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ABSTRACT 

THE EFFECT OF DIFFERING DEGREES OF AUTOMATION AND RELIABILITY 
ON SIMULATED LUGGAGE SCREENING PERFORMANCE  

Molly M. Liechty 
Old Dominion University, 2019 
Director: Dr. Yusuke Yamani 

 

The present work examined the effects of two types of decision support systems in a simulated 

luggage screening task: An input aid and an output aid. An input aid supports an operator’s 

information gathering. An output aid supports decision making and action selection. A Time-

Accuracy Function (TAF) analysis was applied to isolate processing time from performance 

asymptote, which conventional performance measures such as sensitivity and response time do 

not distinguish one from the other. Sixty participants performed a luggage screening task unaided 

(manual condition), with the assistance of an input aid (spatial aid), and with the assistance of an 

output aid (decision aid) across different stimulus exposure durations of 250 ms, 500 ms, 1000 

ms, 2000 ms, or 3000 ms. Participants were asked to judge the presence of a knife in each of the 

bags and either “stop” the bag or “pass” the bag. Reliability of the automated aids was 90% in 

Experiment 1 and 60% in Experiment 2. Experiment 1 showed that sensitivity increased with the 

assistance of both the input and the output aids as the stimulus exposure duration increased. The 

performance improvement was greater for the input aid than the output aid condition. Though 

processing times did not differ across the conditions, asymptotic performance level was higher 

when participants had the assistance of the input aid compared to the unaided condition. 

Experiment 2 and cross-experimental analysis demonstrated that the unreliable aids eliminated 

the benefit of the reliable aids. TAF analysis further showed that, although asymptotic 

performance can differ, processing times can remain constant regardless of DOA. The results 



 

 

 

imply that the input aid elevates asymptotic performance without influencing processing times, 

perhaps allowing operators to crosscheck their decisions within the restricted area of the search 

field identified by the aid. The present findings are inconsistent with the lumberjack hypothesis 

(Onnasch et al., 2013) and future research directions are provided.  
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CHAPTER 1:  INTRODUCTION 

Accurate detection of potential threat objects in passenger luggage is a critical task in aviation 

security. Agents in the Transportation Security Administration (TSA) must screen each bag for 

various banned objects such as firearms, flammables, and some daily necessities (TSA, 2017). 

Typical X-ray images of passenger luggage contain numerous objects. Suspicious or threatening 

objects are often infrequent targets embedded within high levels of visual clutter, making the 

visual search perceptually and cognitively challenging (Yamani & McCarley, 2011).  

Automated decision support systems are being developed and tested to help improve TSA 

agents’ visual search performance during a luggage screening task (Madhavan & Wiegmann, 

2006). For example, Weigman and colleagues (2006) examined operator performance while 

interacting with different automated decision aids during a luggage screening task. One aid 

supported operators’ decision-making (output aid) while the other assisted with perceptual 

processing (input aid). At a certain automation reliability level, the input aid provided a spatial 

cue to the location of a target while the output aid suggested either the presence or absence of the 

target. The results indicated that operators using an input aid showed greater levels of sensitivity 

than those using an output aid. However, conventional measures such as sensitivity and response 

times (RTs) can conflate perceptual processing and performance asymptote. That is, greater 

sensitivity using an input aid can arise due to better perceptual processing (i.e., enhanced 

filtering of distractors and information accumulation) and/or asymptotic performance level. 

Therefore, the present work aimed to explore the perceptual-cognitive mechanisms underlying 

the use of input and output automated aids during a luggage screening task. A Time-Accuracy 

Function (TAF) analysis using the parameters of intercept, slope, and asymptote were employed 

to isolate the perceptual processing of an operator’s cognitive system from asymptote 
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(Wickelgren, 1977). Isolating perceptual processing from asymptotic performance allows for 

better identification of the cognitive locus of effect for input/output aids. This further helps 

automation designers improve automated decision aids used by future TSA.  
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Automated aids 

Modern automated aids can perform a variety of tasks including sensing and integrating 

information, making decisions, and/or executing actions (Parasuraman, Sheridan, & Wickens, 

2000). Ideally, automated aids reduce operators’ workload and optimize task performance of a 

human-machine system (Bainbridge, 1983; Bradshaw, Dignum, Jonker, & Sierhuis, 2012; 

Madhavan & Wiegmann, 2006; Miller & Parasuraman, 2007). Reliable automation can also 

reduce human errors in a variety of cognitive tasks (Parasuraman & Riley, 1997; Parasuraman & 

Wickens, 2008). Multiple taxonomies have been proposed to classify the functions an automated 

aid performs while assisting an operator during a cognitive task (Kaber & Endsley, 1999; 

Sheridan & Verplank, 1978, Wickens, Li, Santamaria, Sebok, & Sarter, 2010). Parasuraman, 

Sheridan, and Wickens (2000) distinguished different levels and stages of automation within the 

framework of the human information-processing model (Wickens, Hollands, Bandury, & 

Parasuraman, 2015). In their model, human performance is a product of a series of discrete 

processes from sensing, perceiving, decision-making, and selecting/executing a response, each 

supported by attention resources. Following these information-processing stages of human 

operators, automation can be designed to support each stage with information acquisition, 

information analysis, decision selection, and action implementation. Note that automation can 

differ in levels of automated capabilities within each stage of automation (Endsley & Kiris, 

1995; Wickens et al., 2010).  

Degrees of automation (DOA) introduced by Wickens, Li, Santamaria, Sebok, and Sarter (2010) 

stated that within each stage, automation can also differ by levels. A higher level of automation, 

within a later information-processing stage such as decision making and response selection 
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denotes a higher “Degree of automation” (Manzey, Reichenback, & Onnasch, 2012). For 

example, an automated aid that presents an alarm to an operator would be considered a lower 

DOA than an aid that not only presents an alarm, but also identifies possible targets. Both aids 

are bringing information to the operator (representing the same stage) but the alarm also 

identifying the possible target is operating on a higher level within that stage (information 

gathering), therefore representing a higher DOA (Manzey, Reichenbach, & Onnasch, 2012). Few 

studies have addressed how DOA impacts an operator, with mixed results (Endsley, 1997; Li, 

Wickens, Sarter, & Sebock, 2014; Onnasch, Wickens, Li, & Manzey, 2013; Wickens, 2018; 

Vagia, Transeth, & Fjerdingen, 2016).  

One way to further characterize the different functionality of automation in the current context is 

to distinguish between input and output aids. Input aids support the early stages of human 

information processing, such as sensation and perception, contributing to lower DOA. Within the 

framework of Parasuraman et al. (2000), input aids include automation that performs acquisition 

and analysis of incoming raw data. For example, aircraft radar systems help air traffic controllers 

(ATCs) to detect incoming aircraft, highlighting their presence through the use of a blinking icon 

and an auditory alert (Moray, 1997).  

On the other hand, output aids support operators’ decision making and response selection or 

action implementation, supporting higher DOA. For example, the lane keeping function in some 

autonomous vehicles provides lane keeping assistance to drivers. The car continuously monitors 

its location in proximity to the lines painted on the road. When the car senses that it is drifting 

outside of the lane parameters, it will automatically correct itself, moving back within the 

constraints of the lane (Horowitz & Timmons, 2016). Output aids can function automatically or 

require that the operator approve the decision for executing an action. Output functions involve 
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decision-making and action selection that occur after information has been acquired and filtered. 

Crocoll and Coury (1990) reported that when errors occur at this stage, recovery and the operator 

performance is poor. Operators when assisted by output aids making a recommendation will 

often follow the advice of the automation (Onnasch et al., 2013). Due to the opaque nature of the 

aid, operators often have a harder time processing raw information and render their own 

decisions when the automation fails (Parasuraman & Manzey, 2010).  

When automation fails, operator performance can degrade often substantially (Bliss & Gilson, 

1998; Manzey, Reichenbach, & Onnasch, 2012; Onnasch et al., 2013). In the event of 

automation error with an input or output aid, the literature suggests that the DOA can lead to 

differential impacts on human performance (Crocoll & Coury, 1990; Onnasch et al., 2013; 

Manzey, Reichenbach, & Onnasch, 2009; 2012). Onnasch and colleagues (2013) performed a 

meta-analysis comparing operator performance with differing types of automated aids across the 

continuum of input and output information. They reported that operator vulnerability to 

automation error was “amplified” when the threshold between input and output automation was 

crossed (line a on Figure 1). The greater the cognitive function an aid was performing (output 

aids), the more likely an operator was to be left out of the loop, degrading performance in the 

event of automation breakdown (Endsley & Kiris, 1995; Sarter & Woods, 1995) (see Figure 1). 
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Figure 1. Failure performance drops substantially in the event of automation failure when the 
degree of automation is above a threshold, denoted as a in the figure (Onnasch, L., Wickens, C. 
D., Li, H., & Manzey, D. (2013).  

 

Crocoll and Coury (1990) provide empirical evidence for this point. Their participants performed 

a target identification task, identifying enemy aircraft. Half of the participants worked with an 

input aid that alerted them to aircraft status (friend or foe). The remaining participants worked 

with an output aid that told them the appropriate action to execute (fire or hold fire). Participants 

with the assistance of an automated aid, regardless of input or output, showed shorter RTs and 

greater accuracy than those without an aid. Crocoll and Coury stated that operator performance 

was distinctly different between the input and output aid groups when the aids failed. This 

performance decline was more evident with the output aid (fire or hold fire) when it was 

incorrect compared to participant performance when the input aid (friend or foe) was incorrect.  

Results from Crocoll and Coury implied that the functions of input and output aids have 

differential impacts on operator performance when automation failures occur (see also Manzey, 

Reichenbach, & Onnasch, 2009). Onnasch et al., (2013) proposed a lumberjack hypothesis that 
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describes this relationship between differing automated aids and the effects on human 

performance. That is, an input aid provides operators with pre-processed information for their 

decisions. Because operators still have to perform decision making and action selection 

processes, impact of automation failure is limited to information acquisition and integration. 

Importantly, even when working with input aids, operators are expected to be in the loop 

(Endsley & Kiris, 1995), actively seeking information cues that guide their decision making. 

However, when provided with an output aid, operators can be left out of the loop because tasks 

with the assistance of output aids do not necessarily require them to actively seek further 

information for their decision making. Not only do they make the decision for the operator or 

assist in the decision making, limiting the operator’s input into the actual decision being made 

but often output aids are by their nature opaque, lacking transparency (Lyons, 2013).  

2.1.1 Transparency 

Automation transparency means the degree to which an operator can access information that is 

processed by an automated aid (Lyons, 2013). An output aid may thus possess low levels of 

automation transparency if the aid does not reveal how it preprocesses, analyzes, and integrates 

information to derive its decisional recommendation. The output aid used in the current 

experiments (see below for the specific characteristics of the output aid) retains low automation 

transparency because operators are able to view only its decisional recommendations but not any 

of the preprocessing of available information to the aid. On the other hand, the input aid used in 

the current experiments maintains a higher level of transparency, compared to that of the output 

aid, because it shows which spatial area that the aid considers critical for operators’ decision 

making.  
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Previous studies (indicate that operators interact with automated systems of varying levels of 

transparency differently (Lee, 2012; Lyons, 2013; Sarter and Woods, 1995). Operators working 

with highly transparent systems can remain more aware of how the system is functioning and 

therefore crosscheck the system’s reliability. Remaining aware of how a system is using 

information allows the operator to better mitigate potential automation failures if and when they 

occur (Dao et al., 2009; Visser, Cohen, Freedy, & Parasuraman, 2014). But, operators working 

with systems with low transparency may have a diminished awareness of the system’s ability to 

analyze information, because an operator is less able to predict when and how the automation 

malfunctions or needs the human operator to take over in the event of an automation failure  

(Bahner, Hüper, & Manzey, 2008; Lyons, 2013; Parasuraman et al., 2000; Parasuraman & 

Manzey, 2010). The ideal system should keep an operator informed of how and why the system 

is operating, while keeping the operator’s workload low (Dzindolet, Peterson, Pomranky, Pierce, 

& Beck, 2003; Lyons, 2013; Sarter and Woods, 1995).  

In the context of luggage screening by the TSA, operators are required to scan bags for banned 

objects, a form of standard visual search (Wickens & McCarley, 2008). Along with knowledge 

of an automated aid’s impact on operator performance, modern theories of visual search may 

lend empirical support for further development of automation that could effectively improve 

visual search performance in a luggage screening task. The next section considers this point.  

2.2 Visual Search  

Visual search is a behavior to look for an object of interest (target) among irrelevant objects 

(distractors), when the location and the presence of the target are unknown a priori (Wolfe, 

1994). Ample empirical evidence suggests the number of display objects (set size) and 

elementary object features affect search performance (Treisman & Gelade, 1980; Treisman & 
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Gormican, 1988; Wolfe & Bennett, 1997; Wolfe, 1994; Quinlan, 2003; Wolfe & Horowitz, 

2004). To characterize human visual search behavior, several theories have been proposed. One 

theory of visual search and object perception is Feature Integration Theory (FIT; Treisman & 

Gelade, 1980; Quinlan, 2003). FIT assumes that the visual system preattentively processes object 

features in parallel, followed by a serial attentive processing where focal attention integrates 

multiple features of an object. Consider a visual search display where a target is a red horizontal 

bar and distractors are blue or red vertical bars (Figure 2a). In this type of feature search, where 

a target is defined by a single feature dimension (e.g., orientation), visual search is often 

efficient. Now consider a display where a target is again a red horizontal bar but now distractors 

are either red vertical bars or blue horizontal bars (Figure 2b). In conjunction search, where more 

than one feature defines a target (color and orientation in this example), the visual system 

requires focal attention to bind the features for object perception. In this way, visual search is 

effortless in feature search but effortful in conjunction search.  

                            

Figure 2. Examples of feature search (left) and conjunction search (right).  

 

However, Wolfe, Cave, and Fanzel (1989) found that visual search was actually more efficient 

when more than two features defined a target. Because FIT predicts less efficient search for a 

target defined by multiple features, their result is inconsistent with predictions of the original 
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FIT. Wolfe (1998) later proposed the Guided Search (GS) model that assumes both bottom-up 

feature maps and top-down modulation of the activation map on which focal attention is guided. 

Similar with FIT, feature maps are created based on the output of sensory input channels in a 

parallel manner. For example, an individual might be searching for a green book. Therefore, 

items possessing the color green or the typical rectangular shape of a book would generate higher 

activation. The individual feature maps are combined to generate a master activation map 

guiding where visual attention will be deployed and directed to spatial locations of the highest to 

lowest activation. In other words, the GS model combines both bottom-up and top-down 

processes in visual search and offers insights to how object features “guide” attention in complex 

search fields (Wickens & McCarley, 2008).  

Considering typical X-ray images of passenger luggage, the number of objects, overlap of the 

objects, and the number of banned items to search for can quickly overwhelm an operator’s 

attention set during a visual search task. For example, salient features of a banned object, such as 

the edge of a knife, may be obscured by another overlapping object, which in turn reduces 

activation levels of the knife on the activation map. Further, when an operator is looking for a 

number of target objects differing in their target features (e.g., banned objects), top-down 

commands may not effectively activate relevant feature maps because features of the target 

objects can be diverse. 

Previous research on visual search performance in the luggage screening domain have focused 

on a participant’s ability to find targets among overlapping objects, varying categories of items, 

and varying degrees of training before screening bags (Evans, 2005; Fiore, Scielzo, & Jentshch, 

2004; Smith, Redford, Gent, & Washburn, 2005). Consistent with the theoretical predictions on 

visual search performance, such research has confirmed that luggage screening is a challenging 
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task and that screeners often fail to detect threat objects in an X-ray image of passenger luggage. 

According to Homeland security, for example, when tested by undercover inspectors in 2017, 

TSA agents failed to detect threats more than half the time with speculation that the failure rate 

was close to 95% (Kerley & Cook, 2017). With automation, if designed properly, operator 

performance in the difficult visual search task may become more efficient and the screener aided 

by an automated decision support more adept at locating suspicious targets more quickly than the 

screeners alone.  

One way to use automation to improve screener performance is to have an automated aid direct 

visual attention through spatial cueing (Posner, Snyder, & Davidson, 1980; Christensen & 

Estepp, 2013). Wiegmann and his colleagues (2006) examined effects of spatial cueing on 

luggage screening performance. Specifically, they compared automated aids that provided either 

decisional cueing that consisted of a text message that would recommend an action (“stop” the 

bag or “pass” the bag), or spatial cueing that highlighted a spatial area of potential threat objects 

to exogenously guide operators’ attention. The results indicated that operators’ sensitivity was 

greater in the aided condition than the unaided condition. More importantly, the spatial cueing 

condition produced greater levels of sensitivity than the decisional cueing condition. As the 

spatial cue was of lower DOA than the decisional cue, this is contrary to results found in the 

meta-analysis (Onnasch et al., 2013).  

 This project aimed to explore the underlying information-processing mechanisms the 

differing DOAs impacted on operator performance during a luggage screening task. Presumably, 

the spatial cueing aid supports sensory and perceptual processes (input aid) while the decisional 

aid supports decision making (output aid). Time-Accuracy Function (TAF) analysis was applied 

to isolate operator perceptual processing from operator performance asymptote. As in previous 
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studies (e.g., Onnasch et al., 2013; Verhaeghen, 2000; Wickelgren, 1977; Yamani & McCarley, 

2011), operator sensitivity and RTs have been conflated. The input aid, for example, might have 

improved operators’ performance by raising asymptote performance level without actually 

affecting the operator’s perceptual-cognitive processes such as filtering of distractor and 

information accumulation or vice versa. It is possible that the output aid did not improve 

detection performance as much as the input aid because the output aid affected system dynamics. 

Operators needed more time to accumulate information to reach the asymptote performance level 

in the input aid condition. Unfortunately, analysis of mean RTs and performance accuracy alone 

do not allow distinguishing perceptual processing from asymptotic performance level; thus, the 

conventional measures of human performance conflate these characteristics (e.g., Crocoll and 

Coury, 1990; Wiegmann et al., 2006). The next section introduces the TAF analysis and its 

theoretical background.  

2.3 Time-Accuracy Function Analysis 

One may plot accuracy as a function of stimulus exposure duration, and the function can be 

characterized by a delayed exponential function (Verhaeghen, 2000). Formally, a delayed 

exponential function is defined as:  

 𝑝 =
0

𝐴 1− 𝑒
!!!
!

𝑡 ≤ 𝐼
𝑡 > 𝐼 (1) 

where p represents performance accuracy such as signal detection sensitivity (d’), t represents 

stimulus exposure duration, and I, R, and A are the parameters of the delayed exponential 

function. Figure 3 presents an example of a delayed exponential function with specific 

parameters.  
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Figure 3. TAFs with different hypothetical parameter values. Note that performance and time 
variables are arbitrary in this figure.  

 

The I parameter denotes an intercept that defines the time point at which performance measure 

exceeds the chance level performance. The A parameter represents the asymptotic performance 

level that participants achieve if unlimited time is allowed to perform a task. Finally, the R 

parameter refers to the rate at which performance grows from zero to the asymptotic 

performance level. In the context of human information processing, these three distinct 

parameters imply unique aspects of human performance. In a luggage screening task, the 

intercept reflects the minimal time that a participant needs to perform beyond the chance level 

such as sensory registration of raw data and early perceptual processes. The rate reflects the 

efficiency of information processing to make a correct response.  

The hypothetical TAFs (in Figure 3) demonstrate what can occur as parameters I, R, and A 

change. The higher the value of I, the more time it takes for an operator to gather useful 

information to make an accurate response. Parameter R describes the degree of curvature of the 

function. The smaller the value of R, the steeper the curve, indicating a smaller amount of 
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processing time needed to reach asymptote. Finally, the higher the parameter of A, the greater the 

performance accuracy of participants for the luggage screening task. Mean
 
processing time is 

defined as: 

 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 𝐼 + 𝑅 (2) 

Therefore, I and R parameters capture the dynamics of operator perceptual processing (Meyer et 

al., 1988; Yamani & McCarley, 2011).  

The TAF analysis can isolate perceptual processing from performance asymptote unlike the 

conventional performance measures such as performance accuracy and mean RTs. That is, two 

distinct cognitive systems may have identical asymptotic performance levels but, due to 

differences in perceptual processing, the two systems may show distinctly different performance 

outcomes measured on mean RTs or performance accuracy.  
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CHAPTER 3:  SUMMARY AND HYPOTHESES 

The purpose of this study was to test the lumberjack hypothesis (Sebok & Wickens, 2017, 

Onnasch et al., 2014) in the context of luggage screening. Previous research demonstrates that 

human performance in a cognitive task improves with the assistance of an automated aid 

(Parasuraman & Riley, 1997). The lumberjack hypothesis poses that routine performance will 

increase dependent upon the DOA assisting the operator. The greater the DOA, the greater the 

performance an operator will have compared to the assistance of a lower DOA, if the automated 

system is reliable (Onnasch et al., 2013). As automation fails, according to the lumberjack 

hypothesis, the higher DOA will have a greater impact on operator performance compared to the 

lower DOA (Manzey, Reichenbach, & Onnasch, 2012), resulting in a greater performance 

decrement. However, results have been mixed regarding DOA and the improvement in 

performance or performance decrement based on it. For example, Crocoll and Coury (1990) 

found shorter RTs in an aircraft identification task when operators were assisted by an output aid 

(higher DOA) that issued a fire/hold fire recommendation than when an input aid (lower DOA) 

presented the friend/foe status of a target. In contrast, Wiegmann and colleagues (2006) found 

that, during a simulated luggage screening task, an input aid providing a spatial cue to a visual 

area of a potential threat produced greater sensitivity levels and faster RT, than an output aid 

providing a decisional cue. One potential account for this discrepancy in the empirical data was 

that the input and output aid affected processing time and asymptote, respectively. When assisted 

by the input aid, operators could attend to the highlighted spatial area to improve their judgment. 

Conversely, the output aid could not necessarily guide their spatial attention and only provided a 

recommendation for their response selection. Additionally, Wiegmann et al.’s (2006) data 

reflected performance levels at a single time point. At this time point, the output aid condition 



 

 

16 

did not reach the participant’s asymptote level, resulting in poorer performance than the input aid 

condition. In Experiment 1, participants in the luggage screening task were asked to perform a 

visual search task assisted by input and output aids with high reliability (90%). Based on the 

lumberjack hypothesis, the following hypotheses were generated for Experiment 1.  

Hypothesis 1. Participants in the output aid condition will perform better than the input aid 

condition, followed by the manual condition, in the luggage screening task. This is supported by 

the lumberjack hypothesis (Onnasch et al., 2013).  

Hypothesis 1.a. Participants’ sensitivity in the output aid condition will be greater than the input 

aid condition, followed by the manual condition. 

Hypothesis 1.b. Participants’ response bias in the output aid condition will be lower than the 

input aid condition, followed by the manual condition (Meyer et al., 2013). 

Hypothesis 1.c. Participants’ mean RTs in the output aid condition will be shorter than the input 

aid condition, followed by the manual condition. 

Hypothesis 2. Participants will perform the luggage screening task progressively better as the 

exposure duration increases.  

Hypothesis 2.a. Participants’ sensitivity will increase as the exposure duration increases.  

Hypothesis 2.b. Participants mean RTs will decrease as the exposure duration increases.  

Hypothesis 3. The input aid condition will produce shorter processing time than the manual 

condition. 

Hypothesis 4. The output aid condition will produce shorter processing time and higher 

performance amplitude than the input aid and manual conditions. 

Crocoll and Coury (1990) found that errors made by the output aid with greater DOA impaired 

operators’ decision-making performance more pronouncedly than those by the input aid with 
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lower DOA, when reliability of the aids was low (e.g., Onnasch et al., 2013). One account for the 

results was that errors by the output aid affected both processing time and asymptote while those 

by the input aid affected only processing time. In Experiment 2, we repeated Experiment 1 

except that reliability of the aid was reduced to 60%. Following this account, the following 

hypotheses were generated for Experiment 2.  

Hypothesis 5. Participants in the input aid condition will perform in the luggage screening task 

better than the output aid condition, followed by the manual condition. This is supported by the 

lumberjack hypothesis (Onnasch et al., 2013). 

Hypothesis 5.a. Participants’ sensitivity in the output aid condition will be lower than the input 

aid condition, followed by the manual condition. 

Hypothesis 5.b. Participants’ RTs in the output aid condition will be longer than the input aid 

condition, followed by the manual condition. 

Hypothesis 6. Participants will perform the luggage screening task progressively better as the 

exposure duration increases.  

Hypothesis 6.a. Participants’ sensitivity will increase as the exposure duration increases.  

Hypothesis 6.b. Participants mean RTs will decrease as the exposure duration increases.  

Hypothesis 7. The input aid condition will produce longer processing time than the manual 

condition. 

Hypothesis 8. The output aid condition will produce longer processing time and lower 

performance amplitude than the input aid and manual conditions. 
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CHAPTER 4:  EXPERIMENT 1 

Experiment 1 examined the effect of DOA on visual performance in a luggage screening task 

and tested Hypotheses 1-4.The participants were asked to judge whether the X-ray image of each 

luggage contained a predefined target—a knife at a random orientation—and stimulus exposure 

duration was manipulated (250 ms, 500 ms, 1,000 ms, 2,000 ms, 3,000 ms). The input aid 

provided a spatial cue selecting a visual area of a potential threat object. The output aid offered a 

decisional cue, a red box encompassing the image telling the participant to stop the bag or a 

green box telling the participant to pass the bag. The TAF analysis was applied to provide 

additional insights into the perceptual-cognitive mechanisms underlying visual performance of 

operators while interacting with different types of automated aids. The reliability of the aids was 

90%.  

4.1. Methodology 

4.1.1. Participants  

Thirty participants (22 females; mean age = 20 years, SD = 4.73 years; mean corrected far acuity 

= 20/21.36, SD = 6.57; mean corrected near acuity = 20/23.63, SD = 7.26) were recruited from 

the community of Old Dominion University. All participants were screened for normal color 

perception using the Ishihara color blindness test (1989).  

4.1.2. Apparatus  

Stimuli were presented on a Samsung T24C550 23.6” LED monitor with 1920 x 1080 resolution. 

The experiment was controlled by a Dell Optiplex 9020 running PsychoPy (v1.8) on Windows 7. 

Participants were seated at a distance of approximately 57 cm from the monitor. The experiment 

took place in a quiet room with dim lighting. 

 



 

 

19 

4.1.3. Stimuli 

4.1.3.1. Target 

The target was a standard military-styled knife obtained directly from the TSA. It was included 

in a set of knives encountered by the TSA in previous screenings and training (Madhavan, 2005). 

The image of the knife subtended 5.48° x 2.02°. The target appeared randomly within half of the 

X-ray luggage images (50% target rate). One hundred unique luggage images were used, both for 

the target present and target absent trials.  The images were resized in Adobe PhotoShop, 

keeping the aspect ratio constant, such that the maximum image dimension angle was 15.95° 

(mean horizontal visual angle = 14.62°, SD = 1.34°; mean vertical visual angle = 15.64°, SD = 

0.70°).  The knife was presented in one of four varying orientations (0°, 90°, 180°, and 270°). 

PsychoPy 3 was used for rendering of the stimuli including superimposition of the image of the 

knife onto the luggage images. Transparency of the knife was set to 50% to blend onto the 

existing luggage images.  The position of the center of the knife was determined by picking a 

random pixel location, measured from the center of the image, between -2.76° and 2.76° in both 

the horizontal and vertical directions (see Figure 4).  
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Figure 4. Target-present trial, with knife located in lower left quadrant.  

4.1.3.2. Automated Aids 

During the luggage screening task, participants received the assistance of either an input or an 

output aid when an automated aid was available.  

4.1.3.2.1. Input Aid  

The input aid was designed to direct attention to a suspicious area of the X-rayed luggage image. 

An input aid is an aid that acquires and/or filters information for the operator. The input aid’s 

operations occur before decision making (Parasuraman et al., 2000). The input aid here provided 

a spatial cue designed to constrain the search space for the operator (Posner, 1980; Posner, 

Snyder, & Davidson, 1980) consisting of a yellow circle that highlighted portions of the X-rayed 

luggage image (see Figure 5). The radius of the spatial cue was 3.98°. The aid was centered on 

the target in the target-present trials. In the target-absent trials, the spatial cue appeared in a 

randomly chosen location in the X-ray luggage images. The aid was 90% reliable where it 

highlighted 90% of knives in the target present trials and incorrectly highlighting areas that did 
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not encompass the knife in the remaining 10% of the target present trials). The spatial cue 

appeared in every image. The purpose of the aid appearing in every image was to ensure that it 

maintained its input status without influencing their decision-making stage of information 

processing. In other studies that have used a spatial cue (e.g., Weigmann, 2007; Madhavan & 

Weigmann, 2006), the cue appeared only when a target was present. By showing a decisional cue 

only when a target was present, the aid implies that a target is present, potentially biasing 

participants decision making (Deppe et al., 2005; Van’t Wout & Sanfy, 2008). Regardless of the 

presence of the target, the input aid detected the places in the bag “most likely to contain a 

weapon.” More specifically, the current participants were told that the input aid would not 

identify a knife, but instead provide cues as to areas where it was more likely to reside, 

encouraging them to search the area circled themselves.  

 

Figure 5. Input Aid. The aid provides either correct (left) or incorrect (right) spatial cues.   

 

4.1.3.2.2. Output Aid 

The output automated aid assisted participants with decision making. This aid consisted of a 

simple colored frame encasing the luggage image, green to pass the bag and red if the decision 

was to stop it. It provided the participant with the decision cue indicating that they should “stop” 
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the bag or “pass” it (see Figure 6). The output aid box (green & red) was set at 17.59° x 17.59° 

(to surround the entire image). An output aid box was presented in all the trials in the output aid 

condition.  

 

Figure 6. Output Automated Aids. The aid provides either “pass” the bag (left) or “stop” the bag 
(right) decisional cues.   

 

4.1.3.2.3. Aid Reliability 

Aid reliability levels were set at 90%. Participants were told ahead of time the reliability level of 

the aid they were working with.  

4.1.4. Procedure  

This study was approved by the Institutional Review Board of Old Dominion University. After 

completing the informed consent form and a short demographic questionnaire, participants were 

told that they would play the role of an airport luggage screener and that they must visually scan 

X-rayed luggage images to decide if the bag contained a target (knife). The instruction included a 

visual image of the target knife. They were asked to indicate whether they wanted to “stop” the 

bag (target present) or “pass” the bag (target absent). Participants completed 3 experimental 

blocks (the unaided, the input aid, and the output aid conditions) of 200 experimental trials each. 



 

 

23 

Each block began with 10 practice trials to help familiarize them with the task and the aids. 

Orders of the experimental blocks were counterbalanced across participants.  

Each trial began with a 500 ms blank screen, followed by the imperative stimulus display 

presented for various stimulus exposure durations (250 ms, 500 ms, 1000 ms, 2000 ms, or 3000 

ms), and then a mask stimulus for 500 ms. The mask stimulus was created by superimposing five 

randomly chosen X-rayed luggage images on top of one another. Immediately after the mask 

disappeared, participants were asked to make a forced-choice to either “stop” the bag or “pass” 

the bag by clicking the left or the right mouse button, respectively. After participants made their 

decision, a feedback display was presented for 750 ms presenting “+” for a correct response or 

“X” for an incorrect response. The next trial began automatically. The experiment lasted 

approximately 60 minutes. Participants were assigned credit, debriefed, and exited the lab. 

4.1.4.1. Default Bayesian test. 

Bayesian analyses were employed instead of conventional null-hypothesis significance tests 

(NHSTs). A Bayes factor is a likelihood ratio of the data favoring one statistical model to 

another. Bayes factors directly indicate a relative likelihood that data come from one statistical 

model over another. For example, when comparing the effect of using an automated aid on 

performance, a Bayes factor of 100 indicates that the observed data are 100 times more likely to 

come from a model that assumes the effect of the aid than a model that excludes the effect. On 

the other hand, a Bayes factor of .001 indicates that the data are 100 times more likely to come 

from the null model compared to the model with the effect of the aid. The nomemclature for 

describing Bayes factors comes from Jeffreys (1961; see Wetzels, Matzke, Lee, Rouder, Iverson, 

& Wagenmakers, 2011). Table 1 presents the specific descriptive terminologies.  
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Table 1.  Bayes Factors. Taken from Wetzel et al., (2011). 

Statistic  Interpretation for HA   Statistic Interpretation for H0 
>100 Decisive evidence for HA <.01 Decisive evidence for H0 

30-100 Very strong evidence for HA .01-.03 Very strong evidence for H0 

10-30 Strong evidence for HA .03-.1 Strong evidence for H0 

3-10 Substantial evidence for HA .1-.3 Substantial evidence for H0 

1-3 Anecdotal evidence for HA .3-1 Anecdotal evidence for H0 

1 No evidence 1 No evidence  
 

4.2. Results 

4.2.1. Data analyses  

Values for d’, c, and RTs were submitted to separate 3 x 5 repeated-measures Bayesian analyses 

with Condition (manual, input aid, vs. output aid) and Exposure Duration (250 ms, 500 ms, 1000 

ms, 2000 ms, vs. 3000 ms) as within-subject factors. To explore the order effect, omnibus 3 x 5 x 

6 mixed Bayesian analyses involving Order as an additional between-subject factor for the three 

dependent variables was performed. Data did not indicate substantial evidence for any of the 

effects involving Order as a factor (all B10 < .42) and, therefore, Order was excluded from the 

following analyses. The Greenhouse-Geisser correction was applied for correcting degrees of 

freedom where the assumption of sphericity was violated.  

The delayed exponential function (Eq. 1) was fit to the data of each participant using the 

nonlinear least squares function, nls2, in R (R Core Team, 2014). Functions estimated using sum 

of squares residuals (RSS) accounted for 79.6% of the variance in the data. Each curve fit for 

every participant was examined. Estimated parameter values for processing time and asymptote 

were then submitted to separate one-way Bayesian analyses with Condition as the within-subject 

factor. The nls2 function was not able to calculate the parameters of the curve for the delayed 
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exponential function for five participants, who were subsequently excluded from the analysis 

reported below. The results of the data with and without such participants did not differ.  

4.2.1.1. Sensitivity  

Figure 7 presents mean d’ values as a function of Exposure Durations. As expected, data 

indicated decisive evidence for higher sensitivity as Exposure Durations increased, F(4, 96) = 

109.72,  η2
G = .40, B10 = 3.83 x 1053, supporting Hypothesis 2.a. The data pattern did not 

substantially differ across the aid conditions, F(8, 192) = 1.68,  η2
G = .02, B10 = 0.08. The data 

indicated decisive evidence for the effect of Condition, F(1.54, 36.96) = 11.93,  η2
G = .08, B10 = 

1.51 x 108, partially supporting Hypothesis 1.a. Follow-up t-tests revealed that the sensitivity 

values in the manual condition were decisively lower than the input aid condition, paired-

samples t(24) = 5.12, B10 = 7.78 x 102, and substantially lower than the output aid, paired-

samples t(24) = 3.08, B10 = 8.52. However, the sensitivity values did not differ between the two 

aided conditions, paired-samples t(24) = .86, B10 = 0.30.  

 

  

 
Figure 7. Mean d’ scores across Exposure Durations for the three conditions. (Error bars 
represent 95% within-subjects confidence intervals).    
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4.2.1.2. Response Bias  

The response bias of the participants in the three conditions across Exposure Duration is 

presented in Figure 8. Data did not provide substantial evidence for the effect of Condition on 

response bias, F(2, 48) = 1.43, η2
G = .01, B10 = 0.36, failing to provide support for Hypothesis 

1.b. However, unexpectedly, data demonstrated strong evidence that participants’ responses 

became more conservative as Exposure Duration increased, F(2.11, 50.77) = 3.43, η2
G = .02, B10 

= 16.21. Furthermore, this main effect of Exposure Duration substantially interacted with 

Condition, F(8, 192) = 5.04, η2
G = .03, B10 = 8.40.  The interaction effect resulted from decisive 

and substantial differences between the manual and the input conditions at Exposure Durations 

of 1,000 ms, paired-samples t(24) = 4.29, B10 = 118.44, and 2,000 ms, paired-samples t(24) = 

3.29, B10 = 13.06, partially supporting Hypothesis 1.b.   

  
Figure 8. Mean response bias scores across Exposure Durations for the three conditions. (Error 
bars represent 95% within-subjects confidence intervals).     
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showed strong evidence for the effect of Condition, F(2, 48) = 1.52, η2
G = .01, B10 = 14.06, 

supporting Hypothesis 1.c., and the effect was statistically comparable across different Exposure 

Durations, F(5.02, 120.53) = 1.40, η2
G = .01, B10 = 1.46 x 10-2.  

 
Figure 9. Mean RTs across Exposure Duration for the three conditions. (Error bars represent 
95% within-subjects confidence intervals). 

 

4.2.2. Time-Accuracy Function Analysis 

4.2.2.1. Processing Time  

Mean processing times for the separate conditions is shown in Figure 10. Data gave substantial 
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Figure 10. Mean processing time scores across conditions. (Error bars represent 95% within-
subjects confidence intervals). 

 

4.2.2.2. Asymptote  

Mean asymptote values across the automated aid conditions is shown in Figure 11. The 

asymptote was numerically larger in the input condition than the output and manual conditions 
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support Hypothesis 4.  
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Figure 11. Asymptote scores across conditions. (Error bars represent 95% within-subjects 
confidence intervals).   
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have achieved slightly better performance compared to their performance with the output aid. 

According to the theories, an operator’s attention was focused within the area that the input aid 

highlighted, therefore effectively reducing the number of distractors. This allowed operators to 

better localize the target, making identification faster than when attention is not being directed to 

a specific area of a search field (Madhavan & Wiegmann, 2006; Muller & Rabbit, 1989).  

Another potential reason for the increased sensitivity of the input aid is that participants 

underutilized the output aid, relying less on the aid’s recommendation and more on their own 

search of the visual area (Dzindolet, Pierce, Beck, & Dawe, 2002; Parasuraman & Riley, 1997). 

In the present study, the X-rayed luggage images remained on-screen alongside the aid for the 

entirety of exposure durations. By retaining the visual stimulus (raw data) alongside the aid, 

participants had the opportunity to cross-check the accuracy of the aid. In Wiegmann et al., 

(2006), the decisional cue did not appear to help participants in their search task but the cue only 

consisted of a simple text message appearing following the offset of the X-ray image. Further 

research should examine whether simultaneous presentation of the raw data and the aid’s 

recommendation influences visual search performance in the luggage screening task compared to 

sequential presentation.  

Asymptote levels further support the benefit of the input aid. The results indicated that the input 

aid produced greater values of asymptote than the output aid. This implies that the spatial cue, 

although it did not explicitly recommend a decision, improved visual performance above and 

beyond what the input aid was designed for. Operator performance with the output aid remained 

lower than the input aid. Asymptote by definition means the maximum performance level that 

operators can achieve if unlimited time is allowed to perform the task. If more time were 
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available to the operators, their sensitivity could have potentially reached beyond d’ = 3, which is 

well above the aid’s sensitivity of d’ = 2.56.  

Processing times did not substantially differ by DOA. I hypothesized that processing time would 

be greater for the input aid than the output aid because it provided the operator with support for 

earlier stages of information processing (Parasuraman et al., 2000). Even though their search 

field was presumably narrowed due to the spatial cueing, evidence suggests that operators aided 

by the input aid processed information for decision making at a similar rate of operators aided by 

the output aid and those unaided.  Results imply that automated aids in the simulated luggage 

screening task, regardless of the automation modes (input vs. output aid), do not affect the rate at 

which an operator will reach asymptote.  

Finally, the response bias data revealed that participants became less conservative with the input 

aid vs. the output aid than when no aid was available, especially at 1,000 ms and 2,000 ms 

following the onset of the display. This shift of response bias may indicate the participants’ 

increased compliance. In the compliance-reliance framework of automation trust (Meyer, 2004; 

Dixon & Wickens, 2004; Dixon, Wickens, & McCarley, 2007; Chancey, Bliss, Yamani, & 

Handley, 2017), compliance refers to the extent to which an operator agrees with a machine’s 

decision when a decisional cue is present, while reliance refers to the extent to which an operator 

agrees with a machine’s decision when a cue is absent. More recently, Meyer and colleagues 

(2013) defined compliance as a difference of response biases between no aid condition and aided 

condition, or formally,  

 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 = 𝐶!" !"# − 𝐶!"#$% (3) 

Where Cno cue is response bias for no aid condition and CAlert is that for aided condition. In the 

current context, compliance for the input aid is roughly .3 at exposure durations of 1,000 ms and 
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2000 ms while that for the output aid is roughly .2 and .1. This observation indicates that 

operators were more likely to comply with the input aid’s recommendations than the output aid.  

 The overall results highlight the benefit of the automated aids at different levels of 

automation and further demonstrate the fact that the input aid can elevate performance asymptote 

more than the output aid, exceeding the aid’s own sensitivity. Thus, the use of the input aid or a 

spatial cue may be more beneficial to an operator during a visual search task than a decisional 

aid. TAF analysis showed that the input aid offering spatial cues enhances asymptotic 

performance when compared to the output aid or no aid without affecting the system dynamics 

measured by processing times. The results are inconsistent with predictions of the lumberjack 

hypothesis. In sum, the results partially supported Hypothesis 1 and 2 but failed to support 

Hypotheses 3 and 4.  
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CHAPTER 5:  EXPERIMENT 2 

Experiment 1 found that reliable aids could improve visual search performance for an operator in 

a luggage screening task. The TAF analysis revealed that the input aid improved visual search 

performance by increasing asymptote but not processing time. Experiment 2 asked whether 

participant performance would continue to benefit from the assistance of automated aids with 

lower levels of reliability and if performance with the input and output aids would differ 

pronouncedly. Experiment 2 tested Hypotheses 5 – 8 (see Chapter 3: Summary and Hypotheses). 

Participants performed the task identical to that of Experiment 1 except that the reliability of the 

aids was set at 60%.  

5.1. Methodology 

5.1.1. Participants 

Thirty participants (26 females; mean age = 21 years, SD = 6.15 years; mean corrected far acuity 

= 20/21.92, SD = 7.75; mean corrected near acuity = 20/23.46, SD = 6.89) were recruited from 

the community of Old Dominion University. All participants were screened for normal color 

perception using the Ishihara color blindness test (1989). None of them had participated in 

Experiment 1. 

5.1.2. Apparatus  

The apparatus was identical to that in Experiment 1. 

5.1.3. Stimuli and Procedure  

The stimuli and procedure were identical to those in Experiment 1 except that the reliability of 

the automated aids was set to 60%.  
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5.2. Results 

5.2.1. Data analyses  

Data treatment and analyses were identical to those in Experiment 1. Functions estimated using 

sum of squares residuals (RSS) accounted for 72.9% of the variance in the data for the 60% 

condition. The delayed exponential function could not be fit to the data of nine participants using 

the nls2 function.  These were excluded from the analysis reported below. The results of the data 

with and without such participants did not differ. Again, an omnibus ANOVA involving Order as 

the between-subject factor was conducted, and the results did not indicate substantial evidence 

for any effects involving Order as a factor, all B10 < .39. Thus, to simplify the exposition, the 

analyses without Order as a factor are reported below.  

5.2.2. Sensitivity  

Figure 12 illustrates mean sensitivity as a function of Exposure Duration for the three aid 

conditions. As expected, the data indicated that participants’ sensitivity decisively increased with 

longer Exposure Durations, F(2.47, 49.46) = 80.73, η2
G = .39, B10 = 6.91 x 1043, supporting 

Hypothesis 6.a. However, this data pattern was statistically similar across the three conditions, 

F(8, 160) = .37, η2
G = .004, B10 = 0.01. Neither the input nor output aid elevated sensitivity when 

compared to the manual condition, F(2, 40) = .57, η2
G = .004, B10 = 0.08, failing to support 

Hypothesis 5.a.   
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 Figure 12. Mean d’ scores across Exposure Durations for the conditions. (Error bars represent 
95% within-subjects confidence intervals).   

 

5.2.3. Response Bias  

Figure 13 illustrates mean Response Bias as a function of Exposure Durations for the aid 

conditions. Response bias in Experiment 2 was analyzed for an exploratory purpose. Data 

indicate substantial evidence for the main effect of Exposure Duration on Response Bias, 

suggesting that participants made generally more conservative decisions with longer Exposure 

Durations of the stimuli, F(4, 80) = 5.15, η2
G = .02, B10 = 3.58. Neither the main effect of 

Condition nor the interaction effect were substantial, F(2, 40) = .49, η2
G = .004, B10 = 1.72 x 

0.10, and F(8, 160) = 1.05, η2
G = .005, B10 = 0.01, respectively.  
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Figure 13. Mean Response Bias scores across Exposure Durations for the conditions. (Error bars 
represent 95% within-subjects confidence intervals).  

 

5.2.4. Mean RT  

Mean RTs as a function of Exposure Durations for the three aid conditions is shown in Figure 

14. Analysis of the data indicated no substantial evidence for all the effects, all B10 <  0.17, 

failing to support Hypotheses 5.b. and 6.b.   

 
Figure 14. Mean RTs across Exposure Duration in the conditions. (Error bars represent 95% 
within-subjects confidence intervals). 
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5.2.5. Time-Accuracy Function Analysis  

5.2.5.1. Processing Time  

Figure 15 illustrates mean processing time across the conditions. The unreliable automated aids 

numerically shortened processing times (M = 1487.74 ms for the manual condition, M = 1236.86 

for the input aid condition, and M = 1069.62 ms for the output aid condition), but data provided 

substantial evidence for the null model of Condition on processing time, F(2, 40) = .37, η2
G = 

.01, B10 = 0.18, failing to support Hypothesis 7 and 8. 

 
 

Figure 15. Mean processing time across automated aid conditions. (Error bars represent 95% 
within-subjects confidence intervals). 

 

5.2.5.2. Asymptote 

Figure 16 illustrates mean asymptotic performance levels across the conditions. Asymptote 

performance levels tended to be lower in the aided conditions than the manual condition. 

However, data did not support either the null or the model involving the effect of Condition, F(2, 

40) = 2.31, η2
G = .07, B10 = 1.03, failing to support Hypothesis 8.  
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Figure 16. Asymptote scores across automated aid conditions. (Error bars represent 95% within-
subjects confidence intervals). 

 

5.3. Discussion 

 Similar to Experiment 1, participants continued to improve their visual performance as longer 

viewing time of the stimulus luggage was permitted, despite frequent inaccurate decisional 

recommendations of the automated aids. This improvement over exposure duration implies that 

the participants accumulated more sensory evidence as the stimulus display remained for a 

longer period of time to reach their decision of the target presence and improve their visual 

performance, while ignoring wrong decisional cues presented simultaneously with the raw 

stimulus image. This result supports Hypothesis 6. Additionally, participants’ decisions became 

more conservative as exposure durations increased, similar with that of the manual condition in 

Experiment 1. However, unlike Experiment 1, the unreliable aids did not offset this pattern. This 

indicates that when an automated decision aid is not reliable, operators may ignore the 

recommendations and still improve visual performance as more time is allowed for them to view 

stimulus displays. These results fail to support the remaining hypotheses, likely because 

operators ignored the recommendations partially or fully to perform the task.  

The less reliable aids trended to lower asymptotic performance levels when compared to the 

manual condition, but the magnitude of the decline was comparable between the input and output 
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aids. Performance with the input aid may have declined because participants needed to ignore the 

aid’s recommendations and reallocate attention to the stimuli when the aid miscued them. Posner 

described performance declines when cues are invalid as a cuing cost (Posner et al., 1980). In a 

typical cueing paradigm (e.g., Posner et al., 1980), participants are asked to fixate at the center of 

the screen during a visual target detection task. Then, an endogenous cue (an arrow, for example) 

appears at the display center, predicting a location of the target prior to the actual onset of the 

target. During a valid cueing trial, the target appears where the cue directed. On invalid cue 

trials, the target appears at an un-cued location. Posner and colleagues (1980) found that target 

detection accuracy declined when an invalid cue trial occurred when compared to the neutral 

condition where the cue was not predictive, suggesting that participants had to disengage their 

attention from the cued area and reengage to the target (Posner et al., 1980). Connecting to the 

present study, their performance might have declined because the input aid miscued to the 

location of a target and the participants needed to disengage from the cued location and reengage 

attention to the target following visual search.  

In studies such as Crocoll and Coury (1990) and Wiegmann (2006) when aid reliability was low 

(reliability = 50 %), participants had greater performance decrements with the output aid 

compared to the input aid. Crocoll and Coury’s findings support the lumberjack hypothesis that a 

higher DOA can leave an operator out of the loop (Manzey, Reichenbach, & Onnasch, 2009; 

Onnasch et al., 2013). However, such differences between the input and output aids were not 

seen in this study. One explanation for this may have been that our participants had access to the 

raw data, allowing them to incorporate the aid’s recommendation into their decision-making 

process. In a previous study by Wiegmann (2006), participants were given a decision 

recommendation by the automated aid, but when that recommendation appeared, the image of 
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the luggage disappeared. However, in the current study, the automated aids used to assist 

participants were both visual cues, and the raw data (the luggage image) were displayed for the 

entire duration that the aid’s recommendation was present. This allowed participants the ability 

to cross-check their own judgment with the aid’s recommendation. Another possible account for 

the lack of differences in processing time and asymptotes is a floor effect. The frequent invalid 

cues, combined with the need to verify them, might have imposed additional task load to the 

luggage screening task, producing the floor effect seen for both aids, regardless of DOA.  
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CHAPTER 6:  CROSS-EXPERIMENT ANALYSIS 

To provide quantitative comparison of the effects the aid reliability on visual performance 

between the two reliability levels, cross-experimental analyses were conducted involving the 

data from Experiment 1 and 2. The cross-experimental analyses were exploratory, testing 

whether the reliability manipulation interacted with the other independent variables.  

6.1. Data analysis  

d’, c, and RTs were submitted to 2 x 3 x 5 mixed Bayesian analyses with Reliability (90% vs. 

60%) as a between-subject factor and Condition (manual, input, vs. output) and Exposure 

Duration (250 ms, 500 ms, 1,000 ms, 2,000 ms, vs. 3,000 ms) as within-subject factors. 

Processing time and asymptote were submitted to 2 x 3 mixed Bayesian analyses with Reliability 

(90% vs. 60%) as a between-subject factor and Condition (manual, input, vs. output) as a within-

subject factor.  

6.1.1. Sensitivity  

The data demonstrated decisive evidence that sensitivity levels increased with longer exposure 

durations, F(3.26, 143.63) = 185.88, η2
G = .40, B10 = 1.95 x 10100. Figures 17, 18, and 19 present 

each condition separately for the differing reliabilities across Exposure Duration. There was very 

strong evidence that the input and output aid led to greater sensitivity levels than without them, 

F(2, 88) = 4.33, η2
G = .02, B10 = 59.18.  

The participants performing the task in the 90% reliability condition performed substantially 

better than those in the 60% condition, F(1, 44) = 11.65, η2
G = .10, B10 = 23.20, the effect 

decisively interacting with Condition, F(2, 88) = 8.58, η2
G = .03, B10 = 2.22 x 105. The remaining 

effects were not reliable, 1.05 x 10-2 < B10 < 1.57 x 10-1. A follow-up mixed Bayesian analysis 

involving Reliability and Condition was conducted to explore the interaction effect. The data no 
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longer provided evidence for the main effect of Condition, F(2, 88) = 4.33, η2
G = .03, B10 = 8.22 

x 10-1. However, the effect of Reliability on sensitivity remained strong, F(1, 44) = 11.65, η2
G = 

.10, B10 = 23.20. Interestingly, the strong Reliability x Condition interaction effect demonstrates 

that the input and output aids elevated sensitivity levels when the reliability was 90% but, with 

markedly lower reliability of the aids, the participants’ sensitivity declined back to the level of 

the manual condition, F(2, 88) = 8.58, η2
G = .05, B10 = 47.61. Figure 20 demonstrates this trend 

across the three aid conditions. Follow up t-tests demonstrated only anecdotal evidence for 

performance differences of the manual condition, independent-sample t(44) = .82, B10 = 0.38. A 

substantial to strong difference was found between reliabilities for the input and output aids, 

independent-sample t(44) = 4.74, B10 =  8.08 x 102, and independent-sample t(44) = 3.49, B10 = 

26.70. However, because the difference between reliability conditions was greater for the input 

aid than the output aid, our data fail to show the lumber-jack effect of automation (Onnasch et 

al., 2013).  

 
Figure 17. Mean d’ scores for the manual condition, across exposure duration for both the 60% 
and 90% reliability groups. (Error bars represent 95% confidence intervals). 
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Figure 18. Mean d’ scores for the input condition, across exposure duration for both the 60% and 
90% reliability groups. (Error bars represent 95% confidence intervals). 

 
Figure 19. Mean d’ scores for the output condition, across exposure duration for both the 60% 
and 90% reliability groups. (Error bars represent 95% confidence intervals). 

 
Figure 20. Mean d’ scores across automated aid conditions for both the 60% and 90% reliability 
groups. (Error bars represent 95% confidence intervals). 
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6.1.2. Response Bias 

Figure 21 presents response bias across Exposure Duration. Data again showed decisive 

evidence that the participants’ response bias setting was progressively more conservative for 

stimulus exposure durations longer than 1,000 ms, F(2.48, 109.46) = 7.49, η2
G = .02, B10 = 1.94 x 

103, this effect was comparable between the two reliability conditions, F(2.48, 109.46) = .72, η2
G 

= .002, B10 = 0.02. The remaining effects were not substantial, 0.03 < B10 < 0.87. 

 
Figure 21. Mean response bias scores for 60% and 90% Reliability across Exposure Duration. 
(Error bars represent 95% confidence intervals). 

 

6.1.3. Mean RT  

Figure 22 represents mean RTs for the 60% and 90% experiments across Exposure Duration. 

Data indicate substantial evidence for the Reliability by Condition interaction, F(2, 88) = 3.17, 

η2
G = .04, B10 =  4.27, suggesting that the output aid with 90% reliability produced RTs shorter 
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Figure 22. Mean RTs across Exposure Duration for the 60% and 90% Reliabilities for each 
condition. (Error bars represent 95% confidence intervals). 

 

6.2. Time-Accuracy Function Analysis  

6.2.1. Processing Time  

Figure 23 shows processing time for the 60% and 90% Reliabilities across Conditions. From 

visual inspection of the figure, processing times tended to be shorter in the 90% reliability 

condition than 60%. However, data provided only anecdotal evidence for differences between 

the reliability levels, F(1, 44) = 4.42, η2
G = .03, B10 = 0.81. The effect of conditions was strongly 

in favor of the null, F(2, 88) = 0.38, η2
G = .005, B10 = 0.10 . The data were indifferent to the 
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Figure 23. Mean processing times across 60% and 90% conditions. (Error bars represent 95% 
confidence intervals).  

 

6.2.2. Asymptote  

Figure 24 presents asymptote for the 60% and 90% Reliabilities across Conditions. Data gave 

substantial evidence for the interaction effect, F(1.96, 86.11) = 4.61, η2
G = .06, B10 = 6.33. The 

remaining effects were not substantial, B10 < 0.26. Follow-up t-tests revealed that the difference 

between the 90% and 60% reliability levels for the input aid condition was close to substantial, 

independent-samples t(44) = 2.21, B10 = 2.91, but not for the manual and the output aid 

conditions, B10 = 0.64 for the manual and B10 = .87 for the output aid condition.  

 
Figure 24. Mean asymptote scores for 60% and 90% Reliability across conditions. (Error bars 
represent 95% confidence intervals). 
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6.3. Discussion 

The cross-experiment analysis confirmed the effect of reliability on human performance in an 

unspeeded visual search task, a common finding in the literature of human-automation 

interaction (Lee & Moray, 1994; Meyer, 2001; Mosier, Skitka, Heers, & Burdick, 1998; Riley, 

1994; Sarter & Schroeder, 2001; Parasuraman & Riley, 1997; Yeh & Wickens, 2001b). 

Participants improved their visual performance when working with reliable aids but their 

performance suffered when working with less reliable aids compared to no assistance from 

automation. The increased performance when the aids were reliable was not surprising as the use 

of a spatial aid to direct attention can quickly help operators to isolate important objects within a 

highlighted area and ignore others in the same image when using the input aid (Posner, 1980; 

Madhavan & Wiegmann, 2006; Wiegmann, 2006). Notably, TAF analysis revealed that such 

performance improvement in the input aid condition was mainly driven by increases in 

asymptotic performance but not processing times, which conventional analyses of performance 

measures such as mean RTs and sensitivity do not reveal.  

The input and output aids at low reliability did not produce performance differences. The invalid 

spatial aid misdirected attention. Presumably, requiring reengagement of spatial attention to the 

target, when present, could have ultimately impeded their performance. The invalid output aid 

was also problematic to operators. When it provided incorrect information, participants had to 

search the visual scene themselves to determine its accuracy. However, the availability of the 

raw data alongside the aid’s recommendation may have given participants an opportunity to 

confirm the accuracy of the aid.  

The response bias in the aggregated form remained conservative (c > 0) although the response 

bias of the aid remained neutral. The results of the current study suggest that participant response 
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bias can shift to a more conservative setting as stimulus exposure durations increase and 

operators are allowed more time to verify the aid’s accuracy. Experiments did not detect 

measurable differences in processing times, suggesting that the automated aids tested in the 

current study did not affect operators’ front-end processes regardless of aid reliability level such 

as sensory input and perceptual processes for accumulating information to make their judgments. 

Extending the previous research by Wiegmann and colleagues (2006), demonstrating that while 

the use of a spatial cue may be of great benefit to an operator’s performance, it only affects 

operator asymptote.  

The current results showed the effect of automation reliability on asymptotic performance only 

in the input aid condition, not the output aid condition. The input aid might have supported more 

accurate perception of a threat item by highlighting where the target was, if present and the aid is 

accurate, than the output aid. Given the limited exposure duration, the participants might have 

restricted their processing resources to perceive and compare their decision with the aid’s 

decision efficiently in the input aid condition by ignoring the other unselected objects. On the 

other hand, the output aid condition did not allow such strategies because the decision cues were 

presented as the colored frame of each display. The aid’s binary decision recommendation was 

randomly determined each trial, and the number of successive trials with the aids’ correct 

recommendations might not have been large enough for the output aid to improve the 

participants’ performance. At an event of automation failure, it is possible that operators do not 

show a large performance decrement because the aid has not yet sufficiently improved their 

performance. A frequent automation failure in the current experiments might have caused 

misperception of the reliability of the aid, which is partially supported by differing response bias 
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setting across the experimental conditions. This can lead to less optimal human-automation joint 

decision making.   
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CHAPTER 7:  GENERAL DISCUSSION 

The current study examined the effects of automated decision aids with differing automated 

capabilities across different stimulus exposure durations in a luggage screening task. In the 

unspeeded visual search task, operators scanned a simulated X-ray image of simulated passenger 

luggage and were asked to find a threat object (a knife) among other objects without any 

automated aids (the manual condition) with an automated aid that spatially cued an area of a 

potentially threatening object (the input aid condition) and with an automated aid that only 

offered a binary decisional recommendation (the output aid condition) with reliability of either 

90% (Experiment 1) or 60% (Experiment 2). This dissertation project extended the previous 

research on this topic by Wiegmann and colleagues (2006) by applying the TAF analysis to 

provide insights into the information-processing mechanisms that control visual performance 

when assisted by different degrees of automated aids. The TAF analysis allowed dissociating 

speed of information accumulation, or perceptual processing from asymptotic performance level, 

while the conventional analysis of performance such as ones using RTs or error rates conflates 

the two. That is, one may not know whether it is processing time and/or asymptote that affect 

visual performance when performance was measured by only RTs or error rates.  

Experiment 1 showed operator’s visual search performance improved with the assistance of both 

the input and output aid. Additionally, the spatial cue (input aid) was of greater benefit to 

operators’ asymptotic performance compared to the decisional aid (output aid). Experiment 2 

showed that when automated aid reliability was low, operator performance declined compared to 

when no aid assistance was offered at all for the task. Furthermore, cross-experiment analysis 

showed that aid reliability impacted operators’ ability to successfully detect the target. In fact, 

compared to the high reliability condition (90%), the low reliability condition (60%) led to 
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impaired visual performance. The magnitude of this performance decline caused by unreliable 

aids, however, did not differ between the input and the output aids.  

Theoretically, the input aid and the output aid affect different stages of human information 

processing. The input aid should affect earlier stages of information processing such as 

aggregation of sensory information, perception, and stimulus organization. The output aid should 

affect integration for later stages such as interpretation, decision making, and response 

selection/execution (Parasuraman et al., 2000; Li et al., 2014; Onnasch et al., 2013). Following 

the lumberjack hypothesis, the further along the continuum of DOA that an automated aid 

operates, the greater the chance that an operator can become left out of the loop, when 

automation failures occur, leaving the potential for larger declines in performance when working 

with higher DOAs (Galster & Parasuraman, 2001; Merat & Lee, 2012; Metzger & Parasuraman, 

2005; Sarter & Woods, 1995, 2000).  

The current results, however, are not largely consistent with the predictions of the lumberjack 

hypothesis. Performance loss due to lower reliability level of the aids was not greater for the 

output than the input aid. One explanation for the lack of greater performance decrement with the 

higher DOA (output aid) may have been potentially high levels of automation transparency in the 

current study. The luggage image in the current study remained on the screen while the aid’s 

recommendation was rendered. In previous studies such as Wiegmann (2006), the output aid was 

a simple text message given during the luggage screening task. As soon as their decision aid 

issued a recommendation, the luggage image disappeared, leaving the operator without the raw 

data in front of them to re-access. When an operator is left without raw data and only the 

recommendation of an opaque aid, their reliance on the aid can become unpredictable (Rice, 

2009). Cross-checking the accuracy of the aid’s recommendation presumably requires a 
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comparison of the cue and the stimulus image in their memory. In the present study, the raw data 

remained available for operator access at the same time the output aid delivered a 

recommendation. The reliability level of the aid and availability of the raw data during each trial 

allowed the participants to inspect the luggage images themselves and verify the accuracy of the 

aid, especially as exposure duration increased. The prolonged availability of the raw stimulus 

information in the present study may have offset the cost of automation failure as seen in 

previous studies working with a high DOA at low reliability.  

Relatedly, when the aid reliability was high, lower levels of sensitivity and asymptote levels in 

the output aid than in the input aid may suggest that different levels of information-processing 

created a cost of comparing the aid’s recommendation to operator judgments. That is, operators 

in the input aid condition had a minimized search area to scan. Operators in the output aid 

condition had to scan a larger visual area, up to its entirety if the target was absent, to validate 

the aid’s recommendation. Future efforts should extend this research by manipulating the effect 

of the presence of raw stimulus when an automation decision cue is rendered.  

Participants performed better with the assistance of the input aid than the output aid, which was 

contrary to what was initially hypothesized (e.g., Hypothesis1, 5, 3, 4, and 7). According to the 

lumberjack hypothesis, automation operating at a lower DOA should not be as beneficial to 

operator performance as a higher DOA. Operators working with a lower DOA, such as the input 

aid in the present study, would need to devote more resources to evaluating the situation to make 

the correct decision or execute the correct action (Parasuraman et al., 2000; Rice, 2009). The 

literature on human-automation interaction, however, suggests that operators perform better with 

less automation or lower DOAs as they are encouraged to actively process information and not 

just passively accept it, keeping them more aware of the situation or the automated state 
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(Billings, 1997; Endsley & Kiris, 1995; Ferris, Wickens, & Sarter, 2010; Parasuraman & Riley, 

1997; Parasuraman & Wickens, 2008; Sarter, Woods, & Billings, 1997). But, the effect of DOA 

on human performance when automation fails may depend on information processing demands 

of different professional tasks. The current results, as an example, seem to show that the input 

aid, offering visual-spatial information regarding a potential target location, can improve visual 

performance above and beyond what the input aid’s framework of DOA does as classified in 

Onnasch et al. (2013).  

Unlike previous studies (e.g. Wiegmann, 2006; Madhavan & Weignamm, 2005), the current 

input aid appeared every time a luggage image was shown. In this way, it was meant to avoid 

implying a decision regarding the presence or absence of a target by its appearance. Instead, the 

input aid was meant to direct attention to a visual area of the highest possibility of a threat object 

within each image. Operators were told that the input aid would not tell them if a weapon was 

present, only where it was likely to appear in an image. Operators still had to visually search the 

highlighted portions of the bag to determine if a knife was indeed present. It remains unknown 

whether a visual-spatial cue that also indicates the aid’s decision of target presence can improve 

visual performance beyond what the current input aid can do. An aid that provides information 

both regarding a spatial area of higher threat and a decisional cue may offer greater levels of 

automation transparency, allowing operators to “see” how the automation has reached its 

decision.    

Unexpectedly, operators’ bias in the manual condition was conservative and became more 

neutral when the automated decision aids were available. Furthermore, their response bias 

became more neutral with the input aid than the output aid. When the input aid appeared to 

operators, it always highlighted a section of the image. The aid highlighted a quadrant even when 
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no knife was present. It was limited to highlighting areas likely to contain a target, not to identify 

a threat object. This may have created a misperception that a knife was present more often than it 

really was. This potential misperception may have contributed to the less conservative response 

bias seen when participants were working with the input aid than the output aid. Madhavan and 

Wiegmann (2006) found similar results as participants in their study had a more conservative 

bias when working with the indirect aid (c =.47; similar to our output aid) vs. their direct aid (c 

=.39; similar to our input aid). Thus, operators working with the input aid viewed it as a FA-

prone system, shifting their bias to respond “yes” more often to the presence of a target to 

counteract the perceived false alarms.  

Target prevalence may also have contributed to the shift in operator response bias with the input 

aid. The target prevalence was set at 50% for both experiments, which is much higher than what 

would be seen for target presence in the real world. Wolfe and Van Wert (2010) noted that, when 

target prevalence was high in their study, participant response bias was affected. As target 

prevalence increased, it inflated the false alarm rate, shifting participant bias to become more 

liberal. Therefore, our tentative account for the response bias setting becoming less conservative 

at 1,000 ms of stimulus exposure duration (or longer when working with the input aid) is that 

participants may have misperceived it to be FA prone. Further research is necessary for 

examining relationships between operators’ perception of the aid’s response bias and their 

strategy to adjust their response bias for efficient human-automation collaboration.  

7.1. Theoretical Contribution 

The current study extends earlier research (e.g. Crocoll & Coury, 1990; Madhavan & Wiegmann, 

2006; Wiegmann, 2006) with the TAF analysis complementing the conventional analysis of 

operator performance during computer-aided decision making.  It is apparent from looking at 
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participant levels of sensitivity, RT, and asymptote that operator performance improved when 

working with reliable automated aids, regardless of DOA. The TAF analysis showed that 

operators maintained comparable processing times between the input and output aid conditions 

to reach their asymptotic performance level. This was true when the aids were working reliably 

(90%) and unreliably (60%).  

Parasuraman et al. (2000) proposed a theoretical framework based on the human information-

processing model (Wickens & Hollands, 2000) for automation designers where automation can 

be designed to support distinct information-processing stages of human operators. The 

framework included four stages: sensory processing, perception/working memory, decision 

making, and action/execution, which are supported by information acquisition, information 

analysis, decision selection, and action implementation features of automation, respectively. The 

current study, by employing the TAF analysis, revealed that operators’ sensory processing and 

perception (and potentially working memory) are not measurably affected by the input or output 

aids which were designed to offer automated support for information acquisition and analysis. 

Our tentative account for this null effect of the aid type on processing time is that the availability 

of the raw image when the decision cue was rendered made the cues of both the input and output 

aids a tool for operators to confirm their own decisions. The longer the stimulus display was 

available, the more opportunities operators could perform the task without actively using the 

aid’s recommendations, diluting the effects of the different aids, and cross-check their own 

decision against the aid’s recommendation.  

 Contrary to the predictions of the lumberjack hypothesis, the data did not indicate greater 

performance decrements in the output aid condition than the input aid condition. As stated above, 

the limitation of the current paradigm likely did not allow participants to observe successive and 
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accurate decisional recommendations from the aids, which might have led to disuse of 

automation. This behavior might have been more severe when the stimulus exposure durations 

were longer where participants could perform the task accurately without interacting with the 

aids. One implicit assumption of the lumberjack hypothesis is that automation reliably supports 

human performance for a sufficiently long period of time so that operators establish their 

perception of behaviors and reliability of the automation, and the current experimental paradigm 

might not necessarily meet the assumption.  

Yamani and Horrey (2018) recently offered a theoretical framework on human-automation 

interaction that explains relationships between attentional resource allocation dependent upon the 

DOA assisting them and human information processing. As DOA increases and the automation 

assists the operator with higher cognitive processes, the greater amount of attentional resources 

the operator should be able to devote to other tasks. However, when automation fails, based on 

the amount of raw data available, an operator may devote more attention to the raw data in order 

to maintain performance. The authors point out that operators allocate attention to monitor 

automation’s behavior and performance to estimate its reliability, which in turn guides resource 

allocation policy. Applying this to the current context, participants in the current study might 

have misperceived the true reliability of the aids, and they may devoted the resources to actually 

perform the task by themselves and not optimally utilize the aids as designed.   

Two points below are noteworthy. First, due to the fact that processing times did not differ 

between the input and output aids, the differing degrees of automation utilized in the present 

study did not necessarily influence operators’ information-processing stages as designed. 

Therefore, the taxonomies created to help design these aids and explain how they should assist 

operators with a task may not best capture types of human-automation interactions that occurs 
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with the designed automated aids; operators may not be utilizing the aids as they are described in 

the Parasuraman, Sheridan, and Wickens (2000) taxonomy or in the manner predicted by the 

lumberjack hypothesis.  

Second, transparency of automated systems can assist operators to mitigate large performance 

decrements when the systems fail or behave unreliably (Lyons, 2013; Wickens, 2018). 

Implications that transparency can help an operator to maintain awareness provide an additional 

solution to that of simply lowering the DOA to maintain operator performance (Wickens, 2018). 

Both the input and the output aid in the present experiments afforded participants access to the 

raw information. According to the lumberjack hypothesis (Onnasch et al, 2013), performance, 

particularly with the unreliable output aid (higher DOA), should have shown a large performance 

decrement when the aid failed than properly functioned than the input aid. The present data are 

not consistent with the predictions. Additionally, if an operator does not perceive a benefit to 

relying on the automation, they are likely to revert to its disuse or to manual performance 

(Dzindolet, Pierce, & Beck, 1999; Dzindolet, Peterson, & Pomranky, 2003; Parasuraman & 

Riley, 1997). While the current data cannot determine that the participants in this study disused 

the automated aids, it is interesting to note that performance (RT, sensitivity, asymptote, and 

processing time) between the manual and output aid condition are similar, regardless of the 

reliability level of the aid. Finally, when looking at performance with the use of the input aid 

specifically, a larger performance decrement was seen, which may have been due to participants 

needing to disengage from one visual area and re-engage in another when the aid was unreliable. 

Therefore, the DOA will affect operator performance, however dependent upon other factors 

such as transparency of the aid and the raw stimulus that is salient to the operator.  
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Future research may further manipulate the presence of the raw stimuli when the aid’s 

recommendation arrives in order to examine how operators’ decision strategies and human-

machine joint decision-making changes when interacting with automated decision aids with 

varying DOA and levels of transparency.  

7.2. Practical Relevance  

In practice, this study provides implications for luggage screening and human-automation 

teaming. First, TSA luggage screeners can benefit from spatial cues that assist in directing their 

attention to potential threat objects. The results of this study are consistent with previous 

literature on spatial cueing (Posner, 1980) and the benefit of directing operator attention in an 

applied visual workspace. Participants in this study showed a greater sensitivity and higher 

asymptote when working with the more reliable (90%) spatial aid than the higher DOA. 

Additionally, operators did not differ in their amount of processing time when using the higher 

DOA as opposed to the lower DOA or no automation at all. The rate at which they approached 

their asymptote did not change and this was true whether the automation was working at a high 

reliability or a low reliability level. The finding that the rate of processing did not change 

regardless of the DOA and that performance was higher with the input aid (lesser DOA) implies 

that the use of a higher DOA may not always be more beneficial or relieve a greater amount of 

the cognitive task load as initially suggested by Onnasch et al. (2013).  

The data also suggest that when using aids that may not always be reliable, regardless of DOA, 

providing access to raw data or images may assist the operator in mitigating performance 

failures.  By providing access to the raw luggage image, you allow the operator to decide where 

it might be most effective to invest their resources.  As the TSA screener bears large 

responsibility for the safety of passengers and detecting threats, during human-automation 
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teamwork, TSA operators would still need to maintain access to raw information in case 

automation fails so that they could invest attentional resources accordingly to mitigate potential 

disasters and recover.   

The TAF analysis can be used to derive the time it takes for a TSA agent to reach a specific level 

of maximum performance (asymptote). Based on the results of this study, it would appear that 

given resources to invest in an output aid or an input aid, the input aid would be more likely to 

increase screener sensitivity, or allow for a shorter display time for the same level of sensitivity, 

if it were a reliable aid used. Additionally, the current results from the TAF analysis may suggest 

the amount of exposure time a TSA officer needs to have to an image to achieve a criterion level 

of sensitivity. Further, the TAF curve can be applied to TSA screeners, who self-pace, to assess 

the rate at which they view luggage images and suggest alternative pacing to improve 

performance.  

7.3. Limitations 

Several limitations exist in the current experiments. First, operators in the current study were 

asked to search for only one specific threat object (a knife). In reality, TSA screeners are asked 

to look for many different types of threat objects that come in many shapes and forms. This can 

make threat detection more difficult because a) operators need to keep a large set of threat 

objects in memory and, b) sometimes the threat objects can be disguised or broken into pieces, 

such as when a bomb has several components placed in different parts of luggage. This can 

create a more difficult search, as screeners must be able to search for multiple objects and 

combine them to identify possible threats. Second, operators were undergraduate students and 

lacked the experience that many TSA screeners with training and years of experience may 

possess, limiting generalizability of the present findings. Therefore, additional research is needed 
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to further explore the consequences of these results to specific real-world scenarios. Third, due to 

the fitting of the TAF model to the obtained data, data of a number of participants were excluded 

from the analysis, potentially compromising experimental power. As the algorithm to fit the TAF 

curve was applied, it was found that data from several participants did not fit parameters set by 

the curve. For several participants performance was significantly higher at the 250 ms exposure 

duration compared to their performance in the longer exposure durations (e.g., 500 ms, 1,000 ms, 

2,000 ms). This is contrary to previous research demonstrating greater accuracy with target 

detection as time to view the image increased (Madhavan & Gonzalez, 2006; Shapiro & Penrod, 

1986; Wicklegreen, 1977; Yamani & McCarley, 2011). Therefore, the decision was made to 

exclude those participants from the analysis. However, for the measures of sensitivity, response 

bias, and RT, analyses were performed with and without those participants to assess if any 

significant differences in results existed and none were found. Another way the poor fitting 

curves could have been handled is to have dropped the 250 ms time point. However, to find an 

accurate estimate of intercept for our TAF curve, it was imperative that we provide a time point 

that would be at the lower bound of performance for our participants. Therefore the time point 

for 250 ms was retained. Future research could eliminate the 250 ms exposure duration and 

increase the number of participants to better estimate sizes of the effects of interest.  

7.4. Conclusion 

In conclusion, the reliable automated aids improved visual performance in a simulated luggage 

screening task. Operator performance was comparable across DOA, contradicting the previous 

research and theoretical framework of human-automaton interaction. The input aid, classified as 

low DOA in the Onnasch et al. (2013) framework, improved human performance more than the 

high DOA output aid when the aid reliability was high. Availability of the raw stimulus image 
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throughout each trial could have affected how operators interacted with the aids by affording the 

ability to explicitly evaluate the accuracy of the aid’s recommendation. Finally, the application 

of the TAF analysis separated the performance measures of asymptote and processing time, 

allowing us to determine more accurately the cognitive locus of effect of the input/output aids. 

The results demonstrated that asymptote differed between conditions but the processing time 

remained static regardless of whether automation was present, of the DOA it was operating at, or 

the reliability level of the automation. The results were inconsistent with the prediction of the 

lumberjack hypothesis. The discrepancy that operator performance was better with the input than 

the output aid may have arisen due to different strategies that operators took to incorporate the 

aid’s decisional recommendation into their decision-making process. In general, the current 

taxonomies characterizing different types of automation based on operators’ information-

processing demands do not always match with how operators perform a task assisted by the 

automation.  
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APPENDIX A 

OLD DOMINION UNIVERSITY INFORMED CONSENT DOCUMENT 
 
PROJECT TITLE Automated Aid Effects During Visual Threat Detection 
 
INTRODUCTION 
The purpose of this form is to give you information that may affect your decision whether to say YES or 
NO to participation in this research, and to record the consent of those who say YES. The title of this 
project is “Automated Aid Effects During Visual Threat Detection”. The experiment will be conducted on 
the ODU campus in Room # 336 Mills Godwin Building.  
 
RESEARCHERS 
Yusuke Yamani, Ph.D., Professor - Responsible Project Investigator 
                      Department of Psychology, Old Dominion University 
Molly Liechty, Doctoral student  
                     Department of Psychology, Old Dominion University 
 
DESCRIPTION OF RESEARCH STUDY 
You will perform a luggage screening task where you will view X-ray images of luggage. Several of the 
bags will contain a knife (target) that you must try to identify. Sometimes you will have the assistance of 
an automated aid to help you in identifying if a knife is present. Bags will be screened on a computer 
screen while the automated aid assists in either highlighting potential areas in the luggage that look 
suspicious or tells you if it has detected a knife in a particular bag. Once you decide if a knife is present or 
absent in a bag you will be given feedback, on the computer, letting you know if you made a correct 
detection of a knife or not. You will complete a training session first, then you will be allowed a break 
before you begin the actual luggage screening task. After screening the series of bags you will be asked 
to complete a questionnaire regarding the luggage screening task you just completed before being 
released.   
 
You will be seated in front of a computer for the entire duration of the task and given several breaks 
throughout the study. You have the option at any time to cease participation without penalty. If you say 
YES, then your participation will last for 1 hour in Room #336, Mills Godwin Building. Approximately 100 
similarly situated undergraduate students will be participating in this study. 
 
 
EXCLUSIONARY CRITERIA 
You should be between the ages of 18 and 65 years, and have normal or corrected-to-normal vision. 
Also, to the best of your knowledge, you should not have any color blindness that would keep you from 
participating in this study.  
 
RISKS AND BENEFITS 
RISKS:  If you decide to participate in this study, then you may face a risk of the common problems 
associated with computer usage such as eye strain or eye fatigue. The researcher has tried to reduce 
these risks by minimizing the amount of time in front of the computer and by allowing short breaks during 
the course of the experiment. Also, the researcher has removed all linking identifiers - data will be 
recorded under a participant number and will not be connected to your real identity in any way. As with 
any research, there is some possibility that you may be subject to risks that have not yet been identified. 
 
BENEFITS:  There are no direct benefits to participation. Indirectly, your participation will contribute to the 
development of better automated aid solutions for operators who work with automated teammates. 
 
COSTS AND PAYMENTS 
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The researchers want your decision about participating in this study to be absolutely voluntary. There is 
no cost to participate and no monetary payment in this study. You will receive 1 research participation 
credit for participation.  
 
NEW INFORMATION 
If the researchers find new information during this study that would reasonably change your decision 
about participating, then they will give it to you. 
 
CONFIDENTIALITY 
All information obtained about you in this study is strictly confidential unless disclosure is required by law. 
The results of this study may be used in reports, presentations and publications, but the researcher will 
not identify you. 
 
WITHDRAWAL PRIVILEGE 
It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and walk away or 
withdraw from the study  at any time.  Your decision will not affect your relationship with Old Dominion 
University, or otherwise cause a loss of benefits to which you might otherwise be entitled. The 
researchers reserve the right to withdraw your participation in this study, at any time, if they observe 
potential problems with your continued participation. 
 
COMPENSATION FOR ILLNESS AND INJURY 
If you say YES, then your consent in this document does not waive any of your legal rights.  However, in 
the event of harm, injury or illness arising from this study, neither Old Dominion University nor the 
researchers are able to give you any money, insurance coverage, free medical care, or any other 
compensation for such injury.  In the event that you suffer injury as a result of participation in this 
research project, you may contact Dr. James Bliss at 757-683-4051 or Dr. Tancy Vandecar-Burdin the 
current IRB chair at 757-683-3802 at Old Dominion University, who will be glad to review the matter with 
you. You may also contact the Office of Research (757) 683-3460. 
 
VOLUNTARY CONSENT 
By signing this form, you are saying several things.  You are saying that you have read this form or have 
had it read to you, that you are satisfied that you understand this form, the research study, and its risks 
and benefits.  The researchers should have answered any questions you may have had about the 
research.  If you have any questions later on, then the researchers should be able to answer them. 
 
And importantly, by signing below, you are telling the researcher YES, that you agree to participate in this 
study.  The researcher should give you a copy of this form for your records. 
 
 

 
 
 
 Subject's Printed Name & Signature                                                    

 
 
 
Date 
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APPENDIX B 

Demographic Survey 

PARTICIPANT BACKGROUND INFORMATION FORM 

Participant #________ Date:________  Time:________ Group: ________  

The purpose of this questionnaire is to collect background information for participants in this experiment. 

This information will be used strictly for this experiment and for research purposes only.  Please complete 

each item to the best of your ability.   

1. Age  _____ 
 

2.  Sex:  Male     Female      Other 

3.  Have you ever been diagnosed as having a deficiency in your visual acuity? _____(Y/N) 

4.  If yes, do you have correction with you? (i.e. glasses, contact lenses, etc.)? _____(Y/N) 

5.  Have you ever been diagnosed as color deficient or color blind?______(Y/N) 

8.   Indicate the average number of hours per week you spend using computers (personal and work 

combined):  __ 

9.  Circle the number that corresponds to how confident you are working with computers: 

 1 2 3 4 5 6 7 

             Low           Average  High 
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APPENDIX C 

Instructions 

In this task you will view a series of X-ray images of luggage. You will be shown a target (knife) 

that you must identify in the bags as you screen them. The X-ray image will appear for an 

unspecified amount of time and then it will disappear from the screen. Once the image 

disappears you will be asked to make a decision whether to “stop” the bag, indicating that a knife 

was present, or “pass” the bag if no knife was seen. If you saw a knife in the bag then you will 

need to click the left mouse button, indicating that you want to “stop” the bag. If you did not see 

a knife please click the right mouse button to indicate that you want to “pass” the bag. Once you 

make a decision you will be asked to rate your confidence in the decision you just made to “stop” 

or “pass” the bag.  

You will screen three different sets of luggage and for two of these sets you will have the 

assistance of an automated aid to help you in detecting a target. Each set will begin with a 

training session first. You will be asked to screen 10 practice bags before beginning the actual 

luggage screening task to familiarize yourself with the visual search task and the automated aid 

that might be assisting you. The aids that you will be working with are 90% reliable.  

Screening aid: As you perform the luggage screening task for this set of luggage you will have 

the help of an automated aid that will assist you in screening the bags for a target. When an X-

ray image appears on the screen the aid will also appear in the form of a yellow circle. This 

yellow circle indicates where in the image a target is most likely to exist.  You will still need to 

search that area and determine if a knife is present/absent. As before when the image disappears 

you will be asked to make a decision to “stop” the bag or “pass” it. Once you have screened all 

the bags in this set you will be allowed a short break to stand and stretch before continuing. 
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Decision aid:  Now you will perform the luggage screening task but this time you will have the 

help of a decision aid. When an X-ray image appears on the screen a perimeter around the bag 

will also appear in the color of green or red. The perimeter of the image will be highlighted in 

red if a target has been detected by the aid and you need to “stop” the bag. It will be highlighted 

in green if no target has been detected and you need to “pass” the bag. Once the image 

disappears you will need to decide whether to click the left mouse button to “stop” the bag or the 

right mouse button to “pass” the bag. Once you have seen all the images in this section you will 

be allowed a short break to stand and stretch before continuing. 

The experiment will last approximately an hour. During the experiment you will be seated in 

front of this monitor. Once you have seen all the images, you will be debriefed and allowed to 

leave. Pleas let the experimenter know now if you have any questions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX D 

DEBRIEF INFORMATION 
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Thank you for your participation.  You have just participated in a study that is attempting to find 

out how individuals rely on automated aids to make decisions and help them in a visual search 

task. Individuals are impacted by the aids that they work with; we are interested in assessing how 

completely they rely on these automated aids to make decisions. Specifically we are interested in 

examining whether individual performance is impacted to a greater degree when a decision aid is 

unreliable or when an aid that is simply directing attention is unreliable. The ultimate goal of this 

research is to help develop more effective automated aids to work with operators as they perform 

tasks such as the luggage screening search task you did today.  

We don’t know the results yet, but we hope that your participation will help us better understand 

how people make decisions when working with automated aids. If you have any questions or 

comments about this work or would like to be informed of the results, feel free to e-mail Molly 

Liechty (mcris005@odu.edu).  
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