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Abstract 
 

Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac 

fibrosis. Existing studies show that ROS and inflammatory cytokines produced during 

fibrosis not only signal proliferative stimuli but also contribute to DNA damage. 

Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, 

activation of distinct DNA repair mechanism is essential. We have previously shown a 

protective epigenetic role of TET3 in organ fibrosis. Here, we demonstrate that TET3 

additionally impacts DNA damage response (DDR) mechanisms via orchestrating 

checkpoint-assisted homologous recombination (HR)-mediated DDR, and that TGF-

ß, in combination with lack of TET3 in cardiac fibrosis, leads to an increase of a 

checkpoint-arrest independent non-homologous end joining (NHEJ) DDR.  Finally, 

we provide evidence that overexpression of TET3 reduces the increased proliferation 

rate of fibrotic fibroblasts by shifting the DDR response from NHEJ to HR.   
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1. Introduction 
 

1.1 Cardiovascular diseases and cardiac fibrosis 

 

                    Cardiovascular disease is the leading cause of death worldwide. A recent 

statistic released by the WHO accounts an estimated 17.9 million deaths from CVDs, 

representing 48 % of the worldwide mortality (Mendis et al, 2011; WHO, 2018). 

Notably, almost all forms of CVDs are aggravated by and associated with cardiac 

fibrosis (Hinderer & Schenke-Layland, 2019). Cardiac fibrosis is a scarring process 

characterised by excessive accumulation of extracellular matrix (ECM) proteins that 

can lead to increased myocardial stiffness eventually resulting in impaired systolic and 

diastolic function in the heart (Ho et al, 2010; Rockey et al, 2015; Travers et al, 2016).  

 

ECM in the heart is primarily composed of collagen I (mostly confers strength) and 

collagen III (mostly confers elasticity) which predominantly provide the fundamental 

structural network to deliver strength and elasticity to the myocardium (Berk et al, 

2007; Kong et al, 2014). Besides providing strength and elasticity to the myocardium, 

ECM also serves as a homeostatic buffer for growth factors and cytokines, facilitating 

intracellular crosstalk within the myocyte and non-myocyte cells (Fan et al, 2012; Li et 

al, 2018). Increased accumulation of ECM during fibrotic progression causes enhanced 

stiffening of the heart muscles and impairs normal physiological systolic and diastolic 

functions in the organ (Kim et al, 2000). Therefore, a proper balance between the 

deposition and degradation of ECM is essential in healthy hearts.  

 

                       
Figure 1. Pie-chart showing overall mortality % (worldwide) in both men and women 

due to various diseases. Data adapted from WHO (WHO, 2018). 

 

 

  



TET3 impacts cardiac fibrosis partially via regulation of DNA damage response  

  

Sandip Kumar Rath  2019  Page 3 

1.1.1 Types of cardiac fibrosis 
 
                    Fibrosis in the heart has been described to develop in two possible ways (a) 

reactive (b) reparative/replacement fibrosis (Brilla & Weber, 1992; Liu et al, 2017). 

Reparative fibrosis occurs in response to injury during myocardial infraction (Lopez et 

al, 2001). In myocardial infarction dead cells (mostly cardiomyocytes) accumulate due 

to untimely apoptosis or necrosis in the infarcted area, which are then removed and 

replaced by excessive deposition of non-myocyte cells to form a scar (Desmoulière et 

al, 1995; Piek et al, 2016). Excessive apoptosis and necrosis during chronic infarction 

release a lot of cytokines (such as TGF-β, IL-4 and IL-6) that in the end result in 

pathological fibrosis in the heart (Chiong et al, 2011; Greulich et al, 2019; Saraste et al, 

1997). Although such scarring process is initiated to preserve the structural integrity of 

the organ, excessive scarring due to chronic injury eventually leads to impaired cardiac 

function. 

 

In contrast to reparative fibrosis, reactive fibrosis mostly occurs in response to 

mechanical stress, pressure overload or due to changes in neuro-hormonal signalling 

cascade but acute cell loss is absent (Liu et al, 2017; Talman & Ruskoaho, 2016). 

Initiation of reparative fibrosis leads to excessive deposition of extracellular matrix 

proteins by activated fibroblasts without causing a significant loss of cardiomyocytes. 

 

                         

Figure 2. Schematic representation of replacement and repairment cardiac fibrosis. 
Adapted from Mewton et al. (Mewton et al, 2011). Copy right license number 4704831089992.       
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1.1.2 Cardiac Fibroblasts 

 
                    The heart as an organ is composed of two major cell types, cardiomyocytes 

and non-myocytes (Zhou & Pu, 2016). Fibroblasts belong to the non-myocytic 

population that plays a prime role in fibrogenesis (Humeres & Frangogiannis, 2019; 

Travers et al, 2016). During pathological remodelling, fibroblasts are activated and 

undergo transformation to activated fibroblasts (also known as myofibroblasts) (Kong 

et al, 2014). The activated fibroblast in turn secretes several cytokines, growth factors, 

reactive oxygen species, ECM proteins and matrix metalloproteinases that disrupt 

proper function of the heart (Chen & Frangogiannis, 2013; Shinde & Frangogiannis, 

2014). Cardiac fibroblasts are diffusely interspersed between cardiomyocytes and 

recent studies show they play a crucial role in transmission of electrical signals in the 

myocardium (Zhang et al, 2012). A recent in vitro study indicates that cardiac 

fibroblasts exchange electrical signals between cardiomyocytes via connexin 43, which 

helps in spontaneous synchronization of beating in distant cardiomyocytes. 

 

Although the actual number of fibroblast population in the heart is still not clear, it is 

estimated to comprise 11-15 % of the total cell population in the adult mouse heart and 

about 55-65 % in the adult rat heart (Zhou & Pu, 2016). Lineage tracing studies in 

pressure overload induced mouse models demonstrate that 15-20 % of the fibrotic 

fibroblasts in the ventricles are derived primarily by endothelial cells whereas the rest 

80-85% of the total fibrotic fibroblasts are derived from either epicardial cells or the 

resident fibroblasts (Kanisicak et al, 2016; Moore-Morris et al, 2014; Zeisberg et al, 

2007). Interestingly, the origin of cardiac fibroblasts in each species are quite distinct, 

hence its distribution of population in heart is extremely heterogeneous in nature 

(Zeisberg & Kalluri, 2010).  

                                                   
 
Figure 3. Schematic illustration showing the source of cardiac fibroblasts.  
Adapted and modified from Krenning et al. (Krenning et al, 2010). Copy right license number 
4704831415631. 
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1.1.3 The role of TGF-β in fibroblast activation  

 
              TGF-β is considered to be one of the critical cytokines released in the fibrotic 

heart that plays a central role in the activation and proliferation of cardiac fibroblasts 

(Khalil et al, 2017; Liu et al, 2017). Activated fibroblasts are also known as 

myofibroblasts whose primary role during fibrotic response is to secrete excessive 

extracellular matrix proteins, inflammatory cytokines and ROS that casually 

contributes to more damage in the myocardium (Humeres & Frangogiannis, 2019; 

Humeres et al, 2016). There are three isoforms of TGF-β in mammals, i.e. TGF-β1, 

TGF-β2 and TGF-β3, of which TGF-β1 is the most predominant (Wu et al, 2018). Three 

separate genes encode the three isoforms but all three genes share a high degree of 

homology (Frank et al, 1996). All the three isoforms are secreted as an inactive form 

and are activated after proteolytic cleavage (Shi et al, 2011). Once activated, TGF-β 

mediates its effect via binding to its receptors TβRI, (also known as ALK5) and TβRII 

resulting in phosphorylation of Smad2/3  (Hayashi & Sakai, 2012). Activated Smad2/3, 

in turn, binds to Smad4 resulting in translocation into the nucleus (Chen et al, 2005). 

Once the phosphorylated smad 2/3/4 complex enters the nucleus and binds to genomic 

DNA, it facilitates transcription of essential genes involved in fibrogenesis (Khalil et al, 

2017). Recent studies have shown that fibroblast-specific deletion of Tgfbr1/2 or 

Smad3, but not Smad2, results in an attenuated fibrotic response in a pressure 

overload-induced cardiac fibrosis model. This clearly signifies the importance of 

activated TGF-β signalling pathway in regulating the fibrotic progression (Khalil et al, 

2017).  Studies also demonstrate that independent of its smad mediated transcription 

activities, TGF-β can activate various signalling cascades like TGF-β-activated kinase 1 

(TAK1), extracellular signal regulated kinase (Erk), p38 Mitogen activated protein 

kinase (MAPK), c-Jun-N-terminal kinase (JNK), and GTPase pathways (Zhang, 2009). 

Previous studies show that transient activation of the RAS/MEK/ERK cascade by TGF-

β results in increased CTGF expression, actin stress fiber formation and ECM 

contraction (Chatzifrangkeskou et al, 2016). 

 

 

1.2 EPIGENETIC REGULATION OF CARDIAC FIBROSIS  
 

 

1.2.1 Epigenetics 

           

                   Studies since the last two decades have highlighted the critical role of 

epigenetics in deciphering the nature and cause of dynamic heterogeneous changes in 

gene expression profiles associated with unchanged DNA sequences (Nicoglou & 

Merlin, 2017). Ongoing studies have shown that epigenetic changes in heart during 

pathological disease state such as fibrosis can lead to invariant change in gene 

expression regulated either at DNA, histone or at transcriptome levels (Kmietczyk et 

al, 2019; Mathiyalagan et al, 2014; Tao et al, 2014). Interestingly, although epigenetic 

changes are heritable, they are also reversible in nature owing to the presence of 
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numerous epigenetic writers and erasers (Nicoglou & Merlin, 2017). Numerous 

emerging studies confirm the role of epigenetic factors in programming the activation 

and proliferation of cardiac fibroblasts during cardiac fibrosis (Felisbino & McKinsey, 

2018). A recent study in a pressure overload induced cardiac fibrosis model highlights 

the role of histone acetylation in regulating the expression of proliferative genes such 

as p15 and p57 to maintain a sustained proliferation of cardiac fibroblasts during 

fibrosis (Williams et al, 2014). Similarly, another study demonstrates the effect of 

inhibition of p300 histone acetyltransferase in blocking the proliferative response of 

cardiac fibroblasts during fibrogenesis. Evidence also highlight the role of DNA 

methylation in cardiac fibrosis (He et al, 2019; Olsen et al, 2017). A previous study by 

our group has demonstrated that increased hypermethylation of RASAL1 (a key anti-

fibrotic gene) leads to aggravation of fibrosis by enhancing the endothelial to 

mesenchymal transition, resulting in increased activated fibroblast deposition (Xu et 

al, 2015). In the same study it is reported that treatment of fibrotic hearts with BMP-7 

can attenuate the progression of cardiac fibrosis by erasing the methyl mark at the 

RASAL1 promoter through increased expression of DNA demethylase TET3. Another 

study in rat cardiac fibroblasts demonstrate that increased fibroblast activation is 

associated with decreased RASSF1a expression due to promoter methylation of the 

gene by DNMT1 (Tao et al, 2014). Moreover, the same study reports that fibroblast 

activation can be blocked by   expressing RASSF1a by treating with DNMT inhibitor 5-

aza-2′-deoxycytidine. All these studies strongly suggest the involvement of epigenetic 

signatures in regulating cardiac fibrosis. Altogether from the above studies, DNA 

methylation and demethylation are emerging as one of the key epigenetic modification 

that can be exploited therapeutically to restrain or even revert cardiac fibrosis.  

 

 

1.2.2 TET enzymes 
 
                   One of the breakthroughs in solving the riddle of active demethylation 

process came to light in early 2009 with the discovery of TET enzymes, best known for 

their ability to convert 5mC to 5hmC, 5fc and 5caC (Tahiliani et al, 2009). TET enzymes 

are called after the ten-eleven translocation (t (10;11) (q22; q23)), found in cases of 

patients suffering from acute myeloid and lymphocytic leukemia (Tahiliani et al, 

2009). Emerging studies have emphasized the role of TET proteins in diverse cellular 

processes like gene transcription, stem cell differentiation, immune cell maturation, 

embryonic development, proliferation, DDR and so on, making them a potential gene 

of interest in the field of development and diseases (Rasmussen & Helin, 2016; Tan & 

Shi, 2012). However, the molecular mechanism orchestrated in such diverse biological 

process by the TET proteins is still not precisely understood.  
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Figure 4. Schematic representation showing active DNA demethylation process 
catalyzed by the TET enzymes in Homo sapiens. 

Source image is adapted from Scourzic et al. (Scourzic et al, 2015). Figure was re-created using chem-
sketch due to copy right issue. 
 

 

1.2.3 TET isoforms and mechanism of action 
 
                   The mammalian TET family consists of three isoforms, namely TET1, TET2 

and TET3. The catalytic domain is evolutionarily conserved in all the TET isoforms and 

harbors a double-stranded β helix domain (DSBH) and a cysteine-rich region before 

the DSBH (Melamed et al, 2018). The DSBH domain serves as binding site for protein-

protein interaction and harbors binding sites for the cofactors 2-oxoglutarate (2-OG) 

and Fe (II) (Wu & Zhang, 2017).  The cysteine-rich domain contains the binding site 

for the metal Zn++, which provides stability to the overall structure of TET proteins (Wu 

& Zhang, 2017). Unlike other cysteine-rich domain-containing proteins, the TET 

proteins cysteine-rich region does not form an independent motif but instead enfolds 

within the DSBH (Yin & Xu, 2016). The TET proteins employ a flipping mechanism to 

position the methylated cytosine to their catalytic pocket. Once flipped into a precise 

position, the target base orients towards the Fe++ and 2-OG catalyzing the DNA 

oxidation reaction. The amino terminus of both TET1 and TET3 contains the CXXC 

domain, which is involved in binding to methylated CpG sites (Melamed et al, 2018). 

However, TET2 lacks a conserved CXXC domain, which is hypothesized to be missing 

due to gene conversion and duplication events during evolution (Akahori et al, 2015). 

Recent studies demonstrate that TET2 can still bind to the DNA with the help of IDAX 

domain (Ko et al, 2013). The difference in TET proteins is not confined to its structure 

but also to their distinct expression pattern around a wide range of tissues (Melamed 

et al, 2018).  
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Figure 5. Schematic illustration of TET enzymes in Homo sapiens. 

Source image is adapted from Pastor et al. (Pastor et al, 2013), Copy right license number 
4704840422098. There are three isoforms of TET proteins, namely TET1, TET2 and TET3. All TET 
isoforms have a conserved catalytic domain in the C-terminus. TET1 and TET3 have CXXC domain in 
their N-terminus, which is absent in TET2.  

 
 
1.2.4 Role of TETs in cardiovascular diseases 
 
                    One of the primary functions of TET enzymes is their ability to 

hydroxymethylate DNA. Emerging evidence shows that the change in DNA 

hydroxymethylation pattern is associated with increased cardiac hypertrophy in a 

pressure overload model of heart failure (Greco et al, 2016). Change in DNA 

hydroxymethylation pattern suggests an alteration in the expression of TET enzymes. 

TET enzymes are thus emerging as new players in cardiovascular diseases (Felisbino & 

McKinsey, 2018). Studies demonstrate that loss of TET2 results in aggravation of 

inflammation and ameliorates endothelial cell dysfunction in atherosclerotic mouse 

models (Liu et al, 2013). Another study shows that loss of TET2 in hematopoietic or 

myeloid cells in pressure overload-induced heart failure models worsens cardiac 

fibrosis and concomitant increase in the expression of interleukin-1beta (IL-1β) (Fuster 

et al, 2017). The findings support that mutations in TET2, in hematopoietic or myeloid 

cells are associated with increased risk of coronary heart diseases (Fuster et al, 2017). 

 
Additionally, a study by our group demonstrates that BMP7 mediated expression of 

TET3 can rescue cardiac fibrosis via re-expression of RASAL1 (an essential gene 

silenced during cardiac fibrosis) in pressure overload-induced mouse model (Xu et al, 

2015). Another study shows adverse maternal environment (AME) alters TET 

expression in the heart and increases the risk of cardiac fibrosis (Spearman et al, 2018). 

However, it is interesting to note that so far, there are no reports to link the role of 

TET1 in cardiovascular diseases (Spearman et al, 2018). Since the heart is comprised 

of a heterogeneous population of cells, it is not entirely clear whether TET isoforms are 

expressed globally or in a cell type-specific manner. Moreover, recent studies in cancer 

models demonstrate that all the isoforms of TET orchestrate different functions, so it 
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would be interesting to understand the role of TET proteins as facilitators or effectors 

of cardiovascular disease progression (Rawluszko-Wieczorek et al, 2015). 

  
 
 1.3 DNA DAMAGE 
 
                    Exposure to a variety of endogenous as well as exogenous stimuli poses a 

constant threat to the genomic DNA to form DNA lesions (Norbury & Hickson, 2001). 

Depending on the source, the DNA lesions generated can either be single-stranded or 

double-stranded. DNA is the blueprint of life (Hakem, 2008). Unrepaired DNA lesions 

can lead to increased replication stress, mutations, decreased proliferation, premature 

apoptosis, threatening the genomic integrity and hence the survival of the cell itself 

(Eastman & Barry, 1992). To ensure genomic stability, cells have evolved stringent 

checkpoints and associated DNA damage repair response (Zhou & Elledge, 2000). The 

DNA damage repair response is a highly dynamic and complicated process. It is 

regulated at three fundamental levels by a distinct set of proteins (Maréchal & Zou, 

2013). 

 

(i) Sensors- recognizing the DSBs (e.g. mre11-rad50-nbs1 complex)  

(ii) Transducers- signalling at the DSBs (e.g. ATM and ATR)  

(iii) Effectors and mediators- repair factors recruited at the DSBs (e.g. 53BP1 or 

      RAD51), cell cycle checkpoint kinase activators in response to DSBs (e.g. CHK1 and  

      CHK2).  

 

A flaw in any of these fundamental points may contribute to disease and affects cell 

survival. 

                               
Figure 6. Schematic representation of DNA damage repair response. 

Source image is adapted from Srinivas et al. (Srinivas et al, 2019). Copy right license is not required, as 
the publisher granted the represented image free to be reused. 
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1.3.1 DNA repair response 
 

                      Of all the types of DNA lesions encountered by the cells, DSBs poses an 

extreme threat, and if left unresolved becomes harmful for the survival of the cells 

(Mehta & Haber, 2014). DSBs in cells are repaired predominantly by the two redundant 

repair response pathways NHEJ (Non-Homologous-End-Joining) and Homologous 

recombination (HR) (Kakarougkas & Jeggo, 2014).  

 

 

1.3.2 Non-Homologous-End-Joining repair response pathway 
 
                      NHEJ is a template-independent fast DDR response pathway that 

mediates direct ligation of two broken ends of DNA (Davis & Chen, 2013). NHEJ 

operates in a template-independent manner; hence, it is actively available to resolve 

DNA DSBs in all phases of the cell cycle (Davis & Chen, 2013; Delacote & Lopez, 2008). 

The NHEJ works in four sequential steps described 

 

      i. DNA damage end recognition and assembly of NHEJ repair factors at DSBs.   

     ii. Promotion of stability around DSBs.   

     iii. Short DNA end processing.   

     iv. End ligation of broken and processed DNA ends.    

 

The first step in NHEJ is the recruitment of Ku heterodimers to the sites of DSBs. Ku 

heterodimers have a very high affinity (binding constant of 2×109 M−1) towards binding 

to broken DNA DSBs ends (Lee et al, 2016). Ku heterodimer are comprised of Ku70 

and Ku80 subunits After binding to DNA ends, Ku complex serves as a docking site for 

the recruitment of nucleases and NHEJ core repair factors (Lee et al, 2016). The next 

step facilitated by the Ku complex is to promote the stability around DSBs to prevent 

the untimely collapse of the DNA ends (Krasner et al, 2015).  DNA stability at the 

broken ends, in part by Ku complex, is facilitated by the recruitment of the catalytic 

subunit of DNA dependent protein kinase (DNA-PKcs) (Lee et al, 2016). Upon binding 

to DNA DSBs, DNA-PKcs gets auto-phosphorylated, which in turn facilitates the 

phosphorylation of NHEJ repair factors like 53bp1 (Callén et al, 2009). DNA-Pkcs not 

only promote phosphorylation of repair proteins but also timely recruitment and 

release of nucleases such as Artemis to enable proper trimming of broken ends (Jiang 

et al, 2015). Once the broken DNA ends are processed, DNA polymerases Polμ or Polλ 

are recruited to fill the gap (Ramsden, 2011). The last and essential step in NHEJ is to 

ligate the processed broken ends. The process initiates via recruitment of scaffolding 

protein XRCC4 which forms a docking site for the recruitment of DNA ligase IV 

(Ahnesorg et al, 2006). XRCC4 stabilizes DNA ligase IV by promoting its adenylation 

(Davis & Chen, 2013). NHEJ pathway is active throughout the cell cycle (Davis & Chen, 

2013). However, it is highly favored to operate in G1 cells. NHEJ is a fast repair process 

but it is error-prone and can also result in increased insertions, deletions and 

substitutions (Davis & Chen, 2013). 
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Figure 7. Schematic representation of NHEJ-mediated DNA repair pathway. 

Source image is adapted and modified from Iliakis et al. (Iliakis et al, 2015). Copy right license number 
1002992-1. In response to DNA DSBs, KU70 heterodimer complex is recruited to the site of DNA 
damage. KU70 complex in turn recruit’s DNA-PKcs and other DNA end processing enzymes that aid in 
stabilizing the DNA breaks and prepare for repair. DNA polymerases are recruited to fill in the gaps and 
in the end DNA ligase4 and XRCC4 help in ligating the broken ends. 
 

1.3.3 Homologous-Recombination repair response pathway 

 

                   HR is a slow, template-dependent high-fidelity DDR response pathway that 

predominantly operates in the S and G2/M phases of the cell cycle (Norbury & Hickson, 

2001).  HR plays a crucial role in maintaining genomic integrity in mitotically active 

cells (Moynahan & Jasin, 2010). Additionally, HR facilitates recovery from stalled 

replication forks, implicating their role in avoiding unwanted replication stress (Ait 

Saada et al, 2018). HR works in four sequential steps described as  

 

i. Enzymatic resection of DNA DSBs end. 

ii. Recruitment of nucleoprotein filaments to stabilize broken DNA ends. 

iii. Search for homologous daughter strand, followed by invasion to initiate repair of 

the broken DNA ends. 

iv. Synthesis of DNA repair at the DSBs. 

v. Resolution of repair intermediates to complete the repair at DSBs. 

 

The first step in the HR repair response is the processing of broken DNA ends to 

generate 3’ single-stranded DNA (ssDNA) overhangs. This process is widely known as 

DNA end resection and is carried out by the action of 4 enzymes (Huertas, 2010). 
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(a) MRN complex, 

(b) Exonuclease 1 (EXO1), 

(c) DNA2, and  

(d) CtBP-interacting protein (CtIP).  

 

Once the ssDNA ends are generated, heterotrimeric Replication Protein A (RPA) 

complex recruits to the 3’ ssDNA end to prevent the formation of loops and secondary 

structures (Polo & Jackson, 2011). Recruitment of RPA complex follows the loading of   

RecA, E. Coli and Homolog of Recombination Protein A (RAD51). RAD51 is an 

essential monomeric protein complex that binds to the resected end of ssDNA tails and 

facilitates sister-chromatid strand invasion (Ma et al, 2017). Completion of strand 

invasion is followed by the formation of displacement loop (D-loop). In the end, 

replicative polymerase δ uses the invading strand as a primer to initiate DNA synthesis 

to fill up the gaps (Delacote & Lopez, 2008). 

 

                                           
 
Figure 8. Schematic representation of HR-mediated DNA repair pathway. 

Source image is adapted and modified from Iliakis et al. (Iliakis et al, 2015). Copy right license number 
1002992-1. In response to HR mediated DNA repair, MRN complex is recruited to the site of DNA DSBs. 
MRN complex in turn recruits BRCA1, CtIP to process the DNA ends. Such processing of DNA ends is 
known as DNA end resection and it plays a key role in recruiting RPA1 and RAD51 to mediate homology 
strand search and initiate DNA repair. In the end, resolvases and DNA ligating enzymes are recruited to 
complete the ligation process.   
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1.4 ROLE OF DNA DAMAGE AND REPAIR IN CARDIOVASCULAR 

DISEASES 

 

                    Studies highlighting the role of DNA damage as an independent factor for 

the development of cardiovascular diseases are emerging. In line with these 

observations, it is reported that Ku70-/- (Ku70 is an essential component of NHEJ 

DDR response) knockout in mice results in cardiac hypertrophy. Similarly, ATM-/- 

(the upstream DNA damage sensor kinase) knockout in mice aggravates the 

progression of cardiac fibrosis (Foster et al, 2012). A recent study in pressure overload-

induced mouse model demonstrates loss of XRCC1 and PARP1 in cardiomyocytes 

causes increased single-stranded break accumulation and acute inflammation in the 

failing heart (Higo et al, 2017). 

 

Interestingly, the presence of single nucleotide polymorphism in DNA repair genes is 

also associated with an increased risk of cardiovascular diseases. Such as single 

nucleotide polymorphism in the RAD52 gene (involved in HR repair) increases the risk 

of mortality in cardiovascular patients (Lenart et al, 2017). Single nucleotide 

polymorphism in BRAP2 (a protein involved in HR) is associated with increased risk 

of myocardial infarction. Similarly, single nucleotide polymorphism in BRAP2 causes 

right ventricular hypertrophy (Ozaki et al, 2009). A study in anthracycline-induced 

cardiac failure demonstrates BRCA2 (a protein involved in HR) deficiency promotes 

cardiomyocyte apoptosis (Singh et al, 2012). 

 

Additionally, failing or aging hearts are also reported to demonstrate a decrease in 

NHEJ efficacy in cardiac fibroblasts (Vaidya et al, 2014). Loss of function studies show 

that HMGB1 (a non-histone chromatin protein) is associated with increased clearance 

of DNA DSBs in a fibrotic heart (Takahashi et al, 2019). An exciting aspect of all of 

these studies is that the role of DNA damage and repair responses are widely studied 

mostly in cardiomyocytes. However, the impact of DNA damage on cardiac fibroblasts 

is not entirely clear. Hence, more investigation is necessary to understand the role of 

DNA damage and repair in fibroblasts, as these are the principal mediator of cardiac 

fibrosis.  

 

 

 1.5 ROLE OF TGF-β IN DNA DAMAGE AND REPAIR RESPONSES 
 

                     TGF-β is a pleiotropic cytokine that coordinates several cellular processes 

(Liu et al, 2017). TGF-β is also emerging as one of the new players in facilitating DDR 

responses (Barcellos-Hoff & Cucinotta, 2014). Studies in murine keratinocytes 

demonstrate loss of TGF-β contributes to the genomic instability independent of p53 

activation (Lin et al, 2012). Studies show that loss of TGF-β in a human microvascular 

endothelial cell line drives centrosome aberration and aneuploidy (Langenkamp & 

Molema, 2009). Similarly, smad4 deficiency in the presence of TGF-β signalling in 

murine lung tumors impairs clearance of DNA DSBs (Haeger et al, 2016). Increased 
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expression of TGF-β in MDA-MB231 cells is reported to decrease HR repair efficacy 

but results in decreased DNA DSBs due to its effect on downregulating the damage 

sensors ATM and MSH2 (Pal et al, 2017). Interestingly, in A431 carcinoma cells, TGF-

β is reported to increase the cell survival against ionizing radiation-induced DNA DSBs 

via switching to accelerated NHEJ DDR (Lee et al, 2016). The same study also 

demonstrates that such accelerated NHEJ in A431 cells is due to increased expression 

of Lig4, a key NHEJ repair factor (Lee et al, 2016). Apart from its role in HR and NHEJ, 

studies have also demonstrated active involvement of TGF-β in NER and alt-NHEJ 

(Liu et al, 2018; Zheng et al, 2019). Altogether these results show that aberrant TGF-β 

signalling poses a potential threat to genomic instability due to impact on the DNA 

damage and repair response. Increased expression of TGF-β is known to contribute to 

activation and proliferation of cardiac fibroblasts during fibrosis (Liu et al, 2017). 

However, the contribution of TGF-β in facilitating the DDR response in the fibrotic 

fibroblast has not been studied.  

 

 

1.6 ROLE OF TETs IN DNA DAMAGE AND REPAIR RESPONSES 
 

                    TET (TET1/2/3) proteins are emerging players in orchestrating the DNA 

damage and repair responses in eukaryotic cells (Chen et al, 2018; Kuhns et al, 2019; 

Zhang et al, 2017). A study in glial cells shows loss of TET1 results in activation of G2M 

arrest and harbors endogenous increase in DNA DSBs even in the absence of genotoxic 

stress (Coulter et al, 2017; Kuhns et al, 2019). A study in mouse embryonic stem cells 

demonstrates that TET1 forms a complex with Sin3a and MOF to regulate the 

expression of DNA repair genes (Zhong et al, 2017). Notably, the same study reports 

that loss of TET1 also leads to increased DNA DSBs in the absence of external DNA 

damage, which is consistent with the previous observation in human glial cells (Coulter 

et al, 2017; Zhong et al, 2017). Loss of TET1 results in a decrease in both HR and NHEJ 

efficacy, suggesting their role in DNA DSBs repair response pathways (Zhong et al, 

2017). In p53 mutated lung cancer cell lines, knockdown of TET1 is reported to result 

in increased DNA damage, slower cell growth, and increased genomic instability 

(Filipczak et al, 2019). In mouse Purkinje cells ATM-mediated stabilization of TET1 is 

reported to contribute to efficient repair of DNA DSBs (Jiang et al, 2015). 

 

In myeloid malignancies, TET2 mediated hydroxymethylation results in recruitment 

of MSH6 (a protein involved in DNA mismatch repair) to the DNA damage sites 

(Greenberg et al, 2017). Moreover, a study shows loss of TET2 causes defects in 

chromosome segregation and decrease of BRCA2 (involved in HR repair) mRNA 

expression (Kafer et al, 2016). In human bone osteosarcoma epithelial cell lines TET2 

interacts with SMAD nuclear interacting protein 1 (SNIP1) to regulate the expression 

of DNA damage repair genes (Chen et al, 2018). Additionally, a recent report 

demonstrates that ATR mediated stabilization of TET3 is involved in DNA repair 

(Jiang et al, 2017). The same study further reports that TET3 facilitates DNA repair via 

its catalytic activity to form new 5hmC marks at sites of DNA damage and its loss 
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harbors increased endogenous DNA damage. However; the study sheds no light on 

whether TET3 is recruited directly to the DNA damage sites or its involvement in the 

choice of DNA repair (Jiang et al, 2017). A TET2 and TET3 double knock out in myeloid 

cells is also reported to increase DNA DSBs in the absence of external damage (An et 

al, 2015). The same study also demonstrates change in expression of DNA repair genes 

in the state of TET2 and TET3 double knockout. Altogether, these studies clearly show 

an association between the interplay of TETs and DNA damage repair response 

proteins in facilitating or fine-tuning the DNA repair to ensure genomic instability. 

However, how the cells decide to use the TET isoforms in different phases of DNA 

repair is not entirely clear and needs further investigations. 

 

1.7 AIMS OF THESIS 

 

The fibrotic microenvironment regularly produces ROS and cytokines that 

continuously damage the DNA resulting in production of SSBs or DSBs. DSBs are 

highly deleterious lesions and so far, their effect on cardiac fibrosis are not entirely 

clear. Notably, in response to DSBs most cells are programmed to halt the cell cycle 

until the DNA lesions are resolved. However, cardiac fibroblasts proliferate in an 

increased DNA DSBs niche during fibrosis. Therefore, it is important to understand 

how fibroblasts are able to proliferate despite increased DNA damage. The fibrotic 

progression is also associated with change in epigenetic marks. In line with these 

observations, our group has previously observed that TET3 can ameliorate fibrotic 

progression in both murine models of cardiac and renal fibrosis. Recent studies are 

highlighting a role of TET3 in DNA damage and repair response. These observations 

lead us to hypothesize that TET3 may prevent aberrant proliferation of fibroblasts via 

regulating the DDR response. In line with these ideas, the present study aims to 

investigate:  

 

 

1. a potential association of TET3 and DNA damage in healthy and fibrotic cardiac 
fibroblasts 

 
2. the role of TET3 in engaging the choice of DNA repair in healthy and fibrotic 

cardiac fibroblasts 
 
3. how loss of TET3 in the pro-fibrotic niche impacts proliferation of cardiac 

fibroblasts  
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Cell line 

 

 

Table 1. Cell line used in the entire study. 

 

Cell Line 

 

Cell Type 

 

Characteristics 

 

Source 

 

MCFs 

Mouse Cardiac 

Fibroblast 

 

Primary 

Science  

cell#M630057 

 

 

2.1.2 Cell culture media and additives 
 
Table 2. List of cell culture media and supplements used in this study. 

 

 

 

Name 

 

Source 

 

Order No. 

 

DMEM High glucose 

 

Gibco 

 

12491-015 

 

DMEM Low glucose 

 

Gibco 

 

D5796 

 
Fetal calf serum 

 
Sigma-Aldrich 

 
F4135-500ML 

 

L-Glutamine (200 mM) 

 

Gibco 

 

25030081 

 

Penicillin/Streptomycin 

Solution 

 

Gibco 

 

15140-122 

 

Phosphate buffered saline 

 

Gibco 

 

14190-094 

 

Pyruvate 

 

Sigma-Aldrich 

 

28374849 

 

Trysin-EDTA 0,25% 

 

Sigma-Aldrich 

 

T4049-100ML 
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2.1.3 Chemicals and reagents 

 

All chemical and reagents used throughout the experiments are enlisted in Table 3. 

 
Table 3. List of chemicals and reagents used in this study. 

 

 

Name  

 

Source 

 

Order No. 

 

37% HCL 

 

Merck 

 

100317 

 

Agarose 

 

Sigma Aldrich 

 

A4718 

 

Low melting agarose 

 

Sigma Aldrich 

 

A0169 

 

CaCl2 

 

Sigma Aldrich 

 

21049 

 

DTT 

 

Invitrogen 

 

Y00147 

 

Ethanol 

 

ROTH 

 

5054.1 

 

Fast SYBR green 

 

Applied Biosystems 

 

4385612 

 

β-mercaptoethanol 

 

ROTH 

 

4227.3 

 

Hepes 

 

Merck 

 

391340 

 

Isoflurane 

 

Abbvie 

 

B506 

 

Isopropanol 

 

ROTH 

 

6752.2 

 

Luria Broth Base 

 

Thermo-scientific 

 

12780052 

 

Luria Broth Agar 

 

Thermo-scientific 

 

22700025 

 

Magnesium chloride 

 

Sigma-Aldrich 

 

M8787 

 

Nuclease free water 

 

Qiagen 

 

129114 

 

OligoDT primers 

 

Invitrogen 

 

58862 

 

Methanol 

 

ROTH 

 

8388.2 
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MgSO4 Merck 7487-88-9 

 

NaCl 

 

Merck 

 

7647-14-5 

 

Na2HPO4 7H2O 

 

Merck 

 

7782-85-6 

 

NaH2PO4 

 

Merck 

 

10049-21-5 

 

NaHC03 

 

Merck 

 

144-55-8 

 

KH2PO4 

 

Merck 

 

7778-77-0 

 

Bovine serum albumin 

 

Sigma-Aldrich 

 

A9418 

 

Trizol 

 

Ambion 

 

15596-026 

 

Tween-20 

 

Sigma-Aldrich 

 

P1379 

 

Triton-X 100 

 

Sigma-Aldrich 

 

T8787 

 

Glycine 

 

Carl Roth 

 

3908 

Weigert’s iron hematoxylin 

solution 

 

Sigma-Aldrich 

 

HT1079 

 

Xylol 

 

ROTH 

 

9713.3 

 

RNaseZap 

 

Ambion 

 

AM9782 

 

Ponceau reagent 

 

ROTH 

 

3469.1 

 

SDS loading buffer 

 

Novex 

 

96868 

 

NP-40 Lysis buffer 

 

Invitrogen 

 

FNN0021 

NuPAGE SDS  

Sample buffer (4x) 

 

Novex 

 

NP0007 

 

10x PBS 

 

Thermo-Scientific 

 

70011044 

 

4% PFA 

 

ROTH 

 

664666 

 

Blocking buffer 

 

ROTH 

 

33285 

 

Target retrieval  
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2.1.4 Consumables 
 

Table 4. List of consumables used in the study. 

 

Name 

 

Source 

 

Order No. 

 

6-well plates 

 

Thermo Fischer 

 

140675 

 

8-well chambered slides 

 

Ibidi 

 

80841 

   

solution 10x pH6 Dako S1699 

 

Dimethyl sulfoxide 

 

Sigma-Aldrich 

 

D84118 

 

ULTRA Tablets, Mini, 

EDTA-free, EASY pack 

 

ROCHE 

 

5892791001 

 

Superscript® II Reverse 

Transcriptase 

 

Invitrogen 

 

100004925 

 

 

dNTP mix 

 

Invitrogen 

 

18427-013 

 

5X First strand buffer 

 

Invitrogen 

 

y02321 

 

RNAse out 

 

Invitrogen 

 

100000840 

 

NCS 

 

Sigma-Aldrich 

 

69856 

 

H202 

 

Sigma-Aldrich 

 

H1009 

 

5X First strand buffer 

 

Invitrogen 

 

y02321 

 

Bovine serum albumin 

 

Sigma-Aldrich 

 

A9418 

 

Fast SYBR green 

 

Applied Biosystems 

 

4385612 

 

MTT 

 

Sigma-Aldrich 

 

11465007001 

 

Dimethyl sulfoxide 

 

Sigma-Aldrich 

 

D84118 

 

PVDF membrane  

 

ThermoFisher Scientific 

 

88518 



TET3 impacts cardiac fibrosis partially via regulation of DNA damage response  

  

Sandip Kumar Rath  2019  Page 20 

24-well plates Thermo Fisher Scientific 12475 

 

96-well plates 

 

Thermo Fisher Scientific 

 

269620 

Black coated  

96-well plates 

 

Thermo Fisher Scientific 
15119 

 

T-25 Flask 

 

Thermo Fisher Scientific 

 

174951 

 

T-75 Flask 

 

Thermo Fisher Scientific 

 

174952 

12 well 4-12 % 

SDS PAGE gel 

 

Thermo Fisher Scientific 

 

NP0321 

 

Falcon Tubes 15 mL 

 

Thermo Fisher Scientific 

 

352095 

 

Falcon Tubes 50 mL 

 

Thermo Fisher Scientific 

 

10788561 

 

FACS Tubes 

 

STEMcell Technologies 

 

38030 

 

Eppendorf Tubes 1.5 mL 

 

Eppendorf 

 

0030 120.086 

 

Eppendorf Tubes 2.0 mL 

 

Eppendorf 

 

0030 120.094 

 

Pipette Tips 1.0 mL 

 

Sarstedt 

 

70.762.211 

 

Pipette Tips 200 μL 

 

Sarstedt 
 
70.760.452 

 

Pipette Tips 10 μL 

 

Sarstedt 

 

70.1130.105 

Serological  

pipettes 5 mL 

 

Sarstedt 

 

86.1253.001 

Serological 

pipettes 10 mL 

 

Sarstedt 

 

86.1253.001 

Serological  

pipettes 25 mL 

 

Sarstedt 

 

86.1685.001 

 

Scalpel 

 

Fisher Scientific 

 

10567364 

 

 

2.1.5 Recombinant proteins 
 
Table 5. Recombinant protein used throughout the experiment. 

 

 

Name 

 

Source 

 

Order No. 
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TGF-β 

 

R&D Systems 

 

240-B-010/CF 

         
 

2.1.6 Antibodies 
 

 

Table 6. List of primary antibodies used in this study. 

 

 

 

Table 7. List of secondary antibodies used in this study. 

 

 

 

Name 

 

Source 

Dilution  

(in use) 

 

Order No. 

 

53bp1 

 

Santacruz 

 

1:1000 (IF) 

 

H-300 

 

GAPDH 

 

Santacruz 

 

1:1000 (WB) 

 

6C5 

 

H3s10p 

 

Cell signalling 

 

1:50 (IF, FACS) 

 

29237 

 

Ki67 

 

Abcam 

 

1:50 (IF) 

 

ab15580 

 

RAD51 

 

Santacruz 

 

1:10 (IF) 

 

H-92 

 

TET3 

 

Genetex 

1:25 (IHC, IF) 

1:1000 (WB) 

 

GTX121453 

 

α-SMA 

 

Sigma-Aldrich 

 

1:1000 (IF) 

 

A5228 

 

γ-H2AX 

 

Millipore 

 

1:1000 (IF, IHC) 

 

JBW301 

 

Name 

 

Source 

Dilution  

(in use) 

 

Order No. 

 

Alexa Fluor ® 488  

donkey anti-mouse 

 

 

Life Technologies 

 

 

1:500 

 

 

A21235 

 

Alexa Fluor ® 488 

donkey anti-rabbit 

 

 

Life Technologies 

 

 

1:500 

 

 

A21206 

 

Alexa Fluor ® 568 

donkey anti-mouse 

 

 

Life Technologies 

 

 

1:500 

 

 

A-31571 
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2.1.7 Buffers 
 
Table 8. List of buffers used in the study. 

 

 

Alexa Fluor ® 568 

donkey anti-rabbit 

Life Technologies 1:500 A-32795 

Alexa Fluor ® 647 

goat anti-mouse 

 

Life Technologies 

 

1:500 

 

A32728 

Polyclonal Rabbit 

Anti-Rabbit 

Immunoglobulins 

 

 

DAKO 

 

 

1:200 

 

 

P0448 

Polyclonal Rabbit 

 Anti-Mouse 

Immunoglobulins 

 

 

DAKO 

 

 

1:2500 

 

 

P0161 

 

Buffers 

 

Recipe 

 

2 % BSA in 1X PBS 

 

2g of BSA in 100 ml of PBS 

10 % BSA in 1X 

PBS 

 

10g of BSA in 100 ml of PBS 

 

 

 

PBS 

137 mM NaCl  

2.7 mM KCl  

4.3 mM Na2HPO4·7H2O  

1.4 mM KH2PO4, pH 7.4 

 

 

 

 

 

Krebs-Hepes 

Buffer 

140 mM NaCl 

3.6 mM KCl  

0.5 mM NaH2 PO4 

0.2 mM MgSO4  

1.5mM CaCl2 

10 mM Hepes (pH 7.4)  

2 mM NaHCO3 

 

 

 

 

PBST  

137 mM NaCl  

2.7 mM KCl  

4.3 mM Na2HPO4·7H2O  

1.4 mM KH2PO4, pH 7.4 

0.1% Tween-20 

 

TBS  

20 mM Tris 

150 mM NaCL, pH 7.4 

 

 

TBST 

20 mM Tris 

150 mM NaCL 

0.1% Tween-20, pH 7.4 
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2.1.8 Primers 

 

Table 9. List of primers used in the study. 

 

 

2.1.9 Commercial Kits                        

 

Table 10. List of commercially available kits used in the present study. 

 

 

Gene 

 

Forward 

 

Reverse 

Concentration 

(In use) 
 

RPL4 

 

CCTTACGCCAAGACTATGCGCA 

 

CCTTCTCGGATTTGGTTGCCAG 

 

4 μM 

 

TET1 

 

ACACAGTGGTGCTAATGCAG 

 

AGCATGAACGGGAGAATCGG 

 

4 μM 

 

TET2 

 

ACCTGGCTACTGTCATTGCTCC 

 

TGCAGTGACTCCTGAGAATGGC 

 

4 μM 

 

TET3 

 

TGCGATTGTGTCGAACAAATAGT 

 

TCCATACCGATCCTCCATGAG 

 

4 μM 

TET3 

gRNA1 

GAT CGA TGG CCA GCA CGG 

ATG AGT TG 

AAA ACA ACT CAT CCG TGC 

TGG CCA TC 

 

10 μM 

TET3 

gRNA2 

GAT CGT GTC TTC CCC TCC CAG 

TTC CG 

AAA ACG GAA CTG GGA GGG 

GAA GAC AC 

 

10 μM 

Name Source Order No. 

 

Amplex Red kit 

 

Sigma-Aldrich 

 

A12222 

 

Annexin V apoptosis kit 

 

Abcam 

 

ab14085 

 

BrdU assay kit 

 

Roche 

 

11647229001 

 

GSH/GSSG activity kit 

 

Abcam 

 

ab138881 

 

Midi-prep Kit 

 

Qiagen 

 

12145 

 

Mini-prep Kit 

 

Qiagen 

 

2716 

 

Pierce BCA Protein Assay Kit  

 

Thermo Scientific  

 

23225 

 

PLA assay kit 

 

Sigma Aldrich 

 

DUO92101 

 

Pure Link RNA mini Kit 

 

Ambion 

 

23225 

 

TET activity kit 

 

Abcam 

 

ab156913 
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2.1.10 Plasmids     

  
Table 11. List of commercially purchased plasmids used in the present study. 

 

 

2.1.11 Equipment 

 

Table 12. List of equipment used in the present study. 

 

 

Vectastain Universal Elite 

ABC kit 

 

Vector Laboratories 

 

99585 

Plasmid Source Order No. Concentration 

 

CRISPR/Cas9 

 

Origene 

 

GE100010 

 

2.5 μg 

 

EGFP 

 

Origene 

 

45567 

 

2.5 μg 

 

I-Sce-1 

 

Addgene 

 

26477 

 

2.5 μg 

 

mouse TET3 

 

Addgene 

 

60940 

 

2.5 μg 

 

pDR-GFP 

 

Addgene 

 

26475 

 

2.5 μg 

 

pLCN-DSB 

 

Addgene 

 

98895 

 

2.5 μg 

 

RFP 

 

Addgene 

 

54608 

 

2.5 μg 

Name Use Company 

 

Cell line tissue culture 

 

S1 

 

Biowizard Kojair 

 

Autoclave 

 

Sterilization 

 

Fernwald 

 

Bioanalyzer 2000 

 

Visualisation of DNA 

 

Agilent 

 

Bright light microscopy 

 

Visualisation of cells 

 

Olympus 

Cell Culture 

Centrifugation 

 

Centrifugation 

 

Hettich 

 

ChemiDOCTM 

 

Visualisation of protein 

 

Biorad 
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Confocal Microsopy Visualisation of fluorescence Leica 

 

Drier 

 

Drying autoclaved materials 

Memmert GmbH, 

Schwabach 

 

FACS Aria II 

 

FACS 

 

Becton Dickinson 

Fluorescence  

camera Color View 

Visualisation of 

 fluorescent cells 

 

Olympus 

 

Ice maker 

 

Smashed ice production 

 

AF80 Scotsman-ice 

 

Light Microscope 

Bright field  

visualisation of cells 

 

Leica RM 2165 

 

Magnetic stirrer 

 

Stirring 

 

IKAMAG RCT IKA 

 

Microtome 

 

Tissue sectioning 

 

Leica 

Mikroskop Axiovert 

S100 TV 

 

Visualisation of cells 

 

ZEISS 

 

Nanodrop2000 

DNA/RNA/protein 

concentration measurement 

 

Thermo Scientific 

 

Pippettes 

 

Pipetting 

 

Eppendorf AG 

 

Refrigerator -20°C 

 

Cold storage 

 

Liebherer, Bulle 

 

Refrigerator 4°C 

 

Cold storage 

 

Liebherer, Bulle 

 

Roller mixer 

 

Rolling of tubes 

Bibby Scientific, 

Stuart® 

 

Sonicators 

 

Sonication 

 

Newtown, USA 

StepONE Plus  

Real-Time PCR System 

 

Real time PCR 

 

Applied Biosystems 

 

 

The Belly Dancer-Stovall 

 

 

Shaking 

Life science 

incorporated, 

Greenboro 

Thermocycler 

Mastercycler 

 

PCR 

 

Eppendorf AG 

 

Thermomixer 

 

Heating block 

 

Thermo Scientific 

 

Tissue lyser 

 

Tissue Lysis 

 

Qiagen 

 

Vortex Genie 

 

Vortexing 

 

Bender & Hobein AG 
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2.1.12 Softwares 

 
Table 13. List of softwares used in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xcell SureLock 

Electrophoresis Cell 

 

Running protein samples 

 

Invitrogen 

Software Application Source 

 

Adobe Illustrator 

 

Preparation of figures 

 

Adobe Products 

 

Cistrome Data Browser 

Downloading ChiP 

sequencing files 

 

cistrome.org/db 

 

EaSeq 

ChIP sequencing 

analysis 

 

easeq.net 

 

Endnote 4 

 

References 

 

Thomson Reuters 

 

 

Flowing Software 2 

 

 

FACS analysis 

Perttu Terhu, Turku 

Centre of Biotechnology, 

FI 

 

Grammarly 

English Grammar 

checking 

 

Grammarly 

 

Image J 

Western Blot 

quantification 

 

Imagej.nih.gov 

 

PRSIM 

 

Statistics 

 

Graph Pad 8 

Transcriptome Analysis 

Console  

 

Microarray analysis 

 

Thermo Fisher Scientific 

Windows Office 

Package 2010 

 

Writing Thesis 

Windows, Washington, 

USA 

file:///D:/Thesis%20correction/Rath%20SK%20doctoral%20thesis%20version16_EZ%20b(1).docx
file:///D:/Thesis%20correction/Rath%20SK%20doctoral%20thesis%20version16_EZ%20b(1).docx
file:///D:/Thesis%20correction/Rath%20SK%20doctoral%20thesis%20version16_EZ%20b(1).docx
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2.2 METHODS 
 

2.2.1 Human myocardial tissue sections 

 

All patient samples are collected from the Department of Cardiology, UMG Gottingen, 

in accordance with ethical rules and regulations of the Institutional Review Board of 

the University of Göttingen and the responsible government authority of Lower Saxony 

(Germany). 

 

2.2.2 Animal welfare and ethics statement 
 

All experimental animal studies were conducted in accordance with the guidelines of 

the experimental protocols and ethical rules approved by the Institutional Review 

Board of the University of Göttingen and the responsible government authority of 

Lower Saxony (Germany). The animal protocols used in these experiments conformed 

to the guidelines in Directive 2010/63/EU of the European Parliament on the 

protection of animals.  

 

2.2.3 Fibrosis induction using angiotensin II osmotic minipump in mice  
 

The angiotensin II model was implemented as described. Briefly, 14- to 16-week–old 

C57/BL/6N mice with body weights between 25 g and 30 g were used for angiotensin 

II (Ang-II) pump implantation experiments. Ang-II (1.5 mg/kg per day), or PBS as the 

control, was administered to the animals, using an osmotic minipump (ALZET Model 

1002), for 4 weeks.  

 

2.2.4 Cell culture 
 

Mouse primary cardiac fibroblasts (MCFs) were obtained from Cell-Science. The cells 

were cultured using 1.5 g Glucose Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum, sodium pyruvate (1 mM), nonessential 

amino acids (0.1 mM), penicillin (100 units/ml), and streptomycin (0.1 mg/ml). The 

cells were maintained at 37°C in 5% CO2 and cultured until passage 4. All the 

experiments were conducted in either the second or the third passage. Mycoplasma 

contamination was routinely checked during the entire course of the experiment. 

 

2.2.5 Neocarzinostatin (NCS) and transforming growth factor beta (TGF-
β) treatment 
 

The MCFs cells were treated with either 100 ng/ml of neocarzinostatin (NCS, Stock 0.5 

mg/mL) or 15 ng/mL of transforming growth factor beta (TGF-β) or 100 μM of H202 

(H202, Stock- 9.8 M) in all subsequent cell culture experiments. 
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2.2.6 Generation of clustered regularly interspaced short palindromic 
repeats/CRISPR-associated protein 9 (CRISPR/Cas9) Tet methylcytosine 
dioxygenase 3 (TET3) knockdown constructs 
 

The clustered regularly interspaced short palindromic repeats/CRISPR-associated 

protein 9 (CRISPR/Cas9) backbone was used to generate tet methylcytosine 

dioxygenase 3 (TET3) gene knockdown constructs in the MCFs. Guided RNAs 

targeting exon 10 and exon 11 of the TET3 gene were designed, and off-target binding 

effects were minimized on the basis of scores obtained on the online tool Blueheronbio 

(OriGene, Herford, Germany). The single-guide RNA (sgRNA) sequences were 

inserted into the pLenti-Cas9-Guide plasmid (OriGene GE100010, Herford, Germany) 

with BamHI and BsmBI restriction sites to generate p-Lenti-Cas-sgRNA mTET3 

constructs and confirmed by DNA sequencing. The deletion of the flanked exon was 

predicted to lead to a frameshift mutation, eventually resulting in the generation of a 

premature spliced transcript, leading to decreased protein expression. 

 

2.2.7 Plasmid isolation using midi-prep kit 

 

The HiSpeed® Plasmid Midi Kit from QIAGEN (Hilden, Germany) was used for the 

isolation of the plasmid. Bacterial cells cultured overnight were centrifuged at 4600 

RPM for 20 mins. The supernatant was discarded in bacterial waste, and the pellets 

were resuspended in 6 ml Buffer P1, which had been stored at 4°C. Next, 6 ml of Buffer 

P2 was added and incubated for 5 minutes at room temperature. Another 6 ml of Buffer 

P3 was subsequently added, and the tubes were inverted several times. Afterward, the 

liquid was transferred to barrel tubes (part of the kit) and incubated for 10 minutes. 

During this incubation step, the HiSpeed® Tips were equilibrated with 4 ml of ABT-

buffer. At this point, the lysate was filtered into the equilibrated Tip and was washed 

with 20 ml of Buffer QC. The elution was then performed with 56°C-prewarmed QF 

Buffer. The DNA was precipitated with 3.5 ml of isopropanol after 5 minutes of 

incubation. The eluate was filtered through the QIA precipitator; it was then washed 

twice with 80% ethanol. After the outlet nozzle was dried for 3 minutes, the plasmid 

was eluted in 800 µl of nuclease-free water. Finally, the DNA concentration was 

measured by Nano Drop.  

 

2.2.8 In vitro transfection  
 

The night before transfection, 50000 cells per well were seeded in a 6-well culture plate 

in an antibiotic-free DMEM (Gibco, Carlsbad, USA) well supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, USA). For the 

knockdown experiments, 2.5 µg of pLenti-cas9 TET3 plasmid DNA was transfected; 

for over-expression, 2.5 µg of mouse TET3 plasmid DNA was transfected using 

Lipofectamine 2000 reagent (Invitrogen, Carlsbad, USA).  A total of 4 hours after 

transfection, the medium in each well was replaced by a fresh antibiotic-free medium 

and allowed to incubate for the next 48 hours. 
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2.2.9 Histology 

 

Paraffin-embedded specimens were sectioned at 3 µm; Masson’s trichrome stain 

(MTS) was performed at as per the established protocol in lab (Tampe et al, 2015). For 

morphometric analysis of interstitial fibrosis, fibrotic areas were assessed using cell 

Sens (Olympus, Tokyo, Japan) software. A total of 10 visual fields were randomly 

selected for each MTS stained section at 200x magnification, and the relative 

interstitial fibrotic area was evaluated using a 10 mm2 graticule.  

 

2.2.10 Immunohistochemistry 
 

Formalin-fixed, paraffin-embedded mouse heart sections were de-paraffinized in 

xylene and rehydrated in ethanol containing distilled water. Masson’s trichrome 

staining and fibrotic area quantification were performed as previously described in our 

publications. The sections were stained using the polyclonal antibody against TET3 

(GeneTex, Irvine, California, United States). The Vectastain Universal Elite ABC Kit 

(Vector Laboratories, Burlingame, California, United States) was used for performing 

peroxidase labelling. The area of interest was visualized using AEC Substrate-

Chromogen (Dako, Glostrup, Denmark) according to the manufacturer’s protocol, and 

nuclear staining was performed using Mayer’s Hematoxylin Solution (Sigma-Aldrich, 

St. Louis, Missouri, United States) as previously described. 

 

2.2.11 Single-cell, neutral gel electrophoresis 
 

Neutral comet assay was performed on the whole mouse hearts and in vitro in mouse 

cardiac fibroblasts (MCFs).  Briefly, isolated cells from the mouse hearts or MCFs were 

mixed with 1% low-melting agarose gel. The resulting solution was then poured on a 

chilled precoated agarose glass slide. The cells were then lysed overnight at 4°C in lysis 

solution (Trevigen, 4250-010-01). The next day, the slides were run in the freshly 

prepared neutral running buffer (Trevigen, 4250-050-K) for 30 minutes at 12 V.  Post-

electrophoresis, SYBR Safe was added to visualize the comet tails using a fluorescent 

microscope. 

 

2.2.12 Amplex Red assay 
 

The H2O2 concentration in the mouse hearts was measured using the Amplex Ultrared 

dye according to the manufacturer’s instructions. In brief, the mouse hearts were 

minced into small pieces (20 mg) and incubated with Amplex Red and Krebs Hepes 

Buffer at a concentration of 100 μmol/L and horseradish peroxidase at a concentration 

of 1 U/mL for 60 min in the dark. The supernatant was collected immediately after 

incubation and transferred to a black-coated 96-well plate, and fluorescence was 

measured at 560nm. 
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2.2.13 Protein extraction and quantification 
 

Proteins were extracted from the cells by using 100 µL of NP-40 buffer, pre-added with 

protease inhibitor tablets (ROCHE). The extracted proteins were sonicated at 40 

amplitude for 10 minutes, with 15 seconds on and off-cycle. After that, the samples 

were centrifuged at 13000 RPM at 4°C. The supernatant was collected in a fresh 1.5 mL 

Eppendorf tube for further use. 

 

The extracted proteins were quantified using bicinchoninic acid (BCA) protein 

estimation kit. This method relies on an alkaline medium where the reduction of 

cuprous ion to cupric ion takes place in the presence of protein. As a result of such a 

reaction, a purple-coloured product is formed due to the chelation of two molecules of 

BCA with one molecule of cuprous ion. The concentration of the protein is thus 

quantified as a measure of absorbance at 562nm. 

 

 

2.2.14 TET and glutathione/glutathione disulfide (GSH/GSSG) activity 
assays 
 

Both activity assays were performed in the mouse hearts as per the manufacturer’s 

instructions (ab156913, ab138881). Briefly, 20 μg of tissue were collected and minced 

into small pieces with the help of a surgical scalpel. For testing both TET and 

GSH/GSSH activity, the small tissue pieces were first lysed for 1 hour at 4 °C in nuclear 

lysis solution, provided in the respective kits. After completion of lysis, for analyzing 

TET activity assay, 2 μL of 0.5X TET Substrate was added and incubated at 37°C for 90 

min. Then, 50 μL of the capture antibody were added to the samples (1:1000 from 

stock). The samples were further incubated at 37°C for 60 minutes. Thereafter, samples 

were washed thrice with 1X wash buffer and then incubated with 50 μL of the Diluted 

Detection Antibody. The samples were further washed thrice with 1X wash buffer. After 

that, 100 μL of developer solution was added, and the samples were incubated for 15 

minutes. In the end, 50 μL of stop solution was added, and absorbance was measured 

using ELISA plate reader at 450 nm.  

For GSH/GSSG assay, 50 μL of GSH Assay mixture were added into each GSH 

standard and sample well. For total GSH + GSSG (reduced and oxidized), 50 μL of total 

glutathione Assay mixture were added into each GSSG standard and sample. After that, 

the samples are incubated at room temperature 45 minutes in the dark. In the end, 

absorbance was measured using ELISA plate reader at 490 nm.   

 

2.2.15 Immunofluorescence  
 

A total of 10 000 cells per chamber were seeded in the 8-well chambered slides. Before 

fixing, the slides were washed twice with 1X PBS. Fixing was performed using 4% 

paraformaldehyde (PFA) for 15 minutes at room temperature. Post-fixation cells were 

permeabilized with 0.1% phosphate-buffered saline with Tween 20 (PBST) (1XPBS + 

Triton X 100) for 7 minutes; they were then washed twice in 1X PBS. The cells were 
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blocked with 5% bovine serum albumin (BSA) in PBST for 1 hour at room temperature. 

Post-blocking, the cells were incubated with respective primary antibodies dissolved in 

1% BSA in PBST overnight at 4°C. The next day, the cells were washed thrice with 1X 

PBS and thereafter incubated with secondary antibody dissolved in 1% BSA in PBST 

for 1 hour. The cells were rewashed thrice with 1X PBS and mounted with 4′,6-

diamidino-2-phenylindole (DAPI) to be visualized under the microscope.  

 

2.2.16 Confocal image analysis 
 

All images were photographed using an LSM780 confocal microscope. Triple-stained 

images were taken using settings in the frame with either Alexa green 488, Alexa red 

568, or Alexa infrared 647 lasers. All the images represented were processed using ZEN 

blue software (ZEISS, Oberkochen, Germany), keeping the parameters constant. The 

nuclei of all the represented images were visualized with the DAPI channel. 

 

2.2.17 RNA isolation 
 

For the purpose of isolating the RNA from the samples, 700 µl trizol was first added, 

and the cells were completely resuspended. They were incubated for 15 minutes on ice. 

Afterward, 250 µl of chloroform was added, and the tubes were shaken at least 7 times. 

They were then incubated for 7 minutes at room temperature. The phases were 

separated during centrifugation for 20 minutes with 15000 RPM at 4°C. The aqueous 

phase was then separated, and an equal amount of 70% ethanol was added. The 

resulting solution was transferred to spin cartridges, which are part of the Pure Link™ 

RNA Mini Kit. The cartridges were centrifuged for 2 minutes with 15000 RPM at 4°C 

to fix the RNA on the filter; they were then washed with wash buffer I and centrifuged 

for 30 seconds. The RNA was washed 2 more times with wash buffer II and centrifuged 

for 30 seconds. The filter was dried by centrifugation for 2 minutes with no solution 

added. Additionally, it was dried for 2 minutes by passive evaporation. After 2 minutes 

of incubation, the RNA was eluted with 30 µl of 56°C-prewarmed nuclease-free water 

by centrifugation for 2 minutes in fresh Eppendorf tubes. Finally, the RNA 

concentration was measured by Nano Drop. 

 

2.2.18 Complementary DNA synthesis 
 

To analyze the isolated cellular transcripts, the RNA was converted into 

complementary DNA (cDNA). First, the isolated RNA was diluted in nuclease-free 

water to yield a final RNA amount of 1 µg. Next, 1 µl of 10x reaction buffer and 1 µl 

deoxyribonuclease I (DNase I) were added to the diluted RNA, which was then 

incubated for 15 minutes at room temperature. At the end, 1 µl of stop solution was 

added. Afterward, the samples were heated to 70°C for 10 minutes; they were then 

cooled on ice. In the next step, 1 µl of 10mM deoxyribonucleoside triphosphate (dNTP) 

and 1 µl of 100 µM oligo(dT) per sample were added and incubated for 5 minutes at 

65°C. Next, 4 µl 5x first-strand buffer, 2 µl of 0.1 M dithiothreitol (DTT), and 1 µl 

RNaseOUT (20U/μL) were added, and the RNA was incubated for 2 minutes at 42°C. 
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Finally, 1 µl of Superscript® Reverse Transcriptase (20U/μL) was added per sample. 

The reaction was left at 42°C for 50 minutes and at 70°C for 15 minutes. The cDNA was 

frozen at -80°C before use.  

 

2.2.19 Real-time quantitative polymerase chain reaction (RT-qPCR) 
 

Real-time quantitative polymerase chain reaction (RT qPCR) was performed using 

SYBR Green Master Mix on Applied Biosystems StepOne software v2.3. Briefly, the 

RNA was isolated from the tissues or the cells using the PureLink RNA isolation kit, 

and cDNA was synthesized using the Invitrogen cDNA synthesis protocol. Validated 

primers were used to analyze the change in gene expression. The forward and reverse 

primers of each gene were mixed in nuclease-free water (primer concentrations are 

provided in Table 9). A master mix containing 6 µl of nuclease-free water, 2 µl of primer 

mix, and 10 µl of SYBR Green per sample was prepared, and 18 µl of the mix was added 

per well. Finally, 2 µl of cDNA in 1:20 dilution was added. After the plate had been 

closed airtight with Micro Amp™ Optical Adhesive Film, the samples were vortexed 

and centrifuged.  

 

The following program was used:   

     95°C 10 min 

     95°C 20 sec 

     60°C 30 sec 

 

The relative expression levels were calculated using the following equation: 2-delta-

delta Ct.  

 

2.2.20 Western blot 
 

Briefly, the cells were homogenized in nonyl phenoxypolyethoxylethanol (NP-40) lysis 

buffer (Life Technologies, Carlsbad, USA) supplemented with protease inhibitor 

cocktail (Roche, Basel, Switzerland) for 30 minutes on ice. Protein lysates were then 

sonicated and measured using a bicinchoninic acid (BCA) kit. Next, 50 µg of protein 

samples were loaded in a 4% to 12% Bis-Tris polyacrylamide gel electrophoresis system 

(Novex, Carlsbad, USA) and transferred onto a nitrocellulose membrane (GE 

Healthcare, Freiburg, Germany). The membranes were blocked with 5% bovine serum 

albumin in tris-buffered saline with Tween 20 (TBST) (tris-buffered saline (TBS) pH 

7.2, 0.1% Tween 20) and then combined with the TET3 antibody in 2% BSA in TBST 

overnight at 4°C. The next day, the membrane was washed 3 times in TBST and then 

incubated with the secondary antibody. Luminescence was detected using 

chemiluminescent substrate (Cell Signalling, Danvers, USA) on a ChemiDoc XRS 

system (Bio-Rad, Hercules, USA). The same membranes were restriped to show 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a loading control.  
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2.2.21 Flow cytometry 

 

Briefly, the cells were washed with PBS twice before detachment with trypsin (1:3 

dilution, incubation for 2 to 4 minutes at 37°C). An equal amount of culture media was 

added to stop the reaction. The cell solution was centrifuged for 10 minutes with 1.200 

RPM, and the supernatant was discarded. Afterward, the cells were washed twice with 

ice-cold PBS; this involved carefully suspending them in 1 ml of PBS before 

centrifuging them with 1.200 RPM for 10 minutes. In a final step, the cells were 

suspended in 500 µl of ice-cold PBS. A total of 5 ml of 70% ethanol was added dropwise 

with constant vortexing. The cells were in single suspension after this procedure; they 

were frozen at -80°C overnight for at least 1 hour. In the next step, the suspension was 

centrifuged again for 10 minutes with 4600 RPM at 4°C. The supernatant was 

discarded, and the precipitate was resuspended in 500 µl of ice-cold PBS. The solution 

was transferred into Eppendorf tubes. Afterward, 500 µl of propidium iodide and 2 µl 

of ribonuclease A (RNase A) were added and mixed conscientiously. The suspension 

was incubated for 30 minutes at 37°C. Within 1 hour, the measurement was taken with 

BD Accuri TM C6 (BD Biosciences, San Jose, California, United States). 

 

2.2.22 Proximity ligation assay 
 

The cells were seeded at a density of 104 cells per well in an 8-chambered slide. The 

cells were fixed and permeabilized as described before in immunofluorescent studies. 

After permeabilization, the cells were incubated with blocking buffer provided in the 

mouse/rabbit red starter Duolink kit (Olink, Uppsala, Sweden) for 2 hours at 37°C in 

a humidified chamber. The primary antibodies were then conjugated with the probes 

provided within the kit and incubated for 1 hour at room temperature at 37°C in a 

humidified chamber. They were then washed 3 times in Buffer A (provided in the kit). 

The cells were then combined with amplification buffer and enzymes as per the 

manufacturer’s protocol and incubated for 90 minutes at 37°C in a darkened 

humidified chamber. Finally, the cells were washed with 1x Buffer B (supplied with the 

kit) for 10 minutes; this was followed by a 1-minute wash with 0.01X Buffer B. Finally, 

the cells were mounted using the DAPI conjugated mountant supplied with the kit. The 

red blobs indicated the proximity between 2 cellular-bound antibodies.  

 

2.2.23 Non-homologous end joining (NHEJ) and homologous 
recombination (HR) reporter plasmids 
 

The MCFs were stably transfected with 2.5 µg of circular pLCN-DSB or pDR-GFP 

(Addgene, Cambridge, USA) (Pierce et al., 1999; Seluanov et al., 2004). Resistant 

colonies were selected with 5 µg/mL of puromycin (ThermoFisher Scientific Scientific, 

Waltham, USA).  Transfection with I-SceI (pCBASceI, Addgene, Cambridge, USA) 

introduced a double-strand break (DSB) at genomic I-SceI sites of the reporter 

plasmid, which helped to restore the green fluorescent protein/enhanced green 

fluorescent protein (GFP/EGFP) signal, visualizing non-homologous end joining 

(NHEJ)/homologous recombination (HR) repair events. 
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2.2.24 Cell counting assay 
 

Briefly, the cells were counted using the trypan blue assay. The rate of proliferation was 

calculated as Rp = ln(N(t)/N (0))/t, where N(t) = the number of cells at time t, N 

(0) = the number of cells at time 0, and t = time (in days).  

 

2.2.25 MTT cell proliferation assay 
 

Briefly, 1000 cells were plated in a 96 well chambered plate and 20 μl of 5 mg/ml MTT 

was added to each well. One set of wells with MTT but without cells was taken as 

negative control. After addition of MTT, cells were left to incubate at 37°C for 4 hours. 

After incubation, media was removed and 100 μl of DMSO was added. Briefly, 10 

minutes within incubation, cells were measured for proliferation at 495 nm using an 

ELISA plate reader.  

 

2.2.26 Analysis of publicly available microarray datasets 
 

Datasets provided publicly were analyzed according to general recommendations, 

using Transcriptome Analysis Console software (Thermo Scientific, Waltham, 

Massachusetts, United States). Human transcriptome array data were shown as log2 

median-centered intensities extracted from database accession numbers GSE57345. 

2.2.27 BrdU DNA end resection assay  

 

Briefly, control, TET3 knockdown and TET3 rescued MCFs were incubated with 20 

mM of BrdU for 24 hours. Cells were fixed with 90 % ethanol in 1X PBS for 20 minutes.  

After fixation, cells were washed thrice with 0.1% PBST and then denatured with 2N 

HCl for 35 min. Cells were subsequently blocked with 10% FBS in 1X PBS for 1 hour at 

room temperature and thereafter washed thrice with 1X PBS. Subsequently, anti-BrdU 

secondary antibody from the BrdU kit was added and absorbance was measured in an 

ELISA plate reader at 370nM.  

 

2.2.28 Statistics 

Statistical analysis was performed using Graph Pad Prism 8 software. For comparing 
between two groups Welch unpaired two tailed Student's t-test was performed. For 
comparison of more than two groups, one-way ANOVA Bonferroni and Sidak test 
analysis was performed. Statistical significances are represented in the graphs as *p ≤ 
0.05, **p ≤ 0.01, *** p ≤ 0.001. 
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3. Results 

 

 3.1 Mouse fibrotic hearts accumulate ROS and oxidative stress 
 

The fibrotic microenvironment is highly dynamic, and studies have shown that the 

increased ROS generation aggravates fibrosis (An et al, 2015). Chronic accumulation 

of ROS causes oxidative stress in the fibrotic hearts and leads to cytokine production 

and DNA damage (Mondal et al, 2013; Takimoto & Kass, 2007). H202 is one of the most 

prominent ROS that causes significant damage to fibrotic hearts (Guo et al, 2014; Qin 

et al, 2010; Steinhorn et al, 2018). The glutathione redox couple is the key buffer 

system that scavenges the H202 produced in the fibrotic heart (Swain et al, 2016). 

Increased ROS accumulation causes a shift in the ratio of reduced/oxidized glutathione 

(GSH/GSSG) (Sag et al, 2014). In line with these observations, we investigated the 

production of ROS (H202) and induction of oxidative stress in an angiotensin-II treated 

murine model of cardiac fibrosis. We confirmed fibrosis induction using Masson’s 

trichrome staining (MTS) (Figure 9A). Our results show a 1.7-fold increase in 

collagen deposition in fibrotic mouse hearts as compared to healthy control hearts 

(Figure 9B). We then confirmed a 3.7-fold increase in ROS generation using Amplex 

Red assay and a 1.67-fold decrease in the GSH/GSSG ratio, confirming accumulation 

of oxidative stress in fibrotic hearts (Figure 9C-D). Our results demonstrate that 

fibrotic mouse hearts have a significant increase in ROS and a decrease in the 

GSH/GSSG ratio compared to healthy mouse hearts. 

 

                      
 

Figure 9. Mouse fibrotic hearts have increased ROS and oxidative stress. 

(A) MTS staining showing collagen deposition (stained blue) in 4 weeks of sham and angiotensin-II 
treated mouse hearts. (B) Graph representing % of the fibrotic area in 4 weeks of sham and angiotensin-
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II treated mouse hearts. (C) Fluorescence measurement showing ROS intensity using Amplex Red assay 
in 4 weeks of sham and angiotensin-II treated mouse hearts. (D) Graph representing the change in 
GSH/GSSG ratio as an indicator of oxidative stress in 4 weeks of sham and angiotensin-II treated mouse 
hearts. Summarised quantitative findings are shown as mean ± SEM from 3 shams, and 3 Angiotensin-
II treated mouse hearts. Statistical significance was calculated using Welch unpaired two tailed Student's 
t-test, and P-values correspond to **p≤ 0.01. Scale bars represent 2 mm. 
 
 
3.2 Mouse fibrotic hearts have increased DNA damage 
 

Increased ROS and oxidative stress during cardiac fibrosis causes DNA lesions(Chen 

et al, 2019; Panth et al, 2016). Studies have confirmed that ROS-induced oxidative 

stress can cause both DNA SSBs and DSBs (AbdulSalam et al, 2016). The involvement 

of SSBs in heart failure is well understood, whereas the effect of DSBs in fibrotic 

progression is not clear (Higo et al, 2017). To confirm increased production of DSBs 

during fibrosis, we used γ-H2AX (a marker of DNA DSBs) staining. 

Immunohistochemical analysis shows significant production of DSBs in both myocyte 

and non-myocyte cell populations in the fibrotic mouse hearts (Figure 10). 

 

                      
Figure 10. Mouse fibrotic hearts have increased DNA damage. 

(A and B) Immunohistochemistry representative images and the respective graph shows the expression 
pattern of γ-H2AX in 4 weeks of sham and angiotensin-II treated mouse hearts. Summarised 
quantitative findings are shown as mean ± SEM from 3 shams, and 3 angiotensin-II treated mouse 
hearts. Statistical significance was calculated using Welch unpaired two tailed Student's t-test, and P-
values correspond to ** p≤ 0. 01. Scale bars represent 100 μm.  
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3.3 Mouse fibrotic fibroblasts show increased proliferation despite DNA 
damage 
 

Our immunohistochemical staining results demonstrate an increase in DNA DSBs in 

the non-myocyte cell population. Since fibroblasts comprise the most significant non-

myocytic cell population besides endothelial cells, we then assessed the presence of 

DNA DSBs in fibroblasts (Zhou & Pu, 2016). To confirm the accumulation of DNA 

DSBs in fibroblasts, we used γ-H2AX and α-SMA (a fibroblast marker) double 

immunofluorescent staining. Our results show an increase in the percentage of γ-

H2AX and α-SMA double-positive cells of total αSMA positive cells in fibrotic mouse 

hearts as compared to healthy sham hearts (Figure 11). 

 

                          
Figure 11. Mouse fibrotic fibroblasts have increased DNA DSBs. 

Confocal representative images and the respective graph shows double staining of γ-H2AX and α- SMA 
in 4 weeks of sham and angiotensin-II treated mouse hearts. Summarised quantitative findings are 
shown as mean ± SEM from 3 shams, and 3 angiotensin-II treated mouse hearts. Statistical significance 
was calculated using Welch unpaired two tailed Student's t-test, and P-values correspond to ***p≤ 0. 
001. Scale bars represent 20 μm. White arrow marks indicate γH2AX+, α-SMA+, and γ-H2AX/α-SMA++ 
cells at the indicated stages.  

 
Similarly, to assess increased proliferation in cardiac fibroblasts, we used Ki67 and α-

SMA double immunofluorescent staining. As expected, our results show an increase in 

Ki67 and α-SMA double-positive cells in the fibroblast population (Figure 12). 
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Altogether, these results demonstrate that the fibrotic fibroblasts can proliferate 

despite increased DNA damage. 

 

                        
 
Figure 12. Mouse fibrotic fibroblasts have increased Ki67 expression.  

 
Confocal representative images and the respective graph shows double staining of Ki67 and α-SMA in 4 
weeks of Sham and angiotensin-II treated mouse hearts. Summarised quantitative findings are shown 
as mean ± SEM from 3 shams, and 3 angiotensin-II treated mouse hearts. Statistical significance was 
calculated using Welch unpaired two tailed Student's t-test, and P-values correspond to ** p≤ 0. 01. 
Scale bars represent 20 μm. White arrow marks indicate Ki67+, α-SMA+, and Ki67/α-SMA++ cells at the 
indicated stages.  

 
 
3.4 Mouse fibrotic hearts lose TET3 expression  
 

Studies from our lab have shown that loss of TET3 is associated with aggravated organ 

fibrosis (Tampe et al, 2015; Xu et al, 2015; Xu et al, 2018). In line with these 

observations, we first confirmed the loss of TET3 in angiotensin-II treated mouse 

fibrotic hearts. Immunohistochemistry scoring and mRNA expression analysis 

demonstrate that TET3 is significantly downregulated in fibrotic mouse hearts as 

compared to control mouse hearts (Figure 13A-C). Additionally, 

immunohistochemistry scoring shows a reduction of TET3 in non-cardiomyocytes (i.e. 
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fibroblasts and endothelial cells). Interestingly, our results also demonstrate an overall 

decrease in catalytic activity of TET enzymes in general in the fibrotic hearts (Figure 

13D). 

 

                     
 
Figure 13. Mouse fibrotic hearts have decreased TET3 expression and reduced TET 

activity. 

 

(A and B) Immunohistochemistry representative images and associated graph shows the expression 
pattern of TET3 in 4 weeks of sham and angiotensin-II treated mouse hearts. Summarised quantitative 
findings are shown as mean ± SEM. (C) Relative mRNA expression of TET3 in sham and angiotensin-
II mouse fibrotic hearts. Summarised quantitative findings are shown as mean ± SD. (D) The bar graph 
shows decreased TET activity in sham and angiotensin-II mouse fibrotic hearts. Summarised 
quantitative findings are shown as mean ± SD. Statistical significance was calculated using Welch 
unpaired two tailed Student's t-test, and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, ***p ≤ 0. 001. 
Scale bars represent 100 μm.  
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3.5 Mouse fibrotic fibroblasts show decreased TET3 expression 
 

In mouse hearts, cardiac fibroblasts comprise around 56% of the total non-myocyte 

cell population (Zhou & Pu, 2016). Thus, we then assessed the expression of TET3 in 

cardiac fibroblasts. Expression of TET3 in fibroblasts is confirmed by co-

immunofluorescent staining with α-SMA. By counting the total percentage of TET3 

and α-SMA double-positive cells out of the total α-SMA positive cells, our results 

demonstrate that TET3 expression is significantly downregulated in angiotensin-II 

treated murine fibrotic fibroblasts as compared to sham fibroblasts (Figure 14). 

 

                      
Figure 14. Mouse fibrotic fibroblasts have decreased TET3 expression. 

 
Confocal representative images and respective graph shows double staining of TET3 and α-SMA in 4 
weeks of sham and angiotensin-II treated mouse hearts. Summarised quantitative findings are shown 
as mean ± SEM from 3 shams, and 3 Angiotensin-II treated mouse hearts. Statistical significance was 
calculated using Welch unpaired two tailed Student's t-test, and P values correspond to **p≤ 0. 01. Scale 
bars represent 10 μm. White arrow marks indicate TET3+, α-SMA+ and TET3/α-SMA++ cells at the 
indicated stages.  
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3.6 Ischemic human hearts show decreased TET3 expression  
 

Our in vivo data demonstrates downregulation of TET3 in fibrotic mouse hearts. 

Hence, our next aim was to evaluate the clinical significance of TET3 in healthy and 

diseased human hearts. Therefore, we continue examining the expression profile of 

TET3 from a publicly available microarray (GSE57345) dataset consisting of gene 

expression profile collected from healthy and diseased human hearts. The RNA 

samples analysed in the microarray were obtained from Myocardial Applied 

 Genomics Network  (MAGNet) consortium (www.med.upenn.edu/magnet/) and 

comprise information on TET3 expression in 135 ischemic left ventricles and 96 non-

failing left ventricles.   

 

Consistent with our in vivo results in mouse hearts, we also demonstrate a significant 

decrease in TET3 expression (p = .00000142) in human patient cohorts consisting of 

135 ischemic left ventricles and 96 non-failing left ventricles (Figure 15A). An 

increase in fibrosis is associated with increased COL4A1 and COL4A2 production. Our 

results demonstrate a strong negative correlation between expression of TET3 and 

COL4A1, suggesting that increased collagen production is associated with decreased 

TET3 expression (Figure 15B). Altogether, the microarray data analysed from the 

cohort of 231 human patients suggest that TET3 downregulation is associated with 

increased collagen expression. 

 

 
 

Figure 15. Ischemic human hearts have decreased TET3 expression. 

 (A) TET3 normalized signal intensity in 135 ischemic and 96 non-failing left ventricles. (B)   
Correlation graph showing negative association between TET3 and Col4a1 in 135 ischemic and 96  non-
failiing left ventricles. Pearson correlation coefficient analysis is shown as r2 in the represented graph.  

 

3.7 TET3 is positively associated with RAD51 and negatively associated 
with 53BP1 expression in ischemic human hearts 
 

http://(/
http://www.med.upenn.edu/magnet/
http://www.med.upenn.edu/magnet/
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Recent studies have highlighted the role of TET3 in DNA damage and repair response 

(Jiang et al, 2017), and likewise, our in vivo data demonstrate an increase in DNA DSBs 

in the fibrotic mouse hearts. Therefore, TET3 may be involved in DNA repair 

responses. Consistent with this idea, we observe a strong positive correlation between 

the expression of TET3 and RAD51 (p = .0004; a marker for HR) and a negative 

correlation with 53BP1 (p = .0005; a marker for NHEJ) in the same patient cohort, 

suggesting that TET3 might be involved in the DNA damage repair response (Figure 

16). 

 

 
 
Figure 16. TET3 is positively associated with RAD51 expression and negatively 
associated with 53BP1 expression in ischemic human hearts. 

(A) Co-relation graph showing positive association between TET3 and RAD51 in 135 ischemic and 96 
non-failing left ventricles. (B) Co-relation graph showing negative association between TET3 and 53bp1 
in 135 ischemic and 96 non-failing left ventricles. Pearson correlation coefficient analysis is shown as r2 
in the represented graph.  
  

 

 

3.8 TET3 is recruited to the DNA DSBs in vitro in MCFs when challenged 
with H202  

 

TET3 dynamics at DNA DSB sites remain unclear. Existing studies account for H202 as 

one of the critical molecules contributing to DNA damage in hearts (Ye et al, 2016). 

Therefore, we examined the recruitment of TET3 to H202-induced DNA lesions in an 

in vitro model of mouse cardiac fibroblasts (MCFs) at 1, 2, 4, 6 and 12 hours after a 

one-time exposure to H2O2 (Figure 17A). Using γ-H2AX and TET3 co-staining, we 

demonstrated that TET3 co-localizes as distinct small foci at the sites of DNA DSBs. 

Our results show that colocalization of TET3 at DNA lesions is highest one hour after 

H202 treatment, followed by a decline. Over the course of the experiment, we observed 

that DNA damage production by H202 is discontinuous; it shows a bimodal DNA 

damage accumulation that increases twelve hours after H202 treatment (Figure 17B). 

The above results suggest that H202-induced DNA DSBs occur continuously, so using 

the present experimental setup makes it difficult to understand the dynamics of 
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recruitment of TET3 at DSBs. Therefore, we continued to search for a drug that induces 

DNA DSBs at only one time point to study the recruitment of TET3 at γ-H2AX sites. 

 

                       
 
Figure 17. TET3 is co-localized at DNA DSBs induced by H202 in vitro in MCFs. 

 

(A) Representative confocal images show TET3 (green), and γ-H2AX (red) co-localization in control 
and H202 treated MCFs. (B) The bar graph represents the number of TET3, and γ-H2AX co-localized 
foci (yellow) in H202 treated MCFs at indicative time points. For counting, 150 cells were considered 
from 3 independent experiments. Summarised quantitative findings are shown as mean ± SD. Statistical 
significance was calculated using one-way ANOVA Bonferroni and Sidak analysis, n.s. represents non-
significant and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001. Scale bars represent 10 
μm. 
 

 

3.9 TET3 is recruited to the DNA DSBs in vitro in MCFs when challenged 
with NCS 
 

The unsteady nature of H202-induced DNA DSBs in MCFs, which occurs because a one-

time H2O2 treatment leads to continuous endogenous H2O2 release, introduces a 

limitation to the study of recruitment of TET3 at γ-H2AX foci, so we used 

neocarzinostatin (NCS) to induce DNA DSBs. NCS has a short half-life, so a one-time 

treatment at a dose of 100 ng/ml creates a burst of DSBs that is resolved within 12 

hours (Kuo et al, 1984). Induction of DNA DSBs by NCS thus provides a method for 

the study of recruitment of TET3 at the γ-H2AX foci. Using confocal microscopy and 

double immunofluorescent staining, we found that TET3 is recruited to the DNA DSBs 

upon treatment with NCS as discrete small foci following kinetics similar to that of γ-

H2AX (Figure 18A). By counting the number of TET3 and γH2AX double-positive 
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foci, we demonstrated that recruitment of TET3 at DNA DSBs peaks after one hour of 

DNA damage and co-localized foci start to decline sharply as DNA DSBs are resolved 

(Figure 18B).  

 

                      
 
Figure 18. TET3 is co-localized at DNA DSBs induced by NCS in vitro in MCFs. 

 
(A) Representative confocal images show TET3 (green), and γ-H2AX (red) co-localization in control 
and NCS treated MCFs. (B) The bar graph represents the number of TET3 and γ-H2AX colocalized foci 
(yellow) in NCS treated MCFs at indicative time points. For counting, 150 cells were considered from 
3 independent experiments. Summarised quantitative findings are shown as mean ± SD. Statistical 
significance was calculated using one-way ANOVA Bonferroni and Sidak analysis, n.s. represents non-
significant and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001. Scale bars represent 10 
μm.   
 

 

3.10 Proximity ligation assay confirms TET3 recruitment at DNA DSBs in 
MCFs 
 

To provide a more robust confirmation of the recruitment of TET3 at γ-H2AX sites, we 

performed proximity ligation assay (PLA). PLA is a sensitive technique used to 

visualize and study in vitro protein-protein interactions at the resolution of single cells 

(Bahjat et al, 2017). Typically, PLA uses two different primary antibodies to recognize 

the target protein-protein interactions of interest.  The two primary antibodies used in 

the experiment, therefore, must be originated from two different species. The primary 

antibodies used in the assay are then recognized with species-specific secondary 

antibodies, known as PLA plus and minus probes. Both the PLA probes are also linked 

with a short stretch of single-stranded DNA. During the experiment, when both of the 
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PLA probes are present at a distance of about 40 nM, it starts hybridizing to form a 

circular DNA in the presence of DNA ligases. Finally, upon the addition of DNA 

polymerases, these short circular DNAs are further amplified. And in the end, they are 

visualized using a fluorescent-labelled complementary oligonucleotide probe as bright 

red blobs. 

 

Based on this assay, we made use of rabbit TET3 and mouse γ-H2AX antibodies to 

confirm the recruitment of TET3 at the DSBs. As a negative control, we used no probes 

to ensure no false positive results. Previous studies have confirmed the recruitment of 

53BP1 at γ-H2AX sites using PLA (Rassoolzadeh et al, 2015). Using this information 

from the literature, we made use of rabbit 53BP1 and mouse γH2AX antibodies as 

positive controls to test our experimental setup (Figure 19A-B). In agreement with 

our confocal double staining results, these results showed increased recruitment of 

TET3 at γ-H2AX sites. These were visualized as distinct blobs after one hour of NCS 

and H202 treatment in MCFs, whereas cells without DNA damage induction produced 

no such PLA blobs (Figure 19A). 

       

 
 
Figure 19. PLA confirms the recruitment of TET3 at DNA DSBs in vitro in MCFs. 

 

(A and B) Representative images and analysis of Proximity ligation assay confirming the colocalization 
of TET3 at γ-H2AX foci upon induction of DNA damage. Negative control represents no antibody 
treatment, and positive control represents 53BP1 and γH2AX. For counting, 150 cells were considered 
from 3 independent experiments. Summarised quantitative findings are shown as mean ± SD. Statistical 
significance was calculated using one-way ANOVA Bonferroni and Sidak analysis, and P-values 
correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001. Scale bars represent 10 μm.  
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3.11 ChIP sequencing analysis shows TET3 overlaps at DNA DSBs in 
HEK293T cells 
 

To confirm TET3 recruitment at DNA DSBs is not limited to MCFs, we analyzed ChIP-

sequencing data from publicly available database. Mining through the database, we 

found two ChIP seq data sets in HEK293 cells for TET3 and γ-H2AX. We extracted the 

processed bigwig files from the database and used easeq analysis software to overlap 

the TET3 and γ-H2AX ChIP seq peaks (GSM897577, GSE75170). Because our PLA 

results show TET3 recruits at DNA DSBs, we hypothesized we would be able to 

visualize an overlap in TET3 and γ-H2AX peaks in HEK293 cells. In agreement with 

our results in MCFs, we demonstrate a 36.97 % overlap between the TET3 and γ-H2AX 

binding sites in HEK cells (Figure 20). These results further strengthen that indeed 

TET3 gets recruited at the DNA DSBs. Moreover, the present sequencing overlaps also 

suggest that recruitment of TET3 at DNA DSBs is not limited to MCFs.  

 
 

 

 

 

 

 

 

 

Figure 20. ChIP sequencing data showing overlap of TET3 and γ-H2AX globally in 
HEK293 cells. 

 

 

3.12 Loss of TET3 is associated with spontaneous DNA damage in MCFs  
 

Our in vitro data shows that TET3 is recruited to the DNA DSBs in healthy MCFs, 

implicating its possible role in facilitating DDR response. Therefore, to assess the role 

of TET3 in DDR, a CRISPR/Cas9-based knockdown construct was generated using two 

guide RNAs targeting exon 10 and exon 11 (Figure 21A). The guide RNA sequences 

used in the experiment were designed to have minimal off-target effects and maximum 

on-target effect. Our mRNA expression data shows that both designed guide RNAs are 

equally effective in downregulating TET3 (Figure 21B-C). However, the Western blot 

data shows that guide RNA2 targeting exon 11 is most effective in downregulating TET3 

expression (Figure 21D-E). 

 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM897577
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM897577
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM897577
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Figure 21. Establishment of TET3 knockdown in vitro in MCFs. 

 

(A) Schematic representation of CRISPR/Cas9 mediated TET3 knockdown. (B and C) Relative mRNA 
expression showing TET3 expression after TET3 knockdown by guide RNA 1 and guide RNA 2. (D and 
E) Western blot and the associated graph is representing TET3 downregulation upon targeted by guide 
RNA1 and guide RNA2. All experiments were done in triplicates. Summarised quantitative findings are 
shown as mean ± SD. For comparing between two groups, Welch unpaired two tailed Student's t-test 
was performed. For comparison between more than two groups, one-way ANOVA Bonferroni and Sidak 
analysis was performed. P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001.   
 
 

To assess the role of TET3 in DDR response, we performed TET3 knockdown in MCFs 

and examined changes in γ-H2AX foci accumulation as compared to the untreated and 

empty CRISPR/Cas9 transfected cells. Our results show that knockdown of TET3 by 

both guide RNAs causes production of endogenous DSBs. Notably, no statistically 

significant difference was observed in the generation of DSBs between guide RNA1 and 

2. But as our Western blot data shows that guide RNA2 is more effective in knocking 

down TET3, we elected to use guide RNA2 for all future experiments (Figure 21A).  

 
TET proteins share a high degree of sequence homology, so it is possible that 

knockdown of TET3 can also impact TET1 and TET2 expression. To clarify this, we 

performed mRNA expression analysis on all TET isoforms upon TET3 knockdown 
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using guide RNA2. Our results demonstrate that knockdown of TET3 does not result 

in alteration of TET1 and TET2 expression levels (Figure 22B-C). Next, we performed 

neutral comet assay using guide RNA2 to confirm the accumulation of DNA DSBs in 

MCFs. Our results demonstrate a significant increase in the tail moment (head DNA% 

× length of tail) in TET3 knockdown MCFs, confirming the presence of endogenous 

DNA DSBs (Figure 22D-E). Altogether, our results confirm that knockdown of TET3 

results in the accumulation of endogenous DNA DSBs independently of TET1 and 

TET2, as both genes remain unaltered upon TET3 knockdown.  

 

                      
 
Figure 22.  TET3 knockdown results in endogenous DNA DSBs in vitro in MCFs. 

 

(A) Representative confocal images and analysis shows increased γ-H2AX foci induction upon TET3 
knockdown. (B and C) Relative mRNA expression showing the effect of TET3 knockdown on TET1 and 
TET2 expression. (D and E) Neutral comet assay confirming the accumulation of DNA DSBs upon 
TET3 knockdown. All experiments were done in triplicates, and 150 cells were counted from 3 
independent experiments. Summarised quantitative findings are shown as mean ± SD. For comparing 
between two groups, Welch unpaired two tailed Student’s t-test was performed. For comparison between 
more than two groups, one-way ANOVA Bonferroni and Sidak analysis was performed. n.s. represents 
non-significant and P-values correspond to **p ≤ 0. 01, *** p ≤ 0. 001.    
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3.13 Knockdown of TET3 results in decreased HR but unchanged NHEJ 
efficacy in MCFs 
 

DSBs are repaired via two major pathways: the fast but error-prone non-homologous 

end-joining (NHEJ) and the slow but error-free homologous recombination (HR) 

(Iyama & Wilson, 2013). As knockdown of TET3 results in accumulation of endogenous 

DNA DSBs, we decided to assess its role in DNA DSB repair response. For this purpose, 

we made use of two DNA repair reporters: DRGFP HR (to detect HR efficiency) and 

pLCN-DSB (to detect NHEJ efficiency).   

 

DR-GFP reporter constructs consist of two differentially mutated fluorescent GFP 

genes arranged as direct repeats and separated by the presence of the puromycin 

antibiotic marker (Pierce et al, 1999). One of the mutated GFP genes harbors a 

recognition site for the rare endonuclease I-Sce1, and the other GFP gene harbors an 

internal 5′- and 3′-truncated fragment proficient at correcting the mutation in the GFP 

upon successful completion of HR.  

 

pLCN-DSB reporter constructs consist of non-functional GFP cassettes separated by a 

neomycin resistance marker (Arnoult et al, 2017). The non-functional GFP cassette 

consists of two inverted I-Sce1 sites, which upon cleavage result in functional 

restoration of the GFP signal after successful completion of NHEJ. The restored GFP 

signal using either of these reporter constructs can be measured by FACS. 

 

After using the HR and NHEJ reporter constructs in MCFs, we observed a significant 

reduction in HR repair efficiency (Figure 23A) upon knockdown of TET3, whereas 

NHEJ repair efficiency remained unaffected (Figure 23B). This result suggests that 

TET3 is necessary for an integer HR response. 

 

 

 

 

 

 



TET3 impacts cardiac fibrosis partially via regulation of DNA damage response  
   

  

Sandip Kumar Rath  2019  Page 50 

                      
 
Figure 23. Effect of TET3 knockdown on HR and NHEJ efficiency in vitro in MCFs. 

 

(A) MCFs integrated with a DR-GFP HR reporter substrate were transfected with TET3 knockdown 
construct and I-SceI and analyzed for change in HR efficiency by scoring % of GFP/RFP double-positive 
cells using flow cytometry. The associated graph represents HR efficacy in the ratio % of GFP/RFP 
double-positive cells. (B) MCFs integrated with a pLCN-DSB NHEJ reporter substrate were transfected 
with TET3 knockdown construct and I-SceI and analyzed for change in NHEJ efficiency by scoring % of 
GFP/RFP double-positive cells using flow cytometry. RFP was used in all the experiments to ensure 
transfection efficiency. All experiments were done in triplicates. Summarised quantitative findings are 
shown as mean ± SD. Statistical significance was calculated using Welch unpaired two tailed Student's 
t-test, n.s. represents non-significant and P-values correspond to **p ≤ 0. 01.   

 

 

3.14 Knockdown of TET3 results in decreased DNA end resection in MCFs 
 

The readout from our reporter constructs demonstrates that TET3 knockdown MCFs 

have decreased HR efficacy. Diminished HR efficacy can result from either in-efficient 

DNA end resection or an improper resolution of D-loops by DNA resolvases 

(Kakarougkas & Jeggo, 2014). Inappropriate resolution of D-loops leads to genomic 

instability, increased anaphasic bridges, and micronuclei formation (Daley et al, 2014; 

Falquet & Rass, 2017). As in our results no such abnormal features were observed upon 

TET3 knockdown, we hypothesized that decreased DNA end resection could be the 

prime factor contributing to reduced HR efficiency. So, to understand whether the 
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observed decreased HR efficacy is due to limited or diminished DNA end resection, we 

performed a bromodeoxyuridine (BrdU)-based pulse chase assay. BrdU is a thymine 

analogue, which under DNA denaturing conditions incorporates into the single-

stranded DNA (ssDNA) actively generated during DNA end resection (Mukherjee et al, 

2015). While BrdU incorporation under physiological condition reflects cell 

proliferation (as traditional assays rely on DNA replication to allow BrdU to get 

integrated into the DNA), under denaturing conditions, BrdU incorporation is 

associated with DNA end resection because denaturation halts and dissociates DNA 

replication machinery, and hence, BrdU can only get incorporated if ssDNA is 

available. Using anti-BrdU antibodies, the overall change in fluorescence intensity of 

BrdU incorporation can be measured. A change in BrdU incorporation, thus, serves as 

a direct readout for DNA end resection (Mukherjee et al, 2015). 

 

To test this concept, we first established that our TET3 rescue experiment is working. 

Briefly, 2 days after TET3 knockdown, we again re-transfected MCFs with 2.5 μg of 

TET3 overexpression plasmid. The knockdown cells rescued with TET3 overexpression 

construct are then left for 36 hours to recover. After 36 hours of recovery, the cells are 

collected and immediately processed for collecting the total protein lysate. 

Immunoblot analysis using 50 μg of protein illustrate that the knockdown and rescue 

experiment worked in the present experimental setup. Image J quantification of the 

blots clearly show an increase in TET3 protein expression upon rescue with over 

expression construct. Moreover, in the present experimental setup we are able to 

demonstrate a constant decrease in TET3 expression upon knockdown, showing 

robustness of our Crispr/Cas9 targeted TET3 knockdown construct. We then 

continued to assess the planned DNA end resection study using BrdU assay and our 

results show that TET3 knockdown in MCFs causes a decrease in BrdU fluorescence 

intensity that can be partly rescued upon re-expression of TET3. Decreased BrdU 

incorporation thus reflects a decrease in DNA end resection mechanism in TET3 

knockdown MCFs (Figure 24). 
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Figure 24. TET3 knockdown results in decreased BrdU incorporation in vitro in MCFs.  

(A) Western blot and the associated graph are representing TET3 downregulation and overexpression 
in MCFs. (B) The bar graph represents decrease in BrdU incorporation due to inefficient DNA end 
resection. All experiments were done in triplicates. Summarised quantitative findings are shown as 
mean ± SD. Statistical significance was calculated using Welch unpaired two tailed Student's t-test, n.s. 
represents non-significant and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001.  
 

 

3.15 Knockdown of TET3 results in impaired recruitment of RAD51 to 
DNA DSBs in MCFs 
 

To gain further insight into the role of TET3 in DNA end resection, we continued to 

study the recruitment of RAD51 at the DNA DSBs in TET3 knockdown and rescued 

MCFs. RAD51 is an essential monomeric protein complex, which binds to the end of 

resected single-stranded DNA tails and facilitates sister chromatid strand invasion 

(Ivanov et al, 2003; Sullivan & Bernstein, 2018). Previous studies have shown that 

RAD51 is recruited to sites of DNA damage when regions of ssDNA are exposed (Ma et 

al, 2017; Špírek et al, 2018). Hence, it serves as a direct readout for understanding the 

ongoing DNA end resection during HR. To confirm this, we performed staining for γ-

H2AX in combination with RAD51 upon TET3 knockdown or rescue in NCS-treated 

MCFs. Our data demonstrate that upon NCS-induced DNA damage, RAD51 recruits to 

DSBs (Figure 25A). Interestingly, our results show that TET3 knockdown in MCFs 

results in increased RAD51 expression. Unlike in control MCFs, however, the 

recruitment of RAD51 to DNA DSBs is severely reduced in TET3 knockdown cells, 

despite an increase in DNA DSBs. Moreover, this effect continues to persist in TET3 

knockdown MCFs challenged with NCS. These results suggest that although RAD51 



TET3 impacts cardiac fibrosis partially via regulation of DNA damage response  
   

  

Sandip Kumar Rath  2019  Page 53 

expression is elevated, its recruitment to DSBs foci continues to get affected in the 

absence of TET3 and increased DSBs. Notably, this effect is reversed upon the rescue 

of TET3 expression, confirming the absence of TET3 indeed is the reason for the 

observed improper RAD51 recruitment. Additionally, impaired recruitment of RAD51 

to the DNA DSBs in TET3 knockdown MCFs confirms our hypothesis and previous 

result of decreased DNA end resection (Figure 24B).  

 

                      
 
Figure 25. TET3 knockdown results in impaired recruitment of RAD51 at DNA DSBs in 

vitro in MCFs.  

 

(A and B) Representative confocal images and an associated histogram shows rad51 (green) and γ-
H2AX (red) co-localization (yellow) in MCFs in control, TET3 knockdown, and rescued cells (n=100 
cells were analyzed in each condition from 3 different experiments). Summarised quantitative findings 
are shown as mean ± SD. Statistical significance was calculated using one-way ANOVA Bonferroni and 
Sidak analysis, n.s. represents non-significant and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p 
≤ 0. 001.   
 

 

3.16 Knockdown of TET3 results in unchanged recruitment of 53BP1 to 
DNA DSBs in MCFs 
 

Using our NHEJ reporter constructs, we previously confirmed that the loss of TET3 

does not result in a change in NHEJ efficacy. In line with this observation, we 

investigated the recruitment of 53BP1 (a core NHEJ repair protein) at the DNA DSBs 

in control, TET3 knockdown and rescued NCS-treated MCFs. In agreement with the 
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results from our reporter constructs, we observed no significant change in 53BP1 foci 

at DNA DSBs in TET3 knockdown and rescued MCFs, suggesting that TET3 is involved 

only in the HR-mediated DDR response. Notably, although NHEJ is operational in 

TET3 knockdown MCFs, our data illustrates DNA DSBs is not resolved completely. We 

hypothesized there could be two possible reasons for such discrepancy. First, since the 

amount of DSBs is higher in TET3 knockdown MCFs even in absence of exogenous 

DNA damage causing agents, these cells just take longer time to repair. Second, the 

DSBs produced in cardiac fibroblasts in absence of TET3 could have more 

incompatible DNA ends, hence simple re-ligation of these broken ends is not feasible 

by NHEJ. This idea is well supported by the recent finding by Chang et.al, where they 

illustrate the importance of DNA DSBs ends in limiting the chances of NHEJ mediated 

DDR response (Chang et al, 2016). (Figure 26A-B).  

 

                      
 
Figure 26.  TET3 knockdown does not affect the recruitment of 53bp1 at DNA DSBs in 
vitro in MCFs. 

(A and B) Representative confocal images and an associated histogram shows 53bp1 (green) and γ-
H2AX (red) colocalization (yellow) in MCFs in control, TET3 knockdown, and rescued cells (n=100 
cells were analyzed in each condition from 3 different experiments). Summarised quantitative findings 
are shown as mean ± SD. Statistical significance was calculated using one-way ANOVA Bonferroni and 
Sidak analysis, n.s. represents non-significant and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p 
≤ 0. 001.   
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3.17 Knockdown of TET3 results in decreased global chromatin 
accessibility 
 

Compaction and decompaction of chromatin play a key role in facilitating DDR 

response (Burgess et al, 2014; Hauer & Gasser, 2017). Recent investigations 

demonstrate that compacted chromatin causes efficient activation of the upstream 

DDR signalling (ATM/ATR) kinases but not its downstream components (Burgess et 

al, 2014). This establishes that a compacted chromatin state can result in an attenuated 

DDR response in cells. Additionally, studies have also linked the state of chromatin to 

the facilitation of the correct choice of DNA repair (Lemaitre et al, 2014; Stadler & 

Richly, 2017). Studies demonstrate that chromatin compaction restricts the mobility 

of the HR repair by disturbing nucleosome eviction during active DNA end resection 

and strand invasion (Oliveira et al, 2014; Yang et al, 2013). Additionally, studies 

suggest that DNA damage in compacted chromatin is favorably repaired by NHEJ 

(Noon et al, 2010), as this repair response operates via simple re-ligation of the broken 

ends.  

 

Previous studies have shown that compacted chromatin limits the efficacy of HR  

(Sonoda et al, 2006). In line with these observations, our previous data have shown 

that loss of TET3 results in decreased HR efficacy in MCFs due to impaired DNA end 

resection and improper loading of RAD51 to the DNA DSBs. So, we hypothesized that 

this effect in TET3 knockdown cells could be a result of chromatin compaction.  

 

To test this hypothesis, we used DAPI staining, which allows to analyse the intensity 

distribution within the nucleus as a measure of compaction using confocal microscopy 

(Figure 27A). Our results show that TET3-deficient MCFs have more compacted 

chromatin than healthy MCFs. Additionally, by re-expressing TET3 in the knockdown 

MCFs, we can relax the chromatin to be comparable to healthy MCFs (Figure 27B). 

This data demonstrates that the loss of TET3 results in compaction of chromatin which 

may then contribute to limiting HR efficacy. 
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Figure 27. TET3 knockdown results in chromatin compaction in vitro in MCFs. 

        
(A and B) DAPI intensity distribution and representation analyzed by confocal microscopy in Control, 
TET3 knockdown and rescued cells.  
 
 
3.18 TGF-β treatment results in decreased TET3 expression but increased 
proliferation in MCFs 
 

TGF-β is a highly pleiotropic cytokine that is widely known to induce fibroblast 

proliferation. Studies in murine keratinocytes and human epidermoid carcinoma cells 

have shown the involvement of TGF-β in the maintenance of genomic stability and 

DDR responses (Kim et al, 2015; Lee et al, 2016). In line with these observations, it is 

plausible that TGF-β could promote the proliferation of fibrotic fibroblasts by resolving 

the DNA damage. Our results demonstrate that TET3 deficient fibroblasts proliferate 

at a slower rate and have endogenous DNA damage. Thus, we hypothesised that TGF-

β might be involved in resolving the DNA DSBs, helping TET3-deficient fibroblasts 

proliferate.  

 

In order to test the role of TGF-β in promoting proliferation, we treated MCFs with 15 

ng/mL of TGF-β and counted the cell doubling rate as well proliferation on every 

alternate day for ten days. Our results show that TGF-β caused both rapid increase in 

cell number and proliferation. However, upon removal of TGF-β on day five, we 

observed both decrease in cell number as well as proliferation. Altogether, our results 

show that exposure to TGF-β results in increased cell proliferation which then 

decreases upon removal of TGF-β after 5 days (Figure 28A-B). 
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Having confirmed that TGF-β promotes cell proliferation, we then assessed whether it 

facilitates resolving DNA DSBs. To address this, we performed γ-H2AX staining on 

every alternate day for ten days in MCFs. Interestingly, our results show that exposure 

to TGF-β for 5 days results in the formation of DNA DSBs (Figure 28C-D). Moreover, 

upon removal of TGF-β, we observed increased accumulation of DNA DSBs (Figure 

28C-D). From these results, it can be understood that the presence of TGF-β helps in 

resolving DNA damage which helps the cells to proliferate. Removal of TGF-β on day 5 

fails to resolve the DNA damage, which in turn results in decreased cell proliferation.   

 

Our in vivo data demonstrates that fibrotic fibroblasts have decreased TET3 

expression. We attempted to mimic the fibrotic state in MCFs upon TGF-β treatment 

and predicted that prolonged exposure would result in decreased TET3 expression. 

From our TET3 fluorescence staining and mRNA expression analysis, we confirmed 

downregulation of TET3 upon TGF-β treatment in MCFs. Moreover, upon removal of 

TGF-β on day 5, expression of TET3 remained downregulated (Figure 28E).  

 

Recent studies also demonstrate that TGF-β can drive changes in epigenetic writers. 

While we cannot exclude that even longer exposure to TGF-ß also leads to persistently 

increased proliferation, we suspect that the observed decrease in TET3 expression 

could be a result of the change in epigenetic balance at either the methylation or histone 

modification level.  
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Figure 28. TGF-β treatment in MCFs affects cell count, proliferation, DNA damage and 

TET3 expression. 

 

(A) The representative graph shows the effect of TGF-β on cell number in MCFs at indicative days. 
(B) The representative graph shows relative cell proliferation in control and TGF-β treated MCFs at 
indicative days. Summarised quantitative findings are shown as mean ± SD. (C and D) 
Representative confocal images and the associated graph shows the effect of TGF-β on γ-H2AX and 
TET3 expression in MCFs at indicative days. Summarised quantitative findings are shown as mean ± 
SEM. (E) Relative TET3 mRNA expression upon TGF-β treatment in MCFs at indicative days. 
Summarised quantitative findings are shown as mean ± SD. All the represented experiments are done 
in triplicates, and statistical significance was calculated using one-way ANOVA Bonferroni and Sidak 
analysis, and P-values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001.   
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3.19 TGF-β treatment results in decreased DSBs in MCFs 

 

Next, we continued to investigate how cardiac fibroblasts manage to proliferate during 

fibrosis despite the presence of DNA damage. To understand this, we mimicked fibrotic 

conditions by treating NCS treated MCFs and TET3 knockdown MCFs with TGF-β 

(Figure 29A).  Consistent with previous studies, by counting the number of γ-H2AX 

foci per nucleus, we observed that pre-treatment with TGF-β in MCFs exposed to NCS 

(both under wildtype and TET3 knockdown conditions), leads to a decreased 

accumulation of DNA DSBs after 1 hour, which continuously declines further until 12 

hours after NCS exposure (Figure 29B-C).  

 

                    
 
Figure 29. TGF-β decreases DNA DSBs in MCFs. 

 

(A, B and C) Representative confocal images and an associated histogram is showing DNA damage 
recovery analyzed by resolving of γ-H2AX (red) in the presence or absence of TGF-β at indicated 
conditions (n=100 cells were analyzed in each condition from 3 different experiments). Summarised 
quantitative findings are shown as mean ± SD. Statistical significance was calculated using Welch 
unpaired two tailed Student's t-test, n.s. represents non-significant and P-values correspond to *p ≤ 0. 
05, **p ≤ 0. 01, *** p ≤ 0. 001.   
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3.20 TGF-β treatment activates increased NHEJ repair 
 

Our previous data show that TGF-β pre-treatment results in decreased γ-H2AX foci 

(both in control and in TET3 knockdown MCFs), even when challenged with exogenous 

DNA DSBs inducing drug NCS. This suggests the possibility that treatment with TGF-

β in MCFs either limits sensing of DNA DSBs or improves DNA repair capacity. To 

clarify this, we continued to use the HR and NHEJ DNA repair constructs and analysed 

the effect on DNA repair efficacies in the presence or absence of TGF-β in control and 

TET3 knockdown MCFs. Our results show that pre-treatment of TGF-β over 24 hours 

results in a marked decrease in HR efficiency when analysed by the presence of the 

percentage of GFP and RFP double-positive cells by FACS (Figure 30A). This result 

is in line with a previously published study in CD44+/CD24−cancer cells in which 

TGF-β signalling was reported to decrease HR efficacy (Pal et al, 2017). We reported 

that TGF-β also downregulates TET3 expression, which is involved in the HR repair. 

In line with these observations, our results show that TGF-β, in combination with 

reduced TET3 expression also shows a decreased HR efficiency (Figure 30A-B). 

However, we noticed that the combination of TGF-β and TET3 knockdown does not 

show an additive decrease in HR efficacy but instead is maintained at more or less the 

same levels, (Figure 30A), which is likely due to the fact that TGF-ß treatment per se 

leads to decreased expression of TET3 as previously shown.  

 

After having established that TGF-β downregulates HR efficacy, we continued to 

investigate whether an increase in NHEJ results in improved DNA repair capacity. 

Using NHEJ reporter construct analysis, we demonstrate that indeed TGF-β 

upregulates NHEJ repair efficiency and this increase is maintained in TET3 

knockdown cells treated in combination with TGF-β (Figure 30C-D). From these 

results, we conclude that the decrease in DSBs observed upon TGF-β treatment in 

MCFs is a result of enhanced NHEJ repair efficiency.  
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Figure 30. TGF-β increases NHEJ mediated DNA repair response in MCFs. 

 
(A and B) MCFs integrated with a DR-GFP HR reporter substrate were transfected in indicated 

conditions in combination with I-Sce-1 and analyzed for change in HR efficiency by scoring % of 

GFP/RFP double-positive cells using flow cytometry. (C and D) MCFs integrated with a pLCN-DSB 

NHEJ reporter substrate were transfected in indicated conditions in combination with I-Sce-1 and 

analyzed for change in NHEJ efficiency by scoring % of GFP/RFP double-positive cells using flow 

cytometry. RFP was used in all the experiments to ensure transfection efficiency. All experiments were 

done in triplicates. Summarised quantitative findings are shown as mean ± SD. Statistical significance 

was calculated using Welch unpaired two tailed Student's t-test, n.s. represents non-significant and P-

values correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001.  

 

 

3.21 TGF- β treatment promotes proliferation in cardiac fibroblasts 
which can be rescued by TET3 overexpression 
 

Our previous results demonstrate that TGF-β treatment results in decreased TET3 

expression and an increased number of cells and proliferation. Additionally, our results 

show that TGF-β increases NHEJ efficacy and that the loss of TET3 decreases HR 

efficacy. Furthermore, existing studies in the literature demonstrate that the activation 
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of HR requires the engagement of the G2M phase arrest. Thus, we hypothesized that 

overexpression of TET3 in TGF-β treated fibroblasts would result in decreased cell 

proliferation due to the activation of the checkpoint arrest-assisted HR-mediated DNA 

repair. Moreover, as TGF-β treatment per se results in decreased TET3 expression, 

hence, we also hypothesized that the cell proliferation rate would be unchanged in 

TGF-β treated MCFs with or without CRISPR mediated TET3 knockdown.  

  

To examine our hypothesis, as previously described, we used TGF-β to mimic a fibrotic 

environment and then compared the change in the number of cells and proliferation 

over 7 days between TET3 knockdown MCFs combined with TGF-β, with the change 

in the number of cells and proliferation in TGF-β-treated MCFs. Our cell counting and 

proliferation results show that TET3 knockdown MCFs treated with TGF-β show no 

significant change in cell numbers and the proliferation rate compared to the TGF-β-

treated MCFs (Figure 31A-B).  

 

However, TGF-β-treated MCFs and TET3 knockdown MCFs treated with TGF-β show 

an increased proliferation rate compared to the control MCFs (Figure 31B). Notably, 

our previous results also demonstrate that NHEJ repair efficiency is maintained at a 

steady state in TGF-β treated MCFs and TET3 knockdown cells treated in combination 

with TGF-β. These results demonstrate that the loss of TET3 has no additive effect on 

the change in cell number and proliferation state in TGF-β-treated MCFs.  

 

Next, we continued investigating our hypothesis that TET3 overexpression in TGF-β-

treated MCFs should likely result in decreased cell proliferation. As expected, our 

results show that the re-expression of TET3 in fibrotic conditions restrains not only 

cell numbers but also proliferation (Figure 31). Existing studies demonstrate that 

increased DNA end resection due to HR leads to apoptosis in proliferating cells (van 

den Berg et al, 2019). Therefore, it is highly likely that an increase in TET3 expression 

in proliferating TGF-β-treated MCFs results in a decrease in the cell number due to 

additionally increased apoptosis induced by DNA end resection.   

 

So far, from our results, we confirm that TET3 overexpression leads to a decrease in 

cell proliferation in TGF-β-treated MCFs. Moreover, our data also suggests that cell 

proliferation is, in part, regulated by the choice of engaged DNA repair. Thus, we 

continued investigating whether this restrained cell proliferation observed upon TET3 

overexpression, as per our hypothesis is, in part, a consequence of increased HR-

mediated repair in proliferating MCFs. As, proper engagement of HR requires 

activation of cell cycle checkpoints, we decided to first look into the H3s10p status and 

later on into the change in DNA repair efficacies.   
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Figure 31. TGF-β dramatically increases proliferation rate in MCFs which can be 

rescued by TET3 overexpression. 

 

(A) The representative graph shows the effect of TGF-β on cell number in control, TET3 knockdown, 
and overexpressed MCFs over 7 days. (B) The representative graph shows the effect on cell proliferation 
in MCFs pre-treated with TGF-β in control, TET3 knockdown, and overexpressed cells. Summarised 
quantitative findings are shown as mean ± SD. All experiments were done in triplicates, and statistical 
significance was calculated using one-way ANOVA analysis, n.s. represents non-significant and P-values 
correspond to *p ≤ 0. 05, **p ≤ 0. 01, *** p ≤ 0. 001. 

 

 

3.22 TGF- β treatment results in increased H3s10p in MCFs 
 

Phosphorylation of histone at serine 10 is a sensitive marker for detecting cells 

committed to the mitotic phase (Hans & Dimitrov, 2001); (Dong & Bode, 2006). 

Studies have shown that an increase in the H3s10p signal characterizes a cell’s 

commitment to proliferate. Moreover, H3s10p provides a positive feedback signal for 

the clearance from checkpoint activation and thus prepares the cells to engage through 

anaphase and undergo proliferation (Monier et al, 2007). Therefore, as per the 

literature, a decrease in H3s10p indicates the activation of the G2/M checkpoint, while 
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an increase in H3s10p indicates clearance of G2M arrest and commitment to 

proliferation. 

 

In line with these observations, studies have also shown that the presence of DSBs 

results in decreased H3s10p activation (Hilmi et al, 2017), which allows proper 

engagement of HR-mediated DNA repair. Based on our previously observed cell 

proliferation data, we next continued by assessing the activation of H3s10p in the 

control and TGF-β treated MCFs.  

 

Our results demonstrate that, upon induction of DNA DSBs, MCFs activate the proper 

G2/M arrest marked by a decreased H3s10p activation (Figure 32A-B). This result 

suggests that, in healthy fibroblasts, the commitment to proliferation is affected by the 

presence of DSBs due to the efficient activation of HR. 

 

Interestingly, in our previous data, we observed that TGF-β treatment in MCFs results 

in decreased DNA DSBs via increased NHEJ. As per previous studies, it is well known 

that the engagement of NHEJ does not require the cells to be arrested in the G2M 

phase. Thus, we expected TGF-β-treated MCFs to have increased H3s10p status. 

Indeed, our results show that MCFs treated with TGF-β have increased H3s10p 

(Figure 32C-D), suggesting increased commitment to cell proliferation. This result 

agrees with our results of increased cell proliferation in TGF-β-treated MCFs, 

compared to untreated MCFs. 

 

However, we noticed that the combination of TGF-β and TET3 knockdown does not 

show an additive increase in H3s10p but instead is maintained at more or less the same 

levels, (Figure 32C-D), which is likely because TGF-ß treatment per se leads to 

decreased TET3 expression. These results agree with the cell proliferation data, 

wherein we reported that the loss of TET3 has no additive effect on the proliferation of 

TGF-β-treated MCFs.  

 

However, in the present study, we observed that TET3 facilitates HR-mediated DNA 

repair, which requires the G2M checkpoint arrest to operate. Notably, from our 

previous data, we confirmed that overexpression of TET3 results in restraining the cell 

proliferation in TGF-β-treated MCFs. In line with these observations, we hypothesized 

that the overexpression of TET3 in TGF-β-treated MCFs could result in decreased 

H3s10p due to increased G2M arrest favoring HR-mediated DNA repair. Indeed, our 

results demonstrate that, upon re-expression of TET3, TGF-β-treated MCFs 

dramatically reduce H3s10p (Figure 32E-F), suggesting the activation of HR.  

 

Altogether, our results suggest that the restraint in cell proliferation upon TET3 

overexpression in TGF-β-treated MCFs may be, in part, a consequence of the activation 

of a slow G2M checkpoint-dependent HR. So, we continued by assessing the change in 

HR repair efficacy, to test if indeed the decreased cell proliferation is partly a 

consequence of TET3 mediated shift in DNA repair.  
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Figure 32. TGF-β increases H3s10p signalling in vitro in MCFs. 

(A-F) Flow cytometry analysis of histone H3 on Ser-10 (pH3) representing the mitotic index in Control, 
NCS, TGF-β or TGF-β with either TET3 knockdown or TET3 overexpressed MCFs at indicated time 
points (n=10,000 cells analyzed in each condition from 3 different experiments. Summarised 
quantitative findings are shown as mean ± SD. All experiments were done in triplicates. Statistical 
significance was calculated using either unpaired nonparametric two-tailed student t-test or one-way 
ANOVA Bonferroni and Sidak analysis, n.s. represents non-significant and P-values correspond to * p ≤ 
0. 05, ** p ≤ 0. 01, and *** P ≤ 0. 001.    
 

 

3.23 TET3 overexpression in TGF- β treated MCFs results in an increased 
HR repair 
 

The results from our cell proliferation data indicate that overexpression of TET3 causes 

decreased cell proliferation in TGF-β-treated MCFs. As TET3 is involved in the HR-

mediated DNA repair response, we hypothesized that the observed restraint in the 

increase in cell numbers and proliferation can be associated with an increased HR. To 
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understand this idea, we again used HR repair reporter constructs and checked the 

change in HR efficacy in the TET3 overexpressed condition. Analyzing the percentage 

of GFP and RFP double-positive cells by FACS, we demonstrated an increase in HR 

efficiency on TET3 overexpression in TGF-β-treated MCFs (Figure 33). Studies have 

shown that an increased HR repair response provides negative feedback to cell 

proliferation (Yoon et al, 2014). Consistent with these studies, our results demonstrate 

an increase in HR upon TET3 overexpression, likely restraining cell proliferation. 

Surprisingly, our results demonstrate that TET3 overexpression in TGF-β-treated 

MCFs also results in decreased NHEJ.  A recent study shows that increased DNA end 

resection or hyper-recombination events due to HR lead to a decreased NHEJ-

mediated DNA repair efficacy (Lopez-Saavedra et al, 2016). Our present results are in 

line with these studies and show that the balance of DNA repair is crucial for the cell 

survival. Thus, from the observed results, we demonstrate that presence of TET3 

indeed has an effect on cell proliferation in fibrotic fibroblasts, partly via regulating the 

choice of DNA repair. 

 

                          
 
Figure 33. TET3 overexpression results in increased HR repair efficacy in TGF-β treated 

MCFs. 

 

(A and B) DNA repair constructs showing HR and NHEJ repair efficiency in TGF-β pre-treated MCFs 
with or without TET3 overexpression conditions (n=10,000 cells analyzed in each condition). RFP was 
used in all the experiments to ensure transfection efficiency. All experiments were done in triplicates. 
Summarised quantitative findings are shown as mean ± SD. Statistical testing was done using Welch 
unpaired two tailed Student's t-test. Significant P-values are represented in the graphs **p ≤ 0. 01.  
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3.24 Mouse fibrotic fibroblasts have increased NHEJ mediated repair in 
in vivo 
 

Thus far, we conclude that the loss of TET3 results in TGF-β-treated MCFs favoring 

NHEJ-mediated DNA repair, which in turn provides a proliferative advantage to the 

TGF-β-treated MCFs. In line with these findings, we want to establish that our in vitro 

results can be recapitulated in our in vivo mouse fibrotic model. Therefore, to evaluate 

the significance of our observed in vitro results, we continued to assess the expression 

of 53bp1 (a core NHEJ repair factor) in the fibrotic fibroblasts of our angiotensin-II-

treated mouse hearts. Using 53bp1 and α-SMA double immunofluorescent staining, we 

confirmed increased 53bp1 expression in fibrotic fibroblasts of our angiotensin-II-

treated mouse hearts, suggesting increased NHEJ repair (Figure 34). Previously, our 

in vivo results demonstrated increased expression of Ki67 in fibrotic fibroblasts. In line 

with all of these observations, our results altogether demonstrate that the loss of TET3 

favors increased NHEJ repair response in fibrotic fibroblasts to provide a proliferative 

advantage in an abundant DNA damage niche.  

 

                      

Figure 34.  Mouse fibrotic fibroblasts have increased 53bp1 expression in vivo. 
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(A and B) Confocal representative images and the respective graph shows double staining of 53bp1 and 
α-SMA in 4 weeks of sham and angiotensin-II treated mouse hearts. The arrow marks represent the 
fibroblasts positive or negative for 53bp1 in 4 weeks of sham and angiotensin-II treated mouse hearts. 
Summarised quantitative findings are shown as mean ± SEM from 3 shams, and 3 Angiotensin-II treated 
mouse hearts. Statistical significance was calculated using Welch unpaired two tailed Student's t-test, 
and P-values correspond to **p≤ 0. 01. Scale bars represent 10 μm. 
 

 

3.25 Human fibrotic hearts lose TET3 expression  
 

Our in vitro and in vivo data in mouse cardiac fibroblasts show that the expression of 

TET3 is downregulated during fibrosis. Additionally, the microarray data of ischemic 

human hearts also demonstrated a significant decrease in TET3 expression. Therefore, 

to evaluate the clinical significance of the proposed study during cardiac fibrosis in 

human patients, we continued by assessing the expression pattern of TET3 in 

fibroblasts of non-fibrotic and fibrotic human heart biopsies obtained from patients 

with aortic stenosis. Masson’s trichome staining was performed to confirm and 

quantify the fibrosis in human hearts (Figure 35A-B). Next, using hematoxylin/eosin 

(H&E) staining, we confirmed the change in morphology of fibrotic and non-fibrotic 

human hearts (Figure 35A). The expression of TET3 in fibroblasts is confirmed by 

co-immunofluorescent staining with α-SMA (Figure 35C). By counting the total 

percentage of TET3 and α-SMA double-positive cells out of the total α-SMA positive 

cells, we demonstrate that TET3 expression is downregulated in fibroblasts of fibrotic 

human hearts (Figure 35D), suggesting TET3 plays a role in the maintenance of low 

fibroblast numbers in healthy human hearts. 

                
 
Figure 35. Human fibrotic fibroblasts have decreased TET3 expression. 

           
(A) MTS and H&E staining in non-fibrotic and fibrotic human hearts. (B) Graph representing % of the 
fibrotic area in non-fibrotic and fibrotic human hearts. (C and D) Confocal representative images and 
the respective graph shows double staining of TET3 and α-SMA in non-fibrotic and fibrotic human 
hearts. Arrows mark fibroblasts positive for TET3 in non-fibrotic and fibrotic human hearts. 
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Summarised quantitative findings are shown as mean ± SEM. Statistical significance was calculated 
using Welch unpaired two tailed Student's t-test, and P-values correspond to *p≤ 0. 05. Scale bars 
represent 10 μm.   

  

 

4. DISCUSSION 
 

Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac 

fibrosis (Khalil et al, 2017). Existing studies indicate that ROS and inflammatory 

cytokines produced during fibrogenesis not only result in increased proliferative 

stimuli but also contribute to DNA damage in the form of DSBs (Cheng et al, 2003; 

Cucoranu et al, 2005; Weyemi et al, 2015). The presence of DSBs normally halts the 

cell cycle and activates DNA repair machinery to resolve the damage (Delacote & 

Lopez, 2008). However, in pathological conditions, such as fibrosis, there is a 

continuous need for activation and proliferation. Therefore, to maintain a sustained 

proliferation of cardiac fibroblasts, the activation of a distinct DNA repair mechanism 

is essential. Previous studies from our lab have highlighted the protective role of TET3, 

a DNA demethylase enzyme in organ fibrosis (Tampe et al, 2014; Xu et al, 2015; Xu et 

al, 2018). Notably, emerging studies have linked the role of TET3 to DDR response. In 

line with these observations, the entire work of my dissertation is focused on 

understanding (a) the expression of TET3 and DNA damage in cardiac fibrosis (b) the 

role of TET3 in dictating the DNA repair pathway choice, and (c) whether TET3 has a 

role in facilitating proliferation of the fibroblasts in the fibrotic niche via modulation 

of DNA damage and repair response. 

 

Thus far, we have demonstrated that TET3 affects DNA damage response mechanisms 

via orchestrating checkpoint-assisted homologous recombination-mediated DDR and 

that TGF-ß, in combination with the lack of TET3 in cardiac fibrosis, leads to a shift 

from HR-mediated DNA damage response to a checkpoint-independent non-

homologous end-joining DDR (Figure 33). Using γ-H2AX and TET3 staining, we 

demonstrate DNA DSB accumulation and a reduction of TET3 expression in fibrotic 

fibroblasts in the angiotensin-II mouse model of cardiac fibrosis (Figure 11 and 

Figure 14). The DNA repair kinetics in vitro in MCFs revealed that, when challenged 

with DNA damage, TET3 is recruited to the γH2AX foci. Recruitment of TET3 to the 

DSBs was confirmed using high definition laser confocal microscopy and a sensitive 

PLA assay in vitro in MCFs (Figure 17, Figure 18 and Figure 19). By using DNA 

repair reporter constructs for HR and NHEJ, respectively, we further confirmed that 

TET3 mediates the error-free, but checkpoint-assisted slower HR to repair DNA DSBs 

in MCFs (Figure 23). Additionally, using CRISPR/Cas9-based knockdown in MCFs, 

we demonstrate that the loss of TET3 results in the compaction of chromatin and the 

production of endogenous DSBs in the absence of any external damage stimuli 

(Figure 22 and Figure 27). Notably, we also demonstrated that the decreased HR 

efficacy in TET3 knockdown MCFs is a result of diminished DNA end resection 

(Figure 24). The most interesting aspect of the entire study is that, upon pre-

treatment with TGF-β in MCFs, we demonstrate that loss of TET3 is accompanied by 

a switch to NHEJ-based DDR, faster clearance of DNA damage, re-entry into the cell 
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cycle, and increased proliferation, which can be rescued by overexpression of TET3 

(Figure 31 and Figure 33).  

A summary of the mechanism is illustrated in Figure 36. 

 

 
 

Figure 36. Schematic representation illustrating the role of TET3 in modulating the 

DDR response in healthy and fibrotic fibroblasts. 
 

 

4.1 TET3 affects DNA damage and repair in cardiac fibroblasts 
 

Studies are highlighting the role of DNA demethylases as a new independent factor in 

orchestrating the DNA damage and repair responses (Wu & Zhang, 2017). In line with 

these observations, a recent study has shown that  TET3 plays a key role in efficient 

repair of DNA lesions, thereby providing protection against genomic instability in 

mouse embryonic fibroblasts (Jiang et al, 2017). However, it is not quite clear from 

these studies whether TET3 could be involved in the repair of DNA DSBs or whether 

TET3 is actually recruited to the DNA DSBs.  

 

If TET3 recruits to DNA DSBs, does it have an influence on the two most common DSB 

repair pathways, HR and NHEJ? In the present study, using confocal imaging and the 

PLA assay, we demonstrated that TET3 is recruited to the DNA DSBs. In addition, 

using readouts from the DNA repair reporter constructs, we showed that TET3 

facilitates HR-mediated but not NHEJ-mediated DNA repair (Figure 23). To our 
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knowledge in the context of cardiac fibroblasts, this is the first study to demonstrate 

that TET3 is recruited at the DNA DSBs and mediates the choice for HR-mediated DNA 

repair. In the context of cardiac fibroblasts, these findings open interesting research 

avenues on the role of TET3 in DNA DSB repair responses. 

 

As per the literature, post-translational modifications of the proteins are crucial for 

their involvement in DSB repair (Polo & Jackson, 2011). This idea is in line with a 

previously published study in glial and MEFs cells in which ATM and ATR kinase were 

reported to phosphorylate TET1 and TET3 to stabilize their expression during DNA 

damage (Jiang et al, 2017; Jiang et al, 2015). Mass-spectrometry studies in HEK293 

cells show that the N-terminal domain of TET3 is highly subjected to post-translational 

modifications (Bauer et al, 2015). In the same study, it was also reported that the 

phosphorylation serine-362 position competes with oGlcNAcylation, the outcome of 

which dictates TET3 nuclear retention (Bauer et al, 2015). This report is well supported 

by a previous study on Hela cells, where oGlcNAcylation of TET3 is shown to promote 

cytoplasmic export (Zhang et al, 2014). In line with these results, it would be 

noteworthy to precisely explore the phosphorylation status of TET3 because it could 

explain whether post-translational phosphorylation is indispensable for the 

recruitment of TET3 to the γ-H2AX foci.  

 

The TET proteins are best known for their role in DNA hydroxymethylation (Tahiliani 

et al, 2009). The existing studies in MEFs demonstrate that TET3 mediates increased 

hydroxymethylation at DSBs (Jiang et al, 2017). Notably, these studies provide no 

evidence for the recruitment of TET3 to DNA damage sites. In line with these 

observations, our results demonstrate that TET3 recruits to DNA damage sites. 

Meanwhile, new studies are emerging which highlight a non-catalytic role of TET3 

(Krueger et al, 2017; Montalban-Loro et al, 2019), Therefore, it is possible that this  

independent catalytic activity of TET3 may play a role in DDR response. More 

investigations are necessary to evaluate this idea. 

 

As all the TET proteins are shown to be involved in DDR, one of the questions that 

remain unanswered is whether, in the absence of TET3, TET1 and TET2 can 

compensate for the DNA repair. Previous studies have shown that TET1 and TET2 

facilitate NHEJ-mediated DDR response (Lu et al, 2016; Zhong et al, 2017), 

surprisingly which is quite opposite to our present findings on the role of TET3 in 

facilitating HR-mediated DNA repair response. Moreover, as in the present study we 

propose a non-catalytic role of TET3 in DNA repair, hence, it would be interesting to 

investigate whether the other isoforms can also participate in DNA repair response 

independent of their catalytic function. In line with this idea, a recent study in HEK293 

and MEFs demonstrate, a hydroxymethylation independent role of TET1 in NHEJ-

mediated DNA repair, by forming a chromatin associated complex with sin3a and 

hMOF transcriptional factors (Zhong et al, 2017). Therefore, further investigations are 

necessary to understand the in-depth mechanism on how specific TET isoforms and 

their distinct domains play a decisive role in DNA DSB repair response. 
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In the present study, we illustrate that TET3 is involved in HR-mediated DDR (Figure 

23). One of the crucial stages of HR is the resection of DNA around DSBs to expose 

ssDNA, which is necessary to orchestrate RAD51-mediated strand invasion (Huertas, 

2010). We observed that TET3 deficiency results in impairment of BrdU incorporation 

(Figure 24), which is a direct readout for ongoing DNA end resection (Mukherjee et 

al, 2015). Furthermore, we also observed improper loading of RAD51 at the γ-H2AX 

foci in TET3-deficient cardiac fibroblasts, strengthening our hypothesis about 

diminished DNA end resection. However, we do not observe any change in NHEJ 

repair efficiency or recruitment of NHEJ core proteins 53bp1 between TET3-deficient 

or control fibroblasts (Figure 23). Hence, it is highly likely that such an outcome can 

also result from a direct interaction of TET3 with RAD51 (mediating HR) but not with 

53bp1 (mediating NHEJ). 

 

 

4.2 TET3 may affect replication stress in cardiac fibroblasts 
 

In the present study, we demonstrate that the loss of TET3 in MCFs results in impaired 

recruitment of RAD51 to the DSB (Figure 25). Interestingly, studies have shown that 

impaired recruitment of RAD51 is also associated with replication stress (Ait Saada et 

al, 2018). Persistent replication stress can result in endogenous DNA DSBs. This 

potentially explains our observed results on the generation of DSBs upon TET3 

knockdown. Additionally, a pathway analysis using the string database surprisingly 

illustrates that most TET3 predicted interaction partners, apart from carbonic 

anhydrase2 and nanog, are associated with either proper maintenance or processing 

of the replicating fork (Figure 37) (Hervouet et al, 2018; Rehman et al, 2018; 

Rondinelli et al, 2017; Slenn et al, 2014). It is therefore highly likely, that TET3, apart 

from its role in DNA damage and repair, can also be involved in the proper 

maintenance and functioning of replicating forks in cells. 

 

As replicating origins are highly enriched in GC content (Cadoret et al, 2008), we 

hypothesize that TET3 can catalyze hydroxymethylation in these regions to mediate 

the maintenance of the replicating origins. This idea is supported by a recent study 

wherein TET2-mediated hydroxymethylation is reported to play a crucial role in the 

maintenance of replicating fork origins (Prikrylova et al, 2019). As most TET proteins 

are highly redundant in function, it is possible that, as per our hypothesis, TET3 can 

also be involved in replication stress and the maintenance of replicating fork origins. 

Further investigation could seek to answer whether TET3 is also involved in fine-

tuning the replication fork or may be involved in orchestrating the DNA replication 

origin firing.  

 

In line with these ideas, increased replication stress is a common feature in 

Doxorubicin-induced cardiac failure (Yang et al, 2014). Similarly, increased replication 

stress is also observed in cardiac failure due to mutations in laminin A/C genes 

(Graziano et al, 2018). Notably, so far in pathological cardiac diseases, the role and 

involvement of replication stress are not well known. In the present study, we report 

that TET3 expression is downregulated during cardiac fibrosis; therefore, further 
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research can link the possible role of TET3 in fine-tuning the replication stress during 

cardiac fibrosis. 

 

            

            
 
Figure 37. Schematic representation of TET3 interaction partners analysed from the 

string database (Jensen et al, 2009). 

 

 

4.3 TET3 affects chromatin relaxation during DNA damage response in 
cardiac fibroblasts 

 

One of the key findings of the present study is that TET3 also plays a role in relaxing 

chromatin (Figure 27). This finding is in line with a recent report in the literature 

wherein the loss of TET3 is shown to facilitate heterochromatin formation via an 

increase in H3k27me3 (Cao et al, 2019). It is well known that unrelaxed chromatin can 

hinder the proper operation of DNA damage and repair response (Hauer & Gasser, 

2017). In line with these observations, our results also show impaired recruitment of 
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RAD51 to the DNA DSBs in TET3 knockdown MCFs. Thus, we hypothesize that 

changes in the chromatin landscape might affect the loading of RAD51 to the DNA 

DSBs in TET3-deficient cells. Studies also indicate that one of the essential 

prerequisites for proper HR-mediated DDR is the availability of relaxed chromatin 

architecture (Densham & Morris 2019). In a relaxed chromatin architecture, eviction 

of nucleosomes around the DSBs would facilitate smooth DNA end resection followed 

by strand invasion (Garvin et al, 2013). Our results are coherent with previously 

published findings, as we also observed that TET3 deficient cells with a compacted 

chromatin architecture show inefficient DNA end resection (Figure 24). However, it 

is unclear whether compacted chromatin in TET3-deficient cells is due to physiological 

tight nucleosome sliding or due to increased tail bridging of histones. More research is 

needed in this area. 

 

Existing studies have highlighted both catalytic domain dependent and independent 

roles of TET3. Thus, it is of interest in the future to investigate which domain of the 

TET3 aids in relaxing chromatin during DNA damage. Moreover, more investigations 

are necessary to determine whether chromatin compaction by loss of TET3 is the cause 

or consequence of the observed endogenous DNA DSBs. Interestingly, a recent study 

in mouse embryonic stem cells illustrates that exon number 4 of TET3 is present in the 

N-terminal domain (not in the catalytic domain), is highly conserved and helps in 

relaxing the chromatin (Krueger et al, 2017). In the same study, using only the exon 4 

overexpression studies, the authors displayed extensive relaxed chromatin by ATAC 

sequencing. Moreover, the authors also claimed that such a conserved region is absent 

in TET1 and TET2, suggesting that the chromatin relaxation is a unique feature of TET3 

among all the other isoforms. More investigations are also required to verify that the 

exon 4 of TET3 is critical in relaxing the chromatin in response to DNA DSBs. We also 

propose that generating the truncated versions of TET3 can help us to understand the 

precise role of each part of the domain in chromatin relaxation and DDR response.  

Interestingly, as previously discussed, the N-terminal domain of the protein is highly 

subject to post-translational modifications; therefore, it is likely that TET3 can play a 

role in DNA damage and repair response, independent of its catalytic domain due to 

its involvement in relaxing the chromatin. Apart from DDR, the extent of chromatin 

relaxation upon TET3 knockdown can also help us to understand the dynamics of 

chromatin looping and bending, which in turn tightly controls gene expression during 

fibrosis. Hence, for the future, we propose that a detailed Hi-C chromatin 

conformation capture analysis overlapped with an ATAC analysis in TET3 knockdown 

MCFs can aid in exploring the intricacy of chromatin loops and enhancer organization 

during fibrotic progression. 

 

 

4.4 TGF-β affects DNA repair and proliferation in cardiac fibroblasts 
 

In a physiological state, cardiac fibroblasts are more or less quiescent, but in 

pathological conditions, their proliferation is critical for fibrotic scarring. Interestingly, 

we have observed that fibrotic fibroblasts have an increased proliferation rate despite 

accumulating DNA damage (Figure 11). This led to the question: How do fibrotic 
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fibroblasts enter proliferation?  In order to provide an answer to this question, we 

contemplated two hypotheses: First, they may be adapting and tolerating DNA 

damage, or second, they could actually harness the fibrotic niche to accelerate DNA 

repair. Adaptation to DNA damage leads to genomic instability (GI) (Tubbs & 

Nussenzweig, 2017), but, to our knowledge, there are no reports of GI during cardiac 

fibrosis. Moreover, we also looked for abnormal anaphasic bridges (an indicator of GI) 

in murine fibrotic hearts, and no such abnormality was detected, at least in our sample 

size.  

 

Therefore, we focused on the second hypothesis that the fibrotic fibroblasts enter 

proliferation in a fibrotic niche due to a switch in DDR. To test this idea, we treated 

cardiac fibroblasts in vitro with TGF-β (a key molecule driving fibrotic progression). 

Our data show that MCFs treated with TGF-β tend to accelerate the clearance of DSBs 

by engaging increased NHEJ-mediated DDR response (Figure 29 and Figure 30). 

This is also coherent with the existing literature, where TGF-β is shown to accelerate 

clearance of the DSBs induced by ionizing radiation via NHEJ engagement in various 

cancer models (Kim et al, 2015).  

 

However, in the present study, we have not addressed whether the increase in NHEJ 

efficacy due to TGF-β treatment is due to increased 53bp1 expression or increased 

ligase 4 expression. Further experiments are needed to answer these questions. 

Moreover, TGF-β is primarily cytoplasmic by localization, and as per previous studies, 

most of its action in the nucleus is due to activated p-Smad2/3. It is of high interest to 

investigate whether activated p-Smad2/3 also plays a role in NHEJ DDR response in 

cardiac fibroblasts.  

 

Interestingly, our results also demonstrate that MCFs upon treatment with TGF-β 

show decreased TET3 expression. This is in line with previously published studies, 

wherein a similar effect of TGF-β was observed (Gong et al, 2017; Tampe et al, 2014; 

Xu et al, 2015; Ye et al, 2016; Zhang et al, 2014). So far, the exact mechanism that 

impairs TET3 expression has not been addressed in cardiac fibroblasts. In light of this 

observation, as the TET3 promoter consists of both smad binding sites as well as CpG 

islands, it would be interesting to address, if either of these axes together or 

independently regulate TET3 expression in MCFs. We propose bisulfite sequencing of 

TET3 promoter region along with ChIP studies on activated smad-3 binding to help 

resolve this question.  

 

 

4.5 TET3 affects DNA repair and proliferation in cardiac fibroblasts 
 

In the present study, we established that TET3 plays a role in HR in MCFs and TGF-β-

treatment downregulates TET3 expression (Figure 28).  Altogether, these results led 

us to hypothesize that decreased TET3 expression is a strategy employed by the fibrotic 

fibroblasts to evade activation of checkpoint arrest assisted HR-mediated repair 

response to promote increased cell proliferation. However, we also demonstrated that 

further knockdown of TET3 has no additive effect on the change in the cell proliferation 
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state in TGF-β-treated MCFs (Figure 31). But, interestingly, our results demonstrate 

that TET3 overexpression in TGF-β-treated MCFs also leads to shift in NHEJ repair 

efficacy (Figure 33). We propose, such result could be a consequence of increased 

DNA end resection in a relaxed chromatin. This idea is consistent with a recent study, 

wherein knockdown of CCAR2 is reported to decrease in the NHEJ repair efficacy due 

to an increase in HR-mediated DNA end resection (Lopez-Saavedra et al, 2016). 

Therefore, altogether from the results in the present study we can conclude that the 

anti-proliferative effect of TET3 in fibrotic fibroblasts is in part due to a shift in DNA 

repair. Hence, more investigations are necessary to understand whether the observed 

decreased cell proliferation upon TET3 overexpression is due to the altered chromatin 

architecture or DNA end resection or a consequence of both.   

 

 

5. Conclusion and Therapeutic Outlook 

 

Taking the patient data and in vitro and in vivo results in mouse hearts together, we 

demonstrated that fibrotic fibroblasts show a loss of TET3 expression. Moreover, using 

MCFs as in in vitro model, here, we demonstrate that TET3 additionally impacts DNA 

damage response (DDR) mechanisms via orchestrating checkpoint-assisted 

homologous recombination (HR)-mediated DDR, and that TGF-β, in combination 

with lack of TET3 in cardiac fibrosis, leads to an increase of a checkpoint-independent 

non-homologous end joining (NHEJ) DDR. In addition, from our in vitro results, we 

demonstrated that TET3 relaxes the chromatin which we propose may facilitate HR-

mediated DNA repair. Altogether from our results, we suggest a protective role of TET3 

in cardiac fibrosis. However, the in vivo landscape in heart is highly dynamic and 

regulated by cross-talks between different cell types. In line with these observations, 

there are still many unanswered questions concerning the findings of our results 

precisely in the in vivo situation. Hence, more investigations are necessary to address 

these answers using a TET3 knockout mouse challenged with fibrosis. 

 

From a therapeutic point of view, a previous study from our lab demonstrated a dose-

dependent anti-fibrotic effect of the anti-hypertensive drug hydralazine which 

upregulates TET3 expression (Tampe et al, 2015). Hence, it would be interesting to 

recapitulate these findings in fibrotic mouse hearts and look upon the protective role 

of TET3 during fibrosis in context of DNA repair. Hydralazine has a definite effect on 

other factors, too, but as it upregulates TET3 expression, it appears highly likely that it 

exerts a positive effect on HR-mediated DDR. 
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