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A virtual laboratory plays an important role for academic purposes. Building this 

kind oflaboratory by assembling the hardware including PLC, sensor, conveyor, 

machine, or robot to an industry emulation automation environment is a big job and only 

a limited number of equipment can be involved. An emulated environment running on a 

computer can be used to solve this problem, but how can one also control the virtual 

devices and collect information from a virtual devices to a real PLC? 

This research focuses on the communication between the virtual emulation system 

running on a computer and the PLC, so that, by using the program running on the PLC, 

one can control the virtual robot. This thesis describes the implementation of the 

Modbus/TCP protocol in PLC and the main functionalities for virtual robot control. 
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1. CHAPTER ONE: INTRODUCTION 

1.1 Background 

Technological advances have resulted in a significance revolution of automation in 

industry. The related research and training are becoming increasingly important both 

strategically and economically. However, building a laboratory for academic purposes by 

assembling the required hardware, including PLC's, sensors, a conveyor, machines, and/or 

robot for an industry emulation automation environment is a big job and only a limited 

number of different equipment and peripheral devices can be involved in the infrastructure 

of the laboratory. It is difficult to build this kind of laboratory because a real laboratory 

involves all of the types of hardware. Furthermore, automation is an area that is constantly 

being updated as new technology is developed. Most of the new invented equipment is 

expensive and needs time to be ordered and delivered. It is not practical to change and re

setup the hardware in the laboratory frequently. 

Robot simulation involves simulating the robot program and the program of 

instructions in the virtual world of a computer graphics program. Program simulation is 

typically accomplished by modeling the robot, tooling, and peripheral equipment in the 

software and then executing the program of instructions for the application. (Daniel E. 

Kandray, P.E, 2010) 

For these reasons, the development of a virtual industrial laboratory to simulate the real 

one is proposed. With this development, researchers will be able to change the 

configuration of the laboratory to fit any realistic industry environment that they want. This 

new trend known as "Serious Games" has its main focus the field of specialized instruction 

and training. (Zyda, M., 2005) 
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By using the PLC's connection to the industrial virtual laboratory, students can practice 

programing complex automation sequences without necessarily being in a real industrial 

environment. This means they will be able to modify the parameters and the sequences of 

control conveniently. A virtual laboratory is particularly useful when some experiments 

involve equipment that might cause harm to human beings, or risk compromising the safety 

of the process. Moreover, all of the operations and their consequences can be visualized in 

real-time. Another objective of a virtual laboratory is to provide hands-on lab activities te 

that can enhance online courses. By using the communication technology used on the 

internet, the virtual industrial laboratory can be accessed and shared on a global scale. Thus, 

research and training will be free from restrictions of time and location. 

1.2 Purpose 

In a realistic industry environment, the engineer will use the PLC to control the 

combination of conveyors, sensors, and machines. The instruction will be sent from the 

PLC to the peripheral hardware or robot, and the data will be collected by hardware or 

robot and sent back to the PLC directly. Correspondingly, in the virtual emulation system, 

the PLC needs to communicate with the virtual hardware or robot running on the computer. 

This research will focus on the communication between the simulation system and the 

PLC. The Modbus/TCP protocol will be used for communication between the PLC and 

the virtual equipment. In the virtual simulation system, the PLC will work as a client and 

the virtual simulation system running on the computer will work as a server. The client

server model of programming is a distributed application structure that communicate 

between the providers of a resource or service, called servers, and service requesters, called 

clients. Through the combination between the server and the client, the PLC can control 
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the virtual hardware and get data from it. 

Talcing a virtual robot as an exan1ple, the status of the virtual robot can be recorded in 

the memory. To control the robot, therefore, means to modify those data in the memory 

(Figure 1 .1 ). For exan1ple, if we want to move the effector, we can change the angles of 

the robot's joints. If we want the robot to pick up the piece, we can set the value 

corresponding to the effector to pick up or drop the object. 

Figure 1.1 Data in Memory 

Mod bus is considered an application layer messaging protocol, providing Master/S lave 

conununication (Figure 1.2) between devices connected together through buses or 

networks. By using it, the PLC or a computer can control the virtual robot remotely. 

Furthermore, the PLC can control multiple virtual devices running in the virtual emulation 

system. 



The Virtual emulation System 

I Robotl I 
I Sensor j: 

E] 
E] 

Modbus/TCP 

Figure 1.2 Master/Slave Communication 
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PLC 

Because Modbus is supported by real devices, the benefit of using Modbus is the 

program running in the emulation system can later be immigrated to the real industry 

environment smoothly and conveniently (Figure 1.3 Modbus communication). 
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rm 

Figure 1.3 Modbus Communication 

t .3 Research objectives 

Objective 1: 

Program the PLC in RSLogix 5000 and implement ModbusffCP in the PLC as a 

client. 

Objective 2: 

Operate the virtual robot and monitor its state by reading and writing the virtual 
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coils and registers in the virtual robot. 

Objective 3: 

Make the virtual robot accomplish an action sequence, including moving to the 

target position, take object, move and put object at the target position. 

1.4 Assumptions 

The following assumptions are considered as pre-conditions before this research. 

The Modbus/fCP server has been implemented in the virtual robot and can 

communicate with the client. It will listen at port 502 and be ready to accept connection 

from the client. After the connection was connected, the client can communicate with the 

virtual robot. 

The Ethernet module is necessary for the PLC. The Ethernet module can connect the 

PLC to the internet or intranet and communicate with other devices connected to the 

network. 

Currently, our research focuses on communication with an existing virtual robot 

(Figure 1.4). The virtual robot has the Modbus/TCP protocol implemented and can work 

as a server. The client program can operate it by reading and writing virtual coils and 

registers into it. 
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Figure 1.4 Virtual robot 

1.5 Limitations 

No1 all PLCs have an Ethernet module. Only new PLCs with Ethernet modules can 

communicate with other devices through the Modbus/TCP protocol on Ethernet. 

1.6 Definition of Terms 

PLC: 

·'A programmable logic controller. PLC, is a user-friendly, microprocessor-based, 
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specialized computer that carries out control functions of many types and levels of 

complexity. It can be programmed, controlled and operated by a person unskilled in 

operating computers. The PLC's operator essentially draws the lines and devices of ladder 

diagrams" (John W. Webb, 1995). 

Ethernet: 

"Ethernet computer networking technologies works for local area networks (LANs) 

and metropolitan area networks (MANs). It is a wired network technology that is defined 

by IEEE8.2.3 standards. It was first deployed in 1976 and has since emerged as the 

dominant standard for wired connections in local area networks." (June Jamrich Parson, 

2014) It has since been refined to support higher bit rates and longer link distances. The 

Ethernet RJ 45 (Figure 1.5) cable can be used to connect devices. 

Figure 1.5 RJ-45 

Sockets 

Sockets are a concept developed at the University of California at Berkeley to add 

network communication support to the UNIX operating system. The API (Application 

Program Interface) developed there is now known as the "Berkeley socket interface." 

Sockets are generally, but not exclusively, used in conjunction with the Transmission 

Control Protocol/Internet Protocol (TCP/IP) that dominates Internet communications. The 
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Internet Protocol (IP) part of TCP/IP involves packaging data into "datagrams" that contain 

header information to identify the source and destination of the data. The Transmission 

Control Protocol (TCP) provides a means of reliable transport and error checking for the 

IP datagrams. 

Within TCP/IP, a communication endpoint is defined by an IP address and a port 

number. The IP address consists of 4 bytes that identify a server on the Internet. The IP 

address is generally shown in "dotted quad" format, with decimal numbers separated by 

periods, for example "209.86.105.231 ". "A port number identifies a particular service or 

process that the server provides. Some of these port numbers are standardized to provide 

well-known services". (Charles Petzold, 1998) 

RSLogix 5000: 

The RSLogix 5000 Enterprise Series software is designed to work with Logix5000 

controller platforms. RSLogix 5000 Enterprise Series software is an IEC 61131-3 

compliant software package that offers relay ladder, structured text, function block diagram, 

and sequential function chart editors .for the designer to develop application programs. 

Create your own instructions by encapsulating a section of logic in any programming 

language into an Add-On Instruction. (RSLogix 5000 Programming Software) 

Ladder Diagram: 

Ladder diagrams are specialized schematics commonly used to document industrial 

control logic systems. They are called "ladder" diagrams because they resemble a ladder, 

with two vertical rails (supply power) and as many "rungs" (horizontal lines) as there are 

control circuits to represent. If we wanted to draw a simple ladder diagram showing a lamp 

that is controlled by a hand switch, it would look like this (Figure 1 .6): 
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L1 ½. 

/ s,_ __ h ______ 1 _____ ~Lb1-'P_ .... / 
, ' 

Figure 1.6 Ladder Diagrams 

Ladder diagrams are used only on 2-wire control circuits, not for the power circuit of 

the driven or controlled equipment. (Kenneth G. Oliver, 1990.) 

Modbus: 

Modbus is a serial communication protocol initially developed by AEG-MOdicon. It 

was initially designed to operate with programmable logic controllers (PLCs ). It is an 

application layer messaging protocol, -operating at layer 7 of the Open Systems 

Interconnection (OSI) protocol, and provides client-server communication between 

devices connection on different types of net-work. (Sunit Kumar Sen, 2014) 

Mod bus/TCP: 

Modbus TCP/IP (also Modbus-TCP) is simply the Modbus RTU protocol with a TCP 

interface that runs on Ethernet. 

The Modbus messaging structure is the application protocol that defines the rules for 

organizing and interpreting the data independent of the data transmission medium. 

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which 

provides the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP 

allows blocks of binary data to be exchanged between computers. It is also a world-wide 

standard that serves as the foundation for the World Wide Web. The primary function of 

TCP is to ensure that all packets of data are received correctly, while IP makes sure that 
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messages are correctly addressed and routed. Note that the TCP/IP combination is merely 

a transport protocol, and does not define what the data means or how the data is to be 

interpreted (this is the job of the application protocol, Modbus in this case). (Acromag, 

Inc.2005) 

Crossover cable: 

A crossover cable can directly connect two devices without a hub or switch. You can 

use a crossover cable to connect two computers directly to each other, but crossover cable~ 

are more often used to daisy-chain hubs and switches to each other. 

If you want to create your own crossover cable, you must reverse the wires on one end 

of the cable, as showr in Figure 1.6 (Doug Lowe. 20 13) 

NICMDI NICMDI 

Figure 1.6 Crossover cable 

IP Address: 

IP uses 32 bits, or four numbers between 0 and 255, to address a computer. 

IP addresses are nom1ally written as four numbers separated by a period. like this: 

192.168.1.50. 

Each computer or device must have a unique IP address before it can connect to the 

Internet. 

Each IP packet must have an address before it can be sent to another computer. 
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In computer terms, TCP/IP uses 32 bits addressing. It uses 4 bytes. One byte is 8 bits. 

One byte can contain 256 different values: 

00000000, 00000001, 00000010, 00000011, 00000100, 00000101, 00000110, 

00000111, 00001000 ....... and all the way up to 11111111. For example, rtfin.mit.edu is 

the domain of a particular computer at MIT. The IP ofrtfin.mit.edu is 18.181.0.24 (Harley 

Hahn, 1996) 

Subnet Mask: 

On most networks, the network administrator uses an IP address scheme that include a 

custom subnet mask. Because the routes that are in the physical Local Area Network (LAN) 

define each network, a network administrator must use a different network address for each 

side of a route. When a router is used to create smaller networks, the smaller network is 

called subnet. (Andrew G. Blank) 

An IP address has two components, the network address and the host address. A subnet 

mask separates the IP address into the network and host addresses. Subletting further 

divides the host part of an IP address into a subnet and host address if additional subnetwork 

is needed. Use the Subnet Calculator to retrieve subnetwork information from IP address 

and Subnet Mask. It is called a subnet mask because it is used to identify network address 

of an IP address by performing a bitwise AND operation on the netmask. 

A Subnet mask is a 32-bit number that masks an IP address, and divides the IP .address 

into network address and host address. Subnet Mask is made by setting network bits to all 

"l "s and setting host bits to all "0"s. Within a given network, two host addresses are 

reserved for special purpose, and cannot be assigned to hosts. The "0" address is assigned 
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a network address and "255" is assigned to a broadcast address, and they cannot be assigned 

to hosts. 

2. CHAPTER TWO: REVIEW OF LITERATURE 

2.1 Modbus Protocol 

The Modbus protocol was developed in 1979 by Modicon, Incorporated, for industrial 

automation systems and Modicon programmable controllers. It has since become an 

industry standard method for the transfer of discrete/analog I/0 information and register 

data between industrial control and monitoring devices. Modbus is now a widely-accepted, 

open, public-domain protocol that requires a license, but does not require royalty payment 

to its owner. 

Modbus devices communicate using a master-slave (client-server) technique in which 

only one device (the master-client) can initiate transactions (called queries). The other 

devices (slaves or servers) respond by supplying the requested data to the master, or by 

taking the action requested in the query. A slave is any peripheral device (I/0 transducer, 

valve, network drive, or other measuring device) which processes information and sends 

its output to the master using Modbus. The Acromag I/0 Modules are the slave/server 

devices, while a typical master device is a host computer running appropriate application 

software. Other devices may function as both clients (masters) and servers (slaves) (Figure 

2.1). 



14 

Device Application M emory 

M ODBUS Access 

Input Discrete ' 

Coils Modbus Request 

Input Registers 

Holding 
Registers 

M odbus Server Device 

Figure 2.1 Modbus Protocol 

The data type of Mod bus protocol (Figure 2.2): 

Discretes Input Single bit Read-Only 

Coils Single bit Read-Write 

Input Registers 16-bit word Read-Only 

Holding Registers 16-bit word Read-Write 

Figure 2.2 Modbus Protocol Data Type 

Masters can address individual s laves, or can initiate a broadcast message to all slaves. 
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Slaves return a response to all queries addressed to them individually. Slaves do not initiate 

messages on their own. they only respond to queries from the master (Figure 2.3). 

I Additional address I > ';"~: ... ---~•7;;-~ 
·~•; ··-· - . • • ~.' _ . .I.-

Client 

Initiate request 

Receive the response 

ADU 

POU 

I Error check I 

Server 

Perform the action 
Initiate the response 

Figure 2.3 Modbus Protocol communication 

A master's query will consist of a slave address (or broadcast address), a function code 

defining the requested action (Figure 2.4), any required data, and an error checking field. 

A slave' s response consists of fields confirming the action taken, any data to be returned, 

and an error checking fi eld. Note that the query and response both include a device address, 

a function code, plus applicable data, and an error checking field. If no error occurs, the 

slave's response contains the data as requested. If an error occurs in the query received, or 

if the slave is unable to perform the action requested, the slave will return an exception 

message as its response. 

The error check field of the slave' s message frame al lows the master to confirm that 

the contents of the message are valid. Traditional Mod bus messages are transmitted seri ally 
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and parity checking is also applied to each transmitted character in its data frame. 

(Acromag, lnc.2005) 

I 

I Command Function Code 

01 Read Coils 

I 0'2 r Read Discrete Inputs 

03 Read Holding Registers 

04 Read Input Registers 
,_ 

05 Write Single Coil 

00 Write Single Register 

07 Read Exception Status 

00 Ii Diagnostics 

. 

. 
Ii 

xx Up to 255 function codes, depending 
L on the device 

- -

Figure 2.4 Modbus Protocol Function code 

2.2 ModbusffCP Protocol 

I 1. Modbus messaging structure is the application protocol that defines the rules for 

organizing and interpreting the data independent of the data transmission medium. 

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which 

provides the transmission medium for Modbus TCP/IP messaging. Simply stated. TCP/JP 

allows blocks of binary data to be exchanged between computers. It is also a world-wide 
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standard that serves as the foundation for the World Wide Web. The primary function of 

TCP is to ensure that all packets of data are received correctly, while IP makes sure that 

messages are correctly addressed and routed. Note that the TCP/lP combination is merely 

a transport protocol, and does not define what the data means or how the data is to be 

interpreted (this is the job of the app lication protocol, Mod bus in this case). 

So in summary, Modbus TCP/IP uses TCP/IP and Ethernet to carry the data of the 

Modbus message structure between compatible devices. That is. Modbus TCP/IP combines 

a physical network (Ethernet). with a networking standard (TCP/JP), and a standard method 

of representing data (Modbus as the application protocol). Essentially, the Mod bus TCP/JP 

message is simply a Modbus communication encapsulated in an Ethernet TCP/IP wrapper 

(Figure 2.6). 

Appltcabon Data Unit (ADU) 

CONSTRUCTION OF A 
MODBUS TCP DATA PACKET 

Funct1011 
Code Data 

~ 
Modbus Appllcat10n Protocol (MBAP) Header I I 

(7 Bytes) Protocol Data Unit {POU) 

Function Code & Data 
Are Not Modified 

Transaction Protocol Length Unit 10 Functoo Data Modbus Frame Wrth 
ldenlrfler Identifier Field Code TCP/IP Transmission .___ __ ........ _______ ...,__ ___ ...__ __ ____. ___ _,, 

(2 Bytes) (2 Bytes) (2 Bytes) (1 Byte) (1 Byte) Vanes 

Modbus TCP/1P ADU 
(This information is embedded into the data portion of the TCP frame) 

Figure 2.5 Modbus/TCP Protocol 

In practice, Modbus TCP embeds a standard Modbus data frame into a TCP frame 

(Figure 2.6), without the Modbus checksum. as shown in the fo llowing diagram. 
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Fields Length -Description • Client Server 

:Transaction 2 Bytes dentif1cat,on of a Initialized by the Recopied by the 
Identifier MODBUS Request / client server from the 

Response transaction. received 
request 

Protocol Identifier 2 Bytes 0 = MODBUS protocol Initialized by the Recopied by the 
client server from the 

received 
request 

Length 2 Bytes Number of following Initialized by the Initialized by 
bytes cl ient ( request ) the server ( 

Response) 

Unit Identifier 1 Byte Identification of a Initialized by the Recopied by the 
remotes ave client server from the 
connected on a serial received 
hr,e or on other buses. request 

Figure 2.6 ModbusrrCP Frame 

For example. imagine the case writing a coil at address Ox I to false. The 

Modbus/TCP Frame will be constructed as fo llows: 

Transl D Protocol Length Unit ID FunCode Address Data 

ID 

0001 0000 0006 00 05 0001 0000 

2.3 Big Endian 

Big Endian Byte Order: The most significant byte (the "big end") of the data is placed 

at the byte with the lowest address (Figure 2.7). The rest of the data is placed in order in 

the next tlu·ee bytes in memory. 

l 



Memory 

a: 

a+l: 

a+2: 

a+3: 

• • • 

OA 
OB 
QC 

OD 
• • • 
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32-bit integer 

OAOBOCOD 

~ 

-
~ 

~ 

~ 

~ 

~ 

~ 

Big-endian 

Figure 2.7 Big-endian 

Little Endian Byte Order: The least significant byte (the "little end") of the data is 

placed at the byte with the lowest address (Figure 2.8). The rest of the data is placed in 

order in the next three bytes in memory. 



32-bit integer 

OAOBOCOD 

,,__ 

---
,,__ 
,_. 

--
--

Little-endian 

Memory 

a: 

a+l: 

a+2: 

a+3: 

• • • 

OD 
OC 
OB 
OA 
. 
• • 

Figure 2.8 Little-endian 
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Big endian is more natural to most people and thus makes it easier to read hex dumps. 

By having the high-order byte come first, the developer can always test whether the number 

is positive or negative by looking at the byte at offset zero. (Linda Null, 2014) 

Modbus uses Big-Endian to transfer data. For Windows and Intel system, Little-Endian 

is used for data presentation and data transfer. So the order of bytes needed to be adjusted 

before sending and after receiving by Modbus protocol. 

The C# code to convert Big-Endian to Litter Endian format is presented: 

Byte□ data = new byte[2]; 

Byte[] byteData = new byte[2]; 

I I get little-endian bytes 



byteData = BitConverter.GetBytes( data Wi IIBeTransfer); 

data[0] = byte Data[ I]; 

data[ I] = byteData[0]; 

2.4 Client-Server communication mode 

21 

The client-server model (Figure 2.9) of computing is a distributed application structure 

that partitions tasks or workloads between the providers of a resource or service, called 

servers, and service requesters, called clients. Often clients and servers communicate over 

a computer network on separate hardware, but both client and server may reside in the 

same system. A server host runs one or more server programs which share their resources 

with clients. A client does not share any of its resources, but requests a server's content or 

service function. Clients therefore initiate communication sessions with servers, which 

await incoming requests. (Client-server model) 

~ \ 
0 lntemet (7 

O
Clien;; 7-v 

■ Server 

Figure 2.8 the client-server model 

2.5 EasyModbusTCP Library 

This is the Modbus-TCP library for .NET and Java implementations. The library is 

suitable for Client and Server applications. The simulator shows registers and coils. They 

can be changed within the server simulator. Also protocol information can be displayed, to 



monitor the data exchange between Server and Client. 

The following function Codes are supported: 

• Read Coils (FC 1) 

• Read Discrete Inputs (FC2) 

• Read Holding Registers (FC3) 

• Read Input Registers (FC4) 

• Write Single Coil (FC5) 

• Write Single Register (FC6) 

• Write Multiple Coils (FC15) 

• Write Multiple Registers (FC16) 

• Read/Write Multiple Registers (FC23) 

(EasyModbusTCP Library http:/(www.easymodbustcp.net/) 
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E•syModbusTCP S.rvor Simulator 

....... ....,..__""""_......_.., Modbus-TCP SOM>r Listoning (POft 502) Moveto~ 1 ,: 
t,tp,1/www EpyMpctyJCPJJd ~ 

\lnon1S IA 
,..,...," oomecteddoru O ,~.J 
Pnitocallr-l-

Activated Function codes: 

0 FC 01 (Read Coils) 
0 FC 02 (Read Oiscrele Inputs) 
0 FC 03 (Read Holding Registers) 
0 FC 04 (Read Input Regis18rs) 
0 FC 05 (Write Single Coif) 
0 FC 06 (Write Single Register) 
0 FC 15 (Write Mulliple Coils) 

0 Smw Piolocol ...,_,. 

0 FC 16 (Write Mulliple Registers) 
0 FC 23 (Read/Write Multiple Registers) 

Figure 2.10 The Server Simulator 
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By reading the source code ofModbus-TCP library and using function codes provided 

by the server simulator and c lient simulator, we can understand the implementation of 

Modbus/TCP at the server side and the client side. 

2.6 Modbus/fCP implementation in C# 

The key point of the Mod bus communication is to bui Id the data frame (Figure 2. 12) 

for the protocol according to the specification of the protocol: 

Modbus Applicat10n Protocol (MBAP) Header 
(7 Bytes) 

Transaction 
Identifier 

(2 Bytes) 

Protocol 
ldenbfier 

(2 Bytes) 

Length 
Field 

(2 Bytes) 

Unit ID 

(1 Byte) 

Modbus TCP/IP ADU 

I Protocol Data Unit (POU) I 
Funct10n 
Code 

(1 Byte) 

Data 

Vanes 

(This N1format10n 1s embedded 1110 the data portion of the TCP frame) 

Figure 2.12 Modbus Frame 

The processes of building the Mod bus/TCP frame (Figure 2.13) 

Modbus Frame With 
TCP/IP Transmission 



Prepare the Frame 
(a bytes array) 

Set Transaction ID (2bytes) 

Set Protocol ID (2bytes) 

Set Length Field (2bytes) 

Set Unit ID (lbyte) 

Set Function Code (lbyte) 

Write Data 

Send Frame 

Figure 2. 13 Processes of building the Modbus/TCP frame 

2.6.1 Implementation of ModbusffCP at Client Side 
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Here is some pseudo-code for writing a single coil to a server device 

(http://easymodbustcp.net/) 

Ill <summary> 

Ill Write single Coil to Master device (FC5). 

Ill </summary> 

Ill <param name="startingAddress''>Coil to be written</param> 

Ill <param name="value">Coil Value to be written</param> 



public void WriteSingleCoil(int startingAddress, boo! value) 

{ 

byte[] coi!Value = new byte[2]; 

this.transactionldentifier = BitConverter.GetBytes((int)0x000I); 

this.protocolldentifier = BitConverter.GetBytes((int)0x0000); 

this.length= BitConverter.GetBytes((int)0x0006); 

this.functionCode = 0x05; 

this.startingAddress = BitConverter.GetBytes(startingAddress); 

if(value = true) 

{ 

coi!Value = BitConverter.GetBytes((int)0xFF00); 

} 

else 

{ 

coi!Value = BitConverter .GetBytes((int)0x0000); 

} 

Byte[] data= new byte[] { this.transactionldentifier[I], 

this.transactionldentifier[0], 

this. protoco lldentifier[ I], 

this.protocolldentifier[0], 

this.length[ I], 

this.length[0], 

this. unitldentifier, 
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} 

}; 

stream.Write(data, 0, data.Length); 

data= new Byte[2100]; 

stream.Read(data, 0, data.Length); 

this.functionCode, 

this.startingAddress[I], 

this.startingAddress[0], 

coi!Value[I], 

coilValue[0] 

if ( data[7] = 0x85 & data[8] = 0x0 I) 

throw new Exception("Function code not supported by master"); 

if(data[7] = 0x85 & data[8] = 0x02) 

throw new Exception("Starting address invalid or starting address+ quantity invalid"); 

if(data[7] = 0x85 & data[8] = 0x03) 

throw new Exception("quantity invalid"); 

if(data[7] = 0x85 & data[8] = 0x04) 

throw new Exception("error reading"); 

Read a single coil: 

Ill <summary> 

Ill Read Coils from Master device (FCI). 

Ill </sununary> 
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Ill <param name="startingAddress">First coil to be read</param> 

Ill <param name="quantity">Numer of coils to be read</param> 

Ill <returns>Boolean Array which contains the coils<lreturns> 

public boo![] ReadCoils(int startingAddress, int quantity) 

{ 

boo![] response; 

this.transactionldentifier = BitConverter.GetBytes((int) 0x000!); 

this.protocolldentifier = BitConverter.GetBytes((int) 0x0000); 

this.length= BitConverter.GetBytes((int)0x0006); 

this.function Code= 0x0 I; 

this.startingAddress = BitConverter.GetBytes(startingAddress); 

this.quantity= BitConverter.GetBytes(quantity); 

Byte[] data= new byte[] { 

this. transactionldentifier[ I ] , 

this. transactionldentifier[ 0], 

this. protoco!Identifier[ I], 

this.protoco!Identifier[0], 

this.length[!], 

this.length[0], 

this.unitldentifier, 

this.functionCode, 

this.startingAddress[l], 

this.startingAddress[0], 
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}; 

this.quantity[!], 

this.quantity[0], 

stream.Write(data, 0, data.Length); 

data= new Byte[2100]; 

stream.Read( data, 0, data.Length); 

if ( data[?] = 0x8 l & data[S] == 0x0 I) 

throw new Exception("Function code not supported by master"); 

if ( data[?] = 0x8 l & data[S] = 0x02) 

throw new Exception("Starting address invalid or starting address+ quantity invalid"); 

if(data[7] =0x81 & data[S] = 0x03) 

throw new Exception("quantity invalid"); 

if(data[7] = 0x81 & data[SJ = 0x04) 

throw new Exception("error reading"); 

response= new bool[quantity]; 

for (inti= 0; i < quantity; i++) 

{ 

} 

int intData = data[9+i/8]; 

int mask= Convert.Tolnt32(Math.Pow(2, (i%8))); 

response[i] = Convert.ToBoolean((intData & mask)/mask); 

29 



30 

return (response): 

2.6.2 Implementation of the ModbusrrCP at the Server S ide 

Here is some pseudo-code for writing a single coil to a server device 

(http://easymodbustcp.net/) 

private void ReadCoils(ModbusProtocol receiveData, ModbusProtocol sendData, NetworkStream 

stream, int portln, IPAddress ipAddressln) 

sendData.response = true; 

sendData.transaction Identifier = receiveData.transact ion Identifier; 

sendData.protocolldentifier = receiveData.protocolldentifier; 

sendData.w1itldentifier = receiveData.unitldentifier; 

sendData.functionCode = receiveData.functionCode; 

if((receiveData.quantity < I) (receiveData.quantity > 0x07D0)) //Invalid quantity 

sendData.errorCode = (byte)(receiveData.functionCode + 0x80); 

sendData.exceptionCode = 3; 

if ((receiveData.startingAdress + I + receiveData.quantity) > 65535) //Invalid Starting actress 

or Starting address + quantity 

sendData.errorCode = (byte)(receiveData. functionCode + 0x80); 

sendData.exceptionCode = 2; 
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} 

if ((receiveDataquantity % 8) = 0) 

sendData.byteCount = (byte)(receiveData.quantity / 8); 

else 

sendData.byteCount = (byte)(receiveData.quantity / 8 + I); 

sendData.sendCoilValues = new bool[receiveData.quantity]; 

Array.Copy(coils, receiveDatastartingAdress + I, sendData.sendCoilValues, 0, 

receiveData.quantity ); 

if(true) 

{ 

Byte[] data; 

if (sendData.exceptionCode > 0) 

data= new byte[9]; 

else 

data= new byte[9 + sendData.byteCount]; 

ByteQ byteData = new byte[2]; 

sendData.length = (byte)(data.Length - 6); 

I /Send Transaction identifier 

byteData = BitConverter.GetBytes((int)sendData.transactionidentifier); 

data[0] = byte Data[ I]; 



data[!]= byteData[O]; 

//Send Protocol identifier 

byteData = BitConverter.GetBytes((int)sendData.protocolldentifier); 

data[2] = byteData[I ]; 

data[3] = byteData[O]; 

/ /Send length 

byteData = BitConverter.GetBytes((int)sendData.lengtb); 

data[4] = byteData[l]; 

data[5] = byteData[O]; 

//Unit Identifier 

data[ 6] = sendData. unitldentifier; 

//Function Code 

data[?] = sendData.functionCode; 

//ByteCount 

data[8] = sendData.byteCount; 

if (sendData.exceptionCode > 0) 

{ 

32 



} 

data[7] = sendData.errorCode; 

data[SJ = sendData.exceptionCode; 

sendData.sendCoi!Values = null; 

if(sendData.sendCoi!Values != null) 

} 

for (inti= O; i < (sendData.byteCount); i++) 

{ 

byteData = new byte[2]; 

for (intj = O;j < S;j++) 

{ 

} 

byte boo!Value; 

if(sendData.sendCoi!Values[i • 8 + j] = true) 

boo!Value = I; 

else 

boo!Value = O; 

byteData[l] = (byte)((byteData[l]) I (boo!Value << j)); 

if((i • 8 + j +I)>= sendData.sendCoi!Values.Length) 

break; 

data[9 + i] = byteData[l]; 
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stream.Write(data, 0, data.Length); 

} 

2.7 Modbus TCP Sample Application 

Rockwell Automation provides a sample application to demonstrate the use of the 

Modbus TCP Master Sample Application. The program was written to run on a Control 

Logix 5000 processor with a compatible Ethernet Module. (Modbus TCP Master Sample 

Application Revision 1.02) 

3. CHAPTER THREE: METHODOLOGY AND FINDINGS 

3.1 Setup development environment 

The RSLogix 5000 is the PLC programming environment be used for PLC 

programming. The RSLogix 5000 is running on the computer and using RSLinx Classic 

to upload program to the PLC and control the PLC remotely. 

RSl.ogix 5000 

liJm 
(Figure 3.1) PCL development environment 

3.2 Build physical connection 

Firstly, the PLC should be connected with the RJ45 connector of the Ethernet cable to 

one of the Ethernet ports on the controller. The ports are on the bottom of the controller. 



(Figure 3.2) (CompactLogix 5370 Controllers User Manual) 

Port 1 - Front 

Port 2-Baci 

Bottom of Controller 

I II It I 
ii ii ' 
II II I 
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Figure 3.2 CompactLogix 5370 Ethernet port 

The PLC can communicate with the robot or virtual robot through Modbus/TCP. 

(Figure 3.2) 

RSLogix 5000 

Ethernet USS 
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Figure 3.2 Communication between the PLC and the Robot 

Any device connected to an Ethernet should have an IP address. 

If the virtual emulation and PLC connect to an Ethernet by a router (Figure 3. 3), they 

can use the DHCP (Dynamic Host Configuration Protocol) Server to get the IP address 

dynamically. It is very convenient to connect the device to Ethernet. However, the 

disadvantage is that the IP address would be changed when the devices restart. That means 

the PLC program needs to change the IP address before building a connection with the 

virtual robot. 
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Figure 3.3 Connect PLC with Virtual Robot Through Router 

The other solution is to connect the virtual robot and the PLC with a crossover cable 

(Wikipedia https: cn.wikipedia.org/wiki Lthernet crosso\er cable) and setup IP 

addresses for them manually. 



Figure 3.4 Connecting the PLC to the Virtual Robot Through Crossover Cable 

In R Logix 5000, one set up the IP address for the PLC. (Figure 3.5) 

Controller Properties · ModBusClient2 

General Majo, Faults Minor Fauls Date/Time Advanced 
Nonvolatile Memoiy Merno1y Internet Protocol ------~------------' POii Corfrguration 

Internet Protocol (IP) Settings 
IP settings can be manually config1.1ed 01 can be automaticaly conligured 
if the network S1.q101ts this capabtity 

,~, Manually configure IP settings 

Obtain IP settings automatically using BO OTP 

, 1 Obtain IP settings automatically using DHCP 

IP Settings Configuration 

IPAdttess: 192 168 3 

Domain Name. 

Host Name. 

Subnet Mask: 

Gateway Addiess 

Primary DNS Server 
Address: 
Secondary DNS 
Server Add!ess. 

255 

0 

0 

0 

Figure 3.5 Set IP address for PLC 

3.3 Research Utilities 

255 

0 

0 

0 

SFC EKeCution 

Network 

255 0 

0 0 

0 0 

0 0 
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[n this research. to investigate the data in ModbusrrCP frame, a software utility was 

created to covert the float number to integer number (Figure 3 .6). By comparing the result 

created by this software utility and the value in the PLC or virtual robot, we can know 

whether lhe data transfer is correct or not. 
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Modbus TCP Client □ X 

Sever IP Addem: l1Jall~=lt4 vi Server Port· 1502 vi 
Funcion Code· I Read Cons • FC 1 vi 
Start Address: lo Number of Values: I, 
Value lo wrle: I, 

Read ] I Wrt.e 

fvrswer from MocbJs Server 

Figure 3.7 Modbus TCP Cl ient 

3.4 PLC Programming 

The stored instruction set that is programmed into a PLC is called the work cycle 

program. The work cycle program is derived for the program of instructions and /or the 

process flow for the application being controlled. A work cycle program is created by 

dividing and processing the sequential list of action specified by the program of instructions 

into logic and sequencing instructions. (Daniel E. Kandray, P.E, 2010.) 

The PLC ladder diagram is used for programming. On the ladder diagram, Input 

instructions or output instruction were put on each rung. 

The Modbus Client program is based on the sample application provided by Rockwell 

Automation, Inc. (Modbus TCP Master Sample Application Revision 1.02) 



Clear all socket and 
message 

Create Socket 

Connect Socket 

Send requests 

Yes 

More requests "'>---...J 

Process response I 

1 

Figure 3.8 PLC Program Process 
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Controller Or_ganizer 

8---~ Controller ModBusClient 
I ; ~ Controller Taqs■ 

!···- CJ Controller Fault Handler 
, L .. CJ Power-Up Handler 

El···~ Tasks 
; S··-~ MainTask 

i El .. ~ ~ajnPr!gram ! '· _ Pro _ram Tags ] 
: ·· rlli MainRoutine 

g CheckTransCode 

... q. )( 

g ClearCommBuffersAndTriggers 

I) ClearTransTrigger 
Fun_ReadCoils 

.. g Fun_ReadDiscretelnput 

--II Fun_ReadHoldingReg 

--II Fun_ReadlnputReg 
II Fun_ WriteCoils 

II Fun_ Write Regs 

II Fun_WriteSingleCoil 
Fun WriteSin leRe 

Figure 3.9 The PLC Program 
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The MSG instruction (Figure 3. 10) asynchronously reads or writes a block of data 

to another module on a network. The PLC program uses it to create a connection, send data 

and retrieve data. After the connection is built, the PLC program can read and write data 

from the server through the Modbus protocol. 



Message Conligumjon • M8Tl_Crute_So_ck __ M_ SG ___ oe _________ _ 
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12 
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Done Length: 4 
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Me~~· ~ 
Me""9e COnlrol MBTI_Oe«e_Socic_MSO_OO O ON 

ER 

AcomectJon ot,joct 
The las! recorded 
socket error for 

tin e<>mocllon 0 
good, -8 connedlOn 

faled, -7 Delete 
ol foied.~ 

Oeae Soc foiled, 
.9 Comocllon 

felled , -10 
ca-nedlOndrOl)l)Od, 

-11 llfTanssmg 
soocel per..,..., Eno, Pallt 

Eno, Te>ct 
__ o_K_..,l I Cn:el I L ApplY J ~I -H-~- ~ 1---_;-:..-""c-.----MO'V-----~~r 

n 

Figure 3. 10 The MSG Instruction 

Before the data is sent out, the PLC program needs to prepare data by filling some 

data structure. 

Acomecti<rloqoc:t 
Athoro..-tho 
c:onmncetions to 
tNsPodctess,eO -· MBTU_Comodlons(O)MlT\JJ:nolllo SW _WteCds ,_..... __ .._ ___ -------i '~,--------------------l ~Tos..t>ro..me >--

A comect,on oqoc:t 
Alhore..-Slhe 
conm.ncellOnS to 
Ila P odctess, a O -· 

Row,e""""' fun_Wlea:.b 
ir1>U1 Per Pere_lllT_BeglnAddres.15 
rf)<.c Par Pare M LocelC)1tul1 S 
ir1>J!Per Pare_M_CO<.rt15 
ir1>J1 Par Pere_M _Ull 

MBTU_Comodlons(OJM!TU_Enalllo SW_R~ 
,>----------------------< -""' To SJ>rour,e >--

Ro.lne...,.,. fun_ReedC<lis 
....., P• Pere_MJleg,nAddrossl 
..,,., Per Para_tlT _LocalOffffl°t 
..,,., Per Pare_lllT _CO<.rt1 
....., Par Pere_M _uo 

Figure 3.11 The PLC Program for data preparing 
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,--------,·.r.slC'R-----~ 
--------i Jump To Subroutine >--

Routine Name Fun_ReadCoils 
Input Pat Para_lNT _BeginAddress1 
Input Par Para_lNT _Local0ffset1 
Input Par Para_lNT _Count1 
Input Par Para_lNT _UID 

Figure 3 .12 PLC Route 

,-------MOY------, 
Move 
Source PataJNT _Local01fset1 

0 
Dest MBTU_TransactJons_00[2].localOffset 

0 

----.....,.,v----~ 
Move 
Source P111a_lNT _Count1 

3 
Dest MBTU_TransactJons_00)2) Count 

3 

Figure 3.13 Set Route Parameter 
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.-------iYlOV------, 
Move 
Source Para_lNT _LIO 

0 
Dest "1:ITU_Transectlonsjl~2J.LD 

0 

In the PLC program, data structure MBTranscation is used to send requests. 
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;- MBTU_Transactions_OO { ... } 1 

r - MBTU Transactions 00(0) { ... } 
I + MBT U _Transactions_ 00(0). Begin&.daess 11 

I + MBTU_ T ransactions_OO(0].Count l 

I MBTU_ T ransactions_OO{0).Enabled 0 

I + MBTU_ T ransactions_OO{O].LocalOflset 11 

I + MBTU_ T ransactions_OO[0].Polllnterval 2 

I MBTU_ Transactions 00(0).ReqBuilt 0 

I + MBTU_ T ransactions_OO(0!Request '-$CHOO$ ... 

I MBTU _Transactions_ 00(0! T ransComplete l 

I + MBTU_Transactions_OO(O)TramlO 11713 

I + MBTU_ Transact10ns_OO(Ol TranslastError -2 

' 
+ MBTU_ Transactiom_OO(Ol TransStat 0 

I + MBTU_Transactions_OO(O]. Trans Type s 
I + MBTU_ T ransactions_OO(O].UIO 100 

Figure 3 . 14 MB Transaction 

Every MB transaction (Figure 3.15) corresponds to a request. The transaction data 

structure works for a Modbus/TCP frame, which contains all the information used to fill 

the frame. 

CiJ Add•On lnnrucbons 
Fl t!i Data Typos 
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;II READ_RESP _STR 
Iii:! REQUEST_PARAMETIR5 
lllll SoclrAdd, 

I II STR_OUT 
/;J WRT_DATA 
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UC Add-On-Defined 
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+ Ci Module-Defined 
L3 Trends 

•··-·- ... 
~ N""' Dul~ 

Enotiled BOOl 

Polrte,vol INT 

franslwe INl 

UIO $INT 

1eegnlldct- INT 

1c.u. INl 

i locoOff,., INT 

T rarn:~e BOOL 

TransSlat INT 

I~ Aeque,t STA_ 462 

R~ul BOOL 
T,.n1D INT 

T 10NLOll£n01 INT 

i:r 

Figure 3 .15 Data in MB Transaction 
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Oeamoi T 1.rcadlon code loi I Read/1111te 

Deanol Unt ldenbfier 0,., use Read/II/lie 
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Decimal lhe ""'"11 ol l'""' ID 1 Readl'N1te l 
Oecmol OffUJt rt.o local Datt a Road/141, .. I 
Oecmol T 1""'4Cliln Con-c,lote Read/141,te 

Oeamol St«us ro...« ol lhe bor Readl'Nrle 

Aduol t.lfer used to b Reai/Wnte 

Decmol r,.,..act,on,-'"' Readl'Nrte 
Decmol S"'°' N\ffllef ol lhe • ReacVW1le 

Decmol umEno,one"""'°"' Re.,d/W1te 

The PLC program fills MB Transaction according to the configuration, if the 

Enabled field of MB Transaction is true, MB Transaction wi ll be sent by MSG instruction. 

That is one corrununication between PLC and the server. 
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In the PLC program, some data buffers were used for data reading and writing 

Data buffer Type Usage 

MBTU MB 0xx BOOL[1024] For function code 1 (Read coils), S(Write single - -

coil) and IS(Write multiple coils) 

MBTU MB lxx BOOL[1024] For function code 2(Read discrete coils) - -

MBTU MB 3xx INT[256] For function code 4(Read input coils) - -

MBTU_MB_ 4xx INT[256] For function code 3(Read holding register), 

1. 

6(Write single register) and l 6(Write multiple 

registers) 

For example, in the following instruction 

Field Name Value 

TransType 1 

BeginAddress 0 

Count 10 

Local Offset 1 

Trans Type means a coil reading. 

BeginAddress is O; this means the request will start reading at the first coil the device. 

The count is 10; this means 10 coil will be read. 

Local Offset is 1; this means the data will be put into the buffer starting at the address 
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3.4.1 Multi Tasks 

A Logix5000 controller support the fo llowing types of tasks: 

Continuous Task: The continuous task runs all the time in the background. When it 

completes a full scan, it restarts immediately. A project does not require a continuous task. 

If used a project can have only one continuous task. Therefore, the main task of the project 

is a continuous task. 

Periodic Task: A periodic task performs at a specific period. The time period can be set 

from 0.1 ms to 2000s. The default period is 1 Oms. 

Event Task: An event task performs only when a specific event occurs. 

(Allen-Bradley, Logix5000 Controllers Tasks, Programs and Routines) 

The PLC program has two tasks in the project (Figure 3 .16), one is for communication 

and one for the data process. 

Controller Organizer 

e ~ Controller ModBusClient2 

I ~ Controller Tags 

CJ Controller Fault Handler 
CJ Power-Up Handler 

El- ~ Tasks 

ffl· ControlTask 
+ · Main Task 
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El--~ Motion Groups 

I ' .... -CJ Ungrouped /l;;(.es 

~--CJ Add-On Instructions 

rk--& iidffai 
ff) Cj User-Defined 

IE Ci Strings 
Cj Add-On-Defined 

ffl Cj Predefined 

.,.. 11 X 

El -61 Controller Mod8usClient2 
i I- ~ ControllerTags 
' j. CJ Controller Fault Handler 
i ! ... C] Power-Up Handler 

Eh-~ Tasks 
' $ ~ ControlTa sk 

, El -El MainProgram 
! ! -~ Program Tags 

. lni MainRoutine 
! -~ Fun_ReadCoils 
i ~ Fun_ReadHoldingReg 
' II Fun_ReadlnputReg 
II Fun_ WriteAngles 
~ Fun_ Write Regs 

i 
-~. Fun_WriteSingleCoil 
[I lnitTransaction 
[I Sub_PutFloatT oReg 

... qjj MainTask 

! El El TCP Client 
~ Program Tags 
[o MaonRoutine 
II CheckTransCode 
II) ClearCommBuffersAndTriggers 
(a r-1._ T .. _ . . T .. : __ , ., 

Figure 3.16 PLC Tasks 

.... n 
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When a PLC wants to send a request to the virtual robot, the data process task prepares 

data and puts the data into global data structures. The global data structures are some data 

structures be used to shard data between control task and communication task. The 

communication task scans the global data structure continuously. Ifit finds the data is ready, 

the communication task will send data to the virtual robot. 

When a PLC wants to read data from the virtual robot, the data process task prepares 

the request and puts it into the global data structure. If the communication finds there is a 

request in the global data structure, the communication task will send a request to the virtual 

robot and write the response from the virtual robot into the global data structure. Then the 

data process task can read data locally. 

According to this design, the communication task has higher priority than the data 

process task. So the communication task was set as the main task and the data process task 

was set as periodic task (Figure 3.17). 



New Task 

Name: OK 

Description: 
Cancel 

Type: 
.... [ Help 

,....[ P-e-riodic-. ------------. ... ] '------

Period: 10.000 ms 
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3.4.2 Task synchronization 

Communication Task 

Figure 3.17 Tasks type 

Global Data Structure 

Transaction 2 

Transaction 3 MBTU_MB_Oxx 

MBTU MB lxx 
T . r - -
ransact10~ MBTU_MB_2xx 

r MBTU_MB_3xx I 

Figure 3.18 Tasks synchronization 

Control Task 
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As the mam task, the communication task scans the global data structure and 
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communicates with the virtual robot continuously. At the same time, the data process task 
I 

performs at a specific period. If the period of data process task is shorter than the period 

of communication task, some requests in the global data structure will be overwritten by 

the subsequent request. It is an example of a producer-consumer problem in computer 

science. 

To solve this problem, there are two sample solutions: 

1. Use some flag or trigger. Let the communication task notify the data process task, 

after it has finished, read the global data structure and send request. 

2. Make the period of data process task long enough. In this period, the data process 

task will be suspended and the communication task has enough time to read the global data 

structure and send the request. 

Currently, the second solution was used in this research. Because it is easier to be 

implemented. 

3.5 Data Processing 

There are two types of data used for the virtual robot operation, Boolean and Float. 

Processing Boolean data is straight-forward and extra convert is need for Float data. 

The virtual robot keeps the value of the position as the Float number, which is 32 bit. 

But the input register for Modbus/TCP can keep just an integer value. The Float data in 

virtual will be treated as two integer numbers. Furthermore, the Modbus uses big endian 

data format so the order of the bytes of the data will be respected. 

3.5.l Read Float 

For example, there is a Float number in the virtual robot that will be read through 
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Modbus/TCP protocol. Because the virtual robot is running on a windows system[ which 
' 

uses little endian data format, the Float number is represented in the memory as following: 

(Figure 3.18) 

Float Number Byte 3 
" 

Float Number Byte 2 

Float Number Byte 1 

Float Number Byte O 

Figure 3.18 Float Number in Memory 

Before the number was put into the Modbus/TCP protocol frame, the bytes of the 

number should be reversed to big endian format: 

Low 
Address 

High 
Address 

Float Number Byte O 

Float Number Byte 1 

Float Number Byte 2 

Float Number Byte 3 

Figure 3.19 Float Bytes in the Memory 

The bytes will be put into Modbus/TCP protocol frame and read by the PLC. A~er the 

Modbus frame was received by PLC, the PLC program will treat the 4 bytes as two integer 
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number and reverse them to little endian format. 

Because the PLC is running on a Windows system and uses a little endian data format, 

the PLC will treat the data as a two 16 bits integer number, the bytes will be converted to: 

Low 
Address 

High 
Address 

Float Number Byte 1 

Float Number Byte 0 

Float Number Byte 3 

Float Number Byte 2 

Figure 3.20 Float bytes in memory 

To read the data correctly, the PLC program needs to re-arrange the bytes to the original 

order. 

Low 
Address 

High 
Address 

Float Number Byte 1 Float Number Byte 3 

Float Number Byte O Float Number Byte 2 

Float Number Byte 3 Float Number Byte 1 

Float Number Byte 2 Float Number Byte O 

Figure 3.21 Reverse the Bytes 
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Low High 

Float in Robot DCBA 

Put to Frame ABCD 

Get from Frame BADC 

We need DCBA 

Figure 3.22 reverse the bytes 

The code looks like fo llowing: 

Temp buffer for data 
covert 

OP 
CopyFlle .__ 
Source MBTU_M8_3xxjlooplndex'2J 
Dest ByteBuffer1 (OJ 
Length 4 

Temp buffer for data Temp buffer for dllta Temp buffer for dalla Ter111 buff er for data 
covert covert covert covert 

·- v _v -v 
- Move - Move - Move - Move -

Sou'ce ByteBuffer1 (OJ Source Bytea.tfer1 (1 J Sou-ce ByteBuffer1 (2J Sou-ce Bytea.ffer1 (31 
-115 • 62 • 120 ♦ -51 + 

Oest ByteBuffer2(2J Dest Bytea.ff er2{3J Oest ByteBuffer2(OJ Oest Bytea.ffer2(1 J 
-115 • 62 . 120 + -51 + 

Figure 3.22 PLC Program 

3.5.2 Write Float 

To write the Float number to the virtual robot, the PLC program will split the four bytes 

of the number to two parts, each part having two bytes. 

Firstly. the four bytes were put into a byte array. 



Used when convert 
float numbers to int 

nubmers 
,-------~_OP-------. 

- Copy File 
Source Angles[Anglelndex).T(For _Loop_lndex) 
Dest Bytes_Of_Floa!Number(0) 
Length 4 

Figure 3.23 Float Number in PLC 

Low 
Address 

L 7 

High 

Address 

Float Number Byte 0 

Float Number Byte 1 

Float Number Byte 2 

Float Number Byte 3 

Figure 3.24 Bytes of Float Number 
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After that, the PLC program reverses those two parts to big endian order (Figure 3.23). 

Low 
Address 

High 
Address 

Float Number Byte 2 

~ Float Number Byte 3 

Float Number Byte 0 

Float Number Byte 1 

Figure 3.23 Reverse of the Bytes 



The PLC ladder diagram is: 

Used - -noo1-.1ort 

-Soorce Bytos_Ot_f~2) 
55 

De'1 Bytos_Ot_T~) 
55 

-
Used-
nos rutmers to I'll 

Scuce Bytes_Ot_~J) 
66 

De>I &,1es_0t_r-i11 
66 

-Soorce Bytes_Ot_~(0l 
92 

Osst Bytes_Ot_T~J 
92 

Figure 3.24 PLC Program 

Then the data will be sent to the virtual robot. 

-
UsedwhonCOIWffl 
T1om runbers to re -· 

55 

Soor -,, eytes_01..floelluoo«11 I 
-113 

De'1 Bytes _01 _T-..mt>o<13] 
-113 

When the bytes were sent to the virtual robot. the TCP/IP library will think the bytes 

are two integers with big endian format. The bytes will be re-ordered as follows: 

Low 

Address 

High 
Address 

Float Number Byte 3 

Float Number Byte 2 

Float Number Byte 1 

Float Number Byte 0 

Figure 3.25 Bytes of Float Number 

The virtual robot knows it is a Float with four bytes in big endian format. So the virtual 

robot will reverse the four bytes into little endian and read it correctly. 



Low 
Address 

High 
Address 

Float Number Byte O 

Float Number Byte 1 

Float Number Byte 2 
' 

Float Number Byte 3 

Figure 3.26 bytes of float number 

3.6 Functions 

The functions are some subroutines used to prepare and receive data. 

Every function has 4 parameters: 

Name: Meaning 

BeginAddress The start address of the data 

to be read or write 

Local Offset The address of data will be 

saved locally in data array 

MBTU MB XXX - -

Count Counter of the bytes to read 

or write 

UID The ID of the device to be 

operate 
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Global data structure MBTU_MBOX:X is a Boolean array, and is used to read and 

write coils. The corresponding function code are 1 (which means read coils). S(which 

means write single coil), and 1 S(which means write multiple coils) 
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Global data structure MBTU _ MB 1:X:X is Boolean array, it is used to read discrete 

inputs. The corresponding function code is 2 (which means read discrete inputs) 

Global data structure MBTU _MBJXX is 16 bits integer array, which is used to read 

input registers. The corresponding function code is 4 (which means read input registers) 

Global data structure MBTU_MB4XX is 16 bits integer array, which is used to read 

and write holding registers. The co1Tesponding function code are J(which means read 

holding registers), 6(which means write single holding register). and l 6(which means 

write multiple registers). 

In the reading operation, the communication task will read data from virtual robot and 

save them to those global data structure so control task can read it. 

In the writing operation. the control task wi ll prepare data and put them into those 

global data structures so control task can send them to the virtual robot. 

3.6.1 Fun ReadCoils 

..----------1'>:BR------, 
- Subroutine 

Input Par Para_lNT _BeginAddress1 
Input Par Para_lNT _Local0ffset1 
Input Par Para_lNT _Count1 
Input Par Para_lNT _UID 

The function sets function code to I in the transaction data structure . 
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Transaction_00[2] and read serval coi ls (Boolean type) from target device. The parameter 

Begin Address means the function will start reading at address of the device being 

reading. 

The data read from target device will be put into Boolean array MBTU_MB0XX. 

3.6.2 Fun_ WriteSingleCoils 

~---~:1BR------, 
- Subroutine -

Input Per Pere_lNT _BeginAddressS 
Input Per Pere_lNT _localOffsetS 
Input Per Pere_lNT _UID 

This function sets function code to 5 in the transaction data structure. 

Transaction_00[6] sends the Boolean value in MBTU_MB0XX at address of 

LocalOffixedata to the virtual robot"s coil at address BeginAddress. 

3.6.3 Fun WriteCoils 

:BR 
- Subroutine -

Input Par Pera_lNT _BeginAddress15 
Input Par Pere_lNT _Local0ffset15 
Input Par Pera_lNT _Count15 
Input Par Para_lNT _UID 

This function sets function code to 15 in the transaction data structure 

Transaction_00[l] and sends some Boolean values in MBTU_MB0XX starting from 

address of LocalOffixedata to the virtual robot's coil at address BeginAddress. 
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3.6.4 Fun_ ReadDiscretelnpul 

'.:BR 
- Subroutine -

Input Par Para_lNT _BeginAddress2 
Input Par Para_lNT _Local0ffset2 
Input Par Para_lNT _Count2 
Input Par ParaJNT _UID 

The function sets function code to 2 in the transaction data structure 

Transaction_00[J] and reads serval discrete input from target device. The parameter 

Begin Address means the function will start reading at the address of the selected device. 

The data read from target device wi ll be put into Boolean array MBTU_MBl:X:X. 

3.6.5 Fun_ReadlnputReg 

'.:BR 
- Subroutine -

Input Par Para_lNT _BeginAddress4 
Input Par Para_lNT _Local0ff set4 
Input Par ParaJNT _Count4 
Input Par Para_lNT _UID 

The function sets function code to 4 in the transaction data structure 

Transaction_00[J] and reads serval input register from target device. The parameter 

Begin Address means the function wi ll start reading at the address of the selected device. 

The data read from target device will be put into Boolean array MBTU_MBJXX. 

3.6.6 Fun_ReadHoldingReg 

,--------!'>'.:1BR-------, 

Subroutine 
Input Par Para_lNT _BeginAddress3 
Input Par Para_lNT _Local0ffset3 
Input Par Para_lNT _Count3 
Input Par ParaJNT _UID 

The function sets function code to 3 in the transaction data structure 

Transaction_00[4] and reads serval holding registers (16 bits integer type) from target 
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device. The parameter Begin Address means the function will start reading at the address 

of the selected device. 

The data read from target device will be put into Boolean array MBTU_MB4XX. 

3.6.7 Fun_ WriteSingleReg 

:BR 
- Subroutine -

Input Par Para_lNT _BeginAddress6 
Input Par Para_lNT _Local011set6 
Input Par Para_lNT _UID 

This function sets function code to 6 in the transaction data structure 

Transaction_00[6] and sends the 16 bits integer value in MBTU_MB4XX at the address 

of LocalOffixedata to the virtual robot's holding register at address BeginAddress. 

3.6.8 Fun_ WriteRegs 

:BR 
- Subroutine ,-. 

Input Par Para_lNT _BeginAddress1 6 
Input Par Para_lNT _Local0 ffset1 6 
Input Par Para_lNT _Count1 6 
Input Par Para_lNT _UID 

This function sets function code to 16 in the transaction data structure Transaction 00 

[7] and sends the 16 bits integer value in MBTU_MB4XX at the address of 

LocaJOffixedata to the virtual robot's holding register at address BeginAddress. This 

function wiU convert the bytes of the Float to big endian format. 

3.6.9 Fun_ WriteAngles 

Each angle of the virtual robot is composed by three Float numbers which have six 



61 

bytes in aJI. Firstly. this function will convert the float numbers to six bytes with big endian 

order. The bytes will be put into a data table named "MBTU_MB_4xx" 

.------r~OR------, 
- For 

Routine Name Sub_PulfloatToReg 
Index For _Loop _Index 

1 + 
lnrtial Value O 
Terminal Value 2 
Step Size 

Then, this function will be called function '·Fun_ WriteRegs". "Fun_ WriteRegs" reads 

the data in "MBTU _MB_ 4xx" to send the six bytes located at address Oto 5 to the virtual 

robot. 

3.6. 10 Process_ Transaction 

This function will scan the content of the transaction data structure from 

Transaction_OO[O] to Transaction_00[7]. Each transaction data structure stands for a 

function code. If Process_ Transaction finds one transaction data structure is ready, 

Process_ Transaction builds a ModbusfTCP frame according to the content of the 

transaction data structure and sends a request to the target device. 

3.7 Action Sequence 

To make the virtual robot accomplish an action sequence, Control task communicated 

with the communication task through the shared globaJ data structure (Figure 3.27). 
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Control Task 

Position 1 

Position 2 

Position 3 
Action 1 

... 
Action 2 

Position n 
Action 3 

... 
Action n 

Figure 3.27 Action Sequence 

The communication task reads the status of the virtual robot and saves the data in those 

global data structure. 

Control task will scan the position list and action list and prepare the frame data, and 

put the data in the global data structure. When the data is ready, the communication will 

send the request to the server. 

4. CONCLUSION AND RECOMMENDATIONS 

The purpose of this research was to introduce the virtual robot and other virtual 

devices into teaching. From the beginning, the focus of this research was to implement 

the communication between computer and the PLC through the Modbus/TCP protocol. 

As the result, a PLC and computer network was built and a PLC Modbus client 

program was created to communicate with the virtual robot running on the PC by sending 

and retrieving data from the computer. The PLC program can control the virtual robot 

moving around, opening or closing a grabber, and determine whether the virtual robot has 

reached the intended target object or not. The action sequence of the robot can be 



enhanced by adding more positions and actions to the current PLC program. 

Some future work may be necessary in this research to support more virtual devices 

in the emulation system. 
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In the future. by using the ModbusffCP protocol, the PLC can control multiple virtual 

robots running in the emulation system or real robots in the industrial environment (Figure 

3.28). 

The trainer can teach students how to control the devices by using a PLC and allow 

them to practice with the virtuaJ device without worrying about damage to the real devices 

and/or themselves. 

RSLogix 5000 

um USS 

Figure 3.28 Control Multiple Devices 
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6. APPENDIX Source Code related 

Here is some pseudo-code about writing a single coil to a master device 

(http://easymodbustcp.net/) 

Ill <summary> 

Ill Write single Coil to Master device (FC5). 

Ill </summary> 

Ill <param name="startingAddress">Coil to be written</param> 

Ill <param name="value">Coil Value to be written</param> 

public void WriteSingleCoil(int startingAddress, bool value) 

byte[] coilValue = new byte[2]; 

this.transactionJdentifier = BitConverter.GetBytes((int)0x000 I); 

this.protocolldentifier = BitConverter.GetBytes((int)0x0000); 

this. length = BitConverter.Get8ytes((int)0x0006); 

this.functionCode = 0x05; 



this.startingAddress = BitConverter.GetBytes(startingAddress); 

if(value =true) 

{ 

coi!Value = BitConverter.GetBytes((int)OxFFOO); 

} 

else 

{ 

coi!Value = BitConverter.GetBytes((int)OxOOOO); 

} 

Byte[] data= new byte[] { this.transactionldentifier[l], 

this.transactionldentifier[O], 

this.protocolldentifier[ I], 

this.protocolldentifier[O], 

this.length[!], 

this.length[O], 

}; 

stream.Write(data, 0, data.Length); 

this. unitldentifier, 

this.function Code, 

this.startingAddress[ I], 

this.startingAddress[O], 

coi!Value[l], 

coi!Value[O] 
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} 

data= new Byte(2!00]; 

stream.Read(data, 0, data.Length); 

if ( data[7] = 0x85 & data[8] = 0x0 I) 

throw new Exception("Function code not supported by master"); 

if(data[7] = 0x85 & data[8] = 0x02) 

throw new Exception("Starting address invalid or starting address + quantity invalid"); 

if(data[7] = 0x85 & data[8] = 0x03) 

throw new Exception("quantity invalid"); 

if(data[7] = 0x85 & data[8] = 0x04) 

throw new Exception("error reading"); 

Read a single-coil: 

Ill <summary> 

Ill Read Coils from Master device (FCI). 

I I I </summary> 

Ill <param name="startingAddress">First coil to be read<lparam> 

Ill <param name="quantity">Numer of coils to be read</param> 

Ill <returns>Boolean Array which contains the coils</returns> 

public boo!□ ReadCoils(int startingAddress, int quantity) 

{ 

bool[l response; 

tbis.transactionldentifier = BitConverter.GetBytes((int) 0x000 I); 
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this.protocolldentifier = BitConverter.GetBytes((int) OxOOOO); 

this.length= BitConverter.GetBytes((int)Ox0006); 

this.functionCode = OxO I; 

this.startingAddress = BitConverter.GetBytes(startingAddress); 

this.quantity= BitConverter.GetBytes(quantity); 

ByteO data= new byte□{ 

}; 

this.transactionldentifier[I ], 

this.transaction!dentifier[O], 

this. protoco !Identifier[ I ], 

this.protocolldentifier[O], 

this.length[ I], 

this.length[O], 

this.unitldentifier, 

this.functionCode, 

this.startingAddress[l], 

this.startingAddress[O], 

this.quantity[!], 

this.quantity[O], 

stream.Write(data, 0, data.Length); 

data= new Byte[2100]; 

stream.Read(data, 0, data.Length); 
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} 

if(data[7] = 0x81 & data[8] = 0x0I) 

throw new Exception("Function code not supported by master"); 

if(data[7] = 0x81 & data[8] = 0x02) 

throw new Exception("Starting address invalid or starting address + quantity invalid"); 

if(data[7] = 0x81 & data[8] = 0x03) 

throw new Exception("quantity invalid"); 

if(data[7] = 0x8! & data[8] = 0x04) 

throw new Exception("error reading"); 

response = new boo![ quantity]; 

for (int i = 0; i < quantity; i++) 

{ 

} 

int intData = data[9+i/8]; 

int mask= Convert.Tolnt32(Math.Pow(2, (i%8))); 

response[i] = Convert.ToBoolean((intData & maskYmask); 

return (response); 
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