-(C6H10) 0.7 

Benzene, 1-ethyl-3-methyl-(C9H12) 1.1 Cyclohexene(C6H10) 0.7 

Benzene, 1-ethyl-4-methyl-(C9H12) 0.3 Cyclohexane, methyl-(C7H14) 0.3 

Benzene, 1-ethyl-2-methyl-(C9H12) 1.3 1-Ethylcyclopentene(C7H12) 0.4 

Benzene, n-butyl-(C10H14) 1.3 Cyclohexene, 1-methyl-(C7H12) 0.5 

Benzene, 1-methyl-2-propyl-(C10H14) 0.9 Oxygenates 9.7 

Benzene, pentyl-(C11H16) 2.8 2-Pentanone(C5H10O) 0.6 

Naphthalene, 2-methyl-(C11H10) 1.5 2-Hexanone(C6H12O) 0.6 

Benzene, hexyl-(C12H18) 1.1 2-Heptanone(C7H14O) 1.0 

Long Chain alkanes(C15-C17) 10.0 Phenol(C6H6O) 0.4 

Pentadecane(C15H32) 5.6 2-Octanone(C8H16O) 1.4 

Hexadecane (C16H34) 1.1 2-Heptadecanone(C17H34O) 3.0 

Heptadecane(C17H36) 3.3 2-Nonadecanone(C19H38O) 1.6 

Long-chain alkenes(C15-C23) 7.8 Fatty acid 1.1 

1-Pentadecene(C15H30) 3.5   

8-Heptadecene (C17H34) 2.1   

1-Heptadecene(C17H34) 1.1   

9-Tricosene, (Z)-(C23H46) 1.1   
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Table A4. Main Chemical compositions of LHC using 2-propanol as H-donor @ 360 oC 

Composition %Area Composition %Area 

Short Chain n-alkane(C6-C14) 15.5 Short-chain alkenes 15.2 

n-Hexane(C6H14) 1.4 1-Hexene(C6H12) 0.8 

Heptane (C7H16) 2.3 1-Heptene (C7H14) 2.0 

Nonane( C9H20) 2.6 2-Heptene, (E)-(C7H14) 0.6 

Undecane(C11H24) 1.8 1-Octene (C8H16) 1.8 

Dodecane(C12H26) 2.5 2-Octene, (E)-(C8H16) 1.7 

Tridecane(C13H28) 2.3 1-Nonene(C9H18) 1.3 

Tridecane(C13H28) 2.6 2-Nonene, (E)-(C9H18) 0.7 

i-alkanes-4.7% 
 

1-Decene(C10H20) 0.9 

Hexane, 2,4-dimethyl-(C8H18) 3.1 2-Undecene, (E)- (C11H22) 1.3 

Octane, 2,4,6-trimethyl-(C11H24) 1.6 1-Dodecene(C12H24) 1.9 

cyclo-alkanes-3%  1-Tetradecene(C14H28) 2.1 

Cyclopropane, nonyl-(C12H24) 2.5 Long-chain alkenes -18.6%  

Cyclopropane, octyl-(C11H22) 0.5 1-Pentadecene(C15H30) 2.0 

Aromatics-2.7%  1-Pentadecene(C15H30) 1.8 

Toluene(C7H8) 0.9 8-Heptadecene (C17H34) 3.7 

Benzene, pentyl-(C11H16) 1.3 3-Heptadecene, (Z)-(C17H34) 5.3 

Benzene, propyl-(C9H12) 0.5 1-Heptadecene (C17H34) 2.2 

Long-chain alkanes(C15-C24)-25%  9-Tricosene, (Z)-(C23H46) 2.8 

Pentadecane(C15H32) 10.1 9-Tricosene, (Z)-(C23H46) 0.7 

Hexadecane (C16H34) 2.3 Oxygenates-15.4%  

Heptadecane(C17H36) 10.8 2-Heptanone(C7H14O) 0.5 

Tetracosane(C24H50) 1.1 2-Octanone(C8H16O) 0.6 

Benzene, n-butyl-(C10H14) 0.7 2-Heptadecanone(C17H34O) 4.7 

  2-Nonadecanone(C19H38O) 3.3 

  9-Octadecen-1-ol, (Z)-(C18H36O) 6.4 
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Table A5. Main Chemical compositions of LHC using 2-propanol as H-donor @ 340 oC 

Short-Chain n-alkanes 13.1 Short-chain alkenes 19.0 

n-Hexane(C6H14) 1.4 1-Heptene (C7H14) 1.8 

Heptane (C7H16) 2.3 2-Heptene, (E)-(C7H14) 0.4 

Nonane( C9H20) 2.4 1-Octene (C8H16) 1.8 

Dodecane(C12H26) 2.2 2-Octene, (E)-(C8H16) 1.7 

Tridecane(C13H28) 4.8 1-Nonene(C9H18) 1.2 

Aromatics 3.6 2-Nonene, (E)-(C9H18) 0.7 

Toluene(C7H8) 0.8 1-Decene(C10H20) 1.0 

o-Xylene(C8H10) 1.1 2-Undecene, (E)- (C11H22) 2.4 

Benzene, n-butyl-(C10H14) 0.7 1-Dodecene(C12H24) 1.9 

Benzene, pentyl-(C11H16) 1.2 1-Tetradecene(C14H28) 1.8 

i-alkanes 6.3 1-Tetradecene(C14H28) 2.3 

Hexane, 2,4-dimethyl-(C8H18) 2.9 7-Tetradecene(C14H28) 2.1 

Octane, 2,4,6-trimethyl-(C11H24) 1.5 Long-chain alkenes 18.1 

Octane, 2,4,6-trimethyl-(C11H24) 1.9 1-Pentadecene(C15H30) 5.2 

cycloalkanes 3.5 8-Heptadecene (C17H34) 4.7 

Cyclobutane, butyl-(C8H18) 1.1 9-Eicosene, (E)-(C20H40) 6.0 

Cyclopropane, nonyl-(C12H24) 2.4 1-Octadecene(C18H36) 2.2 

Long-chain alkanes(C15-C24) 21.5 Oxygenates 14.9 

Pentadecane(C15H32) 9.7 2-Octanone(C8H16O) 0.5 

Hexadecane (C16H34) 2.2 2-Heptadecanone(C17H34O) 5.4 

Heptadecane(C17H36) 8.4 2-Nonadecanone(C19H38O) 4.0 

Tetracosane(C24H50) 1.2 9-Octadecen-1-ol, (Z)-(C18H36O) 0.7 

  n-Tetracosanol-1(C24H50O) 0.7 

  9-Octadecen-1-ol, (Z)-(C18H36O) 1.2 

  9-Octadecen-1-ol, (Z)-(C18H36O) 2.3 

 

 

 

 

 

 

 

 

 



198 
 

 

Table A6. Main Chemical compositions of LHC using 2-propanol as H-donor @ 300 oC 

Short-Chain n-alkanes (C7-C13) 11 short-chain alkenes(C6-C14) 14.8 

Heptane (C7H16) 2.1 1-Hexene(C6H12) 1.0 

n-Hexane(C6H14) 2.0 1-Heptene (C7H14) 2.0 

Nonane( C9H20) 2.3 2-Heptene, (E)-(C7H14) 0.4 

Undecane(C11H24) 1.2 1-Octene (C8H16) 1.9 

Dodecane(C12H26) 1.6 2-Octene, (E)-(C8H16) 2.0 

Tridecane(C13H28) 1.8 1-Nonene(C9H18) 1.1 

i-alkanes  3.9 2-Nonene, (E)-(C9H18) 0.7 

Hexane, 2,4-dimethyl-(C8H18) 2.9 1-Dodecene(C12H24) 2.3 

Octane, 2,4,6-trimethyl-(C11H24) 1.1 2-Undecene, (E)- (C11H22) 1.5 

Aromatics 1.6 1-Tetradecene(C14H28) 2.0 

o-Xylene(C8H10) 0.9 Long-chain alkenes (C16-C23) 20.5 

Benzene, n-butyl-(C10H14) 0.7 Cetene(C16H32) 1.3 

Long-chain n-alkanes (C16-C17) 20.4 1-Pentadecene(C15H30) 1.6 

Hexadecane (C16H34) 4.7 9-Eicosene, (E)-(C20H40) 2.1 

Pentadecane(C15H32) 8.6 8-Heptadecene (C17H34) 12.8 

Heptadecane(C17H36) 7.2 1-Heptadecene(C17H34) 1.7 

  9-Tricosene, (Z)-(C23H46) 0.9 

  oxygenates 27.7 

  2-Pentadecanone(C15H30O) 4.1 

  2-Nonadecanone(C19H38O) 3.0 

  9-Octadecen-1-ol, (Z)-(C18H36O) 0.8 

  9-Octadecen-1-ol, (Z)-(C18H36O) 1.3 

  Fatty acid 18.6 
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Material balance, kinetics & scale-up 

Table A7. CTH product composition at 380 °C modified. The products chosen as representatives 

for each fraction are highlighted in grey 

Component MW (g/mol) Tb (°C) Product %area 

C6H14 86.18 68.73 Naphta 2.1 

C6H6  78.11 80.09 Naphta 0.8 

C7H14 98.19 93.64 Naphta 4.3 

C7H14 98.19 97.95 Naphta 0.4 

C7H16 100.20 98.43 Naphta 3.2 

C8H18 114.23 109.43 Naphta 3.6 

C7H8 100.19 109.70 Naphta 3.2 

C8H16 112.22 121.26 Naphta 4.3 

C8H10  106.17 136.2 Naphta 1.7 

C8H10 106.17 138.36 Naphta 2.9 

C8H14 110.10 143.00 Naphta 0.9 

C9H18 126.24 146.87 Naphta 2.1 

C9H20 128.26 150.82 Naphta 2.8 

C9H12 120.19 159.24 Naphta 3.7 

C11H24 156.31 169.77 Naphta 2.2 

TOTAL NAPHTA %    38.00 

C10H20  140.27 170.60 Kerosene 1.9 

C9H12  118.00 177.97 Kerosene 0.8 

C10H14  134.22 183.31 Kerosene 2.2 

C11H22  154.30 192.67 Kerosene 6.2 

C11H24  156.31 195.93 Kerosene 1.6 

C11H16  148.25 205.46 Kerosene 2.8 

C12H24  168.32 213.00 Kerosene 3.2 

C12H18  162.20 215.90 Kerosene 1.1 

C12H26 170.34 216.32 Kerosene 3.9 

C13H28 184.37 235.47 Kerosene 2.4 

C11H10  142.10 244.68 Kerosene 1.5 

C14H28  196.38 251.10 Kerosene 2.7 

C14H30  198.30 253.57 Kerosene 1.8 

C15H30  210.40 268.46 Kerosene 3.5 

C15H32  212.42 270.69 Kerosene 5.6 

TOTAL KEROSENE %    41.20 

C16H34 226.45 286.86 Diesel 1.1 

C17H34 238.46 292.40 Diesel 2.1 

C17H34 238.46 300.33 Diesel 1.1 

C17H36 240.47 302.15 Diesel 3.3 

C23H46 322.62 384.66 Diesel 1.1 

TOTAL DIESEL %    8.70 
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Table A8. Data for regression of kinetic equation 

Molar fraction 𝑦𝑂
𝑖𝑛 0.0603* 

Concentration 𝐶𝑂
𝑖𝑛 (mol/m3) 2.22 

Flow rate FH2 (mol/hr) 0.1569 

Flow rate FO (mol/hr) 0.0331 

 𝑅𝐻2
𝑖𝑛   4.742 

Pressure (Pa) 200000 

R gas constant (J/mol K) 8.314 

Temperature (K) (380°C) 653 

Total concentration (mol/m3) 36.84 

Catalytic bed length (m) 0.14 

Internal diameter of reactor(m) 0.014 

∗ 𝑦𝑂
𝑖𝑛 =

𝐹𝑜𝑖𝑙
𝐹𝐶𝐻4 + 𝐹𝐶𝑂 + 𝐹𝐻2 + 𝐹𝐶2𝐻4

 

 

CH4, CO, C2H4 are from the assumption that 2-propanol decompose as shown in Eq.(A2). 

 

𝐶3𝐻7𝑂𝐻 → 𝐶3𝐻6𝑂 + 𝐻2 → 𝐶𝐻4 + 𝐶𝑂 + 𝐻2 + 0.5 𝐶2𝐻4                                       (A2)                                             

 

Weight of catalyst required 

For n-order reaction the weight, w, of catalyst required is given by 

𝑤 (1 − 𝛼 2⁄ 𝑤) =
𝑣𝑜

𝑘
(
(1−𝑥)1−𝑛−1

𝑛−1
) = b                                                                     [A3][88] 

 ⟹𝑤 =
1±√1−2𝛼𝑏

𝛼
 

Where 𝛼 = 
𝛽

𝐴𝑐𝑃𝑜(1−𝜀)𝜌𝑐
  

               𝛽  =
𝐺(1−𝜀)

𝜌𝐷𝑝𝜀3
[
150(1−𝜀)𝜇

𝐷𝑝
+ 1.75𝐺]        

           G= superficial mass velocity = 
(𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒)(𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

(𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟)
 

               𝑘 = reaction rate constant @ 380oC = 0.00022 s-1 

           𝑛 = order of reaction = 2 
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              𝐷𝑝 = average particle size of the catalyst = 1.63 mm 

                𝜀 = porosity of catalyst = 0.51 

               𝑥 = % conversion of WCO = 0.99 

              𝐴𝑐  = reactor cross-sectional area, m2 

              𝑃𝑜 = entry pressure of the feed, 2 bars 

               𝜇  = viscosity of feed, 180 mPa.s 

               𝜌𝑐 = average density of the catalyst, 980 kg/m3 

                𝜌 =density of the feed @ 380oC = 27 kg/m3  

                      (evaluated using Peng-Robinson equation   of state) 

               𝑣𝑜 = volumetric flowrate, m3/s 

Processing 60 barrels of WCO per day requires 24 barrels of 2-propanol. This scale up amounts 

to a scale factor of 13248. This factor leads to catalyst weight of 73 kg at operation pressure of 2 

bars (Table A9& Table A10) 

 

Table A9. Effect of catalyst particle size on the amount of catalyst required to process 60 barrels 

of WCO  

Particle size, mm Catalyst weight, kg 

0.50 6.9 

0.70 13.0 

1.00 27.5 

1.50 62.0 

1.63 73.0 

2.00 110.0 

2.50 172.0 
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Table A10. Effect of reaction on the amount of catalyst required to process 60 barrels of WCO  

Pressure, bar Catalyst weight, kg 

1 36.6 

2 73.0 

3 110.0 

4 147.0 

5 183.0 

10 367.0 

15 550.0 
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APPENDIX B 
 

SUPPORTING INFORMATION 

Kinetics and Optimization of Catalytic Transfer Hydrogenation of Wco Using 2-Propanol 

as H-Donor Over NiOX-MoOX-CoOX/zeolite 

 

WCO Characterization 

 

 

Figure B1. Fatty acid composition depicting 72% level of unsaturation. 
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Figure B2. Fitting of rate constants at different temperatures. 
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Design of Experiment 

 

Table B1. Coded and Real Values of Factorial Design of CTH of WCO. 

Experimental Coded Values Real values 

Runs A B C D A B C D 

1 -1 -1 0 -1 340 2 1.0 2 

2 -1 0 1 1 340 10 2.5 12 

3 -1 -1 -1 -1 340 2 0.8 2 

4 1 -1 1 0 400 2 2.5 6 

5 -1 0 0 -1 340 10 1.0 2 

6 -1 1 -1 0 340 20 0.8 6 

7 1 1 -1 -1 400 20 0.8 2 

8 1 0 -1 0 400 10 0.8 6 

9 0 0 0 0 370 10 1.0 6 

10 -1 1 0 1 340 20 1.0 12 

11 0 -1 1 -1 370 2 2.5 2 

12 1 0 0 1 400 10 1.0 12 

13 1 1 0 -1 400 20 1.0 2 

14 1 -1 0 1 400 2 1.0 12 

15 1 1 1 1 400 20 2.5 12 

16 -1 0 -1 1 340 10 0.8 12 

17 0 -1 -1 1 370 2 0.8 12 

18 0 1 1 -1 370 20 2.5 2 

19 -1 0 1 -1 340 10 2.5 2 

20 0 1 -1 1 370 20 0.8 12 

21 0 0 -1 -1 370 10 0.8 2 

22 0 1 0 0 370 20 1.0 6 

23 0 -1 -1 0 370 2 0.8 6 

24 0 -1 1 1 370 2 2.5 12 

25 -1 1 1 0 340 20 2.5 6 
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WCO Characterization Continues 

Table B2. Equations Used to Model TGA of WCO. 

Decomposition mechanism 
Model equation 

f(α) 

Integrated model equation 

G(α) 

Zero order 1 α 

First order 1-α -ln(1-α) 

Second order (1-α)2 (1-α)-1-1 

Third order (1-α)3 [(1-α)-2-1]/2 

  

 

 

Universal Equation 

𝑙𝑛 [
𝐺(𝛼)

(𝑇−𝑇𝑜
] = 𝑙𝑛 (

𝐴

𝛽
) −

𝐸𝑎

𝑅𝑇
                                                                                               (B1)                                                                                                                    

A is the pre-exponential factor in seconds. 

α is the fractional decomposition of WCO 

T is the arbitrary temperature in Kelvin 

To is the initial temperature at which TGA begins 

Ea is the activation energy in kJ/mol 

β is the heating rate in oC/min 

R = 8.314 J/(mol K) 

 

Table B3. Zero-Order Model. 

Time 

(s) 

Temp 

(oC) 

% mass 

remaining conversion (G(α)) T(K) 

1/T 

(1/K) f(T, α) 

4403 374.41 80.14 0.2000 0.2000 647.41 0.001545 -7.47704 

4507 382.93 69.92 0.3030 0.3030 655.93 0.001525 -7.08544 

4592 390.01 60.26 0.4002 0.4002 663.01 0.001508 -6.82649 

4667 396.38 50.27 0.5008 0.5008 669.38 0.001494 -6.61938 

4741 402.45 40.31 0.6012 0.6012 675.45 0.00148 -6.45278 

4821 408.83 30.49 0.7001 0.7001 681.83 0.001467 -6.31704 

4919 417.38 20.55 0.8002 0.8002 690.38 0.001448 -6.20519 
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Table B4. First-Order Model. 

Time 

(s) 

Temp 

(oC) 

% mass 

remaining 

Fractional 

decomposition (G(α)) T(K) 1/T (1/K) f(T, α) 

4403 374.41 80.14 0.20000 0.2231 647.41 0.001545 -7.36754 

4505 382.81 70.13 0.30084 0.3579 655.81 0.001525 -6.91866 

4592 390.01 60.26 0.40024 0.5112 663.01 0.001508 -6.58174 

4667 396.38 50.27 0.50084 0.6948 669.38 0.001494 -6.292 

4741 402.45 40.31 0.6012 0.9193 675.45 0.00148 -6.0281 

4821 408.83 30.49 0.70012 1.2044 681.83 0.001467 -5.77458 

4919 417.38 20.55 0.80024 1.6106 690.38 0.001448 -5.50572 

 

 

Table B5. 2nd-Order Model. 

Time(s) T (oC) 

% mass 

remaining 

Fractional 

decomposition (G(α)) T(K) 

1/T 

(1/K) f(T, α) 

4403 374.41 80.14 0.200 0.2500 647.41 0.00155 -7.25389 

4505 382.81 70.13 0.301 0.4303 655.81 0.00153 -6.73439 

4592 390.01 60.26 0.400 0.6673 663.01 0.00151 -6.31526 

4667 396.38 50.27 0.501 1.0034 669.38 0.00149 -5.92455 

4741 402.45 40.31 0.601 1.5075 675.45 0.00148 -5.53348 

4821 408.83 30.49 0.700 2.3347 681.83 0.00147 -5.11267 

4919 417.38 20.55 0.800 4.0060 690.38 0.00145 -4.59455 

 

Table B6. 3rd-Order Model. 

Time(s) 

 

Temp(oC) %rem 

Fractional 

decomposition (G(α)) T(K) 1/T(1/K) f(T, α) 

4403  374.41 80.14 0.200 0.2812 647.41 0.00155 -7.13611 

4505  382.81 70.13 0.301 0.5229 655.81 0.00153 -6.53953 

4592  390.01 60.26 0.400 0.8900 663.01 0.00151 -6.02733 

4667  396.38 50.27 0.501 1.5067 669.38 0.00149 -5.51796 

4741  402.45 40.31 0.601 2.6438 675.45 0.00148 -4.97172 

4821  408.83 30.49 0.700 5.0600 681.83 0.00147 -4.33917 

4919  417.38 20.55 0.800 12.0300 690.38 0.00145 -3.49494 
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Table B7. Results for Four Different Models. 

Reaction 

order Slope Intercept 

Activation 

energy (kJ/mol) 

Pre-exponential 

factor(s-1)  R-Squared 

0 -13325 13.212 110.8 45574.03157 0.9686 

1 -19508 22.819 162.2 677617379.9 0.9958 

2 -27712 35.515 230.4 2.21201E+14 0.9989 

3 -37748 51.012 313.8 1.18864E+21 0.9903 

 

 

Kinetics Model 

Table B8. Experimental Data at 360 oC and 14 bar for Kinetic Modeling. 

τ C9 C8 C7 C6 C5 C4 C3 C2 C1 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

36.2 0.00 0.25 0.18 0.07 0.46 0.09 12.90 1.70 84.29 

180.4 0.42 1.53 3.05 8.24 0.62 0.38 30.45 2.82 52.51 

360.1 0.81 4.69 2.89 26.27 1.12 0.18 30.53 7.68 25.86 

630.1 6.50 4.48 7.03 41.38 0.56 0.28 25.64 6.87 7.30 

900.1 6.57 6.41 12.52 50.54 0.59 0.10 12.46 8.91 1.93 

1224.0 15.65 3.56 11.97 57.83 0.28 0.04 2.82 7.07 1.14 

1566.0 13.38 4.80 16.82 52.96 0.33 0.01 2.88 8.78 0.16 

1800.0 19.32 1.79 13.37 57.81 0.28 0.06 0.96 6.39 0.08 

C1 = WCO; C2 = oxygenates; C3 = long-chain alkanes; C4 = long-chain alkenes; C5 = short-chain 

alkenes (C6-C14); C6 = short-chain alkanes (C6-C14); C7 = iso-alkanes; C8 = cyclo-alkanes, C9 = 

aromatics 

 

Table B9. Experimental Data at 390 oC and 14 bar for Kinetic Modeling. 

τ(s) C9 C8 C7 C6 C5 C4 C3 C2 C1 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 

36 0.0 0.3 0.5 1.6 0.6 0.3 13.6 1.2 82.1 

180 1.8 4.6 3.9 15.2 0.7 0.5 34.1 8.9 30.4 

360 5.0 5.1 11.4 34.5 0.6 0.2 22.0 8.7 12.6 

630 13.7 5.6 18.9 43.2 0.5 0.1 5.8 11.0 1.2 

900 16.6 2.9 24.6 43.9 0.4 0.0 2.6 9.0 0.4 

1260 25.6 3.3 24.4 34.0 0.2 0.0 0.4 12.5 0.0 

1530 29.2 2.8 28.4 31.3 0.2 0.0 0.1 8.1 0.0 

1800 27.6 1.0 29.0 30.5 0.3 0.0 0.0 11.8 0.0 

C1 = WCO; C2 = oxygenates; C3 = long-chain alkanes; C4 = long-chain alkenes; C5 = short-chain 

alkenes (C6-C14); C6 = short-chain alkanes (C6-C14); C7 = iso-alkanes; C8 = cyclo-alkanes, C9 = 

aromatics 
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Table B10. Experimental Data at 390 oC and 14 bar for Kinetic Modeling. 

τ C9 C8 C7 C6 C5 C4 C3 C2 C1 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

36 0.14 1.08 0.78 8.58 0.75 0.33 26.57 3.52 58.33 

180 5.37 4.41 7.48 45.88 0.97 0.18 16.98 7.94 10.85 

360 20.05 7.20 20.70 44.05 0.39 0.02 1.37 5.93 0.30 

630 33.37 4.38 28.16 27.92 0.25 0.00 0.08 5.89 0.03 

900 41.11 1.81 30.39 19.89 0.30 0.00 0.00 6.51 0.00 

1260 46.19 0.57 34.52 10.11 0.15 0.00 0.00 8.43 0.00 

1530 50.88 0.53 37.27 5.14 0.06 0.00 0.00 6.16 0.00 

1800 50.84 0.60 39.22 3.86 0.05 0.00 0.00 5.53 0.00 

C1 = WCO; C2 = oxygenates; C3 = long-chain alkanes; C4 = long-chain alkenes; C5 = short-chain 

alkenes (C6-C14); C6 = short-chain alkanes (C6-C14); C7 = iso-alkanes; C8 = cyclo-alkanes, C9 = 

aromatics 

Optimization 

 

Table B11. Experimental (Yexp) and Calculated (Ycal) Values of Alkanes. 

Run A B C D Yexp Ycal 

1 340 2 1.0 2 16.8 17.5 

2 340 10 2.5 12 27.6 27.4 

3 340 2 0.8 2 18.1 17.7 

4 400 2 2.5 6 18.4 18.8 

5 340 10 1.0 2 30.7 30.9 

6 340 20 0.8 6 19.3 19.4 

7 400 20 0.8 2 55.2 56.2 

8 400 10 0.8 6 65.1 64.6 

9 370 10 1.0 6 73.7 74.4 

10 340 20 1.0 12 6.2 6.4 

11 370 2 2.5 2 17.5 17.4 

12 400 10 1.0 12 46.9 47.5 

13 400 20 1.0 2 57.8 57.5 

14 400 2 1.0 12 27.9 27.6 

15 400 20 2.5 12 50.4 50.5 

16 340 10 0.8 12 14.3 14.3 

17 370 2 0.8 12 33.6 34.0 

18 370 20 2.5 2 49.1 49.1 

19 340 10 2.5 2 14.9 15.0 

20 370 20 0.8 12 39.3 39.5 

21 370 10 0.8 2 65.8 66.0 

22 370 20 1.0 6 65.6 65.0 

23 370 2 0.8 6 53.8 54.1 

24 370 2 2.5 12 32.5 32.7 

25 340 20 2.5 6 27.6 28.2 
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Table B12. Comparison between the current study the previous work. 

 Parameters Published Current study 

 Catalyst Activated Carbon Mo-Ni-Co-Zeolite 

P
R

O
D

U
C

T
S

 

Alkanes (%) 32.0 77.0 

Alkenes (%) 37.0 3.8 

Aromatics (%) 16.0 12.3 

Oxygenates (%) 6.7 0.0 

Gaseous products (%) 30.0 6.7 

O
T

H
E

R
 

Liquid Yield (%) 72.0 80.0 

Conversion (%) 100.0 100.0 

Activation energy (kJ/mol) 53.0 84.0 

V
A

R
IB

L
E

S
 

WCO/2-propanol (mL/mL) 2.5 1.6 

WHSV (h-1) 6.7 6.7 

Temperature (oC) 380.0 384.0 

Pressure (Bar) 2.0 14.7 

 

 

 

Table B13. ANOVA Test for Polynomial Model. 

Coefficient Estimated SE tstat P-value 

β0 -3429.8000 47.6650 -71.9580 6.55E-15 

β1 18.5090 0.2785 66.4660 1.45E-14 

β2 -8.4322 1.5280 -5.5185 0.000255 

β3 39.8190 7.5916 5.2452 0.000376 

β4 -5.7728 2.5265 -2.2849 0.045407 

β5 0.0339 0.0045 7.5689 1.91E-05 

β6 -0.0871 0.0117 -7.4535 2.18E-05 

β7 0.0283 0.0075 3.7734 0.003641 

β8 0.7349 0.0273 26.967 1.14E-10 

β9 0.8729 0.2107 4.1426 0.002004 

β10 1.6505 0.0501 32.9280 1.57E-11 

β11 -0.0248 0.0004 -58.8040 4.91E-14 

β12 -0.1893 0.0064 -29.3980 4.84E-11 

β13 -8.9783 1.4649 -6.1288 0.000111 

β14 -0.51732 0.0220 -23.4670 4.47E-10 

β15 -0.0024 0.0006 -4.2254 0.001757 
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APPENDIX C 
 

Catalytic Transfer Hydrogenation and Characterization of Flash Hydrolyzed Microalgae 

into Hydrocarbon Fuels Production (Jet Fuel, & Diesel): Supplementary Documents 

 

 

Figure C1. Other compounds formed during the pyrolysis of the BI. 

 

Determination of Activation Energy of BI Thermal Decomposition 

The activation energy of BI decomposition was determined by using two isothermal methods: 

the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) 

 

𝑙𝑛𝛽 = 𝑙𝑛 [
𝐴𝐸𝑎

𝑅𝑔(𝛼)
] − 5.331 − 1.052

𝐸𝑎

𝑅𝑇
                                        (C1) 

 

𝑙𝑛 [
𝛽

𝑇2
] = 𝑙𝑛 [

𝐴𝑅

𝐸𝑎𝑔(𝛼)
] −

𝐸𝑎

𝑅𝑇
                                                          (C2) 

 

𝑔(𝛼) =  
(1−𝛼)1−𝑛−1

𝑛−1
                                                                    (C3) 

A is the pre-exponential factor in second. 
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α is the fractional decomposition of BI 

T is the arbitrary temperature in Kelvin 

Ea is the activation energy in kJ/mol 

β is the heating rate in oC/min 

R = 8.314 J/molK 

n is the order of reaction. 

 

 

Figure C2. A plot to determine the activation energy using FWO equation. 

 

Figure C3. A Determination of activation energy using KAS equation. 
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Table C1. Activation energy obtained using Eq. (C1), FWO 

Conversion 

(%) slope intercept R-squared Ea, kJ/mol 

20.0 -14941 32.545 0.9913 118.1 

30.0 -26667 52.110 0.9499 210.8 

40.0 -27405 50.504 0.9890 216.6 

50.0 -29466 51.631 0.9814 232.9 

60.0 -31722 53.141 0.9871 250.7 

70.0 -37254 59.888 0.9820 294.4 

 

Table C2. Activation energy obtained using Eq. (C2), KAS. 

Conversion (%) slope intercept R-squared Ea, kJ/mol 

20.0 -13945 18.124 0.9900 115.9 

30.0 -25588 37.529 0.9458 212.7 

40.0 -26561 35.806 0.9879 220.8 

50.0 -28264 36.834 0.9797 234.9 

60.0 -30467 38.258 0.9860 253.3 

70.0 -35954 44.933 0.9807 298.9 

 

 

Figure C4. Fatty Acid profile of the oil extracted (*Calculated from HHV = 33.5[C]+142.3[H]-

15.4[O]+14.5[N], MJ/kg) 

0

5

10

15

20

25

30

35

40

Palmitic
acid(C16:0)

Palmitoleic
acid(C16:1)

Stearic
acid(C18:0)

Oleic
acid(C18:1)

Linoleic
acid(18:2)

Arachidic
acid(C20:0)

%
 A

re
a

Fatty Acid



214 
 

 

Table C3. CTH Reaction in1 hour 

Compounds %Area 

Tridecane 6.89 

Carbonic acid, decyl vinyl ester 4.18 

Diethylene glycol dibenzoate 19.23 

Heptadecanoic acid, TMS derivative 2.96 

4-Tripropylsilyloxypentadecane 1.23 

1-Phenazinecarboxylic acid, 6-[1-[(1-oxooctyl)oxy]ethyl]-, (.+-.)- 1.53 

Cyclononasiloxane, octadecamethyl- 1.61 

n-Octadecanoic acid, pentamethyldisilyl ester 3.05 

1-Phenanthrenecarboxaldehyde, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-

methylethyl)-, [1R-(1.alpha.,4a.beta.,10a.alpha. 7.34 

Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- 2.48 

1-O-Heptadecylglycerol, bis-trimethylsilyl ether 1.9 

Nordazepam, TMS derivative 3 

Cycloheptasiloxane, tetradecamethyl- 5.38 

Triphenylphosphine oxide 15.56 

Heptasiloxane, hexadecamethyl- 1.95 

Silane, triethyl(2-phenylethoxy)- 1.75 

Diisooctyl phthalate 6.16 

3-Tripropylsilyloxypentadecane 3.17 

3-Isopropoxy-1,1,1,5,5,5-hexamethyl-3-(trimethylsiloxy)trisiloxane 4.93 

Tris(tert-butyldimethylsilyloxy)arsane 5.7 
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Table C4. CTH Reaction in 2 hours 

Compounds %Area 

Bicyclo[2.1.0]pentane, 1,4-dimethyl- 1.73 

Hexane, 2,3-dimethyl- 0.71 

Heptane, 4-methyl- 3.54 

Hexanal 1.93 

2-Hexene, 4,4,5-trimethyl- 1.65 

2,4-Dimethyl-1-heptene 0.9 

Cyclohexane, 1,2,4-trimethyl- 0.94 

Octane, 4-methyl- 1.73 

Cyclohexane, 1,2,4-trimethyl- 0.59 

Cyclopentane, 1-hexyl-3-methyl- 3.92 

7-Hexadecene, (Z)- 1.49 

Nonanoic acid, 9-oxo-, methyl ester 4.73 

Hexadecanoic acid, methyl ester 19.98 

1,2-Benzenedicarboxylic acid, butyl cyclohexyl ester 1.81 

9,12-Octadecadienoic acid (Z,Z)-, methyl ester 8.12 

9-Octadecenoic acid, methyl ester, (E)- 38.47 

Methyl stearate 7.76 
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Table C5. CTH Reaction in 3 hours 

Compounds %Area 

Hexane, 3-methyl- 1.63 

Cyclopropane, trimethylmethylene- 6.53 

2-Octene, 2,6-dimethyl- 1.13 

Hexane, 2,3-dimethyl- 1.97 

Heptane, 4-methyl- 11.48 

Hexane, 2,4-dimethyl- 0.86 

Cyclopentane, 1-methyl-3-(2-methylpropyl)- 0.89 

Hexane, 2,4-dimethyl- 1.26 

Heptane, 2,4-dimethyl- 4.49 

2-Hexene, 4,4,5-trimethyl- 4.25 

2,4-Dimethyl-1-heptene 1.87 

2,3-Dimethyl-3-heptene 1.32 

Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- 2.71 

4-Undecene, 7-methyl- 1.28 

Octane, 4-methyl- 7.06 

Cyclohexane, 1,2,4-trimethyl- 1.9 

Cyclohexane, 1,2,4-trimethyl- 1.52 

Cyclopentane, 1-hexyl-3-methyl- 14.89 

trans-2-Methyl-3-octene 2.02 

Nonane 0.8 

2-n-Butyl furan 0.91 

Hexane, 2,4,4-trimethyl- 1.27 

5,7-Dimethyloctahydrocoumarin 0.63 

Cyclooctane, 1,5-dimethyl- 1.03 

1-Octene, 3,7-dimethyl- 1.21 

Pentane, 2,2,3,3-tetramethyl- 1.49 

Bicyclo[2.2.1]heptane, 2,2,3-trimethyl- 1.29 

Heptane, 2,5,5-trimethyl- 1.63 

Heptane, 2,5,5-trimethyl- 1.42 

1,5-Hexadiene-3,4-diol, 3,4-dimethyl- 0.69 

Decane, 4-methyl- 1.36 

Cyclopentane, 1,2-dibutyl- 0.9 

Cyclooctane, 1-methyl-3-propyl- 1.26 

Cyclopentane, 1,2-dibutyl- 1.77 

5-Octadecene, (E)- 3.22 

Cyclohexane, 1,4-dimethyl-2-(2-methylpropyl)-, (1.alpha.,2.beta.,4.alpha.)- 1.17 

Octane, 2,3,6,7-tetramethyl- 0.37 

cis,cis,cis-1-Isobutyl-2,5-dimethylcyclohexane 2.1 

Nonanoic acid, 9-oxo-, methyl ester 0.75 
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Table C5. CTH Reaction in 3 hours Cont. 

Hexadecane 0.39 

Hexadecanoic acid, methyl ester 0.95 

Dibutyl phthalate 2.31 

9-Octadecenoic acid, methyl ester, (E)- 2.02 

 

Table C6. CTH Reaction in 4 hours 

Compounds %Area 

Hexane, 3-methyl- 1.27 

1-Hexene, 2-methyl- 1.97 

.alpha.-Pyrrolidone, 5-acetoxymethyl- 0.6 

Acetic acid, 1,4-dimethylpent-4-enyl ester 7.79 

Cyclopentane, 1,2,4-trimethyl- 0.55 

1-Octene, 3,3-dimethyl- 1.08 

Hexane, 2,3-dimethyl- 2.2 

Heptane, 4-methyl- 13.21 

Heptane, 3-methyl- 1.07 

Hexane, 2,4-dimethyl- 1.75 

Hexane, 2,3,4-trimethyl- 4.86 

Ethanone, 1-(1-methylcyclopentyl)- 3.9 

2,4-Dimethyl-1-heptene 1.41 

2,3-Dimethyl-3-heptene 1.7 

Cyclohexane, 1,3,5-trimethyl- 2.35 

Decane, 1-chloro- 1.62 

Octane, 4-methyl- 7.08 

Cyclohexane, 1,2,4-trimethyl- 1.93 

Cyclohexane, 1,2,4-trimethyl- 1.49 

Cyclopentane, 1-hexyl-3-methyl- 16.93 

Nonane 0.6 

Pentane, 2,2,3,3-tetramethyl- 1.2 

Pentane, 2,2,3,3-tetramethyl- 1.49 

Mesitylene 0.65 

Octane, 3,3-dimethyl- 1.46 

Heptane, 2,5,5-trimethyl- 1.26 

Nonane, 2,3-dimethyl- 1.42 

Cyclopentane, 1,2-dibutyl- 1.09 

Cyclopentane, 1,2-dibutyl- 2.25 

5-Octadecene, (E)- 3.92 

Cyclohexane, 1,4-dimethyl-2-(2-methylpropyl)-, 

(1.alpha.,2.beta.,4.alpha.)- 1.05 

Dibutyl phthalate 8.85 
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Table C7. Reaction in 5 hours 

Compounds %Area 

Hexane, 3-methyl- 1.99 

2,2-Dimethylglutaric anhydride 3.65 

cis-3-Methylcyclohexanol 8.2 

Benzeneacetic acid, cyclopentyl ester 1.17 

Hexane, 2,3-dimethyl- 2.04 

Heptane, 4-methyl- 13.53 

Hexane, 2,4-dimethyl- 1.39 

Hexane, 2,4-dimethyl- 2.36 

Hexane, 2,3,3-trimethyl- 4.94 

2,3-Dimethyl-2-heptene 3.03 

Cyclohexane, 1,2,4-trimethyl- 2.33 

o-Xylene 3 

Octane, 4-methyl- 9.54 

Cyclohexane, 1,2,4-trimethyl- 1.86 

Cyclohexane, 1,2,4-trimethyl- 1.6 

Cyclopentane, 1-hexyl-3-methyl- 20.25 

Nonane 1.05 

1-Hexene, 3,5,5-trimethyl- 1.92 

Mesitylene 1.25 

Heptane, 5-ethyl-2-methyl- 0.96 

Nonane, 2,3-dimethyl- 1.03 

Nonane, 2,3-dimethyl- 1.43 

Cyclopentane, 1,2-dibutyl- 3.96 

5-Tetradecene, (E)- 2.56 

Undecane 0.91 

Pentadecane 2.82 

Heptadecane 1.23 
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Kinetics of CTH of Algae Oil 

Table C8. Experimental and Calculated Conversion of Algae Oil 

Conversion 

  T = 390 oC T = 405 oC T = 420 oC 

Time (s) Xexp Xcal Xexp Xcal Xexp Xcal 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3600 0.4996 0.5308 0.6126 0.6044 0.7800 0.7818 

7200 0.8689 0.8127 0.8413 0.8586 0.9694 0.9613 

10800 0.9051 0.9418 0.9649 0.9555 0.9787 0.9948 

14400 0.9790 0.9883 0.9970 0.9881 0.9998 0.9995 

18000 0.9996 0.9991 0.9989 0.9974 1.0000 1.0000 

 

 

 

 

Figure C5. Variation of reaction temperature with percent conversion and coke formation. 
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Figure C6. Curve fitting for conversion data at 390 oC 

 

 

Figure C7. Curve fitting for conversion data at 405 oC 
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Figure C8. Curve fitting for conversion data at 420 oC 

 

 

 

 

Figure C9. Arrhenius plot for the estimation of activation energy and pre-exponential factor 
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APPENDIX D 

Techno-economic Analysis and Life-cycle Assessment of Jet Fuels Production from Waste 

Cooking Oil via Catalytic Transfer Hydrogenation: Supplementary Documents 

 

Table D1. HDO Reactions Stoichiometry. 

 

Reactions 

R.1 C18: 1  +  H2 →  C17H36  +  CO2 

R.2 C18: 1  +  2 H2  →   C17H36 +  CO + H2O 

R.3 C18: 1  +  4 H2  →   C18H38  +  2 H2O 

R.4 C18: 2  +  2 H2  →   C17H36  +  CO2 

R.5 C18: 2  +  3 H2  →   C17H36 +  CO + H2O 

R.6 C18: 2  +  5 H2  →   C18 H38 +  2 H2O 

R.7 C15: 0 →   C14H30 +  CO2 

R.8 C15: 0  +  H2  →   C14H30  +  CO + H2O 

R.9 C15: 0   +  3 H2  →   C15H32  +  2 H2O 

R.10 C19: 0 →   C18H38  +  CO2 

R.11 C19: 0   +  H2  →   C18H38 +  CO + H2O 

R.12 C19: 0   +  3 H2  →   C19H40 +  2 H2O 

R.13 CO + H2O ↔ CO2 + H2 

 

 

Table D2. Material balance for the triglyceride cleavage. 

 

Triglyceride Scission Mole (kmol/day) Mass (ton/day) 

Fatty acids formed 3.64 1000 

Propane formed 1.21 53.45 

Hydrogen consumed 3.64 7.33 

 

Table D3. HDO by-products separation reactor input parameters in Aspen Plus. 

 

Process Inputs By-P-SEP Value 

Pressure (MPa) 9.2  

Duty Q (adiabatic operation) (kW) 0  

Valid phases Vapor-Liquid-Dirty Water 

Aspen model used Flash 

Property method Peng-Robinson 
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Table D4. Property of feed oil to the hydrocracking unit in comparison to conventional VGO. 

 

Feed property Stream HC-MIX VGO 

°API gravity 63 22.3 

SG specific gravity 0.72 0.92 

TBP (°C) 270-340 450-570 

Watson factor, Kw 13 10 

 

Table D5. Hydrogen requirement for the hydrocracking reaction. 

 

HCC Variable  Value Unit 

Hydrogen / Oil 500 scf/bbl 

Hydrogen / Oil 84.44 Nm3/m3 

Oil fed 63 m3/hr 

H2 density (STD) 0.0887 kg/m3 

STD Volume H2  5320 m3/hr 

Mass H2 471.9 kg/hr 

 

Table D6. HCC reactor input parameters in Aspen Plus. 

 

Process Inputs Value 

Pressure (MPa) 9.0  

Duty Q (adiabatic operation) (kW) 0  

Hydrogen consumption (kg/hr) 472  

Inert fraction of hydrogen 0.64 

Products included All components from  

C1-C18 (including isomers) 

Aspen model used RGibbs 

Property method Peng-Robinson 

 

 

 

 

 

 

 

 

 



224 
 

 

Table D7. Stream properties for the heat integration analysis. 

 

Hydrodeoxygenation Tin (°C) Tout (°C) 
Flow rate 

(ton/day) 

mCp 

(kJ/C-hr) 

Energy 

(kW) 

Preheat H2 157 400 26 15,815 1,068 

Preheat WCO 25 400 1,000 105,332 10,972 

Heat production HDO 157(H2) / 400(WCO) 400 1,026 - -5,235 

Heat production HDO 

(Preheat of H2) 

400 

  

400 

  

1,026 

  

 

  

-4,168 

  
Heat production WGS - - 1,026 - 137 

Cooling HDO 400 40 1,026 128,929 -12,893 

Hydrocracking Tin (°C) Tout (°C) 
Flow rate 

(ton/day) 

mCp 

(kJ/C-hr) 

Energy 

(kW) 

Preheat HCC 59 350 911 114,964 9,293 

Cooling HCC 350 40 931 124,702 -10,738 

      

 

Table D8. Temperatures of cold streams, hot streams, and total duty required in HEx-integrated  

heat exchangers. 

 

           Hot Stream           Cold Stream  

Integrated HEx Tin (°C) Tout (°C) Tin (°C) Tout (°C) Duty (kW) 

E1 363 240 25 219 5,046.8 

E2 400 400 219 380 5,228.5 

E3 400 359 300 350 1,867.4 

E4 372 196 59 300 7,425.6 

 

Table D9. Utilities duty and process stream properties. 

 

Utility Tin (°C) Tout (°C) Duty (kW) 

Cooling water – HDO effluent 259 40 -6,196.6 

Cooling water – HCC effluent 196 40 -5,735.7 

Fired heater - HDO 380 400 704.4 

 

Table D10. Propane recovery at different pressure of flash. 

 

Parameter 0.1 MPa 1 MPa 2 MPa 3 MPa 4 MPa 

Light fuel kg/hr 5174 1817 972 583 370 

Liquid distillates kg/hr 32114 35470 36315 36704 36918 

Propane in light fuel kg/hr 1233 319 133 70 41 

Propane in liquid distillates kg/hr 296 1209 1396 1458 1488 

Propane recovery 94% 77% 53% 26%  
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Table D11. Reactor geometry and catalyst properties. 

Reactor Value  Catalyst Value 

Diameter internal (cm) 1.4  Mass (g) 5.5 

Length pipe (cm) 36  Volume (cm3) 18.7 

Bed length (cm) 14  Porosity (%) 0.51 

Volume pipe (cm3) 55.39  Density (g/cm3) 0.98 

ℇ𝑔𝑎𝑠 Void fraction 0.132  Particle size (mm) 0.85-2.4 

Bed volume (cm3) 21.54    

 

 

Table D12. Experimental conversion at different temperatures. 

 

Reactor Temperature (°C) 300 340 360 380 400 

Experimental oil conversion X 0.866 0.972 0.971 0.989 0.997 

 

Table D13. Total naphtha composition. 

 

Component MW TB Product % Area 

C6H14 86.1772 68.73 Naphtha 2.1 

C6H6 (AR) 78.1136 80.09 Naphtha 0.8 

C7H14 98.1882 93.64 Naphtha 4.3 

C7H14 (E4) 98.1882 97.95 Naphtha 0.4 

C7H16 100.204 98.43 Naphtha 3.2 

C8H18 114.231 109.43 Naphtha 3.6 

C7H8 100.189 109.70 Naphtha 3.2 

C8H16 112.215 121.26 Naphtha 4.3 

C8H10 (Ethyl Benzene) 106.167 136.2 Naphtha 1.7 

C8H10 (p-xylene) 106.167 138.36 Naphtha 2.9 

C8H14 110.10 143.00 Naphtha 0.9 

C9H18 126.242 146.87 Naphtha 2.1 

C9H20 128.258 150.82 Naphtha 2.8 

C9H12 120.194 159.24 Naphtha 3.7 

C11H24 156.312 169.77 Naphtha 2.2 

Total naphtha (%)    38.00 
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Table D14. Total kerosene composition. 

 

Component MW TB Product % Area 

C10H20 (Alkene) 140.269 170.6 Kerosene 1.9 

C9H12 (AR) 118 177.97 Kerosene 0.8 

C10H14 (AR) 134.221 183.30 Kerosene 2.2 

C11H22 (Alkene) 154.296 192.67 Kerosene 6.2 

C11H24 (Alkane) 156.312 195.93 Kerosene 1.6 

C11H16 (AR) 148.248 205.46 Kerosene 2.8 

C12H24 (Alkene) 168.323 213.00 Kerosene 3.2 

C12H18 (AR) 162.2 215.9 Kerosene 1.1 

C12H26 (Alkane) 170.338 216.32 Kerosene 3.9 

C13H28 (Alkane) 184.365 235.47 Kerosene 2.4 

C11H10 (AR) 142.1 244.68 Kerosene 1.5 

C14H28 (Alkene) 196.376 251.1 Kerosene 2.7 

C14H30 (Alkane) 198.3 253.57 Kerosene 1.8 

C15H30 (Alkene) 210.403 268.46 Kerosene 3.5 

C15H32 (Alkane) 212.419 270.68 Kerosene 5.6 

Total kerosene (%)    41.2 

 

Table D15. Total diesel composition. 

 

Component MW TB Product % Area 

C16H34 226.446 286.86 Diesel 1.1 

C17H34 238.457 292.39 Diesel 2.1 

C17H34 238.457 300.33 Diesel 1.1 

C17H36 240.473 302.15 Diesel 3.3 

C23H46 322.618 384.66 Diesel 1.1 

Total diesel (%) 
   

8.70 

 

Table D16. Composition of gas phase. 

 

Component H2 CO CO2 CH4 C2H6 C3H8 

Volume (%) 21 26 22 10 10 11 



227 
 

 

 

 

Table D17. Composition of liquid product: experimental and normalized molar percentage. 

 
Composition Experimental Normalized Unit 

Kerosene 41.2 46.9 % mol 

Naphtha 38.0 43.2 % mol 

Diesel 8.7 9.9 % mol 

 

Table D18. Aromatics, alkanes, and alkenes in kerosene. Product characterization of liquid: average 

molecular weight MW and boiling point,Tb. 

 
Kerosene 

Composition 

Mol % Product MW (g/mol) 

Average 

Tb (°C) 

Average 

Alkenes 42.5 Naphtha 111.1 122.8 

Alkanes 37.1 Kerosene 173.0 224.2 

Aromatics 20.4 Diesel 248.3 308.1 

 

Table D19. Yield of product components. 

 

Product Component Yield Yi 

COKE C 0.0219 

WATER H2O 0.0572 

LIQUID 

C8H16 0.1779 

C12H26 0.3003 

C17H36 0.0910 

GAS 

H2 0.0055 

CO 0.0954 

CO2 0.1268 

CH4 0.0210 

C2H6 0.0394 

C3H8 0.0635 
 Total 1.0000 

 

Table D20. Binary parameters of NRTL model. 

 

Binary 

Parameter 
C17H36- H2O C12H26- H2O C8H16- H2O 

Aij 28.2178 23.4291 0 

Aji -5.44545 -6.08871 0 

Bij -3920.97 -2638.14 2844.22 

Bji 3588.23 3794.11 1431.52 

C 0.2 0.2 0.2 
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Table D21. Verification of NRTL model: calculated and experimental values (% w/w), 

where W = water (H2O) and HC =hydrocarbon. 

 

 EXP-P EXP-T EXP EXP NRTL NRTL 
Relative 

Error 

Relative 

Error 
 P (Pa) T (°C) HC in W W in HC HC in W W in HC HC in W W in HC 

C16H34 

101,000 298.1 - 6.8E-04 - 6.8E-04 - 0.00 

101,000 313.1 - 1.3E-03 - 1.3E-03 - 0.00 

101,000 298.2 3.0E-09 7.4E-04 4.90E-08 6.8E-04 0.94 0.09 

C12H26 

101,000 298.1 - 6.1E-04 - 6.1E-04 - 0.01 

101,000 313.1 - 1.2E-03 - 1.2E-03 - 0.00 

101,325 293.2 - 5.0E-04 - 4.8E-04 - 0.03 

101,325 303.2 - 6.0E-04 - 7.7E-04 - 0.22 

C6H12 
101,325 293.1 1.0E-05 - 9.71E-06 - 0.03  

101,000 298.0 1.1E-05 - 1.14E-05 - 0.06  

 

 

 
 

Figure D1. Composite curves of streams shown in Table D7. 
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Figure D2. Heat integration network (HEN). 

 

 
Figure D3. Experimental mass balance of CTH reactor at T = 380 oC 

 

 
 

Figure D4. Mixture boiling point range of feed stream. 
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Fixed Capital Investment (FCI) 

 

The fixed capital investment is the total cost of designing, constructing, and installing a plant and 

the associated modifications needed to prepare the plant site. The fixed capital investment is 

made up of: 

1.   The inside battery limits (ISBL) investment, i.e. the cost of the plant; 

2.   The modifications and improvements that must be made to the site infrastructure, known 

as the offsite or OSBL investment; 

3.   Engineering and construction costs;  

4.   Contingency charges.  

FCI =  ISBL + OSBL + ENG + CONT                                                             (D1) 

 

For the calculation of the Cbm of equipment, first the purchase costs (Cp) of single units are obtained 

from the cost-curves method which can be found in Turton et al. [242]. This cost-curves of 

equipment are expressed as a function of the type and the size of the corresponding unit.   

 

Additionally, the cost of purchase is affected by inflation along with time; hence, the Chemical 

Engineering Plant Cost Index (CEPCI) is applied, according to Eq. D2.  

𝑃𝑟𝑖𝑐𝑒𝑡2 = 𝑃𝑟𝑖𝑐𝑒𝑡1 (
𝐶𝐸𝑃𝐶𝐼𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡2

𝐶𝐸𝑃𝐶𝐼𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1
)                                                                                           (D2)                           

Specifically, the investment cost is based on the capacity S of hydrogen production, expressed as 

MMscft/day, as shown in Eq. D3. The amount of hydrogen required for the conventional process 

is 0.39 Mm3/day, i.e. 13.804 MMscf/day. The values of a (1.759) and n (0.79) are on 2006-year 

basis; thus, the inflation rate is corrected by CEPCI reference, as indicated in Eq. D2. 

𝐶𝑆𝑀𝑅 = 𝑎𝑆
𝑛                                                                                                                                            (𝐷3)                                                                                                                              
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The cost of the PSA unit employed in the conventional process is based on at similar process unit 

for hydrogen recovery from flue gases, built in Canada in 1999. This reference unit has a 

different capacity; therefore, the purchase cost (𝐶𝑝) is estimated using a capacity factor with a 

cost exponent (𝛾), according to Eq. D4. The reference unit considered is the amount of gas to be 

treated, in m3/s. As a rough estimation, the exponent factor is assumed as 1, because the main 

part of the cost in the equipment will be based on the packing of adsorbent, the amount of which 

will be linearly proportional to the feed rate. It is specified that this method will slightly 

overestimate the cost, since generally the exponent factor is lower than 1. 

𝐶𝑝 = (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟𝑒𝑓
)
𝛾

𝐶𝑝−𝑟𝑒𝑓                                                                                                   (D4) 

Results of equipment bare module costs Cbm are summarized in Table D22 for conventional and 

CTH processes, divided in groups by their function. Thus, the total bare module costs of these 

processes can be calculated. It is worth specifying that the CTH process conditions are the same 

as the base conditions, i.e. no special material is required, and the process operating pressure is 

atmospheric. 
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Table D22. Total bare module cost for HRJ (conventional) and CTH jet fuel production processes. 

 

Equipment Type HRJ CTH 

Reaction System Cbm @base Cbm Reaction System Cbm 

Hydrodeoxygenation1 $      1,650,989 $    40,814,774 Hydrodeoxygenation $          132,396 

Hydrocracking2 $      2,972,309 $    76,618,490 2nd hydrodeox. Regen. $          132,396 

Steam methane reform. $      3,441,561 $    16,313,000   

Heating3 $      1,450,520 $      1,675,585 Heating3 $       3,010,654 

Compression Cbm @base Cbm Pumps Cbm 

Compression 1 $         448,539 $      1,704,448 Feed pumping WCO $            12,046 

Compression 2 $      1,234,069 $      4,689,461 Feed pumping ISOP4 $            11,158 

Feed pumping WCO $           73,966 $         174,098   

Separation Cbm @base Cbm Separation Cbm 

By-P HP separation $           74,603 $         663,506 LP separation $            74,603 

Product HP separation $           53,829 $         581,562   

Product LP separation $           63,636             $           63,636   

PSA-hydrogen recov. $         889,876 $      2,936,590   

Distillation Cbm @base Cbm Distillation Cbm 

Fractionation 15 $         487,216 $         487,216 Fractionation 15 $          387,179 

   Fractionation 25 $          491,028 

Heat Exchangers Cbm @base Cbm Heat Exchangers Cbm 

Heat exchange 1 $         104,310 $         123,010 Heat exchange 1 $          469,833 

Heat exchange 2 $         157,024 $         185,174   

Heat exchange 3 $         387,390 $         456,232   

Heat exchange 4 $         159,540 $         187,891   

Cooling 16 $         139,372 $         164,358 Cooling6  $          151,479 

Colling 26 $         144,417 $         169,854   

Heating3 $      1,450,520 $      1,672,574 Heating3 $       2,446,909 

Total (2017)    $    15,383,686 $  149,681,462 Total (2017) $       7,319,681 
14x5 bed, 25x5 bed, 3Fired heater, 4Three stages 5Trays + columns 6Cooling water  

Finally, the fixed capital investment FCI of the two processes is reported in Table D23.  

 

Table D23. Fixed Capital Investment for HRJ (conventional)  

and CTH jet fuel production process. 

 

Fixed Capital Investment HRJ CTH 

ISBL + Engineering $    149,681,462 $        7,319,681 

OSBL (50% total Cbm base) $        7,691,843 $        3,659,841 

Contingency (15% total Cbm) $      26,942,663 $        1,097,952 

Total $    184,315,968 $      12,077,474 
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Cost of Manufacturing (COM) 

The cost of manufacturing (COM) for conventional and CTH processes are estimated as the sum 

of Direct Manufacturing (DMC), Fixed Manufacturing Cost (FMC), and General Expenses (GE) 

as follows:  

    COM = DMC + FMC + GE                                                                                         (D5) 

Direct manufacturing costs represent operating expenses and vary with the throughput. 

Therefore, these expenses comprise the costs of raw materials (RM), utilities (UT), staff and 

operating labor, maintenance, miscellaneous supplies and patent with royalties.  

Table D24 and Table D25 summarize the results of the calculation of direct and fixed 

manufacturing and of general expenses for the conventional and CTH processes, respectively. 

Total manufacturing costs are estimated by the sum of single factors for FMC, DMC and GE, 

based on heuristic values for petroleum industry because of similarity with petroleum refining 

[241]. In particular, the maintenance, local taxes and insurance are assumed to be 5.5% and 1.5% 

of fixed capital investment respectively. The distribution and selling costs are assumed equal to 

zero, since the product price will be defined at the “gate” of the plant, i.e. not a user selling price. 

Table D24. Direct (without RM+UT+WT), fixed, and general costs of manufacturing for HRJ  process. 

 

Direct (without RM+UT+WT) (DMC)  $/year 

Total staff and operators 29 1,740,000 

Maintenance and repairs 5.5% FCI 10,137,378 

Miscellaneous supply 0.15% FCI 276,474 

Patent and royalties 0.94 $/m3 of feed 355,151 

Fixed (without depreciation) (FMC)  $/year 

Local taxes and insurance 1.5% FCI 2,764,740 

Plant overhead 60% (staff + maintenance) 7,126,427 

Depreciation - - 

General Expenses (GE)  $/year 

Administration costs 15% (staff + maintenance) 1,781,607 

Distribution and selling costs Product based on "gate" prices - 

Research and development 5% COM 5,069,347  

Total  29,251,124  
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Table D25. Direct (without RM+UT+WT), fixed, and general costs of manufacturing for CTH jet fuel 

production process. 

 

Direct (without RM+UT+WT) (DMC)  $/year 

Total staff and operators 25 1,500,000 

Maintenance and repairs 5.5% FCI 664,261 

Miscellaneous supply 0.15% FCI 18,116 

Patent and royalties 0.94 $/m3 of feed 355,151 

Fixed (without depreciation) (FMC)  $/year 

Local taxes and insurance 1.5% FCI 181,162 

Plant overhead 60% (staff + maintenance) 1,298,557 

Depreciation - - 

General Expenses (GE)  $/year 

Administration costs 15% (staff + maintenance) 324,639 

Distribution and selling costs Product based on "gate" prices - 

Research and development 5% COM 10,805,866 

Total  15,147,753 

 

The number of operators per shift was determined by Eq. D6 and multiplied by 4.5 to cover all 

shifts in the year. Neq is the total number of equipment from Table D26. The number of all staff 

(clerical, engineers, technicians etc.) is estimated assuming a modern plant staff for refinery, as 

detailed in Table D26. The average labor wage for staff and operators in a chemical plant is 

60,000 $/year, as reported in the Bureau of Labor Statistics for 2016 [253]. 

 

𝑁𝑜𝑝 = (6.29 + 0.23𝑁𝑒𝑞)
0.5

                                                                                                  (D6)      

 
 

Table D26. Staff and operators in a HRJ (conventional) and CTH jet fuel production processes. 

The number of staff is taken from a modern refinery. 

Staff N per shift Conventional CTH 

Refinery manager  1 1 

Operations manager  1 1 

Maintenance manager  1 1 

Engineers  3 3 

Operators 4.5 shift per roll 15 11 

Lab personnel  2 2 

Technicians  2 2 

Clerical personnel  4 4 

Total  29 25 
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Accordingly, the total manufacturing cost of conventional and CTH processes are calculated and 

summarized in Table D27 and Table D28. It is specified that in this study the waste treatment 

costs (WT) were not analyzed.  

 

Table D27. Total cost of manufacturing (COM) for HRJ (conventional) jet fuel production process. 

 

Raw Material (RM) Value Unit $/year 

WCO 1,000 ton/day 50,000,000 

Hydrogen 35.2 ton/day 18,773,333 

Utilities (UT) Value Unit $/year 

Compressor 1 1,196 kW 836,586 

Compressor 2 (make-up) 3,191 kW 2,230,902 

Feed WCO pump 125 kW 87,540 

Cooling water 1 6,197 kW 63,175 

Cooling water 2 5,736 kW 58,477 

Fired heater (LHV = 38.42 MJ/m3) 704 kW 85,807 

Condenser 2,042 kW 20,815 

Reboiler 4,189 kW 828,901 

Waste Treatment (WT) - - - 

DMC + FMC + GE (Table D24)   29,251,124  

Total COM (without depreciation)   102,236,661 

 

Table D28. Total cost of manufacturing (COM) for CTH jet fuel production process. 

 

Raw Material (RM) Value Unit $/year 

WCO 1,000 ton/day 50,000,000 

Isopropanol 341.8 ton/day 148,113,333 

Utilities (UT) Value Unit $/year 

Hot oil CTH 9,508 kW 2,138,041 

Feed WCO pump 2.1 kW 1,458 

Feed ISOP pump 1 kW 696 

Cooling water 1 3,153 kW 32,140 

Fired heater (LHV = 38.42 MJ/m3) 5,614 kW 683,904 

Reboiler 1 5,034 kW 1,425,077 

Reboiler 2 1,747 kW 867,511 

Condenser 1 1,058 kW 10,788 

Condenser 2 1,505 kW 15,348 

Waste Treatment (WT) - - - 

DMC + FMC + GE (Table D25)   15,147,753 

Total COM (without depreciation)   218,436,050 
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Products Profile and Gross Profit 

 

Products Profile and Revenues 

 

The gross income from refinery products sales was calculated considering prices at the refinery 

gate, which includes the cost of production and refiner profit. They do not account for the costs 

for distribution, transportation, retail mark-up and taxes. The gate prices for gasoline and diesel 

were calculated subtracting the average percentage of taxes (TAX%) and distribution and market 

(D&M) price from the corresponding average retail price of 2017. In this way, only wholesale 

price is accounted for the revenues of gasoline and diesel. The kerosene price is instead already 

defined at refinery gate, since U.S Energy Information and Administration provide prices of 

distillates in the refinery [254]. The average prices of these fuels for 2017 are summarized in 

Table D29.  

Table D29. Gate prices of products: gasoline, jet fuel, and diesel. naphtha prices are taken as surrogate for 

gasoline price, respectively. 

 

Product Gate Price Average (2017) 

Gasoline (naphtha) 0.426 $/L 

JET-F (kerosene) 0.443 $/L 

Diesel 0.440 $/L 

 

The volumetric flowrates of each product  

 

It is noted that the specific gravity SG of naphtha, kerosene, and diesel can be calculated from 

the definition of °API (Eq. D7). The average values of °API gravity for naphtha, kerosene, and 

diesel based on respective temperature ranges are shown in Table D30. 

                                                                              

°𝐴𝑃𝐼 =
141.5

𝑆𝐺
− 131.5                                                                                    (D7)  
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Table D30. Specific gravity of products. 

 

Fuel Products API° SG 

Naphtha (80-170°C) 62 0.731 

Kerosene (170-270°C) 42 0.815 

Diesel (270-380°C) 38 0.835 

 

Finally, the product revenues calculated from the amount and unitary price of respective fractions are 

summarized in Table D31. 

Table D31. Product incomes for HRJ (conventional) and CTH jet fuel production process. 

 HRJ          CTH  

Fuel Product Produced Unit Income ($/yr) Produced Unit Income ($/yr) 

Fuel gas  6,969 Nm3/hr 9,433,018 12,978 Nm3/hr 13,497,224 

Naphtha 8,041 L/hr 27,405,246 12,042 L/hr 41,038,506 

Kerosene 32,166 L/hr 113,969,798 24,084 L/hr 85,333,119 

Diesel - L/hr - 4,014 L/hr 13,997,406 

Total revenue (      150,808,063   153,866,254 

 

Gross Profit (GP) 

The GP is defined as the difference between revenues from the products and the cost of 

manufacturing without depreciation (COMd). The estimation of the gross profit GP without 

depreciation for conventional and CTH are reported in Table D32. 

 

Table D32. Gross profit for HRJ (conventional) and CTH jet fuel production processes. 

 

Economic Parameter 
HRJ 

($/year) 

CTH 

($/yr) 

Revenues (R) 150,808,063 153,866,254 

Cost of manufacturing (COMd) 102,236,661 218,436,050 

Gross Profit (GP) 48,571,402 -64,569,796 
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Economic Model and Profitability Analysis 

Economic Model 

The assumptions used are summarized in Table D33. In this study, similar values are adopted as 

those of other authors from the U.S. that have recently worked on the profitability of similar 

processes [21-22]. 

 

Table D33. Economic model assumptions. 

Interest/discount rate 8% 

Plant life 25 years 

Income tax rate 35% 

Working capital 15% of ISBL + OSBL 

Depreciation method MACRS 

Depreciation period 7 years 

Construction + Start-up period 2 years 

Construction plant 1st/2nd year 70%/30% 

Plant salvage value No value 

Land cost not included 

Operating hours per year (91.3%) 8,000 hours 

  

The cash flow (CF) is defined as the amount of money transferred at given time. Therefore, it 

depends on the FCI distributed over the time of construction, the working capital (WC), the net 

profit, and the depreciation allowance d. Accordingly, the CF after the plant was started up is 

determined by the net profit (Eq. D8)) plus the depreciation allowance as reported in Eq.D9: 

 

                   After Tax Profit or Net profit = (GP − dk)(1 − t)                                                    (D8) 
 

CF = Net profit + depreciation allowance = (GP − dk)(1 − t) + dk              (D9) 
 

where dk is the value of depreciation at year k, GP the gross profit and t is the tax rate.  

 

The MACRS method for the depreciation uses following equations Eq. D10: 

 

MACRS =

{
 
 

 
 

          dk
DDB =

2

n
 (FCI −∑dj)

k−1

1

       dk
SL =

(FCI − ∑ dj) 
k−1
1

n
 , when  dk

DDB < dk
SL

                               (D10) 
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where n is the depreciation period. For MACRS method, the depreciation starts with the double 

declining balance dDDB, and changed to the straight line dSL for the remaining period, when the 

latter value is bigger than dDDB.  

The Annualized Cash Flow (ACF) of each year is discounted back to the year 0 as given in Eq. 

D11, with an interest rate equal to 8%.  

 

ACFk =
CFk

(1 + i)k
                                                                                                                 (D11) 

 

The three discounted profitability criteria are time, cash and interest rate, i.e. Net Present Value 

(NPV), Internal Rate of Return (IRR), Discounted Pay Back Period (DPBP), and Present Value 

Ratio (PVR), evaluated by Eq. D12-Eq. D15. 

 

NPV = ∑
CFk

(1 + i)k

plant life

1

                                                                                                     (D12)    

 

∑
CFk

(1 + IRR)k

Plant life

1

  = 0                                                                                             (D13)  

 

∑
FCIk
(1 + i)k

=

2

1

∑
CFk

(1 + i)k

DPBP−3

3

                                                                                  (D14) 

 

PVR =
present value of all positive CF

present value of all negative CF
                                                                (D15) 

 

The internal rate of return (IRR) is the value of interest rate in Eq. D13, when the net present 

value NPV is set to zero. The Eq. D14 assumes that the completion of construction lasts 2 years 

hence the DBPB starts from the 3rd year, as reported in Table D33. The DPBP can be also 

estimated from the working capital cost WC, i.e. it is the time when the cumulative cash flows 

equal the amount of WC. The Present Value Ratio (PVR) in Eq. D15 is ratio between all positive 
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cash flows and all negative ones. When the difference of investments of two projects is very 

large, it might be useful to compare this term rather than NPV. 

Hydroprocessed Renewable Jet Fuels Profitability Analysis 

With the assumptions from Table D33, the cumulative cash flow diagram for the conventional 

process can be generated.  

Catalytic Transfer Hydrogenation Profitability Analysis 

The profitability analysis for CTH process was evaluated and different cases are considered. 

Specifically, the isopropanol price and its feed rate are analyzed in order to have, first, a 

profitable process at the end of the project life (NPV > 0) and secondly, to compete with 

conventional process. Accordingly, the values of DPBP and PRV for HRJ are used as objective 

functions.  

Moreover, a possible government incentive tax credit ($/L) is discussed and calculated as a 

revenue from each liter of kerosene produced, according to Table D34. 

The results of profitability analysis are summarized in Table D34 for all the cases listed below. 

 

1. Price of isopropanol ($/kg) to have NPV = 0. This is a measure of the maximum price 

that project could pay for isopropanol and still break even by the end of the project.  

2. Price of isopropanol ($/kg) to have CTH NPV = HRJ NPV. 

3. Price of isopropanol ($/kg) to have CTH DPBP = HRJ DPBP. 

4. Price of isopropanol ($/kg) to have CTH PVR = HRJ PVR. 

5. Amount of isopropanol (ton/day) to have NPV = 0. This is a measure of the maximum 

feed rate to reach profitable condition at the end of the project life. 

6. Amount of isopropanol (ton/day) to have CTH NPV = HRJ NPV. 

7. Amount of isopropanol (ton/day) to have CTH DPBP = HRJ DPBP. 

8. Amount of isopropanol (ton/day) to have CTH PVR = HRJ PVR. 
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9. Incentive tax for kerosene jet fuel ($/L) to have NPV = 0. This is the minimum 

incentive to reach a profit at the end of the project. 

10. Incentive tax for kerosene jet fuel ($/L) to have CTH NPV = HRJ NPV. 

11. Incentive tax for kerosene jet fuel ($/L) to have CTH DPBP = HRJ DPBP. 

12. Incentive tax for kerosene jet fuel ($/L) to have CTH PVR = HRJ PVR. 

 
 

Table D34. Profitability analysis of CTH: isopropanol price, feed, and incentive tax credit analysis. 

 

Case Isopropanol Price Price Unit 

1 Profitable NPV>0 0.748 $/kg 

2 CTH SAME NPV as Conventional 0.556 $/kg 

3 CTH SAME DPBP as Conventional 0.735 $/kg 

4 CTH SAME PVR as Conventional 0.735 $/kg 

Case Isopropanol Feed Feed Unit 

5 Profitable NPV>0 196.535 ton/day 

6 CTH SAME NPV as Conventional 146.145 ton/day 

7 CTH SAME DPBP as Conventional 193.206 ton/day 

8 CTH SAME PVR as Conventional 193.210 ton/day 

Case Incentive Tax Credit for Kerosene Tax Credit Unit 

9 Profitable NPV>0 0.344 $/L 

10 CTH SAME NPV as Conventional 0.463 $/L 

11 CTH SAME DPBP as Conventional 0.352 $/L 

12 CTH SAME PVR as Conventional 0.352 $/L 

 

 

 

 

 

 

 

 

 

 

 



242 
 

 

Table D35. Triangular probability distributions of materials and process conditions. 

 

Parameter Value 

Distance hauled (miles/truck-d) Min = 280, Likeliest = 300, Max = 350 

Mileage efficiency (miles/gal)[258] Min = 4.5, Likeliest = 5.5, Max = 6.5 

HY temperature (oC) Min = 395, Likeliest = 400, Max = 405 

HY pressure (bar) Min = 85, Likeliest = 92, Max = 100 

HY reaction time (hr) Min = 1, Likeliest = 2, Max = 3 

WCO linoleic acid fraction Min = 0.48, Likeliest = 0.52, Max = 0.55 

WCO oleic acid fraction Min = 0.15, Likeliest = 0.19, Max = 0.22 

WCO pentadecanoic acid fraction Min = 0.16, Likeliest = 0.18, Max = 0.20 

WCO nonadecanoic acid fraction Min = 0.09, Likeliest = 0.11, Max = 0.15 

FS pressure (MPa) Min = 9, Likeliest = 9.2, Max = 9.5 

FS liquid hold-up time (min)[241] Min = 9.9, Likeliest = 10, Max = 10.5 

HH temperature (oC) Min = 330, Likeliest = 350, Max = 370 

HH pressure (MPa) Min = 8.5, Likeliest = 9, Max = 9.5 

HH reaction time (hr) Min = 0.8, Likeliest = 1, Max = 1.2 

HF pressure (MPa) Min = 8.5, Likeliest = 9, Max = 9.5 

HF liquid hold-up time (min)[241]  Min = 9.9, Likeliest = 10, Max = 10.5 

LF pressure (MPa) Min = 0.09, Likeliest = 0.10, Max = 0.11 

LF liquid hold-up time (min)[241]  Min = 9.9, Likeliest = 10, Max = 10.5 

DT pressure (MPa) Min = 0.09, Likeliest = 0.10, Max = 0.11 

DT number of stages Min = 27, Likeliest = 30, Max = 33 

DT reboiler temperature (oC) Min = 160, Likeliest = 164.8, Max = 170 

DT condenser temperature (oC) Min = 60, Likeliest = 65.3, Max = 70 

CH temperature (oC)[97] Min = 370, Likeliest = 380, Max = 390 

CH pressure (bar)[97] Min = 1.5, Likeliest = 2, Max = 2.5 

Weight hourly space velocity (1/hr)[97] Min = 6.5, Likeliest = 6.8, Max = 7 

DT1 pressure (MPa) Min = 0.09, Likeliest = 0.10, Max = 0.11 

DT1 number of stages Min = 9.9, Likeliest = 10, Max = 10.5 

DT1 reboiler temperature (oC) Min = 200, Likeliest = 220, Max = 240 

DT1 condenser temperature (oC) Min = 120, Likeliest = 130, Max = 140 

DT2 pressure (MPa) Min = 0.09, Likeliest = 0.10, Max = 0.11 

DT12 number of stages Min = 13, Likeliest = 15, Max = 17 

DT2 reboiler temperature (oC) Min = 280, Likeliest = 299, Max = 320 

DT2 condenser temperature (oC) Min = 200, Likeliest = 212, Max = 225 
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Table D36. Sub-system life cycle inventory for HRJ and CTH. Energy and heat are in MJ/day and 

materials and chemicals are in tons/day. 

 
Energy/Materials Input Output 

HRJ   

Waste cooking oil transport   

   Diesel 9.47  

   CO2  27.15 

   H2O   10.65 

Hydrodeoxygenation   

   Electricity  321,091.20  

   Heat  512,599.92  

   WCO  

   H2 (gross) 

   H2 (net, minus recyle)*  

1,000.00 

26.08 

35.20 

 

   Ni-Mo/Al2O3 3.26  

CO and CO2 flash separation   

   Heat (Cooling) 

   CO  

 535,384.56 

3.36 

   CO2   22.48 

   H2O   0.10 

   Propane gas   4.12 

   H2   2.34 

   Sour water (H2O + CO2) 

Hydroisomerization and hydrocraking 

 37.77 

   H2  33.96  

High pressure flash   

   Heat (Cooling)  495,567.98 

   H2 23.40  

   H2   22.47 

   CO   7.31 

   CO2   47.45 

   C1-C3 gas   54.22 

   C4-C8   8.88 

   C9-C15   0.29 

Low pressure flash   

   H2   0.94 

   CO   0.75 

   CO2   33.37 

   C1-C3 gas   43.42 

   C4-C8   42.93 

   C9-C15  0.90 

   C1-C3 liquid (LPG)   7.52 

   C16-C18 (diesel)   2.64 

   Liquid CO2   1.52 

Distillation   

   Electricity 361,968.00  

   Heat (Cooling)  176,408.16 

   Naphtha   267.80 

   Jet fuel  478.37 

Fuel transport   
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Table D36. Sub-system life cycle inventory for HRJ and CTH. Energy and heat are in MJ/day and 

materials and chemicals are in tons/day cont. 

 
   Diesel 7.06  

   CO2 

   H2O 

 

 

20.26 

7.94 

Infrastructure   

   Steel 0.0017  

CTH   

Waste cooking oil transport   

   Diesel 9.47  

   CO2  27.15 

   H2O   10.65 

Catalytic transfer hydrogenation   

   Electricity 266.30  

   Heat 485,100.00  

   WCO 1,000.00  

   2-propanol 341.80  

   Activated carbon 0.0913  

   Coke  29.41 

Low pressure flash   

   Heat (Cooling)  272,377.44 

   H2  6.85 

   CO  127.90 

   CO2  169.39 

   H2O  0.02 

   C1-C3 gas  161.85 

   Octane  5.83 

   Dodecane  0.11 

   Acidic water (H2O + CO2 + CO)  72.06 

   C1-C3 liquid (LPG)  4.40 

Distillation 1   

   Electricity 7,542.40  

   Heat (Cooling)  91,416.00 

   Naphtha  229.59 

   Jet fuel  3.40 

Distillation 2   

   Electricity  150,888.00  

   Heat (Cooling)  130,056.00 

   Naphtha  3.27 

   Jet fuel  399.48 

   Diesel  122.13 

Fuel transport   

   Diesel 4.97  

   CO2  14.25 

   H2O  5.59 

*Net H2 requirement is 35.20 tons/day, of which 22.93 tons/day is consumed in the 

hydrodeoxygenation reactor, 11.34 ton/day in the hydrocracking unit, and 0.93 ton/day are 

lost in the light gas stream separated by the low-pressure flash.       
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APPENDIX E 

ANALYTICAL METHODS EMPLOYED IN THIS STUDY 

 

GAS CHROMATOGRAPHY SPECTROMETRIC ANALYSIS 

 Shimadzu GCMS-QP2010SE and Gas chromatography GC2010 plus was employed in the 

analysis of fuel liquid. This instrument has a high level of sensitivity as it employs quadrupole 

ion focusing facility with mass-to-charge ratio of 1000.  To ensure accuracy of the analysis and 

the safety of the instrument, the following routine precautions were maintained. 

1. Helium gas (99.995%) was used as carrier gas with supply pressure of 700-800 kPa was 

applied. 

2. To start the instrument, the carrier gas was turned on from the main valve on the gas 

cylinder to register ~700-800 kPa. 

3. It was ensured that the breaker controlling the instrument was on all the time.  

4. The GC was turned on, followed by the computer and its monitor. 

5. The MS was turned on, making sure the LED in the upper left corner was lit. 

6. Method File was created by clicking “file” and “Method” in the menu bar. 

7. Figure E1 highlights the real-time analysis program when the system is completely turned 

on. 

8. To ensure proper operation of the instrument, system check was performed to eliminate 

leaks, overuse of parts, increase sensitivity, etc. 

9. The system was tuned in by clicking “Auto tuning” icon in the Assistant Bar. 

10. After tuning the system, the tuning file was saved. 
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11. Corrective measures were performed after tuning. For example, looking and fixing leaks, 

changing ferrule, cleaning the ion source, etc. 

12. It was made sure that the column was baked for 30 minutes at 300 oC to eliminate 

contaminants after the column had been used for a long time. This was done by 

disconnecting the column and the mass spectrum (MS) and allowed helium gas to flow 

through column. 

13. When there was a column change, moisture was eliminated allowing helium gas to flow 

through at 110oC for few minutes. 

 

 

Figure E1. “GCMS Real Time Analysis” Program 
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E1. SELECTION OF THE RIGHT INJECTION PORT. 

Since the GCMS has two different sample injection port (one for GC and the other for pyrolysis), 

the correct injection port must be selected by the follow procedure. 

1. Click on “System configuration” icon. 

2. Add or remove the available module as shown in Figure E2. 

3. Select Analytical Line #1 for GC while Analytical Line #2 for pyrolysis 

4. For GC, select AOC 20i, and for pyrolysis select PY. 

5. Select MS for both GC and pyrolysis. 

 

Figure E2. “System Configuration” dialogue box. 
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E2. DATA ACQUISITION 

This section deals with the setting the instrument parameters to run samples (liquid fuel 

products). The following procedure elucidate the advanced setting the instrument parameters. 

1. Select View and click the Instrument parameters. 

2. Click on the GC tab as shown in Figure E3. 

3. Set the temperature program and carrier gas flow parameters. 

4. Repeat the procedure to set the MS parameters. 

 

Figure E3. GC Parameters Tab. 
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E3. LIQUID FUEL ANALYSIS 

E3.1. Parameter setting 

1. The final temperature for the column was set to 250 oC 

2. 40 oC was assigned to the oven temperature. 

3. Injection temperature was set to 250 oC. 

4. The ramp temperature was set to 20 oC/min. 

5. The split ratio was selected between 100-200 as the component’s concentration varied for 

different samples. 

6. The column pressure was set to 45 kPa, which automatically changed the linear velocity 

to nearly 36 cm/s. 

7. The column purge flow was set to 0.5. 

8. MS ion source was set to 225 oC and solvent cut time was set to 0.5 less than the start 

time. 

9. The scan speed of the MS was set to 666. 

E3.2. Sample preparation 

1. 0.1 mL liquid sample was pipetted into a 2-mLvial 

2. The sample was diluted with hexane (99.99%) to prepare 10 ppm solution 

3. 2 mL of the hexane was used as blank. 

4. The samples were placed in the auto sampler and analyzed. 
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E4. PYROLYSIS ANALYSIS 

Since the pyrolysis unit has its own column that connects the MS, the GC column should be 

replaced by that of the pyrolysis. To run the pyro-GCMS, the following procedure was 

followed. 

1. Connect the pyrolysis column to the MS-Pyrolysis interface. 

2. Open the pyrolysis program and set the necessary parameters as shown in Figure E4 

3. In the menu bar of the GC Click “Acquisition” and select “download parameter.” 

4. On the menu bar, select the “Instrument”, the “sample inlet unit”, and “line 2.” 

5. Also, select “download parameter” in the “instrument.” 

6. Load the 1.0 mg sample into the crucible and place it in the pyrolysis unit. 

7.  Click “sample login” icon in the assistant bar and enter the necessary parameters. 

8. Click the “download” icon. 

9. Click “start” button on the Acquisition software. 

10.  Click “start” in the pyrolysis software and press the sample holder of the pyrolysis unit 

to release the sample. 

11. Quickly click the “start” button on the pyrolysis software and allow it run. 
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Figure E4. Pyrolysis control software 
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