COMMUNICATION BETWEEN VIRTUAL EMULATION SYSTEM AND PLC BY
MODBUS/TCP PROTOCOL

A Thesis
Presented to
the Faculty of the College of Science and Technology

Morehead State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Huang (Benjamin) Huang
November 20, 2015

CAMDEN-CARROLL LIBRARY
MOREHEAD, KY 40351

msu

7HESES
004.6
HY e

ProQuest Number: 10187743

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

Inthe unlikely event that the authordid not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.

ProQuest 10187743

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI48106 - 1346

Accepted by the faculty of the College of Science and Technology, Morehead State
University, in partial fulfillment of the requirements for the Master of Science degree.

Director of Thesis

Master’s Committee: , Chair

Date

COMMUNICATION BETWEEN VIRTUAL EMULATION SYSTEM AND PLC BY
MODBUS/TCP PROTOCOL

Huang (Benjamin) Huang
Morehead State University, 2015

Director of Thesis:

A virtual Jaboratory plays an important role for academic purposes. Building this
kind of laboratory by assembling the hardware including PLC, sensor, conveyor,
machine, or robot to an industry emulation automation environment is a big job and only
a limited number of equipment can be involved. An emulated environment running on a
computer can be used to solve this problem, but how can one also control the virtual
device.s and collect information from a virtual devices to a real PLC?

This research focuses on the communication between the virtual emulation system
running on a computer and the PLC, so that, by using the program running on the PLC,
one can control the virtual robot. This thesis describes the implementation of the

Modbus/TCP protocol in PLC and the main functionalities for virtual robot control.

Accepted by: , Chair

ACKNOWLEDGEMENT

The author would like to express his gratitude to all the professors and students who

have reviewed this thesis and gave constructive ideas to improve the quality of the thesis.

I would like to first of all express my appreciation to Dr. Ortega-Moody, my Thesis
Director, for providing the opportunity to research and develop a software system for this
thesis. As my undergraduate and professional background is linked to computer science, it
was vital for me to use my knowledge and improve my knowledge through this research.
His constructive advice given throughout the rough periods of the research encouraged me

to complete the thesis in a timely manner.

Secondly, I would like to express my gratitude for Dr. Zargari and Dr. Grisé for going
through this thesis and providing important suggestions to articulate the problems and

solutions for the other readers.

My sincere thankfulness is also expressed to Mr. Sanchez-Alonso for his valuable

advice on this thesis.

Table of Contents

1. CHAPTER ONE: INTRODUCTIONcccitissimmmtomtimemmtsnsssnsnosssssssamesnssnsaassasssss sssevassusss ammes sasss 1
1.1 BAcKZToURM .eciiecccisimmsssnorssmmnescsnsiimassseanssnanasssannt iseasanransanssnc santrt inssansninessenasssmnss s susnamaesssannsnssnns 1
B) 1L R 2
1.3 Research objectives i mmmmemeimiiienscstnmestiassassnntnns spomsssanasssnnssmsaassyansassnsssssnssassnenensnnnes snnnnans 5
14 ASSUTNPHIONS -eocrririemsmvanssineesimsssennes sannssssseesssnaess sesnssnnne T Ponnenssnns s 04ars HanRTe 4 RFEE ARSO A TRRRS R RR =P RN RRORSNE 6
1.5 LimitAtiOmS wusecsussssssnsssessrssnnensssrsssnansssannssmnnsesnmessssisnmemanast shesnssenssssessnmsanss e banmnnsss snssessnnsssessansnnrs 7
1.6 Definition of Terms ...c.icmiicuesssssimrseossramcesssemmsss samar nsnssssesssssanssssmsssssnnsssssssnnsanensassnsennss annnn smns 7
2. CHAPTER TWO: REVIEW OF LITERATURE ...ccccetvcssenmsansussssessssasssessansassnssssannasssnnsansunsusas 13
2.1 MOADUS Prof0c0l...eimsiuiemisssras trsncsssnssnmsanss susesanmnnsss sussssasssssanssssanensansessanssnsenns spmnsssssonnssnnns sarnnasn 13
2.2 MoOdDBus/TCP Protool c...cicusericcissmnsescacmiissnennmearissessscssnt iasmcsseanniossssenssnntasssssmmsansasns ssanmasnansas 16
2.3 Big ENQIEAL cieosmssanrssocunssansssnsnssnnnssssnronsans os ssnssssinsess suesssssase sansssss a0 snmns ssenas sennnessnasassnnsissnmsannsns 18
2.4 Client-Server COMMUNICALION MOUE ceverrcirrsterrasrassessmnsemmsntisanmsesuntt enms ssnanes smams s smnas s semmtsseassasnsen 21
2.5 EasyModbusTCP Library........cccuseee nsmmEeEesmmEEranRSESiSEREEENESASSEEARERRRERORRRNNNRAE§ERAARRTAROSARURERRARROLE 21
2.6 Modbus/TCP implementation in C#....ccccciumssennssssssnnsassanressssansssarssnnsasnnnesresssamennesssansassnnnssvossns 24
2.6.1 Implementation of Modbus/TCP at Client Sideccccvvierciierinirennceccees s 25
2.6.2 Implementation of the Modbus/TCP at the Server Side........coccvecriiiiinciiniiicrnans 30
2.7 Modbus TCP Sample Application wueuuerussssmmmsssrsrissmnsosnissensesssntssnnssssensnmsnnersnvasnnsnmressarsaness 34
3. CHAPTER THREE: METHODOLOGY AND FINDINGS.....c.ccccussceattsmsmsncnssnsnnmrsnssonssmnnnssens 34
3.1 Setup development ENVIFOINIMENT cusssenteassnnsssransmnsnssasasmasssnnsssesnsnsassnnsnsossannssssasnnnsnssnnsnnns sonnsssen 34
3.2 Build phySical COMMECHION .curinttriertrsennesianmssssassssasnssnsssmnssansansesss tanss enset sanmssnsnsessnnnssanass ssansssanes 34

3.3 Research ULHItIES cueememiiseensimsnnsesmmsnmiennimmensensenacssennsnnsacos svnnsanasasssasnssnenss ssnnsssnsans swnnsasensstusnre snnnn 38

3.4 PLOC Programinga i sesemsssnssissassansissssasnsenst saanssnss sos inmss smessssssnesanststnnsas iaborsscbot nmmes setinarnns 40

A TIMUI TaSKS.....iviciiimrii ittt e et e s st r et be e rae et e raae s e et e e et e e e e s na e nne rnns 47
3.4.2 Task SynChromizationccoocouiiiirriiicer e et e e e e s rar s e e e v s e s em e e s s mee s s b e e vesrane e e s banes 49
3.5 Data ProCesSiNZ. s eececiinnsticssrnmasancsenmssssaressmsssssansssnsssassssnns eanns = ans 1a8stssunssRaRRSS RRRRS S SARSRR SRS SRRR RS 50
35T REAA FIOAL ...ttt st s e et s e st b et s e e e e e ae e st e e saneens 50
3.5 2 WHHE FIOBE ..ceeeeiieenc e et s e est e e st s aa e e e s e s s e smpe smemerranae s e ey apane e eenrman e enereseameanaans 53
3.0 FUNCLIODS uvevenresssnmersmsnessrassnsmnesenss sasarssianssessnnssseass samsras snmssmaanes smnns s namssnsnesssanuns sannns nasansanns snnsans 56
3.6.1 Fun_ReadCOIlS. ... eeeiiiieiiiiic st stie et re st e s rraa e e e rane s s re e e s et s e et e e nnab e erbe e e mreannasa e rnans 57
3.6.2Fun_WriteSIngleCoilsorviomriiticcir et s 58
303 FUN_WHEECOIIS .eei e s e e r st e e e e e 58
3.6.4 Fun_ReadDISCIEteINDULcoiviuriiivinieiiicsenicscc et s s s ss s s s me b e m s m s s 59
3.6.5 Fun_ReadINPUIREE.c.ceiiiimiiair e eiecte et ee et e st ses st sre s s e sre oo e e ba s e amn e sem e e e anrenamians 59
3.6.6 Fun_ReadHoIdINEREEcoivi ittt rtnre et et s e s sn e s b re e ra e pasaness s esane 59
3.6.7FuUn. WITeSINEIEREE ..o ciiii ettt rrte et emr st e et et e e be s ae e ae s mb s e et e e s abeann e st ann e resaneas 60
3.6.8 FUN_WIEREESoovecerctiiee ettt es e et ne s re st s e e s o bb e s n e b seeab e besan et sbbbanens 60
3.6.9 FUN_ WIIBADEIES .. ovive et vt et e st e e S e r e R ene e 60
3.6.10 Process TranSactiON.......c..ccorvseecorvrueeeesinrisieserssiaes e ssstasntessssssseeneesianentssnasntesenssnasransessons 61
37 ACHION SO QUENICE ctureanisanarstrnnsssnassrusneassnessansss s 1nmra st sansnmss serssasRESS EraRa SRR AR RRES SRR RRRRAR R e2mRRRRRERE EnEE 61
4, CONCLUSION AND RECOMMENDATIONSccccccoremenees easessmsresemsstmensrsmensarapaustnennsysonntsnane 62
5. REFERENCEScocciisnsomiunessestisnnrirensensasssnnennissiass s innnsssensnsnass s sunss saossnsansnneannsssunns danmanssssnaonnss 64

6. APPENDIX SOURCE CODE RELATED ...ceeccecaimsensniumtimsasssensassansssansassssassanuonssasns smansssennansn 65

1. CHAPTER ONE: INTRODUCTION
1.1 Background

Technological advances have resulted in a significance revolution of automation in
industry. The related research and training are becoming increasingly important both
strategically and economically. However, building a laboratory for academic purposes by
assembling the required hardware, including PLC’s, sensors, a conveyor, machines, and/or
robot for an industry emulation automation environment is a big job and only a limited
number of different equipment and peripheral devices can be involved in the infrastructure
of the laboratory. It is difficult to build this kind of laboratory because a real laboratory
involves all of the types of hardware. Furthermore, automation is an area that is constantly
being updated as new technology is developed. Most of the new invented equipment is
expensive and needs time to be ordered and delivered. It is not practical to change and re-

setup the hardware in the laboratory frequently.

Robot simulation involves simulating the robot program and the program of
instructions in the virtual world of a computer graphics program. Program simulation is
typically accomplished by modeling the robot, tooling, and peripheral equipment in the
software and then executing the program of instructions for the application. (Daniel E.

Kandray, P.E, 2010)

For these reasons, the development of a virtual industrial laboratory to simulate the real
one is proposed. With this development, researchers will be able to change the
configuration of the laboratory to fit any realistic industry environment that they want. This
new trend known as "Serious Games" has its main focus the field of specialized instruction

and training. (Zyda, M., 2005)

By using the PLC’s connection to the industrial virtual laboratory, students can practice
programing complex automation sequences without necessarily being in a real industrial
environment. This means they will be able to modify the parameters and the sequences of
control conveniently. A virtual laboratory is particularly useful when some experiments
involve equipment that might cause harm to human beings, or risk compromising the safety
of the process. Moreover, all of the operations and their consequences can be visualized in
real-time. Another objective of a virtual laboratory is to provide hands-on lab activities te
that can enhance online courses. By using the communication technology used on the
internet, the virtual industrial laboratory can be accessed and shared on a global scale. Thus,

research and training will be free from restrictions of time and location.

1.2 Purpose

In a realistic industry environment, the engineer will use the PLC to control the
combination of conveyors, sensors, and machines. The instruction will be sent from the
PLC to the peripheral hardware or robot, and the data will be collected by hardware or
robot and sent back to the PLC directly. Correspondingly, in the virtual emulation system,

the PLC needs to communicate with the virtual hardware or robot running on the computer.

This research will focus on the communication between the simulation system and the
PLC. The Modbus/TCP protocol will be used for communication between the PLC and
the virtual equipment. In the virtual simulation system, the PLC will work as a client and
the virtual simulation system running on the computer will work as a server. The client—
server model of programming is a distributed application structure that communicate
between the providers of a resource or service, called servers, and service requesters, called

clients. Through the combination between the server and the client, the PLC can control

the virtual hardware and get data from it.

Taking a virtual robot as an example, the status of the virtual robot can be recorded in
the memory. To control the robot, therefore, means to modify those data in the memory
(Figure 1.1). For example, if we want to move the effector, we can change the angles of
the robot’s joints. If we want the robot to pick up the piece, we can set the value

corresponding to the effector to pick up or drop the object.

y _»[Angle1
~—~— | Angle2 | -
& Angle3 F“i;_,.—-f

_____p Effector

-0

Figure 1.1 Data in Memory

Modbus is considered an application layer messaging protocol, providing Master/Slave
communication (Figure 1.2) between devices connected together through buses or
networks. By using it, the PLC or a computer can control the virtual robot remotely.
Furthermore, the PLC can control multiple virtual devices running in the virtual emulation

system.

The Virtual emulation System

Roboti Modbus/TCP
- Robot2

Sensor | \ r -

Robot3

-

Figure 1.2 Master/Slave Communication

> PLC

Because Modbus is supported by real devices, the benefit of using Modbus is the
program running in the emulation system can later be immigrated to the real industry

environment smoothly and conveniently (Figure 1.3 Modbus communication).

Figure 1.3 Modbus Communication

1.3 Research objectives
Objective 1:
Program the PLC in RSLogix 5000 and implement Modbus/TCP in the PLC as a
client.
Objective 2:

Operate the virtual robot and monitor its state by reading and writing the virtual

coils and registers in the virtual robot.
Objective 3:

Make the virtual robot accomplish an action sequence, including moving to the

target position, take object, move and put object at the target position.

1.4 Assumptions

The following assumptions are considered as pre-conditions before this research.

The Modbus/TCP server has been implemented in the virtual robot and can
communicate with the client. It will listen at port 502 and be ready to accept connection
from the client. After the connection was connected, the client can communicate with the

virtual robot.

The Ethernet module is necessary for the PLC. The Ethernet module can connect the
PLC to the internet or intranet and communicate with other devices connected to the

network.

Currently, our research focuses on communication with an existing virtual robot
(Figure 1.4). The virtual robot has the Modbus/TCP protocol implemented and can work
as a server. The client program can operate it by reading and writing virtual coils and

registers into it.

: (Efector Senso
Efector OO

Figure 1.4 Virtual robot
1.5 Limitations

Not all PLCs have an Ethernet module. Only new PLCs with Ethernet modules can

communicate with other devices through the Modbus/TCP protocol on Ethernet.

1.6 Definition of Terms

PLC:

“A programmable logic controller, PLC, is a user-friendly. microprocessor-based,

specialized computer that carries out control functions of many types and levels of
complexity. It can be programmed, controlled and operated by a person unskilled in
operating computers. The PLC’s operator essentially draws the lines and devices of ladder

diagrams™ (John W. Webb, 1995).
Ethernet:

“Ethernet computer networking technologies works for local area networks (LANSs)
and metropolitan area networks (MANSs). It is a wired network technology that is defined
by IEEES.2.3 standards. It was first deployed in 1976 and has since emerged as the
dominant standard for wired connections in local area networks.” (June Jamrich Parson,
2014) It has since been refined to support higher bit rates and longer link distances. The

Ethernet RJ 45 (Figure 1.5) cable can be used to connect devices.

e

g :
. L ;
ey

Figure 1.5 RJ-45
Sockets

Sockets are a concept developed at the University of California at Berkeley to add
network communication support to the UNIX operating system. The API (Application

Program Interface) developed there is now known as the "Berkeley socket interface."

Sockets are generally, but not exclusively, used in conjunction with the Transmission

Control Protocol/Internet Protocol (TCP/IP) that dominates Internet communications. The

Internet Protocol (IP) part of TCP/IP involves packaging data into "datagrams" that contain
header information to identify the source and destination of the data. The Transmission
Control Protocol (TCP) provides a means of reliable transport and error checking for the

IP datagrams.

Within TCP/IP, a communication endpoint is defined by an IP address and a port
number. The IP address consists of 4 bytes that identify a server on the Internet. The IP
address is generally shown in "dotted quad" format, with decimal numbers separated by
periods, for example "209.86.105.231". “A port number identifies a particular service or
process that the server provides. Some of these port numbers are standardized to provide

well-known services”. (Charles Petzold, 1998)
RSLogix 5000:

The RSLogix 5000 Enterprise Series software is designed to work with Logix5000
controller platforms. RSLogix 5000 Enterprise Series software is an IEC 61131-3
compliant software package that offers relay ladder, structured text, function block diagram,
and sequential function chart editors for the designer to develop application programs.
Create your own instructions t;y encapsulating a section of logic in any programming

Janguage into an Add-On Instruction. (RSLogix 5000 Programming Software)
Ladder Diagram:

Ladder diagrams are specialized schematics commonly used to document industrial
control logic systems. They are called “ladder” diagrams because they resemble a ladder,
with two vertical rails (supply power) and as many “rungs” (horizontal lines) as there are
control circuits to represent. If we wanted to draw a simple ladder diagram showing a lamp

that is controlled by a hand switch, it would look like this (Figure 1.6):

10

L, L,
Switch 1 Lamp
—- X

Figure 1.6 Ladder Diagrams

Ladder diagrams are used only on 2-wire control circuits, not for the power circuit of

the driven or controlled equipment. (Kenneth G. Oliver, 1990.)
Modbus:

Modbus is a serial communication protocol initially developed by AEG-MOdicon. It
was initially designed to operate with programmable logic controllers (PLCs). It is an
application layer messaging protocol, - operating at layer 7 of the Open Systems
Interconnection (OSI) protocol, and provides client-server communication between

devices connection on different types of net-work. (Sunit Kumar Sen, 2014)
Modbus/TCP:

Modbus TCP/IP (also Modbus-TCP) is simply the Modbus RTU protocol with a TCP

interface that runs on Ethernet.

The Modbus messaging structure is the application protocol that defines the rules for

organizing and interpreting the data independent of the data transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which
provides the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP
allows blocks of binary data to be exchanged between computers. It is also a world-wide
standard that serves as the foundation for the World Wide Web. The primary function of

TCP is to ensure that all packets of data are received correctly, while IP makes sure that

11

messages are correctly addressed and routed. Note that the TCP/IP combination is merely
a transport protocol, and does not define what the data means or how the data is to be
interpreted (this is the job of the application protocol. Modbus in this case). (Acromag,

Inc.2005)
Crossover cable:

A crossover cable can directly connect two devices without a hub or switch. You can
use a crossover cable to connect two computers directly to each other, but crossover cables

are more often used to daisy-chain hubs and switches to each other.

If you want to create your own crossover cable, you must reverse the wires on one end

of the cable, as shown in Figurel.6 (Doug Lowe, 2013)

NIC MDI NIC MDI
Figurel.6 Crossover cable
IP Address:
IP uses 32 bits, or four numbers between 0 and 255, to address a computer.

IP addresses are normally written as four numbers separated by a period. like this:

192.168.1.50.

Each computer or device must have a unique IP address before it can connect to the

Internet.

Each IP packet must have an address before it can be sent to another computer.

12

In computer terms, TCP/IP uses 32 bits addressing. It uses 4 bytes. One byte is 8 bits.

One byte can contain 256 different values:

00000000, 00000001, 00000010, 00000011, 00000100, 00000101, 00000110,
00000111, 00001000 and all the way up to 11111111. For example, rtfm.mit.edu is
the domain of a particular computer at MIT. The IP of rtfm.mit.edu is 18.181.0.24 (Harley

Hahn, 1996)

Subnet Mask:

On most networks, the network administrator uses an IP address scheme that include a
custom subnet mask. Because the routes that are in the physical Local Area Network (LAN)
define each network, a network administfator must use a different network address for each
side of a route. When a router is used to create smaller networks, the smaller network is

called subnet. (Andrew G. Blank)

An IP address has two components, the network address and the host address. A subnet
mask separates the IP address into the network and host addresses. Subletting further
divides the host part of an IP address into a subnet and host address if additional subnetwork
is needed. Use the Subnet Calculator to retrieve subnetwork information from IP address
and Subnet Mask. It is called a subnet mask because it is used to identify network address

of an IP address by performing a bitwise AND operation on the netmask.

A Subnet mask 1s a 32-bit number that masks an IP address, and divides the IP address
into network address and host address. Subnet Mask is made by setting network bits to all
"1"s and setting host bits to all "0"s. Within a given network, two host addresses are

reserved for special purpose, and cannot be assigned to hosts. The "0" address is assigned

13

a network address and "255" is assigned to a broadcast address, and they cannot be assigned

to hosts.

2. CHAPTER TWO: REVIEW OF LITERATURE
2.1 Modbus Protocol

The Modbus protocol was developed in 1979 by Modicon, Incorporated, for industrial
automation systems and Modicon programmable controllers. It has since become an
industry standard method for the transfer of discrete/analog I/0O information and register
data between industrial control and monitoring devices. Modbus is now a widely-accepted,
open, public-domain protocol that requires a license, but does not require royalty payment

to its owner,

Modbus devices communicate using a master-slave (client-server) technique in which
only one device (the master-client) can initiate transactions (called queries). The other
devices (slaves or servers) respond by supplying the requested data to the master, or by
taking the action requested in the query. A slave is any peripheral device (I/O transducer,
valve, network drive, or other measuring device) which processes information and sends
its output to the master using Modbus. The Acromag I/O Modules are the slave/server
devices, while a typical master device is a host computer running appropriate application
software. Other devices may function as both clients (masters) and servers (slaves) (Figure

2.1).

14

Device Application Memory

MODBUS Access

{ | Input Discrete

Coils | Modbus Request

" <=

Input Registers

Holding
Registers

Modbus Server Device

Figure 2.1 Modbus Protocol

The data type of Modbus protocol (Figure 2.2):

Single bit Read-Only

Single bit Read-Write
16-bit word Read-Only
16-bit word Read-Write

Figure 2.2 Modbus Protocol Data Type

Masters can address individual slaves, or can initiate a broadcast message to all slaves.

15

Slaves return a response to all queries addressed to them individually. Slaves do not initiate

messages on their own, they only respond to queries from the master (Figure 2.3).

<

ADU ~
waorasirss | | ESRGRRE GRRI] [o

PDU

Client Server

Initiate request |

O — M Perie e amiian

Initiate the response

-—J—M—

[Receive the nsponso[e

Figure 2.3 Modbus Protocol communication

A master’s query will consist of a slave address (or broadcast address), a function code
defining the requested action (Figure 2.4), any required data, and an error checking field.
A slave’s response consists of fields confirming the action taken, any data to be returned,
and an error checking field. Note that the query and response both include a device address,
a function code, plus applicable data, and an error checking field. If no error occurs. the
slave’s response contains the data as requested. If an error occurs in the query received, or
if the slave is unable to perform the action requested, the slave will return an exception

message as its response.

The error check field of the slave’s message frame allows the master to confirm that

the contents of the message are valid. Traditional Modbus messages are transmitted serially

and parity checking is also applied to each transmitted character in its data frame.

(Acromag, Inc.2005)

Command
1

o

8 I 8&REBS

XX

2.2 Modbus/TCP Protocol

Function Code

Read Coils

Read Discrete Inputs
Read Holding Registers
Read Input Registers
Write Single Coil

Write Single Register
Read Exception Status
Diagnostics

Up to 255 function codes, depending
on the device

Figure 2.4 Modbus Protocol Function code

16

I he Modbus messaging structure is the application protocol that defines the rules for

organizing and interpreting the data independent of the data transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which

provides the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP

allows blocks of binary data to be exchanged between computers. It is also a world-wide

17

standard that serves as the foundation for the World Wide Web. The primary function of
TCP is to ensure that all packets of data are received correctly, while IP makes sure that
messages are correctly addressed and routed. Note that the TCP/IP combination is merely
a transport protocol, and does not define what the data means or how the data is to be

interpreted (this is the job of the application protocol, Modbus in this case).

So in summary, Modbus TCP/IP uses TCP/IP and Ethernet to carry the data of the
Modbus message structure between compatible devices. That is, Modbus TCP/IP combines
a physical network (Ethernet), with a networking standard (TCP/IP), and a standard method
of representing data (Modbus as the application protocol). Essentially, the Modbus TCP/IP

message is simply a Modbus communication encapsulated in an Ethernet TCP/IP wrapper

(Figure 2.6).
Application Data Unit (ADU)
A
e —

roeeprrey Traditional
CONSTRUCTION OF A 8| "Code Data | CHEMKEM | o K% ol Frame
MODBUS TCP DATA PACKET Y I

Function Data Function Coqe & Data

Code Are Not Modified

\/

Modbus Application Protocol (MBAP) Header

(7 Bytes) Protocol Data Unit (PDU)
Transaction | Protocol Length Unit 1D Function Data Modbus Frame With
Identifier Identifier Field Code TCP/IP Transmission
(2 Bytes) (2 Bytes) (2 Bytes) (1 Byte) (1 Byte) Varies
R J
b i
Modbus TCP/AIP ADU

(This information is embedded into the data portion of the TCP frame)

Figure 2.5 Modbus/TCP Protocol

In practice, Modbus TCP embeds a standard Modbus data frame into a TCP frame

(Figure 2.6), without the Modbus checksum. as shown in the following diagram.

18

“Identification of @ _ Initialized by the Recopied by the
MODBUS Request / client server from the
Response transaction. received
request
0 = MODBUS protocol | Initialized by the | Recopied by the
client server from the
received
request
Number of following Initialized by the | Initialized by
bytes client (request) | the server (
Response)
Identification of a Initialized by the | Recopied by the
remote slave client server from the
connected on a serial received
line or on other buses. request
Figure 2.6 Modbus/TCP Frame
For example, imagine the case writing a coil at address Oxl to false. The
Modbus/TCP Frame will be constructed as follows:
TransI D | Protocol | Length Unit ID FunCode | Address | Data
ID
0001 0000 0006 00 05 0001 0000

2.3 Big Endian

Big Endian Byte Order: The most significant byte (the "big end") of the data is placed

at the byte with the lowest address (Figure 2.7). The rest of the data is placed in order in

the next three bytes in memory.

18

32-bit integer

Memory OAOBOCOD

a. OAK -
at+1:(0B -
a+2:|0C| -
a+3:|0D| «— --
: Big-endian

Figure 2.7 Big-endian

Little Endian Byte Order: The least significant byte (the "little end") of the data is
placed at the byte with the lowest address (Figure 2.8). The rest of the data is placed in

order in the next three bytes in memory.

32-bit integer
OAOBOCOD Memory
> a: O.D

—>» aq+1;

> q+2:

Little-endian

> aq+3:

Figure 2.8 Little-endian

0C

0B

0A

20

Big endian is more natural to most people and thus makes it easier to read hex dumps.

By having the high-order byte come first, the developer can always test whether the number

is positive or negative by looking at the byte at offset zero. (Linda Null, 2014)

Modbus uses Big-Endian to transfer data. For Windows and Intel system, Little-Endian

is used for data presentation and data transfer. So the order of bytes needed to be adjusted

before sending and after receiving by Modbus protocol.

The C# code to convert Big-Endian to Litter Endian format is presented:

Byte[] data = new byte[2];
Byte[] byteData = new byte[2];

// get little-endian bytes

21

byteData = BitConverter.GetBytes(dataWillBeTransfer);
data[0] = byteData[1];

data[1] = byteData[0]:

2.4 Client-Server communication mode
The client—server model (Figure 2.9) of computing is a distributed application structure
that partitions tasks or workloads between the providers of a resource or service, called
servers, and service requesters, called clients. Often clients and servers communicate over
a computer network on separate hardware, but both client and server may reside in the
same system. A server host runs one or more server programs which share their resources
with clients. A client does not share any of its resources, but requests a server's content or
service function. Clients therefore initiate communication sessions with servers, which
await incoming requests. (Client-server model)
D ;
AR \
D l‘ntemét | ‘
Clients : L
I___-i_li / 4 Server

Figure 2.8 the client—server model

2.5 EasyModbusTCP Library
This is the Modbus-TCP library for NET and Java implementations. The library is
suitable for Client and Server applications. The simulator shows registers and coils. They

can be changed within the server simulator. Also protocol information can be displayed, to

monitor the data exchange between Server and Client.
The following function Codes are supported:
¢ Read Coils (FC1)
¢ Read Discrete Inputs (FC2)
¢ Read Holding Registers (FC3)
e Read Input Registers (FC4)
e Write Single Coil (FC5)
e Write Single Register (FC6)
e Write Multiple Coils.(FC15)
o Write Multiple Registers (FC16)
¢ Read/Write Multiple Registers (FC23)

(EasyModbusTCP Library http:/www.easymodbustcp.net/)

EasyModbusTCP Server Simulator .
= Modbus-TCP Server Listening (Port 502) —— &
| bito.//wvew EasyMochus TCP et
| Veoon18 K Discrete puts Colls Input Registers Holding Registers
Number of cormected cherts 0 2y oo @

Protocol Information

)
FCBM WOH.Mm) —

" EasyModbus Client

Figure 2.10 The Server Simulator

[Modbus TCP (Ethemet) v bito://uwww EasyModbus TCP.net ([

Server IP-Address Server Port =

[192.168.12 [0z | ‘ W
Answer from Modbus-Server

| Read Cols - FC1 | Starting Address

| Read Discrete Inputs - FC2

0

| Read Input Registers - FC4

J

Figure 2.11 Client Simulator

24

By reading the source code of Modbus-TCP library and using function codes provided
by the server simulator and client simulator, we can understand the implementation of

Modbus/TCP at the server side and the client side.

2.6 Modbus/TCP implementation in C#

The key point of the Modbus communication is to build the data frame (Figure 2.12)

for the protocol according to the specification of the protocol:

Modbus Application Protocol (MBAP) Header)
(7 Bytes) Protocol Data Unit (PDU)
Transaction | Protocol Length Unit ID Function Data Modbus Frame With
Identifier Identifier Field Code TCP/IP Transmission

(2 Bytes) (2 Bytes) (2 Bytes) (1 Byte) (1 Byte) Varies

8 A
Yy

Modbus TCP/IP ADU
(This information is embedded into the data portion of the TCP frame)

Figure 2.12 Modbus Frame

The processes of building the Modbus/TCP frame (Figure 2.13)

25

Prepare the Frame
(a bytes array)

¥

Set Transaction ID (2bytes)

¥

Set Protocol ID (2bytes)

=

Set Length Field (2bytes)

=

Set Unit ID (1byte)

G

Set Function Code (1byte)

<=

Write Data

L

Send Frame

Figure 2.13 Processes of building the Modbus/TCP frame

2.6.1 Implementation of Modbus/TCP at Client Side

Here is some pseudo-code for writing a single coil to a server device

(http://easymodbustcp.net/)

//l <summary>

/// Write single Coil to Master device (FCS).

/Il </summary>

/Il <param name="startingAddress">Coil to be written</param>

/// <param name="value">Coil Value to be written</param>

26

public void WriteSingleCoil(int startingAddress, bool value)

{
byte[] coilValue = new byte[2];
this.transactionldentifier = BitConverter.GetBytes({int)0x0001);
this.protocolldentifier = BitConverter,GetBytes((int)0x0000);
this length = BitConverter.GetBytes((int)0x0006),
this.functionCode = 0x05;
this.startingAddress = BitConverter.GetBytes(starting Address);
if (value = true)
{

coilValue = BitConverter.GetBytes({inf)0xFF00);

else

coilValue = BitConverter.GetBytes((int)0x0000);

}

Byte[] data = new byte[]{ this.transactionldentifier[1],
this.transactionldentifier[0],
this.protocolldentifier[1],
this.protocolldentifier[0],
this.length[1]},
this.length[0],

this.unitIdentifier,

27

this.functionCode,
this.starting Address[I],
this.starting Address[0],
coilValue[1],
coilValue[0]
I8
stream. Write(data, 0, data.Length);
data = new Byte[2100];

stream.Read(data, 0, data.Length);

if (data[7] =— 0x85 & data[8] == 0x01)
throw new Exception("Function code not supported by master");
if (data[7] = 0x85 & data[8] = 0x02)
throw new Exception("Starting address invalid or starting address + quantity invalid");
if (data[7] =— 0x85 & data[3] = 0x03)
throw new Exception("quantity invalid™);
if (data[7] = 0x85 & data[8] = 0x04)

throw new Exception("error reading™);

Read a single coil:

M <summary>
/// Read Coils from Master device (FC1).

//f </summary>

28

//f <param name="startingAddress">First coil to be read</param>
/#{ <param name="quantity">Numer of coils to be read</param>
Hf <returns>Boolean Array which contains the coils</returns>
public bool[] ReadCoils(int startingAddress, int quantity)
{
bool[] response;
this.transactionldentifier = BitConverter.GetBytes({int) 0x0001);
this.protocolldentifier = BitConverter.GetBytes((int) 0x0000);
this.length = BitConverter.GetB ytes({int)0x0006);
this.functionCode = 0x01;
this.startingAddress = BitConverter.Ge(Bytes(starting Address);
this.quantity = BitConverter.GetBytes{quantity);
Byte[] data = new byte[]{
this.transactionldentifier{1],
this.transactionIdentifier[0],
this.protocolldentifier[1],
this.protocolldentifier[0],
this.length[1],
this.length[0],
this.unitIdentifier,
this.functionCode,
this.starting Address[1],

this.starting Address[0],

29

this.quantity[1],
this.quantity[0],
H
stream. Write(data, 0, data.Length);
data = new Byte{2100];

stream.Read(data, 0, data.Length);

if (data[7] = 0x81 & data[§] = 0x01)
throw new Exception("Function code not supported by master");
if (data[7] = 0x81 & data[8] = 0x02)
throw new Exception("Starting address invalid or starting address + quantity invalid");
if (data[7] = 0x81 & data[8] == 0x03)
throw new Exception("quantity invalid");
if (data[7] == Ox81 & data[8] = 0x04)

throw new Exception{"error reading™);

response = new bool[quantity];
for (int i = 0; i < quantity; i++)
{
int intData = data[9+i/8];
int mask = Convert. ToInt32{Math.Pow(2, (i%8)));

response[i] = Convert. ToBoolean((intData & mask)/mask);

30

return (response):

2.6.2 Implementation of the Modbus/TCP at the Server Side

Here is some pseudo-code for writing a single coil to a server device

(http://easymodbustcp.net/)

private void ReadCoils(ModbusProtocol receiveData, ModbusProtocol sendData, NetworkStream

stream, int portIn, IPAddress ipAddressin)
{
sendData.response = true;
sendData.transactionldentifier = receiveData.transactionldentifier:
sendData.protocolldentifier = receiveData.protocolldentifier:
sendData.unitldentifier = receiveData.unitldentifier;
sendData.functionCode = receiveData.functionCode;
if ((receiveData.quantity < 1) | (receiveData.quantity > 0x07D0)) //Invalid quantity
{
sendData.errorCode = (byte)(receiveData.functionCode + 0x80);

sendData.exceptionCode = 3;

if ((receiveData.startingAdress + 1 + receiveData.quantity) > 65535) //Invalid Starting adress

or Starting address + quantity
{
sendData.errorCode = (byte)(receiveData.functionCode + 0x80);

sendData.exceptionCode = 2;

31

}
if ((receiveData.quantity % 8) = 0)

sendData.byteCount = (byte)(receiveData.quantity / 8);
else

sendData.byteCount = (byte)(receiveData.quantity / 8 + 1);

sendData.sendCoilValues = new bool[receiveData.quantity];

Array.Copy(coils, receiveDatastartingAdress + 1, sendData.sendCoilValues, 0,

receiveData,quantity);

if (true)

Byte[] data;
if (sendData.exceptionCode > 0)
data = new byte[9];
else
data = new byte[9 + sendData.byteCount];

Byte[] byteData = new byte[2];

sendData.length = (byte)(data.Length - 6);

//8end Transaction identifier

byteData = BitConverter.GetBytes((int)sendData.transactionldentifier);

data[0] = byteData[1];

32

data[1] = byteData[0];

//Send Protocol identifier
byteData = BitConverter.GetBytes{(int)sendData. protocolldentifier);
data[2] = byteData[1];

data[3] = byteData[0];

//Send length
byteData = BitConverter,GetBytes((int)sendData. length);
data[4] = byteDataf1];

data[5] = byteData[0];

/fUnit Identifier

data[6] = sendData.unitIdentifier;

/fFunction Code

data[7] = sendData.functionCode;

//ByteCount

data[8] = sendData.byteCount;

if (sendData.exceptionCode > 0)

{

33

data]7] = sendData.etrorCode;
data[8] = sendData.exceptionCode;

sendData.sendCoilValues = null;

if (sendData.sendCoilValues != null)
for (int i = 0; i < (sendData.byteCount); i-+++)
{
byteData = new byte[2];
for (intj =0; j < 8; j++)

{

byte boolValue;

if (sendData.sendCoilValues[i * 8 + j] == true)
boolValue = 1;

else
boolValue = 0;

byteData[1] = (byte)((byteData[1]) | (boolValue << j));

if ((i * 8 +j + 1) >= sendData.sendCoilValues.Length)
break;

}

data[9 + i] = byteData[1];

stream. Write(data, 0, data.Length);

2.7 Medbus TCP Sample Application

Rockwell Automation provides a sample application to demonstrate the use of the
Modbus TCP Master Sample Application. The program was written to run on a Control

Logix 5000 processor with a compatible Ethernet Module. (Modbus TCP Master Sample
Application Revision 1.02)
3. CHAPTER THREE: METHODOLOGY AND FINDINGS

3.1 Setup development environment

The RSLogix 5000 is the PLC programming environment be used for PLC
programming. The RSLogix 5000 is running on the computer and using RSLinx Classic

to upload program to the PL.C and control the PLC remotely.

RSLogix 5000

T
Iz
}
“ 17,

M
—]

(Figure 3.1) PCL development environment

3.2 Build physical connection

Firstly, the PLC should be connected with the RJ45 connector of the Ethernet cable to

one of the Ethernet ports on the controlier. The ports are on the bottom of the controller.

35

(Figure 3.2) (CompactLogix 5370 Controllers User Manual)

Bottom of Controller
Port 1 - Front

Port 2 - Back o Ll .

Figure 3.2 CompactLogix 5370 Ethernet port

The PLC can communicate with the robot or virtual robot through Modbus/TCP.

(Figure 3.2)

RSLogix 5000

Ethern_et_

36

Figure 3.2 Communication between the PLC and the Robot

Any device connected to an Ethernet should have an IP address.

If the virtual emulation and PLC connect to an Ethernet by a router (Figure 3. 3), they
can use the DHCP (Dynamic Host Configuration Protocol) Server to get the IP address
dynamically. It is very convenient to connect the device to Ethernet. However, the
disadvantage is that the IP address would be changed when the devices restart. That means
the PLC program needs to change the IP address before building a connection with the

virtual robot.

Figure 3.3 Connect PLC with Virtual Robot Through Router

14

-

37

The other solution is to connect the virtual robot and the PLC with a crossover cable

(Wikipedia https://en.wikipedia.org/wiki/Fthernet_crossover_cable)

addresses for them manually.

and

setup

IP

38

Figure 3.4 Connecting the PLC to the Virtual Robot Through Crossover Cable

In RSLogix 5000, one set up the IP address for the PLC. (Figure 3.5)

General | Major Fauls | Minar | DatesTime | Advanced | SFCEwecution | Fie

 Nonyolale Menay | _Memoy | Imemel Potocol [Pon Conguaion | Network | _Secuiy

Internet Protocol [IP] Settings

IP settings can be manually configured of can be automatically configured
if the network supports this capability

@ Manually configure IP settings
) Obtain P settings automatically using BOOTP
) Dbtain IP settings automatically using DHCP

IP Settings Configuration

IPAddress 192 .188 . 1 . 3 Subnet Mask: 255 . 255 . 255. O
Gateway Address: 0.0.0.0
Domain Name:) Primary DNS Server g .08 -0
i Addiess:
‘ Secondary DNS ~ -
Host Name: Sorvei Addeic o . 0 - 0 . @

Figure 3.5 Set [P address for PLC

3.3 Research Utilities

In this research, to investigate the data in Modbus/TCP frame, a software utility was
created to covert the float number to integer number (Figure 3.6). By comparing the result
created by this software utility and the value in the PLC or virtual robot, we can know

whether the data transfer is correct or not.

40

w5 Modbus TCP Client - a X

Figure 3.7 Modbus TCP Client

3.4 PLC Programming

The stored instruction set that is programmed into a PLC is called the work cycle
program. The work cycle program is derived for the program of instructions and /or the
process flow for the application being controlled. A work cycle program is created by
dividing and processing the sequential list of action specified by the program of instructions

into logic and sequencing instructions. (Daniel E. Kandray. P.E, 2010.)

The PLC ladder diagram is used for programming. On the ladder diagram, Input

instructions or output instruction were put on each rung.

The Modbus Client program is based on the sample application provided by Rockwell

Automation, Inc. (Modbus TCP Master Sample Application Revision 1.02)

Clear all socket and

message

T

Create Socket

= ..‘-_.,___,__v-. — j

Connect Socket

e

Send requests (—|

Process response

Figure 3.8 PLC Program Process

41

42

e e B g = = e

ntroller MadB

usClient

e Controller Fault Handler
. .23 Power-Up Handler
E] Tasks

: a@ MainTask

|& Program Tags
B MainRoutine

Lo CheckTransCode
ClearCommBuffersAndTriggers
.[B) ClearTransTrigger
H Fun_ReadCails
Fun_ReadDiscretelnput
Fun_ReadHoldingReg
Fun_ReadlnputReg
Fun_WriteCoils
Fun_WriteRegs
Fun_WriteSingleCoil
|-[Bl Fun_WriteSingleReg

Figure 3.9 The PLC Program

The MSG instruction (Figure 3.10) asynchronously reads or writes a block of data
to another module on a network. The PLC program uses it to create a connection, send data
and retrieve data. After the connection is built, the PLC program can read and write data

from the server through the Modbus protocol.

43

Craates the raw
socket for
Connection 0.

MSC

Message
Message Control MBTI_Create_Sack_MSG_00 ()

EN)—
DN
BRI

Trr=—rr-

| Message Type: |
n
?’V‘” [Sockel Cieate v| SouceElemen: MBTU_SocketPaiams -
a ath 12 + et |
Code” 4 Med Co 32 (e esinaton MBTLinstarcell]
lement
Instance: O Attribute: 0 [Hex)
GEnable O EnableWating O Start ® Done Done Length: 4
O Enot Code: Etended Enot Code: [7] Timed Out &
Error Pathe
Enor Test

Lok) (ool | [sy | [ukiel.
" _ﬁ

i. (|

Figure 3.10 The MSG Instruction

Before the data is sent out, the PLC program needs to prepare data by filling some

data structure.

A connection object
A1 here anables the
communications to
this P address a 0
disables &
MBTU_ConnectionsiU] MBTU_Enable SW_\WiiteCoiis SR
B IF danp To Subrouting —
Routine Nams Fun_WriteColls
npul Par Para_INT_BeginAddress1$
Input Par Para_INT_LocaiOtfset!s
input Par Para_INT_Count15
Input Par Para_INT_LID
A connection object.
A1 here enabies the
communications to
this P address, a 0
disabies &
MBTU_Connections{0] MBTU_Enable SW_ReadCoils —— ISR
- JE Jump To Subroutine
Routine Name Fun_ReadCods
nput Par Para_INT_BeginAddresst
Input Par Para_INT_LocalOftsett
Inpit Par Para_INT_Court1
Input Par Para_INT_UID

Figure 3.11 The PLC Program for data preparing

Jump To Subroutine
Routine Name
Input Par Para_INT_BeginAddress1

Input Par Para_INT_LocalOffset1
Input Par Para_INT_Count1
Input Par Para_INT_UID

JSR

Fun_ReadCoils

Figure 3.12 PLC Route

A

1 MOV MOV MOV
— Move Move Move
Source Para_INT_LocalOffset! Source Para_INT_Count1 Source Para_INT_UID
0% 3 0«
Dest MBTU_Transactions_00[2] LocalOffset Dest MBTU_Transactions_00[2] Count Dest MBTU_Transactions_00[2].UID
0+ I 0«

Figure 3.13 Set Route Parameter

In the PLC program, data structure MBTranscation is used to send requests.

45

'-4C1500§... |
1B
11713 |

Figure 3.14 MB Transaction

Every MB transaction (Figure 3.15) corresponds to a request. The transaction data
structure works for a Modbus/TCP frame. which contains all the information used to fill
the frame.

w4 gpee e e iy e

{2 Add-On Instructions

545 Data Types r—-"—#—-m D"Ti' Eﬁ’ Descriph E""“",‘“‘“
-4 User-Defined e Enabied 8ooL Decmal | Enables 1] or cisables [isad/Wite
| LB MBConnection Pollnterval INT Decimal | Number of base pol b | Fead/Wrie
) MBTransaction TransType INT Decimal | Transaction code for t |Read/Wike
| B OpenConnParams UID SINT Decimal | Urat Identiber Ony use |Read/Wrte
| |-[h reAD_pATA REQ BegnAddiess | INT Decimal | Bagruung addeess to [ﬁucw.im
|) READ_RESP_STR Count INT Decimad | The count of tems to 1 | ead/Wrie
| ‘_.@ REQUEST_PARAMETERS LocalDiizet INT Decmal
| [~ sockAddr TransCompiete | BOOL Decimal
STR_OUT TransStat INT Decimal | Gratus result of the tar| Read/Wrte
WRT_DATA (] Request STR_#62 Actual bufler used to b | Read/Wike
' (G Strings ReqBuit BOOL Dacmal Trnochn-—-_:mdr Read/Write
f @ Add-On-Defined TiansiD INT Decinal Senal Number of the a |leadWite
ig PM';::?:;: s TtansLastEnor | INT Docm® | Last Encx on bansactic| Aead/wite
3 Trends

Figure 3.15 Data in MB Transaction

The PLC program fills MB Transaction according to the configuration, if the
Enabled field of MB Transaction is true. MB Transaction will be sent by MSG instruction.

That is one communication between PLC and the server.

46

In the PLC program, some data buffers were used for data reading and writing

Data buffer Type Usage

MBTU MB 0xx |BOOL[1024] | For function code 1(Read coils), 5(Write single

coil) and 15(Write multiple coils)

MBTU_MB_1xx |BOOL[1024] | For function code 2(Read discrete coils)

MBTU MB 3xx [INT[256] For function code 4(Read input coils)

MBTU MB 4xx | INT[256] For function code 3(Read holding register),
6(Write single register) and 16(Write multiple

registers)

For example, in the following instruction

Field Name Value

TransType 1

BeginAddress | 0

Count 10

LocalOffset 1

TransType means a coil reading.
BeginAddress is 0; this means the request will start reading at the first coil the device.
The count is 10; this means 10 coil will be read.

LocalOffset is 1; this means the data will be put into the buffer starting at the address

47
3.4.1 Multi Tasks
A Logix5000 controller support the following types of tasks:

Continuous Task: The continuous task runs all the time in the background. When it
completes a full scan, it restarts immediately. A project does not require a continuous task.
If used a project can have only one continuous task. Therefore, the main task of the project

is a continuous task.

Periodic Task: A periodic task performs at a specific period. The time period can be set

from 0.1ms to 2000s. The default period is 10ms.
Event Task: An event task performs only when a specific event occurs.
(Allen-Bradley, Logix5000 Controllers Tasks, Programs and Routines)

The PLC program has two tasks in the project (Figure 3.16), one is for communication

and one for the data process.

=3 Controller ModBusClient2 =

] Controller Tags F
1 Controller Fault Handler
| Power-Up Handler
B- {ﬂ Tasks
— , o £ ControlTask !
& & Cantraller ModBusClient2 _ gg';f;;f;:}aas |
i .[# controller Tags - B2 MainRoutine :
----- .[23 Controller Fault Handler B Fun_ReadCoils ;
[Power-Up Handler B Fun_ReadHoldingReg
C, 455' Tasks |
i ControlTask o
---@ MainTask
: # 3 Unscheduled Programs / Phases i B Fun_WriteSingleCail
5@ Maotion Groups B InitTransaction
L3 Ungrouped Axes B sub_PutFloatToReg
(23 Add-On Instructions L'J@ MainTask
W] Data Types | =-45% TCPClient
i Cﬁ User-Defined 3 A Pragram Tags
@% Strings -Hf) MainRoutine
Cﬂ Add-On-Defined CheckTransCode
@@ Predefined B ClearCommBuffersAndTriggers
- P PP, e, K Ea,

Figure 3.16 PLC Tasks

48

When a PLC wants to send a request to the virtual robot, the data process task prepares
data and puts the data into global data étructures. The global data structures are some data
structures be used to shard data between control task and communication task. The
communication task scans the global data structure continuously. If it finds the data is ready,

the communication task will send data to the virtual robot.

When a PLC wants to read data from the virtual robot, the data process task prepares
the request and puts it into the global data structure. If the communication finds there is a
request in the global data structure, the communication task will send a request to the virtual
robot and write the response from the virtual robot into the global data structure. Then the

data process task can read data locally.

According to this design, the communication task has higher priority than the data
process task. So the communication task was set as the main task and the data process task

was set as periodic task (Figure 3.17).

Communication Task

Description: ')
Type: [————
Period: 10.000 ms

Pricrity: 10 5| (Lower Number Yields Higher
Watchdog: 500.000 ms

Disable Automatic Output Processing To Reduce Task Overhead

Inhibit Task

Figure 3.17 Tasks type

3.4.2 Task synchronization

Global Data Structure

‘ Transaction 1
Trﬁcﬁon 2 [

Transaction3 | 'MW
e
Transactionn | \ipyy MB_2xx
_MBTEI;MB_3KX

Priority)

Control Task

Figure 3.18 Tasks synchronization

49

As the main task, the communication task scans the global data structure and

50

communicates with the virtual robot continuously. At the same time, the data proctiess task
performs at a specific period. If the period of data process task is shorter than the period
of communication task, some requests in the global data structure will be overwritten by
the subsequent request. It is an example of a producer—consumer problem in computer

science,
To solve this problem, there are two sample solutions:

1. Use some flag or trigger. Let the communication task notify the data process task,

after it has finished, read the global data structure and send request.

2. Make the period of data process task long enough. In this period, the data process
task will be suspended and the communication task has enough time to read the global data

structure and send the request.

Currently, the second solution was used in this research. Because it is easier to be

implemented.

3.5 Data Processing
There are two types of data used for the virtual robot operation, Boolean and Float.

Processing Boolean data is straight-forward and extra convert is need for Float data.

The virtual robot keeps the value of the position as the Float number, which is 32 bit.
But the input register for Modbus/TCP can keep just an integer value. The Float data in
virtual will be treated as two integer numbers. Furthermore, the Modbus uses big endian
data format so the order of the bytes of the data will be respected.

3.5.1 Read Float

For example, there is a Float number in the virtual robot that will be read through

; 51
Modbus/TCP protocol. Because the virtual robot is running on a windows systeml, which

uses little endian data format, the Float number is represented in the memory as following:

(Figure 3.18)

Float Number Byte 3

Float Number Byte 2

Float Number Byte 1

Float Number Byte 0

Figure 3.18 Float Number in Memory

Before the number was put into the Modbus/TCP protocol frame, the bytes of the

number should be reversed to big endian format:

Low
Address
Float Number Byte 0
Float Number Byte 1
Float Number Byte 2
Float Number Byte 3
High
Address

Figure 3.19 Float Bytes in the Memory

The bytes will be put into Modbus/TCP protocol frame and read by the PLC. A:fter the

Modbus frame was received by PLC, the PLC program will treat the 4 bytes as two integer

number and reverse them to little endian format.

Because the PLC is running on a Windows system and uses a little endian data format,

the PLC will treat the data as a two 16 bits integer number, the bytes will be converted to:

Low
Address

High
Address

Float Number Byte 1

Float Number Byte O

Float Number Byte 3

Float Number Byte 2

Figure 3.20 Float bytes in memory

To read the data correctly, the PLC program needs to re-arrange the bytes to the original

order.

Low
Address

High
Address

Float Number Byte 1

Float Number Byte 0

Float Number Byte 3

Float Number Byte 3

Float Number Byte 2

Float Number Byte 2

Float Number Byte 1

Float Number Byte O

Figure 3.21 Reverse the Bytes

53

Low - . > High
Float in Robot DCBA
Put to Frame ABCD |
Get from Frame BADC |
Pe—————————
We need DCBA '

Figure 3.22 reverse the bytes

The code looks like following:

Temp buffer for data

covert
COP
Copy Fie —
Source MBTU_MB_3xx|Loopindex*2]
Dest ByteBufteri[0]
Length 4

Temp butfer for data

Temp buffer for data

Temp buffer for data

Temp buffer for data

covert covert covert covert
—MOV —MOV ————MOV — MOV
Maove Move Move Move —1
Source ByteBuffer[0] Source ByleBufferi[1] Source ByteBuffer1[2] Source ByteBuffer1[3]
-115 4 B2 H 120 & 514
Dest ByteBuffer2(2] Dest ByteBuffer2(3) Dest ByteBuffer2[0] Dest ByteBuffer2[1]
-115 & 62 & 120 & 514

Figure 3.22 PLC Program

3.5.2 Write Float
To write the Float number to the virtual robot, the PLC program will split the four bytes

of the number to two parts, each part having two bytes.

Firstly, the four bytes were put into a byte array.

54

Used when conven
float numbers to int

nubmers
COP
— Copy File -
Source Angles[Angleindex] T[For_Loop_Index]
Dest Bytes_Of_FloatNumber[0]
Length 4

Figure 3.23 Float Number in PLC

Low
Address
. — —
Float Number Byte 0
Float Number Byte 1
Float Number Byte 2
Float Number Byte 3 1
High
Address

Figure 3.24 Bytes of Float Number

After that, the PLC program reverses those two parts to big endian order (Figure 3.23).

Low
Address
| Float Number Byte 2
|
L
‘ { Float Number Byte 3
| = - - e —
Float Number Byte 0
| Float Number Byte 1 |
High
Address

Figure 3.23 Reverse of the Bytes

55

The PLC ladder diagram is:

Used when converl Used when converl Used when converi Used when convert
float numbers to int fioat numbers to it floal numbers o int fioal numbers to int
nubmers nubmers nubmers nubmers
v MV —0V MOV
Move Move Move Maove —
Source Byles_Of_FlosthNumber(2] Source Byles_Of_FiostNumber(3] Source Bytes_Of_FloatNumber([0] Source Bytes_Of_FloatNumber(1]
55+ 66 & a2+ A13+
Dest Bytes_Of_TwointNumber{0] Dest Bytes_Of_TwolntNumber{1] Dest Bytes_Of_Twolnthumber(2] Cest Bytes Of_TwolntNumber[3]
554 66 + 924 1134

Figure 3.24 PLC Program

Then the data will be sent to the virtual robot.

When the bytes were sent to the virtual robot, the TCP/IP library will think the bytes

are two integers with big endian format. The bytes will be re-ordered as follows:

Low
Address
I -
R Float Number Byte 3 |
 Float Number Byte 2
\
‘ . Float Number Byte 1
Float Number Byte 0
High
Address

Figure 3.25 Bytes of Float Number

The virtual robot knows it is a Float with four bytes in big endian format. So the virtual

robot will reverse the four bytes into little endian and read it correctly.

3.6 Functions

Low
Address

High
Address

Float Number Byte 0

Float Number Byte 1

Float Number Byte 2 ,

Float Number Byte 3

Figure 3.26 bytes of float number

The functions are some subroutines used to prepare and receive data.

Every function has 4 parameters:

Name: Meaning

BeginAddress The start address of the data
to be read or write

Local Offset The address of data will be
saved locally in data array
MBTU_MB_ XXX

Count Counter of the bytes to read
or write

UID The ID of the device to be
operate

56

57

Global data structure MBTU MBO0XX is a Boolean array. and is used to read and
write coils. The corresponding function code are 1(which means read coils). 5(which

means write single coil), and 15(which means write multiple coils)

Global data structure MBTU_MBI1XX is Boolean array, it is used to read discrete

inputs. The corresponding function code is 2 (which means read discrete inputs)

Global data structure MBTU MB3XX is 16 bits integer array, which is used to read

input registers. The corresponding function code is 4 (which means read input registers)

Global data structure MBTU MB4XX is 16 bits integer array, which is used to read
and write holding registers. The corresponding function code are 3(which means read
holding registers), 6(which means write single holding register), and 16(which means

write multiple registers).

In the reading operation, the communication task will read data from virtual robot and

save them to those global data structure so control task can read it.

In the writing operation, the control task will prepare data and put them into those

global data structures so control task can send them to the virtual robot.

3.6.1 Fun_ReadCoils

SBR
—| Subroutine —
Input Par Para_INT_BeginAddress1
Input Par Para_INT_LocalOffset1
Input Par Para_INT_Count1
Input Par Para_INT_UID

The function sets function code to 1 in the transaction data structure.

58

Transaction_00[2] and read serval coils (Boolean type) from target device. The parameter
Begin Address means the function will start reading at address of the device being

reading.
The data read from target device will be put into Boolean array MBTU MBOXX.

3.6.2 Fun_WriteSingleCoils

SBR
— Subrowutine —
Input Par Para_INT_BeginAddresss
Imput Par Para_INT_LocalOffsets
Input Par Para_INT_UID

This function sets function code to 5 in the transaction data structure.
Transaction_00[6] sends the Boolean value in MBTU_MBO0XX at address of

LocalOffixedata to the virtual robot’s coil at address BeginAddress.

3.6.3 Fun_WriteCoils

SBR
— Subroutine p—
Input Par Para_INT_BeginAddress15
Input Par ~ Para_INT_LocalOffset15
Input Par Para_INT_Count15
Input Par Para_INT_UID

This function sets function code to 15 in the transaction data structure
Transaction _00[1] and sends some Boolean values in MBTU MBOXX starting from

address of LocalOffixedata to the virtual robot’s coil at address BeginAddress.

59

3.6.4 Fun_ReadDiscretelnput

5BR
— Subroutine —
Input Par Para_INT_BeginAddress2
input Par Para_INT_LocalOffset2
input Par Para_INT_Court2
Input Par Para_INT_LID

The function sets function code to 2 in the transaction data structure
Transaction_00[3] and reads serval discrete input from target device. The parameter
Begin Address means the function will start reading at the address of the selected device.

The data read from target device will be put into Boolean array MBTU_MBI1XX.

3.6.5 Fun_ReadInputReg

SBR
— Subroutine e
Input Par Para_INT_BeginAddress4
Input Par Para_INT_LocalOffset4
Input Par Para_INT_Count4
Input Par Para_INT_UID

The function sets function code to 4 in the transaction data structure
Transaction 00[3] and reads serval input register from target device. The parameter
Begin Address means the function will start reading at the address of the selected device.

The data read from target device will be put into Boolean array MBTU MB3XX.

3.6.6 Fun_ReadHoldingReg

SBR
— Subroutine -
Input Par Para_INT_BeginAddress3
Input Par Para_INT_LocalOffset3
Input Par Para_INT_Court3
Input Par Para_INT_UID

The function sets function code to 3 in the transaction data structure

Transaction 00[4] and reads serval holding registers (16 bits integer type) from target

60

device. The parameter Begin Address means the function will start reading at the address

of the selected device.

The data read from target device will be put into Boolean array MBTU MB4XX.

3.6.7 Fun_WriteSingleReg

SBR
— Subroutine —
Input Par Para_INT_BeginAddresst
Input Par Para_INT_LocalOffsett
Input Par Para_INT_UID

This function sets function code to 6 in the transaction data structure
Transaction 00[6] and sends the 16 bits integer value in MBTU MB4XX at the address

of LocalOffixedata to the virtual robot’s holding register at address BeginAddress.

3.6.8 Fun_WriteRegs

SBR
— Subroutine -
Input Par Para_INT_BeginAddress16
Input Par Para_INT_LocalOffset16
Input Par Para_INT_Court16
Input Par Para_INT_UID

This function sets function code to 16 in the transaction data structure Transaction_00
[7] and sends the 16 bits integer value in MBTU MB4XX at the address of
LocalOffixedata to the virtual robot’s holding register at address BeginAddress. This

function will convert the bytes of the Float to big endian format.

3.6.9 Fun_WriteAngles

Each angle of the virtual robot is composed by three Float numbers which have six

61

bytes in all. Firstly, this function will convert the float numbers to six bytes with big endian

order. The bytes will be put into a data table named “MBTU_MB_4xx™

FOR
—— For -
Routine Mame Sub_PutFloatToReg
Index For_Loop_Index
14
Initial Value 0
Terminal Value 2
Step Size 1

Then, this function will be called function “Fun_WriteRegs”. “Fun_WriteRegs” reads
the data in “MBTU MB_ 4xx” to send the six bytes located at address 0 to 5 to the virtual

robot.

3.6.10 Process_Transaction

This function will scan the content of the transaction data structure from
Transaction_00[0] to Transaction 00[7]. Each transaction data structure stands for a
function code. If Process Transaction finds one transaction data structure is ready,
Process Transaction builds a Modbus/TCP frame according to the content of the

transaction data structure and sends a request to the target device.

3.7 Action Sequence

To make the virtual robot accomplish an action sequence, Control task communicated

with the communication task through the shared global data structure (Figure 3.27).

62

Control Task

Pasition 1

Position 2

Position 3

Action 1

Action 2
Action 3

Position n

Actign n

Figure 3.27 Action Sequence

The communication task reads the status of the virtual robot and saves the data in those

global data structure.

Control task will scan the position list and action list and prepare the frame data, and
put the data in the global data structure. When the data is ready, the communication will

send the request to the server.

4. CONCLUSION AND RECOMMENDATIONS
The purpose of this research was to introduce the virtual robot and other virtual

devices into teaching. From the beginning, the focus of this research was to implement

the communication between computer and the PLC through the Modbus/TCP protocol.

As the result, a PLC and computer network was built and a PLC Modbus client
program was created to communicate with the virtual robot running on the PC by sending
and retrieving data from the computer. The PLC program can control the virtual robot
moving around, opening or closing a grabber, and determine whether the virtual robot has

reached the intended target object or not. The action sequence of the robot can be

63
enhanced by adding more positions and actions to the current PLC program.

Some future work may be necessary in this research to support more virtual devices
in the emulation system.

In the future, by using the Modbus/TCP protocol, the PLC can control multiple virtual

robots running in the emulation system or real robots in the industrial environment (Figure
3.28).

The trainer can teach students how to control the devices by using a PLC and allow

them to practice with the virtual device without worrying about damage to the real devices
and/or themselves.

RSLogix 5000

TR R, @
Ethernet l $ | use \

-
b
-0

Figure 3.28 Control Multiple Devices

64

5. REFERENCES

Daniel E. Kandray, P.E, 2010, Programmable Automation Technologes- An

Introduction to CNC, Robotics and PLCs. (p. 343)

Zyda, M., 2005, “From visual simulation to virtual reality to games”, Computer, (p.

25-32)

John W. Webb, 1995. Programmable logic Controllers Principles and Applications

(3rd ed., p. 4). Merrill publishing Company.

Kenneth G. Oliver, 1990. Basic Industrial Electricity: A Training and Maintenance

Manual (p. 44). Industrial press.

Sunit Kumar Sen, 2014. Fieldbus and Networking in Process Automation (p.185).

CRC Press
June Jamrich Parsons, 2014. New Perspectives on Computer Concepts (p. 257)
Acromag, Inc.20035, Introduction to Modbus TCP/IP (p.4)
John Wiley & Sons, 2013. Networking for Dummies (10 ed., 6-3)
Harley Hahn, 1996. The Internet Complete reference. (p.70)
Andrew G. Blank, 2004. TCP/IP Foundations. (p.128)
What is a Subnet Mask? (https://www.iplocation.net/subnet-mask)

Daniel E. Kandray, P.E, 2010. Programmable Automation Technologes- An

Introduction to CNC, Robotics and PLCs. (p. 385)
Acromag, Inc.2005, Introduction to Modbus TCP/IP (p.4)

Charles Petaold, 1998. Programming Windows (5ed, ch23.) Microsoft.

65

Jeffery Richter, 2012. CLR via C# (4ed, p.23)
Linda Null, 2014. The Essentials of Computer Organization and Architecture(p. 297)
EasyModbusTCP Library (http://www.easymodbustcp.net/)

An Introduction to Socket Programming in .NET using C#

(http://www.codeproject.com/Articles/10649/An-Introduction-to-Socket-Programming-

in-NET-using)
Allen-Bradley, Logix5000 Controllers Tasks, Programs and Routines (p9)
6. APPENDIX Source Code related

Here is some pseudo-code about writing a single coil to a master device

(http://easymodbustcp.net/)

/[l <summary>
/1l Write single Coil to Master device (FC3).
/Il </summary>
/Il <param name="startingAddress">Coil to be written</param>
/Il <param name="value">Coil Value to be written</param>
public void WriteSingleCoil(int startingAddress, bool value)
{
byte[] coilValue = new byte[2];
this.transactionldentifier = BitConverter.GetBytes((int)0x0001);
this.protocolldentifier = BitConverter.GetBytes((int)0x0000):
this.length = BitConverter.GetBytes((int)0x0006);

this.functionCode = 0x05:

86

this.startingAddress = BitConverter.GetBytes(starting Address);
if (value == true)
{

coilValue = BitConverter.GetBytes((int)0xFF00);

else

coilValue = BitConverter.GetBytes((int)0x0000);

}

Byte[] data = new byte[]{ this.transactionldentifier]1],
this.transactionIdentifier[0],
this.protocolldentifter[1],
this.protocolldentifier[0],
this.length[1],
this.length[0],
this.unitldentifier,
this.functionCode,
this.startingAddress{ 1],
this.starting Address[0],
coilValue[1],
coilValue[0]

¥

stream. Write(data, 0, data.Length);

67

data = new Byte[2100];

stream.Read(data, 0, data.Length);

if (data[7] = 0x85 & data[8] = 0x01)
throw new Exception("Function code not supported by master");
if (data[7] =— 0x85 & data[8] = 0x02)
throw new Exception("Starting address invalid or starting address -+ quantity invalid");
if (data[7] = 0x85 & data[§] = 0x03)
throw new Exception("quantity invalid");
if (data[7] = 0x85 & data[8] = 0x04)

throw new Exception("error reading");

Read a single-coil:

H/ <summary>
{/f Read Coils from Master device (FC1).
M </summary>
{/{ <param name="starting Address">First coil to be read</param>
Hf <param name="quantity">Num§r of coils to be read</param>
/// <returns>Boolean Array which contains the coils</returns>
public bool[] ReadCoils(int startingAddress, int quantity)
{

bool[] response;

this.transactionldentifier = BitConverter.GetBytes((int) 0x0001);

68

this.protocolldentifier = BitConverter.GetBytes((int} 0x0000);
this.length = BitConverter.GetBytes((int)0x0006);
this.functionCode = 0x01;
thig.startingAddress = BitConverter.GetBytes(starting Address);
this.quantity = BitConverter.GetBytes(quantity),
Byte[] data = new byte[]{
this.transactionlIdentifier[1],
this.transactionldentifier[0],
this.protocolldentifier[1],
this.protocolldentifier{0],
this.length[1],
this.length[0],
this.unitIdentifier,
this.functionCode,
this.startingAddress[1],
this.starting Address[0],
this.quantity[1],
this.quantity[0],
¥
stream. Write(data, 0, data.Length);
data = new Byte[2100];

stream.Read(data, 0, data.Length);

if (data]7] = Ox81 & data[8] = 0x01)
throw new Exception("Function code not supported by master”);
if (data[7] = Ox81 & data[8] = 0x02)
throw new Exception("Starting address invalid or starting address + quantity invalid");
if (data[7] == 0x81 & data[8] = 0x03)
throw new Exceptign("quantity invalid™);
if (data]7] == 0x81 & data[8] =— 0x04)

throw new Exception("etror reading™);

response = new bool[quantity];

for (int i = 0; i < quantity; i++)

{
int intData = data[9+i/8];
int mask = Convert.ToInt32{Math.Pow(2, (i%38)));
response[i] = Convert.ToBoolean((intData & mask)/'mask),

}

return (response);

