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ABSTRACT: Constraining time is of critical importance to evaluating the rates and relative contributions of processes driving land-
scape change in sedimentary basins. The geomorphic character of the field setting guides the application of geochronologic or in-
strumental tools to this problem, because the viability of methods can be highly influenced by geomorphic attributes. For
example, sediment yield and the linked potential for organic preservation may govern the usefulness of radiocarbon dating. Similarly,
the rate of sediment transport from source to sink may determine the maturity and/or light exposure of mineral grains arriving in the
delta and thus the feasibility of luminescence dating. Here, we explore the viability and quirks of dating and instrumental methods
that have been applied in the Bengal Basin, and review the records that they have yielded. This immense, dynamic, and spatially
variable system hosts the world’s most inhabited delta. Outlining a framework for successful chronologic applications is thus of value
to managing water and sediment resources for humans, here and in other populated deltas worldwide. Our review covers radiocar-
bon dating, luminescence dating, archaeological records and historical maps, short-lived radioisotopes, horizon markers and rod
surface elevation tables, geodetic observations, and surface instrumentation. Combined, these tools can be used to reconstruct the
history of the Bengal Basin from Late Pleistocene to present day. The growing variety and scope of Bengal Basin geochronology
and instrumentation opens doors for research integrating basin processes across spatial and temporal scales. © 2019 The Authors.
Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.

KEYWORDS: Ganges–Brahmaputra Delta; geochronology; river channel avulsion; relative sea-level rise and subsidence; sedimentary basin
evolution

Introduction

Like sands through the neck of an hourglass, the fluvial and tidal
channels of deltaic margins govern the transfer of sediment from
large source terrains to their expansive ocean sinks. The move-
ment of sediment through deltas is further dictated by the avail-
able accommodation created by relative sea-level rise (i.e. land
surface subsidence and eustatic sea-level rise). Constraining the
rates and timing of these processes through the application of
geochronologic and instrumental tools is essential to determine
the amount and distribution of available sediment, and also of
tectonic, compactional, and marine controls that may generate
space to capture it on the delta plain (e.g.Paola et al., 2011;
Allison et al., 2016). In this sense, chronology is key to under-
standing basin evolution, and also to harnessing those processes

for nature-based solutions to delta management (e.g. Giosan
et al., 2014). Yet, chronologic constraints often prove to be the
missing link in many studies, in part due to difficulties with iden-
tifying and applying suitable tools for challenging field settings.

The selection of appropriate geochronologic or instrumental
tools for basin research requires careful consideration, as it is a
function of the research question and geologic setting. Mea-
sured rates are known to vary by the time interval over which
they are determined (Sadler, 1981). Each geochronometer or in-
strument also has limitations with regard to age range and mate-
rial, and the availability of useful dating material can be highly
site-specific. Applying chronology to deltas is especially compli-
cated, due to the complexity imparted by intertwined river, tidal,
and marine processes and their production of lithogenetically
varied deposits that overlap in space and time. This complexity
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may be further enhanced through the deformation of strata by
seismic and tectonic processes.
This paper explores the topic of geochronologic and instru-

mental applications in deltas, with a focus on selecting methods
appropriate to the geomorphologic attributes of the field site.
Our investigation is framed in the immense and densely popu-
lated Bengal Basin (Figure 1A), and reviews the tools used
therein to date and quantify sedimentary deposits of Pleistocene
age to present day, and to reconstruct the fluvial and tectonic
processes that govern sediment deposition. We discuss the attri-
butes, shortcomings, and quirks of eachmethod in the context of
Bengal Basin geomorphology, the datasets which they have
yielded, and the implications that may emerge from combined
geochronologic and instrumental records. This novel perspec-
tive on chronology gives insights into the link between field set-
ting and dating approach viability, thereby providing readers
with the background needed to select appropriate methods for
further advancing geochronologic and instrumental research
into delta evolution. Such information is critical to establishing
nature-based solutions to delta management.

The Bengal Basin

The Bengal Basin (Figure 1B) encompasses a vast area of
100,000 km2, with the upper several hundred metres of sedi-
ment composed of a stacked patchwork of highstand deltas
(Goodbred and Kuehl, 1999; Goodbred et al., 2003; Pickering
et al., 2017) situated on a tectonically deforming platform
(Steckler et al., 2008, 2016). Of these deltas, the most recent
is the up to 90 m thick Holocene sequence that contains de-
posits of the Ganges–Brahmaputra (G-B, sometimes referred
to as the Ganges–Brahmaputra–Meghna) Delta and includes
the veneer of a human-manipulated landscape (e.g.Auerbach
et al., 2015 ; Wilson et al., 2017). The Holocene delta was con-
structed by sediment principally mobilized from the rapidly
uplifting Himalayas and delivered to the delta plain via the pres-
ently 8 ± 4 and 10 ± 4 km wide channel belts of the respective

Ganges and Brahmaputra Rivers. Deposits from the last sea-level
highstand (MIS 5e) outcrop as terraces in the upstream (fluvial)
Bengal Basin (Pickering et al., 2017). The Bengal Basin is excep-
tionally complex because it is shaped by rapidly migrating rivers
(Sarker et al., 2003) delivering an enormous and highly seasonal
sediment load (Goodbred and Kuehl, 1999, 2000b; Rogers
et al., 2013), complex tidal signatures (Hale et al., 2018), erosive
yet constructive input by tropical cyclones (Darby et al., 2016),
seismic activity and tectonic deformation of the basement (Reitz
et al., 2015; Steckler et al., 2016), and burgeoning human popu-
lation pressure (Small and Nicholls, 2003; Brammer, 2014).

Establishing reliable chronology of landforms is a challenging
task in general, especially in deltas, and most especially in the
large, dynamic, and time-variable Bengal Basin. This is due in
part to the enormous scale of the system and the significant num-
ber of unknowns (e.g. the challenge of putting a date into a solid
geologic context or designing a sampling strategy). Large num-
bers of dated samples or instrumental measurements are needed
to truly capture the Bengal Basin’s processes over its immense
spatial and depth scales. Such an approach can be quite costly
and was likely beyond the means of the earliest studies
employing chronology. Furthermore, there are significant logis-
tical and travel limitations to spatially canvassing the Bengal Ba-
sin; anecdotally these include slow transportation, sporadic
lodging, lack of road connectivity, and as reported by Allison
and Kepple (2001), the ‘presence of tigers’.

The earliest chronologic framework of the Bengal Basin
emerged roughly half a century ago, based primarily on histori-
cal records, geomorphic/stratigraphic principles, and a few ra-
diocarbon ages (Morgan and McIntire, 1959; Coleman, 1969).
This sketch has been refined in recent decades through chronol-
ogies derived from radiocarbon dating (e.g.Umitsu, 1993 ; Stan-
ley andHait, 2000 ; Goodbred and Kuehl, 2000a ; Suckow et al.,
2001 ; Allison et al., 2003 ; Pickering et al., 2014 ; Sincavage
et al., 2018), short-lived radioisotopes (e.g.Goodbred and
Kuehl, 1998 ; Allison and Kepple, 2001 ; Suckow et al., 2001 ;
Rogers et al., 2013), and most recently, luminescence dating
(e.g.McArthur et al., 2008 ; Weinman et al., 2008 ; Chamberlain

Figure 1. (A) The Bengal basin hosts one of the most densely populated landscapes on Earth (image modified from CIESIN, 2005), with a mean pop-
ulation density of approximately 1100 people km�2 (Small and Nicholls, 2003). (B) The geomorphology of the Bengal Basin is complex. Here, major
rivers and tidal channels, elevated features, the natural Sundarbans forest, regions which may contain peat basin deposits, sediment routes, and rel-
ative magnitudes of annual sediment flux (see Goodbred and Kuehl, 1999; Wilson and Goodbred, 2015) are shown. [Colour figure can be viewed at
wileyonlinelibrary.com]
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et al., 2017 ; Pickering et al., 2017) and satellite imagery (e.g.
Higgins et al., 2014 ; Wilson et al., 2017 ; Dixon et al., 2018).
Given the perspective of time and scientific advancement, a re-
view by practicing geochronologists of published geochrono-
logic datasets is important for scrutinizing the present record of
the Bengal Basin, because unsuitable approaches and/or geo-
chronologic records can become canonized by repetition. Fur-
thermore, ages are only as good as the geologic framework
into which they are placed. In contrast, methodologically cor-
rect and geologically robust chronologic data have an outstand-
ing capacity to inform knowledge of the histories and processes
of evolving landscapes.
Here we review and summarize the advancement of geochro-

nologic and instrumental methods for determining the rates and
patterns of the intermingled processes that shape the Bengal Ba-
sin (Figure 2). Our review first covers broadly applicable
methods, including the classical approach of radiocarbon dating
and the developing suite of luminescence dating tools. These
geochronometers can be applied to constrain and quantify a
wide range of processes in the delta, such as subsidence (e.g.
Grall et al., 2018), accretion (e.g. Chamberlain et al., 2017),
and determining the timing and pathways of active river chan-
nels (e.g.Allison et al., 2003 ; Sincavage et al., 2018). We then
focus on methods that have been used to specifically capture
subsidence (e.g. GNSS, archaeological records, tide gauges,
InSAR, and RSETs; Steckler et al., 2010; Sarker et al., 2012;
Pethick and Orford, 2013; Higgins et al., 2014; Wilson et al.,
2018) and sediment accretion (e.g. radionuclides and RSETs;
Goodbred and Kuehl, 1998; Bomer et al., 2017) in the Bengal
Basin. Maps and satellite imagery (e.g.Addams, 1919 ; Wilson
et al., 2017) can be used to assess changes in the planform of
the delta (e.g. river and tidal channel pathways or coastline evo-
lution). Finally, we discuss instrumental methods for determining
water movement in the delta (e.g. tide gauges and acoustic
Doppler curent profiler; Singh, 2002; Hale et al., 2018; Bain
et al., In press; Hale et al., 2019). Combined, these tools cover
a diverse range of timescales and temporal resolutions, and en-
able ‘rating and dating’ of the Bengal Basin (Figure 2).

Radiocarbon Dating

Radiocarbon dating (Table I) is a classic dating approach that
has informed some of the first absolute, prehistoric

chronologies of deltas worldwide (e.g.Fisk, 1952 ; Berendsen,
1984). This method makes use of the proportion of the 14C
isotope that is fixed in plants or animals at the time of their
death and decays at a half-life of 5730 years. A radiocarbon
age is obtained by measuring the ratio of radioactive (14C) to
stable (12C) carbon in organic remains and calculating the
decay time needed to reach that proportion from the original,
which is then calibrated for atmospheric variations in 14C
(e.g. Ramsey, 1995). With direct ion counts obtained by ac-
celerator mass spectrometry, radiocarbon can be measured
to ~8 half-lives, giving a theoretical maximum age of ~45
to 50 thousand years (ka). Although calibration is possible
up to 50 ka cal BP (Reimer et al., 2013), dating of samples
> 26 ka cal BP may be problematic in practice as minor
contaminations may induce large age offsets, as is evident
from deviating attempts to establish calibration curves (Van
der Plicht et al., 2004), and published examples of radiocar-
bon age underestimation (e.g.Briant and Bateman, 2009 ;
Busschers et al., 2014 ; Briant et al., 2018).

Introduced in the 1940s (Anderson et al., 1947; Arnold and
Libby, 1949), the earliest radiocarbon approaches required beta
counting of the radioactive decay emitted from large amounts of
bulk organic material. This sometimes overestimated age by
thousands of years when the bulk material was not carefully se-
lected (e.g. Frazier, 1967), although fairly accurate chronologies
could be obtained through beta counting of rigorously sampled
bulk material (e.g.McFarlan, 1961; Berendsen, 1984). The ad-
vancement of accelerator mass spectrometry allows for mea-
surement of minute organic remains (e.g. single seed pods or
foraminifera shells), which are more likely to be directly related
to the geologic event of interest and therefore yield more accu-
rate ages (e.g. Törnqvist et al., 1996). The earliest radiocarbon re-
cords, while state-of-the-art at their publication time, should
therefore be regarded with caution. Radiocarbon dating of very
young (less than ~300 years) material is generally not reliable
due to the high anthropogenic input of carbon to the atmosphere
(e.g. see Levin and Hesshaimer, 2000), although there has been
some recent progress on developing radiocarbon approaches
for the past few centuries, including ‘post-bomb’ calibration
(see Törnqvist et al., 2015). Altogether, this means that radiocar-
bon dating can presently yield reliable ages within the range of
30,000–300 years, provided that suitable organic material is
measured.

Figure 2. Integrating geochronologic and instrumental methods across a deltaic landscape. Various methods (bold text) can be applied to different
regions and materials, to measure processes acting over a range of time and spatial scales. Research may be further enhanced by data obtained from
InSAR, RSETs, and historical maps (not pictured here). Together, this yields a holistic view of delta evolution. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Geomorphic constraints on peat

In the Bengal Basin, the in-situ organic material (e.g. peat) that
is most preferred for radiocarbon dating is notably limited in the
Holocene package of the G-B Delta (Goodbred and Kuehl,
1999). As such, only a relatively small number of ages obtained
from peat have been reported, and these are mostly limited to
shallow (<10 m), Middle to Late Holocene-age deposits
from localized basins in the central delta plain (Umitsu,
1993; Goodbred and Kuehl, 2000a; Allison et al., 2003;
Brammer, 2012).
The low formation and preservation of peat in the Bengal Ba-

sin is a direct consequence of the system’s sedimentary pro-
cesses and environmental conditions. Three principal factors
play a role: (i) a lack of available accommodation due to the
high sediment yield (Chamberlain et al., 2017); (ii)
remineralization and flushing under the highly seasonal cli-
mate (Allison et al., 2003); and (iii) a lack of preservation due
to laterally mobile channel belts in upstream regions of the
delta (Wilson and Goodbred, 2015). Foremost, the widespread,
seasonal deposition of siliciclastic sediment limits the concen-
trated accumulation of organic matter. This low organic-to-
clastic ratio is a function of sediment yield (Figure 3), because
mineral sediment aggrades more rapidly and is therefore more
efficient at filling accommodation than organic deposits (i.e.
peat) that grow slowly in situ (Chamberlain et al., 2017). Over-
all, the sediment yield of the Bengal Basin throughout the Ho-
locene has been exceptionally high relative to many deltas
(Goodbred and Kuehl, 2000a), because it is fed by two of the
rivers draining the rapidly uplifting Himalayas and the powerful
erosive and transport engine of the Southeast Asian Monsoon
(Goodbred and Kuehl, 2000b).
Furthermore, the regular input of sediment coupled with the

annual dry season limits the extent of perennially flooded ba-
sins where organic matter is best preserved. Thus, most organic
production is seasonally remineralized in oxidizing, vadose
soils. Finally, the large, laterally mobile channel belts of the
main rivers effectively rework shallow stratigraphy across the
Bengal Basin (Wilson and Goodbred, 2015), so even where

peats form, they are rarely preserved within the long-term
stratigraphy.

As a consequence of these factors, the formation of peats is
largely restricted to distal, sediment-starved areas of the delta,
found locally within the Sylhet Basin and the central delta plain
(Figure 1). The ‘peat basins’ of the central delta plain (Brammer,
2012; Wilson and Goodbred, 2015) contain alternating layers
of peat and clay-rich muds, restricted to the upper 3–6 m of
stratigraphy (Azeem and Khalequzzaman, 1994). These near-
surface deposits in the lower delta have principally dated to
1–6 ka, indicating that the basins have received limited sedi-
ment input and burial during that time (Khan and Islam,
2008). The deficit of sediment in these basins is a consequence
of their location at the distal reaches downstream of the Gan-
ges’ ephemeral distributaries and upstream of the major coastal
tide channels. Thus, without the main rivers having occupied
this area for the last several thousand years, peats have formed
and been preserved over this time. However, a future avulsion
of the main channels to these areas would rework and remove
most of the shallow organic-rich deposits. Additionally, many
of these basins have been drained or dredged for agriculture
and aquaculture production in recent decades, thus much of
the natural ‘peat basins’ of historical lore have been lost. Fi-
nally, it is worth noting that peat formation and organic pres-
ervation is even rare in the Sundarbans coastal mangrove
forest, which contrasts with the organic-rich deposits associ-
ated with some other mangrove settings (e.g. Woodroffe
et al., 2016). In the Sundarbans, this lack of organics is due
to active tidal sediment deposition and bioturbation (Rogers
et al., 2013; Gain and Das, 2014).

Applications to refractory remains

In the absence of widespread in-situ organic markers such as
peats, Bengal Basin radiocarbon records have been obtained
from particles of other organisms including carbonate shells
(e.g.Hait et al., 1996 ; Suckow et al., 2001), plant material
(wood, grass, leaves) embedded within riverine deposits
(Allison et al., 2003;Pickering et al., 2014 ; Grall et al., 2018 ;
Sincavage et al., 2018), and even a crab claw (Allison et al.,
2003). The association of such material to the event or deposits
of interest is tenuous, because these more refractory remains
may be much older than the sediment in which they are
encased (Schiffer, 1986). Shells of marine or estuarine origin
are also affected by the initial 14C/12C ratio fixed in these organ-
isms, which is a function of the local water source(s) and chem-
istry where they lived. This reservoir effect is often poorly
constrained, especially in estuarine settings, and may decrease
the precision of results or lead to inverted and anomalous ages
(e.g. Törnqvist et al., 2015). Furthermore, many of the radiocar-
bon records from the G-B Delta consist of relatively few ages
dispersed across wide geographic ranges (e.g. Allison et al.,
2003). It is difficult to validate such radiocarbon records due
to the lack of independent chronology and too few ages to
check for internal consistency (i.e. stratigraphic correctness).

A large collection (n = 198) of terrestrial radiocarbon ages,
primarily of wood fragments, yielded internally consistent ages
for Bengal Basin sedimentary deposits (Pickering et al., 2014;
Grall et al., 2018; Sincavage et al., 2018), suggesting that radio-
carbon can be a viable dating approach for the Bengal Basin
despite the lack of a known, direct relationship between these
organic fragments and the river and floodplain deposits in
which they were embedded. This finding supports that previous
datasets of small numbers of radiocarbon ages obtained from
similar material (i.e. macro-particles of terrestrial plant remains)
are likely to be trustworthy (e.g. see Allison et al., 2003, table

Figure 3. The selection of an approach to dating deltaic deposits is a
function of the organic-to-clastic ratio of the stratigraphic record, which
is primarily defined by sediment yield. Adapted from Chamberlain et al.
(2017), with sediment yield values from Milliman and Farnsworth
(2013). [Colour figure can be viewed at wileyonlinelibrary.com]
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1). The success of this approach may be due in part to the low
delta-wide preservation of organic material. Wood fragments in
the Bengal Basin appear to be generally contemporaneous to
the sediments in which they are encased, and therefore contain
a representative 14C/12C ratio at the time of deposition. They
are not likely mobilized by river incision into older 14C-defi-
cient organic deposits, as previously proposed (Stanley and
Hait, 2000), although the coastward delivery of 14C-depleted
material by rivers (Raymond and Bauer, 2001) remains a rea-
sonable mechanism of age overestimation in other, more
organic-rich deltas (e.g. Geyh et al., 1983). In other words,
the unavailability of organics in the delta’s stratigraphic record
both hinders and helps radiocarbon dating, by limiting the
dateable material yet also limiting old-carbon contamination.
Unlike peat beds which grow in association with the local

coeval water table and/or sea level, and therefore can serve
as precise markers of hydrologic conditions (e.g. Törnqvist
et al., 2004), the immediate relationship of wood fragments to
depth and hydrology (sea level, water table, and/or river bed
depth) is uncertain. Thus, radiocarbon ages of particulate or-
ganic matter collected from fluvial sands may have been de-
posited on the channel bed or within local scours that are 15
m or more below the local river surface elevation (Grall et al.,
2018). We speculate that much of the wood preserved in fluvial
sands of the Bengal Basin is related to lateral channel erosion
and bank collapse, which can rapidly bury bank-edge vegeta-
tion before it is remineralized, effectively sequestering that ma-
terial to the channel base.

Luminescence Dating

In his fundamental paper on the Brahmaputra River, Coleman
(1969) provided a geochronologic sketch of the G-B Delta, not-
ing: ‘Time relationships of the various units are tentative… Until
a suitable dating method is established, this problem will re-
main unsolved’. The introduction of optically stimulated lumi-
nescence dating to geoscience research (Huntley et al.,
1985), plus subsequent methodological (e.g.Hütt et al., 1988 ;
Murray and Wintle, 2000, 2003 ; Thomsen et al., 2008) and
statistical improvements (e.g.Galbraith et al., 1999 ; Cunning-
ham and Wallinga, 2010, 2012) of recent decades, now make
it possible to directly date the deposition of riverine clastic sed-
iments, thereby providing a means to fill the void recognized
by Coleman (1969).
Luminescence dating (Table I) includes a suite of sub-

methods that estimate the burial age of sediment from trapped
charge that accumulates in mineral (e.g. quartz; Huntley
et al., 1985 or feldspar; Hütt et al., 1988) grains when they
are removed from light. During transit in a river, marine or tidal
environment, the trapped charge may be zeroed (‘reset’,
‘bleached’) by sunlight exposure as grains experience tempo-
rary storage in floodplains or bars (e.g. Stokes et al., 2001) or
as they approach the water surface through turbulence (e.g.
Gemmell, 1988).
Upon burial, the mineral grains are exposed to ionizing radi-

ation from the decay of naturally occurring radioisotopes (40K;
thorium and uranium decay chains) within the surrounding sed-
iment matrix, as well as a typically minor component of radia-
tion from cosmogenic rays and internal mineral inclusions (e.g.
see Durcan et al., 2015). Absorption of this radiation causes
charge to become trapped within the mineral crystal lattice. Fol-
lowing careful sampling and processing to preserve the light-
sensitive signal(s) of interest, the grains are stimulated in a labo-
ratory by heat (thermoluminescence), blue light (optically stimu-
lated luminescence, OSL), or infrared light (infrared stimulated
luminescence, IRSL) to release the trapped charge and measure

the evicted luminescence signal that results. Through compari-
son with luminescence signals induced by laboratory charging
from calibrated radiation sources, this yields an estimate of the
total radiation dose received since burial, or the ‘paleodose’ of
the sample. A luminescence age is calculated by dividing the
paleodose by the yearly radiation dose (‘dose rate’), estimated
from radionuclide concentrations of the sample and surround-
ing bulk sediment and cosmogenic dosing, and taking into ac-
count attenuation factors (e.g. water content, grain size).

In addition to allowing for direct dating of the burial of river-
ine, tidal, and coastal deposits, the suite of sub-methods that
make up luminescence dating offer the most versatile delta
geochronologic approach in terms of timescale. Dating proto-
cols that target the OSL signal arising from quartz can yield ac-
curate ages for deposits from under a decade (Madsen and
Murray, 2009), to upwards of a few hundred thousand years
(Schokker et al., 2005). Protocols targeting feldspar signals
can reach beyond 500 000 years (see Wallinga and Cunning-
ham, 2015 for a review of luminescence age ranges and uncer-
tainties). The upper age limit of luminescence dating is highly
variable by geography, regardless of the selected mineral and
protocol, because it is set by the dose rate and saturation be-
haviour of the grains (see Wintle and Murray, 2006).

There are three primary criteria for luminescence dating of
sedimentary deposits: (i) the mineral is luminescence sensitive,
meaning it produces a luminescent signal after ionizing radia-
tion exposure; (ii) at least some grains within the sample have
had the luminescence signal of interest completely reset prior
to burial; and (iii) the signal of interest is stable with time
(Chamberlain, 2018). Quartz OSL offers the most readily reset
and stable luminescence signal (Godfrey-Smith et al., 1988;
Wallinga, 2002). However, quartz is not ubiquitously sensitive.
Rather, quartz sediments gain sensitivity with repeated epi-
sodes of luminescence signal accumulation and bleaching
(Pietsch et al., 2008), and are often poorly sensitized in young
quartz grains sourced from igneous or metamorphic bedrock
(Guralnik et al., 2015). Feldspar IRSL is more ubiquitously sen-
sitive (e.g. Reimann et al., 2017). Yet, the feldspar IRSL signal is
a-thermally instable, that is, it loses charge (‘fades’) with time
(Spooner, 1994). Measurement of the feldspar IRSL signal at el-
evated temperatures following a lower-temperature IRSL mea-
surement (known as post-infrared infrared stimulated
luminescence, or pIRIR) targets more stable yet less readily re-
set signals (Thomsen et al., 2008; Kars et al., 2014).

Sand-sized particles are typically preferred for optically stim-
ulated luminescence dating of fluvial deposits because these al-
low for the measurement of small aliquots containing a few or
even individual grains (Wallinga, 2002). This can be valuable
for obtaining an accurate paleodose through statistical ap-
proaches when some but not all sand grains in a sample have
been reset prior to deposition (Galbraith et al., 1999). By con-
trast, measurement of silt yields an average paleodose which
may arise from over 1 million grains per aliquot (e.g. Duller,
2008). Therefore, luminescence dating of silt is only viable if
the overwhelming majority of silt grains within the sample have
been reset prior to deposition. Finally, as with most geochrono-
logic methods, care should be taken to obtain representative
samples. For luminescence dating, this often (but not always,
see Reimann et al., 2017) means avoiding bioturbated material,
which may include very shallow sediments (e.g. <1 m depth)
or coastal/estuarine muds in the G-B Delta.

Quartz OSL applications

Luminescence dating has seen limited application in the Ben-
gal Basin at present, with few published studies employing
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the technique (see McArthur et al., 2008; Weinman et al., 2008;
Chamberlain et al., 2017; Pickering et al., 2017). This is due in
part to the relative newness of this method, but perhaps more
importantly, to the significant obstacles presented by the geo-
logic setting of the Bengal Basin. The Himalaya-derived quartz
sand is poorly sensitized (Jaiswal et al., 2008) when it enters the
delta via the Ganges and Brahmaputra Rivers, and opportuni-
ties for in-delta sensitization are limited by rapid source-to-sink
transport (Goodbred, 2003). A basin-wide assessment of the
sensitivity and bleaching of multiple luminescence signals by
Chamberlain et al. (2017), informed by 13 samples
representing inland and coastal deposits of the three primary
rivers (Ganges, Brahmaputra, and Meghna) and mixed-river
source deposits, confirmed that most regions of the G-B Delta
possess insensitive quartz sand that is not suitable for lumines-
cence dating (Figure 4A). Surprisingly, sedimentary deposits in
the northeast corner of the delta were found to contain sensitive
quartz sand (Chamberlain et al., 2017). This was attributed to
the unique tectonic and fluvial history of the region, where
the tectonically uplifted ancient (up to Paleogene-aged) sedi-
mentary deposits of the paleo-Bengal Delta form the present-
day Indo-Burman Fold Belt (Steckler et al., 2008) (Figure 1). Un-
like sediments produced from igneous and metamorphic bed-
rock, those sourced from sedimentary rock are more likely to
contain sensitive quartz (Sohbati et al., 2012). Yet, the sensitive
quartz sand of this locality remains largely sequestered within
the hydrologically disconnected Sylhet Basin (Figure 1), and
the population that does escape via the Meghna River is highly
diluted when it joins the Brahmaputra River system (Padma
River) and coastal/tidal sites downstream by insensitive quartz
sand of the larger rivers (Chamberlain et al., 2017). Notably,
quartz sand OSL ages have been obtained from the alluvial
floodplain of western India (Jain and Tandon, 2003; Jain et al.,
2005), and from the Ganga Plain (although low quartz sensitiv-
ity was observed; Ray and Srivastava, 2010), suggesting that a
small yet dateable population of quartz sand may reach the
delta via the Ganges River, although this has not yet been
identified.
Despite the limitations of quartz sand, quartz silt isolated from

sedimentary deposits of the Bengal Basin possesses suitable lu-
minescence properties, including acceptable sensitivity and
pre-depositional resetting (Figure 4B), and was shown to yield
ages consistent with independent chronologies (Chamberlain
et al., 2017). Sufficient bleaching of quartz silt has been identi-
fied in other large deltas, including those of theMississippi (Shen
et al., 2015) and Yangtze Rivers (Sugisaki et al., 2015; Gao et al.,
2018; Nian et al., 2018). This supports recent observations,

drawn from the Mississippi system, that turbulence within the
water column of large rivers may play an important role in
bleaching of suspended particles during fluvial transport (Cham-
berlain andWallinga, 2019). However, the utility of this discov-
ery in the Bengal Basin may be limited by the sand-dominated
nature of its deposits, especially in the upstream reaches of
the fluvial delta (Wilson and Goodbred, 2015), and by a
quartz silt upper age limit of ~25 000 years set by the early
saturation behaviour of the grains and high dose rates of G-
B muds averaging ~4.1 Gy ka�1 (Chamberlain et al., 2017).

Feldspar IRSL applications

Feldspar extends the age range of luminescence dating, and
was used by Pickering et al. (2017) to estimate the age of
three samples obtained from terrace deposits of the paleo-
Brahmaputra River in the upper Bengal Basin. The dated de-
posits were known to be pre-Holocene in age due to their
stratigraphic position below radiocarbon-dated Holocene sed-
iments, and/or extensive weathering and high degree of com-
paction at nearby exposed sites (Pickering et al., 2014).
Measurement of small-diameter, multi-grain feldspar aliquots
using a pIRIR-290 protocol (Thiel et al., 2011) with a fading
correction following Huntley and Lamothe (2001) extrapolat-
ing 2–3% fading per decade yielded ages upwards of 100
000 years (Pickering et al., 2017). It is noteworthy that such
a fading correction may overestimate fading of old samples
like these, which are in the higher portion of the saturation
curve (Kars et al., 2008). However, both fading-corrected
and uncorrected ages were reported and these agreed within
uncertainty (Pickering et al., 2017). A dose of 25 Gy was
subtracted from the paleodose of each sample to account
for poor bleaching of the pIRIR-290 signal; such a correction
is not atypical for luminescence dating of high-temperature
feldspar signals (e.g. Joordens et al., 2015). With reported
dose rates of 2.3–3.6 Gy ka�1 (Pickering et al., 2014), this
bleaching correction corresponds to ~7000 to 11 000 years
of residual dose.

No Holocene pIRIR ages have yet been reported for the Ben-
gal Basin, and a multi-thousand-year correction for poor
bleaching like that applied by Pickering et al. (2014) would dis-
qualify results for Holocene-aged samples. Nevertheless, pIRIR
dating may still be possible using lower temperatures for pIRIR
stimulations (Madsen et al., 2011; Reimann et al., 2011), com-
bined with single-grain measurements (e.g. Brill et al., 2018) or
fading-corrected IRSL. Although correction for anomalous

Figure 4. Typical quartz OSL responses of (A) sand, and (B) fine silt isolated from young (<45 years) G-B Delta deposits, including the luminescence
decay curves and dose–response measurements (inset). For decay curves, the natural signal is shown in black and a regenerative signal (A: 5.9 Gy, B:
2.95 Gy) is shown in blue. (A) Quartz sand generally has low OSL sensitivity, indicated by low OSL counts within the first few seconds of stimulation,
making it unsuitable for luminescence dating. The low natural signal yet high regenerative signal of (B) quartz silt indicates that this fraction is both
well bleached and sensitive, making it suitable for luminescence dating. See Chamberlain et al. (2017) for full details of the samples. [Colour figure
can be viewed at wileyonlinelibrary.com]
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fading will be needed (Auclair et al., 2003), the better
bleachability of such signals compared to pIRIR measured at
290 °C (Kars et al., 2014) provides a reasonable compromise.
As a large fraction of feldspar grains often produce a measurable
luminescence signal, single-grain pIRIR dating of feldspar may
allow the use of advanced statistical methods to select the
best-bleached grains. To the best of our knowledge, single-grain
pIRIR dating has not yet been attempted for G-B Delta deposits.

Human History

Deltas are living landscapes, where high bioproductivity, ac-
cess to waterway transportation, and resource availability drive
high human population density. These rich ecotomes also often
serve as ‘cradles of civilization’ (e.g. Day et al., 2007), and
thereby offer longstanding human records in the form of ar-
chaeological sites and historical maps or other written docu-
ments. The human record can inform knowledge of deltaic
evolution over the past few thousand years, and may influence
the scope of questions we ask as scientists. For example, high-
resolution historical records of the Rhine Meuse Delta enable
testing new geochronologic approaches against known-age de-
posits (e.g. Cunningham andWallinga, 2010). Similarly, the rel-
atively rapid avulsion timescale plus lengthy historical record
of the Yellow River Delta (Saito et al., 2000) has minimized
the need for research on recent lobe (subdelta) chronology
and allowed contemporary research to address other questions
such as the mechanisms of avulsion setup (e.g. Ganti et al.,
2014). Meanwhile, lobe chronology and growth history remain
a current line of inquiry in deltas with millennial-timescale
avulsions and/or lower-resolution historical records (e.g.Hijma
et al., 2017 ; Chamberlain et al., 2018), including the G-B Delta
(e.g. Allison et al., 2003).

Archaeological sites

At present, the Bengal Basin historical archive (Table I, Figure 5)
is relatively short and low-resolution compared with some other
Asian deltas such as the Yellow River Delta, but still more infor-
mative than records of more remote tropical deltas such as the
Fly River Delta of Papua New Guinea. While the Bengal Basin
archaeological record extends to the second millennium BCE,
information is limited until the 4th century CE, when Bengal
came underGupta rule. Still, much of the eastern delta remained
sparsely populated until the historically recorded ‘avulsion’ of
the Ganges from the Hooghly channel to the present Padma
channel over the 16 to 19th centuries (Eaton, 1993). Many pre-
historic archaeological sites have only been relatively dated by
typology of artefacts, and lack absolute chronologies (Rajaguru
et al., 2011).
There has been limited use of archaeological sites for geo-

logic investigations in the Bengal Basin. Rajaguru et al. (2011)
investigated the stratigraphic relationship of archaeological
horizons to natural flood deposits at three sites in West Ben-
gal, yet had little absolute chronology. The authors identified
the potential of luminescence dating to directly link archaeo-
logical sites to processes of landscape evolution, including
paleochannel activity (Rajaguru et al., 2011). Wari-Bateshwar
(Figure 5), near Narsingdi (Jahan, 2010), arose around 450
BCE and declined during the 7th century CE, likely in concert
with avulsions of Old Brahmaputra River and the changing
position of its confluence with the Meghna River (Figure 6A).
Hanebuth et al. (2013) estimated coastal subsidence by dat-
ing a 300-year-old salt-making facility (Figure 5) uncovered
by Cyclone Sidr in the Sundarbans. The age of the

archaeological site was determined through radiocarbon dat-
ing of associated mangrove remains and OSL dating of heated
salt-production artefacts (Hanebuth et al., 2013), the latter
likely OSL sensitized by the heating process and therefore
possessing different OSL properties than natural sedimentary
deposits. Many more sites in the area have now been discov-
ered, extending the record an additional 1000 years
(T. Hanebuth, personal communication, 2018).

Sarker et al. (2012) also estimated subsidence rates, using the
relative elevation of four historic sites, including two mosques
and two Hindu temples (Figure 5). However, the subsidence
rates estimated by Sarker et al. (2012) are sensitive to the archi-
tectural interpretation of the archaeological monuments. For
example, subsidence at the Shakher Temple in the Sundarbans,
built during the reign of Raja Paratapaditya, the last King of

Figure 5. Map showing the location of GNSS and RSET installations,
InSAR measurements, and archaeological sites in Bangladesh, all used
to estimate subsidence. The circles show continuous GNSS sites
installed by several groups. Red and pink circles were installed by the
Lamont-Doherty Earth Observatory (LDEO) and Dhaka University Earth
Observatory (DUEO) (Steckler et al., 2016). The pink sites were
installed as campaign monuments near Dhaka or currently inactive
continuous sites that are available for reoccupation elsewhere. The
blue circles were installed by the Earth Observatory of Singapore
(EOS) and Bangladesh Geological Survey (BGS) (Mallick et al., 2019)
and the yellow circles by the Survey of Bangladesh. The thin black line
outlines the area of InSAR analysis by Higgins et al. (2014). Historic
sites are shown as light green squares with identifying letters inside. S
= Shakher Temple, B = Bibi Beguni and Chunakhola Mosques at
Bagherat, D = Doyamayee Temple, all from Sarker et al. (2012) with
a reanalysis of the Shakher Temple in this paper. K = the Katka salt kilns
(Hanebuth et al., 2013). W = Wari Betashwar (Jahan, 2010). The blue
inverted triangles are RSET sites. The dark green triangles are tide and
river gauges, with the slightly larger symbols showing the sites with data
available from the Permanent Service for Mean Sea Level (PSMSL).
GNSS and RSET to be installed in July–August 2019 are given by the
smaller, paler symbols. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Jessore, before his conquest by the Mughals in 1611 CE, was
judged by the present-day elevation of the plinth level (the plat-
form for the building that was constructed to raise it above
flood level). Sarker et al. (2012) placed this horizon at the en-
trance of the temple at the top of the stairs, even with the inte-
rior of the temple, as is common for Muslim mosques.
However, we propose that the plinth level of the Sharker Tem-
ple is more likely a lower architectural feature, marked by a
ridge in the brickwork at the base of the entrance stairs 0.1 m
above the ground and indicating a raised entrance, as is com-
mon in Hindu temples. Such discrepancies underscore the
need for robust, culturally specific analyses of archaeological
sites, and demonstrate that further work is needed to optimize
the geoarchaeological record of the Sharker Temple and likely
other sites as well.

Historical and satellite-derived maps

Historical maps and accounts in the G-B Delta, while some-
what limited, provide relevant information on landscape
changes over the past 400 years (Table I). In particular, histori-
cal documents tend to focus on the pathways of the dynamic,

big rivers, while showing less focus on uninhabited regions or
unnavigable channels. This reflects the societal importance of
rivers as the primary conduits of people and goods until recent
engineering advances in transportation. River pathways also
dictate the distribution of food resources, both through fisheries
and the presence of arable land. As such, the location of towns,
obstructions, and the depth/navigability of channels, and de-
fensive positions (for warfare), are often recorded. One exam-
ple is the highly detailed ‘1776 Bengal Delta’ by Major James
Rennell, an engineer for the British East India Company (Fig-
ure 6B; Rennell, 1776). It depicts relatively accurate locations
and morphology of major river channels, islands, lakes, wet-
lands, forests, roads, and inhabited towns/villages.

Historical documents also reveal complex landscape occu-
pational histories by the big rivers and their distributaries. For
example, Rennell’s (1776) map shows that the two mainstem
rivers of the G-B Delta had separate distributaries in the late
18th century. Rather than converging to form the Padma River,
the Ganges River then occupied a more westward course in
what is now the Arial Khan channel, while the Brahmaputra ac-
tively flowed down the Old Brahmaputra path into Sylhet Basin
(later avulsed into its present channel by 1850 CE; see Best
et al., 2007; Pickering et al., 2014).

Figure 6. The planform evolution of river and tidal channel networks can be reconstructed over centennial to decadal timescales through the com-
bination of historical map archives and Landsat imagery. (A) River channel migration over the past 400 years is reconstructed from a compilation of
historical maps and accounts (Rennell, 1776; Addams Williams, 1919; Brammer, 2004; Best et al., 2007). Black arrows indicate the progressively
eastward migration of the Ganges River and distributaries, and relative elevation is shown in greyscale. (B) A portion of one historical map (Rennell,
1776) is shown; note the focus on river channels and village names/locations. (C, fromWilson et al., 2017) Landsat imagery informs rates and patterns
of more recent, decadal timescale tidal channel infilling related to human modifications of the delta plain. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Additional historical documents, considered in sequence, re-
cord the migration of the Ganges River over the past few centu-
ries (Figure 6A), from pre-16th-century occupation of the
westward Bhagirathi (now Hooghly) that flowed into Calcutta
(now Kolkata) (Addams, 1919; Brammer, 2004), to the more
eastward pathway of the Matabhanga/Nabaganga in the early
16th century. Through the 18th century, the Ganges continued
its eastward migration, occupying the Madhumati then arriving
at the configuration depicted in Rennell’s (1776) map (Fig-
ure 6B). When the Ganges converged with the Brahmaputra
to form the Padma in the early 19th century, locals reported that
water from the Ganges was ‘dammed back’ (leading to up to 2
m increase in water height upstream of the confluence), which
forced more water down the secondary older distributaries
(Matabhanga, Kumar, Nabaganga, Chitra, Bhairab-Kobadak;
Addams, 1919). Subsequently, the modern-day Gorai opened
as a relief channel between 1820 and 1840 CE (Addams,
1919; Brammer, 2004), and the older distributaries received
less discharge, with flow primarily during the monsoon. At
present, those between the Hooghly and Gorai are effectively
cut off and fed only by local precipitation (Addams, 1919).
Other information can be obtained from USGS-provided

Landsat (modern satellite) images captured approximately ev-
ery two weeks since 1972. The Landsat record is especially
well suited for recording human-induced changes to the
Anthropocene delta veneer, due to its historical timescale and
spatial resolution (80-m pixel size prior to 1982; 30-m thereaf-
ter). Landsat imagery enables planform observations of deltaic
change at the mesoscale, for example, infilling of channels in
the moribund Ganges Delta plain and channels within the tidal
region of the delta (Figure 6C). Such changes have been linked
to human modification of channel networks (e.g.Alam, 1996 ;
Pethick and Orford, 2013). Specifically, the construction of em-
bankments in the 1970s to protect >5000 km2 of agricultural
land (former tidal floodplain) cut off a substantial portion of
the tidal prism and more than 1000 linear kilometres of primary
creeks, thereby driving siltation and channel infilling in the re-
maining lower tidal delta channels (Moshin-Uddin and Islam,
1982; Wilson et al., 2017). In the fluvial-dominated section of
the delta, scars of former river channels (e.g. oxbow lakes,
ridges and swales of scroll and point bar formations) remain
prevalent and visible in Landsat imagery, allowing further re-
constructions of the paleo-landscape. Clear-sky images, how-
ever, are relatively limited to the dry season, and tidal stage is
important for landscape change analysis in the tidal delta plain
(C. Small, personal communication).
All together, the focus of historic maps on G-B river channel

pathways and associated communities, and insights into chan-
nel infilling obtained from Landsat imagery, are consistent with
a highly bioproductive, densely populated, human-modified,
and naturally dynamic landscape. Yet, these records remain in-
termittently captured snapshots of surface and near-surface
changes in the delta and, in the case of historical documents,
are subject to human interpretation during the recording
process.

Short-Lived Accretion Rate Measurements

Fallout radionuclides have long been used to quantify
sediment accretion rates over single-event to decadal time-
scales (Table I). 210Pb and 137Cs are two of the most widely ap-
plied of these geochronometers (e.g.He and Walling, 1996 ;
Walling and He, 1997 ; Hobo, 2015), each being particle reac-
tive and readily sorbing to sediment surfaces. The short-lived
fallout radionuclide 7Be can be applied to discrete flood events
(e.g. Sommerfield et al., 1999) or seasonal sediment deposition

(e.g. Rogers et al., 2013). Other short-term geochronometers
can include direct observations of sediment deposition via sur-
face elevation tables and marker horizons (e.g. Day et al.,
2011) (Table I). Together these particle tracers (i.e. radionu-
clides) and direct observations of short-term sedimentation,
erosion, and surface elevation comprise an important suite of
techniques that bridge the gap between active processes and
the stratigraphic record.

Radioisotopes: 7Be, 137Cs, 210Pb

210Pb is a naturally occurring radionuclide that has a half-life of
22.5 years and is produced by the decay of its near parent,
222Rn gas. 222Rn is well mixed in the lower atmosphere and
surface ocean, deriving from its parent, 226Ra, which is wide-
spread in soils, bedrock, and seawater. Thus, as 210Pb forms
and sorbs to particle surfaces, it becomes an effective tracer
for those sediment particles younger than ~4 to 5 half-lives,
or up to a century. However, the sorbed nuclides are primarily
bound to fine-grained sediments (silts and clays) because of
their larger, charged mineral surface, which must be corrected
when comparing nuclide concentrations in sands and muds
(Goodbred and Kuehl, 1998).

137Cs is another radionuclide that is particle reactive and
readily sorbs to the surface of sediment particles, making it an
effective geochronology tool, but it is not naturally occurring.
Rather, 137Cs was released to the global atmosphere by
above-ground nuclear weapons testing, beginning in the late
1950s until 1963, when the nuclear test-ban treaty was
enacted. However, it should be noted that 137Cs can be
remobilized (i.e. desorb) under strongly reducing conditions,
particularly in coarser-grained sediments with weaker bonding
sites (Evans et al., 1983).

Compared with the natural production of 210Pb via the 238U
decay series, the bomb-produced anthropogenic origin of
137Cs yields a very different production history (Figure 7A).
Whereas 210Pb is produced at a constant but locally variable
rate, the production of 137Cs principally occurred as a major
spike in the middle of the last century. This means that, com-
bined, 210Pb and 137Cs can provide both a chronostratigraphic
horizon and estimates of sediment accumulation rates for ~4 to
6 decades above and below that horizon, under optimal condi-
tions (Figure 7B). However, these results may be complicated
by the factors discussed below.

In the Bengal Basin, the concentration profiles of 210Pb and
137Cs are highly covarying (Figure 7C) – in other words, their
accumulation in G-B Delta sediments indicates a similar input
history, despite having distinct production rates. To obtain these
results, 210Pb- and 137Cs-tagged sediments must be well mixed
in the catchment basin, thereby shredding the signal of their
different input histories. This finding reflects the abundant ex-
change of sediment (i.e. erosion and deposition) between the
channel and the floodplain along the fluvial transport pathway
(Goodbred and Kuehl, 1998). In other words, the continuous
mobilization and mixing of shallow 210Pb- and 137Cs-tagged
sediments with older fluvial sediments both dilutes the concen-
tration of 210Pb and 137Cs in young deposits and homogenizes
the concentration of these tracers. Such a result is consistent
with the region’s highly mobile braided rivers and tidal
channels.

These records also indicate that the input of 210Pb- and
137Cs-tagged fluvial sediment from the catchment overwhelms
local atmospheric deposition and marine production of these
radionuclides. This attribute is a direct consequence of the
massive sediment load delivered by the Ganges and Brahma-
putra Rivers, which serves to dilute local radionuclide
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production and dominate both the depositional history and in-
put of 210Pb and 137Cs to the system.

7Be is an atmospheric fallout radionuclide formed by the cos-
mic spallation of nitrogen and oxygen in the upper atmosphere.
It is particle reactive and thus a useful sediment tracer
(Sommerfield et al., 1999); however, with a 53-day half-life it
is only suitable over timescales up to a few months. Thus, 7Be
is often used to track recent river sediment discharge, from that
of a single flood event to the seasonal high discharge of a river
plume. In the G-B Delta, 7Be has been applied as a tracer of
river-mouth sediments discharged to the inner shelf and
advected back onshore by tides (Rogers et al., 2013). Because
7Be can only be traced for a period of a few months, the pres-
ence of this radionuclide in the remote Sundarbans mangrove
forest indicates that some of the sediments deposited there orig-
inated directly from that year’s discharge plume. Based on the
concentrations of 7Be on mangrove sediments compared with
those of suspended sediment in the river, it was determined that
the fraction of fresh sediment from the river was ~50% of the to-
tal deposited (Rogers et al., 2013). As for 137Cs, a comparison of
7Be and 210Pb concentrations in freshly deposited monsoon
sediment proved to be consistent, again reflecting well-mixed
sediments derived from the catchment basin.
Although the records of fallout radionuclides (7Be, 137Cs,

210Pb) in the Bengal Basin generally do not yield typical profiles
ideal for estimating changes in accumulation rates with time
over recent years to a century (Figure 7C), they have yielded
novel insights into mechanisms of sedimentation in the delta.
Specifically, these tracers show a consistent pattern of rapid
sediment loading across the delta. The persistence of ratios be-
tween these tracers, despite their divergent production histories
and disparate half-lives, indicates that sediment delivered from
the G-B catchments is well mixed by abundant sediment ex-
change between the channel and the floodplain, leading to a
spatially and temporally averaged delivery of nuclide-tagged
sediments.

Marker horizons and rod surface elevation tables

Anthropogenically placed surface indicators, called marker ho-
rizons (e.g. granular feldspar, coloured sand, brick dust, or even
glitter, dispersed typically over 1 m2 plots) and sediment

collecting plates (tiles, pads, artificial grass mats, or traps,
0.1–0.5 m2 in size) are physical markers that are placed on
the coeval land surface to form a chronologic boundary
(Stoddart et al., 1989; Reed et al., 1997; Cahoon et al., 2002).
Return visits allow for estimating sedimentation rate since em-
placement, by observing the thickness of fresh sediment overly-
ing these noticeable/distinguishable markers. When arranged
in arrays or transects, spatial variability of sediment deposition
across geomorphic features can be quantified (e.g. Asselman
and Middelkoop, 1995).

These short-term measurements are utilized over seasonal
or tidal timescales in quiescent wetland or floodplain settings
where water velocities are low and sediment accumulation
outpaces erosion. They are less effective in high-energy set-
tings where the marker may be washed away. Although gran-
ular marker horizons have been shown to remain within the
substrate for years to a decade, bioturbation from macro-flora
and -fauna can vertically mix the material over time. For
these reasons, the sediment plate method is favoured over
the granular method in the G-B Delta in regions where crab
activity is prevalent (e.g. Sundarbans, unpoldered regions in
the tidal delta plain). Sediment plates also offer the advantage
of being able to determine the mass and character (i.e. grain
size, water/organic content) of accumulated sediment. Yet,
sediment plates can likewise be disturbed or lost, especially
in regions near human occupation (Rogers and Overeem,
2017). Creative solutions may be adopted to enable plate de-
ployment in human-occupied zones; for example, in the
densely populated G-B Delta, plates have been buried below
agricultural activity with depth to plate measured using a
sounding rod or excavation (Bomer et al., 2017; Wilson
et al., 2018).

Marker horizon data are sparse in the G-B Delta and collec-
tion has been limited to the past 5–10 years. However, studies
from within the Sundarbans mangrove forest (Figure 1) and
Meghna estuary have shown that sedimentation rates can be
as high as 6 cm over a single monsoon season (Rogers et al.,
2013; Rogers and Overeem, 2017), or up to 5 g cm�2 (average
1.3 g cm�2; Rogers et al., 2013). Much of this is from inorganic
accumulation (~97%; Rogers et al., 2013) supplied from the
sediment-laden rivers that passively flood the landscape by
tides and/or riverine floods. These values provide important ref-
erence points for comparisons with sedimentation rates in

Figure 7. (A) Atmospheric fallout rates, (B) an idealized profile, and (C) typical G-B profiles for 210Pb and 137Cs radionuclides show that, while the
production rate and activities in an ideal core are disparate, the activities of these two radionuclides covary in G-B deposits. The atmospheric fallout
rate (A) of 137Cs is from Hancock et al. (2014). Radionuclide profiles of G-B cores (C) are from Goodbred and Kuehl (1998). [Colour figure can be
viewed at wileyonlinelibrary.com]
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human-modified portions of the landscape (e.g. polders; Auer-
bach et al., 2015).

Determining the balance of subsidence and accretion is crit-
ical to identifying whether deltas may persist or drown. Rod
surface elevation tables (RSETs; Cahoon et al., 2002) have been
implemented in deltaic and wetland settings worldwide to
measure, with millimetre-scale accuracy, elevation change rel-
ative to deep (5–25 m) stainless steel benchmarks (e.g.Day
et al., 2011 ; Webb et al., 2013 ; Jankowski et al., 2017). Mea-
surements reflect processes acting over seasonal to decadal
timescales. If used in conjunction with vertical accretion deter-
minations from marker horizons, net shallow subsidence can
also be quantified (Cahoon et al., 2002). While utilization of
this method is in its infancy in the G-B Delta (records extend
~5 years; Figure 5), preliminary results of Bomer et al. (2017)
and Wilson et al. (2018) show that the natural surfaces of the
Sundarbans are tracking the effective sea-level rise originally
postulated by Addams (1919) and documented recently by
Pethick and Orford (2013). In addition, polder regions are ca-
pable of ameliorating elevation deficits, but only if adequate
water and sediment exchange is reinitiated (e.g. Khadim
et al., 2013; Haque et al., 2015; Hale et al., 2019). These lim-
ited studies demonstrate the potential of RSETs to resolve the
sensitive balance between subsidence and accretion in the G-
B Delta, and their spatial variability. This information is critical
for the sustainable management of the delta (i.e. Bangladesh
Planning Commission, 2017), and will be further realized by
the expansion of the RSET network in the fluviotidal delta plain
over the next decade as part of the greater initiative to improve
embankment stability through the Coastal Embankment Im-
provement Project (Figure 5).

Geodetic Observations

Satellite geodetic observations (Table I) are not geochronologic
methods in the traditional sense, yet these instrumental tools fill
a niche by providing measurements of landscape change over
decadal to event timescales, complementing the tools de-
scribed above. Here, we discuss the use of the Global Naviga-
tion Satellite System (GNSS) and interferometric synthetic
aperture radar (InSAR) satellites. In the Bengal Basin, these
technologies have mainly been applied to determine tectonic
land movement and subsidence. Such research is critical to un-
derstanding sedimentation patterns in the Bengal Basin, be-
cause of the role tectonics may play in steering river channels
(e.g.Akhter, 2010 ; Grimaud et al., 2017) and generating ac-
commodation (e.g.Johnson and Nur Alam, 1991 ; Najman
et al., 2012).

GNSS

GNSS has expanded beyond the US Global Positioning System
(GPS) as Russian (Glonass), EU (Galileo) and Chinese (Beidou/
Compass) systems are becoming operational. Positions using
the codes broadcast by the satellites have accuracy of a few
metres, which can be enhanced to sub-metre accuracy with
differential corrections. However, positions using interferome-
try on the phase of the carrier wave can reach accuracies of
±2 mm for the horizontal and ±6 mm for the vertical when
processed to provide daily records of land movement. This
may improve as more satellites from different systems with dif-
ferent systematic errors become available. GNSS enables ob-
servations using fixed antennas over years to estimate rates of
tectonic deformation of the crust, as well as its subsidence or
uplift, on the order of ±1 mm year�1 or better. Given the low

signal-to-noise ratio between slow subsidence rates (mm
year�1) and the best spatial resolution of several centimetres,
it generally takes ~3 years to determine reliable horizontal rates
and 5 to 6 years for vertical rates. In particular for the G-B
Delta, the large seasonal motions of the ground surface due to
loading and unloading of local surface waters, up to 5–6 cm
annually (Steckler et al., 2010), make continuous GNSS sites
necessary for accurate vertical rates. The first continuous GNSS
receivers in Bangladesh were installed in 2003 and the number
of sites in the Bengal Basin has grown over the years (Figure 5).
Continued measurements will enhance the length of the record
and thus the accuracy of subsidence rates.

In Bangladesh, several groups have installed GNSS systems
(e.g.Vernant et al., 2014 ; Reitz et al., 2015 ; Steckler et al.,
2015 ; Steckler et al., 2016) (Figure 5), returning subsidence
rates ranging from <1 to 17 mm year�1 and spatially varying
in relation to regional tectonics. Most of the antennas have
been mounted on either stainless steel threaded rods cemented
or epoxied into reinforced concrete buildings, or on tripods
constructed out of welded stainless steel rods driven into the
ground. These systems capture subsidence where they are
coupled to the ground, either at the foundation of the building
or the ~2 m of rods in the ground. Thus, GNSS, particularly of
building sites, may not measure the shallowest component of
land-surface subsidence (i.e. compaction), thereby
underestimating total subsidence. Measurements obtained
through fixed monuments may also overestimate land-surface
subsidence if the buildings sink under their own weight.

InSAR

This geodetic satellite system uses microwave frequencies in ei-
ther the L, C or X bands (1.2, 5.3 or 10 GHz) to collect SAR im-
ages of the ground surface. The satellite imaging systems look
obliquely at the ground (line of sight, LOS) and measure the
amplitude and phase of the reflected signal. Differences in the
phase represent changes in the travel time of the radar wave
and are due to topography in the LOS as well as scattering at
the surface and atmospheric delays. Multiple SAR images from
different look angles and directions can be combined to create
a digital elevation map (DEM). Repeated observations from the
same, or almost identical, look angles can be differenced to
create an InSAR image that records changes in elevation over
time. The phase differences, corrected for geometry and topog-
raphy, reflect the difference in travel time and thus the distance
along the LOS. The phase differences related to the variation in
look angle across the images can then be calculated and re-
moved, if precise orbits are known, a process known as interfer-
ogram flattening. Ground control from GNSS receivers can
help constrain the variation of the phase across the image from
orbital errors. The flattened interferogram still has a cyclic
change in phase that can be ‘unwrapped’ by adding the correct
number of cycles to yield changes in elevation along the LOS.

A major issue in the Bengal Basin is the coherency of the im-
age. Only coherent patterns of phase can be interpreted. How-
ever, scattering at the ground surface by water or vegetation
can reduce or eliminate the coherency between pixels, making
the use of InSAR in the heavily vegetated Bengal Basin chal-
lenging. Over the last two decades, analyses using persistent
scatterer techniques to identify networks of individual, phase-
coherent targets in a large number of images have been
developed. Higgins et al. (2014) used the SBAS (small baseline
subset) version of the technique with the longer wavelength
L-band (23.6 cm) ALOS satellite, which is less affected by veg-
etation. They still needed to average the inferograms over 16 ×
16 pixels and eliminate images from the monsoon period when
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water vapour in the atmosphere is higher. The results showed
that subsidence rates vary from 0 to>18 mm year�1, correlated
to subsurface lithology and groundwater extraction (Higgins
et al., 2014). At this stage, this is the only published InSAR study
of the Bengal Basin (Figure 5). However, multiple efforts are un-
derway using the C-band European Sentinel-1 satellites
launched in 2014 and 2016.

Surface Instrumentation

Like geodetic observations, tide gauges and the acoustic Dopp-
ler current profiler (ADCP) (Table I) are not traditional geochro-
nology tools, yet these instruments complement traditional
approaches by providing high-resolution and contemporary re-
cords of fluviodeltaic processes.

Tide gauges

Tide gauges measure changes in absolute water level, with typ-
ical temporal resolution ranging from minutes to an hour. Sen-
sors can either be permanent and cabled, or battery-powered
and temporary, with individual deployments lasting from days
to months. Permanent tide gauges are generally installed as
an aid to navigation. Data can be used to understand every-
thing from daily and spring-neap tidal cyclicity, to seasonal pat-
terns, to longer-term subsidence measurements. Finally, an
array of tide gauges can provide useful information regarding
spatial patterns of water-level change, as they relate to tidal
and monsoonal processes.
Tide gauges have been used across southern Bangladesh

since at least the 1940s (Pethick and Orford, 2013). Significant
logistical challenges associated with using tide gauges in the G-
B system relate to the aforementioned inaccessibility of much
of the delta plain. Water levels have been monitored along im-
portant shipping routes, with little attention paid to the smaller
channels. Even if a site is monitored, data fidelity can be a ma-
jor concern, with data outages or missing metadata as the most
common plagues. Furthermore, using tide gauges to compare
across space or time requires the use of benchmarks which
may be anchored to different depths, experience different de-
grees of compaction, and therefore capture different compo-
nents of relative sea-level rise (Keogh and Törnqvist, 2019).
This concern is relevant to the G-B system and to deltas in
general.
On shorter timescales, tide-gauge data have been used to

demonstrate patterns of monsoon-controlled water-level
changes, and the importance of inundation frequency on sedi-
ment deposition (Hale et al., 2019). (Bain et al., In press) use
tide-gauge data in combination with other methods (see ADCP)
to demonstrate the complexity of channel interactions on
spring-neap timescales, and to help explain observed patterns
of changing channel morphology over the past several
decades.
On longer timescales, studies have identified trends in sea

level as well as tidal amplification due to the construction
of polders (e.g.Singh, 2002 ; Pethick and Orford, 2013). Singh
(2002) analysed 22 years of tidal data and observed a twofold
increase in sea-level rise from west to east, attributed to sub-
sidence. This finding highlights the need for broad spatial
coverage in tide-gauge measurements as they relate to subsi-
dence and other processes that may be highly locally
variable.

ADCP

ADCP instrumentation measures water velocities at discrete el-
evations through the water column. Simply put, the instrument
emits an acoustic signal (typically 100 kHz to 2 MHz) from
each of three to nine acoustic transponders, then records the
Doppler shift of the return signal to compute the direction
and speed of water movement at distances of ~0.5–50 m from
the instrument, depending on hardware and deployment con-
figuration. From this, water discharge can be measured in one
of two ways. Ship-based measurements are a common method
to measure water and sediment discharge across individual
tidal cycles (e.g.Mueller and Wagner, 2009 ; Nowacki et al.,
2015), whereby the instrument is mounted in a downward-
facing orientation to the side of a moving vessel, as it makes
repeat channel crossings. Using GPS for location and speed
correction, the ADCP measures water velocity throughout the
water column at 1 Hz and integrates these measurements to
compute water discharge. For longer-term observations, ADCP
can be deployed on the seabed in an upward-looking orienta-
tion to measure water-column velocities at binned depth inter-
vals. In either deployment mode, observations of water
discharge can be complemented by contemporaneous mea-
surements of suspended sediment concentration and used to
compute sediment discharge.

With a complex network of channels ranging in widths from
metres to kilometres, the G-B Delta offers ample opportunity for
ADCP-based measurements. Despite this, there have been rel-
atively few published studies using this method. In the larger
channels, ship-based measurements are necessary because of
the heterogeneity of tidal current orientation, where one side
of the channel may be flooding while the other is ebbing. Fur-
thermore, night-time navigation is unsafe due to unlit boat traf-
fic, making it exceedingly difficult to measure a complete,
12.4-h tidal cycle. Finally, the tidal current velocities can ex-
ceed 4 m s�1 during spring tides, requiring the vessel to travel
through the water at speeds above the manufacturer’s recom-
mendation for data fidelity. Deploying instrumentation in
smaller channels faces similar constraints, as well as the poten-
tial for instrument loss due to a dense population of curious lo-
cal fishermen.

ADCP have recently been used to interrogate seasonal pat-
terns of water discharge in the southwest delta plain, where
tidal variability exerts a stronger control on water discharge
than season (Hale et al., 2018). Measurements of instantaneous
discharge in a tidal channel in the Shibsa River demonstrate
that spring-tide maxima (>4 × 104 m3 s�1) can exceed the
mean annual discharge of the combined Ganges, Brahmaputra,
and Meghna Rivers (~3.8 × 104 m3 s�1). Interestingly, sediment
transport in smaller channels demonstrates a more pronounced
seasonal signal than in the primary tidal channels (Hale et al.,
2018). (Bain et al., In press) demonstrated that these smaller
channels are important conduits between the major channels,
with the direction of net transport changing with spring-neap
tidal variability.

Summary and Challenges

Our review demonstrates the need for careful selection and ap-
plication of tools, with consideration of the specific research
questions and geomorphic characteristics of the field setting.
We show that radiocarbon dating in the Bengal Basin is re-
stricted by the availability of suitable organic material, yet, use-
ful ages may be obtained from rare yet isolated organic
particles because old-carbon contamination is limited. Lumi-
nescence dating is widely applicable to Holocene G-B deposits
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if quartz silt is measured, yet, the suitability of sand for dating
may be limited by the low sensitivity of immature sediment plus
poor bleaching on high-temperature feldspar signals. Archaeo-
logical records are valuable but require culturally specific inter-
pretation. GNSS, InSAR, and ADCP technologies are nascent
and promising in the Bengal Basin, although they also face
challenges associated with monument position, vegetation
and river current issues, respectively, as well as record length.
Historical documents provide useful yet qualitative and/or in-
complete snapshots of human interpretations of the delta, with
the focus on river channel pathways and characteristics. Simi-
larly, Landsat gives periodic modern imagery of the planform
delta that can be used to infer water and sediment routing
and human-induced changes to the delta plain. Marker hori-
zons provide estimates of sediment accretion and, when used
in combination with RSETs, can give insight into the balance
of subsidence and accretion of the delta plain, albeit over rela-
tively short timescales. Short-lived radionuclides are typically
diluted and at low concentrations in the Bengal Basin due to
the high sediment load, so that traditional applications are not
often possible; however, these tools capture other attributes of
the basin, including high sediment flux and basin-scale mixing
by the laterally mobile rivers.
This review also reveals shortcomings in the chronologic as-

sessments of the Bengal Basin. Among the methods here, there
are none that date deposits beyond 1 million years in age (Fig-
ure 8). This hinders chronologic determinations of older regions
of the Bengal Basin, such as the Indo-Burman Foldbelt, which
is composed of Late Miocene to Pleistocene deposits (see Betka
et al., 2018) with poorly defined biostratigraphic markers. The
limitations of applying these methods to Pleistocene- to
Holocene-aged materials can also be identified. We show that

radiocarbon dating of particulate organic matter may be reli-
able, yet such ages are often lacking their geologic context. Fu-
ture work could look at the age offset between radiocarbon
ages obtained from particulate organic matter 14C (e.g.
Sincavage et al., 2018) and luminescence ages of the deposits
in which the particulate organics were embedded. Although lu-
minescence dating is presently underutilized in the Bengal Ba-
sin, it is an exciting avenue for future work, which could test
the utility of single-grain pIRIR techniques for dating
Holocene-aged deposits or applying polymineral indices (e.g.
Chamberlain et al., 2017) to trace sediment transport pathways.
Among surface processes, fluvial and tidal sediment transport
and deposition are spatially and temporally variable across
the delta, making the limited observations and challenging
working conditions a major constraint. We also anticipate
new insights from GNSS, InSAR, SETs, and ADCP as the length
and breadth of these records grow.

Looking Forward: Integrating Across Processes and
Timescales

Despite some lingering gaps, there have been major advances
in Bengal Basin chronologic records and relevant approaches
in the past few decades. In essence, the relative dating records
of the mid-20th century have been replaced with ‘absolute’ ap-
proaches such as radiocarbon and luminescence dating that
give the timing of prehistoric events and allow for calculating
rates of geomorphic change. These records can also be supple-
mented with archaeological analyses and crosschecked to his-
torical documents. New applications of geodetic observations

Figure 8. Graph showing the rate resolution and timescale of geochronologic and instrumental methods in the Bengal Basin, and the timescales of
processes that drive delta evolution (brown boxes). Darker, solid lines indicate confident age ranges for the methods, and lighter, dashed lines indicate
possible age ranges. With a combination of methods, a wide range of timescales and rates can be measured, allowing for integration of the different
processes shaping the basin. Present-day is represented on the x-axis as 1 year, although the methods may measure processes operating within the
past year (see Table I). [Colour figure can be viewed at wileyonlinelibrary.com]
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and surface instrumentation further develop knowledge of delta
evolution by quantifying processes acting over decadal to
hourly timescales.
Landscapes, and their geologic records, are shaped by

events and processes integrated over manifold timescales
(e.g. Romans et al., 2016). Having age control across similar
timescales thus becomes a requirement to understand their
behaviour and evolution. Yet, developing such a database
for a large, complex river delta is non-trivial. It necessitates
data not only across timescales but also across steep spatial
gradients of the continental margin, from fluvial to coastal to
marine settings (Figure 2). Thus, developing a truly integrated
understanding of the system is an endeavour that can be
achieved only through many discrete studies involving experts
from a variety of geoscience sub-disciplines. Building on the
findings of a few major geologic studies published through
to the early 1990s (e.g.Morgan and McIntire, 1959 ; Coleman,
1969 ; Umitsu, 1993), this paper highlights the great progress
made over the last 25 years in developing a large, diverse da-
tabase that temporally and spatially defines the processes con-
trolling landscape behaviour in the Bengal Basin. With the
methodological advancements described herein, it is now
possible for the first time to integrate findings across multiple
timescales (Figure 8), connecting from process to morphology
to stratigraphy. One example is the new ability to connect
daily tidal-channel sediment transport (e.g. Hale et al., 2019)
with the radionuclide-derived seasonal and decadal-scale de-
position (e.g.Allison and Kepple, 2001 ; Rogers et al., 2013)
that defines delta plain response to sea-level change. These
landscape-building processes can also be linked to
millennial-scale delta lobe construction (e.g. Allison et al.,
2003) by constraining the timing of river channel changes
through luminescence and radiocarbon dating (e.g.Chamber-
lain et al., 2017 ; Sincavage et al., 2018). These large-scale
delta lobes become, in turn, the effective stratigraphic units
comprising Holocene delta stratigraphy and the complete
highstand delta sequence (e.g. Goodbred and Kuehl, 2000a).
These results over the last two decades now provide temporal
continuity from process to sequence scale. The newest age
constraints from feldspar luminescence dating (e.g. Pickering
et al., 2017) extend that temporal continuity to the orbital
scale by dating deposits back several oxygen isotope stages
(Figure 8), making it possible for the first time to investigate
how the antecedent template of Late Pleistocene highstand
deltas has influenced the development of the Holocene delta
and present-day processes of the Anthropocene veneer.
In summary, the nuances of individual geochronologic and

instrumental methods reveal attributes of the sedimentary ba-
sin, while overlapping geochronologic and instrumental
datasets can provide a holistic view of an evolving basin (Fig-
ures 2 and 8). The methodological advances outlined here
present new opportunities for linking the past and the present,
interpreting ongoing processes in the delta in the context of
longer-term trends or cycles, and identifying the influence of
antecedent geology in Holocene delta morphology. This ever-
expanding integration across timescales is generating exciting
new opportunities for research.
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