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ABSTRACT 

Water demand is increasing at a rapid pace due to population increase, industrial expansion, and 

agricultural development. The use of desalination technology to meet the high water demands 

has increased global online desalination capacity from 47 million m3/d in 2007 to 92.5 million 

m3/d as of June 2017 [49]. Membrane and thermal processes are the two mainstream 

desalination categories used worldwide for desalination plants. Reverse Osmosis (RO) is the 

most widely used membrane process and it has become the dominant technology for building 

desalination plants over recent decades. Thermal distillation, however, has become less and less 

competitive due to its high production costs, mainly due to a reliance on increasing fuel prices 

and large thermal energy requirements. Although heat recuperation is commonly used, it adds 

investment cost and increases complexity of the system.  

 

The concept of Single-Stage Venturi-driven (SSV) Desalination, a single-stage, thermal 

desalination system, using a Multifunctional Venturi Water Ejector (Venturi system), is 

proposed, analyzed, and demonstrated. The system requires only low-grade solar heat (< 60 °C) 

mainly to supplement the heat loss during operation. As compared to the conventional methods 

of solar desalination, the proposed system has the following intellectual novelties: First, the 

novel multifunctional water ejector integrates a vacuum pump for steam production, a 

compressor for condensation, and a starter for heat recuperation. Second, only residential-grade 

solar water heating is needed for the heat demand which greatly reduces the production cost of 

solar desalination, as compared to those systems using concentrated solar power (CSP). Third, 

the proposed system is operated standalone based solely on solar energy. 

 



   

The main objective of this research is to accurately analyze and model the SSV system, and 

achieve an estimated levelized cost of water (LCOW) close to the DOE target of $0.50/m3 (DE-

FOA-0001778) [55]. Additionally, prototypes, operating at about 0.1 bar, were built to prove the 

concept that very low-grade heat sources can be utilized with the system. While similar to other 

thermal methods, such as MSF (multi-stage flash desalination), MED (multi-effect desalination), 

and VC (vapor compression desalination), the SSV system utilizes a unique water ejector to 

reduce vapor pressure in a “boiler” and operate at lower temperatures, thereby increasing the 

heat regeneration efficiency and decreasing the heat input temperature requirements. The 

concept, as well as the scalability, of the system is proven in the results. The performance of the 

Venturi System was simulated using Comsol Multiphysics. The simulation results were 

compared to both the theoretical and experimental results. The lowest experimental vacuum 

pressure achieved during operation was 0.07 bar, equating to a boiling point of 40 ℃. High-

performance, customized Venturi water ejector designs are projected to further lower vacuum 

pressures. In this study, a thermo-economic analysis was performed as a theoretical baseline for 

the performance of the novel technology. In the future, the baseline results should be compared 

to experimental results of a pilot or operational SSV desalination plant. The resulting energy 

requirements of the system are calculated as 40.6 kWh/m3 for thermal and 0.23 kWh/m3 for 

electrical energy requirements. The performance ratio and exergy efficiency are calculated as 

15.4 and 39%, respectively. Using all three modes of analysis, theoretical, experimental, and 

computer simulation, the system makes a strong case as a cost competitive desalination solution. 

Ultimately, the Thermo-Economic model estimated the LCOW at $0.67/m3, achieving a lower 

price point than most commercialized solar desalination technologies. 
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NOMENCLATURE 

S Flow stream identifier Subscripts: 

T Temperature (°C) b boiler 

�̇� Mass flow rate (kg/s) bp Boiling point 

H Enthalpy (kJ) 1 Location 1 in SSV system 

h Specific Enthalpy (kJ/kg) 2 Location 2 in SSV system 

E Exergy (kJ) 3 Location 3 in SSV system 

e Specific exergy (kJ/kg) P1 Primary water without steam 

addition 
C Cost ($) P2 Primary water with steam 

addition �̇�  Heat rate (kW) br Brine flow 

𝑚𝑓𝑠  Mass fraction of salt dist Distillate flow 

𝑚𝑓𝑤  Mass fraction of water sys System 

𝜏 Rate of transmission of solar collector cover o Out of control volume 

𝛼 Rate of absorption of solar collector absorber i Into control volume 

�̇�  Power (kW) HX Heat exchanger 

V Velocity f Final 

s Specific entropy (kJ/kg*K) 0 Reference or dead state 

A Area (m2) sw Seawater 

𝜌  Density (kg/m3) in Seawater into the boiler 

B Volumetric Flow rate (m3/s) Abbreviations: 

P Pressure (Pa) MSF Multi-Stage Flash Desalination 

𝑐𝑃  Specific Heat (kJ/kg*K) RO Reverse Osmosis 

  ME

D 

Multi-Effect Distillation 

  VC Vapor Compressrion 

  IRR Internal Rate of Return 

  PV Present Value 

  SSV Single-Stage, Venturi-Driven  
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I. CHAPTER 1: 

INTRODUCTION 

A. Problem Background 

 

Fresh water demand continues to rise each year due to increased population, GDP and industrial 

growth, and agricultural development. Water, an essential aspect of human existence, is one of 

the most abundant resources on earth, coving three-fourths of our planet’s surface. About 97% of 

the earth’s water is salt water in the oceans and 3% is fresh water contained in the poles (in the 

form of ice), groundwater, lakes, and rivers, which supply most of human and animal needs [3]. 

In many arid regions of the world, fresh water sources have become extremely limited and these 

areas are already heavily dependent on desalination technologies to supply their growing demand 

for potable water.  

 

Currently, there are more than 18,000 desalination plants in operation worldwide producing 

several billion gallons of water per day [49]. Over 50% are in the Middle East where large-scale 

conventional heat and power plants are among the region's most important commercial 

processes. They play a crucial role in providing fresh water for many communal and industrial 

sectors, especially in areas with a high density of population [9]. Qatar and Kuwait rely 100% on 

desalinated water for domestic and industrial supplies [12]. 

 

The use of desalination technology to meet the high water demands has increased global online 

desalination capacity from 47 million m3/d in 2007 to 92.5 million m3/d as of June 2017 [49]. 

Figure 1 shows the global online desalination capacity and capacity added each year since 1980. 
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Figure 1: Global Online Desalination Capacity and Annual New Capacity since 1980 [49]. 

 

 

B. Desalination Industry Overview 

The mainstream desalination technologies can be divided into two main categories: Thermal and 

Membrane technologies. Other types of desalination categories include absorption and chemical 

processes.  Thermal desalination methods have been around for much longer than Membrane 

technologies, which were not commercialized until the 1970s [8]. Figure 2 shows a classification 

of desalination categories and current technologies. 

 

Thermal desalination methods involve heating salt water until it evaporates from a salt solution, 

and then recovering the heat in the water vapor by condensing it back into liquid water. Thermal 
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desalination systems include: multi-stage flash distillation (MSF), multi-effect distillation 

(MED), vapor compression (VC), humidification-dehumidification (HDH), and solar distillation 

(SD). Freezing (Frz) distillation is considered a thermal desalination system but produces clean 

water from freezing the liquid water. Membrane technologies utilize a semi-permeable 

membrane and a driving mechanism to force the liquid water through the membrane but leave 

other solid contaminants behind. The driving force is supplied through various methods, such as 

mechanical pressure, electrical potential, or a concentration gradient. Membrane desalination 

systems include: Reverse Osmosis (RO), Forward Osmosis (FO), Electro-dyalysis (ED), and 

nanofiltration (NF). Some chemical desalination technologies include: ion-exchange (I.Ex), 

liquid-liquid extraction (LLE) and gas hydrate (G.Hyd). Recently, absorption technology (Ads) 

has been investigated for desalination application [17]. 

 

 

 

Figure 2: Classification of desalination technologies [17]. 

 

 

In 2012, the total installed capacity was 66.4 million m3/day, and 59.85% came from the 

Seawater Reverse Osmosis (RO), the most popular membrane technology [12]. Multi-Stage 

Flash (MSF) and Multi-Effect Desalination (MED or MEB) are the most widely used thermal 

technologies on the market (Figure 3). 
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Figure 3: Installed (left) and forecasted (right) desalination capacities by technology (as of first 

quarter of 2012) [12]. 

 

 

Desalination technologies, mainly MSF, MED, and RO, have made great strides in reducing cost. 

As the price points become more competitive, and as the demand for fresh water resources 

expands, the utilization of these technologies in plant-scale systems has increased. Today, the 

specific, equivalent electrical consumption of mainstream desalination methods ranges from 4 to 

20 kWh/m3 (Table 1). The electrical energy equivalent of thermal energy is based on power plant 

efficiency of 30%. 

 

 

Table 1: Energy consumption of the main desalination processes [3]. 
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Table 2: Average water production cost of the main desalination processes [10]. 

 

 

 

Reverse Osmosis is the most dominant technology in the desalination market today. Over 50% of 

the total desalination investments each year are for RO projects mainly due to its lower 

investment and total water cost compared to other technologies [12]. However, for highly saline 

seawater, RO is inefficient and sometime incapable of producing high-quality, desalinated water. 

In these environments, thermal desalination methods involving vaporization are the optimal 

technology. According to World Health Organization (WHO) guidelines, the permissible limit of 

salinity in drinking water is 500 ppm and for special cases up to 1000 ppm.  RO also produces 

high levels of brine discharge, which have a strong potential to detrimentally impact both the 

physicochemical and ecological attributes of receiving environments [9]. 
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For popular thermal desalination methods, mainly MSF, MED, and VC, the high quality of clean 

water production comes at a price. In these traditional technologies, high energy requirements for 

boiling water are combated with high temperature heat inputs and complex designs for efficient 

heat recuperation. The disadvantages of such designs are increased costs (energy input and 

investment costs), increased construction time, and decreased location flexibility. MSF and MED 

traditionally require either a nearby power plant to extract residual steam or an established 

delivery route for fossil fuels. The high-temperature heat source requirement limits the 

application of the technologies. Also, the designs are too complex and large-scale to be made as 

a portable, modular system. The remainder of this paper will focus of thermal desalination 

technologies to compare the novel SSV system to other similar thermal desalination systems in 

the market today.  

 

C. Thermal Desalination Technologies 

This paper presents further detail of the three mainstream thermal desalination technologies, 

MSF, MED, VC, followed by an introduction to solar desalination. The performance of MSF and 

MED can be used as a baseline comparison for the SSV system presented in this paper. MSF and 

MED require both thermal and electrical energy input. The efficiency of heat input for each 

thermal system is described using two equivalent parameters: (1) the gain output ratio (GOR), 

which is a measure of how much thermal energy is consumed in the desalination process, and is 

defined as the ratio of the mass distillate (kg) to the mass (kg) or the input steam, and (2) the 

performance ratio (PR), which is the mass of distillate (kg) per 2326 kJ, the heat of vaporization 

of 1 kg of liquid water. Since the SSV system presented in this paper does not require input 
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steam, the performance ratio and energy requirements will be used to compare performance 

between thermal desalination systems. In the Solar Desalination section, direct and indirect solar 

desalination systems will be introduced, and further detail will be provided about the solar still, 

solar MSF, and solar MED technologies. 

 

Multi-Stage Flash Desalination: 

 

 

 

Figure 4: Schematic diagram of a typical MSF unit [10]. 

 

 

MSF is currently the second-most installed desalination process worldwide after the RO process. 

The thermal energy is in the form of low-pressure bleed steam (1 to 3 bars) for the feed-brine 

heating, and medium pressure steam for the ejectors to generate the required vacuum in different 

sections of the unit. The dependence of MSF on a steam source reduces the number of 
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applications and locations of use. MSF units consist of a series of stages, ranging from 4 to 40 

each, with successively lower temperature and pressure that cause flash evaporation of the hot 

brine followed by the condensation as fresh water. If steam is not available, a separate boiler is 

necessary to produce the steam for the first stage. External heat from fossil fuel boilers, power 

plant waste heat, nuclear reactor, renewable energy, and any other heating source is supplied to 

the intake brine temperature of 90°C to 110°C. The high intake brine temperature limits the use 

of low-cost, low temperature heat sources, such as geothermal and non-concentrating solar, with 

the MSF system. Flashing of the steam forms scales and deposits on the tubes, so periodic 

cleaning and removal is required [10]. If we use the manufacturers’ values, then the thermal 

energy consumption of an MSF plant ranges between 53.78 kWh/m3 (GOR=12) and 78.33 

kWh/m3 (GOR=8). The electricity consumption of the pumps ranges between 2.5 and 5 

kWhe/m3. Therefore, the total equivalent electrical energy consumption of the MSF unit ranges 

between 19.58 and 27.25 kWhe/m3 [10]. 
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Multi-Effect Distillation: 

 

 

 

Figure 5: Schematic diagram of a typical MED unit [10]. 

 

 

The MED process consists of a series of stages (usually from 2 to 16) that are maintained at 

decreasing levels of pressure. The MED system has a top brine temperature around 70°C, 

increasing thermal efficiencies and decreases the cost of external heat input. External steam is 

used to evaporate some of the brine inside the stage that is kept at low pressure. The water vapor 

produced from the stage is transferred inside a tube to the next stage for boiling additional 

seawater, which produces water vapor in a series fashion [10]. 

 

Unlike an MSF plant, the MED process usually operates as a once through system without a 

large mass of brine recirculating around the plant. This design reduces both pumping 

requirements and scaling tendencies [39]. Additionally, the performance ratio for an MED plant 
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is more rigidly linked to and cannot exceed a limit set by the number of effects in the plant. For 

instance, a plant with 13 effects might typically have a PR of 10. However, an MSF plant with a 

PR of 10 could have 13-35 stages depending on the design. MED plants commonly have 

performance ratios as high as 12-14 [26]. Typical Arab Gulf countries’ MED plants operate at 

GOR values of 8 to 12, slightly lower than manufacturer ratings [10]. The main difference 

between this process and the MSF is that the steam of each effect just travels to the following 

effect, where it is immediately used for preheating the feed. This process requires more 

complicated circuit equipment than the MSF [3]. 

 

Like MSF, MED also uses steam for both the heat input and to drive steam ejectors. Steam 

ejectors are necessary to produce vacuum pressures in each effect but lead to thermal 

inefficiencies. This paper offers an alternative method to produce vacuum pressures using a 

water ejector. Typically, both MSF and MED require a large number of pumping units, including 

pumps for seawater intake, distillate product, brine blowdown, and chemical dosing. If we use 

the manufacturers’ values, then the thermal energy consumption of MED plants ranges between 

40.28 kWh/m3 (GOR=16) to 63.89 kWh/m3 (GOR=10). The electrical energy consumption of 

the pumps ranges from 2.0 to 2.5 kWhe/m3. Therefore, the total equivalent electrical energy 

consumption of the MED units ranges from 14.45 to 21.35 kWhe/m3 [10]. 
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Vapor Compression: 

 

 

 

Figure 6: Schematic diagram of typical VC (MVC and TVC) units [10]. 

 

 

Distillation plants using vapor compression rely on the heat generated by the compression and 

subsequent condensation of water vapor to evaporate salt water, and two methods are employed 

– mechanical vapor compression (MVC) and thermal vapor compression (TVC). The feed water 

enters the VC process through a heat exchanger, and vapor is generated in the evaporator and 

compresses by mechanical (MVC) or thermal (TVC) means. Compressing the vapor raises its 

temperature by a sufficient amount to serve as the heat source. The concentrated brine is 

removed from the evaporator vessel by the Brine Recirculation Pump. This flow is then split, and 

a portion is mixed with the incoming feed and the remainder is pumped to the waste [10]. MVC 
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uses electricity to drive the compressor, whereas in TVC a stream jet creates the lower pressure 

via a thermocompressor. Using a thermocompressor, or steam ejector, in TVC requires a steady 

steam supply to operate. A steam ejector will have substantial energy losses due to shock waves. 

Many modern MED plant are combined with TVC technology. MVC, like RO, needs electrical 

or mechanical energy only. It operates at a maximum TBT around 74 °C, with electrical energy 

consumption ranging from 7 to 12 kWhe/m3. For TVS, both low-temperature heat (steam) and 

electricity are needed. At TBT ranges from 63 °C to 70 °C, thermal energy requirements are 

approximately 63.1388 kWh/m3, electricity consumption is about 1.6-1.8 kWhe/m3, and total 

equivalent electrical energy consumption of the TVC process is about 16.26 kWhe/m3 [10]. 

 

D. Solar Desalination 

Thermal desalination requires a large amount of thermal energy, making solar thermal energy a 

great alternative heat source to conventional fossil fuels and residual power plant heat. 

Unfortunately, as the temperature of the heat input increases, the cost of the solar thermal system 

increases and the efficiency decreases. The high cost of CSP greatly diminishes the original 

financial advantage of using abundant solar thermal energy. At low temperatures, Flat Plate solar 

collectors may be used. This section reviews the operating principle of solar thermal systems and 

compares various types of solar collectors. 

 

In solar desalination, two types of solar collection methods are included: direct and indirect. The 

representative example of direct collection systems is the solar still. Indirect collection systems 

employ two subsystems: one for collection of renewable energy and one for desalination [3]. 

Figure 7 presents different methods of solar desalination that have been investigated on a lab or 
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commercial scale [43]. All three thermal desalination technologies (MSF, MED, and VC) utilize 

indirect solar collection methods. When  

 

 

Table 2 and Table 3 are compared, it is obvious that adding renewable energy significantly 

increasing the production cost of every desalination technology. Coupling solar CSP with MED 

increases the cost of water production from an estimated $0.5/m3 to $2.4/m3. A list of solar 

desalination plants implemented worldwide can be seen in Figure 11. 

 

 

 

Figure 7: Pilot tested solar desalination technologies [43]. 
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Table 3: Energy consumption and water production of common Renewable Energy-coupled 

desalination [10]. 

 

 

 

Solar Thermal Collectors 

Solar thermal energy collectors are a special kind of heat exchanger that transforms solar 

radiation to internal energy of the transport medium. The major component of any solar system is 

the solar collector. This is a device, which absorbs the incoming solar radiation, converts it into 

heat, and transfers this heat to a fluid (usually air, water, or oil) flowing through the collector [3]. 

Typically, the circulating fluid must be put through an additional heat exchanger to extract the 

solar energy, leading to further inefficiencies and complexity. The SSV system bypasses the 

additional heat exchanger by using the inlet seawater both as the collector circulating fluid and 

heat input fluid for the desalination system. 

 

There are basically two types of solar collectors: non-concentrating or stationary and 

concentrating. A non-concentrating collector has the same area for intercepting and for absorbing 

solar radiation, whereas a sun-tracking concentrating solar collector usually has a concave 
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reflecting surfaces to intercept and focus the sun’s beam radiation to a smaller receiving area, 

thereby increasing the radiation flux [3]. A list of common solar collectors is presented in Table 

4. A comprehensive review of various types of collectors currently available is presented in [33] 

and may not be repeated here. 

 

As collector temperatures increase, cost and complexity of the solar collector system increase 

while the efficiency decreases. For most solar MSF and MED plants, a parabolic collector is 

typically used as seen in Galvan et al. [40], S.M.A. Moustafa et al. [28], and Eduardo Zarza et al. 

[30]. Some modern desalination plants do, however, use evacuated tube collectors, such as A.M. 

El-Nashar et al. [31].  

 

 

Table 4: Types of solar thermal energy collectors [21]. 
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Flat plate Solar Collector: 

The flat plate solar collector system was used in this study as the heat source in the thermo-

economic model. Flat plate collectors are the most common solar collector for solar water-

heating systems in homes and solar space heating. A typical flat plate collector (Figure 8) is an 

insulated metal box with a glass or plastic cover (called the glazing) and a dark-colored absorber 

plate. These collectors heat liquid or air at temperatures less than 80 °C [21]. 

 

 

 

Figure 8: A typical liquid Flat Plate Collector [21]. 
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Figure 9: Example Heat flow through a Flat Plate solar collector [21]. 

 

 

As shown in Figure 9 , a part of the radiation is reflected back to the environment, another 

component is absorbed by the glazing, and the rest is transmitted through the glazing and reaches 

the absorber plate as short-wave radiation. Therefore, the conversion factor indicates the 

percentage of solar rays penetrating the transparent cover of the collector (transmission) and the 

percentage being absorbed. Basically, it is the product of the rate of transmission of the cover 

and the absorption rate of the absorber [21]. 
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Direct Solar Desalination Systems 

 

 

 

Figure 10: Common designs of solar stills [3]. 

 

 

Solar Still: 

A conventional solar still uses the greenhouse effect to evaporate salty water. It consists of a 

basin, in which a constant amount of seawater is enclosed in a ‘V’-shaped glass envelope. The 

sun’s rays pass through the glass roof and are absorbed by the blackened bottom of the basin. As 

water is heated, its vapor pressure is increased. The resultant water vapor is condensed on the 

underside of the roof and runs down into the troughs, which conduct the distilled water to the 

reservoir. The still acts as a heat trap because the roof is transparent to the incoming sunlight, but 

it is opaque to the infrared radiation emitted by the hot water (greenhouse effect). The roof 
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encloses all of the vapor, prevents losses, and keeps the wind from reaching and cooling the salty 

water [3]. 

 

The still requires frequent flushing, which is usually done during the night. Flushing is 

performed to prevent salt precipitation [24]. Design problems encountered with stills are brine 

depth, vapor tightness of the enclosure, distillate leakage, and cover slope, shape, and material 

[24; 25]. A typical still efficiency, defined as the ratio of energy utilized in vaporizing the water 

in the still to the energy incident on the glass cover, is 35% (maximum) and daily still production 

is about 3-4 L/m2 [26].  

 

Indirect Solar Desalination Systems  

 

 

 
Figure 11: List of solar thermal desalination plants implemented in the world [47]. 
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Solar MSF: 

In MSF, the solar collector is used in place of a conventional brine heater to heat the feed saline 

water above the saturation temperature and is made to flash in the vessel where low pressure is 

maintained. Because the input seawater is heated above 100 °C, concentrated solar power (CSP) 

is typically required. A disadvantage of MSF is that precise pressure levels are required in the 

different stages and therefore some transient time is required to establish the normal running 

operation of the plant. This feature makes the MSF relatively unsuitable for solar energy 

applications unless a storage tank is used for thermal buffering [27].  

 

S.M.A. Moustafa et al. [28] report on the performance of a 10 m3/day solar MSF desalination 

system tested in Kuwait. The system consisted of a 220 m2 parabolic trough collectors, 7000 L of 

thermal storage and a 12-stage MSF desalination system. The thermal storage system was used 

to level off the thermal energy supply and allowed the production of fresh water to continue 

during periods of low radiation and night-time. The output of the system is reported to be over 10 

times the output of solar stills for the same collector area [3]. 

 

Solar MED: 

MED has advantages when coupled with solar thermal energy collectors because of its stable 

operation between virtually 0 and 100% output even when sudden changes are made and its 

ability to follow a varying steam supply [29]. 
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E. Energy and Exergy Analysis of Desalination Systems 

It is common to analyze thermal desalination systems using an energy balance on both the entire 

process and each subsystem. Most of the thermodynamic analysis performed on desalination 

systems is based on the first law of thermodynamics [34; 35; 36]. Although the first law is an 

important tool in evaluating the overall performance of a desalination plant, such analysis does 

not take into account the quality of energy transferred. This is an issue of particular importance 

when both thermal and mechanical energy are employed, as they are in thermal desalination 

plants. First-law analysis cannot show where the maximum loss of available energy takes place. 

Second-law (exergy) analysis is needed to place all energy interactions on the same basis and to 

give relevant guidance for process improvement [3]. Analysis of exergetic flows helps engineers 

and analysts to identify source, magnitude, and importance of thermodynamic inefficiencies [2]. 

Normally, an exergy analysis will be performed on an existing desalination system as an analysis 

tool. In this study, a theoretical exergy and energy analysis was performed as a theoretical 

baseline for the performance of a novel technology, SSV desalination. In the future, the baseline 

results should be compared to experimental results of a pilot or operational SSV desalination 

plant. 

 

MED Exergy Analysis: 

Exergy analysis, based on actual measured data of the Multi-Effect Stacked (MES) plant 

installed in the solar plant near Abu Dhabi, is presented by Ali M. El-Nashar et al. [32]. The 

exergy destruction was calculated for each source of irreversibility. The major exergy destruction 

was found to be caused by irreversibilities in the different pumps with the vacuum pump 

representing the main source of destruction.  
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Major exergy losses are associated with the effluent streams of distillate, brine blow-down and 

seawater. Exergy destruction due to heat transfer and pressure drop in the different effects, in the 

preheaters and in the final condenser, and in the flashing of brine and distillate between the 

successive effects represents an important contribution to the total amount of exergy destruction 

in the evaporator [3]. 

 

Vapor Compression Exergy Analysis: 

Exergy analysis reveals that the thermal vapor compression desalination plant (TVC) is the most 

exergy efficient when compared with mechanical vapor compression (MVC) and multi-effect 

distillation (MED) plants [3]. The SSV system presented in this paper utilizes a similar Venturi 

device as the focal point of the system with promise of high exergy efficiencies. 

 

The sub-system most responsible for exergy destruction in all three desalination systems 

investigated is the first effect, because of the high temperature of its heat input. In the TVC 

system, this amounts to 39%, with the second highest exergy defect being that of the 

thermocompressor, equal to 17% [3]. As stated previously, lowering the temperature of the heat 

input has grand implications. At lower temperature heat transfer, the exergy destruction in the 

boiler is decreased.  

 

Exergy losses can be significantly reduced by increasing the thermo-compressor entrainment 

ratio (vapor taken from evaporate and compressed by ejector), or by decreasing the top brine and 

first-effect heat input temperature [3]. 
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F. Economic and Cost Analysis of Desalination Systems 

Economic models for desalination systems account for the cost of components, including 

maintenance, and the cost of fuel consumption. Most economic studies of MED and MSF break 

down the cost into capital costs, fuel costs, and operating and maintenance (O&M) costs [2]. 

Almar water solutions produced a report in 2016 on the cost of desalination in the Middle East 

and North Africa (MENA) region. Almar water solutions is a desalination plant manager and 

operator in more than 30 different countries in the region. MENA is one of the largest regional 

consumers of desalination technologies, containing over 50% of worldwide desalination plants 

[9]. The average capital and O&M costs of the desalination in the MENA are shown in Figure 

12. While the costs in the report represent real desalination project costs in the MENA region, 

the average capital and O&M costs vary significantly from source to source and tend to be 

dramatically lower than the costs referenced by Almar. In Ali M. El-Nashar et al. [44], the 

average MED capital and O&M costs were estimated  22% and 28% lower, respectively. In this 

paper, a conservative and appropriate approach is taken by using the average capital costs and 

O&M costs reference in this paper. The capital cost and O&M cost breakdown for thermal 

desalination and RO projects are shown in Figure 13 and Figure 14. In the O&M cost average, 

the electrical energy cost and thermal energy, or fuel, costs are included. 
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Figure 12: Summary of Desalination Costs in the MENA Region [14]. 

 

 

 

Figure 13: Average Capital Cost Breakdown of Desal Projects in MENA Region [14]. 
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Figure 14: Average O&M Cost Breakdown of Desalination Projects in MENA Region [14]. 

 

 

The interest rate used in economic studies also varies significantly. For this study, the interest 

rate on initial investment will be assumed zero. Without determining the financing structure, it 

would be inappropriate to assume 100% of the investment cost will be in the form of debt 

financing with a fixed interest rate. It is likely that equity financing or government grants will 

make up the bulk of the project funds. 

 

A Discounted Cash Flow (DCF) analysis is a valuation method used to estimate the 

attractiveness of an investment opportunity. DCF analyses uses future free cash flow projections 

and discounts them, using a required discount rate to arrive at the present value of the estimates 

[50]. The internal rate of return (IRR) is a metric used in capital budgeting to estimate the 
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profitability of potential investments. Internal rate of return is a discount rate that makes the net 

present value (NPV) of all cash flows from a particular project equal to zero [50]. In the 

Economic Analysis section, the IRR of a theoretical SSV Plant project was determined using 

cash flow tables with different prices for the production of clean water. 
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II. CHAPTER 2: 

Project Idea, Technical Approach, and System Design 

 

Project Idea 

In this thesis, we proposed the concept of Single-Stage Venturi-driven (SSV) Desalination, a 

single-stage, thermal desalination system using a multifunctional Venturi water ejector (Venturi 

System). The system only requires low-grade solar heat (< 60 ºC) mainly to supplement the heat 

loss during operation. As compared to the conventional methods of solar desalination, the 

proposed system has the following intellectual novelties: First, the novel Multifunctional 

Venturi Water Ejector (Venturi System) integrates a vacuum pump for steam production, a 

compressor for condensation, heat transfer device, and a starter for heat recuperation. Second, 

only residential-grade solar water heating is needed for the heat demand which greatly reduces 

the production cost of desalination, as compared to those systems using concentrated solar power 

(CSP). Third, the proposed system is operated standalone based solely on solar energy. It can be 

modularized and easily scaled up due to its simplicity.  
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Figure 15: Schematic of Single-Stage Venturi-Driven Desalination. 

 

 

Figure 15 shows a schematic diagram of the proposed desalination system. It is comprised of two 

interactive thermofluidic cycles: Primary water and steam cycle. In the steam cycle, steam is 

produced through boiling saline water at vacuum pressure (< 0.1 bar) and relatively low 

temperature (< 45 ºC). The Multifunctional Venturi Water Ejector is used to create a vacuum to 

pump out steam from the boiling vessel. Steam is then condensed back into fresh water within 

the boiler via a heat exchanger. During steam condensation, latent heat is released and 

recuperated back into the boiling tank. In the Primary water cycle, fresh water, or primary water, 

is circulated by a water pump, mainly to drive the Multifunctional Venturi Water Ejector. Fresh 
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water coming from steam condensation is collected continuously by a fresh water tank during 

circulation. 

 

Both MSF and MED have complex heat recuperation systems, which reduce thermal energy 

losses, but increase the installation and maintenance costs of the systems. SSV solves these 

issues by utilizing a simple, single-stage design with extremely low operating temperatures and a 

Venturi system with no moving parts. 

 

Venturi Devices: 

The Multifunctional Venturi Water Ejector (Venturi System) is a liquid-gas steam ejector and is 

the keystone to the SSV system. A steam ejector, like a thermocompressor, is a type of Venturi 

device. To understand its usefulness, the operating principle of the Venturi nozzle must be 

discussed. A Venturi nozzle is a converging, diverging nozzle. When a fluid is pumped through 

the Venturi, it travels first in a section of decreasing cross-sectional area (converging), then 

reaches a section of minimum cross-sectional area (neck), and finally exits the nozzle through a 

section of increasing cross sectional area (diverging). The inlet and outlet cross sectional areas 

are typically equal. In the converging section, the pressure is reduced and velocity increases. 

This concept is derived from Bernoulli’s Principle. The fluid will reach a minimum pressure at 

the neck, or throat, of the Venturi nozzle, the section with the minimum cross-sectional area. The 

pressure will increase and velocity will decrease again as the fluid flows through the diverging 

portion of the Venturi nozzle. When a container or tank is connected to the neck of the Venturi, 

the nozzle will act like an ejector, or vacuum pump, and uses jet action of a high-pressure motive 

fluid to entrain a secondary fluid. The Multifunctional Venturi Water Ejector allows boiling 
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water at a lower pressure, and therefore lower boiling temperature. The entrainment ratio is the 

mass ratio between the primary, motive fluid and secondary, entrained fluid. 

 

 

 

Figure 16: Operation of Liquid Jet Ejector [57]. 

 

 

Vapor Pressure: 

A unique challenge to the SSV system is that water is used as the motive fluid in the Venturi 

system. Most MED plants utilize a similar Venturi device but integrate a thermocompressor 

design that uses steam as the motive fluid [36]. When using water as the motive fluid, water 

vapor (steam) pressure buildup must be considered. The temperature of the liquid water entering 

the Venturi System must be below the boiling point temperature corresponding to the target 

vacuum pressure in Table 16, found in the Appendix. Figure 17 shows the correlation between 

saturated vapor pressure and the boiling point temperature of water. In this study, vapor pressure 

issues complicated the heat transfer process in the preliminary experiments. Ultimately, the 

vapor pressure issues caused the preliminary experiments to be performed without analyzing the 

heat transfer characteristics of the system. 
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Figure 17: Saturated vapor pressure of water at different temperatures [51]. 

 

 

System Design and Components 

The SSV system is comprised two cycles or systems: the primary water system and steam system 

(See Figure 15). The primary system contains freshwater, circulating continuously in a closed 

loop. In the closed loop, the water passes through a circulating pump, Venturi System, boiler 

heat exchanger, and preheater heat exchanger. The boiler heat exchanger consists of a coiled tube 

inside a boiler tank and is similar to a shell (boiler tank) and tube (coiled tube) heat exchanger. 

After steam is injected into the primary flow stream via the Venturi System, the stream enters the 

coiled tube and transfers heat back into the boiler as the steam condenses. The steam system 

operates at a constant boiling point temperature, and any heat added to the system will be 

converted into steam generation. As the saline water in the boiler is heated from the primary flow 

stream and turned into water vapor, it is injected into the primary flow stream via the Venturi 
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System. The diverging section of the Venturi System is placed inside the heat exchanger to 

prevent the water vapor from condensing beforehand.  As the water vapor condenses inside the 

heat exchanger, the latent heat is directly transferred through the walls of the heat exchanger into 

the boiler.  

 

The amount of steam produced in the boiler tank is equal to the rate of clean water production of 

the system. The system works efficiently because of the use of the Venturi system. The Venturi 

system reduces the vapor pressure, and therefore boiling point temperature inside the boiler. 

Thus, the temperature in the primary flow stream is always above the temperature in the boiler 

and can be used as an effective heat exchanger. The reduction in boiling point of the saline water 

in the boiler allows the entire system to run at a very low overall temperature and reduce heat 

losses to the environment. The system aims to eventually be able to operate under ambient 

temperatures (~20°C) so there will be effectively no heat loss to the environment or need for 

insulation. In fact, there can be heat addition from the environment.  

 

Technology advantages: 

Low-temperature, solar SSV desalination solves the issues of cost, fossil fuel reliance, and 

location flexibility. When compared other thermal desalination methods, there are a few stark 

differences. SSV desalination operates in a closed loop design requiring a single circulating 

pump, uses fresh (primary) water as the motive fluid for steam injection and vacuum pressure 

generation, operates at lower temperatures in a single boiling stage, and does not require steam 

input as the heat source or motive fluid. The SSV System utilizes clean, low-cost solar thermal 

energy, and has a simple design that can operate in remote, off-grid regions.  
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Fossil Fuel Independence: 

Since many thermal desalination plants burn fossil fuels to supply heat, MED and MSF plants 

are becoming very expensive to run and the environmental pollution they produce is increasingly 

recognized as very harmful to the globe [9]. Nearly 10,000 tons of oil is required every year to 

produce 1000 m3/day of desalination water [8]. Additionally, carbon taxes may increase prices 

further. Wagner and Rubin [47] state that a price of $US 153 per ton CO2 or higher could make 

concentrated solar thermal power competitive with coal electricity.  To combat high fossil fuel 

prices and power plant dependence, solar-assisted desalination plants have emerged over the past 

decade. SSV desalination provides a highly cost competitive solution to produce water without 

the need of fossil fuels. 

 

Low-grade solar heat input: 

Many desalination plants, including RO, MED, and MSF, are becoming integrated with solar 

thermal energy sources, but require expensive CSP systems to achieve higher temperature heat or 

to produce steam. Widespread deployment of CSP plants has been hindered by cost and 

intermittency issues [47]. Without the high-grade heat or steam input requirement, SSV 

desalination will not require CSP, and other solar thermal collectors with lower costs and higher 

efficiencies can be utilized. Additionally, other sources of low-grade heat, such as geothermal or 

process heat, can be easily integrated with the SSV system.  

Simple Design: 

The simple, single-stage design has many advantages to the complex MSF and MED systems. 

The SSV desalination system can be scaled down to a modular design for quick deployment and 
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off-grid operations in emergency situations. For larger, plant-sized SSV systems, decreased 

construction times, installation costs, and O&M costs can all be expected when compared to 

MSF and MED. This advantage should not be overlooked. Many desalination projects 

discourage private investors because of the long and complex construction process. Longer, 

riskier, and more complex construction projects require higher return on investment (ROI) and 

interest rates. 

 

Electrical Power Requirements: 

The electrical power demand is also significantly decreased due to the use of a single, circulating 

pump. As a comparison, MSF typically require recycle pumps, cooling water pumps, distillate 

product pumps, brine blow down pumps, condensate pumps, and chemical dosing pumps [10]. 

This decreases both the construction and maintenance costs. 

 

Zero Liquid Discharge: 

Due to the open loop design, RO, MED, and MSF discharge highly saline brine water, which has 

harmful environmental impacts. The SSV design uses a closed loop design and can potentially 

operate in over-saturated concentrations to discharge pure solid salt and achieve true Zero-Liquid 

Discharge, a goal of the DOE in DE-FOA-0001778 [55]. At the higher temperatures of the MSF 

and MED first few stages and effects, the high salt concentrations will accelerate scaling and 

corrosion. The SSV system may be able to operate at low enough temperatures to prevent such 

issues. An alternative design is proposed here, where the solid salt particles will accumulate at 

the bottom of the boiler and be removed either continuously or periodically. 
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Corrosion: 

Since the SSV desalination system operates at lower temperatures than both MED and MSF, 

there is less corrosion and pitting issues. This further reduces the water pretreatment and O&M 

costs of the SSV desalination system. 
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III. CHAPTER 3: 

OBJECTIVES 

The main goal of this study is to introduce, analyze the performance of, and estimate the cost of a 

novel desalination technology, Single-Stage, Venturi-driven desalination. In doing so, system 

components, mainly the Venturi System, needed to be further analyzed. CFD simulations, using 

Comsol Multiphysics, and experimental tests were performed to verify the proof of concept and 

scalability of using a water-jet ejector to achieve vacuum pressures and heat transfer 

simultaneously. The minimum vacuum pressure achieved in the experimental results was used in 

later analysis. The above-mentioned simulations were also performed to analyze the effect of 

certain geometric, flow, and heat transfer characteristics on the performance of the Venturi 

system. A thermo-economic model was created to estimate the performance of the entire system 

and compare the performance and cost to other common desalination technologies and 

commercially operating plants. Ultimately, the goal of the research was to perform an accurate 

thermo-economic analysis of the system and achieve an estimated levelized cost of water 

(LCOW) below the DOE target of $0.50/m3 (DE-FOA-0001778) [55]. 

 

Each of the three modes of analysis, CFD simulations, experimental tests, and thermo-economic 

analysis, had unique objectives. Initially, the Venturi system was analyzed using the results from 

experiments and CFD simulations. The CFD simulation provided baseline performance results 

for the Venturi System operation. Additionally, heat and mass transfer were simulated as a 

guideline for future experiments, which were difficult to conduct with an extremely limited 

budget. Using Comsol Multiphysics, the simulations were carried out by varying different 

parameters, including geometry, flow rate, pressure, and heat transfer coefficients. The 
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simulation results were analyzed to recognize the effect of the parameters used in the SSV 

system, such as inlet velocity and entrainment ratio. Venturi nozzles of different sizes were 

experimentally tested under constant flow conditions to compare with the simulation results. 

Scalability was a main objective to extrapolate small-scale model results to large-scale plant 

performance. Experimental tests were performed to validate the CFD results, where possible. A 

prototype test was further developed to provide proof of concept in an experimental setting. 

Also, the prototype was used to determine the achievable vacuum pressure, or boiling point 

temperature, to use later in the study.  

 

The thermo-economic analysis focused on the entire SSV system. To achieve the main objectives 

of this paper, an accurate and comprehensive estimate of both the performance and cost of the 

entire system was necessary. The thermo-economic analysis consisted of two separate studies: a 

thermodynamic analysis and economic analysis. The thermodynamic study can be further broken 

down into an energy and mass balance and an exergy analysis. From the energy and mass 

balance, common desalination performance metrics could be calculated, such as performance 

ratio, thermal energy requirement, and thermal efficiency. An exergy analysis is commonly 

performed on commercially operating desalination plants using operating data. The exergy 

analysis in this paper is used as a theoretical baseline estimate to compare the exergy destruction 

and efficiency calculated to other operational desalination technologies and an operational SSV 

plant in the future. The economic analysis used inputs from the energy and exergy analysis to 

estimate various costs to construct and operate a theoretical SSV desalination plant rated at 100 

m3/day. The economic analysis results were used to compare SSV desalination to other 

commercial desalination technologies in terms of cost. A discounted cash flow (DCF) analysis 
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was performed to show the unit cost of water ($/m3) in scenarios with different ROI and interest 

rates.  
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IV. CHAPTER 4: 

CFD SIMULATIONS 

A. Method: Simulating the Venturi system 

Comsol Multiphysics was used to create the geometry and run simulations of the Venturi 

System. The Venturi nozzle was modeled in 2-D to analyze flow characteristics and heat transfer 

behavior. Two sets of simulations were run in Comsol. First, (CFD Simulation Set 1) simulations 

were performed to determine the flow characteristics of the Venturi System. The heat transfer 

module was incorporated into the Comsol model, but not the heat exchanger itself. The purpose 

of the flow simulations was to determine how scale, pump pressure, and area ratio effect the 

minimum vacuum pressure and entrainment ratio. A main objective of this set of simulations was 

to validate the scalability of the SSV system. The results of the simulation were later compared 

to the experimental results for validation. The next set of simulations (CFD Simulation Set 2) 

incorporated a fixed length of heat exchanger and was used to analyze heat transfer behavior. 

The simulations were performed to determine the effect of primary flow rate, entrainment ratio, 

boiling point, and heat transfer coefficient on heat exchanger efficiency and final temperature.  

In both models, similar flow assumptions were used. Since the motive fluid used in this research 

is water as the primary fluid, the assumption of incompressible flow is appropriate [38].The 

standard k-ὲ with high Reynolds number was selected to govern the turbulence characteristics 

[38]. Due to complications with two-phase flow simulations, liquid water was used as the 

secondary, or entrained fluid. The simulations assume that steam has condensed before entering 

the Venturi System. The temperature of the secondary liquid water is elevated to account for the 

latent heat released during condensation. 
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Figure 18: Pressure (above) and Velocity (below) profile example for CFD Simulation Set 1. 

 

 

CFD Simulation Set 1: Venturi Flow Characteristics 

The geometry of the 2D model was built to replicate a simple Venturi nozzle with an inlet at the 

neck of the nozzle. In the Venturi System model, the two faces, primary inlet and vacuum inlet, 

were set as independent variables to pressure conditions. While the Primary inlet pressure 

represented the pump pressure and varied throughout the experiment, the vacuum inlet pressure 

remained constant at atmospheric pressure. The discharge was set to an outlet condition at 

atmospheric pressure. The temperatures of each of the two faces were set as independent 

variables and remained constant throughout the experiment. The purpose of this set of 

simulations was to create the most realistic setup possible to match the SSV Venturi System.  

The simulations in CFD Simulation Set 1 produced performance curves. In each performance 

curve, one variable (inlet pressure or scale) was varied while the other were held constant. The 

results produced when scaling the Venturi System up or down are important to prove scalability. 

Preliminary Experiments later validated the results. After the effects of scalability were analyzed, 
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the simulations focused further on the relationship between pump pressure, a potential control 

parameter in the SSV system. 

 

Because the preliminary experiments did not provide flow rate measurements or entrainment 

ratios, the CFD Simulation Set 1 uses simulations to analyze the effect of scale and pump 

pressure on the flow rates and entrainment ratio. The results of CFD Simulation Set 1 will 

provide a range of appropriate flow rates and entrainment ratios to use when a heat exchanger is 

added to the model in CFD Simulation Set 2. The results will also provide a realistic entrainment 

ratio and primary water flow rate for the thermo-economic model provided later in this paper.  

 

 

 

Figure 19: Geometry and Temperature Distribution Example of CFD Simulation Set 2. 
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CFD Simulation Set 2: Heat Transfer Behavior 

The geometry of the 2D model was built to incorporate the Venturi nozzle and a finite length 

portion of the boiler heat exchanger. In this model, the inlet velocities, not inlet pressure 

conditions, were used to control the effect of primary flow rate and entrainment ratio on heat 

exchanger properties. The appropriate primary flow rates and entrainment ratios were provided 

from CFD Simulation Set 1 results. In the Venturi nozzle, the two faces, primary inlet and 

vacuum inlet, were set as independent variables to velocity conditions and correlate to a 

specified entrainment ratio. The discharge was set to an outlet condition at atmospheric pressure. 

The temperatures of each of the two faces were set as independent variables and varied in the 

study. 

 

In the heat exchanger, both the external, or ambient, temperature and heat transfer coefficient 

were specified as independent variables. The ambient temperature was set in accordance with the 

boiling point temperature inside the boiler. For most tests, the boiling point temperature was set 

to a constant 40 °C, which aligns with the thermo-economic model. The goal of the 2D 

simulations was to understand how each independent variable, heat transfer coefficient, primary 

velocity, and boiling point temperature, affected the efficiency and outlet temperature of the heat 

exchanger. The initial and final temperatures of the heat exchanger were calculated from a 

surface average temperature function in the Comsol Multiphysics program. The heat exchanger 

efficiency is defined below: 

𝐻𝑒𝑎𝑡 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑇𝑖𝑛,ℎ𝑥 − 𝑇𝑓,ℎ𝑥

𝑇𝑖𝑛,ℎ𝑥 − 𝑇𝐵𝑃
 

where, 𝑇𝑖𝑛,ℎ𝑥, 𝑇𝑓,ℎ𝑥, and 𝑇𝐵𝑃 are the temperature into the heat exchanger, temperature exiting the 

heat exchanger, and boiling point or ambient temperature, respectively. Three separate 
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simulation tests were performed, each involving many simulations, or runs. In tests 1, 2, and 3, 

the varying parameter was the HTC, inlet primary velocity, and boiling point temperature, 

respectively. Since the heat transfer coefficient (HTC) is difficult to estimate, determining the 

effect of HTC on the heat exchanger efficiency helps for subsequent analysis. The value of the 

HTC was varied from 0 to 25,000 kW/m2*K. When the vacuum velocity is held constant, 

varying the Primary inlet velocity directly changed the entrainment ratio. The entrainment ratio 

has large implication on the thermal efficiency of the Venturi System. The boiling point 

temperature of the system may vary depending on the design, seawater temperatures, or 

operating conditions if heat supply is not uniform. The effect on the heat exchanger performance 

of a varying boiling point temperature is important to analyze. In Test 3, the boiling point 

temperature ranged from 20°C to 60°C. 

 

B. CFD Simulation Results and Discussion 

CFD Simulation Set 1: Venturi Flow Characteristics: 

The CFD Simulation Set 1 provides a deeper understanding of the effect of pump pressure, area 

ratio, and overall scale on the Venturi entrainment ratio, velocities, and achievable vacuum 

pressures. The scale of the Venturi System did not affect vacuum pressure significantly. The 

minimum vacuum pressure of the 0.25, 0.5, and 1 in  Venturi Systems with inlet pressure of 1.35 

bar abs were 0.089 bar abs, 0.095 bar abs, and 0.094 bar abs, respectively. The very slight 

variation in the vacuum pressures may come from computational inconsistencies or errors that 

occur when the geometry of the model is changed. When the Venturi System is scaled up, the 

inlet velocity is scaled proportionally, but the vacuum velocity, and therefore entrainment ratio, 

is slightly elevated. Overall, the CFD Simulation Set 1 results prove that the Venturi System can 
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be scaled without changing the minimum vacuum pressure achieved. The pump pressure 

required remains the same, but an increased primary water mass flow rate increases the amount 

of work required by the pump.  

 

 

 

Figure 20: Scalability test, Performance Curve from Simulations. 

 

 

The inlet pressure, representing the pump pressure required, plays a significant role on the 

vacuum pressure and inlet velocity, but not on the entrainment ratio. When the inlet pressure of 

the 0.25 in  Venturi System with an Area ratio of 5 was increased from 1.05 bar abs to 1.35 bar 

abs, the vacuum pressure decreased from 0.879 bar abs to 0.089 bar abs, and the inlet velocity 

increased from 0.69 m/s to 1.89 m/s. Initially, the entrainment ratio seems constant for the range 

of inlet pressures, but after further analysis, there was a slight and consistent decrease in 

entrainment ratio as the inlet pressure was increased.  When the same Venturi System inlet 
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pressure was increased from 1.05 bar abs to 1.35 bar abs, the entrainment ratio decreased from 

23.00% to 22.22%. The results can be seen in the performance curves (Figure 40 & Figure 41) in 

the Appendix. The results show that controlling pump pressure can be used to decrease vacuum 

pressures in the boiler and increase primary flow rate without significantly changing the 

entrainment ratio of the Venturi System. 

 

CFD Simulation Set 2: Heat Transfer Beahavior 

The CFD Simulation Set 2 provides insight into the sensitivity of Boiler Heat Exchanger 

performance when the HTC, Primary inlet velocity, entrainment ratio, and boiling point are 

changed. The Heat Exchanger efficiency was significantly affected by increases in HTC within 

the range of 0 to 10,000 kW/m2*K. The Heat exchanger efficiency reached 40% by 10,000 

kW/m2*K, but only increased to 52% by 25,000 kW/m2*K. Performance curves can be found in 

the Appendix. 

 

Increasing the Primary inlet velocity had a negative effect on Heat Exchanger efficiency. As 

velocity was increased, the entrainment ratio decreases, decreasing the resulting temperature 

after the Primary and Secondary flow mix. Figure 42Error! Reference source not found. shows 

the relationship between initial temperature after mixing and final temperature of the fluid after 

the section of heat exchanger. When the Primary inlet velocity was increased by a factor of 5 

from 1 m/s to 5 m/s, which decreased the entrainment ratio from 10% to 2%, the amount of 

specific heat transferred decreased by a factor of 10, from 70 kJ/kg to 7 kJ/kg. Both performance 

curves, Figure 44 and Figure 45, can be seen in the Appendix. The entrainment ratio and Primary 

inlet velocity play a significant role in the efficiency of the heat exchanger.  
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As expected, the heat exchanger efficiency was not significantly affected by a change in boiling 

point temperature. In the range from 20°C to 60°C, the Heat Exchanger Efficiency varied from 

28.4% to 30.6%. The relatively constant Heat Exchanger Efficiency is caused by the definition 

of Heat Exchanger efficiency in this test, and the contribution of boiling point temperature in that 

definition. However, the total heat transferred in the test was significantly affected by the change 

in boiling point temperatures. Increasing the boiling point temperature from 20°C to 60°C, 

decreased the specific heat transferred out of the fluid from 50.4 kJ/kg to 3.1 kJ/kg. 

 

Conclusion of Findings: The SSV system performance is very complicated and changing a 

single parameter typically affects many operating conditions. It is useful that varying the inlet 

pressure significantly changes the inlet velocity and vacuum pressure while only affecting the 

entrainment ratio minimally. The results of CFD Experiment 1 prove that the system can be 

scaled without greatly affecting performance.  The CFD simulation results were constrained by 

computational limitations.  
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V. CHAPTER 5: 

PRELIMINARY EXPERIMENTS 

A. Experimental Methods: 

Experimental Venturi Test: 

Three Venturi ejectors of various sizes, but same area ratio were obtained and tested to compare 

performance. The three inlet diameters were 0.25, 0.75, and 1 in. In the test setup, the Venturi 

ejectors, acting as a vacuum pump, were connected from the secondary inlet to an empty tank. 

Air, instead of steam, was evacuated from the tank for simplicity. A vacuum gauge was 

connected to the empty tank for absolute vacuum pressure recordings. The pump chosen for this 

experiment was a WAYNE 1/2 HP Cast Iron Transfer Utility Pump (120 V, 60 Hz, 8.0 A) The 

Primary water was pumped in a continuous loop by a circulating pump. After the circulating 

water pump was turned on, the time and absolute pressure in the tank were recorded in one-

minute intervals. The test setup is shown in Figure 21. The purpose of the experiment was to 

determine the influence of the scale of the Venturi on the minimum vacuum pressure. The results 

were then compared to those of the CFD simulations. 
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Figure 21: Drawing and Picture of Experimental Venturi Test. 

 

 

Prototype test: 

A prototype test was designed next to test whether the Venturi ejector could sustain low vacuum 

pressures regardless of steam generation rate, or boiling rate, in the boiler. As more heat is 

applied to the boiler, the boiling rate increases, and more steam molecules enter the fixed volume 

boiler. If the molecules are not pumped out of the boiler, the pressure will increase inside the 

boiler. The Venturi System must have enough force to pump out the steam in the boiler faster 

than it is generated. The appropriate Venturi nozzle was selected from the results of the 

Experimental Venturi Test, and a small-scale prototype was built. The prototype consisted of 

most of the elements in the original, full-scale design: Circulating Pump, Venturi Nozzle, and 

Boiler Tank. The Venturi ejector chosen was a 0.5 in diameter, plastic nozzle. The experiment 

used two electric pumps in series. The boiling container used was a Duda Energy 20 Plate 

Stainless Steel heat exchanger (2x 2.9 x 7.5 in). A flat plate heat exchanger was used for compact 

design, greater heat transfer surface, and less total volume than a boiler tank. The main focus of 
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the experiments was to maintain the low vacuum pressure during steam generation. A picture of 

the system prototype can be seen below. 

 

Initially, the experiment was going to involve heat recuperation, but due to vapor pressure issues, 

it was very difficult to incorporate into the test. For successful water-ejector operation, the liquid 

water must be sufficiently cooled before it enters the venture nozzle. To satisfy this condition, 

the prototype used an open loop design with an ice water bath to maintain low inlet temperatures. 

The flat plate heat exchanger was still used as the boiler for geometric benefits. The flat plate 

heat exchanger was partially filled with 100 mL of water. A hot plate was used as the heat source 

for steam generation. The goal of the prototype experiment is to maintain a stable and low 

vacuum pressure in the boiler while there is steam generation occurring. Incorporating heat 

recuperation and a closed loop system into the prototype will require very controlled operating 

conditions.  

 

B. Experimental Results 

The Experimental Venturi Test results are shown in Figure 22. It is seen that the Venturi ejector 

with larger tube diameter reached the maximum vacuum pressure sooner, though the maximum 

limit remained relatively constant. For the 1, 0.75, and 0.5 in diameter nozzles, the maximum 

vacuum pressures were absolute 0.13 bar, 0.13 bar, and 0.17 bar, respectively.  
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Figure 22: Experimental Venturi Test results comparing the performance of various sized 

Venturi ejectors generating vacuum pressures within a 1 gallon tank. 

 

The Venturi nozzle chosen for the prototype resulted in a maximum achievable vacuum pressure 

of 0.07 bar. The 0.07 bar vacuum was achieved in a test where the vacuum gauge was connected 

directly to the neck of the Venturi nozzle using a Cast Iron Pump. The 0.07 bar vacuum pressure 

corresponds to a boiling point of 40 °C. It is likely that a lower vacuum pressure is achievable, 

but without further experimental results, the 40 °C boiling point temperature is appropriate to use 

in the Thermo-Economic Analysis. The pump performance played a large role in the vacuum 

pressures achieved. 

 

The prototype test resulted in very stable vacuum pressures in the boiler once an equilibrium was 

reached. Even while the hot plate was set to “high” and significant boiling was occurring, the 
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Venturi System was able to outpace the steam generation and maintain a low vacuum pressure in 

the boiler. The twelve-minute prototype test can be seen in Table 17 in the Appendix. As shown 

from the table, there were no fluctuations in vacuum pressure and it was clear boiling was 

occurring at a reduced boiling point temperature. Vacuum pressures did not reach lower levels 

due to the change from the Cast Iron Pump to the two electric pumps in series. Lower vacuum 

pressures were achieved with the Cast Iron Pump. It was only after the pump was turned off that 

the vacuum pressure and temperature gauge increased rapidly. More sophisticated monitoring 

and control equipment will be necessary for further experimental tests. 

 

The results of the Venturi experimental test of the have impactful implications. If steam 

evacuation needs to be increased to avoid pressure buildup, the size of the overall Venturi ejector 

can be modified to solve the issue. If a lower vacuum pressure is required, the overall scale of the 

Venturi ejector will have no effect, but the Area Ratio of the Venturi ejector can be modified to 

control the vacuum pressure parameter. 

 

The results of the Prototype test prove the concept that the multifunctional Venturi ejector can 

act as a vacuum pump for steam production, a compressor for condensation, and a starter for heat 

recuperation. In addition, boiling does not significantly impact the vacuum pressure in the boiler. 

However, as steam generation increases dramatically, the simple solution is to add larger size 

and quantity of Venturi ejectors. It is satisfying to see the small, off-the-shelf Venturi ejector 

evacuate steam during boiling as quickly as it did in the prototype test. 
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Conclusion of Findings: The system performance is much more dynamic than originally 

anticipated. Vapor pressure plays a key factor in design of the system. Vapor pressure issues 

likely dissuades other thermal technologies (MSF, MED) from utilizing water as the working 

fluid in Venturi ejector. Experimental results show that the geometric and flow characteristics of 

the Venturi affect both the maximum achievable vacuum pressure and the steam flow rate. The 

prototype proved the concept of using a multidimensional Venturi to maintain a low vacuum 

pressure while evacuating the steam produced in the boiler. 
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VI. CHAPTER 6: 

THERMO-ECONOMIC ANALYSIS 

The thermo-economic analysis involved a review of the theoretical formulations and physical 

principles to properly analyze the system. For this report, an energy and exergy analysis were 

performed on a theoretical SSV system with a water production capacity of 100 m3/day. The 

thermodynamic model was then combined with an economic analysis to create a final Thermo-

Economic model of the system. The main goal was to accurately model the performance and cost 

of each aspect of the system and then estimate the final levelized cost of clean water production 

for the system. 

 

A. Technical Analysis and Assumptions 

Before a thermodynamic model can be created, the technical (non-thermodynamic) parameters 

must be determined.  

 

Multifunctional Venturi water ejector: 

The vacuum pressure in the boiler can be calculated using conservation of mass and the 

Bernoulli equation. To calculate the vacuum pressure, we use the control volume method to 

analyze the Venturi nozzle. We analyze two points in the flow through the Venturi nozzle, one at 

the inlet and one at the throat of the Venturi. The Control Volume setup is shown in Figure 23. 

For incompressible water flow, the continuity equation becomes: 

𝑉1𝐴1 = 𝑉2𝐴2 = 𝐵1 = 𝐵2 = 𝐵   

Bernoulli’s equation can be applied here: 
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Figure 23: Control Volume Setup and Bernoulli’s Equation [56]. 

 

 

Using Equation 5, the throat pressure is determined based on the flow and geometrical 

characteristics of the system. The results from the theoretical analysis were compared to the 

results of both the simulations and the experiments. 
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Flat plate thermal solar collector: 

The efficiency of the flat plate solar collector was calculated separately from the entire 

desalination system. The calculated efficiency was then used in the energy and exergy model for 

the system. If 𝐼 represents the solar radiation power density (W/m2) incident on the aperture 

plane of the solar collector with a surface area of 𝐴 (m2), then the amount of solar radiation 

received by the collector is: 

�̇�𝑟𝑎𝑑 = 𝐼𝐴 

where, �̇�𝑟𝑎𝑑 is the solar radiation. However, some of the solar rays are reflected and absorbed, 

and the amount of solar radiation absorbed in the plate is: 

�̇�𝑟𝑎𝑑 = 𝐼 (𝜏𝛼) 𝐴 

where, τ and α represent the rate of transmission of the collector cover and rate of absorption of 

the collector absorber, respectively. The product of τ and α is  approximately 80% of the 

incoming solar radiation [21]. As the collector absorbs heat, its temperature is getting higher than 

that of the surrounding and heat is lost to the atmosphere by convection and radiation. The rate of 

heat loss, �̇�𝐿, depends on the collector overall heat transfer coefficient and the collector 

temperature. 

�̇�𝐿 = 𝑈𝐿𝐴 ∗ (𝑇𝑎𝑣𝑔 − 𝑇𝑎) 

where, UL, Tavg, and Ta are the overall heat transfer coefficient of heat lost by the collector to the 

environment, average temperature of solar collector, and ambient temperature, respectively. 

Calculating the total heat loss coefficient can be very complex. The rate of heat loss is dependent 

on the temperature of the solar collector itself. The heat transferred into the working fluid is 

calculated as the difference between heat input from solar radiation and heat loss from the 

collector. 
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�̇�𝑢 = �̇�𝑟𝑎𝑑 − �̇�𝐿 

The above equation calculates the rate of extraction of heat from the collector and may be 

measured by the amount of heat carried away in the fluid passed through it. 

�̇�𝑢 =  �̇�𝑐𝑝(𝑇𝑜 − 𝑇𝑖) 

where, �̇�, 𝑐𝑝, 𝑇𝑜, and 𝑇𝑖 are the water mass flow rate through the solar collector, heat capacity of 

water, temperature of water entering the solar collector, and temperature of water exiting the 

solar collector, respectively. The above equation provides a somewhat inconvenient solution 

because it does not account for the temperature of the solar collector. Further analysis shows the 

useful energy gain from the solar collector. It is convenient to define a quantity that reflects the 

useful energy gain of a collector to the useful gain if the whole collector surface were at the fluid 

inlet temperature [21]. This quantity is known as “the collector heat removal factor (𝐹𝑅) and is 

expressed as, 

 

Using the above equation, the actual useful energy gain is found using an equation generally 

known as the “Hottel-Whillier-Bliss Equation”: 

 

The above equation is a more appropriate and common representation for solar collector heat 

input. Thermal Efficiency, 𝜂, of flat plate solar collectors are derived from the actual useful 

energy gain.  

𝜂 =
𝑄𝑢

𝐼𝐴
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The theoretical thermal efficiency results are shown in a plot below in Figure 24. The theoretical 

thermal efficiencies were compared at Bean Center with measured efficiencies. The theoretical 

and measured values are very close and can be seen in Figure 25 [23].  

 

 

 

Figure 24: Performance of a typical flat plate thermal collector (ambient temperature 25 ºC) [21]. 
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Figure 25: Bean Center – Comparison of measured to predicted collector array efficiency [23]. 

 

 

The actual useful energy gain from the Flat plate solar collector is calculated as: 

�̇�𝑢 = 𝐼𝐴𝜂 

The solar radiation intensity is estimated from the region of California, USA. Using the National 

Renewable Energy Laboratory (NREL) direct normal solar irradiance maps [22], the annual 

daily average of solar radiation is estimated as 7.0 kWh/m2/day. The total land requirement for 

the solar field is calculated as the total collector surface area, 𝐴. 

𝐴 =
�̇�𝑢

𝐼𝜂
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Figure 26: Solar Irradiance map of California in 2017 [22]. 

 

 

Installed-Cost Analysis: 

Using NREL report on Flat plate Solar Thermal Collectors, the installation cost of the solar field 

was estimated. The minimum, average, and maximum installed costs for complete glazed flat 

plate collector systems are provided in Table 5. A variety of factors contribute to the difference 

in costs for complete solar hot water systems, including location, system type, and configuration. 

[23]. 
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Table 5: Unit installation costs of glazed flat plate solar water heating systems [23]. 

 

 

 

Table 6Error! Reference source not found. shows a breakdown of the typical installation costs 

of a solar thermal system. Solar system component and plumbing costs account for 62% of the 

total system; the remaining 38% of the costs are associated with engineering design and shipping 

[3]. The collectors themselves usually cost approximately 20% of the system [23]. The cost 

structure includes a cost for hot water storage, which may be needed in the SSV system. 

 

 

Table 6: Solar system cost breakdown [23]. 
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B. Thermodynamic Model: 

The SSV thermodynamic modeling is described in this section. To accurately model the system, 

the following assumptions were made: 

 The operation is performed at the steady-state. 

 Produced freshwater contains no salt. 

 The whole desalination system is adiabatic. 

 Assumed operating parameters (pressures, temperatures, mass flow rates, salinity) are set 

to specified values (shown in Table 7) . 

 Potential and kinetic energy will be neglected. 

 The system is assumed 24-hour operation and water production at rated capacity. 

 The average daily solar irradiation is spread over the entire day. A hot water tank is 

assumed part of the system to retain constant and continuous heat input. 

In this section, an energy, mass, and exergy analysis will be performed on the entire system and 

each subsystem. Expanding the analysis to each subsystem gives further insight into exergy 

destruction. During the analysis, steam and water tables were used to find enthalpy and 

temperature values when needed. 

 

The operating parameters and assumptions are shown below: 
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Table 7: Operating parameter assumptions and constants for Thermo-Economic analysis. 

Parameter Symbol Value 

      

Operating Assumptions 

  

   

Capacity of system Capacity 100 m3/day 

Boiling Point Temperature 𝑇𝑏𝑝 40 °C 

Temperature of seawater into the SSV system 𝑇𝑠𝑤 25 °C 

Temperature of Primary into Venturi/out of preheater 𝑇1 40 °C 

Temperature of Primary out of Boiler/into preheater 𝑇3 42 °C 

Entrainment Ratio ER 10% 

Boiler Heat Transfer Coefficient 𝑈𝐵 4000 W/m2°C 

Preheater Heat Transfer Coefficient 𝑈𝑃𝑟𝑒 1000 W/m2°C 

Velocity V 1 m/s 

Seawater Salinity into system 𝑚𝑓𝑠𝑖𝑛 3.5% 

Salt mass fraction at brine outlet 𝑚𝑓𝑠𝑜𝑢𝑡 6% 

Primary water pipe radius r 2.33 inches 

Seawater pipe radius r𝑠𝑤 .7 inches 

     

Constants used in Analysis    

Specific Heat of water 𝐶𝑃 4.184 kJ/kg°C 

Heat of vaporization ℎ𝑓𝑔 2254 kJ/kg 

Specific heat of NaCl 𝐶𝑃,𝑁𝑎𝐶𝑙 0.86 kJ/kg°C 

Density of water 𝜌 1000 kg/m3 
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Figure 27: Schematic of Single Stage, Venturi-Driven Desalination. 

 

 

Mass and Energy Balance: 

In a control volume analysis, the steady state equations can be used for mass and energy balance. 

For the mass and energy analysis, two balancing equations must be equal for the system, as well 

as for every process: 

∑ �̇�𝑖𝑛 = ∑ �̇�𝑜𝑢𝑡 

∑ 𝐻𝑖𝑛 + 𝑄 = ∑ 𝐻𝑜𝑢𝑡 + 𝑊 

∑ �̇�𝑖𝑛 and  ∑ �̇�𝑜𝑢𝑡 are the summation of mass flow rates into and out of the SSV system, 

respectively. The heat input, 𝑄, and summation of enthalpy into any control volume, ∑ 𝐻𝑖𝑛, must 
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be equal to the work done by the system, 𝑊, the summation of enthalpy out of any control 

volume, ∑ 𝐻𝑜𝑢𝑡. 

 

The mass and energy balance for the entire process (black box shown in Figure 28) can be 

performed as follows: 

𝑚𝑠𝑤 = 𝑚𝑠𝑡(1 −
𝑚𝑓𝑠,𝑖𝑛

𝑚𝑓𝑠,𝑜𝑢𝑡
) 

𝑚𝑠𝑤 = 𝑚𝑑𝑖𝑠𝑡 + 𝑚𝐵𝑟 

�̇�𝑠𝑜𝑙𝑎𝑟 = ∑ �̇�𝑜𝑢𝑡 − ∑ �̇�𝑖𝑛 = (�̇�𝑑𝑖𝑠𝑡 ∗ ℎ𝑑𝑖𝑠𝑡) + (�̇�𝑏𝑟 ∗ ℎ𝑏𝑟) − (�̇�𝑠𝑤 ∗ ℎ𝑠𝑤) 

The product of the mass flow rate of seawater entering the system, �̇�𝑠𝑤, and the specific 

enthalpy of the seawater entering the system, ℎ𝑠𝑤, is the enthalpy rate into the SSV system. The 

enthalpy rate out of the system consists of two flow streams: the distillate outlet and brine outlet. 

The enthalpy rate of the distillate outlet is the product of the distillate mass flow rate, �̇�𝑑𝑖𝑠𝑡, and 

specific enthalpy of the distillate, ℎ𝑑𝑖𝑠𝑡. The enthalpy rate of the brine outlet is the product of the 

brine mass flow rate, �̇�𝐵𝑟, and specific enthalpy of the brine, ℎ𝑏𝑟. The difference between the 

enthalpy rate into and out of the system is equal to the heat rate required by the solar field, 

�̇�𝑠𝑜𝑙𝑎𝑟. 

 

Pump Work into System: To calculate pump work into the system, the power required to raise 

the pressure, (𝑃 − 𝑃0), of the primary water mass flow rate without steam addition, �̇�𝑃1, was 

calculated. The pump efficiency, 𝜖, was estimated to be 70%. The pump work into the system 

will be assumed as power loss of the system. 
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𝑊𝑝𝑢𝑚𝑝 = −

(
�̇�𝑃1

𝜌 ∗ (𝑃 − 𝑃0))

𝜖
 

Note: To determine pump pressure required, the results of the Comsol Multiphysics simulation 

and approximation of heat exchanger length were used. The pump pressure required was 

estimated to be 1.6 bar. 

 

 

 

Figure 28: Entire SSV system as a black box. 

 

 

SSV system is comprised of 5 subsystems: Multfunctional Venturi System, Boiler Heat 

Exchanger, Solar Collector Field, Preheater Heat Exchanger, and Distillate Outlet. The flow 

stream properties are calculated below by analyzing each component and can be found in the 

Thermo-Economic Model Results and Discussion section (Table 10). 
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Subsystem 1: Multifunctional Venturi System (Figure 29) 

 

 

 

Figure 29: Venturi System Schematic for analysis. 

 

 

In the Venturi System, we assume the steam and primary water that enter the system also exit the 

system in the same state and at the same temperature. Mixing will occur in the Venturi System, 

but condensation will not occur until the flow stream enters the boiler heat exchanger. 

(�̇�𝑃1) + (�̇�𝑠𝑡) = (�̇�𝑃2) 

where �̇�𝑠𝑡 and �̇�𝑃2 are the mass flow rates of steam and primary water with steam addition, respectively. 

 

 

 

 

 

 

 

𝑆𝑠𝑡 

Venturi System 

𝑆1 

Steam 

Primary 

Water 

 



67 

 

Subsystem 2: Boiler Heat Exchanger (Figure 30)  

 

 

 

Figure 30: Schematic of Boiler Heat Exchanger from analysis. 

 

 

The mass and energy balance for the boiler heat exchanger can be calculated as follows: 

(�̇�𝑃2) + (�̇�𝑠𝑤) = (�̇�𝑃2) + (�̇�𝑠𝑡) + (�̇�𝐵𝑟) 

∑ 𝐻𝑖𝑛 + 𝑄𝑡𝑟𝑎𝑛𝑠𝑓 = ∑ 𝐻𝑂𝑢𝑡 

�̇�𝑡𝑟𝑎𝑛𝑠𝑓 = (𝐶𝑃 ∗ �̇�𝑃2 ∗ (𝑇1 − 𝑇3)) + (ℎ𝑓𝑔 ∗ �̇�𝑠𝑡) 

(�̇�𝑠𝑤 ∗ ℎ𝑖𝑛) = (�̇�𝑠𝑡 ∗ ℎ𝑠𝑡) + (�̇�𝑏𝑟 ∗ ℎ𝑏𝑟) − �̇�𝑡𝑟𝑎𝑛𝑠𝑓 

where, �̇�𝑡𝑟𝑎𝑛𝑠𝑓, ℎ𝑖𝑛, and ℎ𝑠𝑡 are the heat transferred in the boiler heat exchanger, specific 

enthalpy of seawater flow stream into the boiler, and specific enthalpy of steam, respectively. 
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Subsystem 3: Solar collector field (Figure 31) 

 

 

 

Figure 31: Schematic of Solar Collector Field for analysis. 

 

 

The mass and energy balance for the solar collector field can be calculated as follows: 

�̇�𝑠𝑤 = �̇�𝑠𝑤 

�̇�𝑠𝑜𝑙𝑎𝑟 = 𝐼𝐴𝜂 = �̇�𝑠𝑤𝐶𝑝(𝑇𝑖𝑛 − 𝑇𝑃𝑟𝑒) 

where 𝑇𝑖𝑛 and 𝑇𝑃𝑟𝑒 are the temperature of the seawater entering the boiler and the temperature of 

the preheated seawater entering the solar collector field, respectively. 
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Subsystem 4: Preheater heat exchanger (Figure 32) 

 

 

 

Figure 32: Schematic of Preheater heat exchanger for analysis. 

 

 

The preheater heat exchanger only transfers heat between the primary water and the inlet 

seawater. There is no mass transfer. The mass and energy balance for the Preheater heat 

exchanger can be calculated as follows: 

�̇�𝑃2 + �̇�𝑠𝑤 = �̇�𝑃2 + �̇�𝑠𝑤 

�̇�𝑃𝑟𝑒 = �̇�𝑃2𝐶𝑝(𝑇3 − 𝑇1) = �̇�𝑠𝑤𝐶𝑝(𝑇𝑃𝑟𝑒 − 𝑇𝑠𝑤) 

where �̇�𝑃𝑟𝑒 is the heat transfer rate in the preheater heat exchanger. This inlet represents a heat 

and mass input into the system. 
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Subsystem 5: Distillate Outlet (Figure 33) 

 

 

 

Figure 33: Schematic of Distillate Outlet. 

 

 

The distillate outlet transfers heat and mass out of the system. The mass and energy balance for 

the Distillate outlet can be calculated as follows: 

�̇�𝑑𝑖𝑠𝑡 = �̇�𝑃2 − �̇�𝑃1 

�̇�𝑜𝑢𝑡 = �̇�𝑑𝑖𝑠𝑡𝐶𝑝(𝑇1 − 𝑇𝑠𝑤) 

where �̇�𝑜𝑢𝑡 is heat loss rate due to distillate outlet. 

 

Exergy Analysis  

Although the first law is an important tool in evaluating the overall performance of a desalination 

plant, such analysis dos not take into account the quality of energy transferred. This is an issue of 

particular importance when both thermal and mechanical energy are employed, as they are in 

thermal desalination plants. First-law analysis cannot show where the maximum loss of available 

energy takes place and would lead to the conclusion that the energy loss to the surroundings and 

the blowdown are the only significant losses. Second law (exergy) analysis is needed to place all 
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energy interactions on the same basis and to give relevant guidance for process improvement. 

Exergy is the energy available to be used as work.  

 

The dead state properties are equal to the inlet seawater temperature, 𝑇0, pressure, 𝑃0, specific 

enthalpy,  ℎ0, concentration, 𝑚𝑓𝑠, and specific entropy, 𝑠0, and are defined as follows: 

𝑇0 = 25 𝐶 = 298.15 𝐾 

𝑃0 = 101.3 𝑘𝑃𝑎 

𝑚𝑓𝑠 = .035 

ℎ0 = 𝑚𝑓𝑠 ∗ ℎ𝑠 + 𝑚𝑓𝑤 ∗ ℎ𝑤 

𝑠0 = 𝑚𝑓𝑠 ∗ 𝑠𝑠 + 𝑚𝑓𝑤 ∗ 𝑠𝑤 

where 𝑚𝑓𝑤, ℎ𝑠, ℎ𝑤, 𝑠𝑠, and 𝑠𝑤 are the water mass fraction of flow stream, specific enthalpy of 

salt at dead state, specific enthalpy of water at dead state, specific entropy of salt at dead state, 

and specific entropy of water at dead state, respectively. The dead state in an exergy analysis is 

the state at which no additional energy can be extracted from the fluid or material. The dead state 

is generally taken to be the environmental steady state conditions.  

The steady-state exergy equation is as follows: 

�̇�𝐷,𝑡𝑜𝑡 = �̇�𝑝𝑢𝑚𝑝 + ∑ �̇�𝑖𝑛 −  ∑ �̇�𝑜𝑢𝑡 

where, ∑ �̇�𝑖𝑛, ∑ �̇�𝑜𝑢𝑡, and �̇�𝐷,𝑡𝑜𝑡 are the total exergy flow rate into the control volume, total 

exergy flow rate out of the control volume, and exergy destruction in the control volume, 

respectively. The above equation assumes there is no heat transfer loss to the environment. 

The specific exergy of a flow stream, e, is expressible in terms of four components: 

 Physical exergy  𝑒𝑃𝐻, kinetic exergy 𝑒𝐾𝑁, potential exergy 𝑒𝑃𝑇, and chemical exergy 𝑒𝐶𝐻 

𝑒 = 𝑒𝑃𝐻 + 𝑒𝑃𝑇 + 𝑒𝐶𝐻 
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The first three components are evaluated as follows: 

𝑒𝑃𝐻 = (ℎ − ℎ0) − 𝑇0(𝑠 − 𝑠0) 

𝑒𝐾𝑁 =
1

2
𝑣2 

𝑒𝑃𝑇 = 𝑔𝑧 

where g and z are gravitational acceleration and height, respectively. 

In this analysis, kinetic, potential, and chemical exergy will be neglected. 

 

Entire Process: The Exergy balance for the entire process (Figure 28) can be performed as 

follows: 

�̇�𝐷,𝑡𝑜𝑡 = �̇�𝑝𝑢𝑚𝑝 + ∑ �̇�𝑖𝑛 −  ∑ �̇�𝑜𝑢𝑡 

where, 

∑ �̇�𝑖𝑛 = �̇�𝑄,𝑠𝑜𝑙𝑎𝑟+�̇�𝑠𝑤 

 ∑ �̇�𝑜𝑢𝑡 = �̇�𝑑𝑖𝑠𝑡 + �̇�𝐵𝑟 

where �̇�𝑄,𝑠𝑜𝑙𝑎𝑟, �̇�𝑠𝑤, �̇�𝑑𝑖𝑠𝑡, and �̇�𝐵𝑟 are the exergy input from heat transfer in the solar field, 

exergy flow of seawater into the system, exergy flow of distillate outlet, and exergy flow of brine 

outlet, respectively. The exergy flow is always in reference to a specific enthalpy and entropy of 

a restricted Dead State. The environment conditions are used as the dead state because that is the 

state at which no further exergy can be extracted as work. The most appropriate dead state to use 

is the seawater inlet into the system. 
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Exergy Inlet: The Exergy entering the system can be broken down into components: 

∑ �̇�𝑖𝑛 = �̇�𝑄,𝑠𝑜𝑙𝑎𝑟+�̇�𝑠𝑤 

Since �̇�𝑠𝑤 is defined as the dead state, the exergy rate is equal to zero. 

The exergy input from heat transfer is defined as: 

�̇�𝑄,𝑠𝑜𝑙𝑎𝑟 = (1 −
𝑇0

𝑇
) ∗ 𝑄𝑠𝑜𝑙𝑎𝑟 

where T is the temperature at which heat transfer, 𝑄𝑠𝑜𝑙𝑎𝑟, occurs. Since the heat transfer raises 

the temperature of the seawater, the average seawater temperature in the solar field was used. 

 

Pump Exergy into System: The exergy from work is simply work, 𝑊𝑝𝑢𝑚𝑝. This makes sense 

because exergy is the energy available to perform work.  

 

Exergy Outlet: The exergy out of the system comes from the pure distillate water leaving the 

system: 

∑ �̇�𝑜𝑢𝑡 = �̇�𝑑𝑖𝑠𝑡 + �̇�𝐵𝑟 

The exergy of the distillate will be saturated water at 40°C and will be compared to the reference 

dead state. 

𝑒𝑑𝑖𝑠𝑡 = ℎ𝑑𝑖𝑠𝑡 − ℎ0 − 𝑇0(𝑠𝑑𝑖𝑠𝑡 − 𝑠0) 

�̇�𝑑𝑖𝑠𝑡 = �̇�𝑑𝑖𝑠𝑡𝑒𝑑𝑖𝑠𝑡 

where 𝑒𝑑𝑖𝑠𝑡 is the specific exergy of the distillate outlet. 

The exergy of the Brine will be calculated as pure solid salt. This can change, but I wanted to 

incorporate the salt flows of the system. 

𝑒𝑏𝑟 = ℎ𝐵𝑟 − ℎ0 − 𝑇0(𝑠𝐵𝑟 − 𝑠0) 
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�̇�𝐵𝑟 = �̇�𝐵𝑟𝑒𝑏𝑟 

where 𝑒𝑏𝑟 is the specific exergy of the brine outlet. 

 

Exergy Efficiency: 

The Exergy destruction is equal to: 

�̇�𝐷 = 𝑊 + ∑ �̇�𝑖𝑛 − ∑ �̇�𝑜𝑢𝑡 = ∑ �̇�𝐷,𝑖

𝑗

𝑖=1

 

where, �̇�𝐷,𝑖 is the exergy destruction in each of the subsystems and 𝑗 = 5. 

From the exergy analysis, the exergy efficiency, 𝜀, is defined as follows: 

𝜀 =
∑ �̇�𝑜𝑢𝑡

∑ �̇�𝑖𝑛 + �̇�𝑝𝑢𝑚𝑝

 

The exergy efficiency is used as the criterion of performance, and the total loss can be broken 

down in the exergy destruction of each subsystem, or exergy defect. The exergy analysis of each 

subsystem is carried in a similar process. 

 

Subsystem 1: Multifunctional Venturi System (Figure 29) 

The steam and Primary flow stream entering the Venturi System be assumed to exit the Venturi 

System in the same initial state and temperature. Condensation and mixing will be assumed to 

occur within the boiler. Therefore, there will be no Exergy destruction in the Venturi System. 

�̇�1 = �̇�1𝑒1 = ℎ1 − ℎ0 − 𝑇0(𝑠1 − 𝑠0) 

�̇�𝑠𝑡 = �̇�𝑠𝑡𝑒𝑠𝑡 = ℎ𝑠𝑡 − ℎ0 − 𝑇0(𝑠𝑠𝑡 − 𝑠0) 

where 𝑒1 and 𝑒𝑠𝑡 are the specific exergy of primary water without steam addition and the specific 

exergy of steam flow, respectively. 
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Subsystem 2: Boiler Heat Exchanger (Figure 30)  

The exergy destruction for the boiler heat exchanger, �̇�𝐷,2, can be calculated as follows: 

�̇�𝐷,2 = �̇�1 + �̇�𝑠𝑡 + �̇�𝑖𝑛 − �̇�3 − �̇�𝑠𝑡 − �̇�𝐵𝑟 

�̇�𝑖𝑛 = �̇�𝑠𝑤𝑒𝑖𝑛 = ℎ𝑖𝑛 − ℎ0 − 𝑇0(𝑠𝑖𝑛 − 𝑠0) 

�̇�3 = �̇�3𝑒3 = ℎ3 − ℎ0 − 𝑇0(𝑠3 − 𝑠0) 

where 𝑒𝑖𝑛 and 𝑒3 are the specific exergy of seawater into the boiler and primary water exiting the 

boiler. 

 

Subsystem 3: Solar Collector Field (Figure 31) 

The exergy destruction for the Solar Collector Field, 𝐸𝐷,3, can be calculated as follows: 

𝐸𝐷,3 = 𝐸𝑄,𝑠𝑜𝑙𝑎𝑟 − (𝐸𝑖𝑛 − 𝐸𝑃𝑟𝑒) 

�̇�𝑃𝑟𝑒 = �̇�𝑃𝑟𝑒𝑒𝑃𝑟𝑒 = ℎ𝑃𝑟𝑒 − ℎ0 − 𝑇0(𝑠𝑃𝑟𝑒 − 𝑠0) 

where 𝑒𝑃𝑟𝑒 is the specific exergy of preheated seawater entering the solar field. 

 

Subsystem 4: Preheater heat exchanger (Figure 32) 

The exergy destruction for the Preheater heat exchanger, 𝐸𝐷,4, can be calculated as follows: 

𝐸𝐷,4 = 𝐸𝑠𝑜𝑙𝑎𝑟 − (𝐸𝑖𝑛 − 𝐸𝑃𝑟𝑒) 

 

Subsystem 5: Distillate Outlet (Figure 33) 

The exergy destruction for the distillate outlet, 𝐸𝐷,5, can be calculated as follows: 

𝐸𝐷,5 = 𝐸𝑠𝑡 + 𝐸1 − 𝐸2 
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The results of both the energy and exergy analysis can be found in the Results and Discussion 

section of this paper. 

C. Economic Model: 

Additional assumptions are required for the comprehensive Thermo-Economic Analysis. The 

analysis in this study assumed a 25-year life of operation for the plant, and that the plant will 

operate at 100% capacity (100 m3/day) over the 25-year life. Because the system is designed to 

be driven mainly by solar energy, approximate values for daily solar insolation, solar thermal 

efficiency, land cost, and solar collector field cost are estimated. Using the SSV thermo-

economic model operating temperatures (Table 10), the solar collector efficiency was estimated 

to be 70% using Figure 24. 

 

 

Table 8: Estimates for land and solar parameters used in the economic model. 

Solar Insolation 7 kWh/ m2*day [22] 

Solar Thermal input efficiency 70% [23] 

Land Cost Rate $ 3,020.00  $/acre [13] 

Solar Field Cost per acre 500 $/m2 [23] 

 

 

Capital and operation and maintenance (O&M) costs were also required for a comprehensive 

economic analysis. Using the average capital and O&M costs of similar technologies (MED & 

MSF), the costs of the system were accurately estimated [14]. For the average O&M costs, 

thermal energy and electrical energy were removed using the percentage given in Figure 14. 
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Table 9: Estimated capital and O&M cost rates for the economic model [14]. 

 Capital Cost ($/L per day) O&M ($/m3) 

SSV Desalination 1.4 .05 

 

Note that O&M costs do not include electrical energy or thermal energy costs. 

The total cost of the system can be broken down into two types: fixed costs and variable costs. 

The total cost structure of the SSV system is comprised of three separate cost buckets: Capital 

costs, 𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙, O&M costs, 𝐶𝑂&𝑀, and energy costs, 𝐶𝐸𝑛𝑒𝑟𝑔𝑦. 

 

Capital Costs: 

The Capital Cost is the total investment cost to construct the desalination plant and solar field. 

The Capital costs includes construction costs, land costs, project financing, project development, 

and even contingency costs. All capital costs are initial, fixed costs. The total capital cost is 

approximated using the values in Table 8 and Table 9. In comparison to other thermal 

desalination systems, the capital cost of solar desalination plants is elevated due to the solar 

collector field construction.  

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙 = 𝐶𝑑𝑒𝑠𝑎𝑙 + 𝐶𝐿𝑎𝑛𝑑 + 𝐶𝑠𝑜𝑙𝑎𝑟 

where 𝐶𝑑𝑒𝑠𝑎𝑙, 𝐶𝐿𝑎𝑛𝑑, and 𝐶𝑠𝑜𝑙𝑎𝑟 are the installation cost of the desalination system, cost of land, 

and the installation cost of the solar field, respectively. 
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O&M Costs: 

The O&M costs are the total cost of operation and maintenance during the operation of the plant. 

The O&M includes monitoring, waste discharge, indirect costs, chemicals, labor, and 

maintenance. The O&M costs will be assumed as variable costs and depend on the amount of 

clean water produced. The total O&M cost is approximated using the values in Table 9. 

 

Energy costs: 

Since the plant is assumed to operate with only solar thermal energy input, the cost of energy 

only has an electrical energy component for the pump subsystem. Using the pump power and the 

cost of electricity, the total energy cost was computed. 

 

Discounted Cash Flow Analysis: 

To determine the net present value of all cash flows (revenues and costs), each cash flow must be 

discounted to the present value using a discount or interest rate. This is referred to as a 

Discounted Cash Flow (DCF) analysis. For this analysis, the construction time period (time from 

initial investment to the start of commercial operation) will be assumed to last one year, and all 

Capital costs are allocated at the beginning of the first year (Year 0). Energy and O&M costs will 

be allocated at the beginning of each year of operation. The present value of each cash flow can 

be calculated as: 

𝑃𝑉 =
𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤

(1 + 𝑖)𝑛
 

where PV, 𝑖, and 𝑛 are the present value of the cash flow, interest or discount rate, and the 

number of periods/years between the present and when the cash flow takes place, respectively. 

The DCF analysis can also be used to determine the Internal Rate of Return (IRR) of a project if 
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a set price of clean water production is available. IRR is a metric used in capital budgeting to 

estimate the profitability of potential investments. IRR is a discount rate that makes the net 

present (NPV) of all cash flows from a particular project equal to zero [50]. For this study, the 

interest rate on initial investment will be assumed zero. Without determining the financing 

structure, it would be inappropriate to assume 100% of the investment cost will be in the form of 

debt financing with a fixed interest rate. The IRR percentage will be the year-over-year ROI of 

the project for each set price point of clean water production. 

 

Using DCF analysis, cash flow tables were generated for a specified price of water production, 

and the Internal Rate of Return was calculated. Cash flow tables were made for specified prices, 

including $1.00/m3, $1.50/m3, $2.00/m3, $3.00/m3, $4.00/m3, and $5.00/m3. Cash flow tables can 

be seen in the Appendix. 

 

D. Thermo-Economic Model Results and Discussion:  

The Thermodynamic model provided the temperature, mass flow rate, enthalpy, and exergy of 

each flow stream. The properties of each flow stream are shown in Table 10. 
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Table 10: Flow stream properties solved for using Thermo-Economic Model. 

Stream mass flow rate Temperature Enthalpy of stream Exergy of Stream 

𝑆1 �̇�𝑃1 11.57 kg/s 𝑇1 40 ºC 𝐻1 1940 kW 𝐸1 16.49 kW 

𝑆1𝑎 �̇�𝑃2 12.73 kg/s 𝑇1 40 ºC 𝐻1𝑎 2134 kW 𝐸1𝑎 18.13 kW 

𝑆3 �̇�𝑃2 12.73 kg/s 𝑇3 42 ºC 𝐻3 2240 kW 𝐸3 23.56 kW 

𝑆𝑑𝑖𝑠𝑡 �̇�𝑑𝑖𝑠𝑡 1.16 kg/s 𝑇1 40 ºC 𝐻𝑑𝑖𝑠𝑡 194 kW 𝐸𝑑𝑖𝑠𝑡 1.64 kW 

𝑆𝑠𝑤 �̇�𝑠𝑤 2.78 kg/s 𝑇𝑠𝑤 25 ºC 𝐻𝑠𝑤 283 kW 𝐸𝑠𝑤 0.00 kW 

𝑆𝑃𝑟𝑒 �̇�𝑠𝑤 2.78 kg/s 𝑇𝑃𝑟𝑒 34 ºC 𝐻𝑃𝑟𝑒 390 kW 𝐸𝑃𝑟𝑒  1.65 kW 

𝑆𝑖𝑛 �̇�𝑠𝑤 2.78 kg/s 𝑇𝑖𝑛 49 ºC 𝐻𝑖𝑛 599 kW 𝐸𝑖𝑛 10.72 kW 

𝑆𝑠𝑡 �̇�𝑠𝑤 1.16 kg/s 𝑇𝐵𝑃 40 ºC 𝐻𝑠𝑡 2574 kW 𝐸𝑠𝑡 135.0 kW 

𝑆𝑏𝑟 �̇�𝑏𝑟 1.62 kg/s 𝑇𝐵𝑃 40 ºC 𝐻𝑏𝑟 258 kW 𝐸𝑏𝑟 2.29 kW 

 

 

The results of the Thermo-economic model can be seen in Table 11. The model is a 

representation of a theoretical SSV plant with a capacity of 100 m3/day. The heat recuperation 

makes up the vast majority of the heat input required to generate steam. The heat transferred in 

the boiler encompasses 90.6% (2,678 kW) of the heat required alone. Adding the heat 

recuperated in the Preheater, the total heat recuperated is 94.3% (2,785 kW) of the heat input 

required to sustain 100 m3/day of water production. The remaining heat input (169 kW) is added 

via the Solar Collector Field. Changes in the entrainment ratio and operating temperatures 

greatly affects the energy and mass balance of the system. 
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Figure 34: Heat transfer breakdown. 

 

 

The energy and mass balance indicate high thermal efficiency. The performance ratio, which is 

the amount of water produced per kg of steam, is 15.4. The performance ratio is directly 

calculated from the thermal energy requirement. From a thermodynamic standpoint, the SSV 

system significantly outperforms MSF and MED plants. The results in Table 11 can be compared 

to other mainstream desalination technologies in Table 1 and mainstream solar desalination 

technologies in Table 3. 

 

The electrical energy requirements are much lower than other thermal desalination technologies. 

The SSV system requires only one circulating pump to circulate the primary water cycle and 

generate a vacuum in the boiler. The same circulating pump provides the motive force to deliver 

seawater at atmospheric pressure through the preheater, solar field, and into the boiler held at 
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Heat Transferred in 
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vacuum pressures. Typically, both MSF and MED require a large number of pumping units, 

including pumps for seawater intake, distillate product, brine blowdown, and chemical doings. 

 

 

Table 11: Results from energy and mass balance. 

Energy Calculations & Results 

Heat Transfer in Boiler 2678 kW 

Heat Transfer in Preheater 107 kW 

Heat loss 169 kW 

Heat Input by Solar Field 169 kW 

Pump Work 0.97 kW 

Thermal Efficiency 94.3% 

Thermal Energy Requirement 40.6 kWh/m3 

Electrical Energy Requirement 0.23 kWh/m3 

Performance Ratio 15.4 

 

 

 

 

Table 12: Results from exergy analysis. 

Exergy Calculations and Results 

Exergy of Solar Heat Transfer 9.10 kW 

Pump Work/Exergy 0.97 kW 

Exergy Destruction 6.13 kW 

Exergy Efficiency 39% 
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Table 13: Exergy destruction in each subsystem. 

Exergy Breakdown from subsystems: 

Exergy Destruction in Boiler 1.35 kW 

Exergy Destruction in Preheater 3.78 kW 

Exergy Destruction in Solar Field 0.03 kW 

Pump Work/Energy 0.97 kW 

Total Exergy Destruction 6.12 kW 

 

 

 

 

Figure 35: Pie chart of exergy destruction in each subsystem. 

 

 

The exergy analysis results can be used as a theoretical baseline that will need to be validated by 

experimental results from a pilot plant. In the SSV system, most of the exergy destruction 

occurred in the boiler and preheater.  
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The low operating temperatures reduce the exergy destruction during heat transfer. The brine 

heater, or boiler, used in MSF usually heats the incoming seawater well above 100 °C. In 

comparison, the incoming seawater used for heating enters the boiler at 49 °C, shown in Table 

10. As seen in Table 12 the exergy efficiency of the SSV system is higher than both MSF and 

MED. 

 

Thermo-economic Model: 

The results of Thermo-Economic Analysis show that the SSV system has high thermal efficiency 

(comparable to MSF and MED) and very low electrical and thermal energy requirements.  

Ultimately, SSV desalination achieved a levelized cost estimate of $0.67/m3 for the theoretical 

100 m3/day system. It should be mentioned that the unit cost of electricity varies in the study of 

desalination systems. In Hoseyn Sayyaadi et al. [2], the unit cost of electricity used in the model 

was $0.03/kWh. In this study, the cost of electricity used was $0.10/kWh, the average overall 

cost of electricity in the United States in December 2017 [54]. The low electricity requirements 

of the SSV system should not be overlooked. When desalination studies use higher, more 

accurate prices for electricity, the estimated cost of desalination raises significantly. The results 

of the Thermo-Economic Analysis can be seen below: 

 

 

Table 14: Levelized unit cost of each cost component for SSV System. 

Levelized Costs ($/m3) 

Capital Costs 0.61 

O&M Costs 0.05 

Energy Costs 0.02 

Total Levelized Cost 0.67 
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Since the system was analyzed with solar energy as its heat input source, the cost of energy or 

heat input comes in the form of the capital cost of the solar field. Therefore, the majority of the 

unit levelized system cost is derived from capital or installation costs. The Capital and O&M 

costs were calculated using cost rates from actual MSF and MED projects in the Middle East and 

North Africa. Estimating the Capital and O&M costs using alternative methods, such as 

component costs, could lead to high error if the cost of some components are missed or a 

reputable reference source is not found. However, there are many reasons to believe the cost to 

build and operate an SSV plant would be far less than that of MSF or MED. First, the number of 

pumps and separate piping systems is greater in MSF and MED. As stated, both MSF and MED 

require many pumping units, including pumps for seawater intake, distillate product, brine 

blowdown, and chemical doings. The SSV system has one, single stage of steam generation. This 

reduces the size and complexity of the plant greatly. Second, the SSV system is designed to 

operate on 100% heat input from Flat plate solar collectors, which are more costly than 

conventional heat sources, such as steam or fossil fuels. There are many potential cost saving 

strategies, including developing a lower-cost alternative solar thermal collector technology or 

using a hybrid heat input system that utilizes geothermal energy, fossil fuels, or power plant and 

process plant waste heat. Lastly, the operating and top brine temperature of the SSV system is 

much lower than that of both MSF and MED. The top brine temperature (TBT) is approximately 

40 °C and the max seawater temperature leaving the solar collector field is 49 °C. Most of the 

SSV system remains around 40 °C. In comparison, the TBT of MED is around 70 °C, and the 

max seawater temperature of MSF is above 100 °C [3]. The lower temperatures have two 

benefits: cheaper materials with lower temperature ratings can be used and corrosion issues and 
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costs will be decreased. Overall, there are many reasons to believe both the installation and 

O&M costs can be less than the cost ratings used in this study. 

 

 

 

Figure 36: Pie chart of levelized unit cost breakdown. 

 

 

A main advantage, and a disadvantage of the SSV system is that it is designed to operate solely 

on solar thermal energy. Unfortunately, the current cost of solar thermal collectors, even cheaper 

flat plate solar collectors, far exceed the cost of heat input by steam, which is commonly used by 

other thermal desalination systems. The solar thermal system required for the proposed 100 

m3/day plant is rated at 169 kW, requires 0.2 acres, and has a total installation, or capital, cost of 

$414,673.  
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Table 15 is a scenario analysis of the levelized cost of water while varying both Useful Life and 

Solar Field cost rate. All the cells highlighted in green are scenarios in which the levelized cost 

of water production is under $0.50/m3. In the Thermo-economic model, the levelized cost of the 

Solar Field alone is $0.45/m3 or $0.055/kWh. Steam, on the other hand, with an estimated cost of 

$2 per ton, equates to less than one-tenth the levelized cost of the Solar Field, or $0.0035/kWh. 

The model assumes a useful life of 25 years. Since most of the cost associated with the SSV 

system are upfront, fixed capital costs, the unit cost of the technology is highly dependent on the 

useful life. If the useful life was increased to 30 years, the unit cost of solar thermal energy input 

drops to $0.0093/kWh. A sensitivity analysis for the levelized cost of the Solar Field can be seen 

in the Appendix (Figure 48). It is worth noting that although the cost of steam may be less costly 

than solar field heat input, the use of steam requires the desalination system be built in 

combination with a power plant, greatly limiting the number of potential applications and 

flexibility of use.  

 

 

Table 15: Scenario analysis for the LCOW. 

Levelized cost with various Useful Life and Solar Field Cost 

          

  Useful Life = 25 years   

  $0.67 /m3 15 years 20 years 25 years 30 years 35 years 40 years 

S
o

la
r 

F
ie

ld
 C

o
st

=
$

5
0

0
/m

2
 $25 /m2 $0.36 /m3 $0.29 /m3 $0.24 /m3 $0.21 /m3 $0.19 /m3 $0.18 /m3 

$50 /m2 $0.40 /m3 $0.31 /m3 $0.27 /m3 $0.23 /m3 $0.21 /m3 $0.19 /m3 

$100 /m2 $0.47 /m3 $0.37 /m3 $0.31 /m3 $0.27 /m3 $0.24 /m3 $0.22 /m3 

$250 /m2 $0.70 /m3 $0.54 /m3 $0.45 /m3 $0.38 /m3 $0.34 /m3 $0.31 /m3 

$500 /m2 $1.08 /m3 $0.83 /m3 $0.67 /m3 $0.57 /m3 $0.50 /m3 $0.45 /m3 

$750 /m2 $1.46 /m3 $1.11 /m3 $0.90 /m3 $0.76 /m3 $0.66 /m3 $0.59 /m3 

$1000 /m2 $1.84 /m3 $1.39 /m3 $1.13 /m3 $0.95 /m3 $0.83 /m3 $0.73 /m3 

$1500 /m2 $2.59 /m3 $1.96 /m3 $1.58 /m3 $1.33 /m3 $1.15 /m3 $1.02 /m3 
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Using the Discounted Cash Flow (DCF) analysis, a more realistic picture can be made for the 

investment potential for an SSV plant. As stated, a major disadvantage of the technology is that 

90% of the total cost comes from fixed capital costs. The results of the DCF analysis include the 

effect of the time value of money, and upfront costs will have more of an impact than costs 

incurred later in the life of the project. The Cash Flow tables in the Appendix demonstrate the 

effect of water prices on the IRR of the project. Figure 37 presents the potential rate of return of 

the 100 m3/day SSV plant based on the Thermo-Economic model results. The initial investment 

for the 100 m3/day SSV project is estimated at $552,135. For comparison, the average returns of 

the S&P 500 index are approximately 10%, which is less than the 12% IRR of the SSV project at 

a water price of $2.00/m3. In cities such as San Marcos, TX, White House, TN, Laurel, MD, 

Lakeland, FL, and Lubbock, TX, the utility cost of water is currently around $7.50/kgal, or 

$2/m3. The average 2016 water escalation rate in the United States was 4.1%. In some areas, 

such as the Northeast, the average water escalation rate was 8.6% [53]. 
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Figure 37: Yearly internal rate of return of a 100 m3/day SSV plant. 

 

 

 

Figure 38: 2016 Utility water rates in selected cities in the United States [53]. 
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Figure 39: 2016 Utility wastewater rates in selected cities in the United States [53]. 

 

 

Conclusion of Findings: Using referenced U-factor measurements were much more accurate 

than using heat transfer equations to calculate the overall U-factor in the boiler Heat Exchanger. 

The heat transfer equations become very complex when accounting for boiling and condensation. 

The solar irradiance rate used in the model is an average for some areas in California, which a 

suitor for desalination plants. Compared to other thermal desalination technologies, the thermal 

(40.6kWh/m3) and electrical (.23 kWh/m3) energy requirements are significantly below the 

averages of other thermal desalination technologies. The low thermal energy requirements led to 

a calculated performance ratio of 15.4. The exergy efficiency of the system was calculated as 
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39%, which is relatively high and can be attributed to the low temperature of heat transfer in the 

system.  

 

The anticipated Capital and O&M costs of the system are expected to be much lower than both 

MSF and MED, but to be provide an economic factor, the average MED costs were used in the 

model. Land costs are extremely variable and change drastically depending on where the system 

is developed. However, land costs make up a small percentage of the total cost of the system. 

The levelized cost of the solar collector field ($0.055/kWh) is over double the cost of steam heat 

input ($0.0035/kWh) used in other thermal desalination systems. However, there are clear 

benefits to using renewable energy sources and because the cost of solar thermal energy is a 

fixed cost, increasing the useful life of the proposed plant can decrease the cost below that of 

steam heat input. A main advantage found by the Thermo-Economic analysis is that the electrical 

energy costs are greatly reduced. If higher, more accurate electricity costs were used in other 

thermal desalination studies, the resulting cost of the system would increase greatly.  

 

  



92 

 

VII. CHAPTER 7: 

CONCLUSION 

A. Primary contributions of this study: 

This paper introduces the concept of Single-Stage Venturi-driven Desalination, a single stage, 

thermal desalination system using a multifunctional Venturi water ejector to create a simple 

system and reduce the cost of desalinated water. The system requires only low-grade solar heat 

(< 60 ºC) mainly to supplement the heat loss during operation. As compared to the conventional 

methods of solar desalination, such as MSF, MED, and RO, the proposed system has the 

following intellectual novelties: First, the novel multifunctional water ejector integrates a 

vacuum pump for steam production, a compressor for condensation, and a starter for heat 

recuperation. Second, only residential-grade solar water heating is needed for the heat demand 

which greatly reduces the production cost of desalination, as compared to those systems using 

concentrated solar power (CSP). Third, the proposed system is operated standalone based solely 

on solar energy.  

 

The SSV system relies on the efficient performance of the Venturi water-ejector system. The 

Venturi System was studied using a CFD simulations and experimental testing. The experimental 

results demonstrated that the multifunctional Venturi water ejector could simultaneously act as a 

vacuum pump for steam production, a compressor for condensation, and a starter for heat 

recuperation. During experimental tests, the Venturi System achieved a vacuum pressure of .07 

bar, equivalent to a boiling point temperature of 40°C, during boiling. The experimental results 

came from off-the-shelf Venturi nozzles. With high-performance, custom-built Venturi nozzles, 

it is anticipated that low vacuum pressures and higher entrainment ratios are possible. The CFD 
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simulations produced performance curves for Venturi flow characteristics (CFD Experiment 1) 

and heat exchanger behavior (CFD Experiment 2) with a portion of heat exchanger added to the 

model. The CFD Experiment 1 results concluded that the performance of the Venturi System 

was not negatively affected by scaling up the system, a conclusion validated by Preliminary 

Experiment results. It also concluded that pump pressure can be used as a control parameter to 

control vacuum pressure and primary flow rate without effecting entrainment ratio. The CFD 

Experiment 2 results determined the effect of Primary inlet pressures, Heat Transfer Coefficient, 

and Boiling point temperature on heat exchanger properties like temperatures, and heat 

exchanger efficiency. 

 

A Thermo-Economic analysis, using results from the CFD simulations and experimental tests as 

operating parameters, was created as a baseline estimate for the thermodynamic and economic 

performance of the SSV system. The rated capacity of the theoretical SSV plant was 100 m3/day. 

The results of the thermodynamic aspect of the study determined the thermal (40.6 kWh/m3) and 

electrical (.23 kWh/m3) energy requirements, performance ratio (15.4), and exergy efficiency 

(39%). The exergy destruction came mostly from the Preheater (62%) and Boiler (22%). Adding 

an economic analysis to the model, the costs of the system were estimated. The cost breakdown 

was divided into three categories, Capital costs, O&M costs, and energy costs that were levelized 

and accounted for 90%, 7%, and 3% of the entire system cost, respectively. The high capital 

fixed costs of the SSV system make the levelized cost highly sensitive to the useful life of the 

system (Figure 48). The estimated levelized cost the SSV system was calculated to $0.67/m3 

(without time value of money). Comparing the estimated levelized cost to other solar 

desalination technologies in Table 3, the baseline SSV system cost is lower than any solar 
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thermal desalination technology and falls within $0.01/m3 of the RO/Solar Pond cost estimates. 

A Discounted Cash Flow analysis was performed to calculate the IRR of an SSV project for 

different price points of clean water. The upfront cost for a 100 m3/day SSV plant is estimated as 

$552,135. For a water rate of $2.00/m3, the IRR of the SSV project will be above 12%, outpacing 

the average S&P 500 returns [50]. The results of the economic analysis were compared to the 

2017 cost of water and wastewater in selected US cities prepared by the Department of Energy. 

The estimated levelized cost of $0.67/m3 falls below the Utility water rates in 35 out of the 61 

US cites studied. As traditional water sources are depleted or degraded, the cost of water will 

continue to rise in the US as evidenced by the average water escalation rate of 4.1% [53]. 

The results of this paper propose and support a novel desalination system that can be a cost-

competitive alternative to current solar desalination technologies. Due to the low cost of the 

system, coupled with the zero carbon emissions and high efficiencies, the SSV system is a great 

candidate for clean water production in both urban and rural systems. In cities, the SSV system 

can be utilized on the tops of large buildings or, at larger scales, in the center of large 

communities. Industrial customers can own and operate their own, on site, system with ease. 

Rural areas have the excess space for large solar fields and low land costs to make the SSV 

system very economical. 

 

Unlike the complex MSF, MED, and RO designs, the system can be modular and portable, does 

not require high grade heat from power plants or fossil fuels, and can potentially achieve a true 

Zero Liquid Discharge. These attributes make the technology ideal for emergency situations, 

such as hurricanes, droughts, or attacks, where the modular system can be deployed quickly, and 

deliver clean water to areas while being removed from the power grid.  
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B. Widening the scope of research performed in this paper: 

CFD Simulations: 

The model of the multifunctional Venturi ejector provided quick analysis of performance when 

parameters were changed. To provide more value, a 3D model with additional components 

should be built. The boiler should be added to the model to determine how the steam flow rate is 

affected in each test simulation. Additionally, adding a constraint to avoid negative pressure 

readings will increase the usefulness of the model. 

In general, a more comprehensive model of the system will provide a quick method of analysis 

when the system has changes made to it. To incorporate more of the subsystems and a 

multiphase model of the boiler and Venturi nozzle, the model will become extremely complex 

and will require both a skilled CFD professional and high-performance computer. 

 

Experimental testing: 

The system is very dynamic, and the prototype quickly gains complexity when adding more 

components. Sensors and tight system parameters are necessary to control the system. Funding 

for a higher-grade pump, Venturi ejector, and larger scale components will greatly improve 

results and analysis. Using the current prototype design, it will be useful to develop a fully-

functioning pilot plant to elevate maturity of project and start commercialization of technology. 

The goal is to incorporate more aspects into the system and sustain a rated capacity of 100 

m3/day at the current cost estimate of $0.67/m3. 
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Currently, this project has submitted a proposal for funding to the Department of Energy (DOE) 

in the Office of Energy Efficiency and Renewable Energy (EERE). The funding opportunity 

number is DE-FOA-0001778. In collaboration with Idaho National Laboratory, Old Dominion 

University will use any EERE funding to demonstrate the innovative desalination system.  

Normally, an exergy analysis will be performed on an existing desalination system as an analysis 

tool. In this study, a theoretical exergy and energy analysis was performed as a baseline for the 

performance of a novel technology, SSV desalination. In the future, the baseline results should 

be compared to experimental results of a pilot or operational SSV desalination plant. 

 

Thermo-Economic Analysis: 

A more comprehensive prototype will provide greater insights into the various costs of the 

system. Also, as the computational model integrates more subsystems, the results can be 

compared the baseline results calculated in the Thermo-Economic Analysis. A vital aspect of the 

analysis is the heat transfer coefficients used in the model. The referenced heat transfer 

coefficients in the boiler can range greatly from 1000-15000 kW/m2°C, and until experimental 

results are found, the estimate may have a large error. 

 

Other subsystem costs, such as thermal storage and municipality pipelines, will likely be added. 

Some desalination project cost models include municipality pipeline costs, and some do not. At 

this point, thermal storage may provide benefit to the system, but until a pilot plant is built, it is 

not necessary in the calculations. 
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C. Future Research: 

There is significant room to add to the foundational research performed in this study. On all 

fronts, (CFD Simulations, Experimental testing, and Thermo-Economic Analysis) additional 

studies can help validate and also improve the results of this paper. 

 

The performance of the system is highly dependent on high heat transfer efficiency in the boiler. 

Strategies to optimize the heat transfer within the boiler to minimize the size of the boiler and 

system overall will have a large impact in the success of the technology. Below are specific areas 

of research that can greatly improve the design, performance, and validity of SSV desalination. 

 

Low-Cost, Low-Grade Solar Systems: 

Future research should consider solar systems that can produce low-grade heat very cheaply. 

Cheap low-grade heat is the key to the low-cost of clean water using the system. Low-cost, 

efficient solar systems will also reduce the land requirement of the system, opening up new 

applications for portable and modular systems that can be deployed quickly. The current cost rate 

of Flat plate solar collector systems ($500/m2) drastically increases the cost of the system. 

Research should pursue other potential sources of cheap low-grade heat, such as non-

concentrated solar systems, geothermal sources, and process waste heat, that can be integrated 

with system to produce clean water.  
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CFD simulations: 

The computational model needs to be more inclusive of other subsystems to provide great value 

and results. Next steps involve integrating more aspects of the system to see if modeling results 

agree with theoretical and experimental. 

 

Zero Liquid Discharge: 

The question still remains whether it is possible or practical to run the SSV system at saturated 

salt concentration. Operating in such a condition will allow salt to accumulate at the bottom of 

the boiler and be removed periodically. This is a true Zero Liquid discharge solution. Corrosion 

and boiling point elevation are the main concerns. The boiling point temperature may need to be 

depressed further to make the solution possible. 

 

Advanced Venturi System designs: 

New innovations to the multifunctional Venturi water-ejector, specifically used for this system, 

will provide better operation of the system. It may be possible to construct a variable-sized water 

ejector, which allows the total size and area ratio to be manipulated. If the total size and area 

ratio can be manipulated during operation, a sophisticated control system can be created to 

dynamically control parameters such as entrainment ratio and vacuum pressure in the boiler. 

Incorporating a variable speed pump, it is possible to control additional parameters like pump 

pressure, primary water velocity, electrical energy consumption, and efficiency. 
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Greenhouse Insulation system: 

A low-profile greenhouse, encapsulating the system, has been theorized to eliminate heat loss 

through walls from the system. In many hot, arid regions, a standard greenhouse can reach 

temperatures of over 140°F. If the greenhouse and surrounding environment can act as a heat 

source, rather than a heat sink, insulating the system may not be necessary, further reducing 

costs. Instead, adding more heat transfer surface between the environment and system through 

radiators and fins may increase the system efficiency. Since the high cost of the SSV system is 

mainly attributed to the high cost of thermal solar energy, any reduction in energy required can 

have large cost savings.  

 

Ending Remarks 

This paper introduces a novel desalination technology, SSV desalination. SSV desalination is a 

carbon-free and cost competitive solution to the evolving issue of water scarcity. This paper 

provides a baseline performance for SSV desalination but does not provide any optimization of 

operating parameters or system configuration. It is encouraged to further analyze the system and 

develop strategies to further reduce cost, enhance performance, and increase the number of 

applications of the system. Going forward, there are many different areas of research that can 

improve upon the results within this paper and increase the technological readiness level of the 

SSV desalination technology. 

 

“Success is not final, failure is not fatal: it is the courage to continue that counts.”  

-Winston Churchill 
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Appendix 

 

 

Table 16: Vapor pressure table for liquid water [52]. 
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Figure 40: Inlet pressure vs. vacuum pressure, performance curve from CFD Simulation Set 1. 

 

 

Figure 41: Effect of inlet pressure on entrainment ratio and inlet velocity, performance curve 

from CFD Simulation Set 1. 
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Figure 42: Final temperature vs heat transfer coefficient, performance curve from CFD 

Simulation Set 2. 

 

Figure 43: Heat transfer coefficient effect on heat exchanger behavior, performance curve from 

CFD Simulation Set 2. 
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Figure 44: Inlet velocity vs heat exchanger temperatures, performance curve from CFD 

Simulation Set 2. 

 

Figure 45: Primary inlet velocity effect on heat exchanger behavior, performance curve from 

CFD Simulation Set 2. 
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Figure 46: Boiling point temperature vs heat exchanger final temperatures, performance curve 

from CFD Simulation Set 2. 

 

Figure 47: boiling point Temperature effect on heat exchanger behavior, performance curve from 

CFD Simulation Set 2. 
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Table 17: Prototype test demonstrating the vacuum pressure can be maintained during boiling. 

Time 

HX Temp 

(F) 

Vacuum Pressure 

(Bar) Note 1 

1 112 0.35 Heater On 

2 114 0.35  
3 140 0.35  
4 160 0.35  

5:30 172 0.3  
6 174 0.3  
7 175 0.35  
8 170 0.35  
9 170 0.35  
10 170 0.35 Pump Off 

13 185 0.5  
 

 

Figure 48: Sensitivity analysis of the unit cost of solar thermal collector field. 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60

C
o

st
 o

f 
th

er
m

al
 e

n
er

gy
 $

/k
W

h

Useful Life of System

Cost of Heat Input

Solar Energy  Cost

Steam thermal energy cost



109 

 

 

Table 18: Table of cash flows for 100 m3/day SSV project with water price at $1.00/m3. 

Price of clean water $1.00 /m3 IRR 3.6%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX 

(Investment)Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 

Net Income each year -$552135 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 

Net Project Income $296,952           

Net ROI 54%           
 

Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 $36500 

$33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 $33963 

 

Table 19: Table of cash flows for 100 m3/day SSV project with water price at $1.50/m3. 

Price of Clean Water $1.50 /m3 IRR 8.1%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 

Net Income each year -$552135 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 

Net Project Income $753,202           

Net ROI 136%           
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Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 $54750 

$52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 $52213 

 

Table 20: Table of cash flows for 100 m3/day SSV project with water price at $2.00/m3. 

Price of Clean Water $2.00 /m3 IRR 12.0%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 

Net Income each year -$552135 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 

Net Project Income $1,209,452           

Net ROI 219%           
 

Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 $73000 

$70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 $70463 
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Table 21: Table of cash flows for 100 m3/day SSV project with water price at $3.00/m3. 

Price of Clean Water $3.00 /m3 IRR 19.1%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 

Net Income each year -$552135 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 

Net Project Income $2,121,952           

Net ROI 384%           
 

Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 $109500 

$106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 $106963 

 

 

 

Table 22: Table of cash flows for 100 m3/day SSV project with water price at $4.00/m3. 

Price of Clean Water $4.00 /m3 IRR 25.9%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 

Net Income each year -$552135 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 

Net Project Income $3,034,452           

Net ROI 550%           
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Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 $146000 

$143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 $143463 

 

Table 23: Table of cash flows for 100 m3/day SSV project with water price at $5.00/m3. 

Price of Clean Water $5.00 /m3 IRR 32.6%         

  Year 

  0 1 2 3 4 5 6 7 8 9 10 

CAPEX Cost $552135                     

O&M Cost   $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

Energy Cost   $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

Total Cost $552135 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

Total Revenue   $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 

Net Income each year -$552135 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 

Net Project Income $3946952           

Net ROI 715%           
 

 

Year 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

                              

$1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 $1686 

$850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 

$2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 $2537 

$182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 $182500 

$179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 $179963 
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