
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computer Science Faculty Publications Computer Science 

2007 

CRATE: A Simple Model for Self-Describing Web Resources CRATE: A Simple Model for Self-Describing Web Resources 

Joan A. Smith 
Old Dominion University 

Michael L. Nelson 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 
Smith, J. A., & Nelson, M. L. (2007). CRATE: A simple model for self-describing web resources. Paper 
presented at the 7th International Workshop on Web Archiving and Digital Preservation (IWAW '07), 
Vancouver, British Columbia, Canada, June 23, 2007. 

This Conference Paper is brought to you for free and open access by the Computer Science at ODU Digital 
Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized 
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_fac_pubs
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


CRATE: A Simple Model for Self-Describing Web
Resources

Joan A. Smith and Michael L. Nelson
Old Dominion University, Department of Computer Science

Norfolk, VA 23529 USA
{jsmit, mln}@cs.odu.edu

ABSTRACT
If not for the Internet Archive’s efforts to store periodic
snapshots of the web, many sites would not have any preser-
vation prospects at all. The barrier to entry is too high
for everyday web sites, which may have skilled webmasters
managing them, but which lack skilled archivists to preserve
them. Digital preservation is not easy. One problem is the
complexity of preservation models, which have specific meta-
data and structural requirements. Another problem is the
time and effort it takes to properly prepare digital resources
for preservation in the chosen model. In this paper, we pro-
pose a simple preservation model called a CRATE, a com-
plex object consisting of undifferentiated metadata and the
resource byte stream. We describe the CRATE complex ob-
ject and compare it with other complex-object models. Our
target is the everyday, personal, departmental, or commu-
nity web site where a long-term preservation strategy does
not yet exist.

Categories and Subject Descriptors:H.3.5Information
Storage and Retrieval Online Information Services [Web-
based services]
General Terms Design, Documentation, Experimentation

Keywords Digital preservation, OAI-PMH, mod oai

1. INTRODUCTION
Digital preservation is not easy. The OAIS Reference

Model, which informs many modern digital preservation sys-
tems, specifies submission, archival and dissemination infor-
mation packages (SIP, AIP, and DIP) along with the as-
sociated roles of producer, management, and consumer [7].
The management or archivist role is necessarily complex,
with responsibilities that cover all aspects of digital cura-
tion. Management is responsible for ensuring that an AIP
has all necessary information from the original SIP so that
it is “Independently Understandable” [7]. To achieve this
goal, a wide variety of object metadata is collected and or-
ganized in a repository-specific model. As the CCSDS notes

This work is licenced under an Attribution- NonCommercial -NoDerivs 2.0
France Creative Commons Licence.
IWAW’07, June 23, 2007, Vancouver, British Columbia, Canada.
Copyright 2007.

in its report, defining and populating metadata elements re-
quires expertise. Yet there are not enough experts available
to prepare the billions of web pages for repository ingestion.
Can we simplify this model and thereby increase preserva-
tion participation?

A very simple approach has been taken by the Internet
Archive (IA), which attempts to capture periodic snapshots
of the web. If not for the IA’s efforts, many sites would not
have any preservation prospects at all. The only metadata
that IA retains for a given digital resource is that which
was obtained through the web crawling request-response se-
quence of HTTP [1]. But this information is often insuffi-
cient. Sites vary in the type and organization of resources
they serve, generally relying on the MIME specification to
sort it all out at the receiver’s end. MIME types can be
insufficient and even incorrect, or the MIME type itself may
not be adequate to describe the content [4, 25]. If this re-
source poses problems to today’s web client, how will a fu-
ture information archaeologist interpret it? It appears that
the OAIS requirement for independent understanding of the
resource has not been met because of insufficient resource
metadata. The simplest possible model requires more meta-
data than is retrieved by conventional crawling and MIME
typing alone.

After examining more than one billion web pages, Google
reported in December 2005 that metadata descriptions have
not been widely adopted by web site authors [2]. In the
few site pages containing META tags, Google found that
they were frequently misused, with markup errors such as
inverted CONTENT and VALUE elements, or missing the quota-
tion marks that delimit attributes from tags. Google noted
that such errors rendered the META information useless
from a crawler’s perspective. Examining the HTML source,
we found that Google itself did not include any labelled
metadata except DOCTYPE and TITLE in the report. Even so,
search engine oriented metadata alone would not be enough
to maintain a resource’s viability through technological mi-
gration over the decades to come. Structural, behavioral and
administrative metadata is needed as well as simple descrip-
tive information. This type of metadata is not the target of
search engines, whose focus is on web resources that are
available now.

The lack of metadata on the web is understandable. Stud-
ies of digital libraries have shown that metadata creation
requires significant professional effort and review to achieve
consistent, valid information [10]. For some resource types,
a JPEG image for example, the requisite technical metadata
can only be derived by using analytical tools. What incen-

-



tive is there for the average webmaster to go to such lengths?
In 1998, Thomas and Griffin speculated that profit poten-
tial and general self-interest in search engine (SE) rank-
ings would produce a wealth of local site metadata [27].
So far, this has not happened. Some sites have populated
their pages with inaccurate key words to boost their rank-
ing in search results [5], but this technique is less effective
as SEs become more sophisticated and can distinguish be-
tween valid and misleading metadata. Google, for exam-
ple, does not rely on a site’s internal metadata to determine
results rankings. Ironically, the success of Google’s PageR-
ank formula may have further reduced the incentive for sites
to provide even minimal descriptive information. There is
no search engine-related incentive to provide preservation
metadata.

The archivist is less concerned with search engine, seman-
tic web, or other here-and-now metadata. Google may not
care about the color index of a web image, but such informa-
tion does matter for preserving that image. For archivists,
the purpose of metadata is to enable and to support long-
term persistence of the resource through the decades that
come, despite the inevitable technology changes that will
occur in the future. Nonetheless, archival services which
seek to preserve everyday websites are most likely to access
such sites through web crawling, as opposed to formal sub-
mission of the site by the webmaster to the archive. At
Internet Archive, for example, the only requirement is to
enter a URL on the submission page. IA promises to crawl
the site within 48 hours of the request. It does not ask for
nor expect any special set of metadata to accompany the
site’s contents.

If web crawling does not produce sufficient preservation
metadata, what can be done to improve the preservation
prospects for everyday sites where archivist expertise is lack-
ing? In contrast with models which have a complex ontology
rich in metadata, we propose a simple model of undifferenti-
ated metadata, automatically generated and serialized with
the original resource byte stream. This model overcomes the
difficulties inherent in metadata categorization, requires vir-
tually no additional effort or cost by webmasters, and lowers
the barrier to preservation practices for everyday websites
by enabling resources to be self-describing.

2. RELATED WORK
A survey conducted by OCLC/RLG of digital preserva-

tion practices at professionally administered archives noted
the lack of a common metadata vocabulary as well as a wide
variation in repository implementation models [19]. Reposi-
tories may design their own implementations or choose from
a number of existing solutions and services. To address these
issues, the PREMIS Working Group produced a preserva-
tion metadata schema [20]. It clears up the relationship
between an “intellectual entity” and its constituent digital
object(s), and between a single digital object and its various
representational instances. The PREMIS model still allows
for a flexible, repository-specific implementation while stan-
dardizing the definition of entities, objects, rights, events,
and agents.

Curated repositories have a number of service and soft-
ware solutions available to them. Fedora [21] integrates re-
sources, relationships, and metadata, and provides a service
framework that includes preservation monitoring and sup-
port for the Open Archives Initiative. DSpace [26] is another

Open Source preservation-oriented project for institutional
repository management. Written in Java, it currently sup-
ports Dublin Core metadata internally but will export in-
formation in a simple XML format. Fedora, DSpace, and
other managed collections can subscribe to the PANIC sys-
tem [11], which facilitates awareness between preservation
partners on issues relating to technical obsolescence. It uti-
lizes semantic web services to warn participating repositories
about file formats which are obsolete, and to provide options
for converting the items to a newer format. Installation and
maintenance of PANIC, Fedora and DSpace require a sig-
nificant level of skill and commitment by the administrator.

Governments worldwide have invested considerable effort
and funding in the search for digital preservation solutions.
The VERS project designed a trustworthy, encapsulated ob-
ject (VEO) specifically to support the long-term preserva-
tion of digital government records [30]. A VEO is a complex
object which contains the resource (government record) and
all relevant metadata, together with one or more digital sig-
natures. If a record changes, the VEO is updated with the
new information. In addition, a VEO may contain multi-
ple resources and records which are closely related to one
another, such as a series of land surveys. A VERS Toolkit
is available [29], but it expects additional components such
as entity-relationship information, which make it impracti-
cal as a solution for ordinary websites. Digital signatures
also add a significant level of effort to the VERS preser-
vation approach. Despite persuasive arguments in favor of
trustworthy digital objects (TDOs) [9], the infrastructure to
support them does not yet exist.

Another complex-object model implemented by some dig-
ital libraries is the MPEG-21 DIDL standard, initially de-
fined for entertainment industries to package and distribute
multimedia content. An MPEG-21 DID can contain multi-
ple representations of a single resource, for example, a video
in both AVI and WMV formats, along with specific infor-
mation like copyright data and soundtracks in various lan-
guages. The flexible, complex-object nature of the MPEG-
21 standard has proven to be a workable format for a num-
ber of archiving projects. Old Dominion University (ODU)
demonstrated the practicality of using the MPEG-21 DIDL
format for preservation during the Archive Ingest and Han-
dling Test research project [16]. MPEG-21 DIDL has also
been implemented by the LANL Research Library commu-
nity to represent the library’s assets as complex objects con-
sisting of the resource (text, multimedia, etc.) packaged
with relevant metadata [6, 28].

METS, the Metadata Encoding and Transmission Stan-
dard, also defines an XML-formatted complex-object infor-
mation package containing the resource, administrative and
descriptive metadata, and other key elements [14]. The
high-level METS object (“METS document”) is described
by a profile which lays out the semantics for that class of doc-
ument. The embedded-semantics complicates METS porta-
bility, since repositories wishing to use METS must conform
to a particular profile. In contrast, the high-level MPEG-21
object (“container”) is an abstract data model that does not
have specific semantics encoded in its declaration language,
and repository contents can be expressed in a number of
different ways. For example, LANL researchers created the
concept of an XML tape archive [13], which is conceptually
similar to the sequential storage of items on a physical tape
system, and expressed the content using MPEG-21 DIDL.



Among the advantages shared by METS and MPEG-21
approaches are an XML-document format which is essen-
tially human-readable; a complex-object approach to pack-
aging a resource with its metadata; the ability to aggregate
multiple resources together; and compatibility with HTTP.
The models also share a disadvantage: a complexity of im-
plementation that poses a challenge for widespread adoption
at everyday websites, such as having specific requirements
regarding the metadata that accompanies each resource. For
each of these implementations, mapping information into
the proper metadata category is a complex task. When it
comes to preserving everyday websites, the phrase “complex
object” should apply to the packaged resource rather than
to the difficulty in creating it.

3. A QUALITATIVE COMPARISON OF
PRESERVATION MODELS

Resource preservation requires not only the resource it-
self but also sufficient forensic metadata [22]. To this end,
many repositories use a complex object model to package re-
sources with related metadata. Virtually any kind of meta-
data can be incorporated, from executable code that affects
resource behavior (example: javascript), to straightforward,
descriptive “field=value” elements (e.g., Dublin Core meta-
data). High-level diagrams of four commonly-used models
(ARC, VEO, LANL MPEG-21 and METS) can be seen in
Figures 1, 5, and 6. Each of these organizes the constituent
datastreams (resources) and metadata differently. For ex-
ample, LANL MPEG-21 resource containers can grow in
breadth (have more metadata) but not depth [6]; ARC file
records are static, but may differ in breadth (amount of
metadata recorded during that crawl). The minimum infor-
mation set also differs for each of these models. For example,
only METS requires a structural map; only VEO requires
one or more digital signatures. These differences are a re-
flection of differences in the ontologies of the implementing
repositories. The following sections look at the process of
ingesting resources into each of these models. We use a hy-
pothetical web site consisting of a single HTML page with
some English-language content (“index.html”) and a JPEG
image (“Barfoo.jpg”), and a link to a PDF (“Foo.pdf”).

Robots gather metadata during the process of crawling a
site. Some information is returned from the TCP/IP con-

(a) (b)

Figure 1: Complex object model representations
(a)ARC and (b)VEO

nection: the IP address of the responding server, for ex-
ample. Other information is part of the HTTP protocol.
HTTP has over 30 header fields which may be utilized in
the request, the response, or both. Most web servers will
provide several header fields in the response to a request,
including “Last-Modified” and “Content-Type.” Fields in
the response are determined in part by the requesting server
and in part by the responding server; some servers may not
support all header fields. Table 1 shows the information ex-
tracted from the HTTP request-response sequence for each
of the example resources. Some HTTP fields are not in the
table because they are not provided by the responding server
(Content-MD5 for example) or because they are not applica-
ble to this set of request-response events (“Content-Range”
and “Expires,” for example).

3.1 ARC and WARC
The Internet Archive stores crawled sites in a file format

called “ARC” [13], shown in Figure 1(a). Except for the pro-
tocol headers, web crawling using HTTP, FTP, and NNTP
typically generates little or no explicit descriptive metadata.
Our sample web site merely needs to be crawled by the Alexa
robot for the ARC file to be created, or we could self-crawl
using Heritrix [15].

This approach does not provide much in the way of future
forensic information, so the Internet Archive also offers an
expanded preservation-oriented crawling service, “Archive-
It”. The service is on a fee-based subscription, and allows
the subscribing site to provide Dublin Core metadata, multi-
ple “seed” URLs, varying schedules for each seed, and other
archiving details. For our sample site, we would need to
manually introduce the Dublin Core information for each
resource, via the Archive-It catalog form. Even though this
is an improvement forensically over plain HTTP metadata,
expressing technical information in these fields is awkward,
at best. Consider the Jhove analysis of our JPEG resource,
shown in Figure 2. What parts of the analysis should be
entered into Dublin Core fields? What kind of consequences
arise from discrepancies in the output from other utilities if
we do choose to include some or all of the information?

ARC files are plain ASCII text, and any characters out-
side that range must be “escaped”. Whether we use the
expanded, Dublin Core-based version or the original, the
archived file conforms to the ARC format: file header with
version information followed by the URL record which be-
gins with a list of metadata fields included with this partic-
ular record, and ends with the actual content returned from
the HTTP method (e.g., GET). ARC files are compressed
at both the URL-record level and at the file level, for im-
proved storage. Although not written in XML, an ARC file
is mostly human-readable, once uncompressed, as shown in
Figure 3.

The International Internet Preservation Consortium (IIPC)
has developed an extended revision of the ARC format called
“WARC” (for “Web ARChive”) which lets harvesting or-
ganizations aggregate large amounts of web resources into
specific collections with locally-assigned metadata such as
“subject” or unique record ID. The proposed WARC format
has numerous sections to clearly delineate “records” in the
file. A record, in WARC terms, can be the “response,” the
“request”, file structure (“warcinfo”), or other descriptive
information. Like other managed collection models, WARC
expects the repository to provide any metadata outside of

VEO 

I METADATA I 
RECORD 

I METADATA I 
DOCUMENT 

ARC FILE 

I HEADER I 
I METADATA I 
ENCODING 

RECORD I META DATA I 
I METADATA I I RESOURCE I 
I RESOURCE I I SIGNATURE I 



File (or Resource)
HTTP FIELD PDF JPEG HTML

Host www.foo-bar.com
IP Address 128.82.7.123
Result Code 200
Resource /var/www/Foo.pdf /var/www/images/Barfoo.jpg /var/www/index.html
Response Date 25-Mar-2007 17:28:53 GMT 25-Mar-2007 17:36:06 GMT 25-Mar-2007 17:16:00 GMT
Server Apache/1.3.33 (Unix)
Last-Modified 11-Mar-2007 06:28:49 GMT 03-Feb-2007 01:22:23 GMT 01-Jan-2007 09:02:09 GMT
ETag 49ec239-36eab7-45ca9e15 580014e-bec5-45ca98f1 311ff31-9100-45ca9801
Content-Length 3599031 48837 2136
Content-Type application/pdf image/jpeg text/html charset=iso-8859-1
Content (binary data) (html content)
Content-Language (not applicable) en

Table 1: Metadata available from the HTTP (crawl) request/response sequence

<?xml version="1.0" encoding="UTF-8"?>
<jhove xmlns:xsi="http://www.w3.org/2001

/XMLSchema-instance"
xmlns="http://hul.harvard.edu/ois

/xml/ns/jhove"
xsi:schemaLocation=

"http://hul.harvard.edu/ois/xml/ns/jhove
http://hul.harvard.edu/ois/xml/xsd/jhove
/1.4/jhove.xsd"

name="Jhove" release="1.1"
date="2006-06-05">

<date>2007-04-19T12:20:23-04:00</date>
<repInfo uri="/var/www/Barfoo.jpeg">

<reportingModule release="1.2"
date="2005-08-22">JPEG-hul

</reportingModule>

<lastModified> 2007-02-03T18:22:23-05:00
</lastModified>

<size>25474</size>
<format>JPEG</format>
<version>1.01</version>

<status>Well-Formed and valid</status>
<sigMatch>

<module>JPEG-hul</module>
</sigMatch>

<mimeType>image/jpeg</mimeType>
<profiles>
<profile>JFIF</profile>

</profiles>
<properties>

<property>
<name>JPEGMetadata</name>
<values arity="List" type="Property">

<property>
<name>CompressionType</name>

<values arity="Scalar" type="String">
<value>Huffman coding,

Baseline DCT</value>
</values>
</property>

<property>
<name>Images</name>

<values arity="List" type="Property">
<property>
<name>Number</name>

<values arity="Scalar" type="Integer">
<value>1</value>

</values>
</property>

<property>
<name>Image</name>
<values arity="List" type="Property">

<property>
<name>NisoImageMetadata</name>

<values arity="Scalar"
type="NISOImageMetadata">

<value>
<mix:mix xmlns:mix=

"http://www.loc.gov/mix/"
xmlns:xsi="http://www.w3.org/2001

/XMLSchema-instance"
xsi:schemaLocation=

"http://www.loc.gov/mix/

http://www.loc.gov/mix/mix.xsd">
<mix:BasicImageParameters>

<mix:Format>
<mix:MIMEType>image/jpeg</mix:MIMEType>

<mix:ByteOrder>big-endian</mix:ByteOrder>
<mix:Compression>
<mix:CompressionScheme>6

</mix:CompressionScheme>
</mix:Compression>

<mix:PhotometricInterpretation>
<mix:ColorSpace>6</mix:ColorSpace>
</mix:PhotometricInterpretation>

</mix:Format>
</mix:BasicImageParameters>

<mix:ImageCreation> </mix:ImageCreation>
<mix:ImagingPerformanceAssessment>

<mix:SpatialMetrics>
<mix:SamplingFrequencyUnit>3
</mix:SamplingFrequencyUnit>

<mix:XSamplingFrequency>0
</mix:XSamplingFrequency>

<mix:YSamplingFrequency>0
</mix:YSamplingFrequency>
<mix:ImageWidth>459</mix:ImageWidth>

<mix:ImageLength>253</mix:ImageLength>
</mix:SpatialMetrics>boxedminipage

<mix:Energetics>
<mix:BitsPerSample>

8,8,8</mix:BitsPerSample>
<mix:SamplesPerPixel>

3</mix:SamplesPerPixel>

</mix:Energetics>
</mix:ImagingPerformanceAssessment>

</mix:mix>
</value>
</values>

</property>
<property>

<name>Scans</name>
<values arity="Scalar" type="Integer">

<value>1</value>
</values>
</property>

<property>
<name>QuantizationTables</name>

<values arity="List" type="Property">
<property>

<name>QuantizationTable</name>
<values arity="Array" type="Property">

<property>
<name>Precision</name>

<values arity="Scalar" type="String">
<value>8-bit</value>
</values>

</property>
<property>

<name>DestinationIdentifier</name>
<values arity="Scalar" type="Integer">

<value>0</value>
</values>
</property>

</values>
</property>

<property>
<name>QuantizationTable</name>
<values arity="Array" type="Property">

<property>
<name>Precision</name>

<values arity="Scalar" type="String">
<value>8-bit</value>

</values>
</property>
<property>

<name>DestinationIdentifier</name>
<values arity="Scalar" type="Integer">

<value>1</value>
</values>
</property>

</values>
</property>

</values>
</property>

</values>
</property>
</values>

</property>
<property>

<name>ApplicationSegments</name>
<values arity="List" type="String">
<value>APP0</value>

</values>
</property>

</values>
</property>

</properties>
</repInfo>
</jhove>

Figure 2: Metadata derived from Barfoo.jpeg using Jhove’s JPEG-HUL module. Command line entry:
/opt/jhove/jhove -c /opt/jhove/conf/jhove.conf -m jpeg-hul -h xml Barfoo.jpeg



filedesc://IA-001102.arc 0 19960923142103 text/plain 76

1 0 Alexa Internet

URL IP-address Archive-date Content-type Archive-length

http://www.dryswamp.edu:80/index.html 127.10.100.2 19961104142103 text/html 202

HTTP/1.0 200 Document follows

Date: Mon, 04 Nov 1996 14:21:06 GMT

Server: NCSA/1.4.1

Content-type: text/html Last-modified: Sat,10 Aug 1996 22:33:11 GMT

Content-length: 30

<HTML>

Hello World!!!

</HTML>

Figure 3: ARC file example data, from http://www.archive.org/web/researcher/ArcFileFormat.php

the HTTP request-response event information. This can be
a challenge for the average web master.

3.2 VEO
The VERS system’s focus on evidentiary-quality digital

archives requires a great deal more metadata than is cur-
rently provided by our sample web site. The most impor-
tant element, the digital signature, poses a problem in that
the required PKI infrastructure is not available through our
web hosting service, and we do not have a public key on
record for this site. This is a common situation for everyday
websites. We could perhaps substitute the MD5 message in-
tegrity check field (HTTP’s Content-MD5 header) but this
is clearly not the same level of assurance called for by VERS.
In addition, the MD5-Digest directive in Apache defaults to
“off,” so it must be specifically enabled at the server.

Although it is possible, digitally-signing HTML docu-
ments is not a prevalent practice. JPEG images occasionally
have embedded copyright information, but encrypted or dig-
itally signed images are relatively rare. PDF documents, on
the other hand, often have password-level protection or en-
cryption. Adobe Distiller can digitally sign a PDF, using
a certificate generated by Adobe or by the user, but this
does not seem to be used very often on everyday websites.
Metadata gathered using the Acroread utility with Foo.pdf
(Figure 4) shows us that our Foo.pdf document is neither
signed nor encrypted, although we could amend the docu-
ment and provide a digital signature as part of the process
of creating a VERS Encapsulated Object. In practice, the
digital signature is not applied to the resource but to the
VEO itself, and is designed to ensure resource fixity. The
lack of encryption of our resources is fortunate in this case,
since VERS specifies that a VEO may not contain encrypted
data [30].

To create the VEO, we need both descriptive and techni-
cal metadata for our three resources. In addition, we need
to decide how we will structure our VEO: as a single ob-
ject which wraps the site’s three resources, or as multiple
VEOs, in which case we need to decide if the HTML-resource
VEO should also contain the JPEG resource. For simplic-
ity’s sake, we will consider our 3-resource web site as a sin-
gle VERS encapsulated object. A VEO requirement is that
resources be included By-Value, not By-Reference. As Fig-
ure 1(b) shows, metadata exists at each of the VEO lev-
els: Object, Record, Document, and Encoding. We noted

in § 3.1 that little metadata is produced from the HTTP
GET, so we will have to process each of our resources for
the required VEO information. For example, record-level
descriptive metadata for a VEO are based on Dublin Core
fields, which in this example will require manual interven-
tion for record completeness. The technical metadata usu-
ally found in a VEO, i.e., specifications about the JPEG
and the PDF, can be determined by running an analysis
utility like Jhove. This is one exception to the By-Value re-
quirement of VERS, since the metadata element can point
to the technical specification for that version of JPEG or
PDF instead of embedding the specification in place. The
final VEO is a self-documenting, human-readable XML file
with one record and three “documents”, each of which is
represented in its original encoding by a Base64-conversion
of resource content. The “only” missing element is the digi-
tal signature which, although central to the VEO model, is
not easily generated.

3.3 METS & PREMIS
The METS model is at the heart of many repository sys-

tems, including DSpace and Fedora. The primary object,
a METS “document,” contains seven major sections (Fig-
ure 5(a)), but only the File and the Structural Map sections
are required:

Section Element Examples

File Location Source Path
Target Path
Source URL

Content By-Value (Base64)
By-Reference (File Ptr/URI)

Structural Div Sitemap
Map Links In/Links Out

The crawling process can provide reasonable data for the
File and Map sections, but for preservation purposes we
should record much more information, particularly in the
Descriptive and Administrative sections for which HTTP
and our crawl contribute little or no data. Some metadata
schemas have been endorsed by METS. For the Descriptive
section, Dublin Core and MARC are recommended. For
the Administrative section, recommended schemas include
NYU’s Schema for Technical Metadata for Text, as well as
the NISO Technical Metadata for Digital Still Images. Like



<?adobe-xap-filters esc="CR"?>
<x:xmpmeta xmlns:x=’adobe:ns:meta/’

x:xmptk=’XMP toolkit 2.9.1-13, framework 1.6’>
<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:iX=’http://ns.adobe.com/iX/1.0/’>
<rdf:Description rdf:about=’uuid:d46586fa-403c-4c1
<?adobe-xap-filters esc="CR"?>

<x:xmpmeta xmlns:x=’adobe:ns:meta/’
x:xmptk=’XMP toolkit 2.9.1-13, framework 1.6’>

<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:iX=’http://ns.adobe.com/iX/1.0/’>

<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’
xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>

<pdf:Producer>ESP Ghostscript 815.02</pdf:Producer>
</rdf:Description>

<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’
xmlns:xap=’http://ns.adobe.com/xap/1.0/’>

<xap:ModifyDate>2007-03-14T10:00:21Z</xap:ModifyDate>
<xap:CreateDate>2007-03-14T10:00:21Z</xap:CreateDate>

<xap:CreatorTool>dvips(k) 5.95a Copyright 2005
Radical Eye Software</xap:CreatorTool>

</rdf:Description>
<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’

xmlns:xapMM=’http://ns.adobe.com/xap/1.0/mm/’>
<xapMM:DocumentID>uuid:ada536f0-811e-487d-b20a-23ebcfe106b7

</xapMM:DocumentID>
</rdf:Description>
<rdf:Description rdf:about

=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’
xmlns:dc=’http://purl.org/dc/elements/1.1/’>

<dc:format>application/pdf</dc:format>
<dc:title>

<rdf:Alt>

<rdf:li xml:lang=’x-default’>jcdl07.dvi</rdf:li>
</rdf:Alt>

</dc:title>
</rdf:Description>

</rdf:RDF>
</x:xmpmeta>c-9713-43b5a2f3f649’

xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>

<pdf:Producer>ESP Ghostscript 815.02</pdf:Producer>
</rdf:Description>

<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’

xmlns:xap=’http://ns.adobe.com/xap/1.0/’>
<xap:ModifyDate>2007-03-14T10:00:21Z</xap:ModifyDate>
<xap:CreateDate>2007-03-14T10:00:21Z</xap:CreateDate>

<xap:CreatorTool>dvips(k) 5.95a Copyright 2005
Radical Eye Software</xap:CreatorTool>

</rdf:Description>
<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’

xmlns:xapMM=’http://ns.adobe.com/xap/1.0/mm/’>
<xapMM:DocumentID>uuid:ada536f0-811e-487d-b20a-23ebcfe106b7

</xapMM:DocumentID>
</rdf:Description>width

<rdf:Description rdf:about
=’uuid:d46586fa-403c-4c1c-9713-43b5a2f3f649’
xmlns:dc=’http://purl.org/dc/elements/1.1/’>

<dc:format>application/pdf</dc:format>
<dc:title>

<rdf:Alt>
<rdf:li xml:lang=’x-default’>draftFoo.dvi</rdf:li>

</rdf:Alt>

</dc:title>
</rdf:Description>

</rdf:RDF>
</x:xmpmeta>

Figure 4: Metadata derived from Foo.pdf using Acroread.

the VERS ingestion process, the resources could be ana-
lyzed using Jhove and/or Acroread to extract data for the
Technical portion of the Administrative section. Descriptive
metadata is still a problem because neither Dublin Core nor
MARC metadata can be derived for our sample resources.

Repositories customize METS via a profile which man-
ages the types of resources it contains. An image collec-
tion can have one set of metadata specifications, while audio
CD collections have another. Our site has 3 very different
types of resources: HTML, PDF, and JPEG. Using the de-
fault profile (from the Library of Congress tutorial web site,
for example) we would probably need to create three sepa-
rate METS documents, one for each resource. Alternatively,
we could adopt the PREMIS extensions to METS, which is
more suited to our sample site. In PREMIS, our web site
could be mapped to an “Intellectual Entity” with each of
the resources comprising an “Object” contained within that
entity. Figure 5(b) gives a conceptual view of the PREMIS
Entity. On the other hand, our PDF can be considered a
complete Intellectual Entity of its own, and we could there-
fore archive it as a separate object. In this case, the PDF
would have a relationship to the HTML referral page. Like
many Archival Information Packages, the METS AIP is an
XML file where content may be included either By-Value or
By-Reference. The structure of the AIP follows the repos-
itory’s METS profile. In any case, mapping the site’s re-
sources to one or more “documents” or to one or more “en-
tities” will depend on the particular implementation at the
archiving repository. Two agencies archiving our site could
adopt very different strategies and yet adhere to the METS

(a) (b)

Figure 5: (a)METS Document Object and
(b)PREMIS Intellectual Entity.

model. Our experience on the AIHT Project showed us how
complicated ingestion can be when two sources implement a
model like METS in different ways [16]. The PREMIS data
dictionary addresses this issue by providing more detailed
guidelines for metadata fields and content. This is a boon
to the knowledgeable archivist, but a daunting set of criteria
for the typical webmaster.

3.4 MPEG-21 DID
LANL has successfully adopted the flexible MPEG-21

DIDL model for use in digital repositories. Figure 6 shows
how a Technical Report is stored in the MPEG-21 format
at LANL. The main MPEG-21 object, called a “container,”
can have multiple nested containers, items, and components.

PREMIS ENTITY 
METS DOCUMENT 

I HEADER I 
I DESCRIPTIVE I 
I ADMINISTRATIVE I 

OBJECT 

11 

RIGHTS 

AGENTS 71 

I FILE SECTION I 
I STRUCT. MAP I 
I STRUCT. LINKS I 
I BEHAVIOR I 

11 

EVENTS 

AGENTS 11 

I RESOURCE 7 



“Descriptors” accompany each of these elements to provide
information such as origin, date, and element content-type
- i.e., metadata about the metadata. Although the original

Figure 6: LANL MPEG-21 DID

industry specification permitted deep nesting of containers
and objects, LANL’s implementation only allows a container
to grow in breadth, not depth. This approach simplifies re-
source access, update, and general management.

Like many other XML-based complex-object models, meta-
data and resources may be included either By-Reference or
By-Value. If we have additional information about a re-
source, it can be included within the container as an addi-
tional item. For example, more detailed information about
file Foo.pdf, including metadata about its embedded im-
ages, is produced by the Jhove PDF-HUL module (see Fig-
ure 7). The Jhove metadata would be contained within one
item-component in the container, and the Acroread infor-
mation (Figure 4) would be contained within another item-
component. A third item-component could hold the com-
plete set of response-request fields obtained from the HTTP
sequence (Table 1).

LANL’s use of MPEG-21 exhibits a relatively simple on-
tology. Harvesting our web site would produce three con-
tainers, one per resource. The number of items in each
container would vary with the number of metadata source-
types. If no utilities were used, only the HTTP metadata
item would exist. Otherwise, one item per metadata type
would be included in the container. The final item in each
container is the resource itself, which may be included By-
Reference or By-Value, or both.

3.5 Models, Metadata, and
Interoperability

In 2005, as part of the Archive Ingest and Handling Test
(AIHT), the Library of Congress tested “the feasibility of
transferring digital archives in toto from one institution to
another” [23]. Several issues arising during the test, and

conclusions resulting from it, have influenced the develop-
ment of this proposal. The first is that metadata which is
characterized as required for resource ingestion often turns
out, instead, to merely be desired. Some resources are valu-
able enough to warrant ingestion with whatever metadata is
available for them, even if it does not fulfill repository “re-
quirements.” Another observation from the AIHT is that
metadata markup, like ontologies, will never evolve into a
universally-accepted approach [24]. Two repositories stor-
ing the same resource may record and map metadata very
differently. This means that interoperability or even sim-
ple resource exchange between the repositories may involve
very complex operations, even if both used, say, METS. As
a result, a key conclusion of the test is that data-centric
strategies are more useful than those based on implement-
ing a particular environment or model.

4. CRATE: A SIMPLE MODEL FOR SELF-
DESCRIBING WEB RESOURCES

An insightful comment by Stewart Brand is that we need
data to be “born archival”, not just digital [24]. As an in-
teractive medium, the WWW is purely digital with nearly
no archival-quality information. A mattress sold in the U.S.
comes with more metadata than is available for the typi-
cal web page. Institutions attempting to record our digital
web heritage, like the Internet Archive and the European
Archive, can merely store and refresh the bits, trusting de-
scriptors like “.pdf” to be accurate. Analyzing even a por-
tion of the resources for confirmation of type or for more
informative metadata is impractical.

On the other hand, it is practical and feasible for the web
server to provide a variety of supporting metadata together
with the resource. We have demonstrated this concept in
[25], where the web server itself analyzes the resource at
time of dissemination and includes both the resource and
the analysis within the response. The routine transfer of
complex objects like MPEG-21 DIDs over HTTP further
supports our contention that web crawls can be used to ac-
quire both resources and forensic metadata [16, 28]. The
resource may not be born archival, but its adoptive parents
are naturally archival.

The resulting complex object can be molded into a repos-
itory specific model, such as those discussed in § 3. Where
models like METS would organize the metadata according
to a profile, and LANL DIDs would organize it by container-
items, we suggest a simpler model called CRATE. Instead
of categorizing and ordering, CRATE contains undifferen-
tiated metadata packaged together with the resource in a
complex-object HTTP response.

An advantage with this simple approach is that it is
data-centric rather than ontology-based. For example, web
servers would not need to choose between METS and MPEG-
21 archiving services. Similarly, the archiving repository
would not need to worry about non-librarian webmasters
misusing METS headers or MPEG-21 descriptors. Instead,
the archiving repository could harvest the site and trans-
form the information according to its own model, or it could
adopt a store-and-wait philosophy, like the file purgatory
mentioned by Clay Shirky [24]. Another advantage with
the CRATE model is that it readily expands to include
new types of metadata without requiring an adaptation,
re-evaluation or reassignment of current metadata fields.

CONTAINER: TECHNICAL REPORT With ASSOCIATED METADATA 

I Container ID I 
I Container Placeholder I 
I Container Datest2mp I 

ITEM ITEM 

~ ~ 
I Item Placeholder I I Item Placeholder I 
I Item Oatestamp I I Item Datestamp I 
I Item-Level Relationships I I Item-Level Relationships I 

COMPONENT COMPONENT I MARC-XML Placeholder I I Datastream Placeholder I 
I MARC-XML Datestamp I I Datastream Datestamp I 
I RESOURCE: MARC-XML I I RESOURCE: By-Value (Base64) I 
COMPONENT I RESOURCE: By-Reference (URL) I 
I MARC-RAW Placeholder I 
I MARC-RAW Oatestamp I 
I RESOURCE: MARC-RAW I 



Jhove (Rel. 1.1, 2006-06-05)

Date: 2007-04-15 15:08:02 EDT
RepresentationInformation:

/var/www/Foo.pdf
ReportingModule:
PDF-hul, Rel. 1.5 (2006-03-31)

LastModified: 2007-03-14 10:00:21 EDT
Size: 3599031

Format: PDF
Version: 1.2

Status: Well-Formed and valid
SignatureMatches:
PDF-hul

MIMEtype: application/pdf
PDFMetadata:

Objects: 56
FreeObjects: 1
IncrementalUpdates: 1

DocumentCatalog:
PageLayout: SinglePage

PageMode: UseNone
Info:

Title: FooDraft.dvi
Creator: dvips(k) 5.95a Copyright 2005

Radical Eye Software

Producer: ESP Ghostscript 815.02
CreationDate:

Wed Mar 14 10:00:21 EDT 2007
ModDate: Wed Mar 14 10:00:21 EDT 2007
ID: 0xd001996ca55b3a9037ec31b8e1c5f5ce29,

0xd001996ca55b3a9037ec31b8e1c5f5ce29
Filters:

FilterPipeline: FlateDecode
FilterPipeline: DCTDecode

Images:
Image:
NisoImageMetadata:

MIMEType: application/pdf
CompressionScheme: JPEG

ColorSpace: RGB
ImageWidth: 459
ImageLength: 253

BitsPerSample: 8
Fonts:

Type1:
Font:

BaseFont: SWPMHB+CMR9
FontSubset: true
FirstChar: 11

LastChar: 123
FontDescriptor:

FontName: SWPMHB+CMR9
Flags: Symbolic

FontBBox: -39, -250, 1036, 750

FontFile3: true
EncodingDictionary:

BaseEncoding: WinAnsiEncoding
Differences: true

Font:

BaseFont: BAWORV+CMBX9
FontSubset: true

FirstChar: 45
LastChar: 122

FontDescriptor:
FontName: BAWORV+CMBX9
Flags: Symbolic

FontBBox: -58, -201, 1076, 700
FontFile3: true

Encoding: WinAnsiEncoding
Font:
BaseFont: Helvetica

Font:
BaseFont: Times-Italic

Font:
BaseFont: YSMOGU+CMR7

FontSubset: true
FirstChar: 12
LastChar: 123

FontDescriptor:
FontName: YSMOGU+CMR7

Flags: Symbolic
FontBBox: 0, -250, 965, 750
FontFile3: true

EncodingDictionary:
BaseEncoding: WinAnsiEncoding

Differences: true
Font:

BaseFont: Helvetica-Bold
Font:
BaseFont: ZDPLIY+CMTT9

FontSubset: true
FirstChar: 34

LastChar: 122
FontDescriptor:
FontName: ZDPLIY+CMTT9

Flags: FixedPitch, Symbolic
FontBBox: -6, -228, 524, 694

FontFile3: true
Encoding: WinAnsiEncoding

Font:
BaseFont: RAJQQU+CMTI9
FontSubset: true

FirstChar: 11
LastChar: 121

FontDescriptor:
FontName: RAJQQU+CMTI9

Flags: Symbolic

FontBBox: -25, -205, 866, 705
FontFile3: true

EncodingDictionary:
BaseEncoding: WinAnsiEncoding
Differences: true

Font:
BaseFont: DMRRSL+CMSY9

FontSubset: true
FirstChar: 102

LastChar: 103
FontDescriptor:
FontName: DMRRSL+CMSY9

Flags: Symbolic
FontBBox: 0, -250, 440, 750

FontFile3: true
EncodingDictionary:
BaseEncoding: WinAnsiEncoding

Differences: true
Font:

BaseFont: Times-Bold
Font:

BaseFont: IPBEUP+CMTI7
FontSubset: true
FirstChar: 48

LastChar: 121
FontDescriptor:

FontName: IPBEUP+CMTI7
Flags: Symbolic
FontBBox: -17, -204, 1268, 713

FontFile3: true
Encoding: WinAnsiEncoding

Font:
BaseFont: OBAZBH+CMMI9

FontSubset: true
FirstChar: 60
LastChar: 62

FontDescriptor:
FontName: OBAZBH+CMMI9

Flags: Symbolic
FontBBox: 0, -51, 712, 552
FontFile3: true

Encoding: WinAnsiEncoding
Font:

BaseFont: Times-Roman
EncodingDictionary:

Differences: true
Pages:
Page:

Sequence: 1
Page:

Sequence: 2

Figure 7: Metadata derived from Foo.pdf using Jhove’s PDF-HUL module. The default plain-text output
is used here for clarity and brevity. Command Line: /opt/jhove/jhove -c /opt/jhove/conf/jhove.conf -m
pdf-hul Foo.pdf



The new information simply becomes part of the CRATE
complex object, available for use or disuse by the archiving
repository.

The OAIS model describes an Information Package as the
“Content Information and associated Preservation Descrip-
tion Information which is needed to aid in the preservation
of the Content Information. The Information Package has
associated Packaging Information used to delimit and iden-
tify the Content Information and Preservation Description
Information.” [7]. Acknowledging “the reality that some
submissions to an OAIS will have insufficient Representation
Information or PDI to meet final OAIS preservation require-
ments”, the CCSDS further describes three variants of the
information package: submission (SIP), archival (AIP), and
dissemination (DIP). Although resources accessible from a
web server are unlikely to meet the criteria for SIPs or AIPS,
later we introduce a method by which web servers can make
a best-effort attempt to generate the content, preservation
description, packaging, and descriptive information neces-
sary to promote their web resources to a SIP or DIP at the
time of an HTTP request.

4.1 Building a CRATE
An important characteristic shared by the models dis-

cussed in § 3 is that they are mostly human-readable, plain
ASCII. With the exception of ARC, the model objects are
also expressed in XML. Fortunately, most analysis utilities
that would be likely candidates for web server installation
generate their output in ASCII and/or XML. Since resources
can be converted to ASCII using Base64 encoding, con-
tent can also be included in an XML document. CRATE
adopts this approach, using plain ASCII and XML to ex-
press CRATE contents. A conceptual view of a CRATE is
shown in Figure 8. Note that only 3 elements are defined
for a CRATE: (1)an identifier; (2)metadata; and (3)the re-
source. There is one identifier per CRATE, which acts as
a means to disambiguate among a collection of CRATE ob-
jects. A single CRATE can have up to one resource, but
an unrestricted number of metadata elements. Figure 9 ex-
presses the CRATE complex object as a UML diagram. For
an object identifier to be unique and viable, it must be com-
patible with the system storing it. Since archiving repos-
itory characteristics can vary so widely, the CRATE Iden-
tifier is generated by the crawling repository, rather than
by the crawled host. As the AIHT report noted, “identi-
fiers often aren’t” [24]. In any case, most repositories have
their own methods for uniquely labelling each ingested re-
source. Expecting the small local web server to create an
identifier that is simultaneously unique, disambiguates, and

Figure 8: Examples of CRATE configurations

Figure 9: CRATE Complex Object

is compatible across all repositories seems unrealistic. Even
using the UUID utility commonly found on UNIX/LINUX
systems has disadvantages since it would have to be pre-
generated and stored for each resource if it were to act as
a long-term unique resource identifier across systems. Re-
source disambiguation or idempotence between repositories
that have crawled the same sites can be done using the meta-
data elements of the CRATE.

Metadata is the heart of CRATE. Our goal is to automate
the resource-description process; to have resources describe
themselves in type-appropriate and sufficient detail; and to
lower the barrier to preservation by simplifying participa-
tion requirements while maximizing resource information.
Just as content types and versions vary from web site to
web site, the number and type of utilities that are practical
for installation on any individual web server will also vary.
Archival crawls of sites will therefore produce a widely vary-
ing amount of resource information. This is partly because
the kind of information useful in preserving resources varies
with the type of the resource. A color index is useful in
describing a JPEG; a key-word index is useful in describing
an ASCII text file.

The Resource component of a CRATE can have one or
many expressions. Each expression contains a TYPE element
which describes the kind of content (text/plain, text/html,
etc.), and a CONTENT element with the byte stream of the
original resource. If the original resource is binary (a JPEG,
e.g.) then a lossless encoding method such as Base64 is
used. A Resource component can be expressed in more than
one TYPE: as both text/html and text/ascii (i.e., a Base64-
encoded resource), for example, but it is otherwise idem-
potent. The CONTENT field should produce a duplicate of
the original resource, either directly or by reverse-encoding
(e.g., Base64 back to binary). The Metadata component
can have one or more DESCRIPTION items. A Description
item has 4 elements that categorize the source and context
of the metadata it contains, i.e., metadata about the meta-
data. A Description element does not necessarily have to
hold the resource metadata. It could contain a citation to
a remote utility that the harvesting crawler could use to
further analyze the resource, or it could point to a loca-
tion that already contains detailed information about the
resource. The archiving crawler would determine when and
whether to access that information.

Example CRATE configurations are shown in Figure 8.
Note that CRATE objects can be nested both broad and
deep. An archiving service can use this structure to associate
time-based variations of an archived resource, to package

I 
I 
I 

CRATE 

CRATE-UIO 

METADATA 

RESOURCE 

CRATE-UID 

METADATA 

RESOURCE 

I 
I 
I 

1..n 

CRATE 

CRATE 

I '""'·'" I I '"'"''" I 
I [II""' [II""' I jmmu j j ,mom j 
I I RESOURCE I I RESOURCE I 

CONTENT DESCRIPTION 

· Ul9EL 
· l!XEC 
• VERSION 
• OATA 

CRATE-UIO 

Ln 



the full content of a web site, or to keep a complex HTML
resource together with its embedded multimedia content.

4.2 CRATE and Other Complex Object
Models

A major difference between CRATE and other complex
object models is that CRATE does not have any minimum
metadata requirements other than a unique identifier. The
number and type of metadata elements available can vary
greatly from resource to resource, and from site to site.

Ultimately, the primary difference between a CRATE
and other preservation-oriented complex object models is
the metadata component. In a CRATE, all metadata is
undifferentiated. Instead of populating specific metadata
fields, with all of the inherent world-view such activity im-
plies, we focus on capturing the output of analysis utili-
ties and leave issues of parsing and provenance to the fu-
ture archivist. Utilities can generate conflicting or ambigu-
ous information which requires considerable experience and
knowledge to parse and place within a repository’s model.
In contrast, CRATE makes no declaration about the as-
signment of Jhove output (Figure 7) versus Acroread out-
put (Figure 4) in METS descriptive and technical metadata
sections, for example. CRATE also makes no assertion re-
garding metadata validity; it merely reports the metadata
produced from the utilities. This “freedom from choice” lets
web sites adopt preservation practices without having to in-
cur archival knowledge per se, and allows any number of
archiving repositories to collect the information and parse it
according to their own individual models.

A CRATE metadata component is characterized by the
four description elements, label, exec, version and data.
Interpretation and categorization of a metadata component
and its element contents is left to the archiving repository.
For example, a METS-based repository would categorize
each metadata component into one of the 7 METS types,
such as “Administrative” or “Structural”. In the CRATE
model, the context in which the metadata was generated,
the flexibility to have a wide variety of metadata content,
and the opportunity to take advantage of leading-edge utili-
ties, are more important than defining CRATE-unique cate-
gories. This aspect facilitates mapping of CRATE informa-
tion to other complex object models including METS and
MPEG-21.

5. CURRENT STATUS
CRATE objects can be built in a number of ways. For

example, a web crawler could be modified to process each
resource upon successful GET, then pass the received con-
tent to various utilities on the crawler’s server, and finally
package the resulting metadata together with the resource
as a CRATE object. This solution is similar to the Old Do-
minion University approach to the AIHT project [16] where
we built “self-archiving” objects from the original tar file,
but in this case instead of using “Buckets” as an archival
storage facility [17], we build a CRATE [17]. VEO, METS
or MPEG-21 repositories could build CRATE objects by ex-
porting their resources and metadata in the CRATE format.
For example, DSpace plugins or extensions for Fedora could
be used to build CRATE objects from repository contents.
Another alternative would be to run a post-crawl script on
an entire web site, aggregating the collection of CRATE’d
resources into a site CRATE.

An interesting approach is suggested by the new web ser-
vice “Yahoo!Pipes” [8] which uses a web server in a way sim-
ilar to the implementation of a Unix “pipe” command. For
example, a resource from our sample web site could be fed
through Yahoo!Pipes to a series of other sites which would
analyze it. An additional Yahoo!Pipe would aggregate the
information into CRATE format. In other words, we could
use Yahoo!Pipes to build a CRATE.

As another alternative, the web site could create a CGI
script which would respond to a request such as:

http://foo.edu/?crate=Foo.pdf

by processing the resource and providing the metadata + re-
source in the CRATE object format as the HTTP response.
In this latter case, the processing burden is put upon the
host server rather than on the crawling/archiving server.
Similarly, if we registered a new MIME type - for example,
application/crate+xml - the crawler could parameterize
the resource request with that MIME type. A more practi-
cal solution that also uses the host web server’s processing
power is a web server module which is installed and inte-
grated with the web server by the local webmaster.

We believe the module approach has a number of advan-
tages in addition to sharing the processing cost of resource
analysis. First, implementation is simple. Modules are a
routine installation task for webmasters, requiring close to
zero effort. Most web servers have a number of modules in-
stalled, including those for processing CGI requests or man-
aging directory displays, for example. Secondly, as an Open
Source product (such as mod oai), there is no financial in-
vestment required of the web site. Another advantage is that
it is simple to fine-tune the module to meet local resource
profiles (only GIFs, only JPEGs, some of everything, etc.).
Finally, the web server response now produces something
that is much closer to the ideal of being “born archival” and
not just “born digital.”

Figure 10 gives an example Apache configuration section
for building CRATE modules using mod oai. The three
CRATE description elements, “label”, “exec” i.e., the com-
mand to invoke on the resource, and “version” to make note
of the utility version information, are itemized in the config-
uration file. The first utility calculates the MD5 hash of the
resource content, providing one possibility for disambigua-
tion of files changed between crawls, or for locating files that
appear to be identical. Next, the Unix “file” command is in-
voked to provide more descriptive metadata than standard
MIME typing. We have added switches that direct the pro-
gram to look beyond the initial assessment (-k, continue)
and to peer into compressed files (-z). Jhove is implemented
in two ways. First, we call Jhove via a script called “pre-
Jhove” which uses the resource’s MIME type to determine
which Jhove HUL module should be applied to the resource.
The script is only applied to image-type files, since there are
a number of varying image analysis modules but relatively
few images on our sample web site. For common files, like
PDFs, it is faster and simpler to call the Jhove utility di-
rectly, which is what is done in the subsequent plugin. The
“%s” within the quoted exec field denotes the resource name
which is substituted by Apache during the GET response.
A percent (%) symbol outside of quotes indicates a com-
ment. Although this perhaps appears complicated to read-
ers who are not also webmasters, the example configuration
file shown is readily implemented and understood by system



administrators and web masters who manage Apache web
servers.

<Location /modoai>

SetHandler modoai-handler

modoai_oai_active ON

<modoai_plugin>

label "md5sum"

exec "/usr/bin/md5sum %s"

version "/usr/bin/md5sum --version"

mime "*/*"

</modoai_plugin>

<modoai_plugin>

label "file"

exec "/usr/bin/file -kz %s"

version "/usr/bin/file -v"

mime "*/*"

</modoai_plugin>

<modoai_plugin>

label "jhove"

exec "/var/www/preJhove %s"

version "/opt/jhove/jhove -v"

mime "image/*"

</modoai_plugin>

<modoai_plugin>

label "jhove"

exec "/opt/jhove/jhove -m pdf-hul %s"

version "/opt/jhove/jhove -v"

mime "application/pdf"

</modoai_plugin>

<modoai_plugin>

label "ots"

exec "/usr/local/bin ots -summary %s"

version "/usr/local/bin ots -v"

mime "text/*"

</modoai_plugin>

<modoai_plugin>

label "pronom"

exec "java -jar DROID.jar -L%s"

version "java -jar DROID.jar -V"

mime "*/*"

</modoai_plugin>

</Location /modoai>

Figure 10: Location section from an Apache mod oai
configuration file showing metadata plugin imple-
mentation for building CRATE objects

To test the CRATE concept, we extended the function-
ality of an Apache OAI-PMH module, mod oai, to sup-
port a plugin architecture. The module responds to OAI-
PMH-style requests according to the metadata format spec-
ified [12, 18]. The original module supported Dublin Core,
HTTP-header, and MPEG-21 DIDL metadata formats. We
added a new format called “oduCrate” to aggregate the re-
sults of plugin tools and other metadata with the Base64-
encoded resource. Installation of this extended module en-
ables preservation-specific requests to be made of the server
without impacting its ability to respond to the usual HTTP
requests [25]. A user asking for http://foo.edu/barr.html
will still get the same document as before. To access the
CRATE version of the object, the HTTP request string

is in a form that specifies a CRATE-type response is ex-
pected. Using OAI-PMH syntax, for example, the request
would look like this:

http://foo.edu/modoai/?verb=GetRecord

&identifier=http://foo.edu/barr.html

&metadataPrefix=oduCrate

The response returns barr.html together with metadata au-
tomatically generated for that specific resource, such as out-
put from the Unix “file” command, Kea, Open Text Summa-
rizer (OTS) [3], and other utilities. The server can therefore
function simultaneously as both an agent of preservation and
as a normal web server.

We installed several utilities on our web server, and con-
figured mod oai plugins to act on resources based on MIME
type. Open Text Summarizer (OTS), for example, was only
applied to text-based resources and not to images. Jhove
HUL modules were called based on MIME sub-type (ASCII,
JPEG or TIFF) using a wrapper script. This type of cus-
tomization required only a few lines of directive instruc-
tion in the Apache configuration file.

6. FUTURE WORK AND CONCLUSIONS
How does preservation-crawling impact the server? Meta-

data utility selection clearly plays a role, since some are more
processing-intense than others. The type and distribution
of web resources on a site also affects what level of system-
effort is required to dynamically extract metadata. Since
the metadata generation occurs at dissemination time, we
are currently conducting experiments on the impact of var-
ious tools like Jhove on web server performance. As noted
above, individual tools can be targeted to specific resource
types or to sections of the site tree using the <LOCATION>

directive, preventing resource+tool mismatch. Even so, dy-
namic analysis of resources must obviously require more of a
server’s CPU cycles than a simple GET request for the plain
resource. Whether or not this will prove to be a reasonable
trade off for sites interested in long-term preservation re-
mains to be seen.

What incentives are there for webmasters to implement
even this basic approach? CRATE does not require sub-
stantial investment by sites: no extra funding, no software
costs (other than installation of an open source module), no
“donation” of time or resources to the general public, and
no need for a trained, in-house archivist. Sites with an obli-
gation to adopt a preservation strategy but which lack the
funds to support more formal solutions like VEO may find
this simpler approach attractive. Archiving repositories may
provide incentives by offering an “entry-level” preservation
service to such agencies, or to college departments interested
in longer-term preservation as opposed to near-term backup
strategies. In summary, we believe that this generic, web-
server-based approach which is simple to install and easy
to maintain has a higher likelihood of adoption by everyday
web sites than systems which call for a more sophisticated
level of effort.

7. REFERENCES
[1] The Wayback Machine Frequently Asked Questions.

http://www.archive.org/about/faqs.php.

[2] Google code: Web authoring statistics.
http://code.google.com/webstats/, 2006. Accessed
on 10 Feb 2007.



[3] Open text summarizer. Open source tool for
summarizing texts, 2006.
http://libots.sourceforge.net/.

[4] S. L. Abrams and D. Seaman. Towards a global digital
format registry. World Library and Information
Congress: 69th IFLA General Conference and
Council, pages 1–9, August 2003.

[5] M. S. Bains. The search engine economy’s Achilles
heel? Addressing online parallel imports resulting
from keyword and metatag misuse. Stanford
Technology Law Review, 6, October 2006.

[6] J. Bekaert, X. Liu, and H. Van de Sompel.
Representing digital assets for long-term preservation
using MPEG-21 DID. In Ensuring Long-term
Preservation and Adding Value to Scientific and
Technical Data (PV 2005), 2005.

[7] CCSDS. Reference model for an open archival
information system (ISO 14721:2002). Technical
Report CCSDS 650.0-B-1, Consultative Committee
for Space Data Systems, January 2002.

[8] N. Cubrilovic. Yahoo! launches pipes.
http://www.techcrunch.com/2007/02/07/

yahoo-launches-pipes/, February 2007.

[9] H. M. Gladney. Trustworthy 100-year digital objects:
Evidence after every witness is dead.
ACMTransactions On Information Systems,
22(3):406–436, July 2004.

[10] B. P. Heath, D. J. McArthur, M. K. McClelland, and
R. J. Vetter. Metadata lessons from the iLumina
digital library. Communications of the ACM,
48(7):68–74, July 2005.

[11] J. Hunter and S. Choudhury. A semi-automated
digital preservation system based on semantic web
services. In Joint Conference on Digital Libraries
(JCDL 2004), pages 269–278, 2004.

[12] C. Lagoze, H. Van de Sompel, M. L. Nelson, and
S. Warner. The Open Archives Initiative Protocol for
Metadata Harvesting. http://www.openarchives.
org/OAI/openarchivesprotocol.html.

[13] X. Liu, L. Balakireva, P. Hochstenbach, and H. Van
de Sompel. File-based storage of digital objects and
constituent datastreams: XML Tapes and Internet
Archive ARC files. In 9th European Conference on
Research and Advanced Technology for Digital
Libraries (ECDL 2005), pages 254–265, Sept 2005.

[14] J. P. McDonough. METS: Standardized encoding for
digital library objects. International Journal on
Digital Libraries, 6(2):148–158, April 2006.

[15] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic.
Introduction to heritrix, an archival quality web
crawler. In Proceedings of the 4th International Web
Archiving Workshop (IWAW ’04), Sept 2004.

[16] M. L. Nelson, J. Bollen, G. Manepalli, and R. Haq.
Archive ingest and handling test, the Old Dominion
University approach. D-Lib Magazine, 11(12), October
2005. doi:10.1045/december2005-nelson.

[17] M. L. Nelson and K. Maly. Smart objects and open
archives. D-Lib Magazine, 7(2), February 2001.
doi:10.1045/february2001-nelson.

[18] M. L. Nelson, J. A. Smith, H. Van de Sompel, X. Liu,
and I. Garcia del Campo. Efficient, automatic web
resource harvesting. Proceedings of the eighth ACM
international workshop on web information and data
management, November 2006.

[19] OCLC/RLG PREMIS Working Group. Implementing
preservation repositories for digital materials: Current
practice and emerging trends in the cultural heritage
community. Report by the joint OCLC/RLG Working
Group Preservation Metadata: Implementation
Strategies (PREMIS), 2004.

[20] OCLC/RLG PREMIS Working Group. Data
dictionary for preservation metadata. Final report of
the PREMIS working group. Report by the joint
OCLC/RLG Working Group Preservation Metadata:
Implementation Strategies (PREMIS), May 2005.

[21] S. Payette and C. Lagoze. Flexible and extensible
digital object and repository architecture (FEDORA).
In ECDL ’98: Proceedings of the Second European
Conference on Research and Advanced Technology for
Digital Libraries, pages 41–59, London, UK, 1998.
Springer-Verlag.

[22] J. Rothenberg. Ensuring the longevity of digital
information. Council on Library and Information
Resources, February 1999. Revision 980327.
http:www.clir.org/pubs/archives/ensuring.pdf.

[23] C. Shirky. AIHT: Conceptual issues from practical
tests. D-Lib Magazine, 11(12), December 2005.
http://www.dlib.org/dlib/december05/shirky/

12shirky.html.

[24] C. Shirky. Library of Congress Archive Ingest and
Handling Test (AIHT) final report. Report by the
National Digital Information Infrastruction &
Preservation Program, June 2005.

[25] J. A. Smith and M. L. Nelson. Generating best-effort
preservation metadata for web resources at time of
dissemination. In Proceedings of the Joint Conference
on Digital Libraries (JCDL 2007), June 2007.

[26] R. Tansley, M. Bass, D. Stuve, M. Branschofsky,
D. Chudnov, G. McClellan, and M. Smith. The
DSpace institutional digital repository system: current
functionality. In JCDL ’03: Proceedings of the 3rd
ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 87–97, Washington, DC, USA, 2003. IEEE
Computer Society.

[27] C. F. Thomas and L. S. Griffin. Who will Create The
Metadata For the Internet? First Monday, 3(12),
1998. http:
//www.firstmonday.dk/issues/issue3_12/thomas/.

[28] H. Van de Sompel, M. L. Nelson, C. Lagoze, and
S. Warner. Resource harvesting within the OAI-PMH
framework. D-Lib Magazine, 10(12), December 2004.
doi:10.1045/december2004-vandesompel.

[29] Victoria Electronic Records System. VERS toolkit.
http://www.prov.vic.gov.au/vers/toolkit/, 2005.

[30] A. Waugh. The design of the VERS encapsulated
object experience with an archival information
package. International Journal on Digital Libraries,
6(2):184–191, April 2006.


	CRATE: A Simple Model for Self-Describing Web Resources
	Original Publication Citation

	crate.dvi

