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ABSTRACT 

Simulation has become a pivotal tool for the design, analysis, 

and control of complex, intelligent, adaptive and 

autonomous systems and its components. However, due to 

the nature of these systems, traditional evaluation practices 

are often not sufficient. As the components follow adaptive 

rules, the cumulative events often exploit bifurcation 

enabling events, leading to clusters of solutions that do not 

follow the usual rules for standard distributed events. When 

using simulation for design, analysis, and control of such 

systems, the evaluation needs to be richer, applying 

bifurcation and cluster analysis to understand the 

distribution, applying factor analysis to understand the 

important factors for the necessary sensitivity analysis, and 

take not only point estimates for the solution and the 

sensitivity analysis into account, but contact a statistical 

stability analysis. The full exploitation of gaining numerical 

insights into the dynamic behavior and its deviations is 

needed. This paper introduces the pitfalls and recommends 

applicable methods and heuristics. 

Author Keywords 

Bifurcation; Cluster Analysis; Factor Analysis; Sensitivity; 

Stability. 

ACM Classification Keywords 

I.6.3 SIMULATION AND MODELING: Applications 

1. INTRODUCTION 

Complex, intelligent, adaptive and autonomous systems and 

their components are object of research in many domains. In 

the recent books on Modeling and Simulation (M&S) 

support for system engineering processes [1, 2], possible 

application domains identified are: 

 Military and defense applications; 

 Transportation and traffic applications; 

 Space applications, including space-based 

communications; 

 Energy, in particular sustainable energy applications; 

 Urban planning and control applications; 

 Cyber security applications; 

 Etc. 

The topic of M&S support for autonomous systems has also 

been addressed in two workshops organized by the NATO 

M&S Center of Excellence, both proceedings have been 

published and are publically available [3, 4]. In most of these 

application, the focus lies on the implementation of 

simulation solutions to provide decision support with the 

potential for automation in later phases. The use of agent 

based methods is most often recommended as the appropriate 

modeling paradigm for this kind of application. In every case 

described, the main motivation for using simulation was 

obtaining numerical insight into the dynamic behavior of the 

complex, intelligent, adaptive and autonomous systems and 

its components. 

Naturally, the result is a large amount of data that needs to 

be analyzed, often using statistical methods. As featured in a 

recent article in the Nature magazine [5], blindly applying 

statistical cookbook solutions without understanding the 

application domain or the validity contexts of the methods 

can lead to insufficient or wrong interpretations. This is also 

true for the domain of complex, intelligent, adaptive and 

autonomous systems: if the analyst assumes the same 

behavior he is used to from traditional simulation system in 

which the simulated activities are not intelligent and 

adaptive, the results will be flawed. 

The following sections of this paper will therefore address 

the questions each simulationists has to answer when using 

simulation to design, analyze, and control complex, 

intelligent, adaptive and autonomous systems and its 

components. 

 How many solution clusters do I observe? Are there any 

bifurcations in my experiment? What does the solution 

space look like? 

 How stable are my solutions? How are the individual 

results making up the cluster distributed? How big is the 

stochastic diversity of the solution? 

 How sensitive are my solutions to slight variations in the 

initial conditions? What are the most important factors that 

have to be evaluated in more detail? 
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The methods and heuristics described here are neither 

exclusive nor complete. However, they show that following 

statistical procedures blindly without applying domain 

knowledge of the supported domain as well as 

implementation logic of the supporting system can lead to 

misleading results and wrong interpretations. 

2. CHARACTERISTICS OF ENTITIES 

The simulated individual entities within complex, intelligent, 

adaptive and autonomous systems differ from components in 

centrally organized systems. It is worth to analyze the terms 

in regard to these characteristics: 

 Complex: There is no agreed to definition of complexity, 

but there is some agreement that complexity describes a 

system comprising many various elements with many 

different forms of relations utilizing multiple interfaces 

supporting often non-linear interactions leading to holistic 

and emergent behaviors. 

 Intelligent: In the contexts of artificial and computational 

systems, intelligence normally refers to the ability of 

sense-making and decision-making. Sense-making 

recognizes the need for actions based on the current 

perception, and decision-making selects the best action 

possible to pursue a goal-directed behavior. 

 Adaptive: This is the ability to change to fit better for some 

purpose or situation, often also understood as the ability to 

learn. The entities must be able to dynamically change 

their rules to adapt their behavior to new constraints and 

situations. 

 Autonomous: This is the ability of a system to act on its 

own goals, its perceptions, and its knowledge without any 

outside intervention. This does not exclude 

communication with other entities or humans, but the 

system acts on this information, not as a remote controlled 

entity. 

The entities within our domain of interest are therefore best 

understood as agents that perceive their environment through 

a sensory system, make sense of the perception and make a 

decision what action to conduct, communicate with other 

entities in these processes, conduct the action and observe if 

the result was as expected, and adapt their behavior to new 

situations and constraints, to either pursue a goal-directed 

behavior or simply sustainment of the complex system. 

The intelligent and adaptive characteristics ensure that the 

simulated entities observe the situated environment for 

possibilities to accomplish their goals. They take advantage 

of situations and exploiting weaknesses they perceive. They 

can follow overarching orders, but each individual entity still 

acts autonomously in following these directions. 

These characteristics result in emergent effects for the 

system comprising of these entities that require an adequate 

use of statistics to gain the correct insights. 

3. NUMBER OF SOLUTIONS 

Jakob Bernoulli proved the law of large numbers in statistics, 

which states that, as the number of identically distributed, 

randomly generated variables increases, their sample mean 

approaches their theoretical mean. Furthermore, the central 

limit theorem (CLT) states that with the growing sample size 

the distribution becomes more like the normal distribution of 

the entire population. The power of the CLT is that it applies 

starting from any example of observations of instantiations 

of the experiments with essentially any distribution. It is 

therefore standard practice to assume that complex, 

intelligent, adaptive and autonomous systems will also 

follow these insights and can be evaluated using the CLT. 

This, however, requires to make the assumption that the 

random experiments leading to the instantiations of the 

observed experiments are independent and leading to one 

distribution, which means one main course of action with an 

assumed mean value around which the observations are 

distributed within a certain variance. 

This assumption is often not valid due to scenario 

constraints: Assume the simulation of traffic following the 

streets within a city. At every crossing, cars can decide which 

way they follow, resulting in a bifurcation in the model. As 

long as all forks are joining later, and all possible ways are 

similar, we can observe similar results meeting the 

assumptions. But what happens if you only have two 

alternative routes, and on one route, you have construction 

going on? If your measure of performance is the time needed 

to get from the starting point to the end point, you will have 

two mean values in this example: the first one for cars taking 

the unhindered route, the second one for the cars being 

slowed down by the construction. The bifurcation in the 

scenario leads to cluster building in the results. For each 

cluster, the CLT can be applied, but not to the overall result. 

In practice, rare but plausible results are often marked as 

outliers and are not taken into account for the evaluation 

process. Instead of adjusting our evaluation to our 

observations, we adjust our observations to justify the 

evaluation. This is bad practice, in particular in the context 

of this paper. 

This structural effect is reinforced within complex, 

intelligent, adaptive and autonomous systems, as the smart 

entities take advantage of changes in the situation, creating 

additional bifurcation points resulting in structural changes 

resulting from random effects. If a random effect leads to an 

advantage for the simulated smart entities, they will perceive 

this new constraint and act accordingly. In the traffic 

example given above, the current speed possible for 

alternative routes may be derived by a random experiment: 

on average, this street allows you to drive 42 mph, but there 

is a variance of 5 mph. If a streets receives a high speed rate 

due to the random experiment, the smart entities will take 

advantage of this and shift the observed values accordingly. 

If the complex, intelligent, adaptive and autonomous system 

comprises of rivaling groups in which both groups are smart, 



 

the effect will reduce the overall variance as discussed in the 

next section. 

As a general observation, bifurcation is not the exception but 

the rule in complex, intelligent, adaptive and autonomous 

systems. This has consequences for the design of 

experiments as well as for the choice of evaluation of results. 

We cannot assume that the resulting distribution is a standard 

distribution with one mean value and respective variance. 

Instead, there are likely several possible means with 

variances that are composed to the generated to solution 

space. As a rule, there is not a single solution, but a multitude 

of them. Alternative solutions are not outliers that can safely 

be ignored, but special cases that deserve special attention. 

In order to identify these multiple solutions and separate the 

observations accordingly, multivariate statistics [6] can be 

applied, in particular cluster analysis. In general, cluster 

analysis identifies groups of objects that belong together. 

Applied in this context, it allows the separation of 

observations which belong to the various solutions 

distributed in the solution space due to bifurcation as 

described above. The following figure shows a solution 

space defined by two parameters that exposes three 

solutions. 

 

Figure 1. Solution Space with three Solutions. 

In particular when interested in optimization, these 

characteristics become interesting as well, in particular when 

the possible solutions are too huge to allow for a complete 

computation of the solution space. In this case, a heuristic is 

needed to ensure that at least the interesting areas in the 

solution space are found. 

The individual interesting solutions are usually connected 

with local extreme values. As the solution space, defined by 

the multitude of free parameters that usually are the input 

parameters for the system, is often huge, an efficient way to 

scan through possible solutions is needed. The domain of 

artificial intelligence developed several optimization 

heuristics [7] that can be applied in this context. Many of 

these methods have been recently rediscovered in the context 

of Deep Learning.  

In order to scan through a wide solution space and touch as 

many areas as possible, genetic algorithms have been proven 

to be useful, as they allow for randomly chosen trials that 

have been shown to lead to better solutions in hyper-

parameter optimizations than grid-searches or manual 

searches [8]. 

It is good practice to use the mutation rate as a parameter to 

support wide range of changes in the beginning, to scan 

through as many areas as possible first, and then reduce the 

mutation rate to closer evaluate most promising areas. The 

result should be getting a better understanding on the 

topology of the solution space with a clear hint to where to 

look for local extreme values. 

Once the area to look for local extreme values is known, 

single-path optimization algorithms – like tabu search or 

simulated annealing – can be applied [7]. They deliver good 

results when starting relatively close to the optimal search 

value, which has been accomplished by the application of 

genetic algorithms to scan the whole solution space first. 

It should be pointed out that finding all local extreme values 

is not guaranteed, as these algorithms are heuristics. 

Nonetheless, there is a high likelihood that even with many 

degrees of free parameters many solutions can be found. 

These technologies have been successfully applied in many 

optimization studies. As a concluding recommendation of 

this section, cluster analysis, genetic algorithms, and 

simulated annealing should belong into every tool set used 

for evaluation of complex, intelligent, adaptive and 

autonomous systems. 

A clear understanding of the topology of the solution space 

is pivotal for understanding the complex system under 

evaluation. But knowing the surface is not enough. For each 

identified solution, its statistical stability and sensitivity need 

to be evaluated as well. They will be discussed in the 

following sections. 

4. STABILITY OF SOLUTIONS 

Although deterministic complex, intelligent, adaptive and 

autonomous systems are possible, it is highly likely that 

uncertainty and vagueness in data and processes will be 

captured in stochastic approximations. We already 

introduced the notion of the result of a random experiment 

before, but it is worth to mention in the context of our 

discussion of the stability of solutions it is pivotal to 

understand that each observation is only one incarnation of 

many possible outcomes of the experiment. Even if all input 

parameters for the system that initialize constraints of the 

environment and behavior of the entities are fixed, the 

observed result will differ. After observing a sufficient 

number of repetitions, we can derive a distribution of these 

results, allowing us to predict future outcomes within these 

constraints. But the simulationist generally faces the 

question: How many repetitions are needed to be statistically 

significant? The answer is: it depends! 

The complexity of the system drives the complexity of the 

results. In order to know that enough repetitions have been 

collected, the resulting distributions before and after an 

additional result was obtained should be identical. As long as 



 

the distributions before and after the new result was added 

differ, we still found significant new information. Only if 

new results no longer change the distribution, enough quasi-

empirical evidence has been collected to be statistically 

significant. 

The two tests that traditionally are conducted to analyze the 

equivalency of two distributions are the Z-test and the 

Kolmogorov-Smirnov test. Recently, the Epps-Singleton test 

has been introduced to determine whether two samples have 

been drawn from the same population [9]. For the evaluation 

of complex, intelligent, adaptive and autonomous systems it 

is therefore good practice to conduct such test to determine 

if enough observations have been collected to make 

statistically significant statements on the distribution of 

results. This is only the case if adding new observations to 

the distribution doesn’t change the characteristics of the 

distribution. Rules of thumb like “20 runs are sufficient for 

practical purposes” are neither justified nor helpful in 

complex systems. Furthermore, it is also possible that in 

some regions of the solution space only a few repetitions are 

needed while in other regions many replications are 

necessary to gain significant insights. Conducting the tests 

only for one region and then assume that the result is 

applicable for the whole solution space is scientifically naïve 

or even fraudulent. Vaux [10] shows the overall need to 

better understand the application of statistics to avoid 

“sloppy science.” 

It is also pivotal to visualize the results accordingly. It is 

often not deeper understood practice to compute the mean 

value and its variance without analyzing the underlying 

observations further. The problem that bifurcations can result 

in more than one cluster has already been addressed. There 

are many interesting visualization methods available, and at 

least the “boxes and whiskers” approach should be used. In 

this approach, the individual observations are aggregated 

into the mean value, the median value, the standard variation, 

and a box that captures the middle 50% of the observations 

as shown in the following figure. 

The 30 observations resulting from 30 repetitions under 

identical initial conditions are enumerated on the right and 

plotted as circles as a reference. The box with mean, median, 

and standard derivation computed for this examples are 

shown on the left. Even without knowing anything about the 

individual observations it is clear that this is not a standard 

distribution, as the 50% box has the mean value as an upper 

limit, and mean and median are relative far apart. Looking at 

the distribution this seems to be the result of two cluster with 

center close to 11 and 35, which are likely the result of a 

bifurcating event. The aggregated display gives at least a first 

hint at the distribution of the observation and the overall 

stability of the solution. 

These few examples demonstrate already that looking at the 

mean value is not sufficient, but it is good practice to use the 

statistical stability in regard to choosing good solutions. 

Solutions with very different distributions can easily look 

very similar when only the aggregates are evaluated. The 

solution space shown in Figure 1 only displays one 

aggregated values. What actually is needed is an extension 

of each value as of this surface to be extended using the 

insights shown for a single solution in Figure 2. Which 

visualization is the best to use is topic of ongoing research, 

such as described in [11]. 

 

Figure 2. Box and Whiskers showing Stability of a Solution 

Another aspect to be considered are the results presented in 

[12]: The following figure shows the results of applying 

heuristic optimization methods to 160 sensitive control 

variables (out of a total of 500) to improve the command and 

control for a combat scenario. 

 

Figure 3. Simulation Results before and after heuristic 

optimization of rule sets for both antagonists [12, p. 17.9]. 

By improving the attacking as well as the defending side by 

making their command and control effective and robust, the 

stochastic dispersion was significantly reduced by 

eliminating inefficient edges of the decision tree. The effect 
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could be observed in several thousand runs conducted in 

support of the NATO study. 

When evaluating alternatives, they may expose valuable and 

interesting differences even if the mean value only changes 

slightly. In complex, intelligent, adaptive and autonomous 

systems it is therefore essential to understand these 

possibilities. 

5. SENSITIVITY OF SOLUTIONS 

If the solution space is completely understood and can be 

completely solved computationally, sensitivity analysis is 

already applied implicitly, as neighbored solutions are part 

of the complete picture. However, as the solution space in 

complex systems is usually too big to be computed 

completely – due to the combinatorically explosion of 

possible solutions due to the high number of parameters and 

their multiple nonlinear relations –, as a rule the 

simulationists will have to evaluate a set of solutions that 

often have been discovered by the application of heuristic 

methods. In other cases, subject matter experts may have 

come up with a best guess solution that needs to be evaluated. 

Also, a real world solution may be used to evaluate their 

applicability and sufficiency of provided capabilities for new 

constraints. In all these cases, the simulationists receives a 

set of solutions to be evaluated and often compared regarding 

their efficiency. Whenever this is the case, sensitivity 

analysis needs to be conducted in addition to the statistical 

stability analysis. Sensitivity evaluates the dependence of the 

solution from slight variations in the initial conditions. 

In a deterministic setting, the same initial conditions always 

lead to the same results. It is therefore often assumed that 

similar initial conditions will also lead to similar results, but 

this assumption is often not correct. Non-linear function can 

lead to very different results for similar initial conditions, and 

it has been shown that non-linear functions behave 

chaotically when they are bounded and folded back into the 

defining interval, such as it is the case with the logistic 

function or the functions describing a double rod pendulum. 

Even if the initial conditions are arbitrarily close to each 

other, the results will be far apart after some iterations. 

It is worth mentioning that when we are using computers to 

represent complex, intelligent, adaptive and autonomous 

systems, the predictability of our projections is significantly 

limited by these mathematical constraints: due to rounding 

errors inevitably connected with digital, discrete computing 

we can never make long term projections for systems 

comprising chaotic functions. 

But even if no mathematical chaos is present in the system, 

nonlinearity can result in widely diverging results for similar 

initial conditions. As it is often likely that implementations 

vary slightly from the identified and recommended solution, 

sensitivity analysis is conducted to ensure that the result does 

not differ too much from the intended objectives. The 

recommended solution should result in similar performance 

for only slightly modified instantiations, and if this is not the 

case, the decision maker shall be made aware of this danger. 

As the amount of free parameters is often too big to allow for 

a full combinatorial evaluation of neighbored initial 

solutions, the questions arises which parameters are the 

important ones and should be evaluated. This question is 

answered by factor analysis [6]. It is therefore good practice 

for the evaluation of solutions in complex systems to first 

apply factor analysis to identify the significant parameters 

and then conduct sensitivity analysis with such identified 

parameters for the metrics of interest. 

Based on the observations in the earlier as well as in this 

section, the best solution for practical applications is not 

always the one with the highest expect mean value: 

 If a solution is a peak in comparison with its neighbors, a 

slight variation in the solution can lead to a significant 

decrease in effectiveness. Even if the solution itself is 

superior, for practical reasons it may not be selected. 

 If a solution has a high expected value, but the stochastic 

diversity is high/statistical stability is low, the likelihood 

to end up with a less capable solution due to stochastic 

effects is high. It may be better to choose a solution with 

more stability. 

 The stochastic diversity/statistical stability of the 

neighbored solutions can be as important as the expected 

value. If the solution should be in a stable region with 

sufficient effectiveness, this may influence the choice of 

the solution to implement. 

The following figure exemplifies these cases. Very often it is 

more important to reach a sufficient efficiency level for sure 

than to go for a risky optimal solution. In the left example, 

solution a7 may be preferable to a3, as a slight variation 

results in a worse outcome. In the middle example, solution 

b1 has a lower mean value, but the secure output is higher 

than b2, so it may be the preferred solution. In the right 

example, all mean values are identical, so that the variance 

will determine which solutions will be picked, depending if 

the decision maker is risk averse or not. 

 

Figure 4. Examples for solutions. 

It should be pointed out that the simulated intelligent 

components have to base their decisions on similar 

evaluations of their perceived situation. After they created a 

perception based on their sensor capabilities and made sense 

of their observation, the decision making processes have to 

evaluate their options and select their solution  
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6. CONSISTENCY OF INTERNAL AND EXTERNAL 
EVALUATION LOGIC 

The effect of structural variances is known for several 

decades and was first published in [13] and defined as 

follows: “Structural variance is the term applied to a 

discontinuity in results which were produced by smooth 

changes in an input parameter. It is caused by the structure 

of the model rather than by an error in the model, data, 

interactions represented or by any stochastic processes.” 

These discontinuities are always observed when the internal 

decision logic used by the smart components are unaligned 

with the evaluation logic used when computing the applied 

measure of merit (MOM). The resolution of the modeled 

entities that can be observed by the entities in their 

perception and that also are used by the evaluation processes 

to compute the metrics is the third important factor that needs 

to be aligned with the internal decision logic as well as with 

the external evaluation logic: whenever a level of detail in 

the system is used for a decision by the internal logic but is 

ignored in the evaluation of the results – or vice versa – 

structural variances in form of discontinuities are likely to 

occur. The following figure shows the three components of 

the resulting harmonization and alignment principle. 

 

Figure 5. Harmonization and alignment principle [14, p. 81]. 

In order to follow the harmonization of processes and 

alignment of data principle, the rules and behavior of the 

smart components need to be transparent to a certain degree. 

The “correctness” of choices by the internal decision logic is 

determined by the external evaluation logic. In order to do 

so, the dimensional parameters used within the measures of 

merit to make the decisions and evaluate the results need to 

be aligned, otherwise discontinuities will be observed. 

The following example from the defense domain shall 

explain this effect in more detail: the outcome of a battle is 

calculated by the reduction of the enemy forces. The 

simulated smart entities first defend in a forward position to 

give the main forces some time to prepare the main defense 

position before they fall back and become the reserve. While 

this behavior is very realistic, the applied MOM doesn’t take 

all aspects not reflected in more attrition into account. 

In complex, intelligent, adaptive and autonomous systems, 

these effects are likely to be observed. The simulationists 

must be aware of these relations to avoid misinterpretation 

of the results that may be based on insufficiently harmonized 

evaluation processes or misaligned data used as dimensional 

parameters. 

7. SUMMARY AND DISCUSSION 

The simulation support for the design and the evaluation of 

complex, intelligent, adaptive and autonomous systems has 

been identified as a candidate for a national research agenda 

[15]. It has many challenges that bring together the various 

fields of M&S research, reaching back some decades, but 

also some only addressed recently. 

Of particular interest is the use of statistics in support of the 

evaluation. Many scientist use the means of statistics without 

full understanding of all assumptions and constraints, often 

leading to misperceptions and wrong interpretations. The 

simulationist dealing with these systems faces the same 

danger. The paper introduces at least some good practices for 

the evaluation of complex, intelligent, adaptive and 

autonomous systems: 

 Do not assume a normal distribution! Conduct cluster 

analysis to identify if any bifurcation events did lead to a 

result in which several alternative courses of actions have 

to be evaluated. 

 Do not trust point solutions! Evaluation the stochastic 

diversity of the solution. Do this for each cluster that 

contributes to the solution. 

 Conduct a sensitivity analysis! Small changes in the initial 

conditions may result in significant changes in the result. 

This is true for the expected result as well as for the 

stochastic diversity. 

Optimization of antagonist elements within the system may 

lead to a reduction of the stochastic diversity. However, it is 

of utter importance that the represented properties used as 

dimensional parameters in the metrics to make decisions in 

the smart entities are aligned with those used in the MOM to 

evaluate the overall solution for the system. Also, the internal 

decision processes and external evaluation processes must be 

aligned to avoid structural variances. 

Another topic of interest in complex, intelligent, adaptive, 

and autonomous system is emergence. Although not 

addressed in detail, the heuristics and methods discussed in 

this paper are foundations to discover emergence. The 

“emergence complexity cone” introduced in [16] and shown 

in the following figure. For a detailed discussion and 

definition of the terms, the reader is referred to the original 

paper. Many principles addressed in [16] are also supported 

in this paper, as both are rooted in cybernetic principles and 

go back to control theoretic foundations. 

However, even without an in depth discussion, the figure 

exemplifies the dimensions of emergency challenge that 

ultimately have to be addressed and that can structure a 

research agenda. The cone is linking emergent behavior 



 

taxonomy in increasing complexity on the y-axis and a 

possible categorization of stochastic and deterministic 

search-spaces on the x-axis. The resulting cone volume 

depicts the variety, the perimeter as constraints, and the 

knowledge boundary as a cylinder that addresses the variety 

and constraints. The knowledge cylinder around simple and 

weak emergence in the deterministic domain signifies ample 

knowledge available to develop abstractions.  

 

Figure 6. Emergence Complexity Cone [16]. 

The simulationists must be aware of these challenges as well 

as of possible solutions. Currently, the author is not aware of 

any analysis frameworks that support all these aspects 

sufficiently and hopes that this paper may spawn the 

development of such a framework that supports the experts 

as well as decision makers that are new to this domain. 
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