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ABSTRACT

We present a novel algorithm for generating three-dimensional unstructured tetrahedral meshes for biomed-
ical images. The method uses an octree as the background grid from which to build the final graded con-
forming meshes. The algorithm is fast and robust. It produces meshes with high quality since it provides
dihedral angle lower bound for the output tetrahedra. Moreover, the mesh boundary is a geometrically and
topologically accurate approximation of the object surface in the sense that it allows for guaranteed bounds
on the two-sided Hausdorff distance and the homeomorphism between the boundaries of the mesh and the
boundaries of the materials. The theory and effectiveness of our method are illustrated with the experimental
evaluation on synthetic and real medical data.

Keywords: tetrahedralization, quality, fidelity, homeomorphism

1 INTRODUCTION

With medical data sets, one can generate conforming quality meshes of the spatially realistic domains
that help producing computer aided visualization, manipulation, and quantitative analysis of the multi-
dimensional image data. The domain of focus often possesses heterogeneous materials that specify function-
ally different characteristic properties, so it is usually segmented into multiple regions of interest (materials).
In finite element analysis, each material of interest is assigned an individual attribute or a material coeffi-
cient. Thus, meshes with conforming boundaries describing each of the partitioned material regions are
generated for these purposes.

The generation of geometric discretizations from segmented multi-material images presents many chal-
lenges. In particular, a mesh should meet constraints on both the shape and the size of its elements, and
must conform at the material boundaries. In addition, the algorithm must handle arbitrary topology. In this
paper we present an algorithm for constructing tetrahedral volume meshes that are suitable for real-time
finite element analysis, i.e., they satisfy the following criteria:

1. Elements with arbitrarily small angles which cause the stiffness matrix in FE analysis to be ill-conditioned
do not appear in the mesh. Specificly, we guarantee that all dihedral angles are above a user-specified lower
bound which can be set to any value up to 19.47◦.
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2. The mesh offers a reasonably close representation (fidelity) of the underlying materials. In particular,
the two-sided Hausdorff distance between the boundaries of the mesh and the boundaries of the materials
respects the user specified fidelity bounds.

3. The mesh is able to offer a faithful topology of the materials. In other words, mesh boundary is homeo-
morphic to the object surface. We discuss the concept of homeomorphism, and give a sufficient condition
for the approximation to offer homeomorphism.

4. The mesh contains a small number of elements that comply with the three guarantees above.

There has been a significant amount of work on guaranteed quality mesh construction. One approach for
generating tetrahedral meshes of smooth and piecewise smooth surfaces is that the input is assumed to be
an implicit function f : R3 → Z such that points in different regions of interest evaluate f differently. One
guaranteed-quality technique is based on the Delaunay refinement (Boissonnat and Oudot 2005, Cheng
et al. 2010, Foteinos et al. 2014). In Foteinos et al. (2014)’s work, the authors present a Delaunay meshing
algorithm with several mathematical guarantees. They proved that the tetrahedra in the output mesh have
the radius-edge ratio less than 1.93. The two-sided Hausdorff distance between the object surface and
mesh boundary is bounded by a user-specified parameter. Using a strategy called ε-Sample (Amenta et al.
2000, Amenta et al. 2003), the mesh boundary is proved to be ambient isotopic to the object surface.
However, the method only supplies the circumradius-to-shortest-edge ratio bound. Even if this ratio is very
small, it can not avoid the almost flat tetrahedra. Another guaranteed-quality technique employs a space-
tiling background grid to guide the creation of a mesh (Labelle and Shewchuk 2007, Bronson et al. 2014,
Chernikov and Chrisochoides 2011), the focus of this paper. Isosurface Stuffing (Labelle and Shewchuk
2007) is a guaranteed-quality tetrahedral meshing algorithm for general surfaces under the assumption that
the surface is a smooth 2-manifold. It offers the one-sided Hausdorff distance guarantee from the mesh
to the model. If the surface is a smooth manifold with bounded curvature, it also provides the one-sided
Hausdorff distance guarantee from the model to the mesh. Using interval arithmetic, the dihedral angles for
the mesh with uniform sized boundary are proved to be bounded between 10.7◦ and 164.8◦. However, our
method depends on a standard octree and decimation, and is able to achieve the minimum dihedral angle
bound 19.47◦.

This work builds upon the Lattice Decimation (LD) method (Chernikov and Chrisochoides 2011). LD is a
tetrahedral image-to-mesh conversion algorithm that allows for guaranteed bounds on the smallest dihedral
angle (up to 35.26◦) and on the Hausdorff distance between the boundaries of the mesh and the boundaries
of the materials. The algorithm constructs an octree and splits the octree until no leaf contains voxels from
multiple materials. Then it fills the octree leaves with high-quality elements. This initial mesh has a large
number of elements because it satisfies the highest dihedral angle and fidelity bounds. The authors designed
a post-processing decimation step using vertex removal operation. It coarsens the mesh to a much lower
number of elements while at all times maintaining the required fidelity and quality bounds. However, the
decimation step is a greedy algorithm which was not designed for smooth transition in element size. In
fact, it can produce clusters of small elements surrounded by much larger elements. In this work, we refine
the octree to a lower level and the element size does not have so big difference, therefore, the issue can be
mitigated. However, the relatively coarse mesh brings a new issue: the topological faithfulness may not be
guaranteed. We designed a new technique called single manifold condition that solves this problem.

In this paper, we approximate the boundary of the materials with a set of triangular patches in octree leaves
using a pre-defined surface look-up table. The triangular patches all together form a waterproof surface mesh
which is homeomorphic to the boundary of the materials by proof. We achieve the two-sided Hausdorff
distance bound by constructing a sequence of such surface meshes until the fidelity condition in each leaf is
satisfied. The octree leaves are filled with high-quality elements from a pre-defined volume look-up table.
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During decimation, the initial mesh is coarsened to a much lower number of elements while at all times the
quality, fidelity and topological requirements are maintained.

2 METHODOLOGY

The proposed algorithm is described as follows: the algorithm takes a two- or a three-dimensional multi-
material image as its input. The user also specifies as input the target fidelity bounds (two-sided Hausdorff
distance) and the desired angle lower bound. The algorithm outputs a quality mesh which is a good geo-
metric and topological approximation of the underlying object. We first define some concepts relative to the
topological faithfulness.
Definition 2.1. Homeomorphism A topological notion of equivalence. A mapping µ : X → Y defines a
homeomorphism between two compact Euclididean subspace X and Y if µ is continuous, one-to-one and
onto. The inverse function µ−1 is also continuous.
Definition 2.2. Single manifold condition The intersection of the image boundary with each of the bound-
ary leaves is a (n−1)-manifold with boundary, n being the dimension.

Specificly, in two dimensional case, the image boundary edges form a 1-manifold with boundary, a chain
composed by image boundary edges. On this chain, every image boundary vertex has two neighbors, except
the first and last ones, which have only one neighbor. In three dimensional case, the degree of the image
boundary edge is defined by the number of boundary faces that incident upon the edge. The image boundary
faces form a 2-manifold with boundary, a sheet on which the degree one image boundary edges form a cycle
and all the other image boundary edges are degree two edges.

2.1 Initial mesh construction

The algorithm first constructs an octree that completely encloses all the materials (except for the background
voxels) from the bitmap. The boundaries between the octree leaves correspond exactly to the boundaries
between the voxels. Besides that, an extra space between the materials and the exterior boundaries of the
octree should be equal to or larger than the user specified fidelity bounds. Initially, the algorithm splits the
octree such that the leaves satisfy the single manifold condition, and the sizes of the leaves respect the 2-to-
1 ratio. Then it generates a waterproof surface mesh which is homeomorphic to the the boundaries of the
materials from a pre-defined surface look-up table. It computes the two-sided Hausdorff distance between
the boundaries of the mesh and the boundaries of the materials in each leaf. It splits the leaf into 8 children
if the Hausdorff distance of either side is larger than the user specified fidelity bounds. If at least one of
the leaves was split because of the conflicting of the fidelity condition, the surface mesh is discarded. The
algorithm iteratively checks the single manifold condition and the 2-to-1 ratio, and generates waterproof
surface meshes until the two-sided Hausdorff distance respects the user specified fidelity bounds.

2.1.1 Waterproof surface mesh

When the octree leaves respect the single manifold condition and the 2-to-1 ratio, the algorithm generates tri-
angular patches from each octree leaf such that all the patches form a waterproof surface mesh. To generate
the waterproof surface mesh, we use an approach reminiscent of the Marching Cubes algorithm (Lorensen
and Cline 1987). In contrast to the Marching Cubes algorithm, our algorithm evaluates the vertices to three
values: positive, negative and zero. A vertex of a leaf is evaluated to be positive if the vertex is located
inside a material, to be negative if the vertex is located outside the material, and to be zero if the vertex is
located exactly on the boundary of the materials. The templates on cubes would be cumbersome for our
algorithm, because there would be 38 cases need to be analyzed. Instead, we designed a surface look-up



Jing Xu and Andrey Chernikov

table on squares for each cube face, so there are totally only 34 entries in the table. The surface look-up table
generates intersection edges on the cube faces, and the triangular patches are generated by connecting those
intersection edges with the center of the cube (see Figure 2a). We list all possible stencils in Figure 1 by
grouping cases with the opposite relations to the vertex value in all corners into one case and also grouping
rotationally symmetric cases.

Figure 1: All possible stencils for creating intersection vertices and intersection edges by grouping cases
with the opposite relations to the vertex value in all corners into one case and also grouping rotationally
symmetric cases. Black circles show the positive vertices, white circles show the negative vertices, and blue
circles show the zero vertices. Blue segments show the intersection edges created by the algorithm.

(a) Fan-like triangular
patches

a

b
c

(b) Inconsistency between
neighboring cubes

(c) Consistency is consid-
ered between neighboring
cubes

Figure 2: An illustration of generating triangular patches to approximate the image boundary in a leaf. Blue
circles show the zero vertices, blue edges on cube faces show the intersection edges and blue triangles show
the triangular patches.

One important issue that needs extra concern is the consistency between neighboring leaves. In the case that
a face of the octree leaf shared by four smaller neighboring cubes, the consistency is not always guaranteed.
For example, in Figure 2b we show a leaf whose left face is shared by four smaller neighboring cubes. From
the leaf side of the view, the intersection edge generated for the left face of the leaf should be edge ab (shown
in blue dashed segment). However, from the four small neighbors side of the view, the intersection edges
generated for the same face should be edge ac and edge cb (shown in red dashed segments). To solve this
problem, we process the octree leaves in the order of their size, starting with the smallest. We duplicate the
intersection edges from the processed neighbors (including the neighbors of same size and of smaller size),
and generate new intersection edges for the faces that shared by the neighboring cubes which have not been
processed (see Figure 2c). Then we check if the intersection edges from the six cube faces form a cycle. If
all the intersection edges do not form a cycle, the leaf needs to be split. By this way, the surface mesh of our
algorithm is guaranteed to be water-tight.

□□□BEJ□ 
□EZitllISI□□ 
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2.1.2 Two-sided Hausdorff distance

The mesh has to provide a close approximation of the object shape. We measure the closeness by the fidelity
tolerance, quantified by the two-sided Hausdorff distance from the mesh to the image and the image to the
mesh. For image boundary I and mesh boundary M, the one-sided distance from I to M is given by

h(I,M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided distance from M to I is given similarly by

h(M, I) = max
m∈M

min
i∈I

d(m, i).

The two-sided distance is:
H(I,M) = max{h(I,M),h(M, I)}.

To measure the Hausdorff distance from the surface mesh to the boundaries of the image, we compute the
Euclidean distance transform (Maurer, Qi, and Raghavan 2003) (EDT) of the extended image (same size as
the octree), and split the octree until no leaf has the distance of EDT both larger and within the input fidelity
bound. We mark the leaves that are within the input fidelity tolerance. If one of the triangular facets of the
surface mesh in the leaf intersects at least one of the leaves that marked as outside the fidelity tolerance, the
fidelity condition is violated and the leaf is split. To measure the Hausdorff distance from the boundaries of
the image to the corresponding surface mesh, we compute the shortest distance from each image boundary
vertex in the leaf to the triangular patches of the surface mesh in the leaf. If one of the image boundary
vertices has a shortest distance larger than the fidelity tolerance, the fidelity condition is violated and the leaf
is split.

2.1.3 Filling in the octree

When the waterproof surface mesh respects the user specified fidelity bounds, the octree is constructed. We
fill the octree leaves with high quality tetrahedra using the pre-defined volume look-up table. The volume
look-up table is designed based on the same idea as the surface look-up table, however, instead of being
used to generate edges on cube faces, it is used to generate triangles on cube faces. The template triangles
of the volume look-up table should respect the intersection edges of the surface look-up table, which means
that the intersection edges should be the edges of the template triangles. By analyzing all possible shapes of
the initial tetrahedra filling a cubic leaf of the octree, the minimum dihedral angle bound is 19.47◦.

2.2 Mesh decimation

Similar to the LD method (Chernikov and Chrisochoides 2011), the vertex removal operation is used to
coarsen the mesh. We maintain a queue of mesh vertices that are candidates for merging. A vertex is merged
to a destination vertex if the vertex and the edge between the vertex and its destination are removed from the
mesh. As a consequence, all tetrahedra (triangles) incident upon the removed edge are also removed from
the mesh. The detailed operation can be consulted in the paper (Chernikov and Chrisochoides 2011), here
we only discuss the merging conditions. A vertex can not be merged along an edge to another vertex if it
violates the following requirements:

1. The quality requirement, i.e., if at least one of the newly created elements, as a result of a sequence of
merges, is inverted or its dihedral angle is smaller than the input quality angle bound, the merge is discarded.
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2. The fidelity requirement, i.e., if at least one of the newly created mesh boundary facets has at least one-
sided Hausdorff distance larger than the input fidelity bound, the merge is discarded. Same as the fidelity
check of the octree construction, this check also consists of two parts, for each of the one-sided Hausdorff
distances.

3. The topological equivalence requirement, i.e., if the homeomorphism is not maintained during an oper-
ation of merge, the merge is discarded. We apply the following rules to maintain the original structure of
the inter-material boundaries: (1) boundary vertices only merge to boundary vertices, (2) a vertex cannot
merge to a non-boundary vertex of a different material, (3) for each boundary vertex we also maintain a
cumulative list of the octree leaves it belongs to. The merge happens if the union of the set of octree leaves
of the merged vertex and the set of the octree leaves of the destination respect the single manifold condition,
i.e., the image boundary edges (or faces) of the union form only one (n− 1)-manifold with boundary, and
(4) each tetrahedron keeps the original color even after it changes shape due to vertex merge.

3 EXPERIMENTAL RESULTS

We apply the proposed octree refinement and decimation algorithm (ORD) to both synthetic and real medical
data in the following sections. All the experiments were conducted on a 64 bit machine equipped with two
3.06 GHz 6-Core Intel Xeon CPU and 64 GB main memory. The algorithm was implemented in C++, in
both two and three dimensions.

For the 3D visualization of the final meshes, we used ParaView (Ahrens et al. 2005), an open source
visualization software. In Figure 3, we compare the final mesh generated by a Delaunay open source mesh
generator Computational Geometry Algorithms Library (CGAL) and our ORD method on topology on head
neck image. The size of the head neck is 255 × 255 × 229 voxels. Each voxel has side lengths of 0.97,
0.97, and 1.4 units in x, y, and z directions. It is clear that there are two manifolds in the original image
(see Figure 3a), however, CGAL only generated one manifold (see Figure 3b). We highlight the missing
manifold of CGAL mesh in green in Figure 3a. On the contrary, our method generated two manifolds (see
Figure 3c).

(a) head neck image (b) Final mesh of CGAL (c) Final mesh of ORD

Figure 3: The topology comparison of the ORD mesh and the CGAL mesh on head neck.

Figure 4 shows the final mesh produced on abdomen atlas and its corresponding cut view. The size of the
abdomen atlas is 512 × 512 × 219 voxels, each voxel has side lengths of 0.96, 0.96, and 2.4 units in x, y, and
z directions. In Table 1 we show the comparison of the output mesh size of the ORD and LD for the abdomen
atlas. We fixed the two-sided Hausdorff distance bound parameters, and vary the dihedral angle bound to
the interested value 5◦, 10◦, 15◦, and 19.47◦ spread through the range of its feasible values (0◦ to 19.47◦).
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As we can see from Table 1, the output mesh size is low when H(I,M) is high for all configurations. Also,
the final number of tetrahedra decreases as the dihedral angle bound decreases. The tetrahedra generated
by ORD before decimation is much fewer than the tetrahedra generated by LD before decimation. When
H(I,M) = 1, the sizes of ORD meshes are slightly smaller than the sizes of LD meshes. However, when
H(I,M) = 2, H(I,M) = 3 and H(I,M) = 4 the ORD algorithm generated significant smaller number of
tetrahedra compared to the number of tetrahedra generated by the LD algorithm. We conclude that the ORD
algorithm performs better in terms of the number of tetrahedra than LD algorithm even though it maintains
the topology.

(a) Final mesh of abdomen (b) A cut view of ab-
domen mesh

Figure 4: The ORD mesh and a cut view of the abdomen for h(I,M) = 2, h(M, I) = 2 and θ = 19.47◦.

Table 1: The comparison of final number of tetrahedra for ORD and LD

Hausdorff distance h(I,M) = 1, h(M, I) = 1 h(I,M) = 2, h(M, I) = 2 h(I,M) = 3, h(M, I) = 3 h(I,M) = 4, h(M, I) = 4
Algorithm ORD LD ORD LD ORD LD ORD LD

Before decimation 30,361,224 42,344,304 18,492,773 51,284,042 19,637,745 57,723,164 19,968,161 61,672,648
After decimation with θ = 19.47◦ 13,027,911 17,608,762 4,062,233 12,434,028 4,164,029 13,672,489 4,243,052 13,238,118
After decimation with θ = 15.00◦ 10,275,628 11,994,099 1,593,965 3,426,170 1,560,986 3,035,179 1,628,551 2,940,484
After decimation with θ = 10.00◦ 9,319,252 10,646,685 856,455 2,081,046 825,285 1,592,756 885,394 1,383,768
After decimation with θ = 5.00◦ 8,510,971 9,488,867 580,192 1,644,226 559,969 1,188,149 604,498 1,079,160

We also conducted an experiment using CGAL and compare the performance with the performance of
our ORD algorithm. Table 2 presents the experimental evaluation of the I2M conversion functionality
make_mesh_3 offered by CGAL and by ORD algorithm. We vary the value of parameter facet_distance,
and show h(M, I) and h(I,M). They are measured by resampled voxel unit. We also list the final number of
tetrahedra produced by CGAL, the minimum dihedral angle (measured by degree) and the total running time
(measured by seconds). In some cases, when the value of parameter facet_distance was increased, the value
of h(M, I) also was increased, however, there is no obvious relationship between facet_distance and h(M, I).
Further more, the values of h(I,M) in all the cases are unreasonably large. We conclude that CGAL can
only approximate one-sided Hausdorff distance, while the proposed algorithm can always guarantee that the
Hausdorff distance bound is two-sided. CGAL improves mesh properties such as the dihedral angles using
various combinations of optimization algorithms, however, we could only obtain the best minimum dihedral
angles 5◦. On the contrary, our best best minimum dihedral angle bound is 19.47◦.
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Table 2: performance of CGAL

abdomen
Opt. no_lloyd(), no_odt(), perturb(), exude() lloyd(), no_odt(), perturb(), exude()

facet_dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time
0.2 3 23 1.49 10,349,057 532.06 6 18 1.61 9,979,982 4558.32
0.4 3 23 2.26 2,042,684 95.80 4 23 1.74 2,000,988 762.00
0.6 4 23 2.35 862,668 39.23 4 24 2.66 849,445 299.09
0.8 4 23 3.05 487,277 27.99 4 24 3.20 481,107 163.09

Opt. no_lloyd(), odt(), perturb(), exude() lloyd(), odt(), perturb(), exude()
facet_dist. h(M, I) h(I,M) dih. angle # of tets Total time h(M, I) h(I,M) dih. angle # of tets Total time

0.2 5 24 1.01 10,178,967 2132.82 5 18 2.01 9,985,320 5079.16
0.4 7 18 0.86 2,031,462 379.13 5 18 2.17 2,002,825 800.18
0.6 6 19 2.04 862,156 152.53 6 19 2.07 851,196 354.28
0.8 8 19 3.05 487,879 85.16 8 23 5.01 481,937 178.30

4 CONCLUSION

We presented a novel approach for automatic construction of two- and three-dimensional unstructured
meshes of multi-material images characterized by (i) guaranteed dihedral angle bound for the output tetra-
hedra, (ii) guaranteed bounds on two-sided Hausdorff distance between the boundaries of the mesh and the
boundaries of the materials, (iii) the mesh boundary is proved to be homeomorphic to the object surface,
and (iv) a small number of mesh elements. The applications of the algorithm include mechanical modeling
for finite element simulation, computational medicine and computational biology such as medical imaging,
image registration, surgical simulation, and image-guided intervention.
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