
COMMUNICATION BETWEEN VIRTUAL EMULATION SYSTEM AND PLC BY
MODBUS/TCPPROTOCOL

A Thesis

Presented to

the Faculty of the College of Science and Technology

Morehead State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Huang (Benjamin) Huang

November 20, 2015

CAMJEN-CARROLL LIBRARY
MOREHEAD, KY ~0351

ProQuest Number: 10187743

All rights reserved

INFORMATION TO ALL USERS

msll
tl-¼€,S6S

Dolf.~
/-} f7lf c.

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10187743

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Accepted by the faculty of the College of Science and Technology, Morehead State
University, in partial fulfillment of the requirements for the Master of Science degree.

Director of Thesis

Master's Committee: -------------~ Chair

Date

COMMUNICATION BETWEEN VIRTUAL EMULATION SYSTEM AND PLC BY
MODBUS/TCPPROTOCOL

Director of Thesis:

Huang (Benjamin) Huang
Morehead State University, 2015

A virtual laboratory plays an important role for academic purposes. Building this

kind oflaboratory by assembling the hardware including PLC, sensor, conveyor,

machine, or robot to an industry emulation automation environment is a big job and only

a limited number of equipment can be involved. An emulated environment running on a

computer can be used to solve this problem, but how can one also control the virtual

devices and collect information from a virtual devices to a real PLC?

This research focuses on the communication between the virtual emulation system

running on a computer and the PLC, so that, by using the program running on the PLC,

one can control the virtual robot. This thesis describes the implementation of the

Modbus/TCP protocol in PLC and the main functionalities for virtual robot control.

Accepted by: ------------~ Chair

ACKNOWLEDGEMENT

The author would like to express his gratitude to all the professors and students who

have reviewed this thesis and gave constructive ideas to improve the quality of the thesis.

I would like to first of all express my appreciation to Dr. Ortega-Moody, my Thesis

Director, for providing the opportunity to research and develop a software system for this

thesis. As my undergraduate and professional background is linked to computer science, it

was vital for me to use my knowledge and improve my knowledge through this research.

His constructive advice given throughout the rough periods of the research encouraged me

to complete the thesis in a timely manner.

Secondly, I would like to express my gratitude for Dr. Zargari and Dr. Grise for going

through this thesis and providing important suggestions to articulate the problems and

solutions for the other readers.

My sincere thankfulness is also expressed to Mr. Sanchez-Alonso for his valuable

advice on this thesis.

Table of Contents

1. CHAPTER ONE: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Purpose .. 2

1.3 Research objectives .. 5

1.4 Assumptions .. 6

1.5 Limitations .. 7

1.6 Definition of Terms .. 7

2. CHAPTER TWO: REVIEW OF LITERATURE ... 13

2.1 Modbus Protocol .. 13

2.2 ModbusffCP Protocol ... 16

2.3 Big Endian ... 18

2.4 Client-Server communication mode ... 21

2.5 EasyModbusTCP Library : .. 21

2.6 ModbusffCP implementation in C# ... 24

2.6.I Implementation ofModbus/TCP at Client Side .. 25

2.6.21mplementation of the Modbus/TCP at the Server Side ... 30

2.7 Modbus TCP Sample Application .. 34

3. CHAPTER THREE: METHODOLOGY AND FINDINGS .. 34

3.1 Setup development environment .. 34

3.2 Build physical connection ... 34

3.3 Research Utilities ... 38

3.4 PLC Programming ... 40

3.4.1 Multi Tasks .. .47

3.4.2 Task synchroniz.ation ... 49

3.5 Data Processing .. 50

3.5.1 Read Float .. 50

3.5.2 Write Float ... 53

3.6 Functions ... 56

3.6.1 Fun_ReadCoils .. 57

3.6.2Fun_ WriteSingleCoils ... 58

3.6.3 Fun_ WriteCoils ... 58

3 .6.4 Fun_ ReadDiscrete!nput ... 59

3.6.SFun_ReadlnputReg .. 59

3.6.6Fun_ReadHoldingReg ... 59

3.6. 7 Fun_ WriteSingleReg ... 60

3.6.8 Fun_ WriteRegs ... 60

3.6.9 Fun_ WriteAngles .. 60

3.6.10 Process_Transaction .. 61

3.7 Action Sequence ... 61

4. CONCLUSION AND RECOMMENDATIONS ; .. 62

5. REFERENCES .. 64

6. APPENDIX SOURCE CODE RELATED .. 65

1

1. CHAPTER ONE: INTRODUCTION

1.1 Background

Technological advances have resulted in a significance revolution of automation in

industry. The related research and training are becoming increasingly important both

strategically and economically. However, building a laboratory for academic purposes by

assembling the required hardware, including PLC's, sensors, a conveyor, machines, and/or

robot for an industry emulation automation environment is a big job and only a limited

number of different equipment and peripheral devices can be involved in the infrastructure

of the laboratory. It is difficult to build this kind of laboratory because a real laboratory

involves all of the types of hardware. Furthermore, automation is an area that is constantly

being updated as new technology is developed. Most of the new invented equipment is

expensive and needs time to be ordered and delivered. It is not practical to change and re

setup the hardware in the laboratory frequently.

Robot simulation involves simulating the robot program and the program of

instructions in the virtual world of a computer graphics program. Program simulation is

typically accomplished by modeling the robot, tooling, and peripheral equipment in the

software and then executing the program of instructions for the application. (Daniel E.

Kandray, P.E, 2010)

For these reasons, the development of a virtual industrial laboratory to simulate the real

one is proposed. With this development, researchers will be able to change the

configuration of the laboratory to fit any realistic industry environment that they want. This

new trend known as "Serious Games" has its main focus the field of specialized instruction

and training. (Zyda, M., 2005)

2

By using the PLC's connection to the industrial virtual laboratory, students can practice

programing complex automation sequences without necessarily being in a real industrial

environment. This means they will be able to modify the parameters and the sequences of

control conveniently. A virtual laboratory is particularly useful when some experiments

involve equipment that might cause harm to human beings, or risk compromising the safety

of the process. Moreover, all of the operations and their consequences can be visualized in

real-time. Another objective of a virtual laboratory is to provide hands-on lab activities te

that can enhance online courses. By using the communication technology used on the

internet, the virtual industrial laboratory can be accessed and shared on a global scale. Thus,

research and training will be free from restrictions of time and location.

1.2 Purpose

In a realistic industry environment, the engineer will use the PLC to control the

combination of conveyors, sensors, and machines. The instruction will be sent from the

PLC to the peripheral hardware or robot, and the data will be collected by hardware or

robot and sent back to the PLC directly. Correspondingly, in the virtual emulation system,

the PLC needs to communicate with the virtual hardware or robot running on the computer.

This research will focus on the communication between the simulation system and the

PLC. The Modbus/TCP protocol will be used for communication between the PLC and

the virtual equipment. In the virtual simulation system, the PLC will work as a client and

the virtual simulation system running on the computer will work as a server. The client

server model of programming is a distributed application structure that communicate

between the providers of a resource or service, called servers, and service requesters, called

clients. Through the combination between the server and the client, the PLC can control

3

the virtual hardware and get data from it.

Talcing a virtual robot as an exan1ple, the status of the virtual robot can be recorded in

the memory. To control the robot, therefore, means to modify those data in the memory

(Figure 1 .1). For exan1ple, if we want to move the effector, we can change the angles of

the robot's joints. If we want the robot to pick up the piece, we can set the value

corresponding to the effector to pick up or drop the object.

Figure 1.1 Data in Memory

Mod bus is considered an application layer messaging protocol, providing Master/S lave

conununication (Figure 1.2) between devices connected together through buses or

networks. By using it, the PLC or a computer can control the virtual robot remotely.

Furthermore, the PLC can control multiple virtual devices running in the virtual emulation

system.

The Virtual emulation System

I Robotl I
I Sensor j:

E]
E]

Modbus/TCP

Figure 1.2 Master/Slave Communication

4

PLC

Because Modbus is supported by real devices, the benefit of using Modbus is the

program running in the emulation system can later be immigrated to the real industry

environment smoothly and conveniently (Figure 1.3 Modbus communication).

5

rm

Figure 1.3 Modbus Communication

t .3 Research objectives

Objective 1:

Program the PLC in RSLogix 5000 and implement ModbusffCP in the PLC as a

client.

Objective 2:

Operate the virtual robot and monitor its state by reading and writing the virtual

6

coils and registers in the virtual robot.

Objective 3:

Make the virtual robot accomplish an action sequence, including moving to the

target position, take object, move and put object at the target position.

1.4 Assumptions

The following assumptions are considered as pre-conditions before this research.

The Modbus/fCP server has been implemented in the virtual robot and can

communicate with the client. It will listen at port 502 and be ready to accept connection

from the client. After the connection was connected, the client can communicate with the

virtual robot.

The Ethernet module is necessary for the PLC. The Ethernet module can connect the

PLC to the internet or intranet and communicate with other devices connected to the

network.

Currently, our research focuses on communication with an existing virtual robot

(Figure 1.4). The virtual robot has the Modbus/TCP protocol implemented and can work

as a server. The client program can operate it by reading and writing virtual coils and

registers into it.

7

Figure 1.4 Virtual robot

1.5 Limitations

No1 all PLCs have an Ethernet module. Only new PLCs with Ethernet modules can

communicate with other devices through the Modbus/TCP protocol on Ethernet.

1.6 Definition of Terms

PLC:

·'A programmable logic controller. PLC, is a user-friendly, microprocessor-based,

8

specialized computer that carries out control functions of many types and levels of

complexity. It can be programmed, controlled and operated by a person unskilled in

operating computers. The PLC's operator essentially draws the lines and devices of ladder

diagrams" (John W. Webb, 1995).

Ethernet:

"Ethernet computer networking technologies works for local area networks (LANs)

and metropolitan area networks (MANs). It is a wired network technology that is defined

by IEEE8.2.3 standards. It was first deployed in 1976 and has since emerged as the

dominant standard for wired connections in local area networks." (June Jamrich Parson,

2014) It has since been refined to support higher bit rates and longer link distances. The

Ethernet RJ 45 (Figure 1.5) cable can be used to connect devices.

Figure 1.5 RJ-45

Sockets

Sockets are a concept developed at the University of California at Berkeley to add

network communication support to the UNIX operating system. The API (Application

Program Interface) developed there is now known as the "Berkeley socket interface."

Sockets are generally, but not exclusively, used in conjunction with the Transmission

Control Protocol/Internet Protocol (TCP/IP) that dominates Internet communications. The

9

Internet Protocol (IP) part of TCP/IP involves packaging data into "datagrams" that contain

header information to identify the source and destination of the data. The Transmission

Control Protocol (TCP) provides a means of reliable transport and error checking for the

IP datagrams.

Within TCP/IP, a communication endpoint is defined by an IP address and a port

number. The IP address consists of 4 bytes that identify a server on the Internet. The IP

address is generally shown in "dotted quad" format, with decimal numbers separated by

periods, for example "209.86.105.231 ". "A port number identifies a particular service or

process that the server provides. Some of these port numbers are standardized to provide

well-known services". (Charles Petzold, 1998)

RSLogix 5000:

The RSLogix 5000 Enterprise Series software is designed to work with Logix5000

controller platforms. RSLogix 5000 Enterprise Series software is an IEC 61131-3

compliant software package that offers relay ladder, structured text, function block diagram,

and sequential function chart editors .for the designer to develop application programs.

Create your own instructions by encapsulating a section of logic in any programming

language into an Add-On Instruction. (RSLogix 5000 Programming Software)

Ladder Diagram:

Ladder diagrams are specialized schematics commonly used to document industrial

control logic systems. They are called "ladder" diagrams because they resemble a ladder,

with two vertical rails (supply power) and as many "rungs" (horizontal lines) as there are

control circuits to represent. If we wanted to draw a simple ladder diagram showing a lamp

that is controlled by a hand switch, it would look like this (Figure 1 .6):

10

L1 ½.

/ s,_ __ h ______ 1 _____ ~Lb1-'P_ /
, '

Figure 1.6 Ladder Diagrams

Ladder diagrams are used only on 2-wire control circuits, not for the power circuit of

the driven or controlled equipment. (Kenneth G. Oliver, 1990.)

Modbus:

Modbus is a serial communication protocol initially developed by AEG-MOdicon. It

was initially designed to operate with programmable logic controllers (PLCs). It is an

application layer messaging protocol, -operating at layer 7 of the Open Systems

Interconnection (OSI) protocol, and provides client-server communication between

devices connection on different types of net-work. (Sunit Kumar Sen, 2014)

Mod bus/TCP:

Modbus TCP/IP (also Modbus-TCP) is simply the Modbus RTU protocol with a TCP

interface that runs on Ethernet.

The Modbus messaging structure is the application protocol that defines the rules for

organizing and interpreting the data independent of the data transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which

provides the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP

allows blocks of binary data to be exchanged between computers. It is also a world-wide

standard that serves as the foundation for the World Wide Web. The primary function of

TCP is to ensure that all packets of data are received correctly, while IP makes sure that

11

messages are correctly addressed and routed. Note that the TCP/IP combination is merely

a transport protocol, and does not define what the data means or how the data is to be

interpreted (this is the job of the application protocol, Modbus in this case). (Acromag,

Inc.2005)

Crossover cable:

A crossover cable can directly connect two devices without a hub or switch. You can

use a crossover cable to connect two computers directly to each other, but crossover cable~

are more often used to daisy-chain hubs and switches to each other.

If you want to create your own crossover cable, you must reverse the wires on one end

of the cable, as showr in Figure 1.6 (Doug Lowe. 20 13)

NICMDI NICMDI

Figure 1.6 Crossover cable

IP Address:

IP uses 32 bits, or four numbers between 0 and 255, to address a computer.

IP addresses are nom1ally written as four numbers separated by a period. like this:

192.168.1.50.

Each computer or device must have a unique IP address before it can connect to the

Internet.

Each IP packet must have an address before it can be sent to another computer.

12

In computer terms, TCP/IP uses 32 bits addressing. It uses 4 bytes. One byte is 8 bits.

One byte can contain 256 different values:

00000000, 00000001, 00000010, 00000011, 00000100, 00000101, 00000110,

00000111, 00001000 and all the way up to 11111111. For example, rtfin.mit.edu is

the domain of a particular computer at MIT. The IP ofrtfin.mit.edu is 18.181.0.24 (Harley

Hahn, 1996)

Subnet Mask:

On most networks, the network administrator uses an IP address scheme that include a

custom subnet mask. Because the routes that are in the physical Local Area Network (LAN)

define each network, a network administrator must use a different network address for each

side of a route. When a router is used to create smaller networks, the smaller network is

called subnet. (Andrew G. Blank)

An IP address has two components, the network address and the host address. A subnet

mask separates the IP address into the network and host addresses. Subletting further

divides the host part of an IP address into a subnet and host address if additional subnetwork

is needed. Use the Subnet Calculator to retrieve subnetwork information from IP address

and Subnet Mask. It is called a subnet mask because it is used to identify network address

of an IP address by performing a bitwise AND operation on the netmask.

A Subnet mask is a 32-bit number that masks an IP address, and divides the IP .address

into network address and host address. Subnet Mask is made by setting network bits to all

"l "s and setting host bits to all "0"s. Within a given network, two host addresses are

reserved for special purpose, and cannot be assigned to hosts. The "0" address is assigned

13

a network address and "255" is assigned to a broadcast address, and they cannot be assigned

to hosts.

2. CHAPTER TWO: REVIEW OF LITERATURE

2.1 Modbus Protocol

The Modbus protocol was developed in 1979 by Modicon, Incorporated, for industrial

automation systems and Modicon programmable controllers. It has since become an

industry standard method for the transfer of discrete/analog I/0 information and register

data between industrial control and monitoring devices. Modbus is now a widely-accepted,

open, public-domain protocol that requires a license, but does not require royalty payment

to its owner.

Modbus devices communicate using a master-slave (client-server) technique in which

only one device (the master-client) can initiate transactions (called queries). The other

devices (slaves or servers) respond by supplying the requested data to the master, or by

taking the action requested in the query. A slave is any peripheral device (I/0 transducer,

valve, network drive, or other measuring device) which processes information and sends

its output to the master using Modbus. The Acromag I/0 Modules are the slave/server

devices, while a typical master device is a host computer running appropriate application

software. Other devices may function as both clients (masters) and servers (slaves) (Figure

2.1).

14

Device Application M emory

M ODBUS Access

Input Discrete '

Coils Modbus Request

Input Registers

Holding
Registers

M odbus Server Device

Figure 2.1 Modbus Protocol

The data type of Mod bus protocol (Figure 2.2):

Discretes Input Single bit Read-Only

Coils Single bit Read-Write

Input Registers 16-bit word Read-Only

Holding Registers 16-bit word Read-Write

Figure 2.2 Modbus Protocol Data Type

Masters can address individual s laves, or can initiate a broadcast message to all slaves.

15

Slaves return a response to all queries addressed to them individually. Slaves do not initiate

messages on their own. they only respond to queries from the master (Figure 2.3).

I Additional address I > ';"~: ... ---~•7;;-~
·~•; ··-· - . • • ~.' _ . .I.-

Client

Initiate request

Receive the response

ADU

POU

I Error check I

Server

Perform the action
Initiate the response

Figure 2.3 Modbus Protocol communication

A master's query will consist of a slave address (or broadcast address), a function code

defining the requested action (Figure 2.4), any required data, and an error checking field.

A slave' s response consists of fields confirming the action taken, any data to be returned,

and an error checking fi eld. Note that the query and response both include a device address,

a function code, plus applicable data, and an error checking field. If no error occurs, the

slave's response contains the data as requested. If an error occurs in the query received, or

if the slave is unable to perform the action requested, the slave will return an exception

message as its response.

The error check field of the slave' s message frame al lows the master to confirm that

the contents of the message are valid. Traditional Mod bus messages are transmitted seri ally

16

and parity checking is also applied to each transmitted character in its data frame.

(Acromag, lnc.2005)

I

I Command Function Code

01 Read Coils

I 0'2 r Read Discrete Inputs

03 Read Holding Registers

04 Read Input Registers
,_

05 Write Single Coil

00 Write Single Register

07 Read Exception Status

00 Ii Diagnostics

.

.
Ii

xx Up to 255 function codes, depending
L on the device

- -

Figure 2.4 Modbus Protocol Function code

2.2 ModbusffCP Protocol

I 1. Modbus messaging structure is the application protocol that defines the rules for

organizing and interpreting the data independent of the data transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which

provides the transmission medium for Modbus TCP/IP messaging. Simply stated. TCP/JP

allows blocks of binary data to be exchanged between computers. It is also a world-wide

17

standard that serves as the foundation for the World Wide Web. The primary function of

TCP is to ensure that all packets of data are received correctly, while IP makes sure that

messages are correctly addressed and routed. Note that the TCP/lP combination is merely

a transport protocol, and does not define what the data means or how the data is to be

interpreted (this is the job of the app lication protocol, Mod bus in this case).

So in summary, Modbus TCP/IP uses TCP/IP and Ethernet to carry the data of the

Modbus message structure between compatible devices. That is. Modbus TCP/IP combines

a physical network (Ethernet). with a networking standard (TCP/JP), and a standard method

of representing data (Modbus as the application protocol). Essentially, the Mod bus TCP/JP

message is simply a Modbus communication encapsulated in an Ethernet TCP/IP wrapper

(Figure 2.6).

Appltcabon Data Unit (ADU)

CONSTRUCTION OF A
MODBUS TCP DATA PACKET

Funct1011
Code Data

~
Modbus Appllcat10n Protocol (MBAP) Header I I

(7 Bytes) Protocol Data Unit {POU)

Function Code & Data
Are Not Modified

Transaction Protocol Length Unit 10 Functoo Data Modbus Frame Wrth
ldenlrfler Identifier Field Code TCP/IP Transmission .___ __ _______ ...,__ ___ ...__ __ ____. ___ _,,

(2 Bytes) (2 Bytes) (2 Bytes) (1 Byte) (1 Byte) Vanes

Modbus TCP/1P ADU
(This information is embedded into the data portion of the TCP frame)

Figure 2.5 Modbus/TCP Protocol

In practice, Modbus TCP embeds a standard Modbus data frame into a TCP frame

(Figure 2.6), without the Modbus checksum. as shown in the fo llowing diagram.

18

Fields Length -Description • Client Server

:Transaction 2 Bytes dentif1cat,on of a Initialized by the Recopied by the
Identifier MODBUS Request / client server from the

Response transaction. received
request

Protocol Identifier 2 Bytes 0 = MODBUS protocol Initialized by the Recopied by the
client server from the

received
request

Length 2 Bytes Number of following Initialized by the Initialized by
bytes cl ient (request) the server (

Response)

Unit Identifier 1 Byte Identification of a Initialized by the Recopied by the
remotes ave client server from the
connected on a serial received
hr,e or on other buses. request

Figure 2.6 ModbusrrCP Frame

For example. imagine the case writing a coil at address Ox I to false. The

Modbus/TCP Frame will be constructed as fo llows:

Transl D Protocol Length Unit ID FunCode Address Data

ID

0001 0000 0006 00 05 0001 0000

2.3 Big Endian

Big Endian Byte Order: The most significant byte (the "big end") of the data is placed

at the byte with the lowest address (Figure 2.7). The rest of the data is placed in order in

the next tlu·ee bytes in memory.

l

Memory

a:

a+l:

a+2:

a+3:

• • •

OA
OB
QC

OD
• • •

19

32-bit integer

OAOBOCOD

~

-
~

~

~

~

~

~

Big-endian

Figure 2.7 Big-endian

Little Endian Byte Order: The least significant byte (the "little end") of the data is

placed at the byte with the lowest address (Figure 2.8). The rest of the data is placed in

order in the next three bytes in memory.

32-bit integer

OAOBOCOD

,,__

,,__
,_.

--
--

Little-endian

Memory

a:

a+l:

a+2:

a+3:

• • •

OD
OC
OB
OA
.
• •

Figure 2.8 Little-endian

20

Big endian is more natural to most people and thus makes it easier to read hex dumps.

By having the high-order byte come first, the developer can always test whether the number

is positive or negative by looking at the byte at offset zero. (Linda Null, 2014)

Modbus uses Big-Endian to transfer data. For Windows and Intel system, Little-Endian

is used for data presentation and data transfer. So the order of bytes needed to be adjusted

before sending and after receiving by Modbus protocol.

The C# code to convert Big-Endian to Litter Endian format is presented:

Byte□ data = new byte[2];

Byte[] byteData = new byte[2];

I I get little-endian bytes

byteData = BitConverter.GetBytes(data Wi IIBeTransfer);

data[0] = byte Data[I];

data[I] = byteData[0];

2.4 Client-Server communication mode

21

The client-server model (Figure 2.9) of computing is a distributed application structure

that partitions tasks or workloads between the providers of a resource or service, called

servers, and service requesters, called clients. Often clients and servers communicate over

a computer network on separate hardware, but both client and server may reside in the

same system. A server host runs one or more server programs which share their resources

with clients. A client does not share any of its resources, but requests a server's content or

service function. Clients therefore initiate communication sessions with servers, which

await incoming requests. (Client-server model)

~ \
0 lntemet (7

O
Clien;; 7-v

■ Server

Figure 2.8 the client-server model

2.5 EasyModbusTCP Library

This is the Modbus-TCP library for .NET and Java implementations. The library is

suitable for Client and Server applications. The simulator shows registers and coils. They

can be changed within the server simulator. Also protocol information can be displayed, to

monitor the data exchange between Server and Client.

The following function Codes are supported:

• Read Coils (FC 1)

• Read Discrete Inputs (FC2)

• Read Holding Registers (FC3)

• Read Input Registers (FC4)

• Write Single Coil (FC5)

• Write Single Register (FC6)

• Write Multiple Coils (FC15)

• Write Multiple Registers (FC16)

• Read/Write Multiple Registers (FC23)

(EasyModbusTCP Library http:/(www.easymodbustcp.net/)

22

E•syModbusTCP S.rvor Simulator

.......,..__""""_......_.., Modbus-TCP SOM>r Listoning (POft 502) Moveto~ 1 ,:
t,tp,1/www EpyMpctyJCPJJd ~

\lnon1S IA
,..,...," oomecteddoru O ,~.J
Pnitocallr-l-

Activated Function codes:

0 FC 01 (Read Coils)
0 FC 02 (Read Oiscrele Inputs)
0 FC 03 (Read Holding Registers)
0 FC 04 (Read Input Regis18rs)
0 FC 05 (Write Single Coif)
0 FC 06 (Write Single Register)
0 FC 15 (Write Mulliple Coils)

0 Smw Piolocol ...,_,.

0 FC 16 (Write Mulliple Registers)
0 FC 23 (Read/Write Multiple Registers)

Figure 2.10 The Server Simulator

-; EasyModbus Client

s
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

I Mocb.is TCP (Bhemel) v I http:/ lwww. EasyModbus TCP .net

Server IP-hlaess Server Port

1192.168.1.2 1 ~1so_2_~

D

.Answerfrom Modbus-Sefver

I Read Coas • FC1 J
~ ad llsaete hpus - FC2]

~ Hoki,g ~ m - FC37

1 ReiKI lnixJ Registers ~ ~

Starting hldress

D
Nunber c:J Values

D

Figure 2. 11 Client Simulator

X

23

a

24

By reading the source code ofModbus-TCP library and using function codes provided

by the server simulator and c lient simulator, we can understand the implementation of

Modbus/TCP at the server side and the client side.

2.6 Modbus/fCP implementation in C#

The key point of the Mod bus communication is to bui Id the data frame (Figure 2. 12)

for the protocol according to the specification of the protocol:

Modbus Applicat10n Protocol (MBAP) Header
(7 Bytes)

Transaction
Identifier

(2 Bytes)

Protocol
ldenbfier

(2 Bytes)

Length
Field

(2 Bytes)

Unit ID

(1 Byte)

Modbus TCP/IP ADU

I Protocol Data Unit (POU) I
Funct10n
Code

(1 Byte)

Data

Vanes

(This N1format10n 1s embedded 1110 the data portion of the TCP frame)

Figure 2.12 Modbus Frame

The processes of building the Mod bus/TCP frame (Figure 2.13)

Modbus Frame With
TCP/IP Transmission

Prepare the Frame
(a bytes array)

Set Transaction ID (2bytes)

Set Protocol ID (2bytes)

Set Length Field (2bytes)

Set Unit ID (lbyte)

Set Function Code (lbyte)

Write Data

Send Frame

Figure 2. 13 Processes of building the Modbus/TCP frame

2.6.1 Implementation of ModbusffCP at Client Side

25

Here is some pseudo-code for writing a single coil to a server device

(http://easymodbustcp.net/)

Ill <summary>

Ill Write single Coil to Master device (FC5).

Ill </summary>

Ill <param name="startingAddress''>Coil to be written</param>

Ill <param name="value">Coil Value to be written</param>

public void WriteSingleCoil(int startingAddress, boo! value)

{

byte[] coi!Value = new byte[2];

this.transactionldentifier = BitConverter.GetBytes((int)0x000I);

this.protocolldentifier = BitConverter.GetBytes((int)0x0000);

this.length= BitConverter.GetBytes((int)0x0006);

this.functionCode = 0x05;

this.startingAddress = BitConverter.GetBytes(startingAddress);

if(value = true)

{

coi!Value = BitConverter.GetBytes((int)0xFF00);

}

else

{

coi!Value = BitConverter .GetBytes((int)0x0000);

}

Byte[] data= new byte[] { this.transactionldentifier[I],

this.transactionldentifier[0],

this. protoco lldentifier[I],

this.protocolldentifier[0],

this.length[I],

this.length[0],

this. unitldentifier,

26

}

};

stream.Write(data, 0, data.Length);

data= new Byte[2100];

stream.Read(data, 0, data.Length);

this.functionCode,

this.startingAddress[I],

this.startingAddress[0],

coi!Value[I],

coilValue[0]

if (data[7] = 0x85 & data[8] = 0x0 I)

throw new Exception("Function code not supported by master");

if(data[7] = 0x85 & data[8] = 0x02)

throw new Exception("Starting address invalid or starting address+ quantity invalid");

if(data[7] = 0x85 & data[8] = 0x03)

throw new Exception("quantity invalid");

if(data[7] = 0x85 & data[8] = 0x04)

throw new Exception("error reading");

Read a single coil:

Ill <summary>

Ill Read Coils from Master device (FCI).

Ill </sununary>

27

Ill <param name="startingAddress">First coil to be read</param>

Ill <param name="quantity">Numer of coils to be read</param>

Ill <returns>Boolean Array which contains the coils<lreturns>

public boo![] ReadCoils(int startingAddress, int quantity)

{

boo![] response;

this.transactionldentifier = BitConverter.GetBytes((int) 0x000!);

this.protocolldentifier = BitConverter.GetBytes((int) 0x0000);

this.length= BitConverter.GetBytes((int)0x0006);

this.function Code= 0x0 I;

this.startingAddress = BitConverter.GetBytes(startingAddress);

this.quantity= BitConverter.GetBytes(quantity);

Byte[] data= new byte[] {

this. transactionldentifier[I] ,

this. transactionldentifier[0],

this. protoco!Identifier[I],

this.protoco!Identifier[0],

this.length[!],

this.length[0],

this.unitldentifier,

this.functionCode,

this.startingAddress[l],

this.startingAddress[0],

28

};

this.quantity[!],

this.quantity[0],

stream.Write(data, 0, data.Length);

data= new Byte[2100];

stream.Read(data, 0, data.Length);

if (data[?] = 0x8 l & data[S] == 0x0 I)

throw new Exception("Function code not supported by master");

if (data[?] = 0x8 l & data[S] = 0x02)

throw new Exception("Starting address invalid or starting address+ quantity invalid");

if(data[7] =0x81 & data[S] = 0x03)

throw new Exception("quantity invalid");

if(data[7] = 0x81 & data[SJ = 0x04)

throw new Exception("error reading");

response= new bool[quantity];

for (inti= 0; i < quantity; i++)

{

}

int intData = data[9+i/8];

int mask= Convert.Tolnt32(Math.Pow(2, (i%8)));

response[i] = Convert.ToBoolean((intData & mask)/mask);

29

30

return (response):

2.6.2 Implementation of the ModbusrrCP at the Server S ide

Here is some pseudo-code for writing a single coil to a server device

(http://easymodbustcp.net/)

private void ReadCoils(ModbusProtocol receiveData, ModbusProtocol sendData, NetworkStream

stream, int portln, IPAddress ipAddressln)

sendData.response = true;

sendData.transaction Identifier = receiveData.transact ion Identifier;

sendData.protocolldentifier = receiveData.protocolldentifier;

sendData.w1itldentifier = receiveData.unitldentifier;

sendData.functionCode = receiveData.functionCode;

if((receiveData.quantity < I) (receiveData.quantity > 0x07D0)) //Invalid quantity

sendData.errorCode = (byte)(receiveData.functionCode + 0x80);

sendData.exceptionCode = 3;

if ((receiveData.startingAdress + I + receiveData.quantity) > 65535) //Invalid Starting actress

or Starting address + quantity

sendData.errorCode = (byte)(receiveData. functionCode + 0x80);

sendData.exceptionCode = 2;

31

}

if ((receiveDataquantity % 8) = 0)

sendData.byteCount = (byte)(receiveData.quantity / 8);

else

sendData.byteCount = (byte)(receiveData.quantity / 8 + I);

sendData.sendCoilValues = new bool[receiveData.quantity];

Array.Copy(coils, receiveDatastartingAdress + I, sendData.sendCoilValues, 0,

receiveData.quantity);

if(true)

{

Byte[] data;

if (sendData.exceptionCode > 0)

data= new byte[9];

else

data= new byte[9 + sendData.byteCount];

ByteQ byteData = new byte[2];

sendData.length = (byte)(data.Length - 6);

I /Send Transaction identifier

byteData = BitConverter.GetBytes((int)sendData.transactionidentifier);

data[0] = byte Data[I];

data[!]= byteData[O];

//Send Protocol identifier

byteData = BitConverter.GetBytes((int)sendData.protocolldentifier);

data[2] = byteData[I];

data[3] = byteData[O];

/ /Send length

byteData = BitConverter.GetBytes((int)sendData.lengtb);

data[4] = byteData[l];

data[5] = byteData[O];

//Unit Identifier

data[6] = sendData. unitldentifier;

//Function Code

data[?] = sendData.functionCode;

//ByteCount

data[8] = sendData.byteCount;

if (sendData.exceptionCode > 0)

{

32

}

data[7] = sendData.errorCode;

data[SJ = sendData.exceptionCode;

sendData.sendCoi!Values = null;

if(sendData.sendCoi!Values != null)

}

for (inti= O; i < (sendData.byteCount); i++)

{

byteData = new byte[2];

for (intj = O;j < S;j++)

{

}

byte boo!Value;

if(sendData.sendCoi!Values[i • 8 + j] = true)

boo!Value = I;

else

boo!Value = O;

byteData[l] = (byte)((byteData[l]) I (boo!Value << j));

if((i • 8 + j +I)>= sendData.sendCoi!Values.Length)

break;

data[9 + i] = byteData[l];

33

34

stream.Write(data, 0, data.Length);

}

2.7 Modbus TCP Sample Application

Rockwell Automation provides a sample application to demonstrate the use of the

Modbus TCP Master Sample Application. The program was written to run on a Control

Logix 5000 processor with a compatible Ethernet Module. (Modbus TCP Master Sample

Application Revision 1.02)

3. CHAPTER THREE: METHODOLOGY AND FINDINGS

3.1 Setup development environment

The RSLogix 5000 is the PLC programming environment be used for PLC

programming. The RSLogix 5000 is running on the computer and using RSLinx Classic

to upload program to the PLC and control the PLC remotely.

RSl.ogix 5000

liJm
(Figure 3.1) PCL development environment

3.2 Build physical connection

Firstly, the PLC should be connected with the RJ45 connector of the Ethernet cable to

one of the Ethernet ports on the controller. The ports are on the bottom of the controller.

(Figure 3.2) (CompactLogix 5370 Controllers User Manual)

Port 1 - Front

Port 2-Baci

Bottom of Controller

I II It I
ii ii '
II II I

35

Figure 3.2 CompactLogix 5370 Ethernet port

The PLC can communicate with the robot or virtual robot through Modbus/TCP.

(Figure 3.2)

RSLogix 5000

Ethernet USS

36

Figure 3.2 Communication between the PLC and the Robot

Any device connected to an Ethernet should have an IP address.

If the virtual emulation and PLC connect to an Ethernet by a router (Figure 3. 3), they

can use the DHCP (Dynamic Host Configuration Protocol) Server to get the IP address

dynamically. It is very convenient to connect the device to Ethernet. However, the

disadvantage is that the IP address would be changed when the devices restart. That means

the PLC program needs to change the IP address before building a connection with the

virtual robot.

37

Figure 3.3 Connect PLC with Virtual Robot Through Router

The other solution is to connect the virtual robot and the PLC with a crossover cable

(Wikipedia https: cn.wikipedia.org/wiki Lthernet crosso\er cable) and setup IP

addresses for them manually.

Figure 3.4 Connecting the PLC to the Virtual Robot Through Crossover Cable

In R Logix 5000, one set up the IP address for the PLC. (Figure 3.5)

Controller Properties · ModBusClient2

General Majo, Faults Minor Fauls Date/Time Advanced
Nonvolatile Memoiy Merno1y Internet Protocol ------~------------' POii Corfrguration

Internet Protocol (IP) Settings
IP settings can be manually config1.1ed 01 can be automaticaly conligured
if the network S1.q101ts this capabtity

,~, Manually configure IP settings

Obtain IP settings automatically using BO OTP

, 1 Obtain IP settings automatically using DHCP

IP Settings Configuration

IPAdttess: 192 168 3

Domain Name.

Host Name.

Subnet Mask:

Gateway Addiess

Primary DNS Server
Address:
Secondary DNS
Server Add!ess.

255

0

0

0

Figure 3.5 Set IP address for PLC

3.3 Research Utilities

255

0

0

0

SFC EKeCution

Network

255 0

0 0

0 0

0 0

38

[n this research. to investigate the data in ModbusrrCP frame, a software utility was

created to covert the float number to integer number (Figure 3 .6). By comparing the result

created by this software utility and the value in the PLC or virtual robot, we can know

whether lhe data transfer is correct or not.

40

Modbus TCP Client □ X

Sever IP Addem: l1Jall~=lt4 vi Server Port· 1502 vi
Funcion Code· I Read Cons • FC 1 vi
Start Address: lo Number of Values: I,
Value lo wrle: I,

Read] I Wrt.e

fvrswer from MocbJs Server

Figure 3.7 Modbus TCP Cl ient

3.4 PLC Programming

The stored instruction set that is programmed into a PLC is called the work cycle

program. The work cycle program is derived for the program of instructions and /or the

process flow for the application being controlled. A work cycle program is created by

dividing and processing the sequential list of action specified by the program of instructions

into logic and sequencing instructions. (Daniel E. Kandray, P.E, 2010.)

The PLC ladder diagram is used for programming. On the ladder diagram, Input

instructions or output instruction were put on each rung.

The Modbus Client program is based on the sample application provided by Rockwell

Automation, Inc. (Modbus TCP Master Sample Application Revision 1.02)

Clear all socket and
message

Create Socket

Connect Socket

Send requests

Yes

More requests "'>---...J

Process response I

1

Figure 3.8 PLC Program Process

41

Controller Or_ganizer

8---~ Controller ModBusClient
I ; ~ Controller Taqs■

!···- CJ Controller Fault Handler
, L .. CJ Power-Up Handler

El···~ Tasks
; S··-~ MainTask

i El .. ~ ~ajnPr!gram ! '· _ Pro _ram Tags]
: ·· rlli MainRoutine

g CheckTransCode

... q.)(

g ClearCommBuffersAndTriggers

I) ClearTransTrigger
Fun_ReadCoils

.. g Fun_ReadDiscretelnput

--II Fun_ReadHoldingReg

--II Fun_ReadlnputReg
II Fun_ WriteCoils

II Fun_ Write Regs

II Fun_WriteSingleCoil
Fun WriteSin leRe

Figure 3.9 The PLC Program

42

The MSG instruction (Figure 3. 10) asynchronously reads or writes a block of data

to another module on a network. The PLC program uses it to create a connection, send data

and retrieve data. After the connection is built, the PLC program can read and write data

from the server through the Modbus protocol.

Message Conligumjon • M8Tl_Crute_So_ck __ M_ SG ___ oe _________ _

Message T~ laPGenetic

Serv,ce I Sod<tt c,.....,
Tw,, ·I
SetVICe 4b (He,c) Clan 342 (Hox)
Code.
Instance D Alhibute 0 (Hex)

0 Enable O Enable WMng O St01t

0 Eno, Code: Extended Eno, Code:

·I
Source Eloment:

Destnobon
Element

e Done

MBTU_SocketPaiams •

12

MBTl_ln,tance(O)

I NewTag.

Done Length: 4

fJ TmedOIA +

Cretlles the raw

,od(el '°'
Ccrnoct,on 0

43

Me~~· ~
Me""9e COnlrol MBTI_Oe«e_Socic_MSO_OO O ON

ER

AcomectJon ot,joct
The las! recorded
socket error for

tin e<>mocllon 0
good, -8 connedlOn

faled, -7 Delete
ol foied.~

Oeae Soc foiled,
.9 Comocllon

felled , -10
ca-nedlOndrOl)l)Od,

-11 llfTanssmg
soocel per..,..., Eno, Pallt

Eno, Te>ct
__ o_K_..,l I Cn:el I L ApplY J ~I -H-~- ~ 1---_;-:..-""c-.----MO'V-----~~r

n

Figure 3. 10 The MSG Instruction

Before the data is sent out, the PLC program needs to prepare data by filling some

data structure.

Acomecti<rloqoc:t
Athoro..-tho
c:onmncetions to
tNsPodctess,eO -· MBTU_Comodlons(O)MlT\JJ:nolllo SW _WteCds ,_..... __ .._ ___ -------i '~,--------------------l ~Tos..t>ro..me >--

A comect,on oqoc:t
Alhore..-Slhe
conm.ncellOnS to
Ila P odctess, a O -·

Row,e""""' fun_Wlea:.b
ir1>U1 Per Pere_lllT_BeglnAddres.15
rf)<.c Par Pare M LocelC)1tul1 S
ir1>J!Per Pare_M_CO<.rt15
ir1>J1 Par Pere_M _Ull

MBTU_Comodlons(OJM!TU_Enalllo SW_R~
,>----------------------< -""' To SJ>rour,e >--

Ro.lne...,.,. fun_ReedC<lis
....., P• Pere_MJleg,nAddrossl
..,,., Per Para_tlT _LocalOffffl°t
..,,., Per Pare_lllT _CO<.rt1
....., Par Pere_M _uo

Figure 3.11 The PLC Program for data preparing

l

,--------,·.r.slC'R-----~
--------i Jump To Subroutine >--

Routine Name Fun_ReadCoils
Input Pat Para_lNT _BeginAddress1
Input Par Para_lNT _Local0ffset1
Input Par Para_lNT _Count1
Input Par Para_lNT _UID

Figure 3 .12 PLC Route

,-------MOY------,
Move
Source PataJNT _Local01fset1

0
Dest MBTU_TransactJons_00[2].localOffset

0

----.....,.,v----~
Move
Source P111a_lNT _Count1

3
Dest MBTU_TransactJons_00)2) Count

3

Figure 3.13 Set Route Parameter

44

.-------iYlOV------,
Move
Source Para_lNT _LIO

0
Dest "1:ITU_Transectlonsjl~2J.LD

0

In the PLC program, data structure MBTranscation is used to send requests.

45

;- MBTU_Transactions_OO { ... } 1

r - MBTU Transactions 00(0) { ... }
I + MBT U _Transactions_ 00(0). Begin&.daess 11

I + MBTU_ T ransactions_OO(0].Count l

I MBTU_ T ransactions_OO{0).Enabled 0

I + MBTU_ T ransactions_OO{O].LocalOflset 11

I + MBTU_ T ransactions_OO[0].Polllnterval 2

I MBTU_ Transactions 00(0).ReqBuilt 0

I + MBTU_ T ransactions_OO(0!Request '-$CHOO$...

I MBTU _Transactions_ 00(0! T ransComplete l

I + MBTU_Transactions_OO(O)TramlO 11713

I + MBTU_ Transact10ns_OO(Ol TranslastError -2

'
+ MBTU_ Transactiom_OO(Ol TransStat 0

I + MBTU_Transactions_OO(O]. Trans Type s
I + MBTU_ T ransactions_OO(O].UIO 100

Figure 3 . 14 MB Transaction

Every MB transaction (Figure 3.15) corresponds to a request. The transaction data

structure works for a Modbus/TCP frame, which contains all the information used to fill

the frame.

CiJ Add•On lnnrucbons
Fl t!i Data Typos

8 <'a Um•De~ned
~ MBConntctJon
lllll MB'Tt>n,acbon
~ OptnConnParams
lllll READ_DATA_REQ
;II READ_RESP _STR
Iii:! REQUEST_PARAMETIR5
lllll SoclrAdd,

I II STR_OUT
/;J WRT_DATA

l!J Ci Stnng,
UC Add-On-Defined
Cj Prtdmned

+ Ci Module-Defined
L3 Trends

•··-·- ...
~ N""' Dul~

Enotiled BOOl

Polrte,vol INT

franslwe INl

UIO $INT

1eegnlldct- INT

1c.u. INl

i locoOff,., INT

T rarn:~e BOOL

TransSlat INT

I~ Aeque,t STA_ 462

R~ul BOOL
T,.n1D INT

T 10NLOll£n01 INT

i:r

Figure 3 .15 Data in MB Transaction

.._ .,, ___ ·- .. ,,"""\ .. ,
Sti-, D°""lJbon Ex11lmo1Accms
Deanol foai>les fl I oi 6<ab1os Re«IM>te
DecilMI N\ffllefoll>Mepolb AeadlWrte

Oeamoi T 1.rcadlon code loi I Read/1111te

Deanol Unt ldenbfier 0,., use Read/II/lie

Decimal 9egrrr,g l!lli-10 I ReacV\olnt• I
Decimal lhe ""'"11 ol l'""' ID 1 Readl'N1te l
Oecmol OffUJt rt.o local Datt a Road/141, .. I
Oecmol T 1""'4Cliln Con-c,lote Read/141,te

Oeamol St«us ro...« ol lhe bor Readl'Nrle

Aduol t.lfer used to b Reai/Wnte

Decmol r,.,..act,on,-'"' Readl'Nrte
Decmol S"'°' N\ffllef ol lhe • ReacVW1le

Decmol umEno,one"""'°"' Re.,d/W1te

The PLC program fills MB Transaction according to the configuration, if the

Enabled field of MB Transaction is true, MB Transaction wi ll be sent by MSG instruction.

That is one corrununication between PLC and the server.

46

In the PLC program, some data buffers were used for data reading and writing

Data buffer Type Usage

MBTU MB 0xx BOOL[1024] For function code 1 (Read coils), S(Write single - -

coil) and IS(Write multiple coils)

MBTU MB lxx BOOL[1024] For function code 2(Read discrete coils) - -

MBTU MB 3xx INT[256] For function code 4(Read input coils) - -

MBTU_MB_ 4xx INT[256] For function code 3(Read holding register),

1.

6(Write single register) and l 6(Write multiple

registers)

For example, in the following instruction

Field Name Value

TransType 1

BeginAddress 0

Count 10

Local Offset 1

Trans Type means a coil reading.

BeginAddress is O; this means the request will start reading at the first coil the device.

The count is 10; this means 10 coil will be read.

Local Offset is 1; this means the data will be put into the buffer starting at the address

47

3.4.1 Multi Tasks

A Logix5000 controller support the fo llowing types of tasks:

Continuous Task: The continuous task runs all the time in the background. When it

completes a full scan, it restarts immediately. A project does not require a continuous task.

If used a project can have only one continuous task. Therefore, the main task of the project

is a continuous task.

Periodic Task: A periodic task performs at a specific period. The time period can be set

from 0.1 ms to 2000s. The default period is 1 Oms.

Event Task: An event task performs only when a specific event occurs.

(Allen-Bradley, Logix5000 Controllers Tasks, Programs and Routines)

The PLC program has two tasks in the project (Figure 3 .16), one is for communication

and one for the data process.

Controller Organizer

e ~ Controller ModBusClient2

I ~ Controller Tags

CJ Controller Fault Handler
CJ Power-Up Handler

El- ~ Tasks

ffl· ControlTask
+ · Main Task

IE CJ Unscheduled Programs/ Phases
El--~ Motion Groups

I ' -CJ Ungrouped /l;;(.es

~--CJ Add-On Instructions

rk--& iidffai
ff) Cj User-Defined

IE Ci Strings
Cj Add-On-Defined

ffl Cj Predefined

.,.. 11 X

El -61 Controller Mod8usClient2
i I- ~ ControllerTags
' j. CJ Controller Fault Handler
i ! ... C] Power-Up Handler

Eh-~ Tasks
' $ ~ ControlTa sk

, El -El MainProgram
! ! -~ Program Tags

. lni MainRoutine
! -~ Fun_ReadCoils
i ~ Fun_ReadHoldingReg
' II Fun_ReadlnputReg
II Fun_ WriteAngles
~ Fun_ Write Regs

i
-~. Fun_WriteSingleCoil
[I lnitTransaction
[I Sub_PutFloatT oReg

... qjj MainTask

! El El TCP Client
~ Program Tags
[o MaonRoutine
II CheckTransCode
II) ClearCommBuffersAndTriggers
(a r-1._ T .. _ . . T .. : __ , .,

Figure 3.16 PLC Tasks

.... n

48

When a PLC wants to send a request to the virtual robot, the data process task prepares

data and puts the data into global data structures. The global data structures are some data

structures be used to shard data between control task and communication task. The

communication task scans the global data structure continuously. Ifit finds the data is ready,

the communication task will send data to the virtual robot.

When a PLC wants to read data from the virtual robot, the data process task prepares

the request and puts it into the global data structure. If the communication finds there is a

request in the global data structure, the communication task will send a request to the virtual

robot and write the response from the virtual robot into the global data structure. Then the

data process task can read data locally.

According to this design, the communication task has higher priority than the data

process task. So the communication task was set as the main task and the data process task

was set as periodic task (Figure 3.17).

New Task

Name: OK

Description:
Cancel

Type:
.... [Help

,....[P-e-riodic-. ------------. ...] '------

Period: 10.000 ms

Priority: 10 lliJ (Lower Number Yields Higher Priority)

Watchdog: 500.000 ms

['.J Disable Automatic Output Processing To Reduce Task Overhead

C] Inhibit Task

3.4.2 Task synchronization

Communication Task

Figure 3.17 Tasks type

Global Data Structure

Transaction 2

Transaction 3 MBTU_MB_Oxx

MBTU MB lxx
T . r - -
ransact10~ MBTU_MB_2xx

r MBTU_MB_3xx I

Figure 3.18 Tasks synchronization

Control Task

49

As the mam task, the communication task scans the global data structure and

50

communicates with the virtual robot continuously. At the same time, the data process task
I

performs at a specific period. If the period of data process task is shorter than the period

of communication task, some requests in the global data structure will be overwritten by

the subsequent request. It is an example of a producer-consumer problem in computer

science.

To solve this problem, there are two sample solutions:

1. Use some flag or trigger. Let the communication task notify the data process task,

after it has finished, read the global data structure and send request.

2. Make the period of data process task long enough. In this period, the data process

task will be suspended and the communication task has enough time to read the global data

structure and send the request.

Currently, the second solution was used in this research. Because it is easier to be

implemented.

3.5 Data Processing

There are two types of data used for the virtual robot operation, Boolean and Float.

Processing Boolean data is straight-forward and extra convert is need for Float data.

The virtual robot keeps the value of the position as the Float number, which is 32 bit.

But the input register for Modbus/TCP can keep just an integer value. The Float data in

virtual will be treated as two integer numbers. Furthermore, the Modbus uses big endian

data format so the order of the bytes of the data will be respected.

3.5.l Read Float

For example, there is a Float number in the virtual robot that will be read through

51

Modbus/TCP protocol. Because the virtual robot is running on a windows system[which
'

uses little endian data format, the Float number is represented in the memory as following:

(Figure 3.18)

Float Number Byte 3
"

Float Number Byte 2

Float Number Byte 1

Float Number Byte O

Figure 3.18 Float Number in Memory

Before the number was put into the Modbus/TCP protocol frame, the bytes of the

number should be reversed to big endian format:

Low
Address

High
Address

Float Number Byte O

Float Number Byte 1

Float Number Byte 2

Float Number Byte 3

Figure 3.19 Float Bytes in the Memory

The bytes will be put into Modbus/TCP protocol frame and read by the PLC. A~er the

Modbus frame was received by PLC, the PLC program will treat the 4 bytes as two integer

52

number and reverse them to little endian format.

Because the PLC is running on a Windows system and uses a little endian data format,

the PLC will treat the data as a two 16 bits integer number, the bytes will be converted to:

Low
Address

High
Address

Float Number Byte 1

Float Number Byte 0

Float Number Byte 3

Float Number Byte 2

Figure 3.20 Float bytes in memory

To read the data correctly, the PLC program needs to re-arrange the bytes to the original

order.

Low
Address

High
Address

Float Number Byte 1 Float Number Byte 3

Float Number Byte O Float Number Byte 2

Float Number Byte 3 Float Number Byte 1

Float Number Byte 2 Float Number Byte O

Figure 3.21 Reverse the Bytes

53

Low High

Float in Robot DCBA

Put to Frame ABCD

Get from Frame BADC

We need DCBA

Figure 3.22 reverse the bytes

The code looks like fo llowing:

Temp buffer for data
covert

OP
CopyFlle .__
Source MBTU_M8_3xxjlooplndex'2J
Dest ByteBuffer1 (OJ
Length 4

Temp buffer for data Temp buffer for dllta Temp buffer for dalla Ter111 buff er for data
covert covert covert covert

·- v _v -v
- Move - Move - Move - Move -

Sou'ce ByteBuffer1 (OJ Source Bytea.tfer1 (1 J Sou-ce ByteBuffer1 (2J Sou-ce Bytea.ffer1 (31
-115 • 62 • 120 ♦ -51 +

Oest ByteBuffer2(2J Dest Bytea.ff er2{3J Oest ByteBuffer2(OJ Oest Bytea.ffer2(1 J
-115 • 62 . 120 + -51 +

Figure 3.22 PLC Program

3.5.2 Write Float

To write the Float number to the virtual robot, the PLC program will split the four bytes

of the number to two parts, each part having two bytes.

Firstly. the four bytes were put into a byte array.

Used when convert
float numbers to int

nubmers
,-------~_OP-------.

- Copy File
Source Angles[Anglelndex).T(For _Loop_lndex)
Dest Bytes_Of_Floa!Number(0)
Length 4

Figure 3.23 Float Number in PLC

Low
Address

L 7

High

Address

Float Number Byte 0

Float Number Byte 1

Float Number Byte 2

Float Number Byte 3

Figure 3.24 Bytes of Float Number

54

After that, the PLC program reverses those two parts to big endian order (Figure 3.23).

Low
Address

High
Address

Float Number Byte 2

~ Float Number Byte 3

Float Number Byte 0

Float Number Byte 1

Figure 3.23 Reverse of the Bytes

The PLC ladder diagram is:

Used - -noo1-.1ort

-Soorce Bytos_Ot_f~2)
55

De'1 Bytos_Ot_T~)
55

-
Used-
nos rutmers to I'll

Scuce Bytes_Ot_~J)
66

De>I &,1es_0t_r-i11
66

-Soorce Bytes_Ot_~(0l
92

Osst Bytes_Ot_T~J
92

Figure 3.24 PLC Program

Then the data will be sent to the virtual robot.

-
UsedwhonCOIWffl
T1om runbers to re -·

55

Soor -,, eytes_01..floelluoo«11 I
-113

De'1 Bytes _01 _T-..mt>o<13]
-113

When the bytes were sent to the virtual robot. the TCP/IP library will think the bytes

are two integers with big endian format. The bytes will be re-ordered as follows:

Low

Address

High
Address

Float Number Byte 3

Float Number Byte 2

Float Number Byte 1

Float Number Byte 0

Figure 3.25 Bytes of Float Number

The virtual robot knows it is a Float with four bytes in big endian format. So the virtual

robot will reverse the four bytes into little endian and read it correctly.

Low
Address

High
Address

Float Number Byte O

Float Number Byte 1

Float Number Byte 2
'

Float Number Byte 3

Figure 3.26 bytes of float number

3.6 Functions

The functions are some subroutines used to prepare and receive data.

Every function has 4 parameters:

Name: Meaning

BeginAddress The start address of the data

to be read or write

Local Offset The address of data will be

saved locally in data array

MBTU MB XXX - -

Count Counter of the bytes to read

or write

UID The ID of the device to be

operate

56

Global data structure MBTU_MBOX:X is a Boolean array, and is used to read and

write coils. The corresponding function code are 1 (which means read coils). S(which

means write single coil), and 1 S(which means write multiple coils)

57

Global data structure MBTU _ MB 1:X:X is Boolean array, it is used to read discrete

inputs. The corresponding function code is 2 (which means read discrete inputs)

Global data structure MBTU _MBJXX is 16 bits integer array, which is used to read

input registers. The corresponding function code is 4 (which means read input registers)

Global data structure MBTU_MB4XX is 16 bits integer array, which is used to read

and write holding registers. The co1Tesponding function code are J(which means read

holding registers), 6(which means write single holding register). and l 6(which means

write multiple registers).

In the reading operation, the communication task will read data from virtual robot and

save them to those global data structure so control task can read it.

In the writing operation. the control task wi ll prepare data and put them into those

global data structures so control task can send them to the virtual robot.

3.6.1 Fun ReadCoils

..----------1'>:BR------,
- Subroutine

Input Par Para_lNT _BeginAddress1
Input Par Para_lNT _Local0ffset1
Input Par Para_lNT _Count1
Input Par Para_lNT _UID

The function sets function code to I in the transaction data structure .

58

Transaction_00[2] and read serval coi ls (Boolean type) from target device. The parameter

Begin Address means the function will start reading at address of the device being

reading.

The data read from target device will be put into Boolean array MBTU_MB0XX.

3.6.2 Fun_ WriteSingleCoils

~---~:1BR------,
- Subroutine -

Input Per Pere_lNT _BeginAddressS
Input Per Pere_lNT _localOffsetS
Input Per Pere_lNT _UID

This function sets function code to 5 in the transaction data structure.

Transaction_00[6] sends the Boolean value in MBTU_MB0XX at address of

LocalOffixedata to the virtual robot"s coil at address BeginAddress.

3.6.3 Fun WriteCoils

:BR
- Subroutine -

Input Par Pera_lNT _BeginAddress15
Input Par Pere_lNT _Local0ffset15
Input Par Pera_lNT _Count15
Input Par Para_lNT _UID

This function sets function code to 15 in the transaction data structure

Transaction_00[l] and sends some Boolean values in MBTU_MB0XX starting from

address of LocalOffixedata to the virtual robot's coil at address BeginAddress.

59

3.6.4 Fun_ ReadDiscretelnpul

'.:BR
- Subroutine -

Input Par Para_lNT _BeginAddress2
Input Par Para_lNT _Local0ffset2
Input Par Para_lNT _Count2
Input Par ParaJNT _UID

The function sets function code to 2 in the transaction data structure

Transaction_00[J] and reads serval discrete input from target device. The parameter

Begin Address means the function will start reading at the address of the selected device.

The data read from target device wi ll be put into Boolean array MBTU_MBl:X:X.

3.6.5 Fun_ReadlnputReg

'.:BR
- Subroutine -

Input Par Para_lNT _BeginAddress4
Input Par Para_lNT _Local0ff set4
Input Par ParaJNT _Count4
Input Par Para_lNT _UID

The function sets function code to 4 in the transaction data structure

Transaction_00[J] and reads serval input register from target device. The parameter

Begin Address means the function wi ll start reading at the address of the selected device.

The data read from target device will be put into Boolean array MBTU_MBJXX.

3.6.6 Fun_ReadHoldingReg

,--------!'>'.:1BR-------,

Subroutine
Input Par Para_lNT _BeginAddress3
Input Par Para_lNT _Local0ffset3
Input Par Para_lNT _Count3
Input Par ParaJNT _UID

The function sets function code to 3 in the transaction data structure

Transaction_00[4] and reads serval holding registers (16 bits integer type) from target

60

device. The parameter Begin Address means the function will start reading at the address

of the selected device.

The data read from target device will be put into Boolean array MBTU_MB4XX.

3.6.7 Fun_ WriteSingleReg

:BR
- Subroutine -

Input Par Para_lNT _BeginAddress6
Input Par Para_lNT _Local011set6
Input Par Para_lNT _UID

This function sets function code to 6 in the transaction data structure

Transaction_00[6] and sends the 16 bits integer value in MBTU_MB4XX at the address

of LocalOffixedata to the virtual robot's holding register at address BeginAddress.

3.6.8 Fun_ WriteRegs

:BR
- Subroutine ,-.

Input Par Para_lNT _BeginAddress1 6
Input Par Para_lNT _Local0 ffset1 6
Input Par Para_lNT _Count1 6
Input Par Para_lNT _UID

This function sets function code to 16 in the transaction data structure Transaction 00

[7] and sends the 16 bits integer value in MBTU_MB4XX at the address of

LocaJOffixedata to the virtual robot's holding register at address BeginAddress. This

function wiU convert the bytes of the Float to big endian format.

3.6.9 Fun_ WriteAngles

Each angle of the virtual robot is composed by three Float numbers which have six

61

bytes in aJI. Firstly. this function will convert the float numbers to six bytes with big endian

order. The bytes will be put into a data table named "MBTU_MB_4xx"

.------r~OR------,
- For

Routine Name Sub_PulfloatToReg
Index For _Loop _Index

1 +
lnrtial Value O
Terminal Value 2
Step Size

Then, this function will be called function '·Fun_ WriteRegs". "Fun_ WriteRegs" reads

the data in "MBTU _MB_ 4xx" to send the six bytes located at address Oto 5 to the virtual

robot.

3.6. 10 Process_ Transaction

This function will scan the content of the transaction data structure from

Transaction_OO[O] to Transaction_00[7]. Each transaction data structure stands for a

function code. If Process_ Transaction finds one transaction data structure is ready,

Process_ Transaction builds a ModbusfTCP frame according to the content of the

transaction data structure and sends a request to the target device.

3.7 Action Sequence

To make the virtual robot accomplish an action sequence, Control task communicated

with the communication task through the shared globaJ data structure (Figure 3.27).

62

Control Task

Position 1

Position 2

Position 3
Action 1

...
Action 2

Position n
Action 3

...
Action n

Figure 3.27 Action Sequence

The communication task reads the status of the virtual robot and saves the data in those

global data structure.

Control task will scan the position list and action list and prepare the frame data, and

put the data in the global data structure. When the data is ready, the communication will

send the request to the server.

4. CONCLUSION AND RECOMMENDATIONS

The purpose of this research was to introduce the virtual robot and other virtual

devices into teaching. From the beginning, the focus of this research was to implement

the communication between computer and the PLC through the Modbus/TCP protocol.

As the result, a PLC and computer network was built and a PLC Modbus client

program was created to communicate with the virtual robot running on the PC by sending

and retrieving data from the computer. The PLC program can control the virtual robot

moving around, opening or closing a grabber, and determine whether the virtual robot has

reached the intended target object or not. The action sequence of the robot can be

enhanced by adding more positions and actions to the current PLC program.

Some future work may be necessary in this research to support more virtual devices

in the emulation system.

63

In the future. by using the ModbusffCP protocol, the PLC can control multiple virtual

robots running in the emulation system or real robots in the industrial environment (Figure

3.28).

The trainer can teach students how to control the devices by using a PLC and allow

them to practice with the virtuaJ device without worrying about damage to the real devices

and/or themselves.

RSLogix 5000

um USS

Figure 3.28 Control Multiple Devices

5. REFERENCES

Daniel E. Kandray, P.E, 2010. Programmable Automation Technologes- An

Introduction to CNC, Robotics and PLCs. (p. 343)

Zyda, M., 2005, "From visual simulation to virtual reality to games", Computer, (p.

25-32)

John W. Webb, 1995. Programmable logic Controllers Principles and Applications

(3rd ed., p. 4). Merrill publishing Company.

Kenneth G. Oliver, 1990. Basic Industrial Electricity: A Training and Maintenance

Manual (p. 44). Industrial press.

Sunit Kumar Sen, 2014. Fieldbus and Networking in Process Automation (p.185).

CRCPress

June Jamrich Parsons, 2014. New Perspectives on Computer Concepts (p. 257)

Acromag, Inc.2005, Introduction to Modbus TCP/IP (p.4)

John Wiley & Sons, 2013. Networking for Dummies (10 ed., 6-3)

Harley Hahn, 1996. The Internet Complete reference. (p.70)

Andrew G. Blank, 2004. TCP/IP Foundations. (p.128)

What is a Subnet Mask? (https://www.iplocation.net/subnet-mask)

Daniel E. Kandray, P.E, 2010. Programmable Automation Technologes-An

Introduction to CNC, Robotics and PLCs. (p. 385)

Acromag, Inc.2005, Introduction to Modbus TCP/IP (p.4)

Charles Petaold, 1998. Programming Windows (5ed, ch23.) Microsoft.

64

65

Jeffery Richter, 2012. CLR via C# (4ed, p.23)

Linda Null, 2014. The Essentials of Computer Organization and Architecture(p. 297)

EasyModbusTCP Library (http://www.easymodbustcp.net/)

An Introduction to Socket Programming in .NET using C#

(http://www.codeproject.corn/Articles/ 10649/An-Introduction-to-Socket-Programming

in-NET-using)

Allen-Bradley, Logix5000 Controllers Tasks, Programs and Routines (p9)

6. APPENDIX Source Code related

Here is some pseudo-code about writing a single coil to a master device

(http://easymodbustcp.net/)

Ill <summary>

Ill Write single Coil to Master device (FC5).

Ill </summary>

Ill <param name="startingAddress">Coil to be written</param>

Ill <param name="value">Coil Value to be written</param>

public void WriteSingleCoil(int startingAddress, bool value)

byte[] coilValue = new byte[2];

this.transactionJdentifier = BitConverter.GetBytes((int)0x000 I);

this.protocolldentifier = BitConverter.GetBytes((int)0x0000);

this. length = BitConverter.Get8ytes((int)0x0006);

this.functionCode = 0x05;

this.startingAddress = BitConverter.GetBytes(startingAddress);

if(value =true)

{

coi!Value = BitConverter.GetBytes((int)OxFFOO);

}

else

{

coi!Value = BitConverter.GetBytes((int)OxOOOO);

}

Byte[] data= new byte[] { this.transactionldentifier[l],

this.transactionldentifier[O],

this.protocolldentifier[I],

this.protocolldentifier[O],

this.length[!],

this.length[O],

};

stream.Write(data, 0, data.Length);

this. unitldentifier,

this.function Code,

this.startingAddress[I],

this.startingAddress[O],

coi!Value[l],

coi!Value[O]

66

}

data= new Byte(2!00];

stream.Read(data, 0, data.Length);

if (data[7] = 0x85 & data[8] = 0x0 I)

throw new Exception("Function code not supported by master");

if(data[7] = 0x85 & data[8] = 0x02)

throw new Exception("Starting address invalid or starting address + quantity invalid");

if(data[7] = 0x85 & data[8] = 0x03)

throw new Exception("quantity invalid");

if(data[7] = 0x85 & data[8] = 0x04)

throw new Exception("error reading");

Read a single-coil:

Ill <summary>

Ill Read Coils from Master device (FCI).

I I I </summary>

Ill <param name="startingAddress">First coil to be read<lparam>

Ill <param name="quantity">Numer of coils to be read</param>

Ill <returns>Boolean Array which contains the coils</returns>

public boo!□ ReadCoils(int startingAddress, int quantity)

{

bool[l response;

tbis.transactionldentifier = BitConverter.GetBytes((int) 0x000 I);

67

this.protocolldentifier = BitConverter.GetBytes((int) OxOOOO);

this.length= BitConverter.GetBytes((int)Ox0006);

this.functionCode = OxO I;

this.startingAddress = BitConverter.GetBytes(startingAddress);

this.quantity= BitConverter.GetBytes(quantity);

ByteO data= new byte□{

};

this.transactionldentifier[I],

this.transaction!dentifier[O],

this. protoco !Identifier[I],

this.protocolldentifier[O],

this.length[I],

this.length[O],

this.unitldentifier,

this.functionCode,

this.startingAddress[l],

this.startingAddress[O],

this.quantity[!],

this.quantity[O],

stream.Write(data, 0, data.Length);

data= new Byte[2100];

stream.Read(data, 0, data.Length);

68

}

if(data[7] = 0x81 & data[8] = 0x0I)

throw new Exception("Function code not supported by master");

if(data[7] = 0x81 & data[8] = 0x02)

throw new Exception("Starting address invalid or starting address + quantity invalid");

if(data[7] = 0x81 & data[8] = 0x03)

throw new Exception("quantity invalid");

if(data[7] = 0x8! & data[8] = 0x04)

throw new Exception("error reading");

response = new boo![quantity];

for (int i = 0; i < quantity; i++)

{

}

int intData = data[9+i/8];

int mask= Convert.Tolnt32(Math.Pow(2, (i%8)));

response[i] = Convert.ToBoolean((intData & maskYmask);

return (response);

69

