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Chapter 2

Electroencephalogram
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Old Dominion Universiry, USA Indiana University-Purdue Universiry
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Yasith Jayawardana
Old Dominian University, U/SA Sashi Thapaliva
California State Polyrechnic Universiry
~ Pomona, USA

ABSTRACT

Autism spectrumi disorder (ASD) is a developmenial disorder that often
impairs a child’s normal development of the brain. According to CDC, it is
estimated that 1 in 6 children in the US suffer from development disorders,
and 1 in 68 children in the US suffer from ASD. This condition has a negative
impact on a person's ability o hear, socialize, and communicate. Subjective
nreasures often take more time, resources, and have false positives or false
negatives. There is a need for efficient objective measures thal can help in
diagnosing this disease early as possible with less effort. EEG measures the
eleciric signals of the brain via electrodes placed on various places on the
scalp. These signals can be used to study complex neuropsychiarric issues.
Studies have shown that EEG has the potential to be used as o biomarker
forvarious neurological conditions including ASD. This chaprer will ouiline
the usage of EEG measurement for the clussification of ASD using machine
learning algorithms.
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Electr phalogram (EEG) for Deii ing Objective of Autism n Disorder
INTRODUCTION

Autism Specirum Disorder (ASD) is characterized by significant impairments
in social and communicative fanclioning as well as the presence of repetitive
behaviors andfor restricted interests. According to CDC estimates, the
prevalence of ASD (14.6 per 1,000 children} has nearly doubled over the
last decade and has a costly impact on the lives of families affected by the
disorder. Itisestimated that I in 6children inthe US suffer from developmental
disorders. And I in 68 children fall under Autism Spectrum Disorder. ASD
is a neurological and developmental disorder that has negative impact in a
person’s learning, social interaction and communication. It is a debilitating
condition that affects brain development {rom carly childbood creating a
litelong challenge in norma! functioning. Autism is measured in spectrum
because of the wide range of symptoms and severity. The totat lifetime cost
of care for an individval with ASD can be as high 15 $2.4 million (Buescher
et al. 2014). In the Ui.S., the long-term societal costs are projected to reach
$461 billion by 2025 (Leigh and Du 20:15).

One of the main contributing factors for ASD is known to be genetics.
And so far, no suitable cure has been found. However, carly intervention has
been shown 1o reverse or correct most of its symptoms {Dawson 2008). And
this can only be possible by early diagnosis. Therefore, early diagnosis is
crucial for successfil rreatment of ASD, Although progress has been made
to accurately diagnose ASD, itis far from ideal. Tt often requires various tests
such as behavioral assessments, observations from caretakers over a period
to correctly determine the existence of Autism. Even with this tedious lesting
often individuals are misdiagnosed. However, there remains promise in the
development of accurate detection using various modalities of Biomedical
Images, EEG, and Eye movements.

Efforts to identify feasible, low-cost, and etiologicaily meaningful
biobehavioral markers of ASD are thus critical for mitigating these costs
through improvement in the objective detection of ASD. However, the
phenotypic and genotypic heterogencity of ASD presents a unique challenge
foridentifying precursors aligned with currently recognized social processing
dimensions of ASD. One approach to unraveling the heterogeneity of ASD
is to develop neurocognitive measures with shared coherence that map onto
valid diagnostic tasks, like the Autism Diagnostic Observation Schedule
Second Edition (ADOS-2) (Gotham ct al. 2007), that are the gold standard
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1caph

i ASTDY identification. These measures car: then be used to steatily children
into homogencous subgroups, each representing varying degrees of impaired
social neurocognitive funcrioning, Despite the need forobjective, physiological
measures of social functioning, machine learning has nos yet been widely
appliedte bivhehavioral metrics fordiagnostic purposes inchildren with ASD.

This chapter focuses on a social processing domein which, according to
the NIMH Research Domain Criteria (RT30C), is a central deficit of ASD
and lends irsell to quantifiable neurocognitive paterns: sovial interactions
during ADOS 2. The abilily to sociaily coordinate visuai allection, share
a point of view with another person, and process self- and ather-related
tnformation (Barresi and Moore 1996; Butterworth and Jarvett 1991; Mundy
el al. 2009) 15 2 foundaunnat social cogmtive capacity (Mundy 2016). Its
emergerce ininfancy prechets individual differsnces in language developraent
in both children with AST acd in typically developing chifdren (Mundy et
at. 1990; Mundy and Newel] 2007). Moreover, atiention is recognized in the
diagnostic eriteria of the DSM-V as one of the central impairmenis of early,
nonverbal social communication in ASD. While the empiricat evidence on
the physiological nature of atlention deficits in ASD is e:nerging that can
index atlenrion: social brain functional connectivity (FC) during real-iife
soctal interaction,

At the same time, it is weil-established o the literawre (hat the neural
svstems that subserve social cognition are functionally compromised in
children with ASD (Baron-Colien eral, 1983; Lombardo et ai, 201 1; Hiltand
Frith 2003; Kana ot al, 2009, Mason et al. 2008), [he research sugzgests there
is a functional (frontal-tempaoral-parietal) overlzp in neural system activity
during ADOS-2 and social cognitve processmg (Mundy 2016; Kennedy and
Adolphs 2012; Redeay et al. 2612; Schurz et al. 2014; Lombardo et al. 2010;
Carvana el al. 2015). Teken togather, there i aniple evidence 1o support that
aberrant frontal temporai-parieral FC is a poential nexus for latent social
cognitive disturbance in early ASD.

Many studies reveal either under- or over-connected aress in the aut
brain, deperding on whether the subject is ar rest or engaged in cognitiv
processing (Coben et b, 2008; Just eval, 2004; Just et al. 2000, Kung et al,
2014; Koshino et al. 2005; Koshino et al, 2007; Lazarev et 13, 20153; Lynch et
al. 2013, Uddin et al. 2013, Shih et al. 2010: Nooran et al, 2009, Jones el al,
2010, Damasls et al. 2030: Mohammad-Rezazadeh et al. 20!6). Reducsd FC
within frontal, superior einpo and temporal— parietal regions—regions
that comprise the social brain sysem- - have been consistently reporied
in most IMRI stidies examining FC during social information processing
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{Keshino ot al. 2007; Castelli e al. 2002; Kleinhans et al, 2008 Rudiz ar al,
2011 Welchew et al. 2005). The presence of altered social brain system F(C in
carly neurodevelopment can potentially raveal the onset of social dhflicuities
(Keehneral. 20130, as altered FC disrupts efficient information Jow between
paralie: and Sistributed neural systems involved io the processing ol social aad
communicative mformation (Mundy et al. 20003, Thus, children with ASD
may develop with lanited actmocognitive resources 1o eftficiently deal with
ihe processing demancs of dynamic social exchanges. This social deficit may
emerge as idiosy neratic patreras of ELG during bouts of joint social attention

LITERATURE SURVEY
Social Interaction Tasks

l'c date. the few studies that have examined FC during attznrion have done so
using nem-chinical paradigms thatinvolve fhe observaiion ol altentior-eliciting
videos; however, data from such paradigms may not reflect the true person-
-person interaciive nawre. More importantly, video paradigns may only
tap inte one of two facels of attention: responding 1o joint anention (RIA),
which serves ap imperative function. What Is not represented i Ja-cliciting
video paradigms is initining joint attention (JA), which serves a declarative
function and taps into social reward systems that are integral to the social
sharing of experiences (Carvana et al. 2013; Schilbach et ai, 2010; Gordon e
al. 2013). Moreover, RIA and UA show a developmental dissociation during
the firstund second years of Hife {Yoder etal. 2009; banez et al. 2013, Mundy
ef ul. 2007). Although RIA and TIA both have predictive value in infancy,
1JA is a more stable marker of ASD thar RJA in lawr childhood (Mundy @
al. 1986). Some acuroimaging reszarchers have dealt with the abave issues
by using a live face-ro-avalar paradigm ‘o simuzate A bids (Redeay et al.
2012; Gordon el al. 201 3). However, the move mentconsiraints inside the MR}
scanmier create testing conditions that can by difficult for younger children,
with and without A8

Eye movement belavior i

;o result of complex neurological processes;
therefore, eye gaze metrics can revesl objective wnd quantifiable infonination
aboul the predictability and consisiency of covert socint cognitive processes,
including socialattention (Chita-Tegmark 2010, Gualioneral. 20145, emodion
recegnition {Bal ot al. 2010; Black et ab. 2017, Sawyer ot al. 200 2; Sas
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et al. 2016; Tsang 2018; Wagner et al. 2016; Wisckowski and White 201 7).
perspective taking, (Symeonidou et al. 20161 and joint attention (Bediord ot
al, 200 2; Billeci ef al. 2016; Falck-Yrer ct al. 2012; Falck-Yuer et al. 2015;
Swanson et al. 2013; Therup ¢t al. 2016; Thorup et al. 2018; Vivanti et al.
20t7) for children wiuk and without ASD. Eye gaze measutement includes
several melrics relevent o ceulomotor conleol (Komogortsev el al, 2013)
such as saccadic rajeciories, [ixations, and other relevant measures such
as velocity, duration, amphitude, and pupit dilation (Krejiz et al. 2018s).
We believe that combined analysis of fixations and saccades during natwral
and dynaniie joint auention tasks, currently vsed as a reliable measure of
ASD diggnostic criteria, will repsresent valid hiomarkers for objectifying
and delineatng the dimensionality of ASD diagnosis in the future, Previons
work in this area have successfully demonstrated development of K, the
cosfficient of ambicnt/focel attenuon (Krejtz et al. 2016) and previous work
hus supported the relatonship between eye tracking melrics and severity
of ASD diagnosis {Frazicr et 21, 2018, De! Valle Rubido cf al. 2618} and
communicative conmetence {Norbury etal, 2009}, If visual attention inf'luznces
stability of lixations dependent upon the demands of dynamic joint allention
tasks, a natural next step is 10 look inta how relevance may be reflecied in
similar peurophysiciogic features for atypical social braw systenss, such as
in the context of ASD (Hotier et al. 2017).

EEG Based Machine Learning for ASD

Studies have shown that EE( has the potential 1o be used as biomarker for
various neurological conditions including ASD (Wang et ai. 2015}, EEG
measures the elecrrica’ signals of the brain via elecirodes that ere placed on
various places on the scalp. ‘These clectrical signals are postsynaplic aetivity
iz the neccoriex and can be used 1o study complex ncuropsychiatric issues.
EEG hus various frequency bands and its analysis are performed on these
varying bandwidrhs, Waves betwean 0.5 und 4 HZ are delw, haiween 4 and
8 HZ are thera, belween 8 and 13 HZ are alpha, 13 to 35 HZ ae beta and
over 35 e gamina. Saccadic eye movemenl plays & big role in the altention
ard hehavior of an individual which direetly affects both :anguage and social
skills (Fletcher-Warson et al, 200%), Autistic children seem to have different
eve movemern! behaviors thar non-autistic children. They tend w avoid eye
contact and looking at human face while oousing more eio geometric shapes
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(Klinctal. 2008). While 2 typical chiid doesa’t find any intsrest in geomeric
shapes and terd (0 make more 2ye contact, and human face perceplion.

In Grossi et al. (2017), authors use a complex BLEG processing algorithm
called M3ROM/I-FAST aleng with muliiple roachine learning algorithms 10
classily Autistic patiends. In this siudy 15 ASD irdividuais and 10 non ASD
wete mlcct d. ASD group comprised of 13 males and 2 fomales berween
7 and 14 years of age. Contral group comprised of 4 males and 6 females
between 7 and 12 years ef age. Resting State CEG of both closed and open
eyes were recorded using 19 clectrodes. Palients sat in a guiet rodm without
speaking ar performing any mentally despanding aclivily while the E
wis heing recorded. The proposed TFAST algarithm conststs of cxuactly
three different phases or purts, In the {irst stage also called Squashing phase,
the raw EEG signals arc converted into feature vectors. Authors present a
workflow of the system from raw datz to clussification to make comparison
herween different algorithms sueh as Multi Scale Entropy (MSE) and the
Multi Scale Ranked Ovganizing Maps (MS-ROM). MSROM is 1 novel
algorithm based on Single Organizing Map Neural Network. In this study,
the daiaset is randomly divided nio 17 iruning consisting of 11 ASD, §
contrals and sight test records consisting of 4 ASD, 4 control. 'The noise
elim:zation is performed only on the training set. Also. itcompielely depends
on Use algorithm selected for extracion of feature vectors, For MS-ROM
featires they vtilize an algorithm called TWIST. In the final classification
stage, they use mulliple machine lexrning algorithms along with muliiple
\‘cll‘(l:lll[)n pratocels. The validation protocols are ratamg-testing and leave
vne oul cross validation, For classification purposcs they make usc of Sine
Nel Nenyat Nelwork, Logistic Regression, Sequential Minimal Optimization,
kNN, K-Conrractive Map, Najve Bayes, unc Random forest, With MSE
{eature extraction the best results were given by Logistic and Naive Ba
with exactly 2 errors. Whereas, MS-ROM with training test protocol had O
errars {100% accuracy) with all the classification models.

Bosletal. (201 1), conduct a sludy using mMSE as featre vectors along
with multiclass Support Vecror Machine 1o differentiate developing and
high-risk infant groups. In this study they use 79 difterent infants of which
49 were considered high risk and 33 typicaily developing infants. The 49
nfants were high risk hased on one of their oider siblings having a confirmes
ASD diagnesis. The other 39 infants weie not ligh risk since oo one in their
[amily ever was dingnosed with ASD. Data was coliceted from cach infant
during muliple sessions with some interval, Data extracted from an infant
in five different aessions in various months between 6 to 24-month period

3
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were considered unique. Resting staie EEG with 64 clectrodes was extricted
by placing the infant in a diraly iit room in their motier’s jap where the
research assisiant blew babbles to catch their attention. The raw signais were
preprocessed using Moditied Multiscale Entropy. Low, high, and mean for
cach curve from mMSE were caleulaled to ereare a [eare set of 192 values.
The best fit for the classilication Tor High risk and normal infauts was al age
9 months with over 90% accuracy.

AbdeThay el ai. (2017), use EEG ntringic [unction pulsation o identify
patterns i Autism, They mahematically compute ERG tealires and conepare
ASD with iypically developing. In ihis study they selected 10 ehildren with
ASD and !0 non-auustic children within the age group of 4 to 13. They
collectad resting state EEG using 64 clacurodes with a 500 HZ sampling
frequency. Initially the signals were bund pass filtered and zll the artifacts
including eve movements were removed by using Independent Componenot
Analysis. Empirical Mode decomposition was applied 1o extiact Intrinsic
Mode Function from each of the channels of the participants, Then poing by
point pulsations of analylic intringic modes ere computed which is then protted
Lo makc comparison with the counierpart intrinsie mode in anofher channci.
Any existing stability loops are snalyzed for abnormal newral connectivity,
liy addition, 1hey perform 3D mapping Lo visualize and spol unustal brain
activities. In the First IMF of channel 3 versus the first {MIY in channel 2 tor
typically developing and autistic chiid, it was found that the stability of local
pulsation patways maintained 2 consistency while it was random in oy pically
developing. Similar paticris were seen in channels | and 2 and 36 and 37
of nen-autistic and autistic children. Qverall this computationat method was
uble 1o differentiale the abnormal EEG aetivities berween ASD and gypically
developing childron,

Alie et al. (201 1) use Markov Modeis with cye tracking w classity
Autism Spectrum Disorder. Unlike most other studies that collected dita
from children who were 3 years or older, in this siudy they collect duta from
G-month-old infants. There were in total 32 subjects ont of which 6 were laer
al ? years ol uge diagnosed witn ASDD and the rest were now. During the data
coliection the subjects were placed in front of thelr moihers and tour differen:
camaras [rom different angles recorded the video for about 3 minuates, The
cye tracking was simply based on either the subject iooked @ the nother’s
[ace or not. Through this they gel a hinary sequence of scbiceis’ eve patiern
which is then canveried into alphabet sequence of a specific Jength, Then
the sequence was filtered using a low pass Filter and down sampled by facior
ol 8. This is done to enhance Markov Models to produce effective resalts,
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Using this dats, they compare [lidden Markov Medels and Variablz-order
Markov Maodels for the classification of ASD. Hidden Markov Models was
able to correatly identity 92.03% of the typically developing subject while
idantifving only 33.33% of Aoustic subjecl. Whereas the VMM correctly
identiticd 10U% of the Autistic and 92.03% of typicaily developing subjects,
It was clear fio"n this result that Variable order Markov madels are superior
i Nading Audsiic cye parrern while both Markov Models are the same o
finding typically developing. The authors point aut this difference because
of varicus spectrums of Autism with different eye panerns. Nevertheless, ihe
VMM algorithm used inthis study looks effective in identifying Auiisn in an
early age. Sumarly, Liv et 21, (201 5) propose a machtine iearning fravework
for the diagnosis of Autism using eye movement. They uiilize lwo different
datasets from previous studies. One ol the datasers had 28 ASIY children,
21 typically developing, and 20 tyvpical developing 1¢)-matched children.
The other dataset comprised of 19 ASD, 22 Intclectually disabled, and 28
typical young adults and adolesecnts. They compute Bag of Words for Eye
Coordinates and Eye movement, N-Grams and AQT from the datasets. And
they truin five different Suppor: Veetor machine model with RBF kernel. Tach
of the medel used diffarent fonn of features Bke BOW of eye coordinates,
BOW of eye movement, combination, N-Grams, and AGL The resull was
eood {or both groups with Combination or fusion data. However, the children
datasel with fusion was (he best with around 87% accuracy.

Jiang and Zhao (2017) use eye movement with deep neural networks
to identify individuals with Autism Spectzum Disorder. They used datascl
fram a previous study with 20 ASD and 19 health controls, Here the subjects
observed aroimd 700 images from the OSIE database. OSIE database is a
nopular eye tracking dataset used [or luags saliercy henchmarkig, s,
they use Cluster Fix algorithm on the raw data to compute fixations and
sacezdes. hexi, they work on finding the discriminative images as the OSE
datasct is not soecifically buili forantism swdies. S0, both grouns might have
the same visual pattern for sonie of the images. For this purpose, they use
Fisher score method by which they score ¢ and select only
the one with the higher scores to be processed further, Aiter this proc t
image selection, they compute fixation maps i ditferentiare (ixations between
twe groups. Fixation maps are simply a probability disiribution of all the eye
fixations. In addition, they use a Gaussian Kernel for smoothing and normulize
by their sur. Normalization {5 us ¢ done when we are Comparing 1wo
dilterent tixation aaps as is the case here. Then they compute difference of
fixation map between the Autistic and non-Autistic gronp. This is the original

ach of the hmage

Q
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target which they used to tiain a SALICON netwark (o predict these values,
SALICON network is one of the state-of-the-art linage saliency prediction
atgorishms, image saliency prediction is about predicting the visual parrern of
users given an image. SALICON network uses two VGG witk: 16 layers. One
of the VUGG uses the original image o detect the small salient regions whereas
the other VGG uses the down sampled nage Lo detect the center of Farge
salient regions. Atthe end both the outputs are combined 1o gel a better resull.
T'his only predicts the image saliency. So, to predict the difference of fixztion
map they add another convolution layer with Cross ntropy Loss funcifon
using the original Difterence of fixation map. Next, they send the predicted
diflerencc of lixation maps 1o the final prediction layer. fn this part they first
apply tanh function 1o the features then concatenate the fealure vectors of al?
Ixation to consider dynamic change of astention, After which they reduce
the dimeasion by using local average poeling. At last they train an SVM o
make the final classification between ASiY end control. They make use of the
popular leave-one-out cross validztion 1o measure the performance of thei
model. The sceuracy of this model showed real promise in eye tracking for
ASD wath about 92% aceuracy.

METHODOLOGY

Current lechniques ir practice for identifying ASD are mostly subjective and
prone to error and vsuaily takes a lot of time for fira) diagnosis. Most of the
children with ASD are ciagnosed alter 3 years of age, Early dizgnosis is the
key {or veversing or treating ASD throvgh ewly intervention. As time is of
an essence we need a method of diagnosis that is fast. and efficient unlike
the current practice that could take months 10 years. Medical Imaging and
blood testing {Sparks el al. 2002; Spence ct al. 2004) are promising and a
Iot of work ix being done with these modalities to diagnose ASD. However,
BEG and Eyc movement are cost effective und hence can be accessible in
consemer level. The aim of this research is o study the identification of
Autisin Spectroie Disorder using EEG during ADOS-2. Comparison of the
classificatior performance belween EEG fzatures cen potenually result in
finding the betrer feature set. We hypothesize as the op performing signal most
hkely has more of the unique data poinis and panern of ASD and similarly, the
teast performing signals have less of the data points and parterns relating o
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Figare 1 LEG Processing Pipeline jor Sty 1. EEG Daio preproc
Mukoiw Fipeling follows this pipetine o frain SVM, Logistic, DNN and Gaussian
N

XSO HIing

rive Bayes Models

-l TR
" Prapiodanses SEG T
(- ity Makine >

T

=1

ASD. The secondary goal 1 fo compare varicus macnine learning algorithm
sor the classgication purposes. Conditions Hke ATHD, and other lean:;
disabifities can also share similar comparative patter:s for different features,

Machine Learning With EEG Measures
During Joint Attention

Wehave recently empioyed preliminary feature analysis on acquired raw EEG
data froni the work ol Jaime ¢ al. 12016), wherein the EEG was recorded [rom
adolescents with ASD (N=24) and typically developing adolescents (N=28}
while they watched a series of 30-second joint attention eliciting video clips.
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Figure 2. FEG Featie Processing Plpeline for Deep Newral Nerwork, Foch layer
of the deep nearci nerwork is shown in the figure, with irs fiuncrionality

First, we applied the pre-processing pipeline (described in §3,3. ) on the raw
EEG time series 10 remove noisy channels and data segivenis containing
movement and ocuiar artifacts from the EEG duw, The pro-processed data
was then classified using EEG Analyricy Pipeline (implemented in Python)
{Thapaliya et al. 201¥).

Toint attention 1s 1he ability to socially coordinate visual mtention, share
a point of view with anorher person, and process self and other-related
information. Hence the data retrieval was performed while making the subjeets
wuleh video ¢lips that wonld help in examming joint attention. There was
a tolal of 12 videos each of which was 36 scconds. About one second gap
was provided between each video. Both the EEG and Lye movemenl were
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coteclad while the participants watched the video. A total of 34 particizants
EEG data was used in this pager after (he preprocessing step.

Thereare many waystoextract feanmre from EEG datu. Eawopies, waveists,
FFT zrd various other statistical methods are commonty computed features
{Al-Fahoum and Al-Frathar 20 145, T ihis work we vse Statissical and Enmrony
values, Stat atres comprise of Mean, Srandard Deviation, and
combined mean and standard deviztion of the filered data. For the feutre
analysis, we usec siatisicad and entropy values incleding mean, standard
deviation, and combined mean and standard deviasion en the pre-processed
data, ntropy is computed by wsing Shannon entropy funcrion {Lin 19913,
which is the average rite al whaich information 15 produeced by s stochastic

source of data given by, F =—3p lag, »,. Mean funetion takes in a 2D
malrix consisting of the EREG signal o a person and returns a featurs veeror
with mean values for esch charnel over wiadows of signal. For the mean,
each of the [28 channels were computed, For each subject o feature vectar
consisting of mear of singie channel ws
4 20 matrix consisting of the EEG signal of & person and returns a Teature
veeior with mean values for cach channcl. For the standard deviation, each
ofthe 128 channels were computed. Forcach subjecta feature vector congizting
of mewn ol singie channel was ereated. So. the deviation funcrion wakes in 4
2D marix consisting of the BEG signal of 4 person and returns a fealure
vector with standard devianon velues for each channel. This is shown in the
Figure 1.

For classification SVM, Logistic, Beep Neursl Network {DNN), and
Gaussian Nuive Bayes is used. For the Zeep neural netwenk (see Fizure 2) with
five hidden lavers with sigmoid sctivation function iz used. For opimization
categerical crossentopy for loss and Adamax optimizer {Freivaldsand Liepins
217 18 used. We caplured three different feature ser; entropy features, 1T

credled, So, the mean funciior takes

Table [ Classificanion Aveuracy of ELG durving Joing Aitention Siady. The Entropy,
FFT, Meon qnd Stendard Deviation values ave given for ench classifer wsed for
thiy study

Clagsiller Eatrepy K¥T Muean Su
Ganzsirs Nuive fayes 3,20 033 855
Lopisic Repression 3l LS D50
WM il 936 Lo
020 51 255 [ERES
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and statistical features. We also calculale mean, and swadard deviation. in
total there are 4 different features lrom EEG and 4 different models for cach
type of classifier and, overall there arc 16 different model vanations hased
on the features (4 feature set x 4 classiliers). For each lcarure there are three
models for each algorithm, two models using Fearure Selection asd the third
one without using any featnre selection. For Feawrc selection PCA and
sequential feature seicetion is used.

Classification of EEG During Joint Attention: Resuits

The Table | presents an analysis and comparison of EEG dat. Note that
1w models were created for cach madei with only EEG and combined data
hy using PCA and without using PCA, Like SVM with PCA and without
PCA. For some models with PCA did beuwer while for some without PCA
did betrer. For example, DNN atmost aiways without using PCA did worse
beczuse of the curse of dimenstonality, The highest performing SVM with
about 56% accuracy was using FFT with 2l the feares without PCA. The
highest performing Logistic regression with 78% accuracy was using FFT
without PCA. SVM, Logiste Regression, and Gaussian Naive Bayes do
betecr without PCA which means that with PCA 1t loses data poinis thar these
models find useful. This is iateresiing because PCA is supposed to find the
mostdiscriminant features and remove redundant or notsy features. And this
is supposed o help machine learning models produce better resuils. For SVM
most madels with PCA dié betier excent the highest performing model.
nright mean that the Fatropy data is more Hnear than the other datasets. I
DINN the curse of dimensionality is ohvious, Whereas for Gaussian Naive
Baves all the high performing muodels did not use PCA except the one with
EEG mean. Thisisancxception and must bedugto the nanie of the BEG meun
data. But in general case Naive Bayes does beiter without PCA. This might
be since probahilistic moedels arc able to make sense of higher dimensi
dataser much cusier than other irodels e DNN. Ther with using Sequentiat
Fearure Selection algorithm almost all the models performed hetter than
either PCA or ne Feature Selection,

In th's smdy we have used PCA, and Sequential Featwrve Selection
slgorithms, There ure other Ffeature Selection algoriihms like Generic
algorithoy, Particle Swarm Optimization, and TWIST wlich canbe comparad
to find features o optimize the performance of the models. Aiso, this will
et us which feature selection algorithm will work better {or the combined

nis
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dara sets. Gaussiun Naive Baves with somne of the features had perfzct scare.
But we need Lo reproduce this result with Targe number of participants Lo be
able o use this in g clinical setiing. Current awnber of 34 participans is o
low to confirm our results. However, (his 15 a firs stop towards developing
an optinal Autismy Diagnosis systen.

EEG Coherence During Live Social interaction

The notion that social brain systera FC may be & usefu) index of social
impairmens s suggested by both the literature (Mundy 2016, Jaime ctal, 2016}
and by our preliminary findings obrained from our pilot sample composerd off
individuals betwsen the ages of 5 and 17 vears whe completed an ADQS-2
assessment while we simulianeousty recorded their BEG. Despile a small
sampie size (ASD = 8, TD = %), our preliminary resnlts indicate a trendi
negative association belween right hemisphere deita and theta band B
coherence and level ol secial symptom severity (accerding Lo the ADOS-
aigorithm scoring) in children with AST (see Tabla 2 below), but not in our
pitot sample of typicaily developing (TD) chitdren. Qur preliminary resuits
paint a econceptual picture thar 1s in line with onr prior work evaluating
EEG coherence during joint social arention perception in ASD (Jaime ¢l al.
2016}, Lhat there are diagnostic group differences in the association between
right hemisphers frontud-temporal -parieisd FC and standardized neasures
aof socizl functioning. Such diagnosuc group differonces in FC association
patterns reflect a tendency for children with impaired socisl capacity to have
idiosyneratic parterns of social brain system functional organizaiion refative
to wypical neuradevelopment. Thus, EEG measures of sociul brain s
FC aequived during live sociai interaction shows promise as a candidate
nor-invasive hiomarker of early emerging aberrant social neurocognitive
dystunction in ASD.

o)
1
2

EEG Acauisition and Pre-Processing

Our preliminary BC measures were analyzed from each pitol subject’s EEG
recording, acquired throughout the entire daration of the ADOS -2, We used
a 3Z-channel LiveAmp wireless EEG system with active electrodes and s
digital sampling rate of 250 Hz {Brain Products GimbH) for EEG time series
acquisition. Use of a wheless EEG system allowed for head movements
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Figure 3. EEG Feaiure Procesving and Classification. The row signiis ocguied
trom an EEG ave stoved and i subjecied 10 preprocessing to okt ciean tine-series
dafa, Ouoe vhis complete,

feture exsraction s peiormed. Then the exeracted feat

the clecai data bx

are fed into o classifier,

whici ises cross validation 1o evaliate ivs perfoimance depending an how it predices
ASD and TD class lutels,

and the active electrodes increzsed speed of application thereby increasing
prabability of successiul EEG data ncquisition wiih speeial populations.

ATt 22 channels were continuously recorded using the FCz electroda
as reference. To maximize the consistency of the recording quality across
conditions, a single epoch was recorded per expertmental condition. In
between epoch recordings an impedance check will be perforimed, This was
resulted in 6 difforent epochs per subject, Prior o the recording of exch
experinzental epoch, 2 90 second epoch of eves closed while resling wil be
recorded. This ser a necessary baseling metric for the LEG anslysis.
Afteracquisition, the raw EEG data outputwas imported into the opan-source
MATLAB toolbox: FEGLAB (Delorme and Makeig 2004}, Nexy, following
preprocessing pipeline 15 applied:

1 &

Remove Jow frequency hascline drift with a 1 Hz high-pass filier.
Remove 30-00 Hz AC line noise by applyving the CleanLine plugin.
Clean continuous raw data using the ¢lean_rawdata plugin (Mullen ¢
al, 2013). The clean_rawdata plugin first pesfarms bad chzinel rejection
based un two criteria: (1) channels that have {lat signals longer tkan 3
seconds and (2) chaenels poorly correlated with adjacent channels. Ut

R
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then gpplies arlifact subspace reconstruction (ASR} — an algeritlun
that temaoves nonstationary, high vartance signals from the EEG then
uses calibration dats (1 min sections of clean HECG) 1o reconsiruct the
misaing dali using o spatial mixing matrix.

4. lnterpolate removed channels.
3. Re-reference channcls {0 average referance.
8. Separate non-brsin artifacts from the B1G recording via EEGLAB s

Indeperdent Component Analysis [ICAY. Ruially, ICA imvolves the
lirear decomposition of the aggregate channel activity into a serics of
independent comporents that are spatiaiiy filrered from the recorded
LELEG ime series. Compoenents representing cye. cardiac, and muscle
artifact arc ramoved and components representing genuine brain activisy
are retained.

y. Here, & subjecis were dingriosed
cally developing (TD)}

Taple 2. ADOUS-2 Score of the ASD vs TD subji
with ASDH above horizanted line | arid the thaers were 1

Partivipant Sax Age ADOS2 ASD Disgnsts
o L in S DA
1 - M [ ) 2 Ak
| M bl I ASF:
12 i i i1 ASL T
3 AL ¥ 2 ASD
5 ) ¥ 10 E AKTD
8 T H EE st )
Ed M 15 q S
5 M H Z ™
! 3 o T
8 I f 5 o
14 I % o ™
W v N Vi ™ i
17 [ £ 3 it
f 1 15 3 it
e K [ 1 K
| 2z F 5 ez T
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EEG Measures of Functional Connectivity

We first extracied !E{-sccond epochs beginning from the middle onc-third
portion of each subject’s pre-processed BEG time series (o ealculute o
functioni connectivity (HC) measure of the engaged social brain sysiem.
Witk each subject’s epoched EEG ume series treated as adiscrete-time signal
%, (1] for EEG channel 1, we used EEG ccherence as a variable of BC.

Ly s
ERGeoherence, o: normalized magnitude-squared coherence (MSC). C,’f__ Liw;,
is a statistical estimate of the amonnt of p‘nusu syuchrony between twe EEG

tie series, o and v: 0¥ f

iy

8, [w]h where the scuared
miagnitude of the cross spectrom density }f,:m i u:): (a2 measwrc of co-variance)
berwean the two signals «» and ¢ ala given frequeney @ is normalized by
the Power Specirat Densities iPSDs) {variance) ot each channel o and i,

s0 that () < ¢

w' < 1. Iigher values represent greater syne hunom :LCH\![)

hetween dm;ncl channe!s whereas lower values represeni reduced or non
synchronous activity (Nunez and Srinivasan 2006). Coherence is a fenction
of "requcncv- Lo compute a single similatity melric between a pair of signals,

éC Inegrate ovu frequerey to oblain toud power (or variance i a statisticzl

sense) Fo= T‘JG"}" {u..") where T is the exlent of freguency components
f

sampled. The MSC of 4 signal which itself produces ro variaonce (in the
statisticai sense} and hence P == 7, gives n convenient, normalized metric
of similarity.

Accordingly, intra-hemispheric MSC berween electrode positions that
are spatiaily collocated over areas comprising the social brain system (Saxe
20006: Adolphs 2009} were examined. Elecirode pairs were setected based on
Homanetal.’s| 1987 electrode placement correlaies of cortical ocation. Using
the international 10720 placement sysiem (Klem et al. 1999, the following
electrodes were selected: F7, F&, T7. T§, TPS, TPI10, P7, P8, C3, and C4.

Classification of EEG During ADOS-2: Results

We generated five fealure sets categorized according to the frequency bands:
1) delia, 2) theta, 3} alpha, 4) beta and 5} gamena with each sel representing
the amplitude and power of the signal fom each clectrode. These featur:
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sers were entered 1o 43 different classifiers yielding precision rates, recali
rates, 'l scores, and percent accuracy. We identified six the top performing
classifiers: Random Forest, Logistic, Bagging, JRIP, LMT and AdaBoostM1.

The six top performing classificrs for the 5-band feature set are listed in
Table 3. The JRIP classificr yielded the highest percent accuracy with 98.06%
indicating that a 5-band feature set collected during an ADOS-2 test classifies
adiagnosisof ASD with greater than 90% accuracy. From these six classifiers,
the AdaBoostM 1 classifier yielded the lowest percent accuracy at 92.14%.

The evaluation results in Table 3 were calculated based on features from
all electrodes. We also conducted an evaluation by sclecting only F7. F8,
T7, T8, TPY, TP10, P7, P8, C3 and C4 electrodes based on Homan et al.’s
11987 ] electrode placement correlates of cortical location. The results of this
evaluation are listed in Table 4. When comparing the results, it was ohserved
that the Random Forest classifier yielded the highest percent accuracy with
97.04%. The AdaBoostM | classifier vielded the lowest percent accuracy at
79.75%.

Table 3. Precision, Recall, 'l and Accuracy of six classifiers used for classification

of EEG during ADOS-2

r Classitier Ereclsion D Recat 1 Avcuraey
R : | .98 098 98,00%
Lowisiic 0.96 0,90 96.63%

) 095 095 95.66%

0.98 098 98.06%

095 . 195 0.95 05.79%

| Adapovse] 082 09 192 92 145

Table 4. Precivion, Recall, F1 and Accwracy of six clussifiers used for clossificaiion

of EEG during ADOS-2 using only a selecied ser of features

Classifier Precision Rewll | 11| Accurncy
Random Forest .97 na7 0.87 97.04%
Logistic o L2 084 \‘LF--I-' B T2%
Bagging 495 e 0.95 95.50%
ii]{!l’ 094 - .94 94 G157%
LT 083 [ 0.2 52048
AdzBousiM] 050 o 07 79.75%
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DISCUSSION AND FUTURE OUTLOOK

Due to its low cost and feasibility, electroencephalography (ELG) shows
potential as an effective neorophysiological instrument in the classificution
ol ASD (Lenartowicz and 1.oo 2014: Snyder e al. 2015; Gloss et al. 20167,
and there is emerging evidence thal—-combined with macking Jewrning
approgchics——quantitative measuresof BEG can predict ASD with highlevels
of sersitivity and spocificity (Bostetal. 2018, Grossietal. 2017; Djemal cral.
20173 Anadvantage of EEG is 1ts ability to be applied o ecologically valid
contexis (i.e., person-to-person social interaction) via wircless selunons thug
allowing for the simaltaneous acquisitior: of data from multiple part:cipants
e real-world sertings.

To establish proot of concept—thar our classifiers show utility o predict
features in dine with diagnostic criteriz of ASD—we collest biobehavioral
metrics within the context of standardized tasks nsed in 2 pold standard
assessment of ASD symiptomatalogy: The Autism Diagnostic Obgervation
Schedule Second Edition (ADOS-2) (Gothzani e al. 2007}, The ADOS-2 has
been carefully developed to ereate snzpshots of naturalistic social seenarios
that can reveal observable features central to ASD (e, ot atention, social
overiures). thereby allowing us Lo measure brain aciivity that are tenmporaily
concurrent with theseabservable ASD features within refatively briet periods.
Itisatso important te note thal we did nor vse these ADGS-2 tasks as aclinical
ool u diagnaese purricipants; rather, we capiialized on the semi-straciured and
stundardized nature of these soctal tasks in the ADOS-2 o create a context
that engages the social bruin system and eiicits joint visua attention behavior
[y acquisition of biobehavioral metrics. Thus, participants recruiled Yor this
study have already received a diagnosis of ASD by a clinical professional
prior w enrolling in this study.

Dizerorits high teirporal resolution and feas:bility, eleciroencephaiography
(CEG) shows potential as un efteclive ncorophysiological instrument m the
classification of ASD (Lenartowicz and Loo 2014; Snyder et al. 2015; Gloss
eral. 2016). An advantage of EEG is its ability 1o be appied t¢ ecolozically
vatid comtexis via wireless solutions that alTow for the simullaneous acquisition
of data from multiple pariicipants. This makes EEG an appropriate choice for
cxumining relevantnecrophysiological features of ASD in real-world seltings
(Lee and Tan 2006;, Despite these advantages, most IEG research oceurs in
highly controlled experimental eoviromments, requiring data cotlected over
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many trials with minimal nead movement. W will address this deficiency
Ty combinitg EEG and eye racker usage in the future studies

Farty diagnosis is crucial for successful tresiment of ASD. Although
progress has been made o dceurately diagnose ASD. it 15 far from ide
Dawson 2008). 1t often requires various subjective measures, hehuvioral
assessments, observations from carctakers over a period to corvectly diagnose
ASD. Even wiih this tedious lesting often individuals are misdiagnosed.
However, there remains promise 1o the develapment of ¢
asing subjective modalides of EEG, and Eye movemenrts. In the futuse we
will obtain two sets of biohehaviorad measures representing joint attertion:
functional integration of newrocogninive etwor soctated with the social
brain (e, BEG metrics) and visual behavior (ie. eye tracking metrics).
Regarding visual behavior, we will collect, analyze, and produce a battery
of traditional positional eve movemeat metrics hought (o be potentiat
indicators of joint attention, including number of fixations (Jacob and Karn
2003), fixation durations (Fitts ec &l. 1930; Just and Carpenter 1976), and
number of regressions {Azuma et al. 20145, during naturalistic, dynemic
commnication lasks.

senrale detection
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ENDNOTE

Detgils regarding perlonning BCA in EEGLAB canbe foundhers: Swatz
Center for Computationat Neuroscience (2018, September 193, Chapter
09: Decomposing Data Using ICA. EEGLAB Wiki. httpsi/fscen.uesct.
cdu/wikifChapter_09:_Decomposing_Data _Using 1CA
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