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Transfer control Protocol/Internet Protocol is standard network protocol stack for 

seamless communication on the Internet. There are significant packet losses due to 

transmission errors, which results in degradation in TCP performance. The 

implementation ofVoIP faces problems like latency and jitter; but the main cause of 

the packet loss is congestion. There are many challenging questions ahead of 

deploying the VoIP over existing network. A detailed simulation approach for 

deploying VoIP successfully is offered. The simulation tool used in this paper i~ the 

OPNET network simulator. OPNET has gained considerable popularity in acad,emia 

as it is being offered free of charge to academic institutions. For introducing a new 

network service such as Vo WLAN, one has to characterize first the nature of its 

traffic, QoS requirements, and any additional components or devices. The number of 

VoIP calls that can be sustained by an existing network while satisfying QoS 

requirements of all network services and leaving adequate capacity for future growth. 



As a case study, the simulation approach was applied on a typical network of a small 
I 

enterprise. The paper presents a detailed description of simulation models for ne~work 
' ' 

topology and elements using OPNET. The paper describes modeling and 

representation of background and VoIP traffic, as well as various simulation 

configurations. Moreover, many design and engineering issues pertaining to the 

deployment of VoIP are discussed. These issues include characteristics of VoIP I 

traffic and QoS requirements, VoIP flow and call distribution, defining future growth 

capacity, and measurement and impact of background traffic. 
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Chapter 1 

Introduction 
I 

' The number of users accessing the internet using wireless technology if 

growing very fast; it is going to increase day by day. As the internet has becorile part 

of daily life, it is changing the way we communicate and search for information. 

Wireless introduces a different environment from the one in the fixed networks, with 

the limitation of the physical layer. A wireless mobile internet means any 

communication task like email, web browsing, internet radio that is possible with the 

wired internet connection is equally possible with a wireless internet connection 

(Mark Sportack 2005). 

I 

TCP/IP stands for Transmission Control Protocol/Internet Protocol. TCP is the 

most popular protocol on the internet. It works satisfactorily for the reliable delivery 

of data. Most of the popular applications like The World-Wide Web, File Transfer 

Protocol and email requires reliable delivery over the network. TCP was designed 

mainly to perform well on fixed networks, where the main functionality is to utilize 

the whole bandwidth and avoid overloading the network. But nowadays users want 

all the applications to run on wireless networks. Optimizing TCP for the wireless 

environment has been the major area of research for the last few years. One of the 

primary reasons for the widespread use of TCP on the internet is its inbuilt algorithms 

for congestion control and avoidance (Mark Sportack 2005). Over the years, the 

internet community has incorporated new schemes into the TCP suite to make these 

protocols more robust to congestion. (Bakshi 1997). 



; 

Packets on the internet may get lost either due to congestion or due to 

I 
corruption by the underlying physical medium. Given the low bit error rates of wired 

2 

links, almost all losses are related to congestion. TCP's reaction to losses is based on 

this very observation (Bikram 1996). A TCP connection is a bidirectional flow 

controlled, reliable stream of data between two end points, which is identified by an 

IP- address; TCP uses a sliding window flow control. This window sets the limit on 

the amount of data to be sent without acknowledgement from the receiver. The result 

is called "Acknowledgement clock" (ACK clock) where the window is constant and 

the timing for every packet is measured by the reception of the ACK of the previous 

packet; the window size is then adjusted according to the ACK signal received. TCP 

reacts by setting a slow-start threshold to half the value of congestion window, 

subsequently decreasing the congestion window to one, and entering the slow-start 

phase. This measure would appear severe, but works well because cutting the window 

size and limiting the amount of unacknowledged data on the network is the most 

effective way of dealing with congestion. In addition to the above measures, the 

timeout value is doubled upon each consecutive packet loss. Only upon receipt of an 

acknowledgement for a non- retransmitted packet is the timeout value recomputed 

(Parsa 1999). 

These days a massive deployment of Videoconference over Internet protocol 

(VoIP) is taking place over data networks. Most of these networks are Ethern\:t-based 

and running IP protocol. Many network managers are finding it very attractivf and 

cost effective to merge and unify voice and data networks into one. It is easier to run, 



manage, and maintain. However, one has to keep in mind that IP networks are ·best-
1 

effort networks that were designed for non-real time applications. On the other hand, 
' 

VoIP requires timely packet delivery with low latency,jitter, packet loss, and i 

sufficient bandwidth. To achieve this goal, an efficient deployment of VoIP must 

ensure that these real-time traffic requirements can be guaranteed over new or 

existing IP networks. 

3 

When deploying a new network service such as VoIP over existing networks, 

many network architects, managers, planners, designers, and engineers are faced with 

common strategic and sometimes challenging questions. What are the QoS 

requirements for VoIP? How will the new VoIP load impact the QoS for currently 

running network services and applications? Will my existing network support VoIP 

and satisfy the standardized QoS requirements? If so, how many VoIP calls can the 

network support before upgrading prematurely any part of the existing network 

hardware? 

These challenging questions have led to the development of some commercial 

tools for testing the performance of multimedia applications in data networks. A list 

of the available commercial tools that support VoIP is listed in (B. Karacali, M. 

Bearden, L. Denby, J. Meloche and D.T. Stott, 2002; B. Karacali, L. Denby and J. 

Melche, 2004). For the most part, these tools use two common approaches in 

assessing the deployment of VoIP into the existing network. One approach is based 

on first performing network measurements and then predicting the network readiness 

for supporting VoIP. The prediction of the network readiness is based on assessing 
I 

' 



the health of network elements. The second approach is based on iajecting rea\ VoIP 

traffic into the existing network and measuring the resulting delay, jitter, and loss. 

4 

Other than the cost associated with commercial tools, none of the commercial 

tools offers a comprehensive approach for successful VoIP deployment. In particular, 

none give any prediction for the total number of calls that can be supported by the 

network taking into account important design and engineering factors. These factors 

include VoIP flow and call distribution, future growth capacity, performance 

thresholds, impact of VoIP on existing network services and applications, and impact 

background traffic on VoIP. This paper attempts to address those important factors 

and lay out a comprehensive methodology for a successful deployment of any 

multimedia application such as VoIP and video-conferencing. However, the paper 

focuses on VoIP as the new service of interest to be deployed. The paper also 

contains many useful engineering and design guidelines, and discusses many practical 

issues pertaining to the deployment of VoIP. These issues include characteristics of 

VoIP traffic and QoS requirements, VoIP flow and call distribution, defining future 

growth capacity, and measurement and impact of background traffic. TCP assumes 

that each packet loss is solely due to congestion; however, in a wireless network 

packet losses may be unrelated to congestion. 



Review of TCP/IP: 

TCP/IP is actually a collection of protocols that govern the way data travels 
' 

from one machine to another across networks. A protocol is designed to perform a 

specific function. These protocols are divided into two categories based on their 

functions, one focuses on the processing and handling data from applications called 

TCP suite. The other is network oriented and designed to accommodate the 

transmission and receipt of application data across a network called IP suite. TCP/IP 

enables different types of computers and devices to use networks and contact each 

other and share the information (Charles L. Hedrick 1987). 

5 

TCP/IP protocols work together to break the data into small pieces that can be 

efficiently handled by the network known as segments and the process is called 

segmentation. Then these segments are wrapped in a data structure known as packets. 

A packet has all the information that a network needs for the delivery of the data to its 

destination and then acknowledge delivery. It verifies the receipt of the data on the 

other end of the transmission and reconstructs the data in its original form. 

Packetization is the communication by two or more computers sending and 

receiving individual packets of data. It was first demonstrated when two computers 

where connected with a 15 foot cable at the University of California - Los Angeles. 

At first the data was sent one bit at a time without the benefits of having first been 

segmented for transmission. This was the first simple test that changed the way for 

technologies that no one could have predicted. 



In the TCP/IP suite, TCP and IP are the most important parts but there are 
I 
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other protocols that we have to take into consideration. Some of these other protocols 
. ! 

are: File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), Simpie Mail 

Transfer Protocol (SMTP), Post Office Protocol Version 3 (POP3) and 

Telecommunication Network (TELNET). FTP enables the user to send and receive 

files over the Internet. HTTP is the application layer protocol used to communicate 

between Web servers and Web browsers. SMTP is the application layer protocol used 

to move messages from mail server to mail server ·on the Internet. POP3 is the 

application layer protocol used to communicate mail servers and mail software on 

client computers. TELNET enables the users on one computer to log into other 

computers on the Internet. 

Significance Of Study 

The demand for continuous network connectivity exists for various wired and 

wireless integrated networks. Since TCP is the standard network protocol stack for 

communication on the internet, its use over the network is a certainty because it 

allows seamless integration with the fixed infrastructure. The significance of VoIP is 

underlined by the increasing demand for higher quality of service from consumers. 

VoIP is not a traditional phone call, but a technology that offers yet another substitute 

for in-person voice. Traditional voice technology is dependent upon privately-owned 

networks; the Internet however is non-proprietary, part of the public domain is the 
! 

main distinguishing factor between VoIP and traditional voice technology. Internet 



can ride across any privately owned networks, as well as across a number of jther 

I 

technologies. The study will help network researchers and designers tci determine 
I 

' quickly and easily how well VoIP will perform on a network prior to deployment. 

Prior to the purchase and deployment of VoIP equipment, it is possible to predict the 

number of VoIP calls that can be sustained by the network while satisfying QoS 

requirements of all existing and new network services and leaving enough capacity 

for future growth. 

Statement Of Problem 

7 

TCP is a popular transport protocol used in present-day internet. When packet 

losses occur, TCP assumes that the packet losses are due to congestion, and responds 

by reducing its congestion window. When a TCP connection traverses a wireless link, 

a significant fraction of packet losses may occur due to transmission errors. TCP 

responds to su.ch losses also by reducing the congestion window. This results in 

unnecessary degradation in TCP performance. VoIP implementations face problems 

dealing with latency and jitter. The principal cause of packet loss is congestion, which 

can sometimes be managed or avoided. Effective software programming translates 

into effective management of calls-in terms ofrouting of the calls through the least 

congested paths-and clarity of voice. 
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Definitions Of Terms l 
I 

• Client - A device ( or application) that initiates a request for a connecti~n with 

a server. 

• Device - A network entity that is capable of sending and receiving packets of 

information and has a unique device address. A device can act as both a client 

and a server within a given context or across multiple contexts. For example, a 

device can service a number of clients (as a server) while being a client to 

another server (Xylomenos 1999). 

• Origin Server - The server on which a given resource resides or is to be 

created. Often referred to as a web server or an Hypertext Transfer Protocol 

(HTTP) server. 

• Proxy - An intermediary program that acts as both a server and a client for the 

purpose of making requests on behalf of other clients. 

• Router - An intermediary mechanism that determines the path taken by IP 

packets. 

• Server - A device ( or application) that passively waits for connection requests 

from one or more clients. A server may accept or reject a connection request 

from a client. 

• Terminal - A device providing the user with user agent capabilities, including 

the ability to request and receive information. Also called a mobile teqninal or 
I 

mobile station. 



• User - A user is a person who interacts with a user agent to view, head or 
I 

otherwise use a resource. 

• User Agent - A user agent is any software or device that interprets Wireless 
I 
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Markup Language (WML), WMLScript, Wireless Telephony Application 

Interface (WTAI) or other resources. This may include textual browsers, voice 

browsers, search engines, etc. 

• WebServer -The same as Origin Server. 

• Delay - It is the time taken by a packet to reach its destination starting from 

the time it leaves its source. 

• Jitter - A fluctuation in a transmission signal. 

• Latency - It is a time delay between the moment something is initiated, and 

the moment one of its effects begins or becomes detectable. 

• TCP - TCP/IP stands for Transmission Control Protocol/Internet Protocol; the 

suite of communications protocols used to connect hosts on the Internet. 

• Vo WLAN - The union of Wireless Local Area Network (WLAN) and Internet 

Protocol (IP) telephony technologies is Voice over WLAN (Vo WLAN), 

which enables voice communications throughout a network served by a 

WLAN. 



Chapter2 

Historical Overview 

The primary reason for developing TCP/IP was the internet. They were 

developed together and TCP/IP was use to provide the mechanism for implementing 

the Internet. The TCP/IP protocols were first developed by the United State Defense 

Advanced Research Projects Agency (DARPA). At the start, ARP Anet was used for 

the number of protocols that has been modified from existing technologies. All the 

technologies had limitations in concept or the capacity when used on the ARP Anet. 

So the developers of the new network realized that using these technologies on 

ARP Anet will lead to problems (H. Gilbert 1995) .. 

In 1974, a new set of core protocols for ARP Anet was proposed and the 

official name for the set of protocols was TCP/IP Internet Protocol Suite. In March 

1982, the US Department of Defense made TCP/IP the standard for all military 

computers. In 1983, sites connected to ARPAnet were supposed to switch to TCP/IP, 

which further enhanced the scope and importance of ARP Anet. During the same time, 

private regional service providers and government agencies like National Science 

Foundation were building their own networks. All these networks used TCP/IP as 

there native protocols (Andrew Anderson 1996). 

The govenµnent realized the importance of ARP ANET for uses other than 

military information and they created MILNET (Military Network) along side it. 

MILNET was limited for only military use but there were gateways created so the 

two networks could communicate. Finally, ARPANET evolved into what is now 
i 
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known as the Internet, in today's standards. ARP ANET finally was out of use; in 1990 

and was finally turned off. 

Review of Literature 

These days a massive deployment of Voice over Wireless Lan ('Io WLAN) is 

taking place over data networks. Most of these networks are Wireless LAN-based and 

running IP protocol. Many network managers are finding it very attractive and cost 

effective to merge and unify voice and data networks into one. It is easier to run, 

manage, and maintain (B. Karacali, L. Denby and J. Melche, 2004; B. Karacali, M. 

Bearden, L. Denby, J. Meloche and D.T. Stott, 2002). However, one has to keep in 

mind that IP networks are best-effort networks that were designed for non-real time 

applications. On the other hand, Vo WLAN requires timely packet delivery with low 

latency, jitter, packet loss, and sufficient bandwidth. To achieve this goal, an efficient 

deployment ofVoWLAN must ensure these real-time traffic requirements can be 

guaranteed over new or existing IP networks. 

When deploying a new network service such as Vo WLAN over existing 

network, many network architects, managers, planners, designers, and engineers are 

faced with common strategic and sometimes challenging questions. What are the QoS 

requirements for Vo WLAN? How will the new Vo WLAN load impact the QoS for 

currently running network services and applications? Will my existing network 

support Vo WLAN and satisfy the standardized QoS requirements? If so, how many 
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VoWLAN calls can the network support before upgrading prematurely any part of the 

existing network hardware? 

These challenging questions have led to the development of some co~mercial 

tools for testing the performance of multimedia applications in data networks., For the 

most part, these tools use two common approaches in assessing the deployment of 

Vo WLAN into the existing network. One approach is based on first performing 

network measurements and then predicting the network readiness for supporting 

Vo WLAN. The prediction of the network readiness is based on assessing the health 

of network elements. The second approach is based on injecting real VoWLAN 

traffic into existing network and measuring the resulting delay, jitter, and loss. 

Other than the cost associated with the commercial tools, none of the 

commercial tools offer a comprehensive approach for successful VoWLAN 

deployment. In particular, none give any prediction for the total number of calls that 

can be supported by the network taking into account important design and 

engineering factors. These factors include Vo WLAN flow and call distribution, future 

growth capacity, performance thresholds, impact ofVoWLAN on existing network 

services and applications, and impact background traffic on VoWLAN. 
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Related work 

The work in this article is related to the performance analysis of different 

architectures for distributed IR systems, especially focused on the networking issues. 

The main articles in this area using different networking approaches are described 

briefly below. 

Using a small collection, Burkowski (1990) described a simulation study 

which measures the retrieval performance of a distributed IR system. In his 

experiments, a high performance Wi-Fi is used to connect a group of user 

workstations with a cluster of servers, although the network times are not considered 

in the simulation model. 

Tomasic and Garcia-Molina (1993) studied the performance of several 

parallel query processing strategies using various options for the organization of the 

inverted index, simulating a small group of hosts interconnected through a local area 

network (Wi-Fi). They represented a shared access network using a global Wi~Fi 

queue and included a fixed overhead for each network transmission. 

Coevreur et al. (1994) analyzed the performance of searching large text 

-
collections (more than 100GB data) on parallel systems. They used simulation models 

to investigate three different hardware architectures (a mainframe system, a collection 

of RISC processors and a special purpose machine architecture) and search 

algorithms. For the second architecture, a Wireless LAN network interconnected the 

system, although the defined model did not include the simulation of the 

communications. 



Cahoon and McKinley (1996) described the result of simulated experiments 
' 
' 

on the distributed IN QUERY architecture. They used the observed behaviour of a 
I 
I 

mono-server implementation to estimate the performance figures for a distributed 

14 

implementation. In their simulation experiments the network is represented as the 

sender's and receiver's overhead and the network latency. The sender's and receiver's 

overhead is the processing time to read and write a message on the network, and it 

was measured empirically. The network latency is the amount of time the message 

spends on the network and depends on the size of the message and the bandwidth of 

the network. 

Ribeiro-Neto and Barbosa (1998) used a simple analytical model coupled with 

a small simulator to study how query performance is affected by different parameters 

( e.g. network speed) in distributed digital libraries. In their work, the network is 

represented as part of the analytical model including a parameter that corresponds to 

the average time to transfer I byte from one host to another. 

Lu and McKinley (2000) used the same simulator as Cahoon & McKinley, 

(1996) to analyze the effects of partial collection replication, and to improve the 

performance on a collection of I TB. 

Some other articles studied the performance of different architectures for 

distributed IR systems operating with real implementations. Martin, Macleod, and 

Nordin (1986) described the design of a distributed information system for full text 

retrieval, developed on a network of PC's interconnected by PC Network. The 
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authors did not provide any details about the network technology used, althou~h they 

described briefly the used communication protocol. 

Lin and Zhou (1993) implemented a distributed IR system on a network of 

workstations, showing large speedup improvements due to parallelization. The 

authors used a Wireless LAN network to interconnect a cluster ofDEC5000 

workstations. 

Finally, in Cacheda et al. (2004) and Cacheda Plachouras et al. (2005), the 

performance of a distributed, replicated and clustered system simulating a very large 

Web collection such as SPIRIT (Jones et al., 2002) was performed. The simulated 

network represented a shared access local area network operating at 100 Mbps, 

following the model of Tomasic and Garcia-Molina (1993). Two main bottlenecks 

were identified in the distributed and replicated IR systems: the brokers and the 

network. The load on the brokers was mainly due to the number of local answer sets 

to be merged. The.network bottleneck was due to the high number of query servers 

and the continuous data interchange with the brokers, especially in a replicated 

Infrared (IR) system. 

The network model 

In previous work (Cacheda et al., 2004 and Cacheda, Plachouras, et al., 2005), 

the simulated distributed IR system assumed a single Wi-Fi that was represented by a 

single First Come First Serve (FCFS) infinite length queue. This Wi-Fi managed all 

the messages sent by the brokers to the query servers and the answers from the query 
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servers to the brokers. Cacheda et al., 2004 and Cacheda, Plachouras, et al stated that 

the service time for a request was calculated by the following equation: 

LANOverhead+RequestLengthx(LANBandwitdh/8)"1x1000. 

The parameters used in the simulation of the network are described in Table I. 

The RequestLength parameter depends on the type of message sent. If a query is sent 

to the query servers, the value of the QuerySize parameter will be used. If the local 

answer set for query q; is sent from query serverj to the broker, then the length of the 

packet will be: tr;j x DocAnswerSetSize. 

Table I. 

Parameters for the network model 

.•... -- ---·-··--·, 

Parameter Value Description 

LAN Overhead 0.1 ms Network overhead for each packet sent 

I -
-----

LAN Bandwidth 100 Mbps Network speed (in bits per second) 

Number of bytes sent from the broker to the query 
QuerySize 100 bytes 

servers for each query request 

··-·-·-·-·---

Number of bytes per document sent in the local 
DocAnswerSetSize 8 bytes 

answer sets ( document id and document ranking) 

·····-··--
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This initial network model has certain limitations that reduce the capacities of 
' 

the simulated IR systems. The network model represents a simple shared access 

network, where all the hosts of the distributed IR system (query servers and brokers) 

are included. This system is a relatively unrealistic enviromnent, as it does not take 

into account certain physical restrictions ofLANs. 

LANs have two physical restrictions: the number of nodes that can be 

connected to the network and the maximum length of each segment. By definition, in 

a shared access network the maximum segment length is the maximum length for the 

network itself, while in a switched network, the maximum segment length is the 

maximum length from each node to the switch. For example, according to the IEEE 

802.3 specifications for a shared network using a bus topology at IO Mbps in 

I OBASE5, the maximum segment length is 500 m, with a maximum of I 00 nodes per 

segment. In a switched network I OBASET the maximum segment length is I 00 m 

and the maximum number of nodes is determined by the number of interfaces of the 

switch (Spurgeon, 2000). These limitations, especially the maximum number of 

nodes per segment, were not taken into account in designing the previous network 

model, which limits its capacity to represent a real enviromnent. 

Moreover, all network technologies have a certain overhead that is inherent to 

the operation of the network. This overhead consists of the increase in the amount of 

information sent via the network, through the incorporation of the headers of µifferent 

protocols, which finally results in a reduction in the effective bandwidth and !). 

subsequent increase in transmission time. 
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In previously proposed network models, this overhead is represented 

approximately by the LANOverhead parameter, with a constant value of 0.1 ms, 

following the model described by Tomasic and Garcia-Molina (1993). Although this 

is a good approximation for a generic case of sending a packet via the networ~, it is 

necessary to take into account the specific sizes of the headers used in the 

communication protocol of the distributed IR system, and in particular to consider IP 

fragmentation for packets that exceed a given size. 

With the aim of improving the limitations of the previously proposed network 

model, this paper has defined a new network model based on Switched Wi-Fi model 

for a distributed IR system (Fig 1 ), equivalent to a switched network FastEthemet 

1 00BASE-T at 100 Mbps. This new model represents a switched local area network 

( compared to a shared access network), where the hosts are interconnected via one or 

more switches. Depending on the number of hosts to be interconnected, one or more 

switches are used, assuming that each switch has a capacity for 64 hosts. Moreover, 

the overhead estimation is carried out exhaustively, taking into account the different 

headers of the communication protocols, IP fragmentation, and even the propagation 

delay. The design of this new network model has also extended the capacity to 

represent multicast traffic, compared to the previous model that only allowed unicast 

messages to be used amongst the different hosts. 

In more details, the design of the switched Wi-Fi is shown in the figuT 1 

below. Each host connected to the network has two first come first service (FCFS) 

infinite length queues ( one for sending packets and another for receiving pac~ets ), 

I 
I 
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compared to the previous model, which used a global FCFS infinite length queue for 
I 

the entire network. This model makes it possible to represent a switched Wi-Ei as two 

independent origin hosts may communicate with two independent destination. hosts 

without having to have shared access to the network. 

User 
Queries 

~~~ 
141= (llIC◄ lm; -I 

~· :nm=+, riiil 
~4------1,-------.,:Jlll]~ 

14a=[tilC◄ H<H -I 

Im< ~lllL-4----1 -:::nm~ 
~F rn::rr:::: ◄Im; - I 

Fig I. Switched Wi-Fi model for a distributed IR system (Br: broker, QS: query 

server). 

The send queue represents the output buffer at the output interface of the 

transmitter, while the reception queue represents the entry buffer at the receiver 

interface. To send a packet, this is introduced in the send queue of the origin host and 

then passes directly to the reception queue of the destination host. 

The output of a packet from the send queue to the reception queue is carried 

out when the packet is the first element in the queue, if and only if the receiver is not 

receiving another packet. In the reception queue, each packet has an assigned 
1

service 

i 
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I 

time (before being delivered to the host), equivalent to the transmission time yia the 

network, and it is calculated as it will be shown below. 

Furthermore, the ability to manage multicast traffic has been incorporated in 

the newly implemented network model. This is achieved by permitting, the direct 

communication from the send queue of the sender to multiple entry queues, 

considering the time associated with the sending of a single packet. The advantages of 

messages of this type will be analyzed in detail in the next section. 

When estimating the transmission time of a packet via the network, 

consideration has been given to the headers of the different protocols used in the 

communication and the propagation delay of the signal via the transmission system. 

The communication protocol used by the distributed system between the query 

servers and the brokers is assumed to be based on a non-connection oriented service, 

taking into account the volume of interconnected hosts and the characteristics of the 

exchange of data. Therefore, it is considered that the transport layer uses the UDP 

protocol (with a header size of8 bytes), the network level uses IP (with a standard 

header of 20 bytes) and for the connection level, the Wireless LAN protocol was 

considered (with a header of26 bytes). This network model also considers IP 

fragmentation according to the mechanism described in RFC 791 (Postel, 1981). Put 

briefly, if the size of a message at network level is greater than the Maximum 

Transfer Unit (MTU) corresponding to the connection level (1500 bytes in th~ case of 

Wireless LAN), the original message is divided into fragments of acceptable Jize for 



the MTU. These fragments are only reconstructed when they reach the final 

destination. 
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Moreover, propagation delay represents the time that an electromagnetic 

signal takes to circulate from one end of the segment to the other. This time is usually 

measured in bits and mainly depends on the size of the segment and the type of used 

transmission method. In a FastEthernet I 00BASE-T network, the maximum level for 

propagation delay is 512 bits (corresponding to 5.12 ns) and equivalent to a maximum 

segment size approximately 200 m (Spurgeon, 2000). In the simulated model, it is 

assumed as a uniform distribution of the machines, hence an intermediary value of 

256 bits was chosen ( corresponding to 2.56 ns ), equivalent to a mean segment size 

(approximately 100 m). 

In these experiments, two computers were connected via a crossed cable 

representing a connection through a switch (the delay introduced by a switch is 

negligible). The direct connection using a switch was not possible, as the available 

switches had insufficient buffers which caused packet losses. A transmitter process 

was installed in one computer and a receiver process in the other. The transmitter 

process was responsible for generating multiple consecutive packets (from 10 to 

1025), which were received by the receiver process, responsible for measuring 

transmission times. 

In an initial experiment, communication was evaluated via Wireless LAN at 

10 Mbps connecting two Ultra Spare 1 (128MB RAM and one 167 MHz proc,essor) 
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with IOBASE-T network cards and sending messages of 1000, 2000, 3000 and 
' 

4000 bytes, measuring the corresponding send times. 

Existing network 

Fig. 2 illustrates a typical network topology for a small enterprise residing in a 

high-rise building. The network is Wireless LAN-based and has two Layer-2 Wireless 

LAN switches connected by a router. The router is Cisco 2621, and the switches are 

3Com Superstack 3300. Switch 1 connects Floors 1 and 2 and two servers; while 

Switch 2 connects Floor 3 and four servers. Each floor's Wi-Fi is basically a shared 

Wireless LAN connecting employee PCs with workgroup and printer servers. The 

network makes use of Virtual LAN (VLANs) in order to isolate broadcast and 

multicast traffic. A total of five LANs exist. All VLANs are port based. Switch 1 is 

configured such that it has three VLANs. VLANl includes the database and file 

servers. VLAN2 includes Floor 1. VLAN3 includes Floor2. On the other hand, 

Switch 2 is configured to have two VLANs. VLAN4 includes the servers for E-mail, 

HTTP, Web and cache proxy, and firewall. VLAN5 includes Floor 3. All the links are 

switched Wireless LAN 100 Mbps full duplex except for the links for Floors 1-3 

which are shared Wireless LAN 100 Mbps half duplex. 
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Fig. 2. Logical diagram of a small enterprise. 
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In this paper, the popular OPNET simulation tool can be leveraged to 

assess the readiness of existing data networks to support video-conferencing. OPNET 

modeler does not have built-in features to support videoconferencing or deployment 

ofreal-time servic~s. In the literature, there exists no known simulation approach on 

how to deploy a popular real-time network service such as videoconferencing. 

OPNET has gained considerable popularity in academia as it is being offered free of 

charge to academic institutions. That has given OPNET an edge over DES NS2 in 

both the market place and academia. Another reason to choose OPNET is the fact that 

OPNET contains a vast amount of models of commercially available network 

elements, and has various real-life network configuration capabilities. This makes the 

simulation of a real-life network environment close to reality. Other features of 

OPNET include GUI interface, comprehensive library of network protocols and 

models, source code for all models, graphical results and statistics, etc. 

In previously related work Salah and Alkhoraidly (2006), an analytic 

approach based on the principles of queuing networks was presented to determine 

approximately the·number of video sessions an existing data network can support. In 

sharp contrast to Salah (2006), this paper primarily focuses on showing how to deploy 

successfull videoconferencing using OPNET modeling and simulation. The 

simulation configuration and setup for videoconferencing are considerably different 

when considering the deployment of both voice and video calls simultaneously.This 

I 
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paper considers two types of traffic (traffic of fixed video packet sizes as that µsed for 

the analytic approach as described by Salah (2006) and also traffic of variable' video 

packet sizes measured from well-known traffic traces. This paper discusses in: great 

detail the simulation, configuration, setup, and generation of traffic for 

videoconferencing. Such information can be extremely useful for network researchers 

and engineers who are interested in deploying videoconferencing. The paper also 

gives in-depth analysis and interpretations of OPNET simulation results. 

Vo WLAN traffic characteristics, requirements, and assumptions 

For introducing a new network service such as VoWLAN, one has to 

characterize first the nature of its traffic, QoS requirements, and any additional 

components or devices. For simplicity, we assume a point-to-point conversation for 

all VoWLAN calls with no call conferencing. For deploying VoWLAN, a gatekeeper 

or CallManager node has to be added to the network (B Goode, 2002; P. Mehta and 

S. Udani, 2001; W. Jiang and H. Schulzrinne, 2001). The gatekeeper node handles 

signaling for establishing, terminating, and authorizing connections of all Vo WLAN 

calls. Also a Vo WLAN gateway is required to handle external calls. A Vo WLAN 

gateway is responsible for converting Vo WLAN calls to and from the Public 

Switched Telepho1,1e Network (PSTN). As an engineering and design issue, the 

placement of these nodes in the network becomes crucial. Other hardware 

requirements include a Vo WLAN client terminal, which can be a separate Vo WLAN 

device, i.e. IP phones, or a typical PC or workstation that is Vo WLAN-enabl~d. A 
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Vo WLAN-enabled workstation runs Vo WLAN software such as IP SoftPhon~s (B. 
I 
' 

Duysburgh, S. Vanhastel, B. DeVreese, C. Petrisor and P. Demeester, 2002; W. Jiang, 

K. Koguchi and H. Schulzrinne, 2003). 
I 

I 

Fig. 3 identifies the end-to-end Vo WLAN components from sender to !receiver 
' 

(A. Markopoulou, F. Tobagi and M. Karam, 2003). The first component is the 

encoder which periodically samples the original voice signal and assigns a fixed 

number of bits to each sample, creating a constant bit rate stream. The traditional 

sample-based encoder G.711 uses Pulse Code Modulation (PCM) to generate 8-bit 

samples every 0.125 ms, leading to a data rate of 64 kbps. The packetizer follows the 

encoder and encapsulates a certain number of speech samples into packets and adds 

the RIP, UDP, IP, and Wireless LAN headers. The voice packets travel through the 

data network. An important component at the receiving end, is the playback buffer 

whose purpose is to absorb variations or jitter in delay and provide a smooth playout. 

Then packets are delivered to the depacketizer and eventually to the decoder which 

reconstructs the original voice signal. 

Sender 

Encoder Packetizer 

Fig. 3. VoWLAN end-to-end components. 

Receiver 

Depackel izer Dc~odcr 
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i 
The widely adopted recommendations ofH.323, G.711, and G.714 standards 

for Vo WLAN QoS requirements are followed in the paper. Table I compares some 

commonly used ITU-T standard codecs and the amount of one-way delay that they 

impose. To account for upper limits and to meet desirable quality requirements 

according to ITU recommendation P.800, we will adopt G.711 u codec standards for 

the required delay_and bandwidth. G.71 lu yields around 4.4 MOS rating. MOS, Mean 

Opinion Score, is a commonly used Vo WLAN performance metric given in a scale of 

1-5, with 5 being the best (A. Takahasi and H. Yoshino, 2004; L. Sun and E.C. 

Ifeachor, 2003). However, with little compromise to quality, it is possible to 

implement different ITU-T codecs that yield much less required bandwidth per call 

and relatively, higher but, acceptable end-to-end delay. This can be accomplished by 

applying compression, silence suppression, packet loss concealment, queue 

management techniques, and encapsulating more than one voice packet into a single 

Wireless LAN frame (A. Markopoulou, F. Tobagi and M. Karam, 2003; B Goode, 

2002; J. Walker, J. Hicks, 2002; W. Jiang and H. Schulzrinne, 2002). 
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Table I. 

Common ITU-T codecs and their defaults 

! Data rate Datagram AID Conversion Combined bandwidth 
, Codec 

(kbps) size (ms) delay (ms) (bi-directionl!I) (kbps) 
: 

' 
I 
'G.71 lu 64.0 20 1.0 180.80 

' 
! 

: G.71 la 64.0 20 1.0 180.80 
' I 

I G.729 8.0 20 25.0 68.80 

: 

i 
G.723.1 

6.3 30 67.5 - 47.80 
: (MPMLQ) 

I 
'G.723.1 

I 5.3 30 67.5 45.80 
: (ACELP) 



29 

End-to-end delay for a single voice packet 

Fig. 3 illustrates the sources of delay for a typical voice packet. The end-to

end delay is sometimes referred to by M2E or Mouth-to-Ear delay (W. Jiang, K. 

Koguchi and H. Schulzrinne, 2003). G.714 imposes a maximum total one-way packet 

delay of 150 ms end-to-end for VoWLAN applications. In (J.H James, B. Chen and 

L. Garrison, 2004), a delay ofup to 200 ms was considered to be acceptable. This 

delay can be broken down into at least three different contributing components, which 

are as follows (i) encoding, compression and packetization delay at the sender (ii) 

propagation, transmission and queuing delay in the network and (iii) buffering, 

decompression, depacketization, decoding, and playback delay at the receiver. 

Bandwidth for a single call 

The required bandwidth for a single call one direction is 64 kbps. G.711 codec 

samples 20 ms of voice per packet. Therefore, 50 such packets need to be transmitted 

per second. Each packet contains 160 voice samples in order to give 8000 samples 

per second. Each packet is sent in one Wireless LAN frame. With every packet of 

size 160 bytes, headers of additional protocol layers are added. These headers include 

RTP+UDP+IP+Wireless LAN with preamble of sizes 12+8+20+26, respectively. 

Therefore, a total of226 bytes, or 1808 bits, needs to be transmitted 50 times per 

second, or 90.4 kbps, in one direction. For both directions, the required bandwidth for 

a single call is 100 pps or 180.8 kbps assuming a symmetric flow. 
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Other assumptions 

Throughout the analysis and work, the voice calls are assumed to be 

symmetric and no voice conferencing is implemented. The signaling traffic generated 

by the gatekeeper is also ignored. The analysis and design are based on the worst

case scenario for Vo WLAN call traffic. The signaling traffic involving the gatekeeper 

is mostly generated prior to the establishment of the voice call and when the call is 

finished. This traffic is relatively small compared to the actual voice call traffic. In 

general, the gatekeeper generates no or very limited signaling traffic throughout the 

duration of the VoWLAN call for an already established on-going call (B Goode, 

2002). 

In this paper, no QoS mechanisms will be implemented that can enhance the 

quality of packet delivery in IP networks. A myriad of QoS standards are available 

and can be enabled for network elements. QoS standards may include IEEE 

802.lp/Q, the IETF's RSVP, and DiffServ. Analysis of implementation cost, 

complexity, management, and benefit must be weighed carefully before adopting 

such QoS standards. These standards can be recommended when the cost for 

upgrading some network elements is high and the network resources are scarce and 

heavily loaded. 
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Perform network measurements 

In order to characterize the existing network traffic load, utilization, and flow, 

network measurements have to be performed. This is a crucial step as it can 

potentially affect results to be used in analytical study and simulation. There are a 

number of tools available commercially and non-commercially to perform network 

measurements. 

Network measurements must be performed for network elements such as routers, 

switches, and links. Numerous types of measurements and statistics can be obtained 

using measurement tools. As a minimum, traffic rates in bits per second (bps) and 

packets per second (pps) must be measured for links directly connected to roljters and 

switches. To get adequate assessment, network measurements have to be taken over a 

long period of time, at least a 24-h period. Sometimes it is desirable to take 

measurements over several days or a week. 

One has to consider the worst-cas~ scenario for network load or utilization in 

order to ensure good QoS at all times including peak hours. The peak hour is different 

from one network to another and it depends totally on the nature of business and the 

services provided by the network. Table 2 shows a summary of peak-hour utilization 

for traffic oflinks in both directions connected to the router and the two switc)les of 

the network topology of Fig. 1 (Salah and Alkhoraidly, 2006). These measured results 

will be used in the analysis and simulation study. 
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Table 2. 

Worst-case network measurements 

r 

; Link Bit rate (Mbps) Packet rate (pps) Utilizati~n (%) 

' ' r 
· Router-:::>Switch I 9.44 812 9.44 

r 
i Router-:::>Switch 2 9.99 869 9.99 
I 
I 

! Switch !=Floor I 3.05 283 6.1 
l 
I 
I 

· Switch l=Floor2 3.19 268 6.38 
' I 

[ Switch I =File Server 1.89 153 1.89 
I 
I 

! 

I Switch !=DB Server 2.19 172 2.19 
' I 
! Switch 2=Floor 3 

-
3.73 312 7.46 

i 

I 
Switch 2=Email Server 2.12 191 2.12 

Switch 2=HTTP Server 1.86 161 1.86 

I 

[ Switch 2=Firewall 2.11 180 2.11 

! 
I 

Switch 2=Proxy 1.97 176 1.97 
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Upfront network assessment and modifications 

In this step, the existing networks are accessed and determine, based on the 

existing traffic load and the requirements of the new service to be deployed, if any 

immediate modifications are necessary. Immediate modifications to the network may 

include adding and placing new servers or devices, upgrading PCs, and re

dimensioning heavily utilized links. As a good upgrade rule, topology changes need 

to be kept to a minimum and should not be made unless it is necessary and justifiable. 

Over-engineering the network and premature upgrades are costly and considered poor 

design practices. 

Based on the existing traffic load discussed in design steps in the previous 

section, all the links connecting the router and the switches and links connecting the 

servers and the switches are underutilized. If any of the links were heavily utilized, 

e.g. 30-50%, the network engineer should decide to re-dimension the link to I-Gbps 

link at this stage. As for shared links of Floors 1-3, the replacement or re

dimensioning of these links must be decided on carefully. At first, it looks cost 

effective not to replace the shared-Wireless LAN Wi-Fi for each floor with a 

switched Wi-Fi. However, shared Wireless LAN scales poorly. More importantly, 

shared Wireless LAN offers zero QoS and are not recommended for real-time and 

delay-sensitive applications as it introduces excessive and variable latency under 

heavy loads and when subjected to intense bursty traffic (S. Riley and R. Breyer, 

2000). In order to consistently maintain the Vo WLAN QoS, a switched fast nlll-
1 

duplex Wireless LAN Wi-Fi becomes necessary. 
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Based on the hardware requirement for deploying Vo WLAN, two new nodes 

have to be added to the existing network: a Vo WLAN gateway and a gatekeeper. As 

a network design issue, an appropriate node placement is required for these two 

nodes. Since most of the users reside on Floors I a:nd 2 are connected directly to 

Switch I, connecting the gatekeeper to Switch I is practical in order to keep the 

traffic local. For the Vo WLAN gateway, it is connected to Switch 2 in order to 

balance the projected load on both switches. Also, it is more reliable and fault

tolerant not to connect both nodes to the same switch in order to eliminate problems 

that stem from a single point of failure. For example, if Switch 2 fails, only external 

calls to and from the network will be affected. It is proper to include the gatekeeper to 

be a member ofVLANI of Switch I which includes the database and file servers. 

This isolates the g~t~keeper from multicast and broadcast traffic of Floors 1 

and 2. In addition, the gatekeeper can access locally the database and file servers to 

record and log phone calls. On the other hand, we create a separate VLAN for the 

gateway in order to isolate the gateway from multicast and broadcast traffic of Floor 3 

and the servers of switch 2. Therefore, the network has now a total of six VLANs. 

Fig. 4 shows the new network topology after the incorporation of necessary 

Vo WLAN components. As shown, two new gateway and gatekeeper nodes for 

VoWLAN were added and the three shared Wireless LANs were replaced by 

100 Mbps switched Wireless LAN LANs. 
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Fig. 4. Network topology with VoWLAN components. 
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VoIP is bounded by two important metrics. First is the available bandwidth. 

Second is the end-to-end delay. The actual number of VoIP ca11s that the network can 

sustain and support is bounded by those two metrics, Depending on the network 

under study, either the available bandwidth or delay can be the key dominant factor in 

determining the number of ca11s that can be supported. 
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Bandwidth bottleneck analysis 

Bandwidth bottleneck analysis is an important step to identify the nenyork 

element, whether it is a node or a link that puts a limit on how many VoIP calls can 
. ' 

be supported by the existing network. For any path that has N network nodes and 

links, the bottleneck network element is the node or link that has the minimum 

available bandwidtl1. According to (R. Prasad, C. Dovrolis,, M. Murray and K.C. 

Claffy, 2003), this minimum available bandwidth is defined as follows 

A= min A· 
1=1 •... .N ,, 

and 

where C; is tile capacity of network element i and u; is its current utilization. 

The capacity C; is the maximum possible transfer or processing rate (Fig. 5). 

G.i A, 

Fig. 5. Bandwidth_bottleneck for a path of three network elements. 
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Therefore, the theoretical maximum number of calls that can be supported by 

a network element E; can be expressed in terms of A; as 

:MnxCalls; 
A.(1 - growth;) 

CallBW (1) 



where growth; is the growth factor of network element E;, and takes a value 

from 0 to 1. Cal/B Wis the VoIP bandwidth for a single call imposed on E;. As 

previously discussed in design section, the bandwidth for one direction is given as 
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50 pps or 90.4 kbps. In order to find the bottleneck network element that limits the 

total number of VoIP calls, one has to compute the maximum number of calls that can 

be supported by each network element, as in Eq. ( 1 ), and the percentage of VoIP 

traffic flow passing by this element. The percentage of VoIP traffic flow for E;, 

denoted as flow;, can be found by examining the distribution of the calls. The total 

number of VoIP calls that can be supported by a network can be expressed as: 

-•c S d . (MaxCalls1) Tot"' alls uppone = . mm , . 
· ,~1 .... ,N fiO\\; 

(2) 

Let us for the sake of illustration compute the MaxCalls; and flow; supported 

by the Router, Switch 1, and uplink from Switch 2 to the Router. Table 3 shows the 

maximum calls that can be supported by those network elements. For the network 

example, growth; is chosen to be 25% for all network elements. u; is determined by 

Table 2. C;, for the router and the switch is usually given by the product datasheets. 

According to Cisco systems and 3Com networking, the capacity C; for the router or 

the switch, is 25,000 pps and 1.3 M pps, respectively. flow; is computed by 

examining the probability tree for call distribution. 

Table 3. 
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Maximum VoIP calls support for few network elements 

II; 

Network Element C; Cal/BW flow; MaxCalls1 
' (%) I 

Router 25,000 pps 6.72 100 pps 5/9 174 

I 

Switch 1 1.3 Mpps 0.13 100 pps 14/27 9737 

Uplink from Switch 2 to 
100 Mbps 9.99 90.4 kbps 16/27 746 

Router 

Table 3 shows the MaxCalls; for only three network elements. In order to find 

the actual calls that the network can sustain, i.e. TotalCallsSupported ofEq. (2), flow; 

and MaxCalls; have to be computed for all network elements. This can be automated 

by implementing the equations using MATLAB, and therefore these values can be 

computed quickly. When computing the MaxCalls; for all network elements, it turns 

out that the router is the bottleneck element. Hence, TotalCallsSupported is 313 VoIP 

calls. 
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Probability tree describing the Vo WLAN call distribution. 
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For the sake of illustration, u; and flow; are computed. u; can be computed by 

Table 2. For example, the utilization for the router is the total incoming traffic ( or 

received traffic) into the router divided by the router's capacity. According to Table 2, 

this yields to (812+869)/25,000=6.72%. flow; can be computed using the probability 

tree shown above. For the router, flow; is the percentage of the inter-floor and 

external calls, which is (2/3)(1/3)+ 1/3. Similarly, flow; for Switch 1 and the uplink 

from Switch 2 to the router would be 14/27 and 16/27, respectively. 

For Switch 1, flow; is the percentage of external calls going out of Floors 1 

and 2, plus the percentage of inter-floor calls between Floors 1 and 2, Floors 1 and 3, 

and Floors 2 and 3. This can be expressed as 

(1/3){ 1/3+ 1/3 }+(2/3)(1/3){2/3+(1/3)(1/3)}. Note that the fraction of inter-floor calls 

between Floors 1 and 2 is 2/3, since the c,\ils pass through the switch twice as they get 

routed by the router back to Switch I. For the uplink from Switch 2 to the router, 

flow; is the percentage of external calls going out of the three floors plus the 
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percentage of inter-floor calls between Floors I and 3 and Floors 2 and 3. This can be 

simply expressed as (1/3){ 1/3+ 1/3+2/3 }+(2/3)(1/3){ 1/3+ 1/3}. Note that the fraction 

of the external calls going out of Floor 3 is 2/3 since the calls pass through the link 

twice as they get routed by the router. 

Delay analysis 

As defined in previous section for the existing network, the maximum 

tolerable end-to-end delay for a VoIP packet is 150 ms. The maximum number of 

VoIP calls that the network can sustain is bounded by this delay. It should be always 

as certain that the worst-case end-to-end delay for all the calls must be less than 

150 ms. It should be kept in mind that our goal is to determine the network capacity 

for VoIP, i.e. the maximum number of calls that existing network can support while 

maintaining VoIP QoS. This can be done by adding calls incrementally to the 

network while monitoring the threshold or bound for VoIP delay. When the end-to

end delay, including network delay, becomes larger than 150 ms, the maximum 

number of calls can then be known. 

As described in the previous section, there are three sources of delay for a 

VoIP stream: sender, network, and receiver. An equation is given in (M. Karam and 

F. Tobagi, 2002) to compute the end-to-end delay D for a VoIP flow in one direction 

from sender to receiver 



D = Dpock .+ z::: (Tr, + Q,, + P11) + Dpiay, 
hEPruh 
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Where Dpack is the delay due to packetization at the source. At the source, 

there is also Dene and Dproccss• Dene is the encoder delay of converting ND signal into 

samples. Dproeess is the PC ofIP phone processing that includes encapsulation. In 

G.711, Dpack and Dene, are 20 and 1 ms, respectively. Hence, it is appropriate for our 

analysis to have a fixed delay of25 ms being introduced at the source, assuming a 

worst case situation. Dplay is the playback delay at the receiver, including jitter buffer 

delay. The jitter delay is at most 2 packets, i.e. 40 ms. If the receiver's delay of Dproeess 

is added, we obtain a total fixed delay of 45 ms at the receiver. T11+Q11+P11 is the sum 

of delays incurred in the packet network due to transmission, queuing, and 

propagation going through each hop h in the path from the sender to the receiver. The 

propagation delay Ph is typically ignored for traffic within a WLAN. For transmission 

delay T11 and queueing delay Qh we apply queueing theory. Hence the delay to be 

introduced by the network, expressed as LhGP.ih(Th + Qh), should not exceed (150-

25-45) or 80 ms. 

We utilize queueing analysis to approximate and determine the maximum 

number of calls that the existing network can support while maintaining a delay of 

less than 80 ms. In order to find the network delay, we utilize the principles of the 

Jackson theorem for analyzing queueing networks. In particular, we use the 

approximation method of analyzing queueing networks by decomposition discµssed 

in (K.M. Chandy and C.H. Sauer, 1978). In this method, the arrival rate is assumed to 
i 
' 
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be Poisson and the service times of network elements are exponentially distributed. 

Analysis by decomposition is summarized in first isolating the queueing network into 

subsystems, e.g., single queueing node. Next, analyzing each subsystem separately, 

considering its own network surroundings of arrivals and departures. Then, finding 

the average delay for each individual queueing subsystem. And finally, aggregating 

all the delays of queueing subsystems to find the average total end-to-end network 

delay. 

For our analysis, we assume the VoIP traffic to be Poisson. In reality, the 

inter-arrival time, I/ .i, of VoIP packets is constant, and hence its distribution is 

deterministic. However, modeling the voice arrival as Poisson gives adequate 

approximation according to (M. Karam and F. Tobagi, 2002), especially when 

employing a high number of calls. More importantly, the network element with a 

non-Poisson arrival rate makes it difficult to approximate the delay and lead to an 

intractable analytical solution. Furthermore, analysis by decomposition method will 

be violated if the arrival rate is not Poisson. 

Fig. 6 shows queueing models for three network elements of the router, switch 

and link. The queueing model for the router has two outgoing interfaces: an interface 

for SW! and another for SW2. The number of outgoing interfaces for the switches are 

many and such a number depends on the number of ports for the switch. The switches 

and the router were modelled as Ml Ml 1 queues. Ethernet links are modeled as Ml DI J 

queues. This is appropriate since the service time for Ethernet links is more o( a 
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I 

deterministic than variable. However, the service times of the switches and the router 

are not deterministic since these are all CPU-based devices. 

According to the datasheet found in Cisco systems and 3Com networking, the 

switches and the router used in Fig. 1 have a somewhat similar design of a store-and

forward buffer pool with a CPU responsible for pointer manipulation to switch or 

route a packet to different ports. (F. Gebali, 2005) provides comprehensive models of 

common types of switches and routers. According to (L. Kleinrock (vol. 1 ), 1975), 

the average delay for a VoIP packet passing through an MIMI] queue is basically 

l/(u-2), and through an MIDI I queue is (1-212µ)1(µ-2), where 2 is the mean packet 

arrival rate andµ is the mean network element service rate. The queueing models in 

Fig. 6 assume Poisson arrival for both VoIP and background traffic. In (M. Karam 

and F. Tobagi, 2002), it was concluded that modeling VoIP traffic as Poisson is 

adequate. However, in practice, background traffic is bursty in nature and 

characterized as self-similar with long range dependence (W. Leland, M. Taqqu, W 

Willinger and D. Wilson, 1994). For the analysis and design, using bursty background 

traffic is not practical. For one thing, under the network of queues being considered 

an analytical solution becomes intractable when considering non-Poisson arrival. 

Also, it is important to remember that in order to ensure good QoS at all times, 

analysis and design are based on the worst-case scenario of network load or 

utilization, i.e. the peak of aggregate bursts. And thus in a way our analytical 

approach takes into account the bursty nature of traffic. 
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It is worth noting that the analysis by decomposition of queueing networks in 

(K.M. Chandy and C.H. Sauer, 1978) assumes exponential service times for all 

network elements including links. But (R. Suri, 1983) proves that acceptable results 

with adequate accuracy can be still obtained if the homogeneity of service times of 

nodes in the queueing network is deviated (R. Suri, 1983) shows that the main system 

performance is ins_ensitive to violations of the homogeneity of service times. Also, it 

was noted that when changing the models for links from Ml DI 1 to Ml Ml 1, a 

negligible difference was observed. More importantly, as will be demonstrated in this 

paper with simulation, our analysis gives a good approximation. 

The total end-to-end network delay starts from the Ethernet outgoing link of 

the sender PC or IP phone to the incoming link of receiver PC or IP phone. To 

illustrate this further, let's compute the end-to-end delay encountered for a single call 

initiated from Floors 1 to 3. Fig. 7 shows an example of how to compute the network 

delay. Fig. 7a shows the path of a unidirectional voice traffic flow going from Floors 

1 to 3. Fig. 7b shows the corresponding networking queueing model for such a path. 
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Fig. 7. Computing network delay. (a) Unidirectional voice traffic flow path from 

Floors I to 3. (b) Corresponding network queueing model of the entire path. 

For Fig. 7b, in order to compute the end-to-end delay for a single bi

directional VoIP call, the delay must be computed for each network element. It is 

shown here how to compute the delay for the switches, links, and router. For the 

switch whether it is that of intra-floor or inter-floor 1-•= (1- 25%)1.3 Mpps where , , , 
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25% is the growth factor. l=A.v01p+lbg, where lvo!P 1s the total added new traffic from 

a single VoIP in pps, and lbg is the background traffic in pps. For an uplink or 

downlink, 1•= (l·-25%)l00 Mbps, l=A.vo1r+lbg• Since the service rate is in bJJs, lv01r 

and lbg must be expressed in bps. 

Table 2 and Table 3 express the bandwidth for background traffic and for a 

single call in both pps and bps. Similarly for the router, f<= (1-25%)25,000 ppsand 

l=A.vo1r+lbg• Both lv01r and lbg must be expressed in pps. Remember for a single bi

directional VoIP call, lvo!P at the router and switches for a single call will be equal to 

I 00 pps. However, for the uplink and downlink links, it is 90.4 kbps. One should 

consider no lbg for the outgoing link if IP phones are used. For multimedia PCs which 

equipped with VoIP software, a lbg of I 0% of the total background traffic is utilized 

in each floor. For a more accurate assessment of PC's lbg, actual measurement should 

be taken. For our case study of the small enterprise network, we use multimedia PCs. 

The total delay for a single VoIP call of Fig. 7b, can be determined as follows: 

DJllth = Ds,ntlcr-FJSW Link + Dr,1sw + Dr-1SW-SWI Link 

+ D:nn + DtiWI•ROllior Link + Dno"t" 

+ DR~ut ... -SW2 Li,tl: + Dsw2 + Dsw?;F3SW Lial: 

+ Dl'JSV. + DyJS'li-~h·cr Lint 
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Network capacity algorithm 

In order to determine the maximum number of caUs that can be supported by 

an existing network while maintaining VoIP delay constraint, the following algorithm 
. ' 

' 
was developed that basicaUy determines network capacity in terms of VoIP calls. 

CaUs are added iteratively until the worst-case network delay of 80 ms has reached. 

The algorithm can be described in the fo1Iowing steps: 

(i) Initially, no caUs are introduced and the only traffic in the network is the 

background traffic. 

(ii) A new call is added, according to the call distribution described in 

Probability tree. 

(iii) For each network element, .1.=1,,v01r+Abg is computed. Abg is known for each 

element; however, .1.v01r can get affected by introducing a new call 

depending on the caU traffic flow, i.e. whether or not the new call flow 

passes through the network element. 

(iv) For each network element, the average delay of a VoIP packet is 

computed. 

(v) The end-to-end delay is computed by summing up all the delays of step 

(iv) encountered for each possible VoIP flow. This includes aU external 

and internal flows, with internal flows consisting of intra-floor and inter

floor. 

(vi) The maximum network delay of aU possible flows is determined. If the 
I 
I 

maximum network delay is less than 80 ms, then the maximum number of 
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calls has not been reached. Therefore, a new call can be added, and hence 

go to step (ii). 

(vii) If not, the maximum delay has been reached. Therefore the number of 

VoIP calls bounded by the delay is one less than the last call addition. 

The above algorithm was implemented using MATLAB and the results for the worst 

incurred delay are plotted in Fig. 8. It can be observed from the figure that the delay 

increases sharply when the number of calls goes beyond 310 calls. To be more 

precise, MATLAB results showed the number of calls that are bounded by the 80 ms 

delay is 316. 
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Fig. 8. Worst-case delay vs. number of VoIP calls. 
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When comparing the number of calls that network can sustain based on 

bottleneck bandwidth and worst-delay analysis, the number of calls is limited by the 

available bandwidth more than the delay, though the difference is small. Therefore, 

we can conclude that the maximum number of calls that can be sustained by the 

existing network is 313. 
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Packet loss 

A question related to determining the number of calls to be supported by a 

particular data network is packet loss. VoIP packet loss should be below I% 

according to (J.H James, B. Chen and L. Garrison, 2044), and hence packet loss can 

be a third constraint that plays a key role in determining the number of calls to be 

supported by a network. In this case, finite queueing systems of MIMIIIB and 

Ml DI I I B, as opposed to Ml Ml I and Ml DI I, must be used instead. In a finite queueing 

system, due to dropping of packets, the flow of one node will affect the flow of 

another because we have bidirectional flows. Consequently, it ends up with a model 

of somewhat closed queueing networks with blocking (R. Onvural, 1990). 

Determining packet loss for this type of network is not a trivial task, and can be only 

approximated, according to (R. Onvural, 1990; J. Bolot, 1993). Approximation 

algorithms found in literature for solving closed networking queueing systems are not 

accurate and does not have a closed form solution. The solution is typically heuristic 

and it takes a long time to converge (R. Onvural, 1990). Due to lack of closed-form 

analytical solutions and according to(J. Bolo!, 1993), simulation is a more practical 

approach to study packet loss. In the work present~d in this paper, the simulation is 

use to verify that the packet loss constraint is satisfied with no packet loss. 
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Simulation 
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Over recent years, there has been tremendous growth in wireless 

communications. This growth also encompasses personal and business computing. 

The original IEEE 802.11 (B. Karacali, M. Bearden, L. Denby, J. Meloche and D.T. 

Stott, 2002; B. Karacali, L. Denby and J. Melche, 2004), standard was basically built 

to support data applications over contention-based access control protocol. As the use 

of multimedia applications increased it became obvious that WLANs support real

time applications with quality of service (QoS) guarantees the same as their wired 

counterpart. Recently, many researchers have investigated this issue and proposed 

several mechanisms to tackle this problem. The focus was on developing adaptive 

schemes working on top of the existing distributed access control. The most 

important motivation for this approach is that the widely used wireless adapters are 

mainly supporting the distributed scheme. 

Then, by using simple software, the access control scheme can be adapted to 

the needs of the network. Further, it was stated in (B Goode, 2002) that distributed 

medium access control (MAC) with QoS is more flexible and effective than the 

centralized MAC, as the dominant operational mode in IEEE 802.11 LANs is the 

distributed coordination function (DCF) mode (P. Mehta and S. Udani, 2001). Also 

recent research shows that point coordination function (PCF) performs poorly either 

alone or incorporated with DCF mode. The contribution of this work is focused on 

analyzing the performance oflntemet applications besides video conferencing using 
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the prioritized adapters suggested in (B Goode, 2002). To the best of our knowledge, 

this work is the first in analyzing and discussing the influence of these adapters on 

Internet applications. Previous works were general in nature, assuming either general 

prioritized flows of packets as in (B Goode, 2002) or real-time and non-real time 

applications without considering the unique traffic characteristics of www or e-mail 

applications as in (W. Jiang and H. Schulzrinne, 2001). 

The object of the simulation is to verify analysis results of supporting VoIP 

calls. The popular MIL3's OPNET Modeler simulation package, 1 Release 8.0.C was 

used for simulation. OPNET Modeler contains a vast amount of models of 

commercially available network elements, and has various real-life network 

configuration capabilities. This makes the simulation ofreal-life network 

environment close to reality. Other features of OPNET include GUI interface, 

comprehensive library of network protocols and models, source code for all models, 

graphical results and statistics, etc. More importantly, OPNET has gained 

considerable popularity in academia as it is being offered free of charge to academic 

institutions. That has given OPNET an edge over DES NS2 in both market place and 

academia. This section gives a brief description of the simulation model, 

configurations, and results. 
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Modeling the network 

A snapshot of the OPNET simulation model for the existing network Jinder 

' study is shown in Fig. 9. The simulation model of the organization network, for the 
' 

most part, is an exact replica of the real network. In OPNET Modeler, many vendor-
. ' 

specific models are included in the pre-defined component libraries. VoIP gat~way is 

modeled as an Ethernet workstation; and the enterprise servers are modeled as 

Ethernet servers. All network elements have been connected using 100 Base-T links. 

Fig. 9 shows the described topology. As discussed in the previous section, the 

gatekeeper signaling traffic is ignored and hence modeling such and element and its 

traffic is not taken into account as we base our study on the worst case situation. 

Fig. 9. OPNET simulation model of the organization network. 
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Floor LANs have been modeled as subnets that enclose an Ethernet switch 
• I 

and three Ethernet workstations used to model the traffic of the LAN users, asf shown 

in Fig. 10. One of these workstations generates the background traffic of the 9oor 

while the other two act as parties in VoIP sessions. For example, the Ethernet: 
' ' 

workstations for Floor 1 are labeled as Fl_Cl, Fl_C2, and Fl_C3. Fl_Cl is the 

source for sending VoIP calls. Fl_C2 is the sink for receiving VoIP calls. Fl_C3 is 

the sink and source of background traffic. 

Fig. 10. Floor 1 subnet model. 

Various OPNET Modeler configurations were made which included tJ:\e 

network VLANs, router, switches, and links. Also, background traffic was 

incorporated into the network as well as the generation of VoIP traffic. For VoIP 

traffic generation, a VoIP application and a profile have to be created. OPNET 

Modeler has a predefined voice application. The VoIP traffic was generated ~d 

received by workstations within the floors. The VoIP traffic was generated acbording 

I 
to the flow and call distribution discussed in the previous section. We set up OPNET 

Modeler such that three new VoIP calls are generated every two seconds. 
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Chapter 5 

Simulation results 
I 

In this section, the most relevant graphed results for the VoIP traffic volume 

and delay are reported. The duration of the OPNET simulation was configured to run 

for 8 min. The generation of background traffic, by default in OPNET, started at 40 s 

from the start time of the simulation run. The VoIP traffic started at 70 s at which a 

total of 3 VoIP bi-directional calls are initially added. Then, every 2 s 3 VoIP calls are 

added. The Simulation stops at 8 min in which a total of3+((7x60+58-70)/2)x3=615 

calls got generated. This should translate into a total of61,500 packets being 

generated every second. Note that since the simulation stops at 8 min, the last three 

calls to be added were at 7 min and 58 s. 

Fig. 11 shows the VoIP traffic and the corresponding end-to-end delay as 

VoIP calls are added every two seconds. Fig. 1 ·1 a shows the total VoIP traffic that 

was sent, received, and dropped. Fig. 11 b is a zoom-in version of Fig. I la, focusing 

on the mismatch region between traffic sent and received. From Fig. ! la, it is clear 

that the total VoIP traffic generated by the end of simulation run is very close 

61,500 pps. In fact, simulation results gave 61,429 pps. 
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Fig. I I. VoIP traffic and delay. 

One can determine the total number of calls that the network can sustain by 

examining network bandwidth or delay bounds; first investigate the bandwidth 

bound. Fig. I la and b show clearly that not all of VoIP packets being sent get: 

received. i.e. there is a mismatch between traffic sent and received. Fig. 11 b captures 
' 

clearly the addition of the three calls every 2 s; and how this addition is repeated in 

gradual steps of300 pps. Examining the X-axis of the simulation run time, it i~ clear 
' 
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that the last successful addition of three calls was at exactly 4 min and 48 s, a~ seen 

clearly in Fig. 11 b. The next addition, as shown, was at 4 min and 50 s which resulted 

in a mismatch. For the last successful addition of voice calls, which occurred at 4 min 

and 48 s, we had a traffic volume (see Y-axis) of exactly 33,000 pps or 330 VoIP 

calls. Also one can arrive at the same number of calls by calculating how many calls 

have been added until the last successful addition of three calls, i.e. 4 min and 48 s. 

This yields to 3+((4x60+48-70)/2)x3=330 calls. 

Fig. I le shows the corresponding VoIP end-to-end delay. Remember this 

delay should not exceed 80 ms, as discussed in previous sections. As depicted, the 

delay stays less than 80 ms until a simulation time of 4 min and 54 s at which the 

delay increases sharply. One can then find out the number of VoIP calls that the 

network can support to satisfy the 80 ms time constraint. The number of calls can be 

computed as 3+((4x60+54-70)/2)x3=339 calls. Therefore, one can conclude that, 

based on these simulatibn results, the number of voice calls to be supported by the 

network is bounded more by the network bandwidth than the delay. Hence, the 

number of the VoIP calls that the network can support based on simulation is 330 

calls. 

The simulation's reported delays shown in Fig. I le is the maximum values of 

a bucket of I 00 collected values. The OPNET default reported delay configureytion is 

the sample mean of a bucket of I 00 collected values. Fig. 11 d depicts a different 

collection mode, in which 'all values' are collected and plotted. Fig. I Id depicts two 

types of delays. First, the delays of external and inter-floor VoIP packets passing 
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through the router. These are the bigger delays and they resemble the delays of Fig. 

1 lc. Second, the delays of intra-floor VoIP packets that are not passing through the 

router. These are the smaller delays, in which the majority of these values stay close 

to 2.5 ms. 

When comparing the VoIP end-to-end delay in Fig. I le with the delay 

obtained by analysis in Fig. 9, it is shown that the delay in Fig. 11 c does not shoot to 

infinity as that of Fig. 8. In Fig. l lc, the delay stays flat at about 1.25 s. This is so 

because in the analysis that was modeled the network elements with infinite buffer. 

Another observation can be made about the dropped VoIP packets in Fig. 11 a. It is 

seen that the dropping of VoIP packets occurs after the mismatch of the sent and 

received packets. This is due to the fact that CPU processing, especially of the router, 

gets 100% saturated before the memory buffer of the router gets filled up. It was 

observed that the memory buffer of the router gets completely full 25 s after the 

router's CPU utilization reaches I 00%. 

Simulation accuracy 

In order to gain accuracy (with a narrow confidence interval) of our 

simulation results, following the popular guidelines presented in (A. Law and W. 

Kelton, 1991; K. Pawlikowski, H. Jeong and J. Lee, 2002), five simulation 

replications were run by feeding OPNET with different initial seeds. OPNET's 

pseudo random number generator is based on BSD's algorithm which permits safely, 

i.e. with no concern of overlapping of random number streams, any integer value to 
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be an initial seed. Five simulation replications were sufficient. Each simulation 

replication produced very similar graphical results, which when interpreted as, done in 

previous sections, led to the same total number of calls to be supported. 

Final simulation run 

Based on the simulation results, the existing network can support 330 VoIP 

calls. In the simulation, the voice calls were added every 2 s and the simulation was 

not allowed to stabilize for a long-time. Our attention was focused on finding out the 

number of voice calls that the network can sustain. As a final check to ensure a 

healthy network and a normal behavior for all network elements, we perform a final 

simulation run in which 330 voice calls are added, all at once at the start of the 

simulation, say after 70 s. We let the simulation ruh execute for a prolonged amount 

of time, say a good 5 min, to reach a steady state. Then, examine the health of each 

network element. In the example, this final simulation of 330 voice calls was not 

successful. The simulation run showed a mismatch between traffic sent and received 

and a delay of more than 80 ms. However, a ·successful simulation run of 306 voice 

calls showed normal and healthy results with no packet loss, average delay of 

2.15 ms, and adequate utilization ofrouter and switch CPUs and links. Therefore we 

can conclude, based on OPNET simulation, that the network can support a total of 

306 voice calls. 
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Pilot deployment 

Before embarking on changing any of the network equipment, it is always 

recommended to build a pilot deployment of VoIP_ in a test lab to ensure smooth 

upgrade and transition with minimum disruption of network services. A pilot 

deployment comes after training of IT staff. A pilot deployment is the place for the 

network engineers, support and maintenance team to get firsthand experience with 

VoIP systems and their behavior. During the pilot deployment, the new VoIP devices 

and equipment are evaluated, configured, tuned, tested, managed, monitored, etc. The 

whole team needs to get comfortable with how VoIP works, how it mixes with other 

traffic, how to diagnose and troubleshoot potential problems. Simple VoIP calls can 

be set up and some benchmark testing can be performed. 

Design and engineering decisions 

The following network design and engineering decisions can be justified from the 

analytic and simulation approaches: 

1) The existing network, with a reserved growth factor of 25%, can safely 

support up-to 306 calls while meeting the VoIP QoS requirements and having 

no negative impact on the performance of existing network services or 

applications. 

2) For 306 calls, a network delay of about 2 ms is encountered. To be precise, 

analysis gave a delay of 1.50 ms, while simulation gave a delay of2.1$ ms. 

3) A safety growth factor of 25% is maintained across all network resources. 
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4) The primary bottleneck of tl1e network is the router. If the enterprise under 

study is expected to grow in the near future, i.e., more calls are required ilian 

306 calls, tl1e router replacement is a must. The router can be replaced ,with a 

popular Layer-3 Ethernet switch, and thus relieving the router from routing 

inter-floor calls from Floors I to 2. Before prematurely changing other 

network components, one has to find out how many VoIP calls can be 

sustained by replacing ilie router. To accomplish this, the design steps and 

guidelines outlined in this paper must be revisited and re-executed. 

5) The network capacity to support VoIP is bounded more by the network 

throughput than the delay. This is due to the fact the existing network under 

study is small and does not have a large number of intermediate nodes. The 

network delay bound can become dominant ifwe have a large-scale LAN or 

WAN. 



Conclusion 

This paper presents a New TCP scheme that attempts to effectively 

distinguish transmission losses from packet losses on various networks including 
I 

wireless links. The paper described in great detail how OPNET can be utilized to 

assess the readiness of existing TCP/IP networks to support desktop 

videoconferencing. The paper offered extensive interpretations and analysis of 

simulation results and showed how to draw proper conclusions. 
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The paper outlined a step-by-step methodology on how VoIP can be deployed 

successfully. The methodology can help network researchers and designers to 

determine quickly and easily how well VoIP will perform on a network prior to 

deployment. Prior to the purchase and deployment of VoIP equipment, it is possible 

to predict the number of VoIP calls that can be sustained by the network while 

satisfying QoS requirements of all existing and new network services and leaving 

enough capacity for future growth. The work presented in this paper can be adopted 

easily for larger and general networks by following the same principles, guidelines, 

and concepts laid out in this paper. In addition, the paper discussed many design and 

engineering issues pertaining to the deployment of VoIP. These issues include 

characteristics of VoIP traffic and QoS requirements, VoIP flow and call distribution, 

defining future growth capacity, and measurement and impact of background traffic. 

It was considered a case study of deploying VoIP in a small enterprise i 
I 
! 

network. The methodology and guidelines outlined in this paper are applied o~ such a 

network. Both analysis and simulation were utilized to determine the number of VoIP 
I 

I 
I 
I 
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calls that can be supported for such a network. From results of analysis and 

simulation, it is apparent that both results are in line and give a close match. ~ased on 

the analytic approach, a total of 313 calls can be supported. Based on the sim~lation 

approach, a total of 306 calls can be supported. There is only a difference of s~ven 

calls. The difference can be contributed to the degree of accuracy between the 

analytic approach and OPNET simulation. The analytic approach is just an 

approximation. Also, the difference is linked to the way the OPNET Modeler adds the 

distribution of the calls. It was found that external and inter-floor calls are added 

before intra-floor calls. In anyways, to be safe and conservative, one can consider the 

minimum number of calls of the two approaches. 

In this paper, only peer-to-peer voice calls were considered. As a future work, 

one can consider implementing important VoIP options such as VoIP conferencing 

and messaging. Also as a future work, one can look into assessing the network 

support and readiness of deploying other popular real-time network services such as 

multimedia, video, and web conferencing. 
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