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A genome-wide association study of cocaine use 
disorder accounting for phenotypic heterogeneity  

and gene–environment interaction

Jiangwen Sun, PhD, BM; Henry R. Kranzler, MD; Joel Gelernter, MD; Jinbo Bi, PhD

Introduction

Cocaine is among the most widely abused illicit drugs in the 
United States.1 The National Survey on Drug Use and 
Health2 showed that in 2015, 0.7% of people aged 12 or older 
were cocaine users, an increase from 0.6% in 2014. Cocaine 
use is associated with serious health and social problems and 
is very costly to society, reflected in the fact that it is the illicit 
drug associated with the highest number of emergency de-
partment visits.3

Susceptibility to cocaine use disorder (CUD) includes a genetic 
component. Heritability of the 3 CUD-related traits — cocaine 
use, abuse and dependence — was estimated to be 0.39, 0.79 
and 0.65, respectively, in female twins.4 Similar estimates in 
male twins were 0.61, 0.32 and 0.79, respectively.5 However, 
despite evidence of the heritability of CUD, there have been 
few efforts to identify specific genetic risk factors for the disor-
der.6 Several data sets with CUD traits have been used for 
genome-wide genotyping.7–9 To date, a single nucleotide poly-

morphism (SNP), rs2629540 mapping to FAM53B, has been as-
sociated genome-wide with CUD,9 an association for which 
consistent results in an animal model were later obtained.10

More than 10 biological processes, with more than 100 genes 
involved, may play roles in the etiopathology of substance 
use disorders.11 Variation in any of these genes — and indeed 
in other genes with an unrecognized relationship to these 
traits — could contribute to the development of a substance 
use disorder. Substance use disorders are heterogeneous and 
phenotypically and genetically complex, hindering the iden-
tification of specific genetic risk factors. In addition, multiple 
studies have shown that the genetic risk for developing a 
substance use disorder can be moderated by environmental 
factors such as stressful life events, neighbourhood stability, 
religiosity and peer drug use.12–18 Thus, the statistical power 
of genome-wide association studies (GWAS) to identify the 
genetic variation contributing to the risk of substance use dis-
orders is limited by the extent to which environmental effects 
and phenotypic heterogeneity are unaccounted for.
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Background: Phenotypic heterogeneity and complicated gene–environment interplay in etiology are among the primary factors that 
hinder the identification of genetic variants associated with cocaine use disorder. Methods: To detect novel genetic variants associ-
ated with cocaine use disorder, we derived disease traits with reduced phenotypic heterogeneity using cluster analysis of a study sam-
ple (n = 9965). We then used these traits in genome-wide association tests, performed separately for 2070 African Americans and 
1570 European Americans, using a new mixed model that accounted for the moderating effects of 5 childhood environmental factors. 
We used an independent sample (918 African Americans, 1382 European Americans) for replication. Results: The cluster analysis 
yielded 5 cocaine use disorder subtypes, of which subtypes 4 (n = 3258) and 5 (n = 1916) comprised heavy cocaine users, had high 
heritability estimates (h2 = 0.66 and 0.64, respectively) and were used in association tests. Seven of the 13 identified genetic loci in the 
discovery phase were available in the replication sample. In African Americans, rs114492924 (discovery p = 1.23 × E−8), a single nu-
cleotide polymorphism in LINC01411, was replicated in the replication sample (p = 3.63 × E−3). In a meta-analysis that combined the 
discovery and replication results, 3 loci in African Americans were significant genome-wide: rs10188036 in TRAK2 (p = 2.95 × E−8), 
del-1:15511771 in TMEM51 (p = 9.11 × E−10) and rs149843442 near LPHN2 (p = 3.50 × E−8). Limitations: Lack of data prevented us 
from replicating 6 of the 13 identified loci. Conclusion: Our results demonstrate the importance of considering phenotypic hetero-
geneity and gene–environment interplay in detecting genetic variations that contribute to cocaine use disorder, because new genetic 
loci have been identified using our novel analytic method.
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In this study, we sought to identify genetic variants associ-
ated with CUD by conducting a GWAS using comparatively 
homogeneous subtypes and considering gene–environment 
interactions. We first performed multivariate cluster analysis 
using a discovery sample of 9965 participants for which we 
had a comprehensive clinical assessment. The analysis 
grouped cocaine users into homogeneous subgroups (i.e., 
subtypes) based on their clinical manifestations. We used 
the likelihood of membership in 2 highly heritable subtypes 
of CUD as traits in a subsequent GWAS and compared 
them with an ordinal trait derived by counting how many 
of the 11 diagnostic criteria for CUD in the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) 
were present.19 We used a similar method to reduce pheno-
typic heterogeneity in a previous linkage study of cocaine 
dependence.20

Most of the participants were genotyped with genome-
wide markers. We performed separate GWASs in 2070 Afri-
can Americans (AAs) and 1570 European Americans (EAs) to 
identify SNPs associated with CUD. In the analyses, we also 
considered 5 childhood environmental factors, including 
nontraditional parental care, change in residence, traumatic 
experience, the presence of household drinking and illicit 
drug use, and the presence of household tobacco use. We 
used an independent sample of 918 AAs and 1382 EAs to 
replicate our findings, followed by a meta-analysis that com-
bined the discovery and replication results.

All of our notable findings were observed in the AA popu-
lation only. We identified more associations using the cluster-
analysis-derived CUD traits than using the DSM-5 diagnostic 
criterion count. For all but 1 genetic locus, the genome-wide 
significant (GWS) findings were moderated by 1 of the 5 en-
vironmental factors and could not be detected with main 
effect association tests.

Methods

Participants and diagnostic procedures

A total of 11 000 participants were recruited for family-based 
(n = 2468 from 1047 small nuclear families) and case–control 
(n = 8532) genetic studies of opioid, cocaine or alcohol 
dependence. Participants were recruited at 5 sites in the east-
ern United States: Yale University School of Medicine (n = 
5067), the University of Connecticut Health Center (n = 3765), 
the University of Pennsylvania School of Medicine (n = 1306), 
the Medical University of South Carolina (n = 607) and 
McLean Hospital (n = 255).

The institutional review board at each site approved all 
procedures; certificates of confidentiality were obtained from 
the National Institute on Drug Abuse and the National Insti-
tute on Alcohol Abuse and Alcoholism, and all participants 
gave written informed consent to participate. Interviews 
were conducted using the Semi-Structured Assessment for 
Drug Dependence and Alcoholism (SSADDA),21,22 a 
computer-assisted interview that yields lifetime diagnoses for 
cocaine dependence and other major psychiatric traits using 
DSM-IV criteria.23 The reliability of the cocaine dependence 

diagnosis was excellent, with test–retest reliability of κ = 0.92 
and inter-rater reliability of κ = 0.83.21 

The reliability of the individual cocaine dependence cri
teria ranged from κ = 0.47 to 0.60.22 The SSADDA also cov-
ers criteria for cocaine abuse, 3 of which are included in the 
DSM-5 diagnosis of CUD. These 3 criteria, together with 
craving and the 7 DSM-IV criteria, were used to develop an 
ordinal DSM-5 CUD diagnostic trait.19 Moreover, a variety of 
other clinical features associated with cocaine use are queried 
in the SSADDA. The variables used in the subtyping (i.e., 
cluster analysis) procedure combined these clinical features. 
Finally, we included early childhood data in the analysis, 
obtained using the SSADDA environmental history section.

CUD subtypes

We used clinical data for 9965 participants (of the 11 000 total) 
— consisting of 2379 participants from 1099 small nuclear 
families and 7586 unrelated individuals — in the multivariate 
cluster analysis to develop CUD subtypes. We derived sub-
types using 25 questions from the SSADDA cocaine section, 
which yielded 160 variables covering the following areas: (1) 
age of onset, frequency and intensity of cocaine use; (2) route 
of cocaine administration; (3) occurrence of psychosocial and 
medical consequences of cocaine use; (4) attempts to quit co-
caine use; and (5) cocaine treatment history. We used 68 key 
variables from the 25 survey questions to generate clusters 
(see Bi and colleagues24 for a full description of the features 
used in the subtyping procedure). We used demographic and 
other substance use and psychiatric variables and disorders 
obtained from the SSADDA interview, together with herit
ability estimates, to characterize and evaluate the concurrent 
validity of the resultant clusters.

Differentiating the subtypes was a 2-phase process. Each 
phase comprised 3 consecutive steps: data reduction, cluster 
analysis and heritability estimation. We retained clusters from 
phase 1 with no cocaine-related features or a high heritability 
estimate (> 0.6) and merged the remaining clusters for use in 
the second phase. The second phase included only cocaine 
users as a means of refining the clusters. During each phase, 
we used multiple correspondence analysis (MCA)25,26 to re-
duce the large number of variables. We retained the top MCA 
dimensions that cumulatively explained 60% of the variance in 
each phase, leaving the top 25 MCA components in phase 1 
and the top 41 in phase 2. We then used cluster analysis to 
group similar participants based on the retained dimensions. 
We first obtained 100 relatively small clusters using the K-
medoids clustering method.27,28 These acted as intermediate 
clusters, to which we applied the agglomerative hierarchical 
clustering method,29,30 merging them into 5 clusters using 
Wald’s aggregation criterion and the Euclidean distance to 
compute the similarities between each pairs of intermediate 
clusters for merging. We determined the final number of clus-
ters by manually inspecting the clinical characteristics of the 
resultant clusters at the different levels (from the 6-cluster level 
to 3-cluster level) of the clustering dendrogram. We con-
structed a probabilistic classifier using logistic regression and 
the 68 variables from the cluster analysis to separate 
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participants in each cluster from those in other clusters. The 
classification probability provided an estimated likelihood of 
subtype membership for each participant, a continuous out-
come variable of 0 to 1 that reflected the membership likeli-
hood in each subtype. This likelihood measure reflects the 
phenotypic heterogeneity among the individuals in a cluster 
and those outside the cluster, providing a quantitative trait re-
lated to CUD rather than a qualitative trait. We estimated 
narrow-sense heritability for this quantitative trait for each 
subtype (cluster) using the “polygenic” function in the soft-
ware package Sequential Oligogenic Linkage Analysis Routine 
(SOLAR)30 and the pedigrees of the sample participants.

We performed GWAS using the 2 most severe and highly 
heritable subtypes to maximize the likelihood of finding 
genetic associations. For participants in the GWAS or the rep-
lication analysis who were not included in the cluster analysis, 
we used the constructed classifier to calculate the trait value 
(i.e., the likelihood of the participants’ membership in a sub-
type based on the clinical variables).

Environmental measures

There are 33 questions in the SSADDA environment section 
that cover information on 11 major childhood environmental 
factors (e.g., change in residence, experience of violence, ex-
perience of sexual abuse, household drinking and illicit drug 
use). For the majority of the environmental factors, less than 
23% of individuals in both the GWAS and replication sam-
ples were exposed (i.e., had a positive response). Because the 
small sample size yielded limited power to detect an effect, 
we limited the analysis to the 4 environmental factors for 
which the number of exposed participants exceeded 55% in 
both samples. There were also 3 important SSADDA 
environmental variables. Although they were endorsed by a 
very limited number of genotyped participants, we created a 
composite factor consisting of these 3 variables to increase 
the power to detect genetic association.

We derived a binary variable for each environmental factor. 
We evaluated “nontraditional parental care” based on the 
question, “Who was the main person taking care of you when 
you were growing up (before age 18)?” and considered the 
variable positive when the answer was anything other than 
“both mother and father.” These other responses included 
“mother or father plus step-parent,” “mother,” “father,” 
“grandmother,” “older brother or sister,” “other relative,” 
“foster parent” and “adoptive parent.” Nontraditional paren-
tal care defined here is closely related to parental separation, 
which has been linked to an increased likelihood of substance 
abuse or dependence, including illicit drug abuse.31,32 

We evaluated “Change in residence” based on the ques-
tion, “How many times did you move by age 13?” and con-
sidered the variable negative when the answer was “none.” 
Frequent residence change increases the chance of social dis-
ruption and exposure to diverse social norms and neighbour-
hoods. Social norms have been shown to have a predictive 
association with substance use.33,34 Neighbourhood instability 
has long been linked to drug use and dealing, as well as indi-
vidual delinquency.35–37 

We created a composite factor — “traumatic experience” — 
based on responses to 3 SSADDA questions: “Did you ever 
witness or experience a violent crime, like a shooting or a 
rape, by age 13?,” “By the time you were age 13, were you 
ever sexually abused?,” and “By the time you were age 13, 
were you ever beaten by an adult so badly that you needed 
medical care or had marks on your body that lasted for more 
than 30 days?” We considered this composite factor to be 
positive if the response to any of the 3 questions was yes. 
Childhood experiences of violent crime and sexual and phys-
ical abuse have been linked to an increased risk in adults of 
using substances, including cocaine.38,39 

We evaluated “household drinking and illicit drug use” 
based on the question, “Were you ever aware of adults in your 
household drinking enough to get drunk, or using drugs or al-
cohol, by the time you were 13?” and considered the variable 
positive when the answer was yes. There is substantial evi-
dence showing that a family history of drinking or illicit drug 
use predicts similar behaviours in offspring or siblings.40,41 

Finally, we evaluated “household tobacco use” based on 
the question, “Were any members of your household regular 
cigarette smokers by the time you were 13?” and considered 
the variable positive when the answer was yes. Although a 
family history of smoking has not been directly linked to the 
use of cocaine in offspring, it does have a predictive effect on 
cannabis use in offspring.35,42

Genotyping and quality control

The sample used in the GWAS discovery phase was selected 
from among 5540 participants following quality control,9,43,44 
and included 3640 individuals (2070 AAs; 1570 EAs) who had 
been exposed to cocaine and for whom we had data on the 
environmental variables. The replication sample included 
2300 individuals with cocaine exposure (918 AAs, 1382 EAs) 
who were a subset of a larger sample that was genotyped using 
an exome microarray (n = 3675, following quality control).

The GWAS data were obtained using the Illumina 
HumanOmni1-Quad v1.0 microarray, which contains 988 306 
autosomal SNPs, at the Center for Inherited Disease Research 
and the Yale Center for Genome Analysis. Genotypes were 
called using GenomeStudio software v2011.1 and genotyping 
module v1.8.4 (Illumina). Individuals in the exome microarray 
were genotyped with the Infinium CoreExome-24 Kit (Illu-
mina), and genotypes were called using GenCall software 
(Illumina). After a series of quality-control steps, the data set 
included 5540 individuals and 889 659 SNPs with GWAS data, 
and 3625 individuals and 261 746 SNPs with exome microarray 
data for imputation. Imputation was performed with 
IMPUTE245 using the 1000 Genomes reference panel 
(www.1000genomes.org/; released March 2012).46 For both 
discovery and replication samples, a total of 47 104 916 variants 
were imputed. We limited the association analysis to imputed 
variants with an imputation quality (INFO) score of r2 > 0.8. 

To verify and correct any misclassification of self-reported 
race, we compared the GWAS (and exome microarray) data 
from all participants with genotypes from the HapMap 3 refer-
ence populations CEU, YRI and CHB. We conducted principal 
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components analysis in the discovery and replication samples 
separately. To choose variants for the principal components 
analysis for each sample set, we first filtered out variants with 
a minor allele frequency less than 3% and INFO score r2 < 0.99. 
Then we identified SNPs that were common in our data sets 
and in the HapMap panel. Finally, we pruned SNPs in close 
linkage disequilibrium (i.e., r2 < 0.80%). This left 265 043 SNPs 
in the GWAS data set and 53 450 SNPs in the exome micro
array data set for the principal components analysis. In both 
data sets, the first principal component distinguished AAs and 
EAs, aligning well with self-reported race, with few mismatch-
ing cases (Appendix 1, Figures S1 and S2, available at jpn.
ca/180098-a1). We used the K-means clustering method in the 
first principal component dimension to partition the samples 
in both data sets into AAs and EAs (Appendix 1, Table S1). All 
subsequent association analyses were conducted separately by 
population group, with the first 3 principal components used 
to correct for residual population stratification.

We estimated the genetic relationship among participants 
separately for the discovery and replication samples using 
the linkage-disequilibrium adjusted kinships software,47 
which takes into account linkage disequilibrium among the 
genetic variants. For both sample sets, only variants with a mi-
nor allele frequency of 3% or greater and INFO score r2 ≥ 0.99 
were used in the genetic relationship estimation. There were 
3 104 531 and 604 884 such variants in the GWAS and exome 
microarray data sets, respectively.

Statistical analysis

Traditionally, to identify gene–environment interaction, the 
following multiple regression model is used:

yi = β0 + β1ei + β2gi + β3ei × gi

where i indicates the ith participant in the data; ei and gi rep-
resent the environmental factor value and genotype of inter-
est of the ith participant, respectively; ei × gi is the interaction 
of the 2; and the βs are the model parameters.48 This model 
can also consider covariate effects and model residual, which 
we omitted to simplify the subsequent notations. An esti-
mated value of β3 that differs significantly from zero indicates 
that e and g have an interactive effect on y. Our goal was to 
test whether g had an influence on y when a moderating 
effect of e was taken into account. Therefore, we excluded the 
g term and adopted the following model: 

yi = β0 + β1ei + β2ei × gi     (1)

In our data, all environmental factors were binary (i.e., ei 

took a value of 1 or 0). Plugging 0 and 1 into model 1 to 
replace ei, we had:

yi |(ei = 0) = β0

yi |(ei = 1) = (β0 + β1) + β2gi

So, a significant nonzero β2 would indicate that g had an 
effect on y in the presence of e.

In our analyses, we accounted for both fixed effects from 
several covariates (e.g., age and sex) and a random effect 
from genetic relationship among individuals using a mixed 
model adapted from model 1 as follows:

yi = β0 + β1ei + β2ei × gi + αci + zi + εi    (2)

where ci was the vector of values that the ith participant 
had for the covariates of interest; α was the vector that con-
tained model coefficients of these covariates; zi represented 
the random genetic effect; and εi was the model residual. To 
answer the question of whether the genetic association iden-
tified with model 2 was due only to the effect of the variant 
itself (i.e., with no effect of the environmental variable), we 
tested variants that reached GWS status (p < 5 × 10−8) in the 
discovery phase using the following mixed model: 

yi = β0 + β1 gi + αci + zi + εi     (3)

This model essentially tested the main effect of g without 
considering a moderating effect of any environmental factors. 
Comparing the test results from these 2 models indicated 
whether the genetic association was due to the variant alone 
or the gene × environment effect.

In addition to the 3 principal components, age and sex 
were included as covariates in all analyses. The genetic rela-
tionship values between each pair of participants form a 
matrix. We included this genetic relationship matrix in the 
analyses as the variance component corresponding to the 
term zi in models 2 and 3 to account for the genetic relation-
ship random effect. All association tests were performed 
using Gemma software,49 which allowed use of the genetic 
relationship matrix in the association models. We performed 
meta-analysis to combine association results from the discov-
ery and replication phases using METAL.50

We tested 3 quantitative CUD-related traits in our study: 
the DSM-5 diagnostic criterion count and the membership 
likelihood scores for subtypes 4 and 5. All participants in the 
sample were phenotyped for these 3 traits, including those 
who met no or very few diagnostic criteria and would be 
considered to be healthy controls according to a diagnostic 
standard such as the DSM-IV. In contrast, only participants 
who were ever exposed to cocaine and passed quality control 
(see Genotyping and quality control, above) were included in 
the association analysis. 

Results

Table 1 provides sample sizes by site and population group; 
the numbers in parentheses indicate the number of partici-
pants in the subtyping analysis. Sample characteristics are in-
cluded in Table 2 (additional information about the sample 
has been published previously24). 

We identified 5 subtypes through cluster analysis, 4 of 
which included cocaine users. The most highly heritable, 
heavy-cocaine-use clusters were subtypes 4 and 5: narrow-
sense heritability (h2) was 0.66 and 0.64, respectively; and 
98.4% and 99.5% of participants met DSM-IV cocaine 
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dependence diagnostic criteria, respectively (Appendix 1, Table S2). Subtype 4 
was the largest cocaine use subgroup (n = 3258), characterized by a low rate of 
intravenous cocaine injection (lowest among the 4 cocaine use subtypes, Appen-
dix 1, Table S3). Subtype 5 (n = 1916) included participants who used cocaine 
most heavily, were most likely to use it intravenously and had the most adverse 
effects from their cocaine use (e.g., 74.0% of participants reported using cocaine 
intravenously and 64.4% had been arrested or had trouble with the police be-
cause of cocaine use, both significantly higher than in the other subgroups). Sub-
type 5 also reported the earliest age of onset of both cocaine use (mean ± stan-
dard deviation [SD] 17.9 ± 4.3 yr) and the heaviest period of cocaine use (mean ± 
SD 25.8 ± 8.4 yr). The mean and SD of the membership likelihood for subtypes 4 
and 5 among all participants are shown in Table 2. Subtype 4 had more AAs than 
EAs in both the discovery and replication samples (Appendix 1, Table S4). Con-
sequently, more AAs had a high membership likelihood for this subtype than 
EAs. Subtype 5 was the opposite, including significantly more EAs than AAs.

The GWAS identified a total of 24 GWS (p < 5 × E−8) loci in 13 distinct gen
omic regions for which the effect on CUD was moderated by environmental 
factors (see Fig. 1 and Appendix 1, Table S5, and Figures S3, S5, S7, S9, S11, S13 
and S15), with little evidence of genomic inflation (λ = 1.002–1.076, Fig. 2; Ap-
pendix 1, Figures S4, S6, S8, S10, S12, S14 and S16). Table 3 shows the associa-
tion results for the loci that were most representative of each region, evidenced 
by the highest imputation quality, lowest p-value or both. Of the 13 GWS loci, 
11 were identified with the 2 subtypes of CUD, especially subtype 5 (the 
heaviest, earliest-onset subtype). In contrast, for the trait based on the DSM-5 
diagnostic criterion count, only 2 variants (rs10188036 and del-13:61274071) 
were GWS. From these results, the most homogeneous CUD traits, subtypes 4 
and 5, yielded the most novel genetic loci in association tests. Table 4 provides 
additional association results for the 13 GWS loci from tests that were per-
formed separately among participants with and without exposure to the cor
responding childhood environmental factors in the discovery sample.

All loci except del-1:15511771 showed associations only when the moderating 
effect of environmental factors was considered. For instance, the LPHN2 SNP 
rs149843442 was GWS for subtype 5 in AAs (p = 3.92 × E−8) only when the effect 
of household tobacco use was considered in the association test. For the same 
subtype, rs114492924 in LINC0141 was GWS in AAs only when the change in 
residence variable was considered. For del-1:15511771, the association test result 
was 2 orders of magnitude more significant (i.e., the p-value went from 2.16 × 
E−8 to 3.61 × E−10 when the interaction effect involving nontraditional parental 
care was included in the equation). Of the 13 GWS results, 11 were observed in 
AAs, the 2 exceptions being rs71428385 in the fibronectin 1 gene (FN1) and 
rs56337958 in TENM3. Both SNPs were associated with subtype 4 in EAs 
(Table 3) only when the interactive effect of an environmental factor was included 
in the model (e.g., household tobacco use for rs71428385 and traumatic experience 
for rs56337958). In AAs, 2 SNPs—rs10188036 in TRAK2 and del-13:61274071 in 
LINC00378—were also GWS for the DSM-5 criterion count under the interactive 
effect of change in residence and household drinking and illicit drug use, respec-
tively. All of these results demonstrate that these loci were detectable only when 
considering environmental interactions in the statistical models.

Of the 13 representative loci, 7 were present in the replication data set with 
good imputation quality (Appendix 1, Table S5). The interaction effect of 
rs114492924 in LINC01411 (which encodes a non-protein-coding RNA) with 
change in residence was successfully replicated (p = 3.63 × E−3). Three other loci 
remained GWS after the results from the discovery and replication phases were 
combined via meta-analysis: rs10188036 in TRAK2 (meta p = 2.95 × E−8) with the 
presence of change in residence, rs149843442 near LPHN2 (approximately 
77 000 bp from the 3' end of the gene; meta p = 3.50 × E−8) with the presence of 
household tobacco use, and del-1:15511771 in TMEM51 (meta p = 9.11 × E−10) 
with the presence of nontraditional parental care.
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Discussion

To the best of our knowledge, this is the first GWAS for CUD 
that considered both the phenotypic heterogeneity of the dis-
order and gene–environment interplay, which examined 5 in-
formative childhood environmental factors: change in resi-
dence, nontraditional parental care, traumatic experience, 
household drinking and drug use, and household tobacco 
use. The GWAS was conducted separately for AAs (n = 2070) 
and EAs (n = 1570). An independent sample of AAs (n = 918) 
and EAs (n = 1382) was subsequently used to replicate and 
extend the findings through meta-analysis. Our results show 
that it is necessary to account for both of these issues when 
searching for the genetic causes of CUD. Our finding that 
more loci were identified for specific CUD subtypes than for 
the nondifferentiated general CUD trait based on diagnostic 
criterion count illustrates the importance of identifying clin
ically homogeneous CUD subtypes. In addition, 12 of the 
13 representative findings were not identified in main effect 

tests, but could be detected only when environmental inter-
play was included in the statistical association models.

Our strongest finding, the one that was GWS in the 
discovery phase (p = 1.23 × E−8) and subsequently repli-
cated in the independent sample (p = 3.63 × E−3), was for 
rs114492924 in LINC01411, which encodes a long intergenic 
non-protein-coding RNA. The association was evident only 
in the AA population when the moderating effect of a 
change in residence was considered. Participants with the 
rs114492924*T allele had higher membership likelihood for 
subtype 5 if they experienced a change in residence by age 
13 (β = 0.27; p = 2.32 × E−8; Table 4). This association was not 
evident in participants who had no such childhood experi-
ence (β = 0.02; p = 0.72; Table 4). Although the biological 
function of LINC01411 is unknown, according to GTEx51 it is 
predominantly expressed in brain (Appendix 1, Figure S17), 
supporting its potential role in CUD risk.

Three additional variants that were GWS in the discovery 
phase but not in the replication phase were GWS after 

Fig. 1: Manhattan plot showing results from a genome-wide association study of the membership score of subtype 5 in 
African Americans, moderated by household tobacco use (a childhood environmental factor).
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Table 2: Sample characteristics

Characteristic
Subtyping

sample

GWAS sample Replication sample

AA EA AA EA

Total 9965 2070 1570 918 1382

Male, % 53.81 59.42 60.76 66.78 67.58

Age, mean ± SD 40.14 ± 11.12 43.14 ± 7.76 37.69 ± 10.25 44.43 ± 9.14 38.07 ± 11.47

Environmental factors, %

Nontraditional parental care — 69.52 62.55 71.24 66.21

Change in residence — 76.96 73.38 82.35 75.25

Traumatic experience — 36.67 33.82 40.74 27.79

Household drinking and illicit drug use — 61.88 58.54 62.85 56.51

Household tobacco use — 74.59 81.40 75.71 75.33

Cocaine use disorder traits, mean ± SD

DSM-5 diagnostic criterion count — 8.10 ± 3.06 7.56 ± 3.79 7.46 ± 3.76 6.41 ± 4.37

Membership likelihood for subtype 4 — 0.58 ± 0.40 0.32 ± 0.39 0.54 ± 0.42 0.28 ± 0.38

Membership likelihood for subtype 5 — 0.18 ± 0.31 0.35 ± 0.42 0.16 ± 0.31 0.29 ± 0.40

AA = African American; EA = European American; GWAS = genome-wide association study; SD = standard deviation.
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association results from the 2 phases were combined via meta-
analysis. We found that del-1:15511771 was associated with 
subtype 5 when the moderating effect of nontraditional 
parental care was taken into account (meta p = 9.11 × E−10). 
The “TG” deletion was associated with a higher membership 
likelihood for subtype 5 only in AAs who had nontraditional 
parental care by age 13 (β = 0.23; p = 4.99 × E−10; Table 4). The 
association was not evident in those who were not exposed 
to this environmental factor (β = −0.05; p = 0.34; Table 4). This 
deletion variant is in TMEM5, which encodes a multi-pass 
transmembrane protein. GTEx data51 show that the gene is 
expressed in a wide range of human tissues, including brain 
(Appendix 1, Figure S18). The mechanism of this gene’s 
effects on CUD risk is unclear. However, previous data show 
that the transmembrane protein coded by this gene interacts 
with many chemicals, such as phenobarbital and benzopy-
rene.52 Thus, it would be of interest to investigate how this 
protein interacts with cocaine.

Another variant that, on meta-analysis, was GWS for sub-
type 5 was rs149843442 (meta p = 3.50 × E−8), but was GWS 
only when the moderating effect of household tobacco use 
was considered. The A allele of this SNP was associated with 
a higher membership likelihood for subtype 5 in AAs who 
experienced household tobacco use by age 13 (β = 0.23; p = 
1.04 × E−7; Table 4), an effect that was not evident in partici-
pants who were not exposed to this environmental factor (β = 
−0.05; p = 0.50; Table 4). HaploReg53 shows that rs149843442 
alters 5 regulatory motifs (Appendix 1, Table S7) and is in a 
genomic region that overlaps with 2 potential regulatory ele-
ments indicated by chromatin modification H3K4me1 (Ap-
pendix 1, Table S6). Thus, this SNP could be functional. On 
the other hand, rs149843442 is in perfect linkage disequilib-
rium with rs6685582 (r2 = 1, estimated using the African 
population in the 1000 Genomes Project54), which was also 
GWS for subtype 5 in the discovery phase (p = 4.62 × E−8), 
which was also moderated by household tobacco use. How-
ever, no data were available in the replication sample to rep-
licate this finding. We know that rs6685582 is in a very active 
genomic region that overlaps with dozens of regulatory ele-
ments identified in various human tissues, including brain 
(Appendix 1, Table S8), and it alters 2 regulatory motifs (Ap-
pendix 1, Table S9). Therefore, the association involving 
rs149843442 could also be positional, tagging rs6685582 or 
other variants that are in close linkage disequilibrium. The 
regulatory elements overlapping both variants are likely in-
volved in the regulation of LPHN2, which is their closest 
gene. The 2 variants are ~77 000 to 96 000 bp from the 3' end 
of the gene. LPHN2 encodes a member of the latrophilin sub-
family of G-protein-coupled receptors and participates in the 
regulation of exocytosis. This gene has been linked to several 
human disease phenotypes,55–59 including 2 related to brain 
function: electroencephalogram60 and target recognition in 
entorhinal–hippocampal synapse assembly.61

The third GWS finding emerging from meta-analysis was 
for rs10188036, associated with the DSM-5 diagnostic criterion 
count in interaction with the environmental variable change in 
residence. The rs10188036*C allele was associated with a lower 
DSM-5 diagnostic criterion count only in AAs who experi-

enced change in residence by age 13 (β = −1.91, p = 1.20 × E−8, 
Table 4, versus β = 0.96, p = 0.16, for those who had not 
moved). This SNP is in the trafficking kinesin-binding protein 
2 gene (TRAK2) on chromosome 2. The TRAK2 protein ap-
pears to regulate endosome-to-lysosome trafficking of mem-
brane cargo and has been linked to cholesterol efflux and 
HDL biogenesis,62 as well as late-onset Alzheimer disease.63 
More relevant to the current study, TRAK2 interacts with the 
γ-aminobutyric acid A (GABAA) receptor. Cocaine potentiates 
GABA release and leads to the inhibition of dopamine neur
ons, thus driving drug-adaptive behaviour.64 Therefore, 
TRAK2 could affect the susceptibility of CUD through its pro-
tein product’s effect on the GABAA receptor.

We also identified 7 loci that had a GWS association with 
CUD (5 in AAs and 2 in EAs in the discovery phase) but that 
could not be tested for replication due to the lack of available 
data (Table 3). The most notable of these SNPs was 
rs148009780 in the synaptogyrin (SYNGR1) gene on chromo-
some 22. The rs148009780*T allele was associated with higher 
membership likelihood for subtype 5 in AAs who experi-
enced a change in residence (β = 0.24, p = 9.14 × E−8, Table 4, 
versus β = −0.04, p = 0.56, for those who did not). SYNGR1 
encodes an integral membrane protein associated with pre-
synaptic vesicles in neuronal cells and is most highly ex-
pressed in brain (Appendix 1, Figure S19). Thus, it is a bio-
logical candidate for disorders related to the central nervous 
system and variation in the gene has been associated with 
schizophrenia and bipolar disorder in a southern Indian 
population65 and schizophrenia in an Italian sample.66 More-
over, a recent study identified a genomic region near 
SYNGR1 that is in close linkage to alcohol dependence 

Fig. 2: Quantile–quantile plot showing the observed distribution of 
p values compared with the expected distribution for the genome-
wide association study of the membership score of subtype 5 in 
African Americans, moderated by household tobacco use (a child-
hood environmental factor).

8

6

4

2

0

20 4 6

O
bs

er
ve

d 
–l

og
10

(p
)

Expected –log10(p)



A genome-wide association study of cocaine use disorder

	 J Psychiatry Neurosci 2020;45(1)	 41

T
ab

le
 3

: 
R

es
u

lt
s 

o
f 

as
so

ci
at

io
n

 t
es

ts
 f

o
r 

g
en

o
m

e-
w

id
e 

si
g

n
if

ic
an

t 
va

ri
an

ts
 in

 t
h

e 
d

is
co

ve
ry

 s
am

p
le

V
ar

ia
nt

C
hr

P
os

R
ef

A
lt

G
en

e

C
hi

ld
ho

od
 

en
vi

ro
nm

en
ta

l 
fa

ct
or

s

M
ai

n 
ge

ne
tic

 e
ffe

ct
E

nv
iro

nm
en

t-
m

od
er

at
ed

 g
en

et
ic

 e
ffe

ct

D
is

c
R

ep

M
et

a 
p

D
is

c
R

ep

M
et

a 
p

β
p

β
p

β
p

β
p

D
S

M
-5

 d
ia

gn
os

tic
 c

rit
er

io
n 

co
un

t, 
A

fr
ic

an
 A

m
er

ic
an

s

rs
10

18
80

36
2

20
22

56
69

4
T

C
TR

A
K

2
C

ha
ng

e 
in

 
re

si
de

nc
e

–1
.0

5
4.

05
 ×

 
E

–5
–0

.8
6

0.
09

1.
13

 ×
 

E
–5

–1
.8

9
1.

77
 ×

 
E

–8

–0
.9

7
0.

12
2.

95
 ×

 
E

–8
†

de
l-1

3:
61

27
40

71
*

13
61

27
40

71
A

T
A

LI
N

C
00

37
8

H
ou

se
ho

ld
 

dr
in

ki
ng

 a
nd

 
ill

ic
it 

dr
ug

 u
se

–1
.5

5
2.

75
 ×

 
E

–6
—

—
—

–2
.7

1
4.

94
 ×

 
E

–8

—
—

—

M
em

be
rs

hi
p 

lik
el

ih
oo

d 
fo

r 
su

bt
yp

e 
5,

 A
fr

ic
an

 A
m

er
ic

an
s

de
l-1

:1
55

11
77

1
1

15
51

17
71

C
T

G
C

TM
E

M
51

N
on

tr
ad

iti
on

al
 

pa
re

nt
al

 c
ar

e
0.

15
2.

16
 ×

 
E

–8
0.

06
0.

18
3.

77
 ×

 
E

–8

0.
23

3.
61

 ×
 

E
–1

0

0.
10

0.
10

9.
11

 ×
 

E
–1

0 †

rs
14

98
43

44
2

1
82

52
42

89
G

A
LP

H
N

2
H

ou
se

ho
ld

 
to

ba
cc

o 
us

e
0.

14
7.

45
 ×

 
E

–6
0.

14
8.

25
 ×

 
E

–3

1.
98

 ×
 

E
–7

0.
23

3.
92

 ×
 

E
–8

0.
11

0.
09

3.
50

 ×
 

E
–8

†

rs
11

44
92

92
4

5
17

39
35

38
0

C
T

LI
N

C
01

41
1

C
ha

ng
e 

in
 

re
si

de
nc

e
0.

13
1.

71
 ×

 
E

–4
0.

13
5.

71
 ×

 
E

–3

3.
47

 ×
 

E
–6

0.
27

1.
23

 ×
 

E
–8

†
0.

16
3.

63
 ×

  
E

–3
†

2.
11

 ×
 

E
–1

0 †

rs
13

93
89

28
7

6
12

38
18

06
8

T
G

R
P

13
–2

0L
14

.1
H

ou
se

ho
ld

 
to

ba
cc

o 
us

e
0.

10
1.

36
 ×

 
E

–3
0.

02
0.

73
3.

35
 ×

 
E

–3

0.
23

3.
51

 ×
 

E
–8

0.
02

0.
78

2.
11

 ×
 

E
–6

rs
14

88
34

56
1*

8
87

30
00

29
A

G
S

LC
7A

13
H

ou
se

ho
ld

 
dr

in
ki

ng
 a

nd
 

ill
ic

it 
dr

ug
 u

se

0.
09

5.
63

 ×
 

E
–3

—
—

—
0.

26
4.

71
 ×

 
E

–8

—
—

—

de
l-1

7:
80

34
26

28
17

80
34

26
28

A
G

A
TR

D
N

C
ha

ng
e 

in
 

re
si

de
nc

e
–0

.0
4

6.
47

 ×
 

E
–5

0.
01

0.
41

2.
45

 ×
 

E
–3

–0
.0

7
1.

54
 ×

 
E

–8

0.
01

0.
73

6.
36

 ×
 

E
–6

rs
75

59
18

54
*

18
88

14
20

5
G

A
S

O
G

A
2

H
ou

se
ho

ld
 

to
ba

cc
o 

us
e

0.
14

2.
41

 ×
 

E
–4

—
—

—
0.

25
3.

91
 ×

 
E

–8

—
—

—

C
ha

ng
e 

in
 

re
si

de
nc

e
0.

27
4.

34
 ×

 
E

–8

—
—

—

rs
75

41
45

69
*

21
24

12
80

01
T

C
R

N
7S

L6
09

P
H

ou
se

ho
ld

 
to

ba
cc

o 
us

e
0.

07
4.

92
 ×

 
E

–5
—

—
—

0.
14

9.
73

 ×
 

E
–9

—
—

—

rs
14

80
09

78
0*

22
39

77
55

07
C

T
S

Y
N

G
R

1
C

ha
ng

e 
in

 
re

si
de

nc
e

0.
10

2.
05

 ×
 

E
–4

—
—

—
0.

19
4.

74
 ×

 
E

–8

—
—

—

M
em

be
rs

hi
p 

lik
el

ih
oo

d 
fo

r 
su

bt
yp

e 
4,

 E
ur

op
ea

n 
A

m
er

ic
an

s

rs
71

42
83

85
2

21
62

88
77

7
G

A
F

N
1

H
ou

se
ho

ld
 

to
ba

cc
o 

us
e

0.
08

4.
71

 ×
 

E
–3

–0
.0

1
0.

84
1.

59
 ×

 
E

–5

0.
23

3.
99

 ×
 

E
–8

0.
01

0.
89

4.
21

 ×
 

E
–5

rs
56

33
79

58
*

4
18

31
60

53
3

A
G

TE
N

M
3

T
ra

um
at

ic
 

ex
pe

rie
nc

e
0.

09
9.

98
 ×

 
E

–4
—

—
—

0.
31

3.
07

 ×
 

E
–8

—
—

—

A
lt 

=
 a

lte
rn

at
iv

e 
al

le
le

; C
hr

 =
 c

hr
om

os
om

e;
 D

is
c 

=
 d

is
co

ve
ry

 p
ha

se
; P

os
 =

 b
as

e 
pa

ir 
po

si
tio

n;
 R

ef
 =

 r
ef

er
en

ce
 a

lle
le

; R
ep

 =
 r

ep
lic

at
io

n 
ph

as
e.

 
*P

ol
ym

or
ph

is
m

 n
ot

 in
cl

ud
ed

 in
 th

e 
re

pl
ic

at
io

n 
da

ta
 s

et
.

†R
ep

lic
at

ed
 g

en
om

e-
w

id
e 

si
gn

ifi
ca

nt
 r

es
ul

ts
.



Sun et al.

42	 J Psychiatry Neurosci 2020;45(1)

(LOD = 3.2) in an AA sample.67 Our findings suggest that 
SYNGR1 may also regulate susceptibility to CUD. Another 
variant that may be worth further investigation is rs56337958, 
an intronic SNP in TENM3 on chromosome 4. The 
rs56337958*G allele was associated with higher membership 
likelihood for subtype 4 in EAs who had a traumatic experi-
ence by age 13 (β = 0.31, p = 4.29 × E−8, Table 4, versus β = 0.02, 
p = 0.64, for those who did not). According to GTEx data,51 
TENM3 encodes a large transmembrane protein that may be 
involved in the regulation of neuronal development and is 
expressed in many brain tissues (Appendix 1, Figure S20).

Our previous study showed the FAM53B SNP rs2629540 to 
be associated to CUD criterion count in AAs.9 However, we 
did not identify any variants in or near FAM53B that were 
GWS in the current study, possibly because the phenotypic 
definitions and covariates in this study differed from those in 
the previous study. Here, the strongest signal for an associa-
tion of rs2629540 with CUD was found with subtype 4 among 
AAs when taking into account the moderating effect of a 
change in residence (p = 1.01 × E−4). There are 2 possible ex
planations for the weaker support for the association of 
FAM53B with CUD. First, the GWAS sample was smaller in 
present study (3640 total) than in the previous study (5697 to-
tal),9 because we excluded people with no previous cocaine 
exposure or no information on environmental factors. Second, 
as noted above, the CUD-related traits tested differed in the 
2 studies. In the previous study, we used 2 binary traits, co-
caine dependence and cocaine-induced paranoia, and 1 quan-
titative trait, the DSM-IV criterion count, which contrasted 
with the subtypes and DSM-5 criterion count used here.

Although childhood traumatic experience has been shown 
to have a profound impact on adulthood substance use,38,39 

fewer genetic variants were associated with CUD when ac-
counting for its effect compared with the effects of other en
vironmental factors. A possible explanation for this finding is 
that, compared with other factors, fewer participants in our 
study had had a traumatic experience by age 13, substantially 
limiting the power to detect associated variants.

Limitations

The findings in this paper should be viewed in the context 
of a number of limitations. The main limitation is the lack of 
availability of clinical data and high-quality genotypes to 
replicate 6 of the 13 loci that were GWS in the discovery 
phase. Despite the fact that databases such as dbGap (www.
ncbi.nlm.nih.gov/gap) include genotyped participants with 
CUD, the phenotypic variables used in our cluster analysis 
and the environmental variables used in the association 
study were specific to the SSADDA diagnostic interview 
and were not available in dbGap data sets. Variation in 
measurements among studies is a well-recognized problem 
in data aggregation.17 The 3 non-replicated loci and the 
6 loci without data for replication could represent false-
positive findings from GWAS, especially those for which 
there was no previous evidence supporting their potential 
involvement in the biological processes contributing to 
CUD. Nonetheless, among the 7 loci for which replication 
data were available, 4 were GWS either in replication or 
after combining results from the 2 analytic phases through 
meta-analysis, so they are worthy of further investigation. 
Another limitation was that the method used to derive the 
5 binary environmental factors may not have been optimal. 
We assigned a value of 0 or 1 to participants using a threshold 

Table 4: Association between imputed alternative allele dosage of variants and phenotypes (Table 3), with and without exposure to the 
corresponding childhood environmental factors in the discovery sample*

Variant Ref Alt Childhood environmental factors

Exposed Unexposed

β p value β p value

DSM-5 diagnostic criterion count, African Americans

rs10188036 T C Change in residence –1.91 1.20 × E–8 0.96 0.16

del-13:61274071 AT A Household drinking and illicit drug use –2.75 2.17 × E–8 –0.41 0.50

Membership likelihood for subtype 5, African Americans

del-1:15511771 CTG C Nontraditional parental care 0.23 4.99 × E–10 –0.05 0.34

rs149843442 G A Household tobacco use 0.23 1.04 × E–7 –0.05 0.50

rs114492924 C T Change in residence 0.27 2.32 × E–8 0.02 0.72

rs139389287 T G Household tobacco use 0.23 7.68 × E–8 –0.05 0.41

rs148834561 A G Household drinking and illicit drug use 0.26 1.07 × E–7 –0.03 0.57

del-17:80342628 AG A Change in residence –0.07 3.55 × E–8 –0.01 0.53

rs75591854 G A Household tobacco use 0.25 1.22 × E–7 –0.06 0.52

Change in residence 0.27 1.15 × E–7 0.04 0.59

rs75414569 T C Household tobacco use 0.14 2.61 × E–8 0.02 0.69

rs148009780 C T Change in residence 0.24 9.14 × E–8 –0.04 0.56

Membership likelihood for subtype 4, European Americans

rs71428385 G A Household tobacco use 0.14 8.38 × E–5 0.09 0.27

rs56337958 A G Traumatic experience 0.31 4.29 × E–8 0.02 0.64

Alt = alternative allele; Ref = reference allele. 
*Results were obtained via 2 separate sets of main effect tests for the variants, using exposed and unexposed subsamples, respectively.
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based on the distribution of responses to ensure an ade-
quate number of participants who were exposed to the en-
vironmental effects. In addition, correction may have been 
needed for multiple statistical testing. Because the subtype 
quantitative traits were defined by classifying participants 
in one cluster from those outside the cluster, these traits 
were expected to be correlated. Because there was correla-
tion among the traits (Appendix 1, Figure S21) and among 
the environmental factors (Appendix 1, Figure S22), and the 
hypotheses for EAs and AAs were distinct, Bonferroni cor-
rection was too restrictive. Adjustment methods may need 
to be developed to appropriately correct for testing multiple 
correlated traits and environmental factors in 2 populations. 
Moreover, the overlap in genotyped markers between the 
discovery and replication samples was relatively small due 
to the different genotyping microarrays. However, an ad-
vantage of using the samples was that the participants in 
the discovery and replication samples were identically as-
sessed by a well-validated procedure, resulting in high con-
fidence and consistency in the phenotypes and environmen-
tal factors. Lastly, most of the variants that were identified 
with association were imputed, but all had excellent INFO 
scores for the imputation (Appendix 1, Table S1).

Conclusion

We designed a genome-wide approach to detect gene–
environment interactions that could be associated with more 
refined disease phenotypes. We identified a locus, 
rs114492924, that was associated with CUD in AAs. The SNP 
reached GWS in the discovery sample and was replicated in 
a separate sample. Three additional loci reached GWS in AAs 
when the discovery and replication samples underwent 
meta-analysis, and 9 other loci were GWS in the discovery 
sample only. Although replication is required to validate our 
findings, many of the identified loci have collateral support 
from other sources, such as gene expression studies and the 
localization of transcriptional regulatory elements and 
motifs, supporting their relevance to the risk of CUD. Based 
on the findings in this study, models used to test samples col-
lected for identifying genetic variants that contribute to 
psychiatric traits such as CUD should include psychometric
ally established measures of environmental effects and ac-
count for the phenotypic heterogeneity of the trait.
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