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Pion valence structure from Ioffe-time parton pseudodistribution functions
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We present a calculation of the pion valence quark distribution extracted using the formalism of reduced
Ioffe-time pseudodistributions or more commonly known as pseudo-PDFs. Our calculation is carried out
on two different 2þ 1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice
dimensions 243 × 64 and 323 × 96 at the lattice spacing of a ¼ 0.127 fm, and with the quark mass
equivalent to a pion mass of mπ ≃ 415 MeV. We incorporate several combinations of smeared-point and
smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using
the summation method. After one-loop perturbative matching and combining the pseudodistributions from
these two ensembles, we extract the pion valence quark distribution using a phenomenological functional
form motivated by the global fits of parton distribution functions. We also calculate the lowest four
moments of the pion quark distribution through the “operator product expansion without operator product
expansion.” We present a qualitative comparison between our lattice QCD extraction of the pion valence
quark distribution with that obtained from global fits and previous lattice QCD calculations.

DOI: 10.1103/PhysRevD.100.114512

I. INTRODUCTION

The key element of most predictions involving hard
inclusive reactions in high-energy physics is the factori-
zation theorem [1] of perturbative QCD. This factorization
procedure separates the perturbatively calculable hard-
scattering quark and gluon dynamics from the nonpertur-
bative bound-state dynamics, described by the parton
distribution functions (PDFs) of the relevant hadrons.
For the nucleon, information about the quark PDFs can

be obtained from the experimental data of deep inelastic
scattering. Numerous experiments have been performed,
and the functional form of the valence quark PDFs is well
understood in various global fits [2–6].
On the other hand, the pion valence PDF has been

extracted using the data from only a few pionic Drell-Yan
experiments at CERN [7,8] and Fermilab [9]. The valence
PDF of the pion is of particular theoretical interest, as the

pion is the lightest QCD bound state and the Goldstone
mode associated with the spontaneous breaking of chiral
symmetry.
The accurate form of the pion’s valence quark distribu-

tion therefore provides a testing ground for both QCD and
QCD-based approaches in understanding the structure of
hadrons. The experimental data of Refs. [7–9] have been
analyzed in Refs. [10–16] to determine the pion valence
distribution and compare, in particular, the results of these
analyses at large x (fraction of the hadron’s longitudinal
momentum carried by the parton) with the predictions of
QCD-based hard-gluon-exchange models [17–19].
The large-x behavior of the pion valence distribution has

also been studied in different model calculations [20–26].
However, despite having different fits to the experimental
data and model calculations, it has not yet been settled
whether the pion valence distribution near x → 1 falls
off as (1 − x) or follows the ð1 − xÞ2 behavior suggested in
Refs. [17–19].
Thus, the slope of the pion valence quark distribution as

x → 1 may provide important information about the inter-
play of perturbative and nonperturbative aspects of quark
dynamics in the valence region. Because of its importance,
understanding the large-x behavior of the pion valence
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quark distribution is the goal of the approved experiment
C12-15-006 at Jefferson Lab [27]. Intensive studies of the
pion structure are also proposed for the future Electron-Ion
Collider [28].
Another way of studying the behavior of the pion

valence quark distribution may be provided by lattice
QCD calculations which can be complementary to the global
fit analyses of the cross-section data and can also serve as a
discriminator between different model predictions.
To achieve such a goal, we need to go beyond the

conventional moment calculations and obtain x-dependent
parton distributions. Several new approaches that allow us
to determine x-dependent parton distributions from lattice
QCD have been proposed. These approaches include the
path-integral formulation of the deep-inelastic scattering
hadronic tensor [29], the inversion method [30], quasi-
PDFs [31], good lattice cross sections [32,33], and reduced
Ioffe-time pseudodistributions (or pseudo-PDFs) [34,35].
An analogous coordinate-space method has been earlier
introduced for the calculation of light-cone distribution
amplitudes [36].
Although significant achievements in the lattice QCD

implementations of these approaches have been made in
recent years [37–48], a proper understanding and control-
ling various sources of systematics in these calculations still
require further exploration and theoretical development.
The status of current lattice QCD calculations of the x-
dependent hadronic structure can be found in the following
review articles [49–51]. Recently, an attempt to incorporate
lattice QCD determination of PDFs together with exper-
imental data to obtain the nonsinglet quark distribution of
the nucleon has been discussed in [52].
Lattice calculations of the pion valence PDFs have been

recently performed in Refs. [44,47,53] using the quasi-PDF
[47,53] and the good lattice cross sections [44] approaches.
In this paper, we present the first lattice calculation of the
pion valence PDF using the approach based on reduced
Ioffe-time pseudodistributions [34]. We discuss the limi-
tations of our lattice QCD calculation of the pion valence
quark distribution and compare our results with those in
Refs. [44,47,53] and also those obtained from global fits as
mentioned above.
The remainder of this article is organized as follows. In

Sec. II, we briefly discuss the reduced Ioffe-time pseudo-
distributions approach and the necessity of the calculation
in coordinate space. In Sec. III, we present numerical
details of the calculation of hadronic matrix elements of the
reduced Ioffe-time pseudodistribution to extract the pion
valence quark distribution. We present the results of the
extracted pion valence quark distribution in Sec. V and
compare our result with different fits of the experimental
data and other lattice calculations in Sec. VI. Finally, we
summarize our results and outline the future directions of
this method to obtain the pion valence quark distribution
with controlled systematics.

II. BASICS OF THE IOFFE-TIME
PSEUDO-DISTRIBUTIONS APPROACH

The unpolarized quark nonsinglet PDF is defined as a
Fourier transform of the nonlocal matrix element

Mαðp; zÞ≡ hpjψ̄ð0ÞγαWðz; 0ÞψðzÞjpi ð1Þ

taken on the light cone, e.g., for z ¼ ðzþ ¼ 0; z−; 0⊥Þ, with
the momentum given by p ¼ ðpþ; p− ¼ m2=2pþ; 0⊥Þ and
α ¼ þ, where we use the light-cone coordinates,
x� ¼ x0�x3ffiffi

2
p . The combination ν ¼ p · z is called the Ioffe

time [54], andWðz; 0Þ is the gauge link in the fundamental
representation. Its path goes along a straight line 0 → z. For
general z, p and α, the Lorentz decomposition of this
matrix element can be written as

Mαðp; zÞ ¼ 2pαMðν; z2Þ þ 2zαN ðν; z2Þ: ð2Þ

When z ¼ z− and α ¼ þ, the second function N ðν; z2Þ
does not contribute; i.e., the twist-2 PDF is solely deter-
mined by the first function. On the lattice, we need to take a
spacelike z. Choosing z ¼ z3 and p ¼ ðE; 0⊥; p3; Þ we can
exclude the N ðν; z2Þ function and deal with the function
Mðν; z2Þ that is called the Ioffe-time pseudodistribution
(pseudo-ITD). The term “pseudo” [34] reflects the fact that
one deals with the matrix element off the light cone, i.e., for
nonzero z2. Another advantage of taking the time compo-
nent of Mαðp; zÞ on the lattice is that such a choice also
avoids the pitfall of renormalization constant mixing as
described in Ref. [55].
Choosing a spacelike separation z brings in a serious

complication of additional link-related ultraviolet (UV)
divergences [56] that are absent when z is on the light
cone. Fortunately, these divergences are multiplicatively
renormalizable [57–59], i.e., form an overall factor
Zðz2=a2Þ, where a is a UV regulator, such as the lattice
spacing. In the quasi-PDF approach, such divergences are
usually removed using various versions of the regulariza-
tion-independent momentum subtraction (RI/MOM)
method [60,62].
A different approach was proposed in [34]. One con-

siders the reduced pseudo-ITD

Mðν; z2Þ ¼ Mðν; z2Þ
Mð0; z2Þ ; ð3Þ

formed by the ratio of Mðν; z2Þ to its rest-frame pz ¼ 0

value Mð0; z2Þ. Since the UV factor Zðz2=a2Þ does not
depend on ν, it disappears from the ratio Mðν; z2Þ. As a
result, the latter is UV finite. Moreover, it is a renormal-
ization group invariant quantity. Also, taking the ratio (3)
removes not only the UV divergences, but also the part of
the z2 dependence associated with them.
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Beside UV divergences, there are other sources of the z2

dependence. In particular, the function Mðν; z2Þ contains
higher-twist contributions related to the transverse-momen-
tum distributions of quarks inside a hadron and reflected in
the z2 dependence of Mðν; z2Þ. For small z2, they appear
as higher-twist contributions that are polynomial in
Oðz2Λ2

QCDÞ. Thus, one may expect that for small enough
z2 they may be neglected, and Mðν; z2Þ may be related to
the light-cone Ioffe-time distribution [63] Qðν; μ2Þ. Such a
relation is given by a factorization formula that involves
just logarithmic lnðz2Þ dependence accompanied by a
perturbatively calculable kernel.
An alternative proposal of taking such a ratio similar to

that in Eq. (3) has been proposed in [61]. In that article, the
authors claim that a vacuum matrix element of the same
type of operator could be used in the denominator, instead
of the rest frame hadron matrix element.
Furthermore, it is not unreasonable to suppose that the

higher-twist z2 dependence of Mðν; z2Þ and Mð0; z2Þ is
similar, and the higher-twist impact on the ratioMðν; z2Þ is
much weaker than Mðν; z2Þ. In particular, if Mðν; z2Þ
factorizes like Mðν; z2Þ ¼ MðνÞBðz2Þ, the ratio Mðν; z2Þ
has no z2 dependence. Unfortunately this idealized scenario
is not true for QCD, but as was shown in [64], taking the
ratio will always reduce the higher-twist contribution, in the
limit ν → 0. An actual calculation [38], though performed
in the quenched approximation, produced an almost z2-
independent result for Mðν; z2Þ in the region z > 4a (i.e.,
in the region where one would expect higher-twist effects
to be significant) and a logarithmic lnðz2Þ dependence in
the region z ≤ 4a, where it was perfectly described by
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
[65–67] evolution.
Summarizing, the choice of Mðν; z2Þ as the basic object

for lattice studies of parton distribution functions satisfies
the following criteria:

(i) Due to Lorentz invariance, the pseudo-ITD
Mðν; z2Þ and, hence, the reduced pseudo-ITD
Mðν; z2Þ depend only on the interval z2 for a
spacelike separation z between the quarks and the
Ioffe time ν. Both z2 and ν are Lorentz invariant.

(ii) For all values of spacelike z2 and for any contrib-
uting Feynman diagram, it can be shown [34] that
the Fourier transform of Mðν; z2Þ and, hence,
Mðν; z2Þ) with respect to ν has canonical support
−1 ≤ x ≤ 1 in the variable x interpreted as the
standard momentum fraction.

(iii) The UV divergences associated with the gauge link
are canceled in the reduced ITD, and the latter is a
renormalization group invariant quantity.

(iv) The short-distance behavior due to lnðz23M2Þ terms
(whereM is an infrared regulator and z ¼ z3) present
inMðν; z23Þ and generating the perturbative evolution
of parton densities is preserved in Mðν; z23Þ. In the

z23 → 0 limit, the reduced pseudo-ITD maps to
the usual light-cone PDF and obeys the familiar
perturbative DGLAP evolution with 1=z2 serving
as an evolution parameter.

To get the matching condition betweenMðν; z23Þ and the
light-cone ITD Qðν; μ2Þ, one may use the operator product
expansion (OPE) which is valid both for the numerator
Mðν; z23Þ and the denominatorMð0; z23Þ. As discussed, the
UV-singular factors present in these functions cancel
together with the z23 dependence associated with them.
The remaining z23 dependence corresponds to the DGLAP
logarithms lnðz23M2Þ and higher-twist effects proportional
to z23.
In our particular case, we have an additional simplifi-

cation that, in the local limit, the operator in Eq. (2) is a
conserved vector current. As a result, the denominator does
not bring an extra lnðz23M2Þ dependence. Eventually,
Mðν; z23Þ is matched to the MS light-cone ITD by

Mðν; z2Þ ¼
Z

1

0

duCðu; μ2z2ÞQðuν; μÞ þOðz2Λ2
QCDÞ; ð4Þ

where Qðν; μÞ is the light-cone ITD whose Fourier trans-
form with respect to ν gives the PDF fðx; μÞ at a
factorization scale μ. The matching kernel Cðu; μ2z2Þ of
the reduced pseudo-ITD to the MS ITD has been deter-
mined from one-loop calculations [59,68–70]

Cðu;μ2z2Þ¼ δð1−uÞ

þαsCF

2π

�
ln

�
z2μ2

e2γEþ1

4

�
BðuÞþLðuÞ

�
; ð5Þ

where

BðuÞ ¼
�
1þ u2

1 − u

�
þ

ð6Þ

is the Altarelli-Parisi kernel [66] and

LðuÞ ¼
�
4
lnð1 − uÞ
1 − u

− 2ð1 − uÞ
�
þ
: ð7Þ

The inverse of this formula will be needed for converting
the lattice results for Mðν; z2Þ to the MS ITD Qðν; μÞ at a
matching scale μ. Without loss of accuracy, this can be done
by switching the reduced pseudo-ITD and the ITD and by
changing the sign of αs.

III. NUMERICAL METHODS

The pion reduced pseudo-ITD is calculated on two
lattice QCD ensembles with different physical volumes.
These configurations were generated by the JLab/W&M
Collaboration [71] using 2þ 1 flavors of stout smeared
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clover Wilson fermions and a tree-level tadpole-improved
Symanzik gauge action. The strange quark mass was set by
requiring the ratio ð2M2

Kþ −M2
πþÞ=MΩ− to assume its

physical value.
The fermion action includes one iteration of stout

smearing with the weight for the staples given by
ρ ¼ 0.125. This smearing procedure has the consequence
that the tadpole-corrected tree-level clover coefficient
cSW ¼ 1.2493 is very close to the nonperturbative value
determined a posteriori with the Schrödinger functional
method [71]. The ensemble parameters are listed in Table I.
The lattice spacing of these ensembles, a ¼ 0.127 fm, was
determined using the Wilson flow scale w0 [72].
To ameliorate the contamination of excited states and

improve the overlap of the interpolators onto boosted pions,
we implement a combination of the Gaussian smearing [73]
and momentum-smearing [74] techniques. The pseudo-ITD
matrix elements are calculated using the summationmethod.
By now, this method is well known in the lattice community.
For completeness, some key points of the method are
highlighted below. We refer the readers to [38,75–77] for
more details on the implementation of this method.
The summation method is related to the Feynman-

Hellmann theorem. One considers a theory where the
action is modified by the operator of interest

SλðxÞ ¼ SQCDðxÞ þ λ

Z
d4xOðxÞ: ð8Þ

By the Feynman-Hellmann theorem, a hadron matrix
element of that operator can be found from a derivative
of the energy of that hadron

dEλ

dλ
¼ hEλj

dHλ

dλ
jEλi: ð9Þ

As was shown in [75], the derivative of the effective mass
can be shown to be a ratio of correlation functions. This
method has an advantage over other methods based around
the Feynman-Hellmann method, which require generation
of specialized configurations which scan λ. The derivative
of the effective mass at λ ¼ 0 can be calculated using
standard gauge configurations with λ ¼ 0.
The two-point and three-point correlation functions for a

fixed pion momentum p and a fixed current insertion time t
are written in terms of the standard pion interpolation
field OΠ:

C2ðTÞ ¼ hOΠðTÞŌΠð0Þi; ð10Þ

C3ðz; TÞ ¼hOΠðTÞOΓðzÞŌΠð0Þi; ð11Þ

where T is the Euclidean time separation between the
interpolating operators for the pion creation and annihila-
tion operators, OΓðzÞ ¼ ψ̄ð0ÞΓWð0; zÞψðzÞ, and we use
Γ ¼ γ4. For a fixed z, summing over the current insertion
time t, the matrix element is estimated from the large
Euclidean time limit of the effective matrix element:

MeffðTÞ ¼ RðT þ 1Þ − RðTÞ; ð12Þ

where

RðTÞ ¼
P

tC3ðT; tÞ
C2ðTÞ

; ð13Þ

The leading excited-state effects can be parameterized by

MeffðTÞ ¼ Mð1þ Ae−ΔT þ BTe−ΔTÞ; ð14Þ

where Δ is the energy gap between the ground state and the
lowest excited state. This method will also have signifi-
cantly reduced excited-state contamination at large
Euclidean separation compared to the typical ratio method,
whose excited-state contamination decays as e−ΔT=2. These
decreased excited-state effects allow for particularly short
time extents for matrix element extraction, as was dem-
onstrated in [76].
For the summation method to be successful, many

source-to-sink separations are required. The common
sequential source technique would require a large number
of propagator inversions for this to be practical. Instead,
this calculation shall use a sequential operator to construct
three-point correlation functions. The sequential operator
H is defined as the solution to the system of equations, with
suppressed spin and color indices

X
x;s

Dðy; t;x; sÞHðOop;x; s;x0; t0Þ ¼Oopðy; tÞGðy; t;x0; t0Þ;

where Dðy; s; x; tÞ is the Dirac matrix and Gðy; s; x0; t0Þ is
the point-to-all propagator from a randomly chosen source
point ðx0; t0Þ. The three-point correlation function is

TABLE I. The parameters for the JLab/W&M Collaboration ensembles used in this work: lattice spacing, pion
mass, β, light and strange quark mass, spatial and temporal size, and the numbers of configurations. The
a127m415L ensemble contains ten independent streams of 256 configurations each while the a127m415 ensemble
contains a single stream.

ID a (fm) mπ (MeV) β aml ams L3 × Nt Ncfg

a127m415 0.127(2) 415(23) 6.1 −0.280 −0.245 243 × 64 2147
a127m415L 0.127(2) 415(23) 6.1 −0.280 −0.245 323 × 96 2560
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calculated by replacing a single propagator in a standard
two-point function calculation with the sequential operator.
As mentioned earlier, this calculation utilizes the

momentum-smearing procedure [74] to improve the signal
of the moving states. Three values of the momentum-
smearing parameter ζ are used, including 0. For each of
those momentum-smearing parameters, two motifs of
smearing are used. The source interpolating field is always
smeared, but the sink quarks will be either smeared, called
smeared-smeared (SS), or left as points, called smeared-
point (SP). Typically the SS correlation functions will have
lower excited-state contamination. On the other hand, the
SP correlation functions will typically have less statisti-
cal noise.
A fit of the data to Eq. (14) is used for each correlation

function, holding the ground-state matrix element and
effective energy gap fixed between each correlation func-
tion of the same p and z. Specifically, a fit is performed on
N different effective bare matrix elements with different
smearing setups, Meff

j , to the form

Meff
j ðp; z; TÞ ¼ M0ðp; zÞð1þ e−ΔpT ½AðjÞ

p ðz2Þ
þ BðjÞ

p ðz2ÞT�Þ ð15Þ

with (2N þ 2) fit parameters where j labels the N different
smearings. The fit parameters will be chosen with a
weighted χ2 minimization which employs the full covari-
ance matrix. The different momentum-smearing parameters
only improve the signal-to-noise ratio for a certain range of
momenta states and decrease the signal-to-noise ratio for
other momenta. The T range as well as which of these
correlation functions are used in the fit are varied to
minimize the χ2 per degree of freedom (χ2=d:o:f:). All
statistical errors for the correlation functions and matrix
elements are estimated using the jackknife resampling
technique. Examples of these fits for the pion matrix
elements are plotted in Figs. 1(a) and 1(b).
The bare matrix elements for the rest frame are shown in

Fig. 2. A unique feature of pion correlation functions at
zero momentum is a constant signal-to-noise ratio in T
allowing these matrix elements to be significantly more
precise than they would be for other hadrons. The value of
these matrix elements decays exponentially in z=a. This
feature is generated by the renormalization of the Wilson
line. In perturbation theory, this behavior appears as a
power divergence for small z=a. This exponential behavior
will appear in matrix elements for all momenta, but without
the constant signal-to-noise ratio. The matrix elements for
large distance become very small and with the exponen-
tially growing statistical error at p ≠ 0, they can be
increasingly difficult to resolve.
In our calculation, the largest momentum along the z

direction we use for both of the ensembles is
pmax ¼ 3ð2π=LaÞ. We use zmax ¼ 6a (0.76 fm) and 8a

(1 fm) for the a127m415 and a127m415L ensembles,
respectively. Even with these relatively large separations,
there does not appear a noticeable sign of higher-twist
effects within the limitation of present statistics. Con-
sequently, when calculating the moments of the PDF or
of the MS ITD, both of which can be calculated for each z
independently, there does not appear to be any significant
dependence on the value of z used as will be demonstrated
in Sec. IV. If one attempts to determine the PDF from the
ITD using a limited set of data, i.e., z ≤ 4a, or using the full
set of data, then the results will be consistent with each
other but with larger variance for the smaller set of data.
This feature is particularly apparent in the low-x region due
to the shortened Ioffe-time extent of the ITD.

(a)

(b)

FIG. 1. Example fits of the bare Ioffe-time pseudodistributions
for the ensemble a127m415L. (a) corresponds to the matrix
element with z ¼ a and momentum p ¼ ð2πÞ=ðLaÞ in the z
direction and denoted by pz ¼ 1 in the figure. For this fit the
χ2=d:o:f: is 1.17. (b) corresponds to the matrix element with z ¼
6a and momentum p ¼ 3ð2πÞ=ðLaÞ in the z direction and
denoted by pz ¼ 3 in the figure. For this fit, χ2=d:o:f: ¼ 0.62.
The color points correspond to different correlation functions for
SP and SS source and sink. Different values of momentum-
smearing parameters are denoted by ζ. The red band corresponds
to the value of the matrix element M0 extracted from the fit.
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It is important to note that the size of potential higher-
twist effects must be confirmed before trusting results at
any separation. As is frequently done, labeling higher-twist
effects as Oðz2Λ2

QCDÞ for pseudo-ITDs or OðΛ2
QCD=p

2
zÞ for

quasi-PDFs only estimates the size of these effects and the
data must be checked for the presence or lack of these
effects before results can be trusted. For the largest
separation in this analysis, we have z2Λ2

QCD ∼ 1, but the
reduced pseudo-ITD appears to have successfully removed
the higher-twist effects in this range of Ioffe time.

The reduced-ITDs for both ensembles before any per-
turbative matching are shown in Fig. 3. One can see that the
most data group around some ν-dependent curve, with a
rather small scatter. Excluded from this pattern are the
pz ¼ 3 data points on the a127m415 ensemble, which are
visibly outside from the other data points that follow a
somewhat regular distribution in ν in Fig. 3. It is worth
noting that while pz ¼ 3 corresponds to a momentum of
∼0.91 GeV in physical units on the a127m415L ensemble,
it corresponds to a momentum of ∼1.22 GeV on the
a127m415 ensemble with smaller volume. In fact, these
data points are still within less than ∼2σ away of the other
data points, and their inclusion does not affect the sub-
sequent result of the fit to extract the pion valence PDF.

IV. MOMENTS OF THE PION PDF

As was described in [64], the reduced pseudo-ITD can be
used to calculate the moments of the PDF. By comparing
the Taylor expansions with respect to ν of Eq. (4), one can
derive a multiplicative relationship between the moments of
the pseudo-PDF, bnðz2Þ, and the moments of the MS PDF,
anðμ2Þ:

bnðz2Þ ¼ Cnðμ2z2Þanðμ2Þ þOðz2Λ2
QCDÞ; ð16Þ

where Cn are the Mellin moments of the matching kernel
Cðu; μ2z2Þ with respect to u. To next-to-leading-order
(NLO) accuracy, the moments are given by

Cnðz2μ2Þ ¼ 1 −
αs
2π

CF

�
γn ln

�
z2μ2

e2γEþ1

4

�
þ ln

�
; ð17Þ

where

γn ¼
Z

1

0

duBðuÞun ¼ 1

ðnþ 1Þðnþ 2Þ −
1

2
− 2

Xnþ1

k¼2

1

k
ð18Þ

are the well-known moments of the Altarelli-Parisi kernel
and

ln ¼
Z

1

0

duLðuÞun ¼ 2

��Xn
k¼1

1

k

�
2

þ
Xn
k¼1

1

k2

þ 1

2
−

1

ðnþ 1Þðnþ 2Þ
�
: ð19Þ

By completely avoiding the inverse problem [64], this
procedure allows for an understanding of the PDF’s
structure before any potential systematic errors arising
from the matching convolution and Fourier transforms
are incurred. In principle, this method, coined as “OPE
without OPE” [78], can be used to determine any moment
of the PDF in sharp contrast to the traditional method which
is based on local matrix elements. The latter is limited by

FIG. 2. The bare matrix element calculated for the case of
p ¼ 0. The constant signal-to-noise ratio in T allows for these
pion matrix elements to be extremely precise compared to other
hadrons. The exponential decay in z is a feature caused by the
renormalization of the Wilson line.

FIG. 3. Real component of the reduced pseudo-ITD obtained
from ensembles a127m415 and a127m415L for zmax ¼ 6a and
8a, respectively. The largest momentum used for both the
ensembles is pmax ¼ 3ð2π=LaÞ. The triangle-up (△) symbols
indicate the reduced pseudo-ITD matrix elements Mðν; z2Þ
extracted from the a127m415 ensemble and the hexagon (⬡)
symbols denote those for the a127m415L ensemble. These data
points represent the reduced pseudo-ITD before any perturbative
matching is performed.
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the appearance of power divergent mixing due to the
reduced rotational symmetry of the lattice as well as issues
related to the signal-to-noise ratio. In practice, however,
only the lower moments will have a resolvable signal.
Larger Ioffe-time extents and a finer resolution in Ioffe
time, both of which require finer lattice spacings, are
necessary before higher moments can be obtained.
The lowest four moments will be extracted from the

a127m415L ensemble data by inverting the Vandermonde
matrix as was performed in [64,77]. The imaginary and real
components are used individually to calculate the odd and
even moments, respectively. The imaginary component of
the reduced pseudo-ITD obtained from the a127m415L
ensemble is shown in Fig. 4. Due to the larger uncertainty
of the pz ¼ 3 data points from the a127m415 ensemble and
the deviation from the Ioffe-time distribution of the other
data points as shown in Fig. 3, this ensemble does not allow
us to extract moments in a reliable way. Therefore, we
extract moments using the real and imaginary components
of the reduced-ITD only from the a127m415L ensemble in
what follows.
The results for these moments, determined from data

with different z independently, are shown in Figs. 5–8, each
one called “pseudo-PDF moment” before matching and
“PDF moment” after matching. For the matching relation-
ships, we choose μ ¼ 2 GeV and the value of αsð2 GeVÞ ¼
0.303. This value of the coupling is taken from the
evolution used by the LHAPDF [79] for the dataset cj15nlo
from the CTEQ-Jefferson Lab Collaboration [80]. The
imaginary component of the pseudo-ITD calculated with
the lowest two z values has a completely linear behavior
within their short Ioffe-time range. This leads to an
inaccurate determination of the third moment, which also
slightly affected the calculation of the first moment. The
first moment for these two separations is instead calculated
with a linear fit. Similarly, the real component of the
reduced pseudo-ITD calculated with the lowest three z

values only exhibits a quadratic behavior and has an ill-
constrained value for the fourth moment. In this case, those
results did not appear to affect the quality of the second
moment determination, so the results are kept for the
second moment. For the third and fourth moments, these
poorly constrained results are dropped from the following
analysis.

FIG. 4. Imaginary component of the reduced pseudo-ITD
obtained from the ensemble a127m415L for zmax ¼ 8a. The
largest momentum is pmax ¼ 3ð2π=LaÞ.

FIG. 5. The first moments of the pion pseudo-PDF and of the
PDF calculated from the a127m415L ensemble are shown. The
moments are shown as functions of the original separation ðz=aÞ2
of the reduced pseudo-ITD data used to calculate them with small
offsets for better visibility. After the matching procedure, the
dependence on the separation is significantly reduced. The largest
deviation occurs for the lowest separation, which is most
susceptible to discretization errors.

FIG. 6. The second moments of the pion pseudo-PDF and of
the PDF calculated from the a127m415L ensemble are shown.
The moments are shown as functions of the original separation
ðz=aÞ2 of the reduced pseudo-ITD data used to calculate them
with small offsets for better visibility. After the matching
procedure, the dependence on the separation vanishes within
statistical precision, showing the lack of higher-twist effects in
this moment at this level of precision. The green band represents
the PDF moment from a weighted average.
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After the matching procedure in Eq. (16) has been
applied, there is no significant large-z dependence on the
separation z from which the data originated for the second,
third, and fourth moments. On the other hand, a z2

dependence does appear for the first moment calculation,
particularly between the z ¼ 1a and 1a < z ≤ 8a calcu-
lations. This moment at z ¼ 1a point is the most sensitive
to the lattice spacing errors. In addition, this point was
determined with a simple linear fit and therefore it can be
affected by different systematics.
For the first moment the residual z dependence at larger

ðz=aÞ2, which may be due to higher-twist effects, can be
modeled. These effects are either polynomial (i.e., z2n) or of
the form z2n lnðz2μ2 e2γEþ1

4
Þ. The logarithmic terms arise

from logarithms in the matching coefficients Cnðz2μ2Þ
when applied to pseudo-PDF moments that contain
higher-twist effects. As we can see these terms are sup-
pressed by αs and they are expected to be smaller than the
simple polynomial terms. Due to its large potential dis-
cretization errors, the z ¼ a data point is neglected in this
fit. The moments are fit to four different functional forms:

alatt2 ðz2Þ ¼ aþ c2z2Λ2
QCD;

alatt2l ðz2Þ ¼ aþ c2z2Λ2
QCD þ c2lz2Λ2

QCD ln

�
z2μ2

e2γEþ1

4

�
;

alatt4 ðz2Þ ¼ aþ c2z2Λ2
QCD þ c4z4Λ4

QCD;

alatt4l ðz2Þ ¼ aþ c2z2Λ2
QCD þ c2lz2Λ2

QCD ln

�
z2μ2

e2γEþ1

4

�

þ c4z4Λ4
QCD þ c4lz4Λ4

QCD ln

�
z2μ2

e2γEþ1

4

�
;

and the results of these fits are shown in Table II and are
plotted in Fig. 9. The value of ΛQCD ¼ 300 MeV was used,
but this choice is made solely for the magnitude of the
coefficients of the Oðz2Λ2

QCDÞ terms to be estimated. From
the value of the coefficients in Table II, the higher-twist
effects in this moment are an order of magnitude smaller
than what a naïve Oðz2Λ2

QCDÞ estimate would have sug-
gested. The first moment of the PDF dominates the low-ν
behavior of the pseudo-ITD and ITD, which is precisely the
region where the reduced pseudo-ITD reduces higher-twist
effects. The systematic error introduced by these higher-
twist effects would be comparable to, or smaller than, the
other systematic errors of finite lattice spacing and unphys-
ical pion mass. If there had appeared a sufficiently strong
polynomial z2 behavior in enough moments, one could use
the inverse Mellin transform of that behavior to estimate the
higher-twist effects in the reduced pseudo-ITD. With only
four moments and only one of them showing any dis-
cernible higher-twist effects, this inverse transform will not
be reliable. This lack of large higher-twist effects in the

FIG. 7. The third moments of the pion pseudo-PDF and of the
PDF calculated from the a127m415L ensemble are shown. The
moments are shown as functions of the original separation
ðz=aÞ2 of the reduced pseudo-ITD data used to calculate them
with small offsets for better visibility. The data from lowest two
z values in this calculation only show linear effects due to the
short range of Ioffe time they span. As a result, they do not
have any signal for the third moment and are not shown
here. After the matching procedure, the dependence on the
separation vanishes within statistical precision, showing the
lack of large higher-twist effects at this level of precision.
The green band represents the PDF moment from a weighted
average.

FIG. 8. The fourth moments of the pion pseudo-PDF and of
the PDF calculated from the a127m415L ensemble are shown.
The moments are shown as functions of the original separation
ðz=aÞ2 of the reduced pseudo-ITD data used to calculate
them with small offsets for better visibility. The data from
the lowest three z values in this calculation only show linear
effects due to the short range of Ioffe time they span. As a result,
they do not have any signal for the fourth moment and are not
shown here. After the matching procedure, the dependence on
the separation vanishes within statistical precision, showing the
lack of large higher-twist effects at this level of precision. The
green band represents the PDF moment from a weighted
average.
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moments, even with separations as large as z ¼ 8a, justifies
the use of these data for extracting the PDF.
We summarize our calculation of the moments of the

pion PDF in Table III. For the moments which do not show
signs of higher-twist effects, we take a covariance weighted
average of the results for each separation. For the first
moment, we state the value from the fit alatt4 with the higher-
twist contamination removed. The fit alatt4l has large values
of the variance of the fit parameters, a small number of
degrees of freedom, and the oscillatory nature of the final
result. We believe this result obtained from alatt4l is overfit.
We refer the readers to the previous calculations [81–87] of
such moments for a comparison with the calculated
moments in this work.
We shall calculate the moments from the extracted pion

valence PDF, in the next section, and compare with those
obtained from in the NLO QCD analysis [14] from the
Fermilab E-615 pionic Drell-Yan data [9] at a scale of
5.2 GeV. Note that the odd moments listed in Table III,
which are extracted from the imaginary component of the
reduced pseudo-ITD, are related to qvðxÞ þ 2q̄ðxÞ distri-
bution as shown in Ref. [38]. Therefore, our results for the
odd moments are not directly comparable with that
calculation.

V. EXTRACTION OF THE PION
VALENCE DISTRIBUTION

It can be seen from Fig. 3 that the z2 dependence indeed
cancels out to a great extent in the reduced pseudo-ITD of
Eq. (3) without spoiling the ν dependence in the Ioffe-time
distribution which governs the shape of the pion PDF. As
discussed earlier, for small z2 the functionMðν; z2Þ should
contain lnðz2Þ singularities related to the perturbative
evolution of the PDFs. Such a logarithmic z2 dependence
is clearly seen in the z ≤ 4a data of Refs. [38,39], per-
formed in the quenched approximation, though at a finer
lattice spacing a ≃ 0.093 fm. For large z ≥ 6a values, they
found the data in practice did not depend on z. Thus, one
can explicitly identify the region z ≤ 4a, where one may
rely on the perturbative evolution. As demonstrated in [69],
the matching procedure applied in this region to the points
for Mðν; z2Þ converts their lnðz2Þ dependence into the
lnðμ2Þ dependence of the MS light-cone ITDs Qðν; μÞ on
the MS scheme subtraction parameter μ2. Just like in
Ref. [77], for the matching of the reduced pseudo-ITD
to the MS ITD at a particular scale μ, we perform an
inversion of Eq. (5) simply by switching Qðν; μÞ and
Mðν; z2Þ and changing the sign of αs. This gives

Qðν; μÞ ¼ Mðν; z2Þ − αsCF

2π

Z
1

0

du

�
ln

�
z2μ2

e2γEþ1

4

�

× BðuÞ þ LðuÞ
�
Mðuν; z2Þ: ð20Þ

In other words, applying the matching procedure for an
appropriate value of αs, the z2 dependence of the original
small-z2 data for Mðν; z2Þ should be compensated by the

FIG. 9. The first moment of the PDF calculated from the
a127m415L ensemble is shown. The different bands correspond
to different models of the higher-twist effects. These effects are
significantly smaller than what an Oðz2Λ2

QCDÞ estimation would
have provided. The value hx1i ¼ 0.2541ð26Þ denoted by the
green band in alatt4 fit is quoted in Table III.

TABLE II. The parameters from fitting the residual z2 dependence of the first PDF moment for the a127m415L
ensemble. The higher-twist terms are smaller than what would have been expected by a simpleOðz2Λ2

QCDÞ estimate.

Fit a c2 c2l c4 c4l χ2=d:o:f

alatt2
0.2478(15) −0.0054ð16Þ � � � � � � � � � 5.42

alatt2l 0.2515(17) −0.051ð17Þ 0.008(3) � � � � � � 1.7
alatt4

0.2541(26) −0.015ð3Þ � � � 0.004(1) � � � 1.2
alatt4l 0.239(57) 0.2(1.2) −0.07ð35Þ 0.3(1.4) −0.03ð21Þ 0.67

TABLE III. The moments of the PDF determined on the
a127m415L ensemble through the OPE without OPE method
and the lowest separations used in the calculation.

n hxni zmin

1 0.2541 (26) 2a
2 0.094 (12) 1a
3 0.057 (4) 3a
4 0.015 (12) 4a
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ln z2 term, and one should get practically z2-independent
data points for Qðν; μÞ.
In the present calculation, due to significantly larger

uncertainties compared to those in [38], no systematic
logarithmic dependence of the data on z2 is visible.
Therefore, it is not possible to determine what is the length
scale z0 below which one may rely on perturbative
evolution of the reduced pseudo-ITD and what is the value
of αs associated with this evolution. As guidance for a
particular choice of αs one may use the idea that using the
correct choice of αs in the matching formula (20) should
produce the least scatter for the small-z2 points from a
universal curve in ν, at least up to discretization effects.
The convolution is performed on a polynomial fit of the

data for Mðuν; z2Þ, and Eq. (20) is applied for each z
independently. We choose μ ¼ 2 GeV, and the value of
αsð2 GeVÞ ¼ 0.303 has been taken from the evolution used
in Ref. [79] as mentioned earlier. It important to note that,
in the reduced-ITD approach, the relevant scale for con-
verting the matrix element to the MS scheme is the
separation between the quark fields z2, not the hadron’s
momentum pz. To investigate the systematics of the one-
loop matching on our choice of αs at a particular scale, we
vary αs by 10% and estimate its effect as a source of
systematic uncertainty, as shown in Fig. 10. One can show
that only the data points at large ν have as large as 5%
change in their central values and are still statistically

consistent between different choices of αs. Other points at
low Ioffe time have less than 1% change for the variation in
αs ¼ 0.303� 0.030. The small differences in the matched
reduced-ITDs of the two ensembles originating from 10%
change in αs are propagated as systematic uncertainty in the
subsequent analyses. The matched ITDs for the two
ensembles at the matching scale of 2 GeV are shown in
Fig. 10. The matched data points in Fig. 10 are also seen to
be located along a single curve that is a function of ν, with
rather small fluctuations. Again, the exceptions are the
pz ¼ 3 data points from the a127m415 ensemble.
Having data from two ensembles that have different

volumes, one may wish to use them to study effects due to
finite volume. We do not see any finite volume effect in the
reduced-ITDs with the exception of pz ¼ 3 data obtained
from the a127m415 ensemble which is not trustworthy for
the small volume. Moreover, the present case of only two
volumes is not an ideal situation for an infinite-volume
extrapolation. In our particular case, there are few pairs of
data from the two ensembles that correspond to the same
Ioffe time ν.
To extract a single PDF combining the results from the

two ensembles, we will perform a simultaneous and cor-
related fit to these two datasets. The number of configu-
rations of the two ensembles we use are different.
Therefore, to perform a simultaneous fit of the matched
Ioffe-time distributions, equal numbers of bootstrap sam-
ples are generated from the two ensembles. Because of the
reason mentioned earlier, we exclude the pz ¼ 3 data from
the a127m415 ensemble in this fit. Because the functional
form of the ITD QðνÞ is not known a priori, we implement
a “z expansion” [88,89] fit to the datasets, reflecting the
analyticity of QðνÞ. We also investigate whether there is
residual z2 dependence in the matchedQðν; μÞ distribution.
This is achieved by adding z2-dependent terms in the fit
function. Finally, a term which describes a potential volume
dependence is added. There are no model calculations for
the form of the finite volume corrections to the matrix
element in Eq. (1), unlike the two current matrix element
[90]. Instead, we take a simple exponential volume
dependence where the relevant distance is the difference
between the lattice size L and the length of the Wilson
line z. Namely, we use the following form:

Qðν; z2Þ ¼
Xkmax

k¼0

λkτ
k×

�
1þ ν2

�
c1z2þ c2z2 ln

�
z2μ2

e2γEþ1

4

�

þ c3e−mπðL−zÞ
��

; ð21Þ

where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νcut þ ν

p
− ffiffiffiffiffiffiffi

νcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νcut þ ν

p þ ffiffiffiffiffiffiffi
νcut

p : ð22Þ

FIG. 10. The MS Ioffe-time distribution obtained from ensem-
bles a127m415 and a127m415L after one-loop perturbative
matching using Eq. (20) at μ ¼ 2 GeV. The circle (∘) symbols
indicate the reduced pseudo-ITD matrix elements M0 extracted
from the a127m415 ensemble and the diamond (⋄) symbols
denote those for the a127m415L ensemble. The inner red
uncertainty band is obtained from a simultaneous fit to the
matched ITDs at μ ¼ 2.0 GeV on these two ensembles in the
limit of infinite volume. The outer red band is an estimate of
the systematic uncertainty arising from the choice of scales
obtained through a simultaneous fit to the matched ITDs in which
the value of αs is varied by 10% about the central value of
αs ¼ 0.303 at μ ¼ 2 GeV.
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Note that unlike the form factors we do not have cuts in
the complex plane for the calculated reduced pseudo-ITD
and we simply choose a dimensionless number νcut ¼ 1.0
in Eq. (21). In fact, other choices are possible with the final
results being unaffected.
One can readily see from Eq. (22) that, for fixed values of

λk, a larger νcut dictates a slower falloff of the distribution.
However, if one allows to vary λk in the fit along with
different choices of νcut, the fit parameters are also changed
accordingly such that the red band shown in Fig. 10
remains unchanged. The value λ0 ¼ 1.0 in the fit is fixed
by the normalization in Eq. (3) at ν ¼ 0 and does not
change by the perturbative matching. We limit the kmax in
our fit to the value in which additional term in the z
expansion has no effects on the fit and obtain kmax ¼ 4. The
fit parameters are listed in Table IV. The smallness of the fit
parameters c1 and c2 reflect the fact that the residual z2

dependence is negligible as discussed earlier. The red band
in Fig. 10 represents the ITD in the limit of infinite volume
and vanishing z2 contribution. The outer red band indicates
the systematic uncertainty in the z expansion fit of the
reduced-ITD introduced by 10% variation in αs at
μ ¼ 2.0 GeV.
We now use theQðν; μ ¼ 2 GeVÞ ITD from the above fit

to extract the pion valence quark distribution. By definition,
QðνÞ and the valence quark distribution of the pion qπvðxÞ
are related by

QðνÞ ¼
Z

1

−1
dxqvðxÞeiνx; ð23Þ

and the quark distribution is given by the inverse Fourier
transform

qvðxÞ ¼
1

2π

Z
∞

−∞
dνe−iνxQðνÞ: ð24Þ

Therefore to convert QðνÞ into a function of x, one should,
in principle, know QðνÞ for all ν. In our lattice QCD
calculation, we are restricted to νmax ∼ 6 for a discrete set of
integer ν. Thus, the extraction of the PDF using Eq. (24)
from lattice-calculated data constitutes an ill-posed inverse
problem. To our knowledge, a reliable direct inverse
Fourier transform to extract the PDF using lattice QCD
data is currently a formidable task.
An important constraint serving as additional informa-

tion is that the valence distributions of the nucleon and the
pion are smooth functions of the momentum fraction x in
the region 0 < x < 1, with support only in that region, and

the pseudo-ITD is related by a cosine transform to the pion
valence quark distribution [38,63]

QðνÞ ¼
Z

1

0

dx cosðνxÞqπvðxÞ: ð25Þ

In the spirit of the functional forms used in global fits of
PDFs, we insert

qπvðxÞ ¼ Nxαð1 − xÞβð1þ ρ
ffiffiffi
x

p þ γxÞ ð26Þ

into Eq. (25) and numerically perform the integration,
where N is the normalization such that

Z
1

0

dxqπvðxÞ ¼ 1: ð27Þ

We use the numerical fitting program ROOT [91] to fit
bootstrap samples of the matched pseudo-ITD to the qπvðxÞ
distribution. We find that the ρ

ffiffiffi
x

p
or the γx term has no

effect in the fit and we do not obtain any signal of the fit
parameters ρ and γ. Therefore we drop these terms and
adopt in our calculations the following simple functional
form for the PDF:

qπvðxÞ ¼
xαð1 − xÞβ

Bðαþ 1; β þ 1Þ ; ð28Þ

where the beta functions in the denominator ensure that the
normalization condition in Eq. (27) is met. We obtain the fit
parameters

α ¼ −0.48ð14Þstatð4Þsys;
β ¼ 1.08ð41Þstatð11Þsys; ð29Þ

with the χ2=d:o:f. about 1.9. For example, the inclusion of
the γx term in the PDF fit yields the following fit
parameters and therefore the extracted PDF remains essen-
tially unchanged:

α ¼ −0.49ð14Þstatð2Þsys;
β ¼ 1.05ð37Þstatð2Þsys;
γ ¼ 0.003ð11Þstatð57Þsys: ð30Þ

In Eqs. (29) and (30), the numbers in the first uncertainty
in the parentheses of the fit parameters are statistical
uncertainties and the second is obtained from fitting the
matched Ioffe-time distribution with the 10% variation in

TABLE IV. The parameters of the correlated simultaneous fit to obtain QðνÞ from the two ensembles.

λ1 λ2 λ3 λ4 c1 c2 c3 χ2=d:o:f

−0.0083ð49Þ −0.79ð16Þ −2.87ð1.35Þ −7.19ð2.87Þ −0.00080ð97Þ −0.00014ð16Þ −0.11ð19Þ 0.72
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the value of αs. We present the extracted PDF qπvðxÞ
from this fit in Fig. 11(a) and the xqπvðxÞ distribution in
Fig. 11(b). The fit to the data returns a well-constrained
value, α ¼ −0.48ð14Þ, for the small-x behavior of the PDF
corresponding to the slope of the relevant Regge trajectory.
However, we stress that, with the present resources
of lattice QCD calculations, a precise and accurate deter-
mination of the low-x behavior of the PDFs is not

accessible. Specifically, one can argue that the Fourier
transform at the Ioffe time ν is related to the region around
the inverse of the Bjorken variable xB, i.e., ν ¼ 1=xB [33].
Therefore, to obtain a reliable estimate of the low-x
behavior of the PDFs, one requires knowledge of the
ITD at large ν. The PDF model parameters of the fit are
highly correlated, as is evident from Figs. 11(a) and 11(b).
The uncertainty at x ¼ 0.65 shrinks significantly due to the
correlation between the fit parameters. This feature of
shrinking uncertainty at different x values has also been
observed in the calculation of nucleon PDFs using pseudo-
PDF approach [77]. It is a feature of these highly correlated
fits to have regions with small statistical errors.
For a comparison with the OPE without OPE calculation

of the moments in Table III, we can take the Mellin
transformation of this PDF result described by the fit
parameters in Eq. (29). At the scale of μ ¼ 2 GeV, the
first four moments are hxi ¼ 0.188ð56Þ, hx2i ¼ 0.081ð29Þ,
hx3i ¼ 0.046ð19Þ, and hx4i ¼ 0.030ð14Þ. Note that any
discrepancy between these numbers and those in Table III
may arise from a number of different reasons. Firstly, the
odd moments quoted in Table III contain small contribution
from the antiquarks. Secondly, the dataset used in the PDF
extraction includes data from both ensembles while those in
Table III only include data from the a127m415L ensemble.
We also present a comparison between the moments
extracted from our pion valence PDF fit with those
extracted in the NLO QCD analysis [14] using the
Fermilab experimental data [9] at a scale of 5.2 GeV in
Table V. We note that this lattice QCD calculation is
performed at an unphysical pion mass of mπ ∼ 415 MeV.
A proper comparison with the QCD analysis of the
experimental data and lattice QCD calculation can be made
when a continuum and infinite volume extrapolation to the
lattice data near the physical pion mass is performed.

VI. COMPARISON WITH OTHER
DETERMINATIONS

This lattice QCD calculation using the pseudo-ITD
approach is performed at a relatively heavy pion mass
(mπ ≃ 415 MeV) and on a relatively coarse lattice spacing
of a ¼ 0.127 fm. Repeating similar calculations on several
other lattice ensembles to determine the pion mass

TABLE V. Comparison between the moments of the PDF
extracted from the pion valence distribution in this work and
those obtained in the NLO QCD analysis [14] using the Fermilab
experimental data [9] at a scale of 5.2 GeV.

n hxni (this calculation) hxni (Ref. [14])
1 0.165 (9) 0.217 (11)
2 0.064 (1) 0.087 (5)
3 0.033 (2) 0.043 (3)
4 0.020 (2) � � �

(a)

(b)

FIG. 11. The pion valence distribution obtained from the fit in
Eq. (28) using the NLO perturbative kernel in Eq. (20). (a) shows
the pion valence distribution qπvðxÞ and (b) shows the xqπvðxÞ
distribution. The initial scale for evolving the PDF to a higher
scale is μ ¼ 2 GeV, as described in Sec. VI. For the fits of PDFs,
we use the covariance matrix obtained from the z-expansion fit to
generate bootstrap samples in the Ioffe-time range of 0 < ν <
4.71 for which lattice QCD data points exist. We do not perform
any extrapolation to the data points outside this region of the Ioffe
time using the results of the z expansion. We have checked that
there is no dependence on the number of bootstrap samples in our
fit. The statistical uncertainty band is obtained from the fits to the
bootstrap samples of the data. The inner red band is obtained
from a simultaneous fit to the matched ITDs at μ ¼ 2.0 GeV on
these two ensembles in the limit of infinite volume. The outer red
uncertainty band in the extraction of PDFs is obtained as a source
of systematic uncertainty by calculating the difference between
the simultaneous fit to the matched ITDs for αs ¼ 0.303� 0.030.
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dependence, quantify the severity of discretization errors
and provide a more precise estimation of the effect of finite
volume in order to obtain the pion valence PDF in the
continuum limit is under way. However, with the present
calculation, we proceed with a qualitative comparison of
various global fits of the pion PDFs and three previous
lattice QCD determinations.
For a comparison with qπvðxÞ determined from the Drell-

Yan experimental data in Ref. [9], we evolve our determi-
nation of the pion PDF to an evolution scale of μ2 ¼
27 GeV2 starting from an initial scale of μ20 ¼ 4 GeV2 as
shown in Figs. 11(a) and 11(b). As expected, the evolution
to a higher scale shifts the peak of the xqπvðxÞ distribution
toward smaller values of x and a more convex-up behavior
of the distribution as x → 1 is seen compared to the xqπvðxÞ
at the initial scale of our calculation.
We see a quantitative agreement of our extracted pion

PDF with the NLO global fits in [14,16] to the Drell-Yan
experimental data in [9] in the x≳ 0.7 momentum fraction
region as presented in Fig. 12. It should be noted that our
determination of qπvðxÞ has a distinctive deviation from the
predictions of QCD-based hard-gluon-exchange perturba-
tive models [17–19], which predicts a faster ð1 − xÞ2 falloff
of the pion PDF at large x. Such a ð1 − xÞ2 falloff at large x
was also obtained in the experimental data analysis in
Ref. [15], where the authors included next-to-leading-
logarithmic threshold soft-gluon resummation effects in
the calculation of the Drell-Yan cross section. A good way
to visualize the discrepancy in the large-x region between
the pion PDF extracted in our calculation with the

experimental data and various global fits can be demon-
strated by plotting xqπvðxÞ as a function of x. We present
such a plot in Fig. 13.
We now compare the determination of the pion valence

quark PDF presented in this paper with the previous three
lattice QCD determinations using the quasi-PDF approach
[47,53] and the lattice cross-sections approach [44].
In [47], a careful and systematic investigation was

performed. In that paper, the matrix element was renor-
malized using the RI/MOM-inspired approach [60,62], in
which the hadron matrix element is divided by a quark
matrix element of the same operator. Thus, just like in the
reduced pseudo-ITD method, one deals with a ratio of the
original matrix element and another matrix element that has
the same ultraviolet divergences.
However, the nonperturbative z2 behavior of the denom-

inator factor in these two approaches is different. In
particular, according to the analysis in Ref. [47], the RI/
MOM factor ZRI=MOMðzÞ in the z≳ 0.5 fm region shows a
formation of a constituent quark mass mscr ∼ 300 MeV
leading to a suppression of ZRI=MOMðzÞ by an extra e−mscr jzj

factor.
The pion rest-frame matrix elementMð0; z2Þ used in our

calculation has a much faster decrease with jzj than
ZRI=MOMðzÞ of Ref. [47]. Numerically, it is very close to
the nucleon rest-frame matrix element of Ref. [77]. As
argued in Ref. [34], the fast falloff of Mð0; z2Þ reflects the
finite size of the relevant hadron, i.e., the nonperturbative
effects related to quark confinement. In the OPE language,

FIG. 12. Comparison of the pion qπvðxÞ distribution with the
leading-order (LO) extraction from Drell-Yan data [9] (gray data
points with uncertainties), next-to-leading-order (NLO) fits [14–
16] (green band, maroon curve, and blue band). This lattice QCD
calculation of qπvðxÞ is evolved from an initial scale μ2 ¼ 4 GeV2

at NLO. All the results are evolved to an evolution scale of
μ2 ¼ 27 GeV2. The outer red uncertainty band shown in the
qπvðxÞ distribution is obtained from the variation in the choice of
αs during the one-loop perturbative matching as described
in Sec. V.

FIG. 13. Comparison of the pion xqπvðxÞ distribution with the
LO extraction from Drell-Yan data [9] (gray data points with
uncertainties), NLO fits [14–16] (green band, maroon curve, and
blue band). This lattice QCD calculation of qπvðxÞ is evolved from
an initial scale μ20 ¼ 4 GeV2 at NLO. All the results are evolved
to an evolution scale of μ2 ¼ 27 GeV2. The outer red band shown
in the qπvðxÞ distribution is obtained from the variation in the
choice of αs during the one-loop perturbative matching as
described in Sec. V and by calculating the variation in the fitting
of the matched Ioffe-time data using the PDF parametrization
in Eq. (28).
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the associated z2 dependence corresponds to higher-twist
contributions. As pointed out in Sec. II, one of the aims of
using the reduced ITD is to cancel unwanted higher-twist
effects.
We note that the use of the reduced ITD corresponds to a

gauge-invariant renormalization prescription that avoids
the pathological systematics of fixed gauge renormaliza-
tion. In fact, previous calculations of quasi-PDFs [53,92]
have shown slight discrepancies which depend on the
renormalization scheme used for the matrix element and
intermediate schemes used in the matching relationships.
The systematic errors introduced by these choices can be
avoided by calculating a renormalization group invariant
quantity Mðν; z2Þ and then matching it to the MS PDF.
Another difference among the different lattice calcula-

tions is the treatment of the inverse problem. Our point is
that inverse problems can only be solved by adding
additional information. The quasi-PDF calculation in
[47] adds this information in a way analogous to the
present calculation and the lattice cross-sections calculation
in [44]. The main idea is to parameterize the PDF in terms
of a few model-dependent parameters and then fit the
position-space matrix element using that functional form.
The quasi-PDF calculation performed in Ref. [53]

instead attempts to directly perform the inverse Fourier
transform. To remove unphysical oscillations caused by the
ill-posed inverse, they use a “derivative method” [93]. As
was shown in [64, 94], the derivative method does not
alleviate the ill-posed inverse problem especially with such
short Ioffe-time ranges, as only a few nonzero points exist
in that quasi-PDF calculation [53].
Of notable interest, our calculation of xqπvðxÞ, shown in

Figs. 11 and 13, illustrates a peak of the distribution in a
region x < 0.40. This is consistent with all the global
analyses of the pion valence distribution, wherein xqπvðxÞ is
peaked below x ¼ 0.40. This feature also occurs in the
lattice cross-sections calculation in [44] and the quasi-PDF
calculation in [47]. On the other hand, the quasi-PDF
calculation using the derivative method performed in [53]
peaks at a somewhat larger value of around x ¼ 0.50.
In comparison with the determination of qπvðxÞ in

Ref. [44], which was performed on the same ensemble
as the larger of our lattices, we see the large-x behavior of
the distributions is in agreement within their uncertainties.
In particular, qπvðxÞ extracted in [44] gives β ¼ 1.93ð68Þ,
and the value β ¼ 1.08ð41Þ is obtained in the present
calculation. We note, however, that the choice of the initial
scale of 1 GeV performed in Ref. [44] was rather arbitrary
because of the absence of the NLO perturbative matching.
The difference in qπvðxÞ obtained in these two calculations
based on short-distance factorization remains to be
investigated.
In Fig. 14, we present a comparison between the

lattice QCD extractions of pion valence quark distribution
made in Refs. [44,47,53] with our calculation that uses the

pseudo-ITD approach. For the calculation in Ref. [44], the
PDF is evolved to μ ¼ 4 GeV assuming an initial scale of
2 GeV in Fig. 14. The PDF in Ref. [47] is calculated using
pionmomentumpz ¼ 1.29 GeV, theRI/MOMscale is fixed
at 1.93 GeV and the PDF is estimated at μ ¼ 3.2 GeV. To
illustrate the difference between all the calculations in the
x≳ 0.4 region, we also present the xqπvðxÞ distributions from
these lattice calculations in Fig. 14(b).

VII. SUMMARY AND OUTLOOK

In this paper, we have presented the first lattice QCD
calculation of the pion valence distribution using the Ioffe-
time pseudodistributions approach. In our calculation, we
have used combined results from two different ensembles,
with the same lattice spacing a ¼ 0.127 fm but with
different lattice sizes of 243 × 64 and 323 × 96. We have
also performed the first lattice QCD calculation of the
fourth moment of the pion PDF, which was previously
inaccessible from local matrix elements.

(b)

(a)

FIG. 14. Comparison of the pion valence qπvðxÞ and xqπvðxÞ
distributions estimated near μ ¼ 4 GeV scale using quasi-PDFs
in Refs. [47,53] and good lattice cross sections in Ref. [44] with
the pseudo-ITD approach in this calculation.

BÁLINT JOÓ et al. PHYS. REV. D 100, 114512 (2019)

114512-14



We have performed the one-loop perturbative matching
of the pseudo-ITDs to light-cone ITDs at the scale
μ ¼ 2 GeV. Then we have combined the pseudodistribu-
tions from the two ensembles using a model-independent
scheme.
To extract the pion valence quark distribution, we have

assumed a functional form motivated by those used in
phenomenological global fits of parton distribution func-
tions and obtained the parameters of this form using our
data for the matched light-cone ITD. This approach allows
us to avoid solving the ill-posed problem of the inverse
Fourier transform from the ITD to PDF. We made a
qualitative comparison between our lattice QCD extraction
of the pion valence quark distribution with those obtained
from global fits and previous lattice QCD calculations.
It should be noted that, in our lattice calculation, the

region z≲ 0.5 fm where one can rely on the perturbative
matching corresponds just to four lattice separations at this
lattice spacing. Therefore, a calculation with finer lattice
spacing is warranted and is the goal of future efforts. On the
other hand, our analysis (even keeping in mind the
limitations of the present statistics) shows no evidence
for higher-twist effects in the reduced pseudo-ITD up to
z ¼ 1 fm, which we took as a justification to use the data
for extracting the PDF up to z ¼ 8a on the larger ensemble.
A natural extension of our investigation would be a

calculation on several other ensembles with different pion
masses, lattice spacings, and volumes. We expect that the
results of such upgraded lattice QCD calculations will
eventually become important additional input in global
analyses to obtain a precise knowledge of the large-x
behavior of the pion valence quark distribution.
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