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Abstract

Traditional methods for phylogeny reconstruction are based on multiple sequence align-
ments and character-based methods. This combination of computationally expensive meth-
ods leads to very accurate results, but it is ill-suited to handle the enormous amount of
sequence data that is available today. As a consequence, very fast alignment-free methods
have been developed. These methods calculate pairwise distances in order to build phy-
logenetic trees. However, current alignment-free methods are generally less accurate than
traditional methods.

In this thesis, I developed Multi-SpaM which is a novel alignment-free approach that tries
to combine the best of both worlds. This method quickly finds small gap-free ‘micro-
alignments’ — so-called blocks — involving four sequences. A binary pattern defines at
which positions the nucleotides have to match. At the remaining don’t care positions, the
possibly mismatching nucleotides are first used to remove random matches with a filtering
procedure previously introduced by Filtered Spaced-Word Matches (FSWM). Then, the
character-based method RAzML is used to find the optimal quartet tree for each block.
Subsequently, all quartet trees are amalgamated into a supertree with Quartet MaxzCut.
This approach can be used to build phylogenetic trees of high quality.

Furthermore, I showed multiple ways that could help to improve Multi-SpaM. The distances
between two adjacent blocks involving the same four sequences can be used to identify pu-
tative insertions and deletions from which accurate quartet trees can be derived. These
trees could be used both on their own and in combination with the quartet trees pro-
duced by Multi-SpaM to build or improve phylogenetic trees using Quartet MazCut. As an
alternative, we also used Maximum-Parsimony to infer accurate phylogenies from these pu-
tative insertions and deletions. In other experiments, I tried to give the individual quartet
trees weights based on SH-like support values and tried to use Neighbor-Joining in order
to speed up Multi-SpaM.

Moreover, I contributed to another extension of the F'SWM approach. Here, we used these
matches as anchor points for a genome alignment tool called mugsy. We found that a
higher number of homologous pairs could be aligned for more distantly related species in

comparison to other anchor points used with the same alignment program.







1 Introduction

Evolution is a central concept in biology. A formal theory of evolution was first formulated
by Charles Darwin in his book “On the Origin of Species” [23]. We now believe that all
species [89] ultimately evolved from a common ancestor [137]. The evolutionary history of
a group of species is called a phylogeny. It is commonly visualized as a phylogenetic tree.
In some cases, the phylogeny is depicted as a phylogenetic network [58] to take even more
complex relationships into account. Reconstructing phylogenies is a fundamental task in
the life sciences. Ultimately, it is one major goal to identify the evolutionary relationships

between all species and thus reconstruct the tree of life [53].

For the longest time, relationships between species were determined purely by morpho-
logical features such as bone structures. Based on these features, species can be assigned
to certain taza. Taxa are groups of species on different levels (domain, kingdom, phylum,
class, order, family, genus, and species) and can be thought of as subtrees of the tree of
life. Reconstructing phylogenies based on morphological features can be a challenging task.
One problem is that a feature can appear independently in different taxa. The ability to fly
was developed by both birds and bats and is a common example for convergent evolution.
Such a feature is also called a homoplasy [8]. In contrast, features are called homologies
when they exist due to divergent evolution, i.e. they were inherited from a shared ances-
tor. In order to reconstruct the correct phylogeny, it has to be based on sufficiently many

homologies.

However, the morphological approach reaches its limits when homologies are hard to find.
For example, for certain taxa, such as closely related bacteria, it is difficult to make out any
differences. In such a case, the genetic material can provide evidence of the phylogenetic
relationship. The first step towards this goal was achieved when the structure of deoxyri-
bonucleic acid (DNA) was described in 1953 by Watson and Crick [146]. The DNA consists
of two strands that form the widely known double helix structure. Each strand is made
out of four different nucleotides: adenine, guanine, cytosine, and thymine. The nucleotides
from both strands normally form two base pairs, adenine—thymine and guanine—cytosine.
Thus, one strand is complementary to the other strand and it can be used to reconstruct
the other one. As each strand is translated in the opposite direction, it is common to also

consider the reverse complement of a DNA sequence.




In order to analyze the DNA, it has to be sequenced first. Historically, sequencing methods
like the Sanger Sequencing [I15] were slow and expensive. Ever since, the cost of DNA
sequencing has only been going down. Next generation sequencing methods [84] produce
short fragments of DNA, so called reads. Depending on the method, they can have different
lengths and error rates. The reads can be assembled [122] in order to obtain the whole

genome.

The sequence data of assembled genomes can be used in a similar way as with morphological
features. Genomes consist of individual genes that can be translated into proteins. The
presence or absence of genes as well as molecular changes within the genes can be used
as features for sequence comparison. For that, homologous genes need to be identified.
However, this can be difficult because genes can be duplicated during evolution. Therefore,
there are two types of homologies. Genes that evolved from the same copy in a shared
ancestor are called orthologous genes. In contrast, paralogous genes evolved from different
copies. Clearly, orthologous genes should be used for phylogeny reconstruction. However,
finding orthologous genes [117, 145, [57] can be challenging. Thus, it is desirable to compare
different taxa based on the sequence data alone. In the following, I will describe different

ways to reconstruct a phylogenetic tree based on nucleotide data.

1.1 Sequence alignment

It has long been known that homologous nucleotides or amino acids can be used to gain in-
formation about the evolutionary relationship of different taxa [I57]. Sequence alignments
are an arrangement of DNA or protein sequences that make it possible to identify and
compare homologous characters. In the following, I will assume that all sequences consist
of nucleotides. An alignment is a matrix in which two or more sequences are arranged
in order. Every row of the matrix has the same length. Therefore, gap characters are
inserted in such a way that homologous characters can appear in the same column. Under
the assumption that all sequences in the alignment share a common ancestor, mismatching
nucleotides in the same column can be interpreted as substitutions. The gap characters

show putative insertions or deletions (indels). An example is shown in Table

Intuitively, an optimal alignment should match identical nucleotides and have as few sub-

stitutions and gaps as possible. An optimal alignment can be found algorithmically with




A C C - - G AT
A CGA TG - T

Table 1: Example for a pairwise sequence alignment. There are two putative indel events
at position 4 and 7 as well as a substitution at position 3.

regard to a scoring scheme. It is possible to simply score matches and mismatches, but
there are substitution matrices that account for different substitution rates for pairs of
nucleotides as they appear in reality [19]. Similarly, gaps can be punished by a linear
gap penalty or there can be a higher penalty for opening a gap and a lower penalty for
elongating a gap. This affine-linear gap penalty is motivated by the fact that a longer gap

is more likely to happen in nature than multiple small ones.

Under such a scoring scheme, the Needleman-Wunsch algorithm [97] constructs the optimal
global alignment, i.e. an alignment over the entire length of two sequences. It solves the
problem in time proportional to the product of the sequence lengths by dynamic program-
ming. All pairs of prefixes of the two sequences are aligned and their scores are stored. To
calculate an alignment, the score of a previous calculated smaller alignment can be used
and adjusted whether the last position is a match, mismatch or a gap in either sequence.
Thus, the algorithm exhaustively evaluates all possible alignments and is guaranteed to find
the optimal one. However, global alignments are not meaningful when the sequences are
only related locally. Therefore, the Smith- Waterman algorithm [124] was developed. This
algorithm is a modification of the Needleman-Wunsch algorithm that limits alignments to

regions with high similarity.

The Smith-Waterman algorithm, or a variant thereof, is heavily used for homology de-
tection. Tools like BLAST [2] 3] can quickly find local homologies in large databases. If
a large number of sequences need to be compared, then the algorithm is no longer fast
enough. While there are faster implementations of the Smith-Waterman algorithm that
utilize vector parallelization effectively [32], it is more common to find (inexact) word
matches to identify sequences that have potentially high scoring local alignments. This
way, the Smith-Waterman algorithm needs to be used only on relatively few sequences. A

popular tool that implements such an approach is diamond [17T].

Oftentimes, it is not enough to find homologous sequences and pairwise alignments. In

order to compare multiple sequences at the same time on a molecular level, multiple se-




quence alignments are necessary. Such an alignment is significantly more complex. In fact,
multiple sequence alignments are known to be NP-hard [143]. Therefore, heuristical meth-
ods are needed. These methods can generally be divided into two classes. Some methods
align sequences progressively [38] along a guide tree. Previously aligned nucleotides are not
realigned when new sequences are added. Thus, the quality of such a multiple sequence
alignment strongly depends on the quality of the guide tree and the initial alignments.
The most commonly used multiple sequence alignment tools, ClustalW [138] and Clustal
Omega [120], fall into this category and are available on widely used public webservers.
Other popular progressive alignment methods are MAFFT [64, 63] and T-Coffee [99]. The
other group of methods improve alignments iteratively, i.e. the alignment can be improved
in a later iteration based on some objective function. One popular method, that can refine
its alignments, is MUSCLE [29]. Furthermore, dialign [93] follows an unusual approach.
The multiple sequence alignment is based on short pairwise alignments without gaps. Thus,
only parts that are locally related are aligned. Therefore, dialign can outperform other

methods if the sequences are not related over their entire length.

Multiple sequence alignments are very useful to accurately compare sequences. However,
there are several limitations [I54]. The algorithms for multiple alignments only deal with
the basic evolutionary events. However, there are other events that can not be addressed
properly. During evolution, genes can be duplicated or inserted due to horizontal gene
transfer [43]. In the latter case, genes are transferred to other genomes without a parent-
child relationship. These events can lead to paralogous or unrelated genes being aligned.
Moreover, the entire genome can be rearranged which cannot be represented in a classical
alignment at all where the sequences are always aligned in order. There are even more rea-
sons why alignments might be inaccurate. The alignment depends on the scoring scheme
which is often rather arbitrary. Different parameters can lead to substantially different
solutions [I48]. Furthermore, the accuracy of the alignments can also be effected by the re-
latedness of the sequences. More distantly related sequences are harder to align, especially

if the sequences are not related over their entire lengths.

Apart from these problems, the most important limitation is the high runtime and memory
usage. Thus, alignment methods do not scale well to whole-genome data. In order to
be able to align whole genomes, several genome aligners have been developed, such as

Cactus [102] and mugsy [5]. These tools only align parts of the sequences and are thus much




faster and can even deal with genome rearrangements. For instance, mugsy uses maximal
unique words that appear in multiple sequences as starting points for their alignment.
Using word matches in multiple sequences is a common strategy to speed up or improve

the quality of alignments [94, [74].

1.2 Tree building methods

Traditionally, phylogenetic trees are reconstructed using multiple sequence alignments. It
is common practice to calculate alignments for a set of genes that are found in multiple or
even all taxa. Since the sequences that need to be aligned are much shorter, this procedure
is computationally less expensive than a full sequence alignment. Moreover, the individ-
ual alignments can be more accurate if the genes are known to be orthologous. Several
alignments can be concatenated to form a supermatriz. In case not all alignments contain
the same group of taxa, special characters are inserted to denote missing information. In
order to reconstruct the phylogenetic tree from a multiple sequence alignment or superma-
trix, there are generally two approaches which have very different runtime requirements.
The first class of methods are called character-based methods. These methods use the
nucleotide characters directly to evaluate a given tree topology. While this step is usu-
ally very fast, it is very hard to find the optimal tree topology. In fact, character-based
inference of phylogenies is known to be a NP-hard problem [41} 20]. Despite this fact,
trees built by such methods are generally considered to be the most accurate and are the
method of choice in many studies. In the following, I will describe some commonly used

character-based methods.

The first one is Mazimum-Parsimony [33, 40]. In this method, the optimal tree is the
one that requires the least amount of substitution events to explain a given alignment.
This optimality criterion applies Ockham’s Razor [100] (or lex parsimonae) to evolutionary
events. This principal states that among multiple hypotheses that can explain the observed
data, the simplest hypothesis should be chosen. Following this principle, there is a simple
way to determine the minimum number of substitution events that must have happened
during evolution to explain the data in a column of a given alignment for a given tree (see

Figure |1| for an example).

By summing up the scores of all columns, the length of a tree is calculated. Clearly, the




Seq A /\ /\
2“12 é A C A A
(S
Seqr .. C /N /N /N /N
A A C C A C A C
MSA Tree 1 Tree 2

Figure 1: For a row in the given multiple sequence alignment, there are two trees that could
explain the given data. The substitutions, that must have happened during evolution, are
shown with red edges. The first tree requires only one substitution and is thus the most
parsimonous tree.

tree with the shortest length is the optimal tree. The most challenging part of Mazximum-
Parsimony is to find the optimal tree topology in the tree space. There are (71(_23)7_,252',3
possible unrooted tree topologies for n > 2 species [37]. This number grows very quickly
too large to examine every possible tree topology. In fact, PAUP* [133], a commonly used
implementation of Mazimum-Parsimony, does not allow exhaustive search for any datasets
with more than 12 species. For slightly larger datasets, the branch and bound algorithm [52]
can be used which can still reconstruct the optimal tree. Larger datasets require heuristical
algorithms. In this case, hill climbing is used which evaluates “neighboring” trees, until
no better tree can be found. The most common strategies to explore the tree space are
nearest-neighbor-interchange (NNI) [92 107], subtree prune-and-regraft (SPR) [51] and tree
bisection and reconnection (TBR) [27]. With these strategies, the resulting tree might not
be the optimal tree, but the computation time is reduced drastically. It can be reduced
even further, especially for very large datasets, if the characters are sampled. Such an

approach has been implemented with the Parsimony-ratchet [98].

One important characteristic of this method is that it does not assume a model of evolution.
This can, of course, be considered a downside, but it does allow for many different types
of characters such as present/absent encoding of some features. In case such characters
are used, Mazimum-Parsimony is the obvious method to use. These use cases are also one
reason for the popularity of the method. One example of uncommon characters are gap
characters. In many implementations, gaps are treated as missing information. Even if

this is not the case, insertions and deletions could only be considered for length 1 since
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every column is evaluated individually. Longer insertion and deletion need to be encoded

separately as special characters [121].

A drawback of the simple Mazimum-Parsimony approach is that every substitution is
assumed to be equally likely. In general, this is not very realistic. Thus, many statistical
models of evolution have been developed. A commonly used model is the GTR (generalized
time reversible) model [I35]. This model considers different substitution probabilities for
every pair of nucleotides. Moreover, it is also possible to take variable substition rates into
account [I50]. Apart from these common models, there are many more, some of which
even consider the likelihood of insertions and deletions [139) 140]. Mazimum-Likelihood
is a tree building method that can utilize such a model. This method is very similar to
Mazimum-Parsimony. Instead of the length of a given tree, the likelihood, that the data in
the alignment is observed under a chosen model, is calculated. The tree with the highest
likelihood is accepted as the optimal tree. One of the most commonly used tools that
implement Maximum-Likelihood is RAzML [128].

Another popular character-based method is Bayesian Inference [I10]. This method uses
markov chain monte carlo sampling to calculate the tree with the highest likelihood based

on prior probabilities.

Even though these methods are considered to produce highly accurate trees, they are also
computationally expensive. In order to reduce the runtime, distance-based methods have
been developed. Based on a distance matrix consisting of pairwise similarity (or dissimilar-
ity) measures, the phylogenetic tree can be built very quickly. In practice, these methods
are extremely fast and can be used on far larger datasets than Mazimum-Parsimony or
Mazimum-Likelihood. While the distance measures can be arbitrary, they are usually
based on a multiple sequence alignment. The multiple sequence alignment implies pair-
wise sequence alignments from which pairwise distances can be calculated by counting
the mismatches. The mismatches per position are, however, not an accurate measure of
how many substitutions have happened since the two species diverged from a common
ancestor. It is always possible that multiple consecutive substitutions happen at the same
position in the sequence. In this case, the true number of substitution is not reflected in
the distance measure. To fix this issue, the distance needs to be corrected according to
a model of evolution. For distance-based methods, simple models are generally preferred.

The simplest model is the JukesédCantor [62] model which assumes equal base frequencies

11



and substitution rates for all pairs of nucleotides. However, there are many more models

that could be used be to correct the distances.

In order to build a phylogenetic tree from a distance matrix, hierarchical clustering is
used. In the beginning, every cluster consists of a single taxon. The two clusters with the
shortest (corrected) distance are joined into a new cluster. This new cluster represents an
inner node in the phylogenetic tree. Afterwards, distances between the new cluster and
all other clusters are calculated. This procedure is repeated until all taxa are joined in a
single cluster. A simple hierarchical clustering method is unweighted pair group method
with arithmetic mean (UPGMA) [127]. This algorithm assumes a molecular clock, i.e.
constant mutations rates for all taxa. This makes it possible to calculate a rooted tree.
Other popular methods assume minimum evolution [ITI]. The correct tree is assumed
to be the tree with the lowest sum of all branch lengths. A commonly used method is
Neighbor-Joining (NJ) [I12]. This method does not assume a molecular clock and thus
builds unrooted trees. As long as the input distance matrix is correct, the algorithm will
produce the optimal tree. Even though this is usually not the case, the algorithm will
find the optimal tree most of the time. It is also possible to assure that the optimal tree
under the minimum evolution assumption is found [70]. Furthermore, there is a popular
modification of the Neighbor-Joining called BIONJ [42]. This method can lead to improved

trees in practice.

Tree building methods can return different trees even for small changes in the input.
Therefore, it is common practice to calculate bootstrap values [35] for all branches in
the phylogenetic tree. One way of doing this is to generate 100 datasets from sampled
columns of a multiple sequence alignment. For every dataset, a tree is reconstructed using
any of the methods described above. Based on the 100 trees, a consensus tree [L6] is built
and every branch is assigned the percentage of trees in which this branch appears. Thus,

the stability of the phylogenetic tree can be assessed.

1.3 Supertree methods

Is is also possible to build multiple trees, and then built a supertree |44l 12] from multiple
overlapping phylogenetic trees. As with other problems that need to search the complete

tree space, this problem is also NP-hard [129]. Thus, this problem has to be solved heuris-
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tically for large trees. One such heuristical method called ASTRAL [I53] tries to find the
correct phylogenetic tree in case of incomplete lineage sorting (ILS) [87]. For a set of genes,
the individual gene trees may be different from each other, for example due to horizon-
tal gene transfer. This tool reconstructs the phylogeny under the multi-species coalescent
model [65] and can thus lead to better results than a simple super matrix approach. The
supertree is inferred from the sets of quartet trees that are given by the gene trees. Quartet
trees are the smallest trees that contain phylogenetic information in an unrooted setting.
In case the outgroup is known, a rooted triplet tree could be considered the fundamental
phylogenetic unit. Information for the supertree can be obtained from a quartet tree as
it indicates a split between the two sister nodes from one side and the two sister nodes
on the other side. There are three possible splits that can be indicated by a quartet tree

topology.

Sl S2

S4 SS

Figure 2: Example of a quartet tree.

There are also other use cases for supertree methods. It is possible to calculate supertrees
from a lot of small trees that do not necessarily correspond to any gene. One summary
method that also uses quartet trees is Quartet MaxzCut [126, [125]. This method attempts
to find the tree that is consistent with as many input quartet trees as possible. Since this
mazximum quartet consistency problem is NP-hard [129] and can therefore not be solved
directly, Quartet MaxCut tries to solve a related problem heuristically. Removing any
edge in a tree will split or cut the tree into subtrees. For every non-trivial split, i.e. each
subtree consists of at least two nodes, there can be potentially many quartet trees with
exactly two species from each subtree. If the split indicated by the quartet tree coincides
with an edge in the supertree, then a cut caused by removing this edge is satisfied by the
quartet tree. Otherwise, the quartet tree is violated by the cut. Finding the edge that has
the highest ratio of satisfied to violated quartet trees, or respectively the cut that has the

maximum support, is called the MazCut problem.

Algorithmically, this problem is solved by defining good and bad edges for every input

13



4 3

Figure 3: Based on the quartet tree in Figure [2] good are edges are shown in green and
bad edges are shown in red. Bad edges should not be cut as this would result in a split
that is not indicated by the underlying quartet tree.

quartet tree, as shown in Figure All four nodes are connected with an edge. These
edges should signal whether this quartet tree is being satisfied or violated by a cut in the
supertree. As splitting sister nodes on either sides would clearly violate the quartet tree,
the two edges connecting these nodes are considered to be bad edges. All other edges are
good edges. In order to find the super tree, an empty multigraph is created that has one
node for every species. In the next step, the previously defined edges from all input quartet
trees are inserted into the multigraph. As shown in Figure [ the algorithm tries to find
the maximum cut with the best ratio of good to bad edges. This is solved efficiently with

semidefinite programming.

S /
<2\

=

Figure 4: Good and bad edges are inserted into a multigraph with 5 sequences. On the
right, the maximum cut is shown in blue. This cut has the ratio of 6 good edges to 1 bad
edge. It indicates an edge in the supertree, between the sequences (Si, S5) and (Sa, Ss,

Sy).

/

INVA
\\/

After finding the maximum cut, the set of sequences are divided into two subsets according
to the cut. Further, the corresponding edge is inserted into the supertree. Afterwards, the

algorithm is repeated on each subtree until the supertree is fully resolved or the information

14



contained in the input quartet trees is not sufficient to find more maximum cuts. Thus,
Quartet MaxCut is a divide-and-conquer algorithm. It can correctly reconstruct trees for
100 taxa with an input of 1 million quartet trees drawn uniformly at random, even if the
error rate is 30% [126]. In practice, quartet trees that do not conform to the supertree
topology do not have to be wrong because the conflicting topologies may be caused by
ILS. In order to give confidence values to the input quartets, it is also possible to specify

weights for every quartet tree [6]. Another extension to this idea is Triplet MaxzCut [118].

Quartet MazCut has been compared to other supertree methods [132, [7] and it scales well
with regard to number of quartets, error rates and number of taxa. The most significant
advantage of this method is its speed. For millions of input quartets, Quartet MaxCut
terminates in less than a second while other methods require many hours or even days.
Quartet MaxCut has been compared to the most used supertree method matriz represen-
tations with parsimony (MRP) [105,9]. This method defines a n x m matrix where n is the
number of species and m the number of splits in any of the input trees. In every column,
every species on one side of the split is marked with a '0’ and all other species with a ’1".
The supertree is then built with Mazimum-Parsimony. Due to the fact that this method

uses MP, it is prohibitively slow for large numbers of input trees.

The scalability of supertree methods can be improved. SuperFine [I31] merges the input
trees together with a strict consensus merger [59] which is very fast. However, there will
likely be conflicts which will occur for a usually small subset of species. In this case, a more
sophisticated method such as Quartet MaxCut or MRP is used to resolve these conflicts.
Other methods try to divide a large set of species, e.g. to create something like the tree
of life, into smaller sets and then attempt to amalgamate the smaller trees into a final
supertree which is different from the usual supertree task where the input trees have to
be overlapping. A big challenge of this approach is that the input trees have to be very
accurate as errors cannot be corrected. Furthermore, a distance matrix is necessary to

combine the input trees as NJMerge [91] is based on Neighbor-Joining.

It is difficult to measure the quality of a phylogenetic tree. This is largely due to the fact
that accurate reference trees are necessary in order to even begin a meaningful comparison.
It is possible to sidestep this problem by simulating sequences. However, even though the
correct phylogenetic tree is known, it is questionable whether the simulated sequences could

be considered realistic. Thus, researchers have to rely on widely accepted reference trees.

15



One of the most commonly used metrics to compare phylogenetic trees is the Robinson-
Foulds distance [108] which is solely based on the tree topology. In order to calculate
this distance, every possible bipartition of the trees have to be considered. A bipartition is
created by removing a single edge from the tree. Then, the Robinson-Foulds distance is the
number of bipartitions implied by the reconstructed tree, but not implied by the reference
plus the number of the reverse. Thus, if both trees are binary trees, i.e. no multifurcations,
the distance will always be an even number. The Robinson-Foulds distance can also be
normalized by dividing it by 2n—6 where n is the number of leaves in the tree. This way, the
performance of phylogenetic methods can be compared in a more meaningful way. Many

more distance measures have been proposed, such as quartet and triplet distances. [113]

1.4 Alignment-free methods

So far, I described different ways to reconstruct accurate phylogenetic trees which are based
on sequence alignments in one way or another. While this alignment-based approach is still
the preferred way to built trees of high quality, most of the previously described methods
try to solve problems that are NP-hard and can therefore not be solved efficiently. Many
tools use heuristics and are highly optimized by using as many forms of parallelization as
possible. This includes using special processor instructions, so-called vector parallelization,
or distributing the work load to computer clusters. Even though this improves the scala-
bility of these tools greatly, nowadays we are in the age of next generation sequencing and
big data [I30], resulting in a tremendous amount of sequence data to be analysed. This
has led to a lot of research into how sequences can be compared without requiring a full
sequence alignment. Even though I will focus on methods for phylogeny reconstruction
in this thesis, alignment-free methods have been developed for many different fields such
as metagenomics [4, [I8], [78], 90} 134} 136, [144] [149], sequence assembly [152], identification
of biomarkers [28], isoform quantification from RNAseq reads [103], analysis of regulatory
elements [34], 66, [77], read alignment [I} 68, [79] and protein classification [21] [76], 8], [82].
The main goal of alignment-free methods is to be magnitudes faster than alignment-based
approaches while being easy to use. Thus, the user should not be required to identify and
align orthologous genes manually. Instead, most tools are used on whole-genome data.
Some methods even go one step further and also try to eliminate the genome assembly

step. These assembly-free methods [101}, BT, 10} 151}, [IT6] can be applied to partially se-
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quenced genomes or even directly to unassembled reads and lead to an even faster sequence

analysis.

In general, alignment-free methods calculate pairwise distances. Then, fast methods like
Neighbor-Joining [112] are used on the distance matrices to built a phylogenetic tree. This
is significantly faster than more traditional methods. However, without an alignment, it is a
challenging task to find evidence for evolutionary events based on the sequence data. Thus,
many methods estimate distances that are not based on a model of evolution and therefore
do not reflect the substitutions per position. Instead, they rely on the comparison of simple
sequence features such as word frequencies or lengths of common substrings. These features
usually have an intuitive correlation with the evolutionary distance. The advantage of this
approach is that these distances can be calculated very fast. However, even when reflect
the substitions per position under some model of evolution, alignment-free methods are
still less accurate than alignment-based methods. In the following, I want to give a broad
overview over alignment-free methods and describe some of the methods, that are relevant
for the rest of the thesis, in more detail. For a more detailed overview, there are several
reviews of alignment-free methods [142] [47, [IT]. Furthermore, the AF-Project [155] is a

comprehensive benchmark of alignment-free methods for various different settings.

One of the most commonly used sequence features are k-mer frequencies. k-mers are words
of length k. The early alignment-free methods mostly used short k-mers, i.e. dinucleotide
(2-mers) and trinucleotide (3-mers) frequencies. The distances can be calculated e.g. with
the Xy [I3] or Dy [83] statistic. The latter distance is the inner product of two frequency
vectors which is also the number of k-mer matches. Especially comparing 3-mer frequencies
is an intuitively meaningful feature as 3-mers correspond to codons and are thus translated
to amino acids. However, if non-coding regions are included, which is the case for whole-
genome data, then the accuracy of using short k-mers decreases. The optimal length of
k-mers has been investigated [123], but no clear answer has emerged. Feature frequency
profiles (FFP) [123] is a very fast method that uses a range of word lengths which was
found empirically. The authors used the Jensen-Shannon divergence [80] to calculate a
distance between the frequency profiles. Apart from this commonly used distance, it is
also possible to use the Fuclidean distance. Even more distance measures are provided in
CAFE [85)].

These methods have one problem in common. The frequency measure is increasingly
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unreliable when the sequences have different background frequencies which is the case
when there are unrelated regions in the sequences. One methods that tries to correct the

frequency measure by subtracting predicted background frequencies is C'VTree [104].

These alignment-free methods are already very fast. However, it is possible to improve the
runtime even more if the sequences are not compared in their entirety. A popular method
that makes use of this approach and can thus handle even very large datasets is Mash [I01].
For every sequence, only a small sketch is stored which can be very small in comparison
to the whole sequence. The sketches are based on MinHashes [I5] and are the smallest
k-mers according to a simple hash function. The distances are then calculated using the
Jaccard index which is the fraction of shared k-mers. This distance can be accurate even
for a relatively small sample of k-mers. At some point, using more k-mers will most likely

not influence the distance anymore.

Instead of contiguous k-mers, it is also possible to compare inexact k-mers. For database
searches, word matches are used as a starting point — or seed — for a specialized version of
the Smith-Waterman algorithm. It has been shown that inexact word matches, so-called
spaced seeds, can be used to improve homology searches [86]. This finding has then inspired

the use of spaced-words [14] (see Table [2| for an example).

Sequence AACAGTTATCAGTCT
Pattern 1 1 0 1 0 0 1 1
Spaced- Word A G * T * * A G

Table 2: For a given sequence and binary pattern, the spaced-word starting at position 3
is shown. The characters at the don’t care positions are replaced by wildcard characters.

A spaced-word is defined together with a binary pattern of the same length. This pattern
defines don’t care positions and match positions. The number of match positions is called
the weight of pattern. For a given pattern, a spaced-word is a substring of a sequence
where the characters at the don’t care positions are replaced by a wildcard symbol. The
distance based on spaced-word frequencies can be calculated similar to the contiguous
case. The accuracy of this distance measure can be improved if multiple patterns are
used [72], even though this leads to increased runtimes. Furthermore, it is possible to
estimate the substitutions per position under the JukesésCantor model, based on spaced-

word matches [95]. A third way of estimating distances from spaced-words is based on the
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fact that the number of spaced-words decreases when the weight of the pattern is increased.
This can be used to define a function and distances can be estimated based on the slope

in a certain range [109].

As the pattern can influence the performance of such a method, it is an obvious question
whether patterns can be improved. SpEED [61] and rasbhari [46] are two tools that can
optimize pattern sets. These methods optimize the overlap complexity [60]. This is a
measure based on the number of overlapping match positions when the patterns are shifted
against each other. This can lead to more stable values for the number of spaced-word
matches [95]. However, the effect of this optimization is marginal for a single pattern.

Moreover, there is no known algorithm that can optimize a pattern for a specific dataset.

The number of word matches is not the only sequence feature that can be used to estimate
distances. Another class of alignment-free methods is based on the lengths of word matches.
Intuitively, there should be longer words when the sequences are closely related because
every substitution, insertion or deletion in one sequence breaks up previous word matches.
In order to calculate distances, one possible approach is to use data compression algorithms
such as the Lempel-Ziv factorization [I56]. This has been utilized in average common
substring (ACS) [141] which finds the longest common substring starting from each position
in both sequences. The average length of these common substrings is then used as the

distance between the two sequences.

S1 A cC C A C G A
S2 C A G A C

Table 3: The longest common substring with k& = 2 mismatches for position 1 in the first
sequence is found at position 3 in the second sequence. The length of this substring is 6.
The average length of these k-mismatch common substrings is the distance calculated by
kmacs.

This approach has been extended to use inexact common substrings. In kmacs [71], each
substring can have up to k£ mismatches where k is a user-defined parameter. Since these
substrings cannot be found efficiently, kmacs first finds the longest common substring for
each position and then extends these substrings until £ mismatches are found (see Table
for an example). Then, the distance is calculated analogous to ACS. By using inexact
common substrings, the results can be improved. However, it is unclear how a good value

for k can be determined. kmacs is also available as a webserver [55], as well as spaced (word
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frequencies). Neither ACS nor kmacs estimate evolutionary distances. In case of kmacs,
it has been shown that the length distribution of the extension after the longest common
substring can be used to estimate substitutions per position accurately [96]. This is similar
to the first method that tried to estimate evolutionary distances, kr [49]. This method uses
the lengths of shortest unique substrings, so-called shustrings [48], between two sequences

for its estimation. Shustrings are an extension of the longest common substring by one.

There is one more group of alignment-free methods that follow a different approach. They
find pairwise gap-free micro-alignments. Instead of counting these matches as in some
previously described methods, the distances are calculated from the number of observed
mismatches per position in the micro-alignments. This is analogous to the distances based
on pairwise sequence alignments. Obviously, these tools do not conform perfectly to the
definition of alignment-free methods. However, they do not calculate a full sequence align-
ment. Instead, the micro-alignments are based on word matches in one way or another
which can be found quickly. Thus, it is justified to still consider them to be alignment-free
methods. One major challenge for such an approach is that the micro-alignments have
to be homologous. Otherwise, the distances would be based on incidental alignments and
likely be inaccurate. Thus, these approaches have to find a way to deal with random

matches as well as homoplasy. In the following, I will describe three tools in more detail.

The first method to utilize micro-alignments was co-phylog [151]. The micro-alignment
follows a structure consisting of an object (O;) which denotes the i central position(s) of
the micro-alignment. This object is flanked by a context (C; ;) which consists of two j-mers
(see Table 4] for an example). The structure is written as C} ;O; which inspired the name

co-phylog.

S1 T A Cc G
S G C T C

Table 4: Example of a microalignment in co-phylog. The structure is Cs 201. The context
is colored in orange and the object is colored in violet.

For two sequences, all k-mers are rapidly found and split according to the predefined
structure. k-mers are matched according to the contexts. Then, the mismatches per
position can be observed from the objects. In this method, this value is used as the

distance and not corrected with e.g. the JukesédCantor model. Since the context pairs are
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supposed to make up a micro-alignment, the context has to be unique in both sequences.
Otherwise, it cannot be established which two contexts should be matched with each other.
co-phylog discards any context that appears multiple times in a sequence to solve this issue.
For large sequences, there is a high number of expected random matches which can lead
to homologous matches to be overlooked or random matches to be used for the distance
estimation, depending on the structure that is being used. In order to circumvent this
problem, co-phylog uses contexts that are sufficiently large. By default, the structure used
in the program is Cg9O1. Thus, the length of the k-mers is 19. While this length is
sufficient to ensure that the matching context are homologous, the expected number of
micro-alignments for more distantly related sequences is fairly low. This can reduce the
accuracy of the distance to the point where distances can no longer be estimated. However,
it should be noted that co-phylog is intended to be used on more closely related sequences.
The structures are likely inspired by SNP’s (single nucleotide polymorphisms) since the

default size of the objects is 1.

S1 A G C G T
Sy C A G T C

Table 5: Example of a microalignment in andi. The two anchors are colored in orange.
They are equidistant, i.e. 4 positions apart. The violet part of the alignment is used to
estimate the substitutions per position under the JukesésCantor model.

A slightly more flexible, yet very similar method is called andi [50] which is an acronym
for anchor distance. It is similar in the sense that it uses flanking word matches - or
anchors - to ensure that the micro-alignments are homologous and it calculates pairwise
distances based on the possibly mismatching nucleotides in-between. However, there is no
fixed pattern or length of the micro-alignments. Instead, the anchors have to be maximal
unique word matches that have at least a certain length. The minimum length is based on a
statistical analysis of the distribution of how many word matches are expected to be found
in unrelated sequences. The length of the anchors is required to be longer than at least
97.5 % of this distribution. As the anchors are maximal and unique, there is no ambiguity
as to which words are matched with each other. The two anchors have to be equidistant
from each other, i.e. the interjacent part has to have the same length in both sequences.
Otherwise, it would be impossible to arrange them in a micro-alignment and calculate a
meaningful distance. In order to ensure that the entire micro-alignment is homologous,

there is also a maximum distance that the anchors can be apart from each other. andi is

21



similar to co-phylog and it has the same drawbacks. Therefore, it is also intended to be
used on closely related species. In fact, the authors use their method on different strains
of the same species of bacteria, Fscherichia coli, in their evaluation. An example is shown
in Table [

Unlike co-phylog, andi uses the Jukes€$Cantor model to account for back substitutions.
Thus, the distance accurately reflects the substitutions per positions, at least up to 0.5
substitutions per position. Above this threshold, less and less equidistant anchor pairs can
be found and at some point, the distance cannot be estimated. The algorithm of andi
is based on suffix arrays [88] and range minimum queries [39]. It is one of the fastest
alignment-free methods and, unlike co-phylog, it is efficiently parallelized and can be used
on large datasets. Moreover, it is a much more user-friendly tool. It can, therefore, be seen
as a generalization and an overall improvement over co-phylog. However, one advantage
of co-phylog is that it can be applied to unassembled reads and can thus be considered

assembly-free.

1.5 Filtered spaced word matches

The previously mentioned methods that utilized spaced-words, either compared their fre-
quencies or used the number of spaced-word matches to estimate distances. Filtered spaced
word matches (FSWM) [73] is a different approach that is based on micro-alignments.
These micro-alignments are spaced-word matches (see Table |§| for an example). For a
spaced-word match to occur, the match positions of two spaced-words have to coincide.
The match positions are defined by a single binary pattern. The remaining positions, the
don’t care positions, can have mismatching nucleotides. The structure used in co-phylog
can also be called a spaced-word match with a fixed pattern. The advantage of using
spaced-word matches is that, while the expected number of matches is the same as with
exact word matches, the matches are more evenly spread across the sequences. This is

because two consecutive spaced-words are statistically less dependent on each other.

In order to find a spaced-word match in a quick and easy way, a list of all spaced-words for
two sequences is sorted lexicographically. All occurrences of a spaced-word are then next

to each other.
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St T C A C G T
Sa G C c T A C
Pattern 1 0 0 1 1 0 1

Table 6: Example of a microalignment in F'SWM. There are two mismatches at the don’t
care positions and only one match. Therefore, such a match would be discarded as a
random match.

The nucleotides at the don’t care positions are used to score possible spaced-word matches,
before the distance is calculated. The score is the sum of substitution scores defined in a
substitution matrix for alignments of DNA sequences [19]. A histogram of these scores is
shown in Figure [f] Random spaced-word matches are expected to have a negative score
depending on the number of don’t care positions. These matches constitute the peak on
the left of the histogram. In most cases, the scores of the background matches are not
positive. Therefore, by discarding matches with negative scores, the background noise can
be filtered out effectively. This is the novelty introduced in F'SWM. The filtering step makes
it possible to use patterns with lower weights. This is due to the fact that the expected
number of background matches grows quadratically with the length of the sequences while
the expected number of homologous matches only grows linearly. Thus, the distances

would be dominated by background noise for longer and more distantly related sequences

Spaced-word  Position Spaced-word  Position
AxxTCxCxA 1053 AxxTCxCxA 648
AxxTCxCxT 236 AxxTCxCxT 45
AxxTCxCxT 843 AxxTCxCxT 765
AxxTCxCxT 54 Ax+xTCxCxT 55
AxxTCxCxT 2524 AxxTCxCxA 1555
AxxTCxCxT 214 AxxTCxCxA 187

Ax+TCxGxA 843 Ax+TCxGxA 698

Figure 5: For two sequences, a lexicographically sorted list of spaced-words can be used
to find all possible spaced-word matches. In this example, there are 5 occurrences of the
spaced-word ‘AxxTCxCxT’ in the first sequence and 3 occurrences in the second one. Thus,
there can be at most 3 homologous micro-alignments.
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if patterns with a low weight are used without the filtering step.

Match type . Homologous . Background

400000

300000

200000

Number of Spaced-Word Matches

100000

-5000 0 5000 10000
Score of Spaced-Word Matches

Figure 6: Every spaced-word match can be scored according to the nucleotides at the don’t
care positions with respect to a pre-defined binary pattern. This figure shows a histogram
for all spaced-word matches from a comparison of two bacterial genomes, Escherichia coli
UMNO26 and FEscherichia coli IAI39. The left peak shows the distribution of random
spaced-word matches which is approximately normally-distributed. On the right, there
is a peak for the homologous spaced-word matches. Spaced-word matches with negative
scores are shown in red. Removing these matches can reliably eliminate the background
noise.

In contrast to co-phylog and andi, FSWM does not require the spaced-words to be unique
in both sequences. The assignment is resolved with 1-to-1 mapping. Since a score for every
potential spaced-word match is calculated in the filtering step, this information can also be
used to match each spaced-word with at most one spaced-word in the other sequence. This
is done with a greedy algorithm. Afterwards, the substitutions per position are estimated
based on the JukesésCantor model.
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While FSWM is still a fast alignment-free method, the filtering step is O(n?) for n occur-
rences of a given spaced-word. For large datasets, this can significantly slow down this
method. On the plus side, F'SWM can estimate evolutionary distance accurately up to 1
substitutions per position. The FSWM approach has led to a lot of further research. It
has been applied to protein sequences in Prot-SpaM [75]. Furthermore, it has been shown
that FSWM can also be used as an assembly-free method in Read-SpaM [69].

1.6 Objectives of this thesis and overview

So far, all alignment-free methods estimate pairwise distances and build a phylogenetic
tree based on a distance matrix. In this thesis, I pursue the question whether multiple
sequence comparison can be used for an alignment-free method. While there have been
attempts in that direction [106], the goal of this thesis is to develop a completely different
approach based on micro-alignments. This method extends FSWM to multiple sequence
comparison. Its filtering procedure is used to ensure that so-called blocks — small, gap-free
micro-alignments involving four different taxa — are homologous. I tried to apply slower,
but more accurate character-based methods to these blocks in order to find out whether the
accuracy of alignment-free methods can be improved this way. Something similar has been
tried in a supermatrix approach [114]. Here, I developed Multi-SpaM [26] which calculates
the optimal tree topology for every block of spaced-word matches and uses Quartet MaxCut

to amalgamate the quartet trees into a supertree. This method is described in Chapter [2

In Chapter [3] we compared pairs of adjacent blocks involving the same four sequences. We
calculated the distance between two blocks in each sequence and use this information in
order to find putative insertions and deletions. This information can be used as parsimony-
informative characters or to define quartet trees. We used this novel approach to build or

improve phylogenetic trees.

Chapter [ describes another method based on spaced-words to which I contributed. Here,
spaced-word matches are used as anchor points for a genome aligner. These anchor could

be used to improve the alignments for distantly related species.

Furthermore, I show a few experiments that could improve Multi-SpaM under some con-
ditions. In a modified version of Multi-SpaM, Neighbor-Joining is used instead of RAxzML
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to find the optimal quartet tree topologies. Moreover, I gave each quartet tree a weight in

order to improve the overall phylogenetic tree. The results can be found in Chapter

Finally, the overall results are discussed in Chapter [6] I discuss severall limitations and

show a few options on how they can be remedied. This outlook is given in Chapter [7]
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ABSTRACT

Word-based or ‘alignment-free’ methods for phy-
logeny inference have become popular in recent
years. These methods are much faster than tradi-
tional, alignment-based approaches, but they are
generally less accurate. Most alignment-free meth-
ods calculate ‘pairwise’ distances between nucleic-
acid or protein sequences; these distance values can
then be used as input for tree-reconstruction pro-
grams such as neighbor-joining. In this paper, we
propose the first word-based phylogeny approach
that is based on ‘multiple’ sequence comparison and
‘maximum likelihood’. Our algorithm first samples
small, gap-free alignments involving four taxa each.
For each of these alignments, it then calculates a
quartet tree and, finally, the program ‘Quartet Max-
Cut’ is used to infer a super tree for the full set of
input taxa from the calculated quartet trees. Exper-
imental results show that trees produced with our
approach are of high quality.

INTRODUCTION

Sequence-based phylogeny reconstruction is a fundamental
task in computational biology. Standard phylogeny meth-
ods rely on ‘sequence alignments’ of either entire genomes
or sets of orthologous genes or proteins. ‘Character-based’
methods such as ‘Maximum Parsimony’ (1,2) or ‘Maxi-
mum Likelihood’ (3) infer trees based on evolutionary sub-
stitution events that may have happened since the species
evolved from their last common ancestor. These methods

are generally considered to be accurate as long as the un-
derlying alignment is of high quality and as long as suitable
substitution models are used. However, for the task of mul-
tiple alignment no exact polynomial-time algorithm exists,
and even heuristic approaches are relatively time consum-
ing (4). Similarly, exact algorithms for character-based ap-
proaches are known to be ‘NP hard’ (5,6).

‘Distance’ methods, by contrast, infer phylogenies by es-
timating evolutionary distances for all pairs of input taxa.
Here, pairwise alignments are sufficient and can be faster
calculated than multiple alignments, but still require run
time proportional to the product of the lengths of the
aligned sequences. However, there is a loss in accuracy com-
pared to character-based approaches, as all information
about evolutionary events is reduced to a single number for
each pair of taxa, and not more than two sequences are
considered simultaneously, as opposed to character-based
approaches, where all sequences are examined simultane-
ously. The final trees are obtained by clustering based on
the distance matrices, most commonly with ‘Neighbor Join-
ing (NJ)’ (7) or ‘BIONJ’ (8). Since both pairwise and multi-
ple sequence alignment is computationally expensive, they
are ill-suited for the increasingly large data sets that are
available today due to the next-generation sequencing tech-
niques.

In recent years, a large number of fast ‘alignment-free’
methods have been proposed for phylogeny reconstruction,
see (9-15) for review articles. Some of these approaches are
using some sort of ‘micro-alignments’ and infer phyloge-
netic distances from the number of mismatches in these
simplified alignments. So, strictly-spoken, these methods
are not ‘alignment-free’, but most authors refer to them
as ‘alignment-free’ anyway, since ‘micro-alignments’ can be
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found by rapid pattern-matching algorithms, avoiding the
need to calculate full alignments of the compared sequences.

Another advantage of the so-called ‘alignment-free’
methods for genome comparison is that they can circum-
vent common problems of alignment-based approaches
such as genome rearrangements and duplications. More-
over, many alignment-free methods can be applied not only
to entire genomes, but also to partially sequenced genomes
or even to unassembled reads (16-22). A disadvantage of
these methods is that they are often considerably less ac-
curate than slower, alignment-based methods. A systematic
evaluation of existing alignment-free methods for a variety
of different application scenarios has been carried out in the
‘AFproject’ (23).

‘co-phylog’ (18) is a recently proposed ‘alignment-free’
method that is based on ‘micro alignments’. This approach
finds short, gap-free alignments of a fixed length, consist-
ing of matching nucleotide pairs only—except for the mid-
dle position in each alignment, where mismatches are al-
lowed. Phylogenetic distances are estimated from the frac-
tion of such alignments for which the middle position is a
mismatch. As a generalization of this approach, ‘andi’ (24)
uses pairs of maximal exact word matches that have the
same distance to each other in both sequences and uses
the frequency of mismatches in the segments between those
matches to estimate the number of substitutions per posi-
tion between two input sequences. A further development
of this approach is ‘phylonium’ (295).

Since ‘co-phylog’ and ‘andi’ require a minimum length of
the flanking word matches in order to reduce the number of
matches that are mere random background matches, they
do not perform well on distantly related sequences where
fewer exact matches with the required minimum length can
be found, if any at all. Moreover, the number of random
segment matches grows quadratically with the length of the
input sequences while the expected number of homologous
matches grows only linearly. Thus, the minimum match
length must be increased in these approaches if long se-
quences are to be compared to limit the number of back-
ground matches. This, in turn, reduces the number of ho-
mologous segment matches that are found, and therefore
the amount of information that is available to estimate phy-
logenetic distances.

Other alignment-free approaches are based on the length
of maximal common substrings between sequences that can
be rapidly found using suffix trees or related data structures
(26,27). As a generalization of this approach, some methods
use longest common substrings with a certain number of
mismatches (28-32). Finally, methods have been proposed
that estimate phylogenetic distances from the decay of the
number of word matches as a function of the word length
(33,34).

In previous publications, we proposed to use words
with ‘wildcard characters’—so-called ‘spaced words’—for
alignment-free sequence comparison (35-37). Here, a bi-
nary pattern of ‘match’ and ‘don’t-care’ positions speci-
fies the positions of the ‘wildcard’ characters, see also (38—
40). In ‘Filtered Spaced-Word Matches (FSWM)’ (41) and
‘Proteome-based Spaced-Word Matches (Prot-SpaM)’ (42),
alignments of such spaced words are used where sequence
positions must match at the ‘match’ positions while mis-

S;I: TACTAGCGTCG
So: ACTCCTAGTGTTG

Figure 1. Spaced-word match W with respect to a pattern P = 1101001 of
weight w = 4. ¥ can be seen as a gap-free pairwise alignment that has the
same length as P, with matching nucleotide at the four ‘match positions’
and possible mismatches at the three ‘don’t-care’ positions.

S;:CCCAAGGAC

So: AACTACGTACCT

S3:AACTACGTAC C

S4:CCACGT CCGC G

Ss: AGACTCCCAAGG A

S¢:TCCCATGGACC

S;:AACTACGTAC C A
123456 78910111213

Figure 2. P-block for a pattern P = 11001: the spaced word W = CC**G
occurs at [S1, 2], [S4, 1], [S5, 7] and [S, 3].

matches are allowed at the ‘don’t-care positions’, see Fig-
ure 1. A score is calculated for every such spaced-word
match in order to remove—or ‘filter out’—‘background’
spaced-word matches; the mismatch frequency of the re-
maining ‘homologous’ spaced-word matches is then used
to estimate the number of substitutions per position that
happened since two sequences evolved from their last com-
mon ancestor. The filtering step allows us to use patterns
with fewer match positions in comparison to above men-
tioned methods ‘co-phylog’ and ‘andi’, since the vast major-
ity of the background noise can be eliminated reliably. Con-
sequently, phylogenetic distances calculated with ‘FSWM’
and ‘Prot-SpaM’ are still accurate, if large and distantly re-
lated sequences are compared.

In the present paper, we introduce a novel approach
to phylogeny reconstruction called ‘Multiple Spaced-Word
Matches (Multi-SpaM)’ that combines the ‘speed’ of the so-
called ‘alignment-free’ methods with the ‘accuracy’ of the
‘Maximum-Likelihood” approach. While other alignment-
free methods are limited to ‘pairwise’ sequence compari-
son, we generalize our previous ‘FSWM’ approach to ‘mul-
tiple’ sequence comparison. For a binary pattern P rep-
resenting ‘match’ and ‘don’t-care’ positions, ‘Multi-SpaM’
identifies so-called ‘P-blocks’ consisting of four matching
spaced words from four different sequences each. That is,
a P-block can be seen as a gap-free ‘micro alignment’ of
four different sequences, with matching nucleotides at the
‘match’ positions of the underlying binary pattern and pos-
sible mismatches at its ‘don’t-care’ positions, see Figure 2 for
an example. For each such P-block, an optimal ‘Maximum-
Likelihood’ tree topology is calculated with the software
‘RAXML’ (43). We then use the ‘Quartet MaxCut’ algo-
rithm (44) to obtain a super tree from the calculated quar-
tet tree topologies. We show that on both simulated and
real data, ‘Multi-SpaM’ produces phylogenetic trees of high
quality and often outperforms other alignment-free meth-
ods. An earlier version of the present paper has been pub-
lished in the proceedings of the ‘RECOMB-CG’ conference
(45).



MATERIALS AND METHODS
Spaced words and P-blocks

To describe ‘Multi-SpaM’, we first need to introduce some
formal definitions. We want to compare sequences over an
alphabet A; since our approach is dealing with DNA se-
quences, our alphabet is A = {4, C, G, T}. For a pattern
length ¢ and a binary pattern P € {0, 1}*, a ‘spaced word’
with respect to P is a word W of length ¢ over A U {x}, such
that W(i) = * if and only if P(i) = 0. A spaced word W can
be considered as a regular expression where “*’ is a ‘wild-
card character’. A position i € {1, ..., £} is called a ‘match
position’ if P(i) = 1 and a ‘don’t-care position’ otherwise.
The number of match positions in P is called the ‘weight’
of P. For a DNA Sequence S of length n and a position 1 <
i<n—{£+1,wesay that a ‘spaced word’ ¥ with respect to
P occurs in S at position i — or that [S, i] is an ‘occurrence’
of W—if S(i +j — 1) = W(j) for all match positions j of P.
This corresponds to the definition previously used in (35)
and (37).

A pair ([S, i, [S, {]) of occurrences of the same spaced
word W is called a ‘spaced-word match’. For a substitution
matrix assigning a ‘score’ s(X, Y) to every pair (X, Y) of
nucleotides, we define the ‘score’ of a spaced-word match
(S, i, [S, i]) of length ¢ as

>SS +k=1), S +k—1))

1<k<t

That is, if we align the two occurrences of W to each other,
the score of the spaced-word match is the sum of the scores
of the nucleotides aligned to each other. In ‘Multi-SpaM’,
we are using the following nucleotide substitution matrix
that has been proposed in (46):

A c G T
A91 —114 —-31 —123

C 100 —125 —31 (1)
G 100 —114
T 91

‘Multi-SpaM’ starts with generating a binary pattern P
with user-defined length ¢ and weight w; by default, we use
values £ = 110 and w = 10, i.e. by default the pattern has 10
‘match positions’ and 100 ‘don’t-care’ positions. We are us-
ing a low ‘weight’ to obtain a large number of spaced-word
matches when comparing two sequences. This includes nec-
essarily a high proportion of random spaced-word matches.
The high number of ‘don’t-care’ positions, on the other
hand, allows us to accurately distinguish between ‘homolo-
gous’ and ‘background’ spaced-word matches.

Given these parameters, a pattern P with minimal ‘over-
lap complexity (OC)’ is calculated by running our previ-
ously developed software tool ‘rasbhari’ (47). The OC of a
pattern or a set of patterns is defined in terms of the number
of overlapping 1’s if the patterns are shifted against them-
selves and against each other, for multiple pattern sets. It
has been shown that the OC of patterns is closely related
to their ‘sensitivity’ in database searching (48,49) and to the
statistical stability of the number of spaced-word matches
(37).
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As a basis for phylogeny reconstruction, we are using
four-way ‘micro alignments’ consisting of occurrences of
the same spaced word with respect to P in four different
sequences or their reverse complements. We call such an
alignment a ‘quartet P-block’ or a P-block, for short. A
P-block is, thus, a gap-free alignment of length ¢ where in
the k-th column identical nucleotides are aligned if k is a
‘match’ position in P, while mismatches are possible if k is a
‘don’t-care’ position (see Figure 2). ‘Multi-SpaM’ considers
P-blocks involving spaced words from both strands of the
input sequences. It is clear that the number of P-blocks can
be very large: if there are n occurrences of a spaced-word W
in n different sequences, then this gives rise to (Z) different P-
blocks. Thus, instead of using all possible P-blocks, ‘Multi-
SpaM’ randomly samples a limited number of P-blocks to
keep the program run time under control.

For phylogeny reconstruction, we want to use P-blocks
that are likely to represent true homologies. Therefore, we
introduce the following definition: a P-block is called ‘ho-
mologous’ if it contains at least ‘one’ spaced-word occur-
rence [S, 7], such that each of the three spaced-word matches
of [S, /] with the remaining occurrences has a positive score.
Note that a ‘homologous’ P-block in the sense of this for-
mal definition is, of course, not necessarily homologous’ in
the usual sense, i.e. the four involved sequence segments are
not necessarily derived from one common anchestral seg-
ment. To sample a list of homologous P-blocks in the sense
of our definition, we randomly select spaced-word occur-
rences with respect to P from the input sequences and their
reverse complements. For each selected [S, 7], we then ran-
domly select occurrences of the same spaced word from se-
quences S # S, until we have found three occurrences of W
from three different sequences that all have positive scores
with [S, 7.

To find spaced-word matches efficiently, we first sort the
list of all spaced-word occurrences with respect to P in
lexicographic order, such that all occurrences of the same
spaced word appear as a contiguous section of the list. Once
we have sampled a homologous P-block as described, we re-
move the four spaced-word occurrences from our list, so no
two of the sampled P-blocks can contain the same occur-
rence of a spaced word. The algorithm continues to sample
P-blocks until no further P-blocks can be found, or until
a maximal number M of P-blocks is reached. By default,
‘Multi-SpaM’ uses a maximum of M = 1000 000 P-blocks,
but this parameter can be adjusted by the user.

Quartet trees

For each of the sampled quartet P-blocks, we infer an
unrooted binary tree topology. This most basic phyloge-
netic unit is called a ‘quartet’ topology; there are three
different quartet topologies for a set of four taxa. To
identify the best of these three topologies, we use the
‘Maximum-Likelihood” software ‘RAXxML’ (43) with the
‘GTR’model (50). This corresponds to using the command-
line version of ‘RAXML’ with the option '-m GTRGAMMA
-f g -p 12345'. We note that ‘RAXML’ is a general
‘maximum-likelihood’ software, its use in our context is
fairly degenerated, as we only use it to infer optimal quartet
topologies.
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After obtaining the optimal quartet topology for each of
the sampled P-blocks, we need to amalgamate them into a
single tree spanning the entire taxa set. This task is called the
‘Supertree Task’ (51) and is known to be ‘NP hard’, even
for the special case where the input is limited to quartets
topologies, as in our case (52). Nevertheless there are several
heuristics for this task, with ‘MRP’ (53,54) the most pop-
ular. Here we chose to use ‘Quartet MaxCut’ (44,55) that
proved to be faster and more accurate for this kind of in-
put (56). In brief, ‘Quartet MaxCut’ recursively partitions
the taxa set, where each such partition defines a split in the
final tree. If, during this process, a set A of taxa is to be
split into two subsets, the program tries to put neighbor-
ing taxa from the quartet trees into the same subset while
non-neighboring taxa can end up in different subsets. To
achieve this, a multi-graph is defined where the taxa in the
set A are represented as nodes, and each pair of taxa in each
quartet tree is represented as an edge. That is, each quar-
tet tree defines six edges in the multi-graph. Edges between
neighboring taxa in a quartet tree are seen as ‘good’ edges
that are to be retained, if possible, while edges between non-
neighboring taxa are ‘bad’ edges that can be removed by
the partition. The program then finds a partition that min-
imizes the ratio between good and bad edges that are to be
removed, see (44,55) for details.

Implementation

To keep the run time of our software manageable, we inte-
grated the ‘RAXML’ code directly into our program code.
We parallelized our program with ‘openmp’ (57).

TEST RESULTS

To evaluate ‘Multi-SpaM’ and to compare it to other fast,
alignment-free methods, we applied these approaches to
both simulated and real sequence data and compared the
resulting trees to reference trees. In phylogeny reconstruc-
tion, artificial benchmark data are often used since here,
‘correct’ reference trees are known. For the real-world se-
quence data that we used in our study, we had to rely on ref-
erence trees that are believed to reflect the true evolutionary
history, or on trees calculated using traditional, alignment-
based methods that can be considered to be reasonably ac-
curate. In our test runs, we used standard parameters for
all methods, if such parameters were suggested by the re-
spective program authors. The program ‘kmacs’ (28) that
was one of the programs that we evaluated, has no default
value for its only parameter, the number k of allowed mis-
matches in common substrings. Here, we chose a value of k
= 4. While ‘Multi-SpaM’ produces tree topologies without
branch lengths, all other methods that we evaluated produce
distance matrices. To generate trees from these matrices, we
used ‘Neighbor-joining’ (7).

To compare the trees produced by the different
alignment-free methods to the respective benchmark
trees, we used the ‘Robinson-Foulds (RF)’ metric (58),
a standard measure to compare how different two tree
topologies are. The smaller the ‘RF’ distances between
the reconstructed trees and the corresponding reference
trees are, the better a method is. To calculate ‘Neighbor-
joining’ trees and to calculate ‘RF’ distances between the

obtained trees and the respective reference trees, we used
the ‘PHYLIP’ package (59).

As explained above, both ‘FSWM’ and ‘Multi-SpaM’
rely on binary patterns of ‘match’ and ‘don’t-care’ posi-
tions; the results of these programs therefore depend on the
underlying patterns. Both programs use the software ‘ras-
bhari’ (47) to calculate binary patterns. ‘rasbhari’ uses a
probabilistic algorithm, so different program runs usually
return different patterns and, as a result, different program
runs with ‘FSWM’ and ‘Multi-SpaM’ may produce slightly
different distance estimates, even if the same parameter val-
ues are used. To see how ‘FSWM’ and ‘Multi-SpaM’ de-
pend on the underlying binary patterns, we ran both pro-
grams ten times on each data set. The figures in the ‘Results’
section report the ‘averageRF’-distance for each data set
over the ten program runs. Error bars indicate the highest
and lowest RF-distances, respectively, for the 10 program
runs.

Simulated sequences

At first, we evaluated ‘Multi-SpaM’ on data sets gener-
ated with the ‘Artificial Life Framework (ALF)’ (60). ‘ALF’
starts by simulating an ancestral genome that includes a
number of genes. According to a guide tree that is either
provided by the user or randomly generated, ALF simulates
speciation events and other evolutionary events such as sub-
stitutions, insertions and deletions for nucleotides, as well
as duplications, deletions and horizontal transfer of entire
genes. A large number of parameters can be specified by the
user for these events. We used parameter files that were used
in a study by the authors of ALF (61). This way, we gen-
erated six data sets, three with simulated y-proteobacterial
genomes (b1, b2, b3), and three with simulated mammalian
genomes (ml, m2, m3).

We used the base parameter sets for each data set and
only slightly modified them to generate DNA sequences for
roughly 1000 genes per taxon that we then concatenated to
full genomes. As in (61), we used parameter values 7.2057
and 401.4189 for the length distribution of the simulated
bacterial sequences and 1.7781 and 274.1061, respectively,
for the length distribution of the simulated mammalian se-
quences. Within each data set, we used the same rate for
gene duplication, gene loss and horizontal gene transfer, but
we used different rates for different data sets. For the six data
sets, the corresponding rates were set to 0.0025 (b1), 0.0018
(h2), 0.0017 (b3), 0.0058 (m1), 0.0068 (m2), 0.011 (m3), re-
spectively. Each data set uses a different guide tree that was
sampled from known topologies. The average pairwise dis-
tances in our simulated sequence sets are as follows (aver-
age number of substitutions per position as estimated with
FSWM):ml: 0.11; m2: 0.12; m3: 0.07; bl: 0.30; b2: 0.23;
b3:0.25.

Each data generated in this way set contains 30 genomes
(taxa) and has a size of around 10 mb. As shown in Fig-
ure 3, none of the tools that we evaluated was able to exactly
reconstruct the reference tree topologies for the simulated
bacterial genomes. In some cases, the average normalized
RF distance to the reference trees was 1.0, the maximum
possible dissimilarity value. Therefore, we also calculated
the triplet distance between the reconstructed trees and the
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Figure 3. Average ‘normalized Robinson-Foulds (RF)’ distances between
trees calculated with alignment-free methods and reference trees for three
sets of simulated bacterial genomes. ‘FSWM’ and ‘Multi-SpaM’ were run
10 times, with different patterns P generated (see the main text). Error bars
indicate the lowest and highest RF distances, respectively.
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Figure 4. ‘Normalized RF’ distances for three sets of simulated mam-
malian genomes. If no bar is shown, the RF distance is zero for the re-
spective method and data set. For example, the RF distance between the
tree generated by ‘kmacs’ for data set m/ and the reference tree is zero, i.e.
here the reference tree topology was precisely reconstructed. Error bars for
‘FSWM’ and ‘Multi-SpaM’ are as in Figure 3.

reference trees by running the program ‘tqDist” (62). The
results are shown in the Supplementary Data. Reference
topologies for the simulated mammalian genomes could be
reconstructed by some tools, although no method could re-
construct all three reference topologies exactly, see Figure 4.

We also evaluated how the parameters of the genome se-
quence simulator ‘ALF’ affect the performance of ‘Multi-
SpaM’ on the simulated genomes. A figure showing the
influence of these parameters is given in the Supplemen-
tary Data. In short, the rate of ‘horizontal gene transfer
(HGT)’ has a larger influence on the quality of the result-
ing trees than other parameters of ‘ALF’. This is not sur-
prising, since ‘HGT’ events can lead to false quartet tree
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topologies, whereas the other program parameters mostly
affect the ‘number’ of P-blocks that can be used by ‘Multi-
SpaM’, but not so much the resulting quartet topologies.
Even so, the ‘HGT’ rate in ‘ALF’ had only minor influence
on the quality of the resulting trees, compared to the guide
tree that is used in the simulation.

Real genomes

We also applied the programs that we evaluated to real
genomes to see if the results are similar to our results on
simulated genomes. Here, our first data set were 29 Es-
cherichia coli and Shigella genomes that are commonly used
as a benchmark data set to evaluate alignment-free meth-
ods (24). As a reference, we used a tree calculated with
‘Maximum Likelihood’, based on a ‘mugsy’ alignment (63).
The data set is 144 mb large and the average distance be-
tween two sequences in this set is ~0.0166 substitutions per
sequence position.

Next, we used 19 Wolbachia genomes that have been an-
alyzed by (64); we used the phylogeny published in their pa-
per as a reference. The total size of this sequence set is 25
mb, the average pairwise distance is 0.06 substitutions per
position. The results of these three series of test runs are
summarized in Figure 5.

As a third real-world test case, we used a much larger se-
quence set, namely a set of 14 plant genomes with a total
length of 4.8 gb. This data set was originally used by Hatje
and Kollmar (65) and has been subsequently used as bench-
mark data in other publications on alignment-free meth-
ods. Figure 6 shows the resulting trees. For this data set,
we used a pattern with a weight of w = 12 instead of the
default value w = 10, to keep the number of background
spaced-word matches manageable. As can be seen in Fig-
ure 6, ‘Multi-SpaM’ and ‘FSWM’ produced fairly accurate
trees for this data set, with only minor differences to the
reference tree: ‘Multi-SpaM’ misclassified ‘Carica papaya’,
whereas ‘FSWM’ failed to classify Brassica rapa correctly.
None of the other alignment-free tools that we evaluated
could produce a reasonable tree for this data set: ‘andi’ re-
turned a tree that is rather different to the reference tree,
while ‘kmacs’ and ‘co-phylog’ could not finish the program
runs in a reasonable time frame.

In addition, we used three real-world data sets that were
used as benchmark data in the ‘AFproject’ paper (23): an-
other data set of 27 E. coli/Shigella genomes, a set of mito-
chondrial genomes from 25 fish species, and a set of 8 strains
of Yersinia.

As explained in the "Materials and Methods’ section,
‘Multi-SpaM’ calculates an optimal tree topology for each
of the sampled ‘quartet P-blocks’. Here, it can happen that
no single best topology is found. In particular for closely
related sequences, this happens for a large fraction of the
sampled quartet P-blocks. For the E. coli/Shigella data set,
for example, ~50% of the P-blocks were inconclusive, i.e.
‘RAXML’ could find no single best tree topology. We ob-
served a similar result for a data set of 13 Brucella genomes
where the pairwise phylogenetic distances are even smaller
than for the E. coli/Shigella data set, namely 0.0019 substi-
tutions per site, on average. Here, roughly 80% of the blocks
were inconclusive. For all other data sets, the fraction of in-
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Robinson-Foulds distance (normalized)

27 E.coli/Shig. 29 E.coli/Shig. Fish mito. Plants Wolbachia Yersinia
Datasets

Figure 5. ‘Normalized RF’ distances for six sets of benchmark genomes: 29 E. coli/Shigella genomes, another set of 27 E. coli/ Shigella genomes, mitochon-
drial genomes from 25 different fish species, 14 plant genomes, 19 Wolbachia genomes and 8 Yersinia genomes. Error bars for ‘FSWM ’and ‘Multi-SpaM’
as in Figure 3. Unlike in Figure 4, missing bars for the plant data sets in this figure mean that the programs in question, co-phylog and kmacs, did not
terminate on this data set.
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Figure 6. Reference tree (A) from (65) and trees reconstructed by ‘andi’ (B), ‘FSWM’ (C) and ‘Multi-SpaM’ (D) for a set of 14 plant genomes.



conclusive quartet P-blocks was negligible. For example, for
the set of 14 plant genomes, only ~250 out of the 1 000 000
sampled P-blocks were inconclusive.

Program run time and memory usage

Table 1 shows the program run time for ‘Multi-SpaM’,
‘FSWM’, ‘kmacs’, ‘andi’ and ‘co-phylog’ on all six real-
world data sets in our program comparison. The test runs
were done on a 5 x Intel(R) Xeon(R) CPU E7-4850 with
2.00 GHz, a total of 40 threads (20 cores). Some of the pro-
grams that we evaluated have been parallelized. For these
programs, both ‘wall clock time’ and ‘CPU’ time are re-
ported. For the largest data set in our study, the set of
14 plant genomes, the peak ‘RAM’ usage was 76 GB for
‘FSWM’, 110 GB for ‘andi’ and 142 GB for ‘Multi-SpaM’.

In memory saving mode, the peak ‘RAM’ usage of
‘Multi-SpaM’ could be reduced to 10.5 GB, but this roughly
doubles the program run time. To achieve this, the list of
spaced words is not kept in memory in its entirety, but rather
in 16 chunks based on the first two match positions. At any
given time, there is only one chunk kept in main memory
in addition to the sequences itself and the list of P-blocks.
The overhead, such as additional comparisons, results in in-
creased run times.

DISCUSSION

Standard software tools for phylogeny reconstruction are
relatively slow, because they rely on multiple sequence align-
ments and on time-consuming probabilistic calculations.
Therefore, a variety of so-called ‘alignment-free’ methods
have been proposed recently, which are orders of magni-
tudes faster than those alignment-based approaches. Ex-
isting alignment-free methods calculate ‘distances’ between
DNA or protein sequences that can be used as a basis for
phylogeny reconstruction. In general, however, distance-
based phylogeny methods are considered to be less accu-
rate than ‘character-based’ methods. In this paper, we intro-
duced a novel approach to phylogeny reconstruction called
‘Multi-SpaM’ that combines the speed of alignment-free
methods with the accuracy of ‘Maximum Likelihood’. To
our knowledge, this is the first alignment-free approach that
uses multiple sequence comparison and likelihood.

Our test runs show that ‘Multi-SpaM’ can produce
phylogenetic trees of high quality. It outperforms other
alignment-free methods on a number of test data sets, in
particular on sequences with large evolutionary distances.
On sets of very similar sequences, such as different strains
of the same bacterial species, however, our approach was
sometimes outperformed by other alignment-free methods.
As shown in Figure 5, the programs ‘andi’, ‘co-phylog’ and
‘FSWM’ produce better results than ‘Multi-SpaM’ on a set
of E. coli/Shigella genomes. This may be due to our above-
mentioned observation that there is often no single best tree
topology for a ‘quartet P-block’, if the compared sequences
are very similar to each other.

As mentioned in the ‘Results’ section, we used ‘Neighbor-
Joining (NJ)” (7) in order to obtain phylogenetic trees
from the distance matrices produced by the competing
alignment-free programs ‘andi’, ‘co-phylog’, ‘FSWM’ and
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‘kmacs’. As an alternative, we also ran the program ‘BIONJ’
(8). It should be mentioned that, in the majority of test runs,
‘BIONJ” produced slightly better results than ‘NJ’, espe-
cially on the distance matrices produced by ‘FSWM’. In our
program evaluation, we used ‘NJ’ anyway, since this pro-
gram is used in most other studies to evaluate alignment-
free methods, e.g. in the recently published ‘AFproject’
benchmark study (23), so using ‘NJ’ makes it easier to com-
pare our results to other studies.

Calculating optimal tree topologies for the sampled
‘quartet P-blocks’ is a relatively time-consuming step in
‘Multi-SpaM’. In fact we observed that, for a given set of
input sequences, the program run time of ‘Multi-SpaM’ is
roughly proportional to the number of P-blocks for which
topologies are calculated. However, the maximal number
of ‘quartet blocks’ that are sampled is a user-defined pa-
rameter. By default we sample up to M = 1 000 000
quartet blocks; in our test runs, the quality of the re-
sulting trees could not be significantly improved by fur-
ther increasing M (test results with different values of M
are shown in the Supplementary Data). Consequently, our
method is relatively fast on large data sets, where only a
small fraction of the possible quartet-blocks is sampled. By
contrast, on small data sets, ‘Multi-SpaM’ is slower than
other alignment-free methods. To further speed-up ‘Multi-
SpaM’, we have parallelized our software to run on multiple
cores; in Table 1, we report both wall-clock and ‘CPU’ run
times. It should be straight-forward to adapt our software
to run on distributed systems, as has been done for other
alignment-free approaches (66,67).

Apart from the maximum number of sampled quartet
blocks, the only relevant parameters of our approach are the
‘length’ and the ‘weight’ (number of ‘match positions’) of
the underlying binary pattern. For ‘Multi-SpaM’, we used
similar default values as in ‘Filtered Spaced Word Matches
(FSWM)’ (41), namely a weight of w = 10 and a pattern
length of ¢ = 110, so our default patterns have 100 ‘don’t-
care’ positions. As mentioned in the ‘Materials and Meth-
ods’ section, a large number of ‘don’t-care’ positions is im-
portant in ‘Multi-SpaM’ as well as in our previous approach
‘FSWM’, since this makes it easier to distinguish homolo-
gous from random background spaced-word matches. Also,
a large number of ‘don’t-care’ positions helps to reduce the
number of ‘inconclusive’ quartet P-blocks, where no single
best quartet tree exists, on data sets where sequences are
closely related to each other.

Our default pattern length ¢ = 110 limits, on the other
hand, the number of homologous quartet blocks that can
be found. Since ‘Multi-SpaM’ is based on ‘gap-free’ four-
way alignments of length ¢, P-blocks with positive scores
can only be expected in sequence regions without insertions
or deletions. For real-world data sets, it is difficult to tell
how exactly the number of possible homologous P-blocks
depends on the pattern length—to find out, one would need
either a reliable multiple alignment of the sequences or the
full list of homologous P-blocks. But both are impossible
to calculate for large genome sequences. As a proxy, to get
an idea how the number of homologous ‘quartet’ P-blocks
is affected by the pattern length ¢, we counted the number
of ‘pairwise’ spaced-word matches with positive scores for
different patterns with a fixed weight and variable length.
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Table 1. Run time in seconds for different alignment-free approaches on six sets of real-world genomes. On the largest data set, the 14 plant genomes,
‘kmacs’ and ‘co-phylog’ did not terminate the program run. On this data set, we increased the pattern weight for ‘Multi-SpaM’ from the default value of w
=10 to w = 12, in order to reduce the run time. Note that ‘Multi-SpaM’, ‘FSWM’ and ‘andi’ are parallelized, so we could run them on multiple processors,
while ‘kmacs’ and ‘co-phylog’ had to be run on single processors. The reported run times are ‘wall clock times’.

FSWM andi co-phylog kmacs Multi-SpaM

wall clock CPU wall clock CPU wall clock CPU
27 E.coli/Shigella 710 27,075 15 291 704 5,247 603 22,185
29 E.coli/Shigella 860 32,798 16 325 533 55,736 611 21,973
25 fish mitochondria 2 8 <1 3 9 5 27 1,054
14 plants 1,107,720 28,690,489 1,808 13813 - - 12,516 389,770
19 Wolbachia 65 2,185 3 42 113 24,961 484 15,804
8 Yersinia 91 3,333 5 34 50 1,083 183 6,182

For various real-world genomes, we found that, with our
default length £ = 110, the number of spaced-word matches
with positive scores is only slightly smaller than with a pat-
tern length of, for example, £ = 60. Details are shown in the
Supplementary Data.

In “‘Multi-SpaM’, we are using by default a relatively low
‘weight’ of the underlying pattern P, to obtain a sufficiently
large number of P-blocks. On very large data sets, on the
other hand, it is advisable to increase the weight of P, in or-
der to reduce the number of the spaced-word matches that
are considered, and thereby the program run time. For the
largest data set our study, the set of plant genomes, we in-
creased the pattern weight in our test runs from the default
value w = 10 to w = 12. A table in the Supplementary Data
shows that increasing the pattern weight can slightly dete-
riorate the quality of the resulting trees, so one should be
careful with this option.

We should mention that it is, in general, not possible to
predict the run time of ‘Multi-SpaM’ from the program pa-
rameters and the size of the input data alone. A relatively
time-consuming step of our algorithm is sampling homolo-
gous P-blocks. As detailed above, this is done by iteratively
picking a random spaced-word occurrence, and by looking
at other random occurrences of the same spaced word in
different sequences, until three spaced-word matches with
positive scores are found, i.e. until a homologous P-block
is found. Since we are using patterns with a low weight,
most random spaced-word matches have negative scores.
The number of spaced-word matches that have to be eval-
uated, until a homologous P-block is found, depends on
the input sequences and can vary considerably. This may be
the reason why the relative run time of ‘Multi-SpaM’, com-
pared to other methods, is rather variable, as can be seen in
Table 1. The instability of the program run time is a certain
disadvantage of our approach.

To distinguish between homologous and background
spaced-word matches, we are using a nucleotide substi-
tution matrix that has been published by Webb Miller’s
group (46), the same matrix that we are using in ‘Filtered
Spaced Word Matches’ (41). As we have shown in this
previous paper, homologous and background spaced-word
matches can be easily distinguished if the number of ‘don’t-
care positions’ is sufficiently large. The performance of our
program is, thus, hardly affected by the specific substitution
matrix that we are using; on most sequence sets one can ex-
pect to obtain similar results with an alternative matrix, or
even by simply counting matches and mismatches.

To calculate supertrees from quartet tree topologies, the
current implementation of ‘Multi-SpaM’ uses the previ-
ously developed software ‘Quartet MaxCut’ (44,55). We are
using this program since it is faster and produced better re-
sults on our data than other supertree approaches. A draw-
back of this approach is that the current version of ‘Multi-
SpaM’ generates tree ‘topologies’ only, i.e. trees without
branch lengths. We will investigate in the future, if our ap-
proach can be extended to calculate full phylogenetic trees
with branch lengths, based on the same ‘quartet’ P-blocks
that we have used in the present study.
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Abstract

Most methods for phylogeny inference are based on sequence align-
ments; they infer the phylogeny of a set of input taxa based on aligned
nucleotide or amino-acid residues. Gaps in alignments are usually not
used as phylogenetic signal even though they can, in principle, provide
valuable information. In this paper, we explore how information about
insertions and deletions can be utilized for phylogenetic tree inference.
Our approach does not need a full sequence alignment of the compared
sequences. Instead, we are using our previously developed approach
Multi-SpaM, to generate local gap-free four-way alignments, so-called
blocks. For adjacent blocks involving the same four sequences, we con-
sider the distances between these blocks in all four sequences, to obtain
information about insertions or deletions that have happened since the
four sequences evolved from their last common ancestor. This way, a
pair of adjacent blocks can support one of the three possible quartet
topologies for the four involved sequences. We are using this informa-
tion as input for Mazimum-Parsimony and for the software program
Quartet MaxzClut to reconstruct phylogenetic trees based on insertions
and deletions.



1 Introduction

The foundation of most phylogenetic studies are multiple sequence align-
ments (MSAs), either of partial or complete genomes or of individual genes
or proteins. If MSAs of multiple genes or proteins are used, there are two
possibilities to construct a phylogenetic tree: (1) the alignments can be con-
catenated to form a so-called superalignment or supermatriz. Tree building
methods such as Mazimum-Likelihood [45, 14], Bayesian Approaches [39] or
Mazimum-Parsimony [10, 12, 47] can then be applied to these superalign-
ments. (2) One can calculate a separate tree for each gene or protein family
and then use a supertree approach [4] to amalgamate these different trees
into one final tree, with methods such as ASTRAL [53], MRP [36] or Quartet
MazCut [44].

Multiple sequence alignments usually contain gaps representing inser-
tions or deletions (indels) that are assumed to have happened since the
aligned sequences evolved from their last common ancestor. Gaps, how-
ever, are usually not used for phylogeny reconstruction. Most of the above
tree-reconstruction methods are based on substitution models for nucleotide
or amino-acid residues. Here, alignment columns with gaps are either com-
pletely ignored, or gaps are treated as ‘missing information’, for example in
the frequently used tool PAUP* [47]. Some models have been proposed that
can include gaps in the Mazimum-Likelihood analysis such as TKF91 [48] and
TKF92 [49], see also [18, 1, 29]. Unfortunately, these models do not scale
well to genomic data. Thus, indels are rarely used as a source of information
for the phylogenetic analysis.

In those studies that actually make use of indels, this additional informa-
tion is usually encoded in some simple manner. The most straightforward
encoding is to treat the gap character as a fifth character for DNA compari-
son, or as a 21st character in protein comparison, respectively. Clearly, the
lengths of gaps are not explicitly considered in such an approach. That is,
for a gap of length ¢ in an MSA, the ¢ gap characters are treated as inde-
pendent insertion or deletion events. Some more downsides of this approach
are discussed in [41]; these authors introduced the ”simple encoding” of indel
data as an alternative. For every indel in the multiple sequence alignment,
an additional column is appended. This column contains a present/absent
encoding for an indel event which is defined as a gap with the same start and
end positions. If a longer gap is fully contained in a shorter gap in another
sequence, it is considered as missing information. Such a simple binary en-
coding is an effective way of using the length of the indels to gain additional
information and can be used in some mazimum-parsimony framework. A
disadvantage of these approaches is their relatively long runtime. The above



authors also proposed a more complex encoding of gaps [41] which they fur-
ther refined in a subsequent paper [33]. The commonly used approaches to
encode gaps for phylogeny reconstruction are compared in [34].

The “simple encoding” of gaps has been used in many studies; one recent
study obtained additional information on the phylogeny of Neoaves which was
hypothesized to have a "hard polytomy” [20]. Despite such successes, indel
information is still largely ignored in phylogeny reconstruction. Oftentimes,
it is unclear whether using indels is worth the large overhead and increased
runtime. On the other hand, it has also been shown that gaps can contain
substantial phylogenetic information [8].

All of the above mentioned approaches to use indel information for phy-
logeny reconstruction require MSAs of the compared sequences. Nowadays,
the amount of the available molecular data is rapidly increasing, due to the
progress in next-generation sequencing technologies. If the size of the ana-
lyzed sequences increases, calculating multiple sequence alignments quickly
becomes too time-consuming. Thus, in order to provide faster and more
convenient methods to phylogenetic reconstruction, many alignment-free ap-
proaches have been proposed in recent years. Most of these approaches cal-
culate pairwise distances between sequences, based on sequence features such
as k-mer frequencies [42, 35, 24] or the number [27] or length [25, 50, 30] of
word matches. Distance methods such as Neighbor-Joining [40] or BIONJ [13]
can then reconstruct phylogenetic trees from the calculated distances. For a
thorough overview, the reader is referred to recent reviews of alignment-free
methods [51, 16, 3].

Some of the more recent alignment-free methods use inexact word matches
between pairs of sequences [52, 17, 26], where mismatches are allowed to some
degree. Such word matches can be considered as pairwise, gap-free “micro-
alignments”. So, strictly spoken, these methods are not “alignment-free”.
In the literature, they are still called “alignment-free”, as they circumvent
the need to calculate full sequence alignments of the compared sequences.
The advantage of such “micro-alignments” is that inexact word matches can
be found almost as efficiently as exact word matches, by adapting standard
word-matching algorithms.

A number of these methods use so-called spaced-words [19, 24, 32]. A
spaced-word is a word composed of nucleotide or amino-acid symbols that
contains additional wildcard characters at certain positions, specified by a
pre-defined binary pattern P representing ‘match positions’ and ‘don’t-care
positions’. If the same ‘spaced word’ occurs in two different sequences, this
is called a Spaced-word Match or SpaM, for short. One way of using spaced-
word matches — or other types of inexact word matches — in alignment-free
sequence comparison is to use them as a proxy for full alignments, to estimate



the number of mismatches per position in the (unknown) full sequence align-
ment. This idea has been implemented in the software Filtered Spaced Word
Matches (FSWM) [26]; it has also been applied to protein sequences [23], and
to unassembled reads [22]. Other approaches have been proposed recently,
that use the number of SpaMs to estimate phylogenetic distances between
DNA sequences [32, 38|, see [31] for a review of the various SpaM-based
methods.

The SpaM approach has also been applied to been applied to multiple
sequence comparison. Multi-SpaM [7] is a recent extension of the FSMW
idea that finds multiple spaced-word matches with respect to some binary
pattern P. Such a multiple SpaM is called a P-block. Each P-block, thus,
consists four occurrences of the same spaced-word, with respect to the se-
lected pattern P. For each such block, the program then identifies the optimal
quartet tree topology, using the program RAzML [45]. Finally, a super tree
is found based on a large sample of quartet trees with the program Quartet
MazCut [44).

In the present paper, we use the blocks identified by Multi-SpaM to use
insertions and deletions as phylogenetic signal. More specifically, for pairs
of adjacent blocks that involve the same four sequences, we consider the dis-
tances between the two blocks in these four sequences. If this distance is the
same for two of the four sequences, but different for the remaining two se-
quences, this indicates that the two sequences with the same distance should
be grouped together, in the sense of mazimum parsimony. This way, a pair
of adjacent blocks may support one of the three possible quartet topologies
for the four involved sequences.

We investigate multiple ways of reconstructing phylogenetic trees based
on quartet topologies inferred in this way. In these experiments, we are
using indel information (A) as the sole source of phylogenetic information,
and (B) in conjunction with the quartet topologies that are constructed by
Multi-SpaM. To construct phylogenetic trees from indel information, we use
the Quartet MaxCut program that we previously used in Multi-SpaM, but
we also use Mazimum-Parsimony methods to find trees solely based on indel
information. We show that under certain circumstances, the indel data is
highly accurate and can improve the quality of the phylogenetic trees in
some cases.



2 Design and Implementation

2.1 Spaced words, P-blocks and distances between P-
blocks

We are using standard notation from stringology as defined, for example, in
[15]. For a sequence S over some alphabet, S(i) denotes the i-th symbol of S.
In order to investigate the information that can be obtained from putative
indels in an alignment-free context, we use the P-blocks generated by the pro-
gram Multi-SpaM [7]. At the start of every run, a binary pattern P € {0,1}¢
is specified for some integer £. Here, a ”1” in P denotes a match position, a
70" stands for a don’t-care position. The number of match positions in P is
called its weight and is denoted by w. By default, we are using parameter
values ¢ = 110 and w = 10, so by default the pattern P has 100 don’t-care
positions.

A spaced-word W with respect to a pattern P is a word over the alphabet
{A,C,G, T}u{*} with W (i) = * if and only if 7 is a don’t care position of P,
ie. if P(i) =0. If S is a sequence of length N over the nucleotide alphabet
{A,C,G, T}, and W is a spaced word, we say that W occurs at some position
ie{l,...,0},if S(i+j-1)=W(j) for every match position j in P. For two
sequences S and S’ and positions ¢ and ¢’ in .S and S’, respectively, we say
that there is a spaced-word match (SpaM) between S and S’ at (i,4'), if
the same spaced word W occurs at ¢ in S and at ' in S’. A SpaM can be
considered as a local pairwise alignment without gaps. Given a nucleotide
substitution matrix, the score of a spaced-word match is defined as the sum
of the substitution scores of the nucleotides aligned to each other at the don’t-
care positions of the underlying pattern P. In FSWM and Multi-SpaM, we
are using a substitution matrix described in [5]. In FSWM, only SpaMs with
positive scores are used. It has been shown that this SpaM-filtering step can
effectively eliminate most random spaced-word matches [26].

The program Multi-SpaM is based on so-called P-blocks, where a P-block
is defined as four occurrences of some spaced word W in four different se-
quences. For a set of N > 4 input sequences, a P-block can be thus con-
sidered as a local gap-free four-way alignment. To exclude spurious random
P-blocks, Multi-SpaM removes P-blocks with low scores. More precisely, a
P-block is required to contain one occurrence of the spaced-word W, such
that the other three occurrences of W have positive scores with this first
occurrence. In this paper, we are considering pairs of P-blocks involving the
same four sequences, and we are using the distances between the two blocks
in these sequences as phylogenetic signal.



2.2 Phylogeny inference using distances between P-
blocks

Let us consider two P-blocks B; and B, involving the same four sequences
Sy, Sy, S, Sy, and let D, D,., D;, D, be the distances between B; and B, in
the four sequences. More specifically, we define D, as the length of the
segment in S, between the two spaced-word occurrences corresponding to
By and B,, see Figures 1 and 2 for examples. If we find that two of these
distances, say D, and D,, are different from each other, this would imply
that an insertion or deletion has happened in S, and .S, between B; and B,
since the two sequences evolved from their last common ancestor. If D, and
D, are equal, no such insertion or deletion has to be assumed. It is therefore
possible that the distances between By and Bs support one of three possible
binary quartet topologies for the four involved sequences, in the sense of the
parsimony principle, applied to insertions and deletions.

A binary quartet tree or topology corresponds to a split of the involved
taxa, with two taxa on each side of the split: for taxa A, B,C, D, the split
AB|C'D would correspond to the topology where A and B are at neighboring
leaves, as well as C' and D, and an internal edge would separate A and B from
C and D. There are two situations where the above distances D,.,..., D,
would support one of the three possible binary quartet topologies for the
respective sequences. (1) Two distances, say D,., D;, are equal to each other,
and the other distances, D;, D, are also equal to each other, but different
from D, and Dy, as for example in Figure 1. We say that this situation
would strongly support the split S,.S¢S:S,, and we call (By, Bs) a type 1
pair of blocks. (2) Two distances, D, and D; are equal and Dy, D, would
be different from D, and D,, but also different from each other, as shown,
for example, in Figure 2. Here, we would say that this constellation would
weakly support the same split S,.54]5;S,; in this case, we call (B, By) a type
2 pair of blocks. By contrast, if the four distances are either equal to each
other, or if they have four different values, no quartet topology would be
supported. If a pair of P-blocks (Bj, By) is either a type 1 or a type 2 pair
of blocks, we call (By, Bs) an informative P-block pair.

We implemented two different ways of inferring phylogenetic trees from a
set B of informative P-block pairs. First, we calculated the quartet topology
for each informative P-block pair in B, and we applied a super-tree approach
to infer a topology for a set of input sequences from these quartet topologies.
Here, we used the program Quartet MaxCut [43, 44] which is very fast and
accurate. Furthermore, this method can compensate for inaccurate quartet
topologies, as long as there are sufficiently many quartet topologies in to-
tal [46, 2]. This approach is similar to the algorithm implemented in our



Sequence Distance

Sy A G G CAACGGT 2
Ss AG G CATOCGGT 2
St A G GCAACTTC CGGT 4
Su A G G CAACTCGG T 4

Figure 1: Distances between two P-blocks involving the same four sequences.
In the sense of maximum parsimony with respect to insertions and deletions,
these distances would strongly support the split S,.S;|S;.S,.

Sequence Distance
S, A GG CAACGGT 2
S AAG G CATOCAGGT 2
St A GG CAACTOCGGT 4
Su A GG CAATT CAGGT 3

Figure 2: Distances between two P-blocks as in Figure 1. Here, the distances
would weakly support the split S,.54]S..S.,.

previous software program Multi-SpaM where we inferred quartet topologies
from the nucleotides aligned at the don’t-care positions of P-blocks.

As an alternative, we used the distances in informative P-block pairs
from B as input for Mazimum-Parsimony [10, 12]. To this end, we generate
a character matrix M as follows: the rows of M correspond, as usual, to
the input sequences, and each informative P-block pair corresponds to one
column of M. The distances between the two P-blocks are encoded by char-
acters 0, 1 and 2, such that equal distances in an informative P-block pair
were represented by the same character. For sequences not involved in an
informative P-block pair, the entry in M is empty and considered as 'missing
information’. In Figure 1, for example, the entries for S,, Ss, S, S, would be
0, 0, 1, 1; in Figure 2, the entries would be 0, 0, 1, 2. Although encoding
P-block distances as a character matrix M and using this matrix as input
for parsimony software is much slower, compared to the Quartet MaxCut, it
is more intuitive approach. Additionally, the differences between both types
of informative P-blocks are automatically considered using this approach
whereas both types are treated the same when we infer quartet topologies.
Furthermore, this approach is not restricted to quartet blocks, but could be
directly generalized to distances between ”blocks” involving more than four
sequences. If there are only strongly supported splits, then our encoding is
identical to the approach in MRP [36].



Sequences Data matrix M

J
S1 11 - 11
So 1 - - -0
S3 010 - -
Sy - 01 01
Ss -2 1 00
Se 0O - 01 -

Figure 3: Data matrix M encoding distances for a set B of 5 informative P-
block pairs for a set of 6 sequences, and tree topology reconstructed from M.
Dashes represent ’missing information’ in sequences not involved in a P-
block pair. The matrix represents four type 1 P-block pairs (columns 1, 3,
4, 5) and one type 2 P-block pair (column 2). The resulting tree topology
was calculated from the matrix with the program pars form the PHYLIP
package [11].



2.3 Implementation

In order to find a suitable set B of P-block pairs for our approaches, we
are using our software Multi-SpaM. This program samples up to 1 million P-
blocks. Then, we generate lists of P-blocks involving the same four sequences.
P-blocks in each such list are sorted according to their positions in one of
the four sequences. For neighboring P-blocks in these lists, we calculate the
distance S, for each involved sequence S,.

3 Comparison to a multiple sequence align-
ment

When an optimal multiple sequence alignment is available, it is possible to
compare this new approach to the more traditional “simple encoding” of
indel data. To this end, we generated artificial sequences with ALF [6] for
which we know the optimal MSA. Since we are only interested in indels, we
chose a very simple set of parameters and only simulated substitution and
indel events. We used ALF to evolve 1000 randomly generated genes along
simple phylogenetic trees. These trees were generated under a birth-and-
death model with a birth rate of 0.1, a death rate of 0.01 and a mutation
rate of 0.1. Each tree consists of 30 species.

Overall, we generated 30 datasets. We did 10 runs each for three different
indel rates: 0.1, 0.01 and 0.001. The size of the indels was randomized under
the Zipfian distribution with an exponent of 1.821 and a max length of 50. For
every dataset, the indels were encoded using the “simple encoding” [41]. For
this, we used the tool 2zread [28]. Since the resulting matrix also contains the
nucleotide data, we removed anything but the indel encoding. This encoding
accurately represents the indels in the optimal alignment which we compared
to the informative P-block pairs on these datasets. To this end, we considered
every 4-set of sequences. Then, we found the most parsimonious quartet tree
based on the “simple encoding”. For our approach, we inferred quartet trees
from the informative P-block pairs and found the most common topology
for every 4-set. Then, we determined whether our approach finds the same
topology that can be inferred from the multiple sequence alignment. The
results can be found in in Figure 4. Here, we also checked for 4-sets of
sequences for which there is no most parsimonious tree based on the true
indel data. In these case, the quartet topology found by our approach is
likely due to chance. We found that strongly supported splits are much more
likely to reflect the true indel information. Weakly supported splits are much
more abundant, but also found more often due to chance. Furthermore, we



found that a high number of indels results in more splits conflicting with the
true indel data.

4 Test results

In order to evaluate the above described approaches to phylogeny recon-
struction, we used sets of genome sequences from AF-Project [54]. These
sequences are frequently used as benchmark data for alignment-free meth-
ods; they were also used to evaluate Multi-SpaM. We ran Multi-SpaM with
the default parameters except for a data sets of 14 plant genomes from AF-
project for which we increased the pattern weight to 12 in order to keep the
runtime manageable. First, we used informative P-block distances to infer
quartet topologies for these genomes. Then, we used the two above described
approaches, namely Quartet MaxCut and Maximum-Parsimony, to infer tree
topologies for the entire input data sets.

Data set Non-informative  Informative
P-block pairs P-block pairs
type 2 type 1

27 E.coli/Shigella 0.866 0.118 0.016
29 E.coli/Shigella 0.859 0.123  0.017
25 fish mitochondria 0.819 0.161 0.019
14 plants 0.996 0.004  0.000
19 Wolbachia 0.916 0.062  0.021
8 Yersinia 0.991 0.008 0.001

Table 1: Propoprtion of non-informative and informative P-block pairs in
the data sets from A Fproject.

4.1 Quartet trees from P-block distances

First, we tested, how many of the P-block pairs that we found with our
approach are informative of type 1 or type 2, respectively. Table 1 shows
the proportion of informative P-block pairs for these data sets. Next, we
evaluated the correctness of the obtained quartet topologies by comparing
them to the respective topologies of reference trees. For this, we used the
ETE3 toolkit [21] to compute the Robinson-Foulds distance [37] between
the two trees. If this distance is zero, then the quartet tree has the correct
topology. However, a set of correct quartet trees is not sufficient to find



a correct super tree [2, 46]. For every data set with n taxa, there are (Z)
possible sets of four sequences. Ideally, for every such set, there should be
at least one quartet tree in order to find the correct super tree. Thus, we
also considered the quartet coverage, i.e. the fraction of these sets that have
at least one quartet tree. The results can be found in Table 2. As can be
seen, for most data sets, the quartet trees inferred from informative P-block
distances are more accurate than the quartet trees found by Multi-SpaM.
However, the number of quartet trees and quartet coverage is rather low.
Especially, for the plants and Yersinia data sets, barely any quartet trees are

found.

Data set Method Correctness # quartet Quartet
trees coverage
27 E.coli/Shigella Multi-SpaM  0.6942 597700 0.925
all splits 0.7407 117800 0.658
strong splits  0.8046 17000 0.287
29 E.coli/Shigella Multi-SpaM  0.6655 587900 0.916
all splits 0.763 130000 0.55
strong splits  0.8279 15000 0.157
25 fish mitochondria  Multi-SpaM  0.6403 42500 0.704
all splits 0.5919 6400 0.241
strong splits  0.6591 1000 0.041
14 plants Multi-SpaM  0.4676 998000 1
all splits 0.766 4000 0.194
strong splits  0.7196 <1000 0.021
19 Wolbachia Multi-SpaM  0.7935 452400 1
all splits 0.85 83900 0.885
strong splits  0.9567 21500 0.308
8 Yersinia Multi-SpaM  0.3665 35000 1
all splits 0.3511 9000 1
strong splits 0.4158 1000 1

Table 2: For 6 data sets from the AF-Project, it is shown how many quartet
trees are correct according to the reference trees. Further, the number of
quartet trees as well as the fraction of sets of four sequences with at least
one quartet tree is given.
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Comparison to Multi-SpaM

It is an interesting question whether our approach finds the same quartet
topologies as the corresponding Multi-SpaM run. To this end, we considered
every 4-set of sequences and found the most common quartet topology for
each set. As shown in Table 3, the quartet trees are very accurate when
both methods agree on the topology. On the other hand, the accuracy is
particularly low when the quartet trees from our approach disagree with the
topology of the Multi-SpaM quartet trees. The only exception is the Yersinia
data set. However, the quartet trees of Multi-SpaM were already only slightly
better than random quartet trees to begin with for this dataset.

Additional P-blocks

It should be noted that there may be many 4-sets of sequences with no P-
blocks or only one single P-block. This can reduce the number of informative
P-block pairs to the point where it is hard to accurately reconstruct the
phylogeny. Thus, in cases, where Multi-SpaM found a single P-block for a
4-set of sequences, we searched for additional P-blocks in the vincinity of
the P-block found by Multi-SpaM, to obtain additional informative P-block
pairs. These additional P-blocks have to be within a range of 10000 and can
be significantly shorter. Here, we used patterns without don’t care positions
and with a weight between 6 and 10. We also tried to use this approach with
lower search ranges. However, this led to very few additional P-blocks being
found in many cases. The only exception was the fish mitochondria dataset.

We tested how many of the informative P-block distances produce correct
quartet trees with respect to reference tree when we include the additional P-
blocks. Additionally, we checked if the quartet coverage could be improved.

Table 4 shows that for the two E.coli/Shigella datasets as well as the fish
mitochondria, a lot of additional P-blocks could be found. In these cases,
the correctness was reduced while the quartet coverage was improved. For
a weight of 6, less additional P-blocks could be found. This is caused by
words that appear twice in one sequence which are consequently removed.
Interestingly, for the Wolbachia dataset, only very few additional P-blocks
could be found which resulted in a slight overall improvement. For the other
two datasets, we found no additional P-blocks with our search.

4.2 Full phylogeny reconstruction

Finally, we applied our approach to reconstruct full phylogenetic trees for
the benchmark sequences from A Fproject. Here, we used the two approaches
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Quartet MaxCut and Mazimum-Parsimony, as described above. We ran
Multi-SpaM 10 times and checked whether the results could be improved
by using P-block distances. The results of other alignment-free methods on
these data are reported in [7, 54]. Since from the plant and Yersinia genomes
we could not obtain a sufficient number of informative P-block pairs, we were
unable to produce trees for these data sets.

Reconstructed phylogenies were measured against the respective reference
trees. For that, we used the Robinson-Foulds distance [37] and normalized
them so that they can be compared across multiple data sets. For a data set
with n taxa, the RF distances are divided by 2 * n — 6 in order to normalize
them.

Quartet MaxCut

We applied the program Quartet MaxCut first to the quartet topologies de-
rived from all informative P-block pairs. Alternatively, we restricted us to
the set of type-1 P-block pairs, i.e. the P-block pairs that strongly support
one of the three possible topologies for the four involved sequences.

Next, we combined our new approach with Multi-SpaM. Since this tool
also uses Quartet MazChut, it is straightforward to combine the sets of quartet
trees calculated with our new method and with Multi-SpaM. Again, we used
both, the full set of informative P-block pairs, and the type I P-block pairs
only. As shown in Table 3, the resulting quartet trees are highly accurate
in those situations where the quartet trees from Multi-SpaM agree with the
quartet topologies inferred with informative P-block pairs. Therefore, we also
tried to use these quartet trees to build a phylogenetic tree (“intersection”).
Lastly, we tested the quartet trees generated with the additional P-blocks
that were found in order to increase the quartet coverage. The results can
be found in Figure 5. The error bars show the maximum and minimum of
all runs.

For both E.coli/Shigella data sets, the indel data could be used to improve
the normalized RF distance on average or to decrease the variance. However,
the indel data alone was not enough to built accurate phylogenetic trees. The
only exception was the Wolbachia data set. For most test cases, the indel
data could be used to reconstruct more accurate trees than Multi-SpaM.
Overall, the additional P-blocks could not be used to improve the quality of
the trees.
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Maximum-Parsimony

Next, we generated a character matrix from the informative P-block pairs, as
described in the Method section. Subsequently, we used Mazimum-Parsimony
to infer a phylogenetic tree. Here, we used PAUP* [47] to calculate the most
parsimonious tree with the TBR [9] heuristic. In this case, we did not dif-
ferentiate between strongly and weakly supported splits as this is taken into
account automatically due to the way we defined our matrix. In some cases,
PAUP* returned multiple most parsimonious trees. We calculated the aver-
age Robinson-Foulds distance and the error bars over all resulting trees.

Figure 6 shows the comparison of Mazimum-Parsimony with Quartet
MaxCut and the corresponding Multi-SpaM run. For all data sets except
for the fish mitochondria, the average normalized RF distances are lower
with Mazimum-Parsimony. However, the variance is much larger due to
multiple most parsimonious trees being found. Additionally, the runtime is
considerable higher, especially when there is not enough data to find a single
most parsimonious tree.

5 Discussion

Indel information is largely neglected in phylogenetic studies, despite evi-
dence of its usefulness. For more traditional methods that rely on multiple
sequence alignment, it is fairly straightforward to postulate a phylogenetic
relationship based on the position and size of the gaps in the alignment. In
recent years, many alignment-free methods have been proposed to tackle the
ever-increasing amount of sequence data with high speed. Without an align-
ment, inferring information about indel events is a much more challenging
task. In this paper, we proposed a way to gather such information with an
alignment-free method. To our knowledge, this is the first attempt being
made in this direction.

Most of the alignment-free methods calculate pairwise distances, e.g. from
the number of word matches. In such a setting, it is hard to find and utilize
evidence of indel events. First of all, only homologous word matches can be
taken into consideration. Recently, some alignment-free methods have been
proposed that use micro-alignments. These methods require matches to be
sufficiently long such that homologies can be found with high probability.
Alternatively, some methods use spaced-word matches which can be scored in
order to discard random matches. More recently, Multi-SpaM extended this
approach and used so-called P-blocks, matching spaced-word occurrences in
four sequences, to reconstruct phylogenies.
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In this paper, we compared the distances between pairs of P-blocks to find
putative indel events. If the distances were the same in two sequences while
being different in the other two, then we use such a split to derive a quartet
tree. We showed in our evaluation that these quartet trees are in most
cases highly accurate when compared to the reference trees. The quartet
trees were particularly accurate when they coincided with the topology of
the Multi-SpaM quartet trees. Thus, the indel information could be used
to reinforce existing information, e.g. by giving these trees a higher weight
when trying to reconstruct the phylogenetic tree.

One might think that pairs of P-blocks should only be compared in rela-
tively close proximity in order to reduce the noise. However, we derived many
correct quartet trees from informative P-block distances even over large dis-
tances. In most cases, the distances are different in all sequences for pairs of
P-blocks when there is nothing to find. While we did find evidence of quartet
trees being found by chance when we compared them against an alignment,
we found that the most effective way of reducing this noise is to only consider
strongly supported splits, i.e. only splits where the distances are equal on
each side of the split.

Choosing whether to use all or only strongly supported splits is the only
important setting for our approach. Other than that, it depends on the
parameters of Multi-SpaM. Here, we relied on the parameter settings used
in the evaluation of Multi-SpaM. The high number of don’t care positions is
necessary to distinguish homologous spaced-word matches from background
noise. Apart from that, it is only important to have a high enough number
of P-blocks such that sufficiently many informative pairs of P-blocks can
be found. The potential is, however, limited as the weight of the pattern
cannot be reduced further without increasing the number of random matches
drastically. Moreover, the number of samples cannot be increased further for
some of the smaller datasets.

Finding enough informative pairs of P-blocks is a major challenge for our
approach. For many 4-sets of sequences, we could not find any informative
pairs of P-blocks. This is especially problematic when we tried to build
phylogenetic trees with Quartet MaxCut. This challenge is even harder when
only strongly supported splits are taken into account. Even though these
splits are highly accurrate, the usefulness of them is rather limited when
their number is too low. We tried to find additional P-blocks as a counter-
measure. However, we found that the additional quartet trees were not of
much use as the much higher number of trees came at the cost of lower
accuracy.

Another limitation that we observed was that our approach only worked
for closely related species. We tried to find evidence of indel events in a
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dataset of 14 plant genomes which are relatively distantly related. Here, we
only found a very small number of informative pairs of P-blocks as most
of the distances were different in all sequences when we compared pairs of
P-blocks. One reason could be a large number of indel or other evolutionary
events. Further, it should be noted that the plant dataset is by far the largest
one with 4.5 gb. The P-blocks are therefore likely to be very far apart in
comparison to the other datasets. In contrast, we found many informative
pairs of P-blocks for closely related species. For the Wolbachia dataset,
we even managed to infer the same topology as Multi-SpaM based on the
putative indels alone.

We used informative P-block distances to reconstruct phylogenetic trees
with both Quartet MazCut and Mazimum-Parsimony. When we used Quar-
tet MaxClut, the best results could be achieved when we combined the quartet
trees from the corresponding run of Multi-SpaM with the quartet trees de-
rived from the P-block distances. Here, the overall quality of the trees could
be improved in some cases even though there was no consistent method of
achieving this. With Maximum-Parsimony, we could in some cases improve
the phylogenetic tree in comparison to Multi-SpaM just by using the quar-
tet trees derived from the P-block distances. On the downside, oftentimes
there are not enough parsimony-informative characters which results in many
most-parsimonous trees being calculated. Furthermore, the indel data cannot
be combined as easily with the quartet trees from Multi-SpaM.

The focus of this study were quartet trees which is rather arbitrary. With
Maximum-Parsimony, this approach could easily be extended to larger P-
blocks. For us, this was a first step in this direction which allowed us to
showcase the quality of the indel information in more detail. Overall, the
best application of this method is to use the information as weights or in
addition to other information such as quartet trees as in this study.
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Figure 4: The information contained in the alignment is compared to the
most common quartet tree found by our approach for all possible 4-sets of
sequences. If for such a set, there is no indel data to support any split, i.e. no
information was found in the alignment, then the split is likely to be noise.
We ran 10 runs for three different indel rates. The red symbols show the
values for all splits, while the blue symbols only show the data for strongly
supported splits.
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Data set Same topology  Multi-SpaM Gap sizes Total
Most common

quartet tree found

by both methods

27 E.coli/Shigella 7153 (0.948) 2013 (0.697) 2013 (0.229) 16244
29 E.coli/Shigella 8652 (0.949) 1888 (0.725) 1888 (0.159) 21763
25 fish mitochondria 1410 (0.933) 588 (0.684) 588 (0.194) 8911
14 plants 137 (0.952) 33 (0.746) 33 (0.138) 1001
19 Wolbachia 2848 (0 974) 213 (0.645) 214 (0.213) 3876
8 Yersinia 39 (0.457) 4 (0.482) 4 (0.150) 70
Most common

quartet tree found

by only one method

27 E.coli/Shigella 5677 (0.794) 346 (0.491) 16244
29 E.coli/Shigella 8999 (0.766) 461 (0.418) 21763
25 fish mitochondria 5247 (0.639) 401 (0.539) 8911
14 plants 801 (0.713) - 1001
19 Wolbachia 620 (0.866) 46 (0.496) 3876
8 Yersinia - - 70

Table 3: The quartet trees inferred from informative P-block pairs are com-
pared to the quartet trees from Multi-SpaM. Here, we consider only the most
common quartet tree topology for every 4-set of sequences. For every case,
the correctness of the quartet trees (with respect to the reference tree) is
shown next to the number of quartet trees (in brackets).
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Dataset Method Correctness # quartet Quartet
trees coverage
27 E.coli/Shigella default 0.7407 117800 0.658
weight = 6 0.5648 3838170 0.945
weight =7 0.5672 5544670 0.945
weight = 8 0.5922 3028000 0.945
weight =9 0.6238 1112000 0.945
weight = 10 0.6572 439333 0.945
29 E.coli/Shigella default 0.763 130000 0.55
weight = 6 0.5233 863800 0.55
weight =7 0.5089 1232100 0.573
weight = 8 0.5392 690500 0.573
weight =9 0.6122 300600 0.573
weight = 10 0.6952 176800 0.573
25 fish mitochondria default 0.5919 6400 0.241
weight = 6 0.5025 1803500 0.581
weight =7 0.4972 1809000 0.581
weight = 8 0.5179 801300 0.58
weight =9 0.5393 236200 0.58
weight = 10 0.5397 99300 0.579
14 plants default 0.766 4000 0.194
weight =6-10 0.766 4000 0.194
19 Wolbachia default 0.85 83900 0.885
weight = 6 0.8486 86000 0.886
weight =7 0.8495 87400 0.886
weight = 8 0.8513 86400 0.886
weight =9 0.8511 84900 0.886
weight = 10 0.8503 84300 0.886
8 Yersinia default 0.3511 9000 1
weight =6-10 0.3511 9000 1

Table 4: For 6 datasets from the AF-Project, the number of additional quar-
tet trees, that can be found with a pattern of a certain weight, are shown.
The correctness with regard to the reference tree as well as the quartet cover-
age is also given. The default values are from the set of quartet trees before

the search.
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Figure 5: We derived quartet trees from the informative P-block pairs. We
used Quartet MazCut to build phylogenetic tree with multiple different sets
of quartet trees. First, we used all quartet trees including derived from all
informative P-block pairs. Then, we only used the quartet trees based on
strongly supported splits. Both of these sets were also used in combination
with the quartet trees of the corresponding run of Multi-SpaM. Furthermore,
we tried to find additional quartet trees by searching for additional blocks
with patterns of weight 6 and 10. Lastly, we calculated the most common
quartet topologies for every 4-set of sequences. We used the set of quar-
tet trees where the most common topology agreed with the most common
topologies of the Multi-SpaM trees. We called this set “intersection”.
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informative characters and built phylogenetic trees with Mazimum-
Parsimony. We compared it to the corresponding runs of Multi-SpaM and
to Quartet MaxCut which was used on the set of all splits. The variance
of the Robinson-Foulds distances is higher for Mazximum-Parsimony because
multiple most parsimonious trees were found in several cases.
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Abstract

Motivation: Most methods for pairwise and multiple genome alignment use fast local homology
search tools to identify anchor points, i.e. high-scoring local alignments of the input sequences.
Sequence segments between those anchor points are then aligned with slower, more sensitive
methods. Finding suitable anchor points is therefore crucial for genome sequence comparison;
speed and sensitivity of genome alignment depend on the underlying anchoring methods.

Results: In this article, we use filtered spaced word matches to generate anchor points for genome
alignment. For a given binary pattern representing match and don‘t-care positions, we first search
for spaced-word matches, i.e. ungapped local pairwise alignments with matching nucleotides at
the match positions of the pattern and possible mismatches at the don’t-care positions. Those
spaced-word matches that have similarity scores above some threshold value are then extended
using a standard X-drop algorithm; the resulting local alignments are used as anchor points. To
evaluate this approach, we used the popular multiple-genome-alignment pipeline Mugsy and
replaced the exact word matches that Mugsy uses as anchor points with our spaced-word-based
anchor points. For closely related genome sequences, the two anchoring procedures lead to mul-
tiple alignments of similar quality. For distantly related genomes, however, alignments calculated
with our filtered-spaced-word matches are superior to alignments produced with the original
Mugsy program where exact word matches are used to find anchor points.

Availability and implementation: http://spacedanchor.gobics.de

Contact: chris.leimeister@stud.uni-goettingen.de or bmorgen@gwdg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The most fundamental task in biological sequence analysis is to align
two or several nucleic-acid or protein sequences—either globally,
over their entire length, or locally, by restricting the alignment to a
single region of homology. Standard approaches to global alignment
assume that the input sequences derived from a common ancestor,
and that evolutionary events are limited to substitutions and small
insertions and deletions. In this case, sequence homologies can be

©The Author(s) 2018. Published by Oxford University Press.

represented by global sequence alignments, that is, by inserting gap
characters into the sequences such that evolutionarily related se-
quence positions are arranged on top of each other. Under most
scoring schemes, calculating an optimal alignment of two sequences
takes time proportional to the product of their lengths and is there-
fore limited to rather short sequences (Durbin ez al., 1998; Gotoh,
1982; Morgenstern, 2002; Needleman and Wunsch, 1970; Smith
and Waterman, 1981).
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With the rapidly increasing number of partially or fully
sequenced genomes, alignment of genomic sequences has become an
important field of research in bioinformatics, see Earl et al. (2014)
for a recent review and evaluation of some of the most popular
approaches. Here, the first challenge is the sheer size of the input
sequences which makes it impossible to use traditional algorithms
with quadratic run time. A second challenge is the fact that related
genomes often share multiple local homologies, interrupted by non-
conserved parts of the sequences where no significant similarities
can be detected. This means that neither global alignment methods
(Needleman and Wunsch, 1970) nor strictly local methods (Altschul
et al., 1990; Smith and Waterman, 1981) are appropriate to repre-
sent the homologies between entire genomes. Finally, homologies do
not generally occur in the same relative order in different genomes,
because of duplications and large-scale genome rearrangements.
Since it is not possible, in general, to represent homologies among
genomes in one single alignment, advanced genome aligners return
alignments of so-called Locally Collinear Blocks, i.e. blocks of seg-
ments of the input sequences where orthologous genes appear in the
same linear order.

Since the late 1990s, efforts have been made to a address the
above issues, and many approaches to genome-sequence alignment
have been published. One of the first multiple-alignment programs
that could be applied to genomic sequences was DIALIGN
(Morgenstern et al., 1996, 2002). This program composes multiple
alignments from chains of local pairwise alignments, and it does not
penalize gaps; it is therefore able to align sequences where local
homologies are separated by non-homologous regions. The program
was initially not designed for large genomic sequences, though, and
it is limited to sequences up to around 10 kb. Moreover, DIALIGN
is not able to deal with duplications, rearrangements or homologies
on different strands of the DNA double helix.

To align longer sequences, most programs for genomic align-
ment rely on some sort of anchoring (Huang et al., 2006;
Morgenstern et al., 2006). In a first step, they use a fast local align-
ment method to identify high-scoring local homologies, so-called an-
chor points. Next, chains of such local alignments are calculated
and, finally, sequence segments between the selected anchor points
are aligned with a slower but more sensitive alignment method. For
multiple sequence sets, either pairwise or multiple local alignments
can be used as anchor points. A pioneering tool to find anchor
points for genomic alignment is MUMmer (Delcher et al., 1999); the
current version of the program is considered the state-of-the-art in
alignment anchoring (Kurtz et al., 2004). MUMmer uses maximal
unique matches as pairwise anchor points. The genome aligner
MGA, by contrast, uses maximal exact matches involving all input
sequences (Hohl ef al., 2002). Both MUMmer and MGA use suffix
trees (Kurtz, 1999) and related data structures to rapidly identify the
pairwise or multiple word matches. MUMmer and MGA can rapidly
align entire bacterial genomes; MUMmer was also used in the A.
thaliana genome project (The Arabidopsis Genome Initiative, 2000).
However, since the number of exact word matches decreases with
increasing evolutionary distances, these approaches are most useful
if closely related genomes are to be compared, such as different
strains of E. coli.

Other approaches to genome alignment are OWEN (Ogurtsov
et al., 2002), AVID (Bray et al., 2003), MAVID (Bray and Pachter,
2003), LAGAN and Multi-LAGAN (Brudno et al., 2003b),
CHAOS/DIALIGN (Brudno et al., 2003a), the VISTA genome pipe-
line (Dubchak et al., 2009), TBA (Blanchette et al., 2004) and
Mauve (Darling et al., 2004), see Dewey and Pachter (2006) and
Batzoglou (2005) for review. All of these methods use anchor points,

and most of them are able to deal with duplications and genome
rearrangements. Some genome aligners use statistical properties of
the sequences (Bradley ez al., 2009; Darling et al., 2004); other
methods are based on graphs, for example on A-Bruijn graphs
(Raphael et al., 2004) or on cactus graphs (Paten et al., 2011). A fur-
ther development of Mauve, called progressiveMauve (Darling
et al., 2010), uses palindromic spaced seeds (Darling et al., 2006) in-
stead of exact word matches as anchor points. Spaced seeds are used
for sequence-analysis tasks such as database searching (Choi ez al.,
2004; Ma et al., 2002; Noé, 2017; Xu et al., 2006), read mapping
(Bfinda et al., 2015; David et al., 2011; Langmead et al., 2009; Noé
et al., 2010; Ounit and Lonardi, 2015), alignment-free sequence
comparison (Leimeister et al., 2014) or pathogen detection Deneke
et al. (2017). Such pattern-based approaches are often superior to
methods based on contiguous words or word matches, see for ex-
ample Li et al. (2006). In Mauve, palindromic patterns are used to
cover both DNA strands of the input sequences.

Mugsy (Angiuoli and Salzberg, 2011) is a popular software pipe-
line for multiple genome alignment. In a first step, this program uses
nucmer (Kurtz et al., 2004) to construct all pairwise alignments of
the input sequences. Nucmer, in turn, uses MUMmier to find exact
unique word matches which are used as alignment anchor points.
An alignment graph is constructed from these pairwise alignments
using the SeqAn software (Doring et al., 2008), and Locally
Collinear Blocks are constructed. Finally, a multiple alignment is
calculated using SeqAn:: TCoffee (Rausch et al., 2008). Mugsy has
been designed to rapidly align closely related genomes, such as dif-
ferent strains of a bacterium. Here, it produces alignments of high
quality. On more distantly related genomes, however, the program
is often outperformed by other multiple aligners (Earl ez al., 2014).

Finding anchor points is the most important step in whole-
genome sequence alignment. Here, a trade-off between speed, sensi-
tivity and precision has to be made. A sufficient number of anchor
points is necessary to reduce the run time of the subsequent, more
sensitive alignment routine. Wrongly chosen anchor points, on the
other hand, can substantially deteriorate the quality of the final out-
put alignment. They may not only lead to misalignments of non-
homologous parts of the sequences but may also prevent biologically
relevant, true homologies from being aligned. Also, if the number of
anchor points is too large, finding optimal chains of anchor points
can become computationally expensive.

In this article, we apply the filtered spaced word matches
(FSWM) approach (Leimeister et al., 2017) to find pairwise anchor
points for genomic alignment. We use a hit-and-extend approach
where high-scoring spaced-word matches are used as seeds. More
precisely, for a given binary pattern of length ¢ representing match
and don’t care positions, we identify spaced-word matches—i.e.
pairs of length-¢ segments from the input sequences with matching
nucleotides at the match positions and possible mismatches at the
don’t care positions. For each such spaced-word match, we then cal-
culate a similarity score, and we keep only those spaced-word
matches that have a score above a certain threshold. These matches
are then extended to gap-free alignments, similar as in BLAST
(Altschul et al., 1990). To evaluate the anchor points generated by
our approach, we modified the Mugsy pipeline by using our anchor-
ing procedure instead of the original anchor points in Mugsy that
are based on exact word matches. For closely related input sequen-
ces, these two different anchoring procedures lead to alignments of
similar quality. Our anchor points are clearly superior, however, if
distal sequences are to be aligned, where most other alignment
approaches either fail to produce meaningful alignments or require
an unacceptable amount of time.
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Through our website at http://spacedanchor.gobics.de, we pro-
vide the modified Mugsy pipeline with our anchoring approach, as a
pipeline for genome-sequence alignment that can be readily
installed. In addition, we provide a stand-alone version of our soft-
ware, such that software developers can integrate our anchor points
into their own sequence-analysis pipelines.

2 Results

2.1 Filtered spaced word matches

For a sequence S of length L over an alphabet £ and 0 < i < L, §[f]
denotes the ith symbol of S, and |S| denotes the length of S.
Throughout this article, a pattern is a word over {0, 1}. For a pattern
P, a position i is called a match position if P[i] = 1 and a don’t-care
positions otherwise. The number of match positions in a pattern P is
called the weight of P. For an alphabet X, a pattern P, and a wild-

T3

card character ‘*’ not contained in £, a spaced word with respect to
P is a word w over X U {x}, such that w[k] = « if and only if k is a
don’t-care position, see also Leimeister et al. (2014) and Horwege
et al. (2014). We say that a spaced word w with respect to a pattern
P occurs in a sequence $ at some position 4, if i < |S| — |P| + 1, and
if S[i + k — 1] = wlk] for all match positions k of P.

For sequences S; and S, a pattern P, and positions 7 and j, we
say that there is spaced-word match between S and S, at (i, j) with
respect to P if the same spaced word occurs at i in S; and atj in S,—

in other words, if for all match positions k in P, one has
Silitk—1=S[+k-1].

For the two sequences S and S, below, for example, there is a
spaced-word match with respect to the pattern P = 1100101 at (5,
2):

$5: G CT G T ATACGTC
S AT A CACTTAT
P 110 0 1 0 1

as the same spaced word ‘TA % *C * T occurs at positions 5 in S,
and at position 2 in S5.

In a previous article, we used spaced-word matches to estimate
phylogenetic distances between genomic sequences, by considering
at the nucleotides aligned to each other at the don’t care positions of
selected spaced-word matches (Leimeister et al., 2017). To remove
spurious random spaced-word matches, we applied a simple filtering
procedure. Based on the
(Chiaromonte et al., 2002)

following  substitution matrix

A C G T

A 91 -114 -31 —123
C 100 —-125 =31
G 100 —-114
T 91

we calculated for each spaced-word match the sum of substitution
scores of the nucleotide pairs aligned at the do#n’t-care positions, and
we removed all spaced-word matches with a score below zero; com-
pare also Brejova ez al. (2005).

A graphical representation of the spaced-word matches between
two sequences shows that this procedure can clearly separate ran-
dom spaced-word matches from true homologies. If we plot for each
possible score value s the number of spaced-word matches with
score equal to s, we obtain a bimodal distribution with one peak for

random matches and a second peak for true homologies. We call
such a plot a spaced-words histogram, see Figure 1 for an example.
For simulated sequence pairs under a simple model of evolution,
and with a sufficient number of don’t-care positions in the underly-
ing pattern, both peaks are approximately normally distributed. For
real-world sequences, the random peak is still normally distributed,
but the ‘homologous’ peak is more complex. Even so, using a suit-
able cut-off value, one can easily distinguish between random
matches and true homologies; for the above matrix, a cut-off of zero
works well. More examples for spaced-words histograms are given
in Leimeister et al. (2017).

Herein, we propose to use spaced-word matches to calculate an-
chor points for pairwise alignment of genomic sequences. To distin-
guish between spaced-word matches representing true homologies
and random background matches, we use the above filtering criter-
ion. More precisely, our approach to find anchor points for genomic
alignment is as follows. For given parameters ¢ and w, we first calcu-
late a pattern P with length ¢ and weight w—i.e. with w match posi-
tions—using our recently developed software rasbhari (Hahn et al.,
2016). We then identify all spaced-word matches with respect to P.
Based on the above substitution matrix, we calculate the score of
each spaced-word match, and we discard all spaced-word matches
with a score below zero, as we did in our previous article
(Leimeister et al., 2017). By default, our program uses only unique
spaced-word matches. That is, if a spaced word w occurs 7 times in
one sequence and m times in a second sequence, we only use the
best-scoring of the 7 x m resulting spaced-word matches. But as an
alternative, it is also possible to use all spaced-word matches with a
score above zero.

To find homologies even for distantly related sequences, we use
patterns with a low weight; by default, we use a weight of w = 10.
On the other hand, we use a large number of don’t-care positions,
since this makes it easier to distinguish true homologies from ran-
dom spaced-word matches. By default, we use a pattern length of
¢ =110, so our patterns contain 10 match positions and 100 don’t-
care positions.

Next, we do gap-free extensions of the identified local similar-
ities in both directions using a standard X-drop approach. As start-
ing points for these extensions, we do not use the full spaced-word
matches, but their midpoints. The reason for this is that, with our
long patterns, even high-scoring spaced-word matches may not rep-
resent true homologies over their entire length. It often happens that
parts of a spaced-word aligns homologous nucleotides, but one or
both ends of the aligned segments extend into non-homologous
regions. There is a high probability, however, that the midpoint of a
long, high-scoring spaced-word match is located within a region of
true homology. As a result, it is possible that an ‘extended’” match in
our approach is shorter than the initial spaced-word match that was
used to define the starting point for the X-drop extension. Also, it
can happen that a spaced-word match is located within the ‘exten-
sion’ of a previously processed match. Such matches are redundant
and are therefore discarded by our algorithm. Finally, we use the
extended gap-free alignments as anchor points for alignment.

2.2 Evaluation

To evaluate FSWM and to compare it to a state-of-the-art approach
to alignment anchoring, we used the Mugsy software system. Here,
we used the default version of FSWM with unique matches, i.e. for
each distinct spaced word, only the highest-scoring spaced-word
match is used. As mentioned above, the original Mugsy uses
MUMmer to find pairwise anchor points. We replaced MUMumer in
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Fig. 1. Spaced-words histogram for a comparison of two bacterial genomes, Phaeobacter gallaeciensis 2.10 and Rhodobacterales bacterium Y4l. All possible
spaced-word matches with respect to a given binary pattern P are identified, and their scores are calculated as explained in the main text. The number of spaced-
word matches with a score s is plotted against s. Two peaks are visible, an approximately normally distributed peak for background spaced-word matches, and a
more complex peak for spaced-word matches representing homologies. With a cut-off value of zero, background and homologous spaced-word matches can be

reliably separated

the Mugsy pipeline by our FSWM-based anchor points and eval-
uated the resulting multiple alignments. In addition, we compared
these alignments to alignments produced by the multiple genome
aligner Cactus (Paten et al., 2011). Cactus is known to be one of the
best existing tools for multiple genome alignment; it performed ex-
cellently in the Alignathon study (Earl et al., 2014). To measure the
performance of the compared methods, we used simulated genomic
sequences as well as three sets of real genomes. To make MUMumer
directly comparable to FSWM, we used a minimum length of 10 ¢
for maximum unique matches, corresponding to the default weight
(sum of match positions) used in Spaced Words. Note that, by de-
fault, MUMmer uses a minimum length of 15 nz. With this default
value, however, we obtained alignments of much lower quality.
Cactus was run with default values.

2.2.1 Simulated genomic sequences

To simulate genomic sequences, we used the artificial life frame-
work (ALF) developed by Dalquen ez al. (2012). ALF generates arti-
ficial gene families along a randomly generated tree, according to a
probabilistic model of evolution. During this process, evolutionary
events are logged so the true MSA is known for each simulated gene
family and can be used as reference to assess the quality of automat-
ically generated alignments.

We generated a series of 14 datasets, each one based on a ran-
domly generated tree with 30 leaves, representing different species.
Each dataset consists of 750 simulated gene families, evolved along
the respective tree, such that exactly one gene from each family is
present in each of the 30 ‘species’. Within each dataset, we used a
fixed mutation rate for all gene families, but we used different muta-
tion rates for different datasets. For all other parameters in ALF, we
used the default settings. We varied the mutation rates between an
average of 0.1013 substitutions per position for the first dataset to
an average of 0.8349 substitutions per position for the 14th dataset.
Here, the average is taken over all pairs of ‘species’ within the re-
spective dataset. The maximal pairwise distance between all pairs of
sequences within a dataset ranges from 0.1640 for the first to
1.0923 for the 14th dataset. The simulated genes have an average
length of about 1500 bp, summing up to a total size of about 32 MB
per dataset.

For simplicity, we did not concatenate the 750 genes in one ‘spe-
cies’. Instead, we applied the alignment programs that we evaluated

to compare all genes from one ‘species’ to all genes from all other
‘species’ within the same dataset. Concatenating the sequences
would have led to the same results. To assess the quality of the pro-
duced alignments, we calculated recall and precision values in the
usual way. If, for one given dataset, S is the set of all positions of the
30 x 750 simulated gene sequences, we denote by A C ‘; the set
of all pairs of positions aligned to each other by the alignment that
is to be evaluated, while R C g?\ denotes the set of all pairs of posi-
tions aligned to each other in the reference alignment. Recall and
precision are then defined as

_JANR]|

[ANR|
Recall = ———,
IR|

Precision = ———
|A]

(1)

The harmonic mean of recall and precision is called the balanced
F-score and is often used as an overall measure of accuracys; it is thus
defined as

Precision x Recall

F, =2X
score Precision + Recall

To estimate these three values, we used the tool mafComparator
which was also used in the Alignathon study (Earl et al., 2014).
Since it is prohibitive to consider all pairs of positions of the test
sequences, we sampled 10 million pairs of positions for each dataset.
This corresponds to the evaluation procedure used in Alignathon.

For the simulated sequence sets, their recall and precision values
are shown in Figures 2 and 3. For datasets with smaller mutation
rates, the quality of alignments obtained with ESWM and MUMumer
is comparable (Fig. 4). However, if the mutation rate increases, our
spaced-words approach clearly outperforms the original version of
Mugsy where exact word matches are used to find anchor points.
With FSWM, not only more homologies are detected, compared to
Mummer, but also the precision of Mugsy is slightly improved.

2.2.2 Real-world genome sequences

For real-world genome families, it is usually not possible to calculate
the precision of MSA programs because it is, in general, not known
which sequence positions exactly are homologous to each other and
which ones are not. If there are core blocks of the sequences for
which biologically correct alignments are known, at least recall val-

ues can be calculated for these core blocks. For most genome
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Fig. 2. Recall values for Mugsy using anchor points generated with FSWM
and with MUMmer, respectively, as well as for Cactus. Test data were simu-
lated genomic sequences generated with ALF, see main text for details.
FSWM was run with the default weight w = 10, i.e. with 10 match positions
in the underlying pattern, and with w = 8
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Fig. 3. Precision values for Mugsy with FSWM and MUMmer anchor points
respectively, and for Cactus. Test data and parameter values as in Figure 2
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Fig. 4. F-Score values for Mugsy with FSWM and MUMmer anchor points, re-
spectively, and for Cactus. Test data and parameter values as in Figure 2

sequences, however, not even such core blocks are available. To
evaluate Mugsy, the authors of the program therefore used the num-
ber of core columns of the produced alignments as a criterion for
alignment quality (Angiuoli and Salzberg, 2011). Here, a core col-
wmn is defined as a column that does not contain gaps, i.e. a column
in which nucleotides from all of the input sequences are aligned. In
addition, the authors of Mugsy used the number of pairs of aligned
positions of the aligned sequences as an indicator of alignment qual-
ity. In this article, we use the same criteria to evaluate multiple align-
ments of real-world genomes.

As a first real-word example, we used a set of 29 E. coli/Shigella
genomes that has been used in the original Mugsy paper, see
Supplementary Material for details; these sequences have also been
used to evaluate alignment-free methods (Haubold et al., 2015;
Morgenstern et al., 2015; Yi and Jin, 2013). The total size of this

Table 1. Evaluation of multiple alignments of 29 E. coli/Shigella
genomes, 32 Roseobacter genomes and 9 fungal genomes,
obtained with Mugsy, using anchor points calculated with FSWM
and with MUMmer, respectively

Core Aligned Core LCBs
LCBs pairs col.
29 E. coli/Shigella genomes
Mugsy + MUMmer 539 1,61E+09 2,827,115 4138
Mugsy + FSWM 664  1,63E4+09 2,867,432 5906
Cactus 20,163 1,48E4+09 2,663,750 56,592
32 Roseobacter genomes
Mugsy + MUMmer 39 3,63E+08 13,654 13,501
Mugsy + FSWM 859  7,15E+08 824,054 30,836
Cactus 5984 4,95E+08 280,085 337,320
9 fungal genomes
Mugsy + MUMmer 9 5,88E+06 2097 4252
Mugsy + FSWM 2590 1,18E+08 718,176 89,555
Cactus 31,589 1,33E408 828,680 848,242

Note: As a comparison, the table contains the results obtained with Cactus.
The first column contains the number of core columns, i.e. the number of col-
umns in the multiple alignments that do not contain gaps; the second column
contains the total number of aligned pairs of positions in the alignment. The
third column contains the number of core Locally Collinear Blocks (LCBs)
i.e. the number of LCBs that involve all of the aligned genomes (‘core LCBs’),
while the last column contains the total number of LCBs.

dataset is about 141 MB. As a second test set, we used another pro-
karyotic dataset, namely a set of 32 complete Roseobacter genomes
(details in the Supplementary Material); these genomes are more dis-
tantly related than the E. coli/Shigella strains. The total size of this
dataset is about 135 MB. To test our approach on eukaryotic
genomes, we used as a third test case a set of nine fungal genomes,
namely Coprinopsis cinerea, Neurospora crassa, Aspergillus terreus,
Aspergillus nidulans, Histoplasma capsulatum, Paracoccidioides
brasiliensis, Saccharomyces cerevisiae, Schizosaccharomyces pombe
and Ustilago maydis (genbank accession numbers are given in the
Supplementary Material). The total size of this third dataset is about
253 MB.

The results of Mugsy with MUMmer and FSWM, respectively,
for the three real-world datasets are shown in Table 1, together with
the results obtained with Cactus. In addition to the number of core
columns and the number of aligned pairs of positions, the table con-
tains the number of core Locally Collinear Blocks, i.e. the number
of Locally Collinear Blocks involving all of the input sequences, and
the total number of Locally Collinear Blocks returned by the align-
ment programs. For the E. coli/Shigella sequences, the two anchor-
ing methods, MUMmer and FSWM, led to alignments of
comparable quality when used with Mugsy; the genome sequences
in this dataset are very similar to each other. For the Roseobacter
and fungal genomes, however, the FSWM anchor points led to much
better alignments than the default anchor points generated with
MUMmier. The sequences in these sets are far more apart from each
other than the sequences in the E. coli/Shigella set, so the results on
these three datasets confirm our above results on simulated

sequences.

2.2.3 Program run time

Table 2 reports the program run times of Mugsy with FSWM,
Mugsy with MUMmer and Cactus on the above three real-world se-
quence sets. In addition, the table contains the run times for FSWM
and MUMmer alone. A program run of Mugsy with FSWM on a set



216

C.-A.Leimeister et al.

Table 2. Run time in minutes for three different multiple genome-
alignment methods applied to the three test datasets that we used
in our program evaluation

E. coli/Shigella  Roseobacter  fungal genomes
ESWM 59 83 110
FSWM + Mugsy 638 6428 1488
MUMmer 73 63 43
MUMmer + Mugsy 286 1099 63
Cactus 714 1775 775

of five mammalian sequences of length 200 b each from Earl er al.
(2014) took around 7 days, and 5 h with & = 10 and two days with
k= 12.

3 Discussion

In this article, we proposed a novel approach to calculate anchor
points for genome alignment. Finding suitable anchor points is a
critical step in all methods for genome alignment, since the selected
anchor points determine which regions of the sequences can be
aligned to each other in the final alignment. A sufficient number of
anchor points is necessary to keep the search space and run time of
the main alignment procedure manageable, so sensitive methods are
needed to find anchor points. Wrongly selected anchor points, on
the other hand, can seriously deteriorate the quality of the final
alignments, so anchoring procedures must also be highly specific.

Earlier approaches to genomic alignment used exact word
matches as anchor points (Delcher ez al., 1999; Hohl et al., 2002),
since such matches can be easily found using suffix trees and related
indexing structures. These approaches are limited, however, to sit-
uations where closely related genomes are to be aligned, for example
different strains of a bacterium. In modern approaches to database
searching, spaced seeds are used to find potential sequence homolo-
gies (Buchfink ez al., 2015; Hauswedell ez al., 2014; Li et al., 2003).
Here, binary patterns of match and don’t care positions are used,
and two sequence segments of the corresponding length are consid-
ered to match if identical residues are aligned at the match positions,
while mismatches are allowed at the don’t care positions. Such
pattern-based approaches are more sensitive than previous methods
that relied on exact word matches.

We previously proposed to apply the ‘spaced-seeds’ idea to
alignment-free sequence comparison, by replacing contiguous words
by so-called spaced words, i.e. by words that contain wildcard char-
acters at certain pre-defined positions (Leimeister et al.,, 2014).
More recently, we introduced FSWM (Leimeister et al., 2017) to es-
timate the average number of substitutions per sequence position be-
tween two genomes. In the latter approach, we first identify spaced-
word matches using relatively long patterns with only few match
positions. For the identified matching segments, we look at the
nucleotides that are aligned to each other at the don’t-care positions,
and we discard spaced-word matches for which the similarity at the
don’t-care positions is below a threshold. Substitution frequencies
are then estimated based on the aligned nucleotides at the don’t-care
positions of the remaining spaced-word matches. We showed that
this procedure is fast and highly sensitive, and it can reliably distin-
guish between true homologies and spurious sequence similarities.

In the present study, we used FSWM to calculate anchor points
for genomic sequence alignment. Instead of using the selected
spaced-word matches directly as anchor points, we extend the iden-
tified hits into both directions, similar to the hit-and-extend

approach to database searching. In view of speed and accuracy, this
approach is somewhere between exact word matching and gapped
local alignment. As in our previous paper on filtered spaced words
(Leimeister et al., 2017), we use binary patterns with a large number
of don’t-care positions. This way, the ‘homologous’ and ’back-
ground’ peaks in the spaced-word histograms (Fig. 1) are far enough
apart, since the distance between them is proportional to the number
of don’t-care positions in the underlying patterns. With a large num-
ber of don’t-care positions, it is therefore easier to distinguish be-
tween homologous and background spaced-word matches.

One might think that, with our long patterns, we might miss too
many shorter local homologies. We do not see this as a problem,
though. Our goal is not to find all local homologies between two
sequences, but to output a sufficient number of anchor points to
make the final alignment procedure feasible. Moreover, our algo-
rithm is well able to find gap-free homologies that are shorter than
the specified pattern length, as long as the sequence similarity be-
tween these homologies is strong enough. As explained above, we
do not start the X-drop extension at the end positions of the identi-
fied hits, but in the middle; this way we can find spaced-word
matches that cover short homologies, but reach into gapped or non-
homologous sequence regions to the left and to the right. In such
cases, it can happen that the ‘extended’ hits are shorter than the re-
spective initial spaced-word matches.

To evaluate these anchor points, we integrated them into the
popular genome-alignment pipeline Mugsy. Test runs on simulated
genome sequences show that, for closely related sequences, Mugsy
produces alignments of high quality with both types of anchor
points. For more distantly related sequences, however, the recall val-
ues of the program drop dramatically if anchor points are calculated
with MUMmer while, with our spaced-word matches, one observes
recall values close to 100% for distances up to around 0.7 substitu-
tions per position.

For real-world genomes, it is more difficult to evaluate the per-
formance of genome aligners since there is only limited information
available on which positions are homologous to each other and
which ones are not. Angiuoli and Salzberg (2011) therefore used the
number of aligned pairs of positions as an indicator of alignment
quality, together with the size of the ‘core alignment’, i.e. the num-
ber of alignments columns that do not contain gaps. At first glance,
these criteria might seem questionable; it would be trivial to maxi-
mize these values, simply by aligning sequences without internal
gaps, by adding gaps only at the ends of the shorter sequences.
However, as shown in Figure 3, all MSA programs in our study
have high precision values, i.e. positions aligned by these programs
are likely to be true homologs. In this situation, the number of
aligned position pairs and size of the ‘core alignment’ can be consid-
ered as a proxy for the recall of the applied methods i.e. the propor-
tion of homologies that are correctly aligned.

As shown in Table 2, the program run time to generate anchor
points is comparable for FSWM and MUMrmer. For distantly related
sequence sets, however, the total run time of Mugsy is much higher
with our FSWM anchoring approach than with anchor points from
MUMmier. A possible explanation for the difference in run time is
that ESWM is more sensitive, so a larger number of anchor points
are produced. Table 1 shows that, with our FSWM, more Locally
Collinear Blocks are found than with the exact word matches that
are found with MUMmer—especially for distantly related sequences
where exact word matching is not very sensitive. One way of reduc-
ing the program run time would be to apply a cut-off value to reduce
the number Locally Collinear Blocks that are to be aligned in the
main alignment procedure. Further research efforts are necessary to
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balance speed and accuracy of multiple genome alignment
algorithms.
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5 Further improvements and experiments

As shown in Chapter [2 Multi-SpaM is an effective tool for phylogeny reconstruction.
Regardless, we tried to improve the method further. The quartet trees need to be correct
with high probability in order to reconstruct an accurate phylogeny. This can be achieved
by removing incorrect quartet trees. Alternatively, quartet trees, which are very likely to

be correct, could be prioritized by giving them a higher weight.

5.1 SH-like support values

I followed this approach in an experiment where I tried to assess how much confidence
can be placed into the topology of an individual quartet tree. To this end, I calculated
a support value for every quartet tree. These support values are computed similarly to
a test proposed by Shimodaira and Hasegawa [I19]. This non-parametric test checks the
null hypothesis that all three possible quartet tree topologies are equally likely. To this
end, it considers the difference of the likelihood of the best and the second-best quartet
tree topology. If this difference is significantly larger than the variance of the likelihood
values, the SH test is passed. The variance is simulated in a similar way to bootstrapping.
A fixed number of sites in the input alignment are sampled with replacement in order to
generate a number of test sets. The fraction of test sets, for which the test was passed,
is the SH-like support value of the quartet tree. If the support value is zero, then all
three possible quartet tree topologies are equally likely. The implementation of this test
is described in more detail in [45]. I calculated the SH-like support values with RAzML.
This algorithm is activated with the flag -F j’.
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Figure 7: For a dataset of 29 E.coli/Shigella genomes, SH-like support values are calculated
for every quartet tree. The number of quartet trees is shown for each possible support value.
The quartet tree topologies are compared against a reference tree in order to assess their
correctness.
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5.1.1 Correctness and RF

In order to evaluate the effectiveness of SH-like support values, I compared the quartet
tree topologies with a reference tree using the ETE-toolkit [56]. For each set of quartet
trees with the same support value, I calculated the fraction of correct quartet trees. The
results for a dataset consisting of 29 F.coli/Shigella genomes can be found in Table .
A large number of quartet trees have a support value of zero. These quartet trees were
calculated from micro-alignments which, most likely, consist of four identical sequences. In
the original version of Multi-SpaM, these P-blocks would be discarded before the optimal
quartet tree topology would be calculated. It is important to remove these quartet trees as
the topology returned by RAzML is random. Thus, a large fraction of quartet trees would
be incorrect as can be seen in Table[7] In contrast, quartet trees with high support values

are also very likely to be correct.

In order to utilize these support values to improve the phylogenetic tree returned by Multi-
SpaM, 1T implemented two different strategies. First, I used a threshold for the support
values. All quartet trees with support values below that threshold were removed. For
the second strategy, I also used this treshold. In addition, I used the support value to
give each quartet tree a weight that is used during the supertree calculation with Quartet
MazCut [6]. For three datasets, I applied these two strategies to a single run of Multi-
SpaM. In the following three figures, the results are shown. For both the fish mitochondria
dataset (see Figure and the 29 F.coli/Shigella genomes (see Figure , it was possible
to improve the phylogenetic tree of Multi-SpaM. However, this could only be achieved
with dataset-specific thresholds. It should be noted that with a threshold of zero, many
incorrect quartet trees were included which causes the high Robinson-Foulds distances.
Furthermore, if the threshold is too high, then the number of quartet trees will be reduced
to the point where it affects Quartet MaxCut negatively. The difference between the two
strategies were mostly negligible. Only for the fish mitochondria, there was a consistent
improvement when using the SH-like support values as weights, at least for low threshold
values. The relatively low effect of this strategy could be explained by the fact that a
quartet tree topology can be output multiple times. This will likely have a bigger effect

on the overall weight than the weight of a single quartet tree.
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Figure 8: For a dataset of 29 E.coli/Shigella genomes, phylogenetic trees were built with
the set of quartet trees whose support values surpass the treshold shown on the x axis.
With a treshold between 75 and 85, the normalized Robinson-Fould distances of the trees
can be improved.
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Figure 9: For a dataset of 27 E.coli/Shigella genomes, phylogenetic trees were built with the
set of quartet trees whose support values surpass the treshold shown on the x axis. With
a threshold of zero, many incorrect quartet trees are included which explains the high
Robinson-Foulds distance. When the support values are used as weights, these quartet
trees are effectively removed. Overall, there is no benefit in using support values for this
particular run.
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Figure 10: For a dataset of 25 fish mitochondria genomes, phylogenetic trees were built
with the set of quartet trees whose support values surpass the treshold shown on the x
axis. For this particular run, the Robinson-Foulds distance of the trees can be improved
by using the SH-like support values as weight. The same effect can be achieved with a
threshold between 40 and 75.

82



5.2 Neighbor-Joining

Apart from the accuracy, I also tried to improve the runtime of Multi-SpaM. The main mo-
tivation for developing Multi-SpaM was to utilize the high accuracy of Mazimum-Likelihood
in an alignment-free method. In Chapter [2| we showed that this is indeed possible. How-
ever, RAzML [128] requires a large portion of the program’s runtime. Thus, we tried to
replace the Mazimum-Likelihood step of the algorithm with Neighbor-Joining [112]. For
most datasets, this step requires the largest portion of the runtime. Thus, a very fast
method such as Neighbor-Joining would drastically improve the overall runtime of Multi-
SpaM. Since the P-blocks form rather small micro-alignments, it is not clear if the quartet
tree topologies differ depending on the method used to calculate them. Preliminary tests
have been done by Mats Kastner. Later, I implemented a Neighbor-Joining step in Multi-
SpaM and further improved it.

By default, Multi-SpaM does not calculate any distances. However, this is a requirement
for Neighbor-Joining. For every P-block, the pairwise distances can be computed in a
straightforward manner using the JukesédCantor [62] model. Based on the distance matrix,
the quartet tree can be calculated. However, there are some special cases where Neighbor-
Joining would return incorrect quartet tree topologies which might affect the performance
of the method negatively. Obviously, if all distances are zero, the quartet tree can be
discarded right away. In other cases, Neighbor-Joining might calculate negative branch
lengths. This can be the case when two sequences are identical and the other two sequences
are more closely related to the other two sequences than to each other. In such a case, the

quartet tree cannot reflect the true relationsships and can therefore be removed.

5.2.1 Test results

We applied the modified version of Multi-SpaM to the same datasets that were used for the
evaluation in Chapter [2} The results for the simulated datasets can be found in Figure [T1]
For the real-word datasets, the results can be found in Figure [I2] With Neighbor-Joining,
the normalized Robinson-Foulds distance [I08] to the reference trees could be improved for
all datasets, except for the Yersinia datsets for which the results are the same. Interestingly,

the opposite results could be observed for the simulated datasets. Here, the phylogeny could
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be reconstructed more accurately with RAzML.

The runtime comparison can be found in Table [7] Clearly, the version with Neighbor-
Joining is much faster. In fact, calculating the optimal topology for 1 million quartet trees
can be done near instantly. Thus, the remaining runtime is split between creating the
list of spaced-words, sorting this list and sampling the P-blocks. For the larger datasets,
the sampling step is the most time-consuming step as there is a larger number of spaced-
word matches with a negative score and, therefore, more scores need to be calculated in
total. However, the Maximum-Likelihood step requires most of the runtime for smaller
datasets. Overall, the modified version of Multi-SpaM can be seen as an improvement over

the original version.

Datasets RAxML Neighbor-Joining
29 E.coli/Shigella 611 116
25 fish mitochondria 27 2.7
19 Wolbachia 484 70
8 Yersinia 183 71

Table 7: Runtime comparison in for the original version of Multi-SpaM using RAxML and
the modified version with Neighbor-Joining. The reported times are wall clock times.
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Figure 11: The datasets were simulated using ALF [22]. The datasets b1-3 are supposed to
resemble bacterial genomes. The other three datasets consists of supposedly mammal-like
genes. These datasets were used during the evaluation of Multi-SpaM. If Neighbor-Joining
is used to calculate the optimal quartet tree topologies, the quality of the phylogenetic
trees decreased for all datasets.
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Figure 12: The topologies of the quartet trees were calculated with Neighbor-Joining. The
phylogenetic trees were compared to the trees from the original Multi-SpaM version. For
all four real-world datasets, the quality of the trees improved when Neighbor-Joining was
used.
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5.3 Bootstrapping

Bootstrapping is a common strategy to assess the stability of a method for phylogeny
reconstruction. One way of doing this is to create 100 datasets by sampling columns from
a given multiple sequence alignment and applying the method to each of these datasets.
Then, a bootstrap value can be attributed to each branch in the phylogenetic tree. This

value shows how many times this particular branch appeared in the 100 phylogenetic trees.

Since the results of Multi-SpaM are non-deterministic, it is possible to run the tool multiple
times on the same dataset in order to assess the stability of the method. However, this
would drastically increase the runtime. Therefore, I chose a different approach. I ran
Multi-SpaM a single time and used the set of quartet trees to sample 100 sets consisting of
1 million quartet trees each. For each set, a supertree is built with Quartet MazCut. Then,
I calculated the consensus tree with the program consense from the PHYLIP package [36].
This tool also shows the bootstap values for each branch. One phylogenetic tree with
support values is shown in Figure . For the dataset consisting of 29 FE.coli/Shigella
genomes, there are multiple low support values, the lowest being 52. This explains the
relatively high variance which we observed in the evaluation of Multi-SpaM (see Chapter [2]).
However, there are also datasets for which the bootstrap values are high. For the Wolbachia

dataset, the lowest bootstrap value was 99 using this approach.
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Figure 13: The bootstrap values are shown for a datasets of 29 E.coli/Shigella genomes.
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6 Discussion

The main focus and contribution of this thesis is a novel alignment-free method for phy-
logeny reconstruction called Multi-SpaM (see Chapter [2)). Existing alignment-free methods
(see Chapter usually calculate pairwise distances. The resulting phylogenetic trees
are, in general, not as accurate as trees built by character-based methods that are used in
more traditional approaches. Thus, I developed a method that extends the spaced-word
approach used by FSWM [73] to multiple sequence comparison and uses a character-based
method in hopes of improving the quality of the phylogenetic tree while retaining the
speed advantage of an alignment-free method. Multi-SpaM uses the filtering approach
introduced by FSWM that can reliably remove random spaced-word matches and thus
ensure that the remaining matches are homologous. Four homologous spaced-word occur-
rences from different sequences constitute a P-block, with respect to a pre-defined binary
pattern P. Multi-SpaM samples up to a million P-blocks. The P-blocks can be seen as
‘micro-alignments’ with possible mismatches in some columns. RAzML [128] is used to
calculate the optimal quartet tree topology for each P-block. Subsequently, the quartet
trees are amalgamated into a supertree. We showed that the resulting phylogenies are of

high quality.

In Chapter [3] T showed another use case for the P-blocks that were generated by Multi-
SpaM. We considered pairs of adjacent P-blocks that involve the same set of four sequences.
Then, we calculated the distance between the spaced-word occurrences for each sequence.
This distance can be encoded as an arbitrary character and subsequently be used to find
the most parsimonious phylogenetic tree. Unless the distances are all equal or all different,
it is possible to find putative indels with this novel approach. Furthermore, we tried to infer
quartet trees from informative P-block distances where possible and observed that these
trees are highly accurate for many datasets. In particular, quartet trees which topologies
coincided with quartet trees produced by Multi-SpaM were very accurate. In several cases,
we could improve the phylogenetic trees in comparison to the tree built with Multi-SpaM.
So far, this has been fundamental research. With a more sophisticated approach, putative
indels could be used to improve Multi-SpaM even further, for example by giving weights

to the quartet trees.

Apart from Multi-SpaM, I also contributed to another extension of FSWM. In Chapter[d] we
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showed that spaced-word matches can be used as anchor points [94] for a multiple sequence
alignment. Anchor points are high-scoring local alignments of some input sequences which
are likely to be part of the final alignment. In this publication, we used FSWM to find
spaced-word matches. Here, we only used unique spaced-word matches, i.e. only the match
with the highest score, which is calculated during the filtering procedure, is used for each
spaced-word. These matches were then extended with a standard X-drop approach. We
used the extended matches as anchor points to reduce the runtime of slower tools, e.g.
for genome alignment. This is possible because only the sequence segments between the
anchor points are taken into consideration during the subsequent alignment procedure.
mugsy [0, 67] is one such genome aligner that uses anchor points. By default, it uses
mazximal unique matches found by MUMmer [24]. The maximal unique matches work well
as anchor points for closely related species. For distantly related species, there are not
enough anchor points that can be found with MUMmer. In order to solve this problem,
we replaced MUMmer with the modified version of FSWM in the mugsy pipeline. Then,
we compared our approach with the default version of mugsy and other state-of-the-art
methods. We found that the anchor points from FSWM led to much better alignments
for distantly related species in comparison to the default version of mugsy. Overall, the
performance was competetive with other genome aligners. Furthermore, our approach led
to the highest number of aligned pairs due to the high number of anchor points. As a

consequence, the runtime was also the highest for most datasets.

Lastly, I showed a few modifications of Multi-SpaM that could improve its performance.
In Chapter I calculated SH-like support values for every quartet tree. I tried to
use them as weights for the quartet trees. Furthermore, I removed quartet trees with
low support values. In principle, this approach can improve the performance of Multi-
SpaM. However, the results were dataset-dependent and required a longer runtime than
the original version. In another experiment, I found the optimal quartet tree topologies
with Neighbor-Joining [112] instead of RAzML [128]. This way, the runtime of Multi-SpaM
could be improved significantly. Furthermore, the quality of the phylogenetic trees also
improved for most datasets. Thus, it can be said that character-based methods do not lead
to increased accuracy as we assumed in the beginning of this project. However, it should
be noted that the Maximum-Likelihood approach we used in our method was also heavily
limited by the small size of the micro-alignments. Lastly, I implemented bootstrapping for

Multi-SpaM which can help the user to grasp the stability of the phylogenetic tree.
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6.1 Alignment-free methods based on micro-alignments

Many alignment-free methods for phylogeny reconstruction have been proposed in recent
years in order to deal with the large amounts of sequence data which are available to-
day (see Chapter [1.4]). Earlier methods relied on simple sequence features such as k-mer
frequencies. Some recent alignment-free methods estimate pairwise distances from the ob-
served mismatches within so-called micro-alignments. In this section, I want to discuss

advantages and disadvantages of these methods in comparison to Multi-SpaM.

The micro-alignments consist of (inexact) word matches. They can only be used in a
meaningful way if the aligned sequences are homologous. Thus, all these methods have to
make sure that there are as few random matches as possible. andiand co-phylog require the
word matches to be unique and sufficiently long so that random word matches are highly
unlikely. However, it becomes increasingly challenging to find long micro-alignments for
more distantly related sequences. This can drastically reduce the accuracy of the distances.
FSWM introduced a filtering procedure that can be used to find homologous spaced-word
matches while allowing for lower pattern weights, i.e. the number of match positions.
Therefore, it is better suited to estimate accurate distances which are higher than 0.5
substitutions per position. Furthermore, the spaced-word matches are not required to
be unique. Thus, there can be many possible spaced-word matches for a given spaced-
word. This issue is resolved with a greedy I-to-1 mapping based on the score used in
the filtering procedure. Each spaced-word occurrence can only be matched once. Multi-
SpaM distinguishes homologous spaced-word matches from background noise with the same
approach which is generally beneficial to the performance. However, the additional score

calculation results in increased runtimes in comparison to andi and co-phylog.

In contrast to FSWM, Multi-SpaM does not exhaustively calculate scores between all
spaced-word occurrences. Instead, an initial spaced-word occurrence is chosen randomly.
Then, scores are calculated with other occurrences of the same spaced-word until the P-
block is complete. Under the assumption that homologous matches have the highest score,
it is possible that suboptimal matches are chosen for a P-block. As shown in Chapter 2] the
phylogenetic trees of both methods are of similar quality. Thus, it is not clear whether it is
worthwhile to calculate scores for all possible spaced-word matches. For n occurrences of a

given spaced-word, the required runtimes is O(n?) for FSWM. For large datasets, this can
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lead to fairly high runtimes. In contrast, Multi-SpaM only requires n — 1 score calculations
in the worst case in the same scenario. The effect can be seen for the 4.8 gb dataset of 14
plant genomes (see Chapter . The runtime of F'SWM is particularly high for this dataset.
FSWM is 88 times slower than Multi-SpaM whereas it is mostly faster for smaller datasets.
Partially, the lower runtime of Multi-SpaM is also due to the sampling of P-blocks. These
two factors make datasets consisting of large sequences very favorable for Multi-SpaM in
terms of runtime. For small sequences, the number of spaced-word occurrences is relatively

low and hence much less score calculations are necessary.

Despite striving for fast runtimes, few alignment-free methods make use of sampling strate-
gies. After some point, the results will not be affected much — if at all — by considering
more data. This fact is used by Mash [101] which calculates pairwise distances only from
a small fraction of all k-mers which is selected by a hash function. This approach has
the additional advantage that only a small amount of k-mers have to be kept in memory.
A similar sampling strategy has been applied to FSWM recently [30]. However, using a
small fraction of spaced-words reduces the chance that P-blocks can be found by Multi-
SpaM. For many small datasets, the number of sampled P-blocks is already much lower
than the target of 1 million. A low number of quartet trees can negatively impact the
performance of Quartet MaxCut. That is why we chose a different sampling strategy for
Multi-SpaM. However, if the genomes are large enough, it would be possible to use both

sampling strategies at the same time.

Sampling is a straight-forward approach to reduce the high memory usage which is a
concern for all alignment-free methods that use micro-alignments. For large datasets, the
memory requirements can easily exceed the main memory available in most computers. The
vast majority of this space is occupied by a list of words or a suffix array. Additionally,
these methods take the reverse complement into consideration which further increases the
memory requirements. For example, the peak memory usage of these methods ranged
between 76 gb and 146 gb in our evaluation of Multi-SpaM (see Chapter . Multi-SpaM
is on the high end in terms of memory usage because it stores a list of spaced-words from
all sequences as well as their reverse complements at the same time. In contrast, FSWM
only needs to store the reverse complement of one sequence for each pairwise sequence
comparison. All methods use efficient data structures to keep the memory requirements

relatively low. A slight improvement could be achieved by using canocial k-mers (or spaced-
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words) which are, for example, implemented in Mash. Thereby, the reverse complement is
not stored extra. Instead, every word is compared with its reverse complement and only
one of them is stored, depending on which is lexicographically smaller (or larger). However,
the list of spaced-words might still not fit into the main memory. In order to achieve a
large reduction in memory usage, we implemented a memory saving mode. If activated,
the list of words is divided into 16 chunks, depending on the two initial characters of every
spaced-word. At every point in time, only one chunk is kept in memory. Thus, Multi-
SpaM can handle far larger sequences than competing methods on systems with limited
main memory. However, it should be noted that this approach increases the runtime of
the method. Of course, the number of chunks could be increased to reduce the memory

requirements even further.

Dataset Rank Number of ranks
29 FE.coli/Shigella 6 20
27 E.coli/Shigella 3 16
14 plants 1 11
25 fish mitochondria 4 18
8 Yersinia 4 6

Table 8: This table shows the results of the A F-project. For 5 benchmark datasets, Multi-
SpaM ranks relatively high among all alignment-free methods that participated in this
study. The ranks are based on the Robinson-Foulds distance. Multiple tools can have the
same distance. Thus, the number of ranks is lower than the total number of tools (between
70 and 90). More details on the performance of Multi-SpaM on these datasets can be found
in Chapter [2

As I pointed out in the introduction, it is not an easy task to evaluate methods for phy-
logeny reconstruction. If the test datasets are simulated, then they are usually based on
simplified models of evolution. Thus, they can hardly match the complexity of real-world
datasets. These datasets, on the other hand, are much harder to evaluate as there is
no known ground truth. The reference trees, that the developers have to rely on, may
not reflect the true evolutionary relationships. They are often built with more traditional
methods of phylogeny reconstruction, such as Mazimum-Likelihood on an alignment of
selected marker genes. In order to make our evaluation more meaningful, we worked to-
gether with researchers of the Wolbachia bacteria which we used as one of the datasets

in our evaluations. Additionally, we contributed to the AF-project [I55] which provides
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trusted benchmarking datasets for alignment-free methods. In Table [§] the results of this
benchmark are shown which also includes other alignment-free methods that are not based

on micro-alignments.

6.2 Limitations

So far, I have shown that Multi-SpaM builts phylogenetic trees of high quality and is
particularly well-suited for large sequences. However, there are also some limitations that

I want to mention. Some of these drawbacks also apply to similar methods.

Several of the alignment-free methods based on micro-alignments use spaced-words. Conse-
quently, they depend on the underlying binary pattern. Usually, the patterns are optimized
with rasbhari [46] with regard to the overlap complexity. This optimization is not deter-
ministic. Thus, the patterns are different for every run which causes the phylogenetic trees
to vary, at times significantly. We took the variance into consideration during our evalua-
tion of Multi-SpaM by showing the minimum and maximum values of the Robinson-Foulds
distance for FSWM and Multi-SpaM in Chapter 2l A similar variance can also be observed
for all other extensions of FSWAM, such as Prot-SpaM [75]. In contrast, other alignment-free
methods such as andi and co-phylog are stable. In order to get a stable result, we could use
a fixed pattern. However, this would, in turn, lead to another problem. No binary pattern
is ideal for every dataset and a fixed pattern might be particularly bad for the dataset
that is being analyzed. Unfortunately, there is no known way to optimize a pattern ac-
cording to a given dataset. Therefore, all methods based on spaced-words use more or less
random patterns. In order to reduce the variance of the distances based on spaced-word
frequencies [72], multiple patterns have been used. However, pattern sets also increase the
runtime. Furthermore, the variance may still be relatively high which was the case for
Prot-SpaM. With regard to Multi-SpaM, we did not try to use multiple patterns because
there is, in addition to the already stated drawbacks, also the random sampling step which
is another source of variance. Morever, the variance is also a relevant information for an
analysis of a phylogeny. Even though a stable result is desirable, it does not mean that the
result is correct. Thus, we chose to give the user a clue of how stable the phylogenetic tree
is by adding bootstrap values, as described in Section [5.3] The patterns do not only cause

variance, the weight and number of don’t care positions can also affect the result. We use
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a relatively high number of don’t care positions to reliably remove background matches. In
some cases, homologous matches can be missed due to overly long patterns. Conversely,
accepted matches may not be homologous over their entire length. This issue has been
addressed in order to find anchor points in Chapter [d] Here, the spaced-word matches
have been extended with a standard X-drop approach starting from the middle position.
However, even without such an approach, the default parameters of Multi-SpaM work rea-
sonable well for all datasets. In some cases, the phylogenetic trees can be improved by
using a different weight or length of the pattern. However, it is not possible to determine
optimal parameters without a reference tree. Hence, the user has to rely on the default
parameters. Only for large datasets, it might be beneficial to increase the weight in order

to decrease the number of random spaced-word matches and thus the runtime.

In contrast to other alignment-free methods, Multi-SpaM does not calculate distances in
order to build the phylogenetic tree. Thus, it only provides the topology of the tree, but not
the branch lengths. Even though the topology of a tree is the most important information,
branch lengths might still be of interest to better understand the phylogenetic relationships.
If we use Neighbor-Joining instead of RAxzML to calculate the optimal quartet tree topology,
it would be possible to use the branch lengths of the quartet trees. However, there is no
way to use them with Quartet MaxCut. Furthermore, there is method I know of that can
fit branch lengths to a given tree with regard to a distance matrix. If there was such a

method, a distance matrix could be calculated similar to FSWM.

The last limitation that I want to mention is the scalability to datasets with large amounts
of sequences. While Multi-SpaM can handle long sequences very well, the number of
quartet trees that is necessary to reconstruct the correct phylogeny increases very quickly
with the number of sequences. A study by the developers of Quartet MaxzCut recommends
n?8 quartet trees for a dataset with n sequences [I26] which was enough to reconstruct the
correct phylogeny even with up to 30% incorrect quartet trees. Thus, the number of samples
might need to be increased drastically for a high number of sequences. Additionally,
the quartet trees should ideally be spread somewhat evenly across the quartet space. In
Chapter 3] we ran into the problem that large portions of this space were not covered.
This issue is also much more likely for a large number of sequences. In a recent paper,
Multi-SpaM has been applied to a dataset of 220 Salmonella genomes [147]. Even when the

number of samples was increased, the phylogenetic trees were of relatively poor quality.
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7 Conclusion and outlook

In this thesis, I showed that it is possible to reconstruct accurate phylogenies with an
alignment-free method that does not follow a standard approach based on pairwise dis-
tances. Multiple sequence comparison can be done effectively with a quartet tree based
approach while keeping the runtime low. I showed that the quartet trees can be inferred
from both nucleotide data and from putative insertions or deletions. For that purpose,
we found blocks consisting of spaced-word occurrences. Similar blocks can also be used

effectively as anchor points in order to speed up genome alignment.

One goal of this thesis was to find out whether character-based methods can be used
to improve alignment-free methods. While the phylogenetic trees are of high quality,
our limited Maximum-Likelihood approach did not outperform a simple Neighbor-Joining

approach.

I already mentioned a few ways Multi-SpaM could be improved, e.g. by giving weights to
the quartet trees. In the last part of this thesis, I want to give an outlook on possible
further research. First, I discuss a few more ways to improve Multi-SpaM. In the second

part, I suggest a few directions the tool could be developed further.

7.1 Possible improvements

As previously stated, a big limitation of Multi-SpaM is the scalability to large amounts of
taxa. Thus, it should be the focus of further improvements of the method. The number
of quartet trees could be increased in a fairly straightforward way by searching for larger
P-blocks. In the original version, a random spaced-word occurrence is chosen which is
compared to other occurrences of the same spaced-word. After four homologous occur-
rences are added to the P-block, the search is stopped. Alternatively, the search could be
continued in order to find all possible homologous spaced-word occurrences. For a P-block
spanning n sequences, up to (Z) quartet trees could be inferred. This would increase the
total number of quartet trees drastically. Additionally, this could increase the quartet cov-
erage for datasets with a high number of taxa. However, using RAxML [128] to infer that

many quartet trees would slow down Multi-SpaM significantly. In order to keep the run-
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times at an acceptable level, Neighbor-Joining needs to be used for such an approach. As
shown in Chapter doing so could even improve the accuracy of the quartet trees. The
quartet coverage could also be increased in another way. Instead of sampling randomly,
a weighted sampling could be used that would favor sets of four sequences for which no

quartet tree has been found so far.

Since Multi-SpaM works well for datasets with relatively few sequences, a divide-and-
conquer approach could also be an option. Quartet MazCut already follows this approach.
Thus, Multi-SpaM could be applied to multiple subsets of sequences. The individual phy-
logenetic trees could then be amalgamated into a super tree. This could be done in a
similar way as in SuperFine [I31]. A fast and scalable method could be used to built a
phylogenetic tree for the entire dataset. Then, Multi-SpaM can be applied to the sequences
in the individual clades of this tree. Alternatively, a scalable method could be run multiple
times. Then, the resulting trees could be merged into a consensus tree. In some parts of

the tree, there might be conflicts. These conflicts could be resolved by using Multi-SpaM.

The dataset could also be divided into non-overlapping subsets. For each subset, Multi-
SpaM could build a phylogenetic tree. Then, the resulting trees could be used as constraint
trees for NJMerge [91]. This method is an extension to Neighbor-Joining. It builts a
phylogenetic tree that is compatible with a set of constraints. As a distance-based method,
it also requires a distance matrix of all sequences. This matrix can be calculated by a highly

scalable method. The constraint trees would then be used to improve the phylogenetic tree.

Lastly, I want to discuss how the overall performance of Multi-SpaM could be enhanced,
even for smaller datasets. If the quality of the quartet trees could be assessed reliably, it is
straightforward to use this information as weights for Quartet MaxzCut [6]. In Chapter
I showed that support values can be calculated for every quartet tree using RAxzML. These
values can be used as weights. Similarly, if Neighbor-Joining is used to calculate the optimal
quartet tree topologies, then a measure of treelikeness [54] could be calculated. In this case,
higher weights would be given if the distances are (nearly) additive. Alternatively, if some
information besides the mismatches in the micro-alignments can be found that supports a
quartet tree, it could be used to define weights. As shown in Chapter [3] the sizes of the
gaps between two adjacent P-blocks hold information about the phylogenetic relationships.
In particular, if these trees coincide with the quartet trees of Multi-SpaM, then there is a

high probability that these quartet trees are correct. Thus, these trees could be given a
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higher weight.

7.2 Further applications

So far, Multi-SpaM is only available for DNA sequences. Similar to FSWM, it could be
applied to proteomes, as well. Prot-SpaM [75] is a very fast tool that often outperforms
other alignment-free methods. P-blocks found in protein sequences may correspond to
protein domains. Thus, this could be a good prospect for Multi-SpaM. However, protein
sequences are much shorter which counteracts one of the biggest advantages of Multi-Spa.
Furthermore, FSWM has been applied to unassembled genomes. Read-SpaM [69] is one of
several assembly-free methods that were published in recent years. Since this is a desirable
application for alignment-free methods, it would make sense to develop Multi-SpaM in this

direction.

There are also some applications for the other two projects of this thesis. The information
contained in the size of the gaps between two adjacent P-blocks could be investigated for
larger or even maximal P-blocks. In this case, it is not clear which P-blocks should be
compared as they may not contain spaced-word occurrences from the same set of sequences.
This can be solved by comparing all pairs of P-blocks. Alternatively, P-blocks that involve
an identical subset of at least four sequences could be compared. In Chapter [d we used
spaced-word matches to find anchor points for a genome alignment tool. It might be
possible to use spaced-word matches to calculate an entire (genome) alignment. Such
an approach would follow a similar strategy as dialign [93]. It would align spaced-word
matches as long as they are consistent with the rest of the alignment. In order to cover
large portions of the genomes, it would be necessary to use multiple patterns with different
weights. Longer spaced-word matches need to be found first as they are less likely to
be random matches. In order to increase the likelihood of homologous matches further,
spaced-words that occur in multiple sequences with a positive score to each other could be
prioritized. As such, P-blocks from Multi-SpaM could be used as a starting point for the

alignment.
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