Development of Agent-Based Simulation
Models for Software Evolution

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
“Doctor rerum naturalium”
der Georg-August-Universitat Gottingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Daniel Honsel
aus Hildesheim

Gottingen, 2019

Betreuungsausschuss

Prof. Dr. Stephan Waack,
Institut fiir Informatik, Georg-August-Universitiat Gottingen

Prof. Dr. Jens Grabowski,
Institut fiir Informatik, Georg-August-Universitat Gottingen

Mitglieder der Priifungskommission

Referent: Prof. Dr. Stephan Waack,

Institut fiir Informatik, Georg-August-Universitat Gottingen

Korreferent: Prof. Dr. Jens Grabowski,

Institut fiir Informatik, Georg- August-Universitat Gottingen

Weitere Mitglieder der Priifungskommission

Prof. Dr.-Ing. Marcus Baum,
Institut fiir Informatik, Georg-August-Universitiat Gottingen

Prof. Dr. Carsten Damm,
Institut fiir Informatik, Georg-August-Universitiat Gottingen

Prof. Dr. Florin Manea,
Institut fiir Informatik, Georg-August-Universitdt Gottingen

Prof. Dr. Kerstin Strecker,
Institut fiir Informatik, Georg-August-Universitiat Gottingen

Tag der miindlichen Priifung

12.12.2019

Abstract

Software has become a part of everyday life for us. This is also associated with
increasing requirements for adaptability to rapidly changing environments. This
evolutionary process of software is being studied by a software engineering related
research area, called software evolution. The changes to a software over time are
caused by the work of the developers. For this reason, the developer contribution
behavior is central for analyzing the evolution of a software project. For the anal-
ysis of real projects, a variety of open source projects is freely available. For the
simulation of software projects, we use multiagent systems because this allows us to
describe the behavior of the developers in detail.

In this thesis, we develop several successive agent-based models that cover different
aspects of software evolution. We start with a simple model with no dependencies
between the agents that can simulative reproduce the growth of a real project solely
based on the developer’s contribution behavior. Subsequent models were supple-
mented by additional agents, such as different developer types and bugs, as well
as dependencies between the agents. These advanced models can then be used to
answer different questions concerning software evolution simulative. For example,
one of these questions answers what happens to the software in terms of quality
when the core developer suddenly leaves the project. The most complex model can
simulate software refactorings based on graph transformations. The simulation out-
put is a graph which represents the software. The representative of the software is
the change coupling graph, which is extended for the simulation of refactorings. In
this thesis, this graph is denoted as software graph.

To parameterize these models, we have developed different mining tools. These tools
allow us to instantiate a model with project-specific parameters, to instantiate a
model with a snapshot of the analyzed project, or to parameterize the transformation
rules required to model refactorings.

The results of three case studies show, among other things, that our approach to
use agent-based simulation is an appropriate choice for predicting the evolution of
software projects. Furthermore, we were able to show that different growth trends of
the real software can be reproduced simulative with a suitable selection of simulation
parameters. The best results for the simulated software graph are obtained when we
start the simulation after an initial phase with a snapshot of real software. Regarding
refactorings, we were able to show that the model based on graph transformations
is applicable and that it can slightly improve the simulated growth.

Zusammenfassung

Software ist ein Bestandteil des alltéglichen Lebens fiir uns geworden. Dies ist
auch mit zunehmenden Anforderungen an die Anpassungsfihigkeit an sich schnell
dndernde Umgebungen verbunden. Dieser evolutiondre Prozess der Software wird
von einem dem Software Engineering zugehorigen Forschungsbereich, der Softwa-
reevolution, untersucht. Die Anderungen an einer Software iiber die Zeit werden
durch die Arbeit der Entwickler verursacht. Aus diesem Grund stellt das Entwick-
lerverhalten einen zentralen Bestandteil dar, wenn man die Evolution eines Software-
projekts analysieren mochte. Fiir die Analyse realer Projekte steht eine Vielzahl von
Open Source Projekten frei zur Verfiigung. Fiir die Simulation von Softwareprojek-
ten benutzen wir Multiagentensysteme, da wir damit das Verhalten der Entwickler
detailliert beschrieben kénnen.

In dieser Dissertation entwickeln wir mehrere, aufeinander aufbauende, agenten-
basierte Modelle, die unterschiedliche Aspekte der Software Evolution abdecken.
Wir beginnen mit einem einfachen Modell ohne Abhéngigkeiten zwischen den Agen-
ten, mit dem man allein durch das Entwicklerverhalten das Wachstum eines realen
Projekts simulativ reproduzieren kann. Darauffolgende Modelle wurden um wei-
tere Agenten, zum Beispiel unterschiedliche Entwickler-Typen und Fehler, sowie
Abhéngigkeiten zwischen den Agenten ergénzt. Mit diesen erweiterten Modellen
lassen sich unterschiedliche Fragestellungen betreffend Software Evolution simula-
tiv beantworten. Eine dieser Fragen beantwortet zum Beispiel was mit der Software
beziiglich ihrer Qualitit passiert, wenn der Hauptentwickler das Projekt plotzlich
verlédsst. Das komplexeste Modell ist in der Lage Software Refactorings zu simulie-
ren und nutzt dazu Graph Transformationen. Die Simulation erzeugt als Ausgabe
einen Graphen, der die Software repréisentiert. Als Reprisentant der Software dient
der Change-Coupling-Graph, der fiir die Simulation von Refactorings erweitert wird.
Dieser Graph wird in dieser Arbeit als Softwaregraph bezeichnet.

Um die verschiedenen Modelle zu parametrisieren haben wir unterschiedliche
Mining-Werkzeuge entwickelt. Diese Werkzeuge ermoglichen es uns ein Modell
mit projektspezifischen Parametern zu instanziieren, ein Modell mit einem Snaps-
hot des analysierten Projektes zu instanziieren oder Transformationsregeln zu
parametrisieren, die fiir die Modellierung von Refactorings benotigt werden.

Die Ergebnisse aus drei Fallstudien zeigen unter anderem, dass unser Ansatz agen-
tenbasierte Simulation fiir die Vorhersage der Evolution von Software Projekten

vi

eine geeignete Wahl ist. Des Weiteren konnten wir zeigen, dass mit einer geeigne-
ten Parameterwahl unterschiedliche Wachstumstrends der realen Software simulativ
reproduzierbar sind. Die besten Ergebnisse fiir den simulierten Softwaregraphen er-
halten wir, wenn wir die Simulation nach einer initialen Phase mit einem Snapshot
der realen Software starten. Die Refactorings betreffend konnten wir zeigen, dass das
Modell basierend auf Graph Transformationen anwendbar ist und dass das simulierte
Wachstum sich damit leicht verbessern lésst.

Acknowledgements

I would like to thank several persons who supported me during my work on this
thesis. First, I want to thank my first supervisor Prof. Dr. Stephan Waack who gave
me the opportunity to focus my research on the exiting topic of agent-based modeling
and simulation. He was always available for fruitful and interesting discussions.

Also, T would like to thank my second supervisor Prof. Dr. Jens Grabowski for pro-
viding valuable feedback and discussions concerning my work, especially the software
engineering part of this thesis. Moreover, I want to thank the thesis committee mem-
bers Prof. Dr.-Ing. Marcus Baum, Prof. Dr. Carsten Damm, Prof. Dr. Florin Manea,
and Prof. Dr. Kerstin Strecker for spending their precious time.

Furthermore, many thanks to my current and former colleagues in my research
group and at the institute for interesting discussions and for providing an enjoyable
environment to work. Especially, I want to thank Linh Dangh for proofreading this
thesis. Moreover, I would like to thank Dr. Steffen Herbold and Dr. Fabian Trautsch
for supporting me in developing some of the mining tools for this thesis.

In addition, I thank the SWZ Clausthal-Gottingen! that partially funded our work
in the projects ”Simulation-based Quality Assurance for Software Systems” and
” Agent-based simulation models in support of monitoring the quality of software
projects”. Many thanks also to all former members of these projects for valuable
discussions and a pleasant cooperation.

Especially I would like to thank my colleague and sister Verena for a successful
cooperation in our projects and for all her support, and for proofreading this thesis.

I also want to thank my parents. They have always supported my decisions con-
cerning my education and career.

Very special thanks to my girlfriend Anika Werner who has not stopped motivating
and supporting me during my work on this thesis. Moreover, I would like to thank
her for proofreading this thesis.

Finally, I would like to thank our cats Gimli and Balu for some necessary breaks
and distractions at exactly the right time.

"https://www.simzentrum.de/en/

Contents

1. Introduction
1.1. Scope of the Thesis
1.2. ThesisImpact
1.3. Thesis Structure oo

2. Background
2.1. Multiagent Systems oo
2.1.1. What are Agents?
2.1.2. Architectures for Intelligent Agents
2.1.3. Fields of Application
2.1.4. Tools for Agent-Based Modeling and Simulation
2.2. Software Evolution oL
2.2.1. Software Metrics L
2.2.2. Change Coupling Graph
2.2.3. Abstract Syntax Tree
2.3. Refactoring
2.4. Graph Transformations,
2.4.1. Definitions
2.4.2. Graph Analysis oo
2.4.3. Rule-Based Graph Transformation
2.5. Mining Software Repositories

3. Related Work
3.1. Simulation of Software Processes
3.2. Mining Software Repositories
3.2.1. Software Evolution,
3.2.2. Developer Classification and Contribution Behavior
3.2.3. Commit Analysis and Source Code Differencing
3.3. Modeling Refactorings using Graph Transformations

4. Evolution of Agent-Based Simulation Models
4.1. Grid-Based Model Lo
4.2. Network-Based Model for Monitoring Software Quality
4.2.1. Growth Model Depending on Productivity
4.2.2. Model to Simulate the Lifetime of Bugs
4.2.3. A Detailed Model to Investigate Several Aspects of Software
Evolution

S W N =

Contents X

4.3. Modeling Refactorings based on Graph Transformations 51
4.4. Implementation Details and Execution of the Models 54
5. The Gathering of Parameters for Model Execution 57
5.1. Ovwerall process e 58
5.2. Automated Parameter Estimation for Network Based Models 59
5.2.1. Developer Identity Merging 60
5.2.2. Developer Classification 62
5.2.3. Change Coupling 62
5.3. Parameter Estimation for the Modeling of Refactorings 63
5.3.1. Parameters for the Description of General Commit Patterns . 63
5.3.2. Framework to Estimate Parameters for Refactorings 63
5.3.3. refSHARK to Estimate Parameters for Refactorings 65
6. Case Studies 67
6.1. Simulating Software Evolution using an Agent-Based Model 68
6.1.1. A Grid-Based Model L. 68
6.1.2. A Model without Dependencies 70
6.1.3. A Network-Based Model 71
6.1.4. Discussion Lo 74
6.2. Project Specific Parameterso 75
6.2.1. Model Initialization with Project Specific Parameters 76

6.2.2. Model Initialization with Project Specific Parameters and
Change Coupling Snapshot 77
6.2.3. Discussion 82
6.3. Mining and Simulating Software Refactorings 82
6.3.1. Feasibility of Refactoring Simulation 82

6.3.2. Integration of Refactorings to a Simulation Model for Software
Evolution 87
6.3.3. Discussion L L 88
7. Discussion 93
7.1. Contributions 94
7.2. Limitations 95
8. Conclusions 97
8.1, Summary e 97
8.2. Main Findings 98
83. Outlook 99
Bibliography 101
List of Acronyms 113

Glossary 115

xi Contents

List of Figures 117
List of Tables 119
A. Simulation Parameters from Mining 121
A.1. Core Parameter for Simulation Instantiation 121
A.2. Change Coupling Graph 127
A.3. Commit Pattern Data 132
A3.1. Class Changes 132

A.3.2. Method Changes 132

A.4. Refactoring Data 133

B. Simulation at Runtime 137
B.1. Simulation Parameters at Runtime 137
B.2. Simulation Views at Runtime 139

C. Mining Implementation Details 143
C.1. MongoDB with Morphia — A Basic Introduction 143

C.2. Used classes of the SmartSHARK data model 144

¥ Introduction

Contents
1.1. Scope of the Thesis 2
1.2. ThesisImpact 3
1.3. Thesis Structure 6

At the present time, many people are in contact with software in their everyday
lives. This begins, for example, with the smartphone, which is used for more and
more everyday tasks, goes through traffic planning and train timetables to software
installed at the computer at home.

All these software systems evolve over time due to changing requirements, changing
environments, or some required maintenance work. This is where the prominent re-
search area of software evolution comes in. Software Evolution is integrated into the
field of software engineering and deals with the analysis of the process of software
projects. For this, the past of a software project can be considered to predict the
future progress of the analyzed project. As far as the actual software is concerned,
the state of the software mainly depends on the contribution behavior of the de-
velopers involved in the project. This behavior is responsible for software changes
over the time. Developers can be divided into different types. These types differ,
for example, in their contribution behavior and their commit frequency [1]. In order
to build a predictive model for software evolution, all these facets must be gathered
from the project to analyze.

To analyze the past of a software system, real project data is required. Because
there are more and more open source projects hosted on platforms like github, there
is a lot of data for a variety of projects free available. The data retrieved by mining
some of these projects is used to estimate parameters for a simulation model that
predicts the future progress of the projects. For this, the commit history as well as
the source code are analyzed. Furthermore, change coupling graphs are considered to

1. Introduction 2

represent sematic relationships between files [2]. We developed several mining tools
which, for example, instantiate a given simulation model with a project specific set
of parameters or provide parameters to instantiate a simulation model at any desired
point in time of the past of the analyzed project. Furthermore, a mining tool to find
and parameterize commit pattern for applied refactorings is developed.

For the simulation of software evolution, that predicts the future of the analyzed
project, multiagent systems [3] are used. In such a system the behavior of the agents
make the entire system evolve over time. Since software evolution is mainly influ-
enced by the developer’s behavior, we think Agent-Based Modeling and Simulation
(ABMS) is well suited for this simulation purpose. Besides that, a detailed descrip-
tion of the individual agents and their behavior is required. We developed several
simulation models that evolve step by step by adding more agent types or depen-
dencies between the agents in each step. Each of these steps has a specific goal, such
as the generation of the change coupling graph with the simulation or answering
further research questions regarding software evolution.

This simulation model can be used by a project manager to answer various questions
regarding the quality of the analyzed software. These questions may, for example,
concern changes in the constellation of developers involved in a project or the lifetime
of bugs. To answer the question of a manager, a feedback loop can be used. This
means that several simulation runs are performed with different parameters until
the result meets the expectations of the manager. In order to be able to answer
these questions realistically, the simulated software graph must behave similarly to
the realistic software graph. To validate this, selected graph metrics of the simulated
graph are compared with the corresponding real graph metrics.

1.1. Scope of the Thesis

We want to figure out whether it is possible to simulate evolving software systems
using ABMS. The goal is to answer research questions concerning software evolution
as well as to generate realistic change coupling graphs as simulation output. There-
fore, we developed models that should answer specific questions and compared the
simulated with the real change coupling graph of selected open source projects.

The first case study investigates which aspects of software evolution can be simulated
using a certain kind of simulation model. The models differ in the number of different
agent types that are involved as well as in the modeled dependencies to describe
relationships between the agents. Parameters for different projects come partly
from a reference project and partly from the simulated project. We found that a
model without any modeled dependencies can simulate the growth of a project [4].
Furthermore, more complex models can be used to answer questions like: Can we
simulate the effects when a core developer leaves the project [5]7

3 1.2. Thesis Impact

The topic of the second case study is the quality of the simulated change coupling
graph. In order to make a statement about this, we compared selected graph metrics
of the simulated graph with the real graph. Compared metrics are, for example, the
number of nodes, the average degree of the nodes, the density of the graph, or the
diameter of the graph. For the comparison, we have designed two different scenarios.
First, the simulation model is instantiated with project specific parameters for each
project to analyze and the simulation starts at the beginning of the project. Second,
the simulation model is initialized with project specific parameters as well as the
change coupling graph of a given year. Afterwards, the simulation starts at this
point in time. Our main findings are that we can reproduce different growth types
of the software with the project specific parameters and that metrics of the simulated
graph fits the real metrics when the simulation is initialized with parameters starting
approximately after one third of the project duration.

The third case study is about the mining and simulation of software refactorings [6].
With refactorings we can model the intention of developers and consider more as-
pects concerning the quality of the evolving project. We want to show that we can
retrieve parameters for a simulation model that uses graph transformation rules for
the description of software refactorings [7]. Furthermore, we consider the impact of
such an extended simulation model on the quality of the simulated change coupling
graph. We figured out that the simulation of refactorings using graph transforma-
tions works and that the growth trend of a project can be slightly improved when
refactorings are simulated.

1.2. Thesis Impact

This work is part of the two SWZ projects Simulation-Based Quality Assurance for
Software Systems' and Agent-based simulation models in support of monitoring the
quality of software projects®.

During this work, the following papers have been published in peer reviewed confer-
ence proceedings:

e Daniel Homsel, Niklas Fiekas, Verena Herbold, Marlon Welter, Tobias
Ahlbrecht, Stephan Waack, Jirgen Dix, Jens Grabowski, “Simulating Soft-
ware Refactorings based on Graph Transformations“, in Post-Proceedings of
the Clausthal-Gottingen International Workshop on Simulation Science 2017,
Springer, 2018

"https: //www.simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-
simulationsverfahren

2https://www.simzentrum.de/en /research-projects/agent-based-simulation-models-in-support-of-
monitoring-the-quality-of-software-projects

1. Introduction 4

Own contributions

I am the lead author of the paper. I contributed significantly to the design
of the approach, the mining process and the evaluation of the approach. The
used simulation framework is developed by N. Fiekas.

e Daniel Honsel, Verena Honsel, Marlon Welter, Jens Grabowski, Stephan
Waack, “Monitoring Software Quality by Means of Simulation Methods®, in
Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2016), short paper, 2016

Own contributions

I am the lead author of the paper. I contributed significantly to the simulation
model including different behavior strategies for the agents and its implemen-
tation. Required simulation parameters are mined by V. Honsel. Furthermore,
the conceptual work and the case study design was joined work with V. Honsel.
The automated assessment of software graphs was done by M. Welter.

Furthermore, some papers were published to which the author of this thesis con-
tributed:

e Marlon Welter, Daniel Honsel, Verena Herbold, Andre Staedler, Jens
Grabowski, Stephan Waack, “Assessing Simulated Software Graphs using
Conditional Random Fields“, in Post-Proceedings of the Clausthal-Gdéttingen
International Workshop on Simulation Science 2017, Springer, 2018

Own contributions

Own contributions for this paper include some conceptual work for the gener-
ation of required software graphs. The CRF assessment tool is developed and
evaluated by M. Welter.

e Tobias Ahlbrecht, Jiirgen Dix, Niklas Fiekas, Jens Grabowski, Verena Herbold,
Daniel Honsel, Stephan Waack, Marlon Welter, “Agent-based simulation for

software development processes”, on Proceedings of the 14th Furopean Con-
ference on Multi-Agent Systems (EUMAS 2016), Springer, 2016

Own contributions

Own contributions to this paper are the modeling and implementation of the
non distributed version of the simulation model for software evolution. Fur-
thermore, I was involved in the design of the proposed approach. The param-
eter ming for the simulation model is done by V. Herbold. The distributed
simulation framework is provided by T. Ahlbrecht and N. Fiekas.

e Verena Honsel, Daniel Honsel, Steffen Herbold, Jens Grabowski, Stephan
Waack, “Mining Software Dependency Networks for Agent-Based Simulation
of Software Evolution“, in Proceedings of the 30th IEEE/ACM International

Conference on Automated Software Engineering Workshop (ASEW), The jth
International Workshop on Software Mining, 2015

) 1.2. Thesis Impact

Own contributions

Own contributions to this paper include the design and the implementation
of the required simulation model. Furthermore, I was involved in the design
of the proposed approach concerning the determination of required simulation
parameters. The mining process and the evaluation of the approach is provided
by V. Honsel.

e Verena Honsel, Daniel Honsel, Jens Grabowski, Stephan Waack, “Developer
Oriented and Quality Assurance Based Simulation of Software Processes®,
in Proceedings of the Seminar Series on Advanced Techniques & Tools for
Software Evolution (SATToSE 2015), 2015

Own contributions

This paper presents a summary of the papers [4], [8], and [9]. Thus, it is joined
work of all involved authors. Own contributions include parts the conceptual
work and parts of the summary of the considered papers.

e Verena Honsel, Daniel Honsel, Jens Grabowski, “Software Process Simulation
based on Mining Software Repositories®, in Proceedings of the IEEE Inter-
national Conference on Data Mining Workshop (ICDM 2014), short paper,
2014

Own contributions

The own contribution to this paper is the modeling and implementation of the
agent-based simulation model. Furthermore, the evaluation of the simulated
data was joined work with V.Honsel. The mining process and analysis of mined
data is provided by V.Honsel.

In addition, the following book chapter has been published containing parts of the
work developed in this thesis:

e Philip Makedonski, Verena Herbold, Steffen Herbold, Daniel Honsel, Jens
Grabowski, Stephan Waack, “Mining Big Data for Analyzing and Simulating
Collaboration Factors Influencing Software Development Decisions®, in Social
Network Analysis: Interdisciplinary Approaches and Case Studies, CRC Press,
2016

Own contributions

The own contribution to this book chapter is the adaption of the agent-based
simulation model developed by the author of this thesis. The model has been
modified to support the collaborative networks analyzed in this chapter. The
mining of software projects to build developer social networks as well as the
analysis of these is provided by V. Herbold. This work establish an example
application for the fine-grained developer behavior and collaboration model
presented in this book chapter by Dr. P. Makedonski.

1. Introduction 6

1.3. Thesis Structure

This thesis has a focus on the development, the parametrization, and the validation
of agent-based simulation models for software evolution. Following the introduction,
the theoretical background of this thesis is described. Afterwards, related work is
presented. Then, the developed simulation models are presented and required min-
ing tools, in order to retrieve parameters for the model instantiation, are introduced.
The simulation models are evaluated in three case studies which are discussed and
summarized at the end of this thesis. The detailed content of the chapters is pre-
sented in the following.

e Chapter 2 (Background) describes the theoretical background of this thesis.
Since the proposed approach in this thesis covers the research ares multiagent
system, software evolution, software refactorings, graph transformations, and
mining software repositories, all of them are introduced.

e Chapter 3 (Related Work) presents the latest state of the art in the covered
research areas of this thesis.

e Chapter 4 (Evolution of Agent-Based Simulation Models) describes
the evolution of an Agent-Based Model (ABM) for software processes. Start-
ing with a model without dependencies between the agents to reproduce the
growth of a software project, we motivate to introduce step by step more de-
pendencies or agents to be able to answer more complex research questions or
to improve the quality of the simulated change coupling graph. Furthermore,
implementation details are presented and required parameters are described.
Besides that, it is illustrated how the simulation application is adaptable at
runtime by using different parameters.

e Chapter 5 (The Gathering of Parameters for Model Execution) intro-
duces the developed mining frameworks of this thesis. The automated parame-
ter estimation tool is required to initialize a simulation model with a complete
set of project specific parameters as well as for the retrieval of the change
coupling graph. This graph is used to initialize the model at a certain point
in time as well as for validation purposes. Furthermore, tools to parameterize
the refactoring model are presented.

e Chapter 6 (Case Studies) presents the three case studies of this thesis, each
containing the setup, the results and a briefly discussion. The first case study
evaluates the steps of the model evolution. The second case study compares
the simulated change coupling graph with the real one of selected projects.
Furthermore, the changes to the simulated graph for initialized models after
one third of the project duration are analyzed. The third case study consid-
ers the feasibility of our approach to simulate refactorings and analyses how
simulated refactorings change the simulated change coupling graph.

1.3. Thesis Structure

e Chapter 7 (Discussion) considers the results of all three case studies as a
whole and discusses strength and limitations of this approach. At the end, the
contribution is pointed out.

e Chapter 8 (Conclusion) summarizes this thesis and presents briefly the
main findings. Finally, some future work based on this thesis is discussed.

@ Background

Contents
2.1. Multiagent Systems o 10
2.1.1. What are Agents? 10
2.1.2. Architectures for Intelligent Agents 13
2.1.3. Fields of Application, 14
2.1.4. Tools for Agent-Based Modeling and Simulation 14
2.2. Software Evolution 0oL 16
2.2.1. Software Metrics 17
2.2.2. Change Coupling Graph 20
2.2.3. Abstract Syntax Tree 21
2.3. Refactoring L 21
2.4. Graph Transformations 22
2.4.1. Definitions 23
2.4.2. Graph Analysiso 24
2.4.3. Rule-Based Graph Transformation 24
2.5. Mining Software Repositories 25

2. Background 10

In this chapter, we present the foundations required to model the evolution of soft-
ware processes using ABMS. The decision to use ABMS is justified by the fact that
software evolution is generally based on the work of the participating developers.
Thus, it seems to be natural to model software processes from the starting point of
human behavior.

This chapter is structured as follows. In Section 2.1, we introduce multiagent sys-
tems, Section 2.2 explains the meaning of the term software evolution and presents
evolving variables and data structures analyzed to model software evolution. In Sec-
tion 2.3, we describe the meaning of the term refactoring. To model refactorings we
use graph transformations which are introduced in Section 2.4. Finally, we present
relevant data sources and our data retrieval process to parameterize the proposed
model in Section 2.5.

2.1. Multiagent Systems

Multiagent systems are systems that contain multiple intelligent agents that interact
with each other. An agent could be either a computational entity such as a software
program or a robot. Situated in some environment an agent acts autonomously and
self-directed to achieve its goal. Agents perceive their local environment and can
make decisions without the intervention of humans or other systems solely based on
the state of the environment and their behavior.

There exists a wide range of potential instantiations of concrete multiagent systems.
A system consisting of multiple agents, interaction possibilities, and an environment
can differ in the relevant attributes as shown in Table 2.1.

The definition of a multiagent system as well as the contents of Table 2.1 are based on
Weiss at al. [3]. In the following section, we describe what agents are in more detail
and we will introduce tools for ABMS. Especially the ABMS framework Repast
Simphony [10], which is used for modeling and simulation purposes in this thesis, is
discussed in more detail.

2.1.1. What are Agents?

To explain what is meant by the term agent we start this section with a definition.
The following definition of the term agent is based on [3, 11, 12].

”An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to achieve its delegated objectives.”

11 2.1. Multiagent Systems

attribute range

number from two upwards

uniformity homogeneous ... heterogeneous
agents goals contradicting ... complementary

flexibility reactive ... deliberative

autonomy low ... high

frequency low ... high

persistence short-term ... long-term
interaction language elementary ... semantically rich

variability fixed ... changeable

purpose competitive ... cooperative

predictability foreseeable ... unforeseeable

accessibility unlimited ... limited
environment | dynamics fixed ... variable

diversity poor ... rich

availability of resources | restricted ... ample

Table 2.1.: Combination possibilities of multiagent systems (adapted from [3]).

Agents that satisfy the definition are, for example, a simple thermostat system or
a robot playing soccer. A thermostat can regulate the room temperature according
to the measured data of the environment with only two actions, turn on and off
the heating. The second example is a more complex one. The robot is situated in
a labor environment as shown in Figure 2.1. The soccer field with its green ground
and white lines, a red ball, and colored goals (according to the RoboCup Standard
Platform League Rules of 2011 [13]). Based on its sensor data the robot makes
decisions to achieve its objectives. The main objective of the robot is to score a
goal. Therefore, possible actions could be reach_the_ball or kick. More about this
domain can be found as an example application in Section 2.1.3. Both examples fit
the definition of an agent, but only the robot example is what is called an intelligent
agent according to [3]. The term intelligent agent will be briefly described in the
following.

Intelligent Agents

Weiss et al. [3] defined intelligent agents as agents with the following additional
behavior characteristics:

e proactiveness: intelligent agents are goal-directed, which means that they are
taking the initiative in order to reach their defined goals;

2. Background 12

Figure 2.1.: NAO robot playing soccer [14].

e reactivity: intelligent agents are able to perceive their environment and can
react on changes according to their goals;

e social ability: intelligent agents can interact with other agents.

When we are talking about agents in the remainder of this thesis, we mean that
type of agent equipped with the characteristics of an intelligent agent.

Agents and Objects

In [3], the authors present a comparison between agents and objects. In this sec-
tion, we briefly summarize the three main differences between them for a better
understanding of what agents are.

First, agents are more autonomous than objects per definition. This means that
an agent can decide on its own whether or not to perform an action on request
from another agent. In contrast, an object has by definition no control whether or
not one of its public methods is executed after it is called by some other object’s
method. Second, agents act by definition reactive, proactive, and social. Such types
of behavior are missing in the description of the standard object model. Third, in
an multiagent system each agent is assumed to have its own thread of control.

13 2.1. Multiagent Systems

2.1.2. Architectures for Intelligent Agents

In this section, we describe architectures for the following two classes of agents based
on [3].

First, we consider reactive agents in which the decision of the agent’s next action
depends on the situation in which the agent is currently situated in. Second, we
consider belief-desire-intention (BDI) agents in which decision making is based on
the current state of data structures representing the agent’s beliefs, desires, and
intentions.

Reactive Architectures

The main idea of this architecture is, that intelligent behavior is a product of the
interaction between agents and the environment as well as that intelligent behavior
is a result of the interaction of different simpler behaviors.

Such a behavior can be implemented as rules of the following form.
sttuation — action

This rule simply maps the state of the environment as input data directly to an
action that can change the state of the (local) environment. Furthermore, it should
be noted that many behaviors can be executed simultaneously. This architecture
can be implemented as a hierarchical state machine as described in [3]. The lower
a behavior is in the hierarchy, the higher is its priority. Therefore, lower behaviors
are able to prevent the execution of higher behaviors in the hierarchy.

Belief-Desire-Intention Architectures

The BDI architectures are based on practical reasoning as described in detail in [3].
This means for an agent that it decides round by round which action it performs to
reach its goals. The two main processes are to decide what the agent’s goals are and
how the agent is going to achieve them. In the following, we explain what is meant
by the terms beliefs, desires, and intentions.

e Beliefs: The information about the agent’s environment. The beliefs will be
recomputed within a given interval based on the agent’s perceptual input and
the current beliefs.

e Desires: The current options of an agent. Which options are available depends
on the current beliefs and intentions.

e Intentions: This set represents the agent’s current focus. Based on the current
intentions, an agent selects the next action to execute.

2. Background 14

The entire reasoning process will be updated continuously within a given time in-
terval and intentions are based on the previously-held intentions as well as on the
current beliefs and desires.

2.1.3. Fields of Application

The field of applications, where multiagent systems are applied, is multidisciplinary
in nature. Examples of related disciplines are cognitive psychology, sociology, orga-
nization science, economics, philosophy, and medicine [3].

A concrete example for a cooperative multiagent application is the RoboCup [15]
robot soccer domain. In RoboCup, there are several different leagues. The author
of this thesis was member from 2010 to 2011 of the team B-Human [16] with focus
on the behavior, especially roles and tactics. B-Human is one of the most successful
teams of the Standard Platform League. In this league, all teams have to use the
same hardware. For this reason, teams have to focus on the software development
for their autonomous robots and do not have to build their own robots. Since 2008
the NAO [17] humanoid robot is used in the Standard Platform League. Teams play
against each other in national and international competitions.

A team in the Standard Platform League consisted of four autonomous robots in
2011 [13]. Onme of the robots is depicted in Figure 2.1. The behavior control of a
robot is described as a hierarchy of state machines. The decision of the robot’s next
action is based on the current state of the robot as well as on input data, for example,
sensor input or communication input. Robots of one team are able to communicate
with each other. As the robots are autonomous, they do not get any input from any
human with exception of the referee during the game. More information about the
current state of the team B-Human can be found on their homepage [14].

The aim of the RoboCup is to solve difficult real-world problems with the knowledge
gathered from robots playing soccer.

2.1.4. Tools for Agent-Based Modeling and Simulation

As starting point of our simulation work we examined different tools for ABMS to
figure out which one is suitable for our purpose. We concentrated on the following
three open source applications: NetLogo [18], Gama [19], and Repast Simphony [10].
A more detailed overview about available ABMS tools can be found in [20]. The first
tool we considered as unsuitable is NetLogo, since the other ones provide a richer set
of features. These are, for example, charts of desired properties at runtime, support
of networks/graphs, or the evaluation of the simulated data.

Finally, we decided for Repast Simphony as simulation framework. There are mainly
two reasons for this decision. First, the ability to use Java as programming language

15 2.1. Multiagent Systems

to build models. Second, that Repast Symphony is maintained over more than ten
years. The first reason means that we can use Plain Old Java Objects (POJOs)
to describe agents. Therefore, each project member who is familiar with Java can
understand and manipulate the model for their own experiments without learning
a new programming language.

Repast Simphony

In this section, we will briefly describe the key features that are provided by the
Java ABMS framework Repast Simphony [10, 21], which comes as an eclipse [22]
plug-in. This framework provides a Graphical User Interface (GUI) to control the
simulation at runtime. This means, we can start the simulation with a selected set
of parameters as well as stop, and continue the simulation. Furthermore, Repast
Simphony provides time series or histogram charts of desired properties at runtime
and the evaluation of the simulated data with tools like R [23] or Weka [24].

As described in [21], an ABM contains the following three elements.
1. A set of agents with their attributes and behaviors.

2. Relationships between the agents and possibilities to interact with other
agents.

3. The environment in which the agents live in and interact with.

Repast Simphony supports three different ways to model agents. Firstly, one can
use the GUI to create agents graphically using state charts. Secondly, one can use
ReLogo, a integrated language based on Logo [25], to create the ABM. Thirdly, one
can use Java and model agents as POJOs. We decided to work with POJOs for all
ABMSs presented in this thesis.

The main tasks of modeling agent interactions are the specification of agent relation-
ships and the dynamics which rules the mechanism of the interactions. To model re-
lationships between agents, Repast Simphony provides the following topologies [21].

1. Soup. An unordered structure in which agents do not have locational at-
tributes.

2. Grid. The location of an agent is determined by its position in a grid. The
neighborhood of an agent is represented by cells surrounding it.

3. FEuclidean Space. Agents live in 2D or 3D spaces.

4. Geographic Information System (GIS). Agents live in realistic geo-spatial land-
scapes.

2. Background 16

5. Networks. Edges of a network can link different types of agents (vertices).
One simulation can contain several networks representing different semantics.
Repasts network library provides some methods to retrieve related agents and
to add agents to a network.

The main object of a ABM is the context. It initializes a simulation run at start-up
and contains all instantiated agents and projections. Each agent has to be assigned
to a context and one agent can be contained in any number of projections.

To execute the agents behavior, Repast Simphony provides an own system clock.
This means, that at each tick an agent can execute desired actions. Whether an
agent executes an action and also which action will be executed, depends on the
internal state of the agent and on the local environment.

Actions or methods can also be scheduled to occur at desired time (system tick).
Furthermore, methods can be scheduled using the watch mechanism. An agent
monitors state changes of other agents in the neighborhood and executes its own be-
havior as a result of these changes. This mechanism enables a kind of communication
between agents in a defined local neighborhood.

In summary, Repast Simphony is the most complete ABMS framework based on
Java [20] providing features like a representable system-state at runtime, an own
system clock and scheduling, genetic algorithms, neuronal networks, regression, and
batch-runs with different parameter ranges. However, Repast Simphony does not
support the representation of an individual agent at runtime and for communication
purposes only the watch mechanism is available. As far as communication is con-
cerned, there is an approach presented in [26] which combines Repast Simphony with
the JAVA Agent DEvelopment (JADE) [27] framework. Thus, more communication
possibilities are available if required.

2.2. Software Evolution

The field of software evolution is nowadays a well-known research area in software
engineering [28, 29]. The pioneer of this research area was Manny Lehmann, who
examined limitations of the classical view of software engineering.

This classical view is dominated by the waterfall model for software development
proposed by Royce in 1970 [30]. This model consists of the following phases for
the life-cycle of a software system: requirements, design, implementation, verifica-
tion, and maintenance. In this context, maintenance represents the last phase after
the software is delivered. Furthermore, it is assumed that requirements no longer
change a lot after the delivery of the software and that maintenance consists only
of bug fixes and small changes. According to the IEEE 1219 Standard for Software
Maintenance [31], maintenance is defined as:

17 2.2. Software Evolution

”the modification of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt the product to
a modified environment”.

The limitations of this process model for software systems are mainly based on
the strict and rigid definition of the different phases and the fact that the entire
requirements are occasionally known at the starting point of a software project.

With this limitations in mind, Lehman analyzed the change process of the IBM
operating system OS/360 [32, 33| and started to formulate his laws of software
evolution in the seventies. His early results were confirmed in later studies [34]
analyzing other software projects. Lehman used the term E-type software, describing
systems that must be evolved because they ”"operate in or address a problem or
activity of the real world”. This means, that such a system has to be adapted to
the real world during its lifetime. Lehmans laws of software evolution are presented
in Table 2.2.

The following definition of the term software evolution by Lehman et al. can be
found in [36]. There is said that Software evolution means

”the consequence of an intrinsic need for continuing maintenance and
further development of software embedded in real world domains”.

As mentioned at the beginning of this section, software evolution is nowadays a
prominent research field in software engineering. Today one can use software evo-
lution and software maintenance as synonyms and maintenance is part of the pre-
delivery as well as the post-delivery phases [28]. Some evolution-related research
topics are, for example, software quality, software measurement, configuration man-
agement, reverse engineering, and testing. Main entities to analyze, in order to
get a better understanding of the evolution of a software projects, are people (e.g.
developers, tester), artifacts (e.g. files, classes, methods), and bugs.

For the simulation of software processes we are primary interested in information
which represents the state of the structure as well as the quality of the software
evolving over time. Another important aspect to analyze is the activity of develop-
ers contributing to the software project, because their changes to the software are
responsible for state changes of the software. This information must be available in
the data sources used for mining processes described in Section 2.5. The following
section explains the most important data structures and measurements used in this
thesis in order to describe the evolutionary process of software projects.

2.2.1. Software Metrics

If you want to know something concrete about a software project, the software itself,
or the quality of a software, you have to measure it somehow. Also in the field of

2. Background

18

No. ‘ Name Law
I Continuing Change E-type systems must be continually adapted
(1974) otherwise they become progressively less sat-
isfactory.
II Increasing Complexity | As an E-type system evolves its complexity
(1974) increases unless work is done to maintain or
reduce it.
11 Self Regulation The E-type system evolution process is self
(1974) regulating with a distribution of product and
process measures close to normal.

I\Y Conservation of The average effective global activity rate in

(1980) | Organizational Stability | an evolving E-type system is invariant over
product lifetime.

A% Conservation of As an E-type system evolves all associated

(1980) | Familiarity with it, e.g., developers, sales personnel,
users must maintain mastery of its content
and behavior to achieve satisfactory evolu-
tion. Excessive growth diminishes that mas-
tery. Hence the average incremental growth
remains invariant as the system evolves.

VI Continuing Growth The functional content of E-type systems

(1980) must be continually increased to maintain
user satisfaction over their lifetime.

VII Declining Quality The quality of E-type systems will appear to

(1996) be declining unless they are rigorously main-
tained and adapted to operational environ-
ment changes.

VIII Feedback System E-type evolution processes constitute multi-

(1996) level, multi-loop, multi-agent feedback sys-

tems and must be treated as such to achieve
significant improvement over any reasonable
base.

Table 2.2.: Lehmans laws of software evolution (adapted from [35]).

19 2.2. Software Evolution

software engineering, the famous quote from Sir William Thomson, First Baron
Kelvin from 1883 [37] is still applicable

”When you can measure what you are speaking about,
and express it in numbers, you know something about it”.

A quantified statement about a product or a software process is called metric [38]. In
this case the measure in the actual sense and not not in the mathematical meaning
is meant. In the IEEE Std 610.12 [39] metrics are defined as follows.

metric: A quantitative measure of the degree to which a system, com-
ponent, or process possesses a given attribute. See also: quality
metric.”

quality metric: ”(1) A quantitative measure of the degree to which an
item possesses a given quality attribute.
(2) A function whose inputs are software data and whose output
is a single numerical value that can be interpreted as the degree to
which the software possesses a given quality attribute.”

The what to measure and the how to measure play an important role answering
the questions about the software under investigation. The question what metrics
are relevant is more difficult than it may seem at first. To answer it Basili et al.
presented the prominent Goal Question Metric [40] approach. Thereby, questions
about the software are created based on defined goals and software metrics regarding
the software quality, the software process, or the software product are used to answer
them. A framework for understanding and using measurement as well as metric
foundations are described in [41]. It helps to choose a suitable measurement.

Metrics could be sorted by the area of application. The following areas are based
on [38]. As examples we use metrics which are considered for the simulation of
software evolution.

e (ost metrics concern cost, personnel requirements, and development time of a
project. For simulation purposes we are interested in the number of developers
contributing to a project over a certain period of time.

e Bug metrics represent bug information such as the number of open, closed,
and re-opened bugs which are important for simulation purposes.

o Volume metrics include all information regarding the size. For the simulation
of software evolution we require the size of the entire project (number of files)
as well as the size of individual files (lines of code).

e Quality metrics give statements about a certain quality aspect of the soft-
ware. For our simulation model, we are mainly interested in complexity and
maintenance aspects.

2. Background 20

Metric | Type Name

LOC Size Lines of Code

McCC | Complexity | McCabe’s Cyclomatic Complexity
WMC | Complexity | Weighted Methods per Class

NOI Coupling Number of Outgoing Invocations
NII Coupling Number of Incoming Invocations

Table 2.3.: Overview of used software metrics.

The used software metrics in this thesis are presented in Table 2.3. The metric
Lines of Code (LOC) counts the lines of code of a method or class including empty
and comment lines. The McCabe’s Cyclomatic Complexity (McCC) describes the
complexity of a method based on the number of independent control flow paths [38].
On class level, the metric Weighted Methods per Class (WMC) calculates the com-
plexity of a class by summing up the methods McCC of the class. The coupling
is described by the metrics Number of Outgoing Invocations (NOI) and Number of
Incoming Invocations (NII). NOI counts the number outgoing method calls and NII
counts the number of incoming method calls.

Furthermore, for object oriented programming languages exist specialized metrics.
The best known have been introduced by Chidamber and Kemerer [42]. These are,
for example, the number of methods per class, the depth of inheritance tree of of a
class, and the coupling between object classes. These metrics are important for the
simulation of software refactorings where an abstract software graph evolves over
time. In this scenario, the manipulation of this graph induces an update of object
oriented metrics as well.

2.2.2. Change Coupling Graph

The change coupling graph is a undirected graph with a set of nodes representing
the files of the software and a set of weighted edges representing the coupling be-
tween files. According to Ball et al. [2] an edge is created between files that are
changed several times together in one commit. If an edge already exists, then the
weight of this edge increases. The authors of [2] showed that files, that are often
changed together in one commit, are semantically related. Because of this semantic
relationship we use this kind of graph to represent the simulated software.

It is easy to imagine how such a graph changes over time due to the developers’ work.
Required metrics are the number of developers and the size of the project. These
metrics and the way the developers work can be retrieved from software projects by
mining relevant data sources.

21 2.3. Refactoring

2.2.3. Abstract Syntax Tree

An abstract syntax tree (AST) represents the structure of source code in a more
abstract way than the compiler parse tree does. The nodes of the tree represent
constructs of the source code. Like the change coupling graph, this tree changes
over time due to the developers’ work. For modeling and simulating refactorings,
we extend the simulation model with entities representing classes and methods.
Therefore, we require the AST enriched with metrics for the size and complexity of
classes and methods. This information can be gathered from software projects by
mining.

2.3. Refactoring

To perform a software refactoring means to improve the design of the code after it
has been written [6]. The following definition is based on [43]:

” Refactoring is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its external be-
havior.”

When an existing software system will be updated over time, the structure of the
code according to the initial design gets worse. Using refactorings one can rework
it into well-designed code. This can be done in several small and simple steps.
The benefits of refactoring are that the code is more readable to current or future
developers and that the maintainability increases.

Below we will describe three of these steps which are used in this thesis, namely the
refactorings move method, extract method, and inline method. Definitions are based
on [6].

e Move method will be applied if a method calls more methods or features of
another class than from its own. To resolve this high coupling the method
will be moved to the class with the most calls and all affected references will
be adapted. The refactoring can also be applied when classes have too much
behavior.

e FExtract Method will be applied to large methods or if code fragments can be
grouped together. It creates a new method that is called from the old one and
moves code from the old method to the new one. In other words, the original
method has been split. Short and well-named methods have two advantages.
First, small and finely grained methods are easier to use by other methods.
Second, higher-level methods are more readable.

2. Background 22

e Inline method is the opposite of Extract Method. If, for example, the body of
a method is as clear as the name one can inline it. To inline a method one has
to find all calls of a method and replace them with the body of the method.
Afterwards, the method definition can be removed.

Tools

There are only a few tools available which can find applied refactorings in software
projects. We investigated the following two of them.

e Ref-Finder [44]: This tool can identify refactorings between two program ver-
sions and implements sixty three refactorings of Fowler’s catalog [6]. Ref-
Finder uses logic programming to infer concrete refactoring instances. There-
fore, each supported refactoring type is expressed as in terms of template logic
rules.

e RefDiff [45]: This tool can identify refactorings in the commit history of git
repositories. RefDiff supports 13 prominent refactoring types of Fowler’s cata-
log [6] and uses heuristics based on static code analysis as well as code similarity
metrics to identify refactorings between two program versions.

Which tool we use to find refactorings between two code versions and where the
differences between both tools are will be discussed later on in Section 5.3.2 and
in Section 6.3.

2.4. Graph Transformations

Graphs are well known in computer science as well as the theory of rule-based
graph transformations [46-48]. Some prominent examples for graphs are diagrams
of the Unified Modeling Language (UML) [49] representing the abstract syntax of
a program, entity relationship diagrams [50], or the AST of a program describing
the source code. In general, graphs are used to describe relationships, represented
as edges, between objects, represented as vertices. Furthermore, graphs can be
dynamic or static. For example, a UML class diagram represents a static view of
the software whereas a software graph (e.g. the AST) of a program under simulation
is dynamic during the execution. The theory of graph transformations, which will
be introduced below, provides the possibility to transform the structure of graphs
rule-based.

The most fundamental definitions that are required to understand the theory of the
rule-based graph transformations used in this thesis are based on [51].

23 2.4. Graph Transformations

2.4.1. Definitions

In this section, we introduce the terms required to understand rule-based graph
transformations. We focus on directed, edge-labeled graphs in combination with
rule application following the so-called double-pushout approach (DPO) [51, 52].

Graph

A multiple directed, edge-labeled graph G over ¥ is a system G = (V, E,s,t,l).
Then let ¥ be a given set of labels. In this definition, V is a finite set of vertices,
E is a finite set of edges, a source s(e) and a target t(e) are assigned to every edge
e € F with the mappings s,t : E — V, and the mapping [: E — X assigns a
label to every edge in E. An edge e € E with the same node as source and target
s(e) = t(e) is called a loop. The components of G can also be written as Vi, Eg,
sa, ta, and lg, respectively. The set of all graphs over the set of labels is denoted

by Gs.

The notion of this graph provides enough flexibility to cover other types of graphs.
We assume that we have to deal with dynamic graphs that serves as inputs for
algorithms or processes (e.g. the simulated software graph). Thus, we introduce rule-
based graph transformations to define rules for well-structured graph manipulations.

Subgraph

A subgraph of a given graph G is represented by a subset of vertices and edges and
every edge of the subgraph has the same source and target node and the same label
as in G. More formally, let G € Gx; be a subgraph of the graph H € Gx.. This is
denoted by G C H, if Vo C Vy, Eq¢ C Epn, sag(e) = su(e), ta(e) = tu(e), and
lg(e) =lg(e) for all e € Eg.

One can obtain a subgraph by removing some nodes and edges. After removing a
node, it is required to remove all incident edges. This is called contact condition.

Graph Morphism

For two graphs G, H € Gy a graph morphism g : G — H is a pair of structure-
preserving mappings gy : Vg — Vg and gg : Fg¢ — Eg. The image of G in H is
called a match of G in H. Furthermore, the match of G regarding the morphism g
is the subgraph ¢(G) C H, induced by the pair of mappings (¢(V),g(E)). Due to
the structure-preserving nature of g the contact condition of subgraphs is valid.

2. Background 24

2.4.2. Graph Analysis

In order to be able to make statements about the quality of the simulated software,
the real and the simulated software graph are compared. Graph theory is a well-
researched area (see [53-55]) from which we use only a fraction for our analysis. For
the purpose of analysis we use Gephi [56], a visualization and exploration software
for all kinds of graphs and networks, or R [23]. The following graph metrics provided
by Gephi are used for this comparison.

Degree: The degree of a vertex is the number of vertexes incident to it.

Weighted Degree: If considering a weighted graph, the weighted degree of a vertex
is the sum of weights of the vertexes incident to it.

Density: The density of a graph represents how close the number of edges is to the
number of maximum edges of the graph.

Modularity: The modularity of a graph represents how good a graph can be divided
into highly connected areas, for example, clusters.

Diameter: The diameter of a graph is the maximal shortest path between any two
vertices.

For the analysis of software graphs, we are also interested in the subdivision of the
graph in cluster. These strongly interconnected structures represent semantically re-
lated parts of the software [2]. For example, they can represent different components
such as GUI or database. A cluster is often named a community in literature [57].

To find clusters in a graph there are several algorithms available and a compari-
son can be found in [58]. Gephi uses for this purpose an approach based on the
modularity proposed by Blondel et al. [59].

2.4.3. Rule-Based Graph Transformation

Graph transformations are used to apply local changes based on rules to graphs. A
rule describes which part of a graph has to be replaced by some other graph [51,
60].

A rule r : L = R consists of a left-hand side L and a right-hand side R, both are
graphs. The starting point in G of the rule is represented by L and the effect of the
rule application is described by R.

To apply a rule r to a graph G = (V, E, s,t,1) one has to execute the following three
steps, which finally lead to the derived graph H. A match is given as the morphism
g:LUR — GUH with g(L) C G and g(R) C H.

1. Find a match of L in G.

25 2.5. Mining Software Repositories

2. All vertices and edges that are matched by L \ R are deleted from G which
results in the intermediate graph Z. In this step we must make sure that the
result of Z = G\ g(L\ R) is a valid graph. This means that no dangling edges,
caused by removed target or source vertices, remain after this step.

3. The graph H is created by gluing Z with R\ L, this means H = ZU (R \ L).

To restrict the allowed graph transformations one can use a type graph. It is similar
to an UML class diagram and expresses which nodes can be linked with a certain
edge type [61].

Using the DPO [52], there are no dangling edges in the new created graph H after the
application of a transformation rule. In contrast to this approach, the single-pushout
approach (SPO) [62] performs only one graph derivation without the intermediate
graph in the middle. The SPO is more powerful without the restriction of the gluing
condition, but the graph could be destroyed by the transformation — edges without
source or target nodes could exist after the rewriting step.

2.5. Mining Software Repositories

Since various tools for data storage and communication are used for organizing and
configuring software projects, it is possible to get information about the project by
analyzing the data stored by the tools. With this data available, especially with
increasing data of large Open Source Software (OSS) communities, Mining Software
Repositories (MSR) has become a popular field of research over the last few years.
An overview of the wide range of research and application areas is published in [63].

To simulate the evolution of software processes, we are interested in the software
changes, their causes, and their impact [64]. To get the required information, we
have to analyze the source code of the software. Analyzing the source code means,
that we can retrieve desired software metrics (see Section 2.2.1) of each version
of the software and that we can compare these metrics with the metrics of other
software versions. Based on this, we can describe trends and patterns that represent
the evolution of the software. This information serves as input for our simulation
model. Specifically, these are, for example, the size of the project, the size and
complexity of different software entities, the number of developers contributing to
the project, and the effort spent by the developers.

Because we want to examine the quality of the software, we are also interested in the
number of open, re-opened, and closed bugs. These information are stored in Issue
Tracking Systems (ITSs). There are different data sources available for analysis.

Common problems occurring during the mining process are, for example, the linkage
between different entities which could be stored in different data sources like files and
bugs. A lot of research has already been done on this topic, for example, in [65-68].

2. Background 26

Another common problem in mining software repositories is to identify the identities
(e.g., logins or e-mail addresses) of developers in software repositories or other data
sources that represent the same physical person. To determine, for example, the
effort one person spent to the project one has to merge all identities representing
this person. An overview of different identity merge algorithms is given in [69].

Furthermore, the tools used to find software refactorings as described in Section 2.3
make also use of mining techniques to find occurring refactorings between two differ-
ent code versions. For this differencing task, the AST is used to analyze fine grained
information about changed software entities like classes or methods.

Data Sources

As mentioned before, software projects are often organized in the way that project-
related data is managed in different data sources. The source code is stored in
Version Control Systems (VCSs), bugs are managed in ITSs, and for project related
communication Mailing Lists (MLs) are used. Furthermore, even social media like
Twitter can be used for communication purposes.

In the following, we will briefly describe the most popular data sources before we
introduce mining frameworks that gather information from all available data sources
of a project and provide one interface for queries.

A VCS stores every version of a software document (e.g., source code file or docu-
mentation file) in a database. In practice, only a delta is saved when a file is changed
in a commit. In addition to the changed files, a commit contains the author, the
commit date, and a commit message. Therefore, such a repository contains the en-
tire history of a software project. We distinguish between a centralized VCS and a
distributed VCS. The first one has only one central repository on a central server
and each client can checkout a working copy from there. Prominent examples for
centralized VCSs are Subversion [70] and the Microsoft Azure DevOps Server [71].
The distributed VCS is not limited to one central repository and each client check-
out contains a working copy as well as the whole repository. This reduces the risk of
data loss if the central server crashes. Well known examples for distributed VCSs are
git [72] and Mercurial [73]. For mining purposes, distributed repositories have the
advantage that all data is available on the local system [74]. This means, that after
the repository checkout the entire history is analyzable without additional effort or
network traffic.

Another important data source is the ITS. This system stores and manages all
project related issues in a database. Developers, testers and users can create tick-
ets in the ITS concerning bugs, desired improvements, or feature requests. Each
ticket contains at least the following attributes: id, severity, priority, status, date of
creation, creator, and description. The status gets from new after the creation of
the ticket over resolved after some maintenance work to closed after confirmation of

27 2.5. Mining Software Repositories

the fix by quality assurance. If the issue remains, the ticket could be re-opened for
further improvement. The significance of the ticket is represented by the severity.
Typical severities are blocker, critical, major, minor, or enhancement. Well-known
examples for ITSs are Bugzilla [75] and Jira [76].

If MLs are used for the project communication, they can provide valuable informa-
tion about developer activities, states and behavior.

For mining purposes in this thesis, only data stored in VCSs and ITSs are analyzed
to retrieve the required simulation parameters.

2.5.0.1. Mining Frameworks

Each of the above mentioned data sources has an own database and infrastructure.
When you are interested in data of different data sources you have to deal with
different interfaces. For specific questions, there are several tools for data extraction
available and most of them store the gathered data in own databases and therefore
provide its own interface. For example, when you are interested in static source
code analysis you can use the tool SourceMeter [77] to retrieve source code metrics.
According to the documentation the calculated metrics by SourceMeter are divided
into six categories, which are the following: Cohesion metrics measure the dimension
of cohesion between software entities. Complexity metrics measure the complexity of
given software entities (usually algorithms). Coupling metrics measure the amount
of interdependencies between software entities. Documentation metrics measure the
amount of comments and documentation of software entities. Inheritance metrics
measure the different factors of the inheritance hierarchy. Size metrics evaluate the
fundamental characteristics of the software analyzed in terms of various cardinalities,
for example, lines of code, or the number of classes or methods. SourceMeter stores
all extracted information into a database.

In order to facilitate the mining process, mining frameworks have been developed
in recent years, for example [78]. These frameworks provide one infrastructure to
query against specific research questions.

Another mining framework is SmartSHARK [79] developed at the University of
Gottingen within the Institute of Computer Science. This framework contains a
set of different tools that collect data from VCSs, I'TSs, and MLs. Furthermore,
it collects software metrics and AST statistics. All collected data is stored in a
MongoDB. On the analytical side, Apache Spark gives SmartSHARK the required
efficiency to analyze this quantity of data. Due to the collection of all data in
one MongoDB, it is easy to study research questions that depend on different data
sources.

The plug-in of SmartSHARK to find refactorings between source code versions
in the VCS is implemented as part of this thesis. Furthermore, the framework

2. Background 28

for automated simulation parameter estimation implemented in this thesis uses
SmartSHARK as data source.

B Related Work

Contents
3.1. Simulation of Software Processes, 29
3.2. Mining Software Repositories 31
3.2.1. Software Evolution 31
3.2.2. Developer Classification and Contribution Behavior 32
3.2.3. Commit Analysis and Source Code Differencing 33
3.3. Modeling Refactorings using Graph Transformations 35

This thesis benefits from several research areas. First, we use multiagent systems
(see Section 2.1) for the simulation of software evolution. A similar simulation ap-
proach to our approach is published by Smith et al.[80]. Further different approaches
are discussed in Section 3.1. Second, for the simulation parameter estimation we are
mining software repositories. In Section 3.2 we discuss areas of this well-known topic
of software engineering that are required to retrieve necessary simulation parame-
ters. Third, to improve the structure of the simulated change coupling graph we
model software refactorings (see Section 2.3) using graph transformations (see Sec-
tion 2.4). Refactorings and graph transformations are well-known research topics.
The interaction of both research areas is discussed in Section 3.3.

3.1. Simulation of Software Processes

The simulation of software processes to predict selected aspects of the software under
simulation is well known in software engineering [81, 82], but the most important
recently published approaches use either System Dynamics (SD) or Descrete Event
Simulation (DES) instead of ABMS. This is because ABM is a comparatively new

3. Related Work 30

research area. In the following section we present one publication that compares
ABMS and SD as well as several different ABMS approaches.

A comparison of ABMS and SD is presented by the authors of [83]. Their studies
are based on individual characteristics of developers like the experience or the com-
petence. The authors figured out that the configuration of the SD model is much
easier, but the results of the ABM are more realistic. The reason for the easier
configuration of the SD model is that the ABM requires a more detailed descrip-
tion of the individual developers to model their behavior. Such detailed developer
descriptions are also used to parameterize our simulation model.

In [84], the authors present an approach to analyze developer networks using ABMS.
These networks represent the developer contribution to several projects hosted on
SourceForge!. In this model, developers are equipped with the possibility to join,
stay in, or leave projects. For simulation purposes the authors use the multiagent
framework SWARM [85] and parameterize their model with data retrieved from
SourceForge. The usage of empirical data for parameter estimation is similar to
our approach, but the simulation covers more a top level view over several projects
whereas our model is much more detailed and the simulation provides a project level
view.

Another study that uses ABMS to model software evolution is presented in [86]. The
work is aimed to support project managers in their planning by simulating possible
future software processes. The authors use data from a software department in an
industrial context to estimate the simulation parameters. This work differs from
other studies in so far that a maturity model is given, the Capability Maturity
Model Integration (CMMI [87]). During the creation of the agent-based model, the
number of existing software components and the number of available developers is
considered based on the design and the development phase. Then, the developers
are assigned to certain (multiple) components. The components switch between
different states. Finally, the model is validated by comparing the empirical project
duration of different projects with the simulated results. This model is a more
specific one than our developed model, but the validation idea to use empirical data
to compare it with the output of the simulation is similar to our approach.

An approach that uses ABMS and where the behavior of developers is described
very detailed is presented in [88]. In this work the developers’ decision making
process is based on the Personal Software Process (PSP). Thus, this model is more
tailored towards a specific project type using the given process model, e.g. extreme
programming, than our model.

An ABM for software processes similar to our model is presented by Smith et al.
in [80]. In their work, the developers are the active agents and they can perform
a random walk on a grid. When a developer reaches a cell containing a software
module or a requirement, it can work on it, and when a developer moves outside

"https://sourceforge.net/

31 3.2. Mining Software Repositories

the grid, it can leave the project with a certain probability. If the developer works
on a module depends amongst other things on the complexity of the module. To
work means an immediate change of the state of the updated module. The authors
can reproduce different aspects of software evolution, for example, the number of
complex entities, the number of touches, and distinct patterns for system growth.
In our tests, almost all of them need different parameter sets to get realistic results.
The model we proposed has the following differences to the one presented by Smith
et al.: First, our model is not grid-based and agents do not perform a random walk.
In our work, all instantiated agents live in one environment and relationships are
represented as networks. Second, our simulation model for system growth analysis
requires only parameters for effort and size to simulate projects that have similar
growth trends. Furthermore, our model supports several developer roles and each
of them has its own contribution behavior.

3.2. Mining Software Repositories

Since platforms such as GitHub?, SourceForge?, and Bitbucket? become more popu-
lar to host and manage open source projects, more and more data is easily available
to researchers. Thus, a broad field of research has developed. For example, research
topics concerning software evolution are programming languages, different develop-
ment stages of the software, or the software management process. An overview is
given by Mens in [28]. In the following, aspects of mining software repositories re-
quired for the estimation of parameters used for the simulation of software evolution
are discussed in more detail.

3.2.1. Software Evolution

As mentioned above there are a lot of publications available dealing with the mining
of open source software repositories to analyze the evolution of software projects.
Which aspects are important for us? At the beginning of the simulation work we
only tried to replicate the growth of a software project. Afterwards, we analyzed and
simulated dependencies between files, developers, and bugs. Thus, we discuss work
related to the project growth, several dependency networks, and bug occurrences
below. Of course, the behavior of the developers is of central importance for the
simulation and, hence, discussed in Section 3.2.2.

To analyze the growth of a software project, we need a metric to quantify the size of
a project. For this, the number of files, modules [89], classes, or methods could be
used. The growth trend of software projects is analyzed by Godfrey and Tu [90]. The

https://github.com/
3https://sourceforge.net /
“https://bitbucket.org/

3. Related Work 32

authors figured out, that most projects follows a sub-linear trend decreasing over
the time. The comparison of the growth of open source projects and closed source
projects in [91] reveals that both follow a similar growth trend. Furthermore, the
authors show that a linear function for all growth concerning measurements (lines
of code, number of functions, complexity) could be fitted. In the work of Robles
et al. [92, 93] the authors found also linear growth trends for open source software
projects as well as super-linear trends. In [94], the authors found some segments of
sub-linear growth while analyzing the number of files and the number of folders. One
goal of the simulation models developed in this thesis is to reproduce the respective
growth trend of analyzed software projects.

Another important factor of our model is the representation of dependencies between
the software entities. We use networks for this purpose. Dependency graphs can
be, for example, the hierarchy graph representing the inheritance structure of the
software, the call graph representing the relationship between classes and functions
based on method calls, or the change coupling graph. The latter represents clusters
of files that are changed several times together in a commit (see Section 2.2.2). Ac-
cording to [2], files of one cluster are semantically related. Because we are interested
in making statements about the quality of the simulated software, we also consider
the change coupling graph under this aspect. In [95], the authors presented that
hard to maintain parts of the software are related to a high change coupling degree.
Concerning other quality aspects like the bug localization or the number of defects
the author of [96, 97] also analyzed the evolution of the change coupling graph.

The occurrence and the fixing of bugs in all its subareas are well examined research
topics. There are publications available concerning, for example, the linking between
bugs and software entities [65], the fixing of bugs [98], the classification of changes:
buggy or clean [99], or the prediction of the severity of reported bugs [100]. For
simulation purposes it is important to know in average how long a bug is alive. The
authors of [101] investigated exactly this question using machine learning methods.
A classification of bugs into fast and slowly fixed ones is also part of their work.

3.2.2. Developer Classification and Contribution Behavior

When it comes to developer classification it is a common approach to divide devel-
opers into core and peripheral [102-106]. This classification is due to the well-known
onion model [107]. The main assumption of this model is that a small amount of
developers contribute most to the project. A quantification is given in [108], the
authors consider the top 20% of all contributing developers as core developers. The
main differences between both developer types are that the core developer is more
active and contributes more to the project. Furthermore, in [104] the introduced
structural complexity of both developer types is analyzed. The authors figured out,
that core developers insert less complexity. For our simulation model the classifica-
tion is slightly different. We differentiate between core, major, and minor developers.

33 3.2. Mining Software Repositories

The complexity is only considered for the simulation of refactorings, for all other
simulation models the complexity is omitted. A much more complex role classifica-
tion based on bug related metrics is presented in [109]. Such a role consideration is
not suitable for our simulation purposes.

The investigation of the developer’s contribution behavior is a prominent research
area of software engineering [110-112]. A uniform definition of the term developer
contribution can not be found, but it can be considered as the work a developer
spent to the software project [113]. One can use many metrics to quantify the
contribution such as the number of commits, files changed per commit, or lines
of code per commit. We are using all of these three metrics to parameterize our
simulation model for software evolution.

Based on the contribution behavior of the software developers the authors of [114]
defined the ownership of a file. The owner of the file is the developer who edited
the highest percentage of it. The owner can change if another developer invests
more work than the original owner. Thus, the creator of a file is not automatically
its owner. For simulation purposes, we have a slightly different definition of the
ownership. Instead of counting the edited part of a file we use the number of touches
as characteristic feature for the owner of a file.

A model-based mining approach to reveal the developers (contribution) behavior
is presented by Makedonski [115]. Due to the model-based approach, it is possible
to perform mining for a variety of software engineering relevant tasks by adapting
desired models. A possible application scenario is the prediction of bugs, based on
a deep analysis of causes and impacts of software changes.

3.2.3. Commit Analysis and Source Code Differencing

For more detailed simulation models we require more information about the dif-
ference between two different source code versions. Desired information are, for
example, the size and complexity changes of classes and methods from version to
version. Furthermore, we require more information about the commit type. A
commit type could be, for example, a refactoring or a bugfix.

An approach to classify commits is given by Hattori and Lanza [116]. They clas-
sify the commits into four major activities: forward engineering as a development
activity; and reengineering, corrective engineering and management as maintenance
activities. The classification is a keyword-based analysis of the commit message.
Example keywords for a forward engineering commit are implement, add, and new.
A corrective engineering commit could be classified, for example, with a commit
message including the words bug, fiz, or error. Furthermore, the commits are also
divided into four size classes. For example, tiny commits contains 1 to 5 changed
files. By doing so, the authors figured out that 80% of the corrective engineering

3. Related Work 34

commits are tiny ones. For commit classification purposes, we are using a similar
approach with a slightly different keyword list.

To find refactorings between two source code versions there are a lot of publications
available[117-119], besides the both earlier mentioned tools [44, 45] described in
Section 2.3.

Tsantalis et al. [120] developed RMiner, a tool to detect refactorings between two
software revisions. RMiner can detect 15 prominent refactoring types of fowlers
catalog [6] using an AST-based statement matching algorithm that does not require
user-specific code similarity thresholds. RMiner only analyzes files that are added,
deleted, or updated between two revisions. For validation purposes, the authors
created an oracle consisting of 3188 refactorings found in 538 commits from 185
open source projects with the help of several tools and experts. According to the
evaluation against this model the authors stated that RMiner is a significant im-
provement over tools like RefDiff [45] and it achieved 98% precision and 87% recall.
Furthermore, RMiner is more efficient than other available tools. Since RMiner was
not available when the mining of refactorings used in this thesis was implemented,
our approach is based on RefDiff [45].

To find parameter for change patterns, such as a metrics, in source code changes
we have to analyze the evolution of source code files in detail. This means, we
need to analyze the changes of two software versions on AST level. There are well-
known algorithms available [121, 122] that deal with that problem. When we know
what parts of the software have changed in one commit, we can figure out how this
software parts changed by performing a static source code analysis of both versions
using tools like CVSAnalY [123, 124] or SourceMeter [77]. Some AST related metrics
are also stored in the SmartSHARK [79] database described in Section 2.5.0.1. For
the parameter estimation process in this thesis we use SmartSHARK.

A dataset containing fine-grained metrics information is published in [125]. The
authors analyzed 7 open source projects using RefFinder [44] and extracted more
than 50 types of source code metrics at class and method level for 37 releases.
All considered projects are implemented using the Java programming language and
hosted on GitHub. Based on this dataset the authors figured out that classes with
lower maintainability are subject to more refactorings in practice than classes with
higher maintainability. To the same result, but on method level, the authors come
in [126]. Furthermore, the authors figured out that the application of refactorings
decrease size, coupling, and clone metrics. Such a published data set is valuable for
scientists who want to deal with the analysis of software refactorings without having
to worry about the sometimes costly mining work. For our purposes this dataset is
not fine-grained enough, because we need the metrics at the commit level instead of
the release level.

35 3.3. Modeling Refactorings using Graph Transformations

3.3. Modeling Refactorings using Graph Transformations

To enrich the simulated change coupling graph, we simulate software refactorings.
For this, we use graph transformations. A transformation rule represents a metrics
and thus it can be applied to the software graph. We discuss publications related to
the modeling of refactorings using graph transformations below.

Graph rewriting systems to describe program transformations are introduced
in [127-129]. This work forms the basis of formalizing refactorings using rule-based
graph transformations. In these papers, an own graph representation is introduced
and the representation of the source code as AST is not used.

The feasibility of using graph rewriting systems for specifying refactorings is shown
in [61]. In this paper, also an own graph representation for programs is introduced.
Based on this the authors show how refactorings can be expressed by graph produc-
tions.

In [60], the authors present an approach to maintain consistency between code and
model diagrams when a refactoring is applied. To model refactorings rule-based
graph transformations are used. The model is represented as UML diagram and
the code is represented as AST. To handle both different graphs in a separate but
consistent way, the authors use concepts of distributed graph transformation [130].
Furthermore, the usage of transformation units [131] enforces the synchronization
of the transformations in both diagrams.

The work described above presents theoretical models that are detailed enough so
that they can be used as rules to be implemented in an Integrated Development
Environment (IDE) to execute refactorings on arbitrary object oriented source code.
For our simulation models, we do not need that level of detail. Therefore, the models
developed in this thesis are much more abstract than the models described in the
publications above.

¥ Evolution of Agent-Based
Simulation Models

Contents

4.1. Grid-Based Model Lo 38
4.2. Network-Based Model for Monitoring Software Quality 41
4.2.1. Growth Model Depending on Productivity 41
4.2.2. Model to Simulate the Lifetime of Bugs 44

4.2.3. A Detailed Model to Investigate Several Aspects of Software
Evolution 48
4.3. Modeling Refactorings based on Graph Transformations 51
4.4. Implementation Details and Execution of the Models 54

This chapter describes the evolution of developed ABMs to simulate different aspects
of software processes. All developed models are improved step by step including
lessons learned by predecessor models. This model evolution and adaption process
represents a key part of the research work established for this thesis. First, we present
a grid-based model adapted from Smith et al. [80] and discuss limitations given by
the grid-based approach. Then, we briefly describe a growth model where agents
do not have any modeled dependencies. Later on, we introduce models containing
network based dependencies between the agents. Furthermore, we present a model
to simulate software refactorings based on graph transformation rules. Finally, some
implementation details to instantiate the model are presented.

As mentioned in Section 2.1.4, we are using the ABMS-framework Repast Sim-
phony [10, 132] for all modeling and simulation tasks in this thesis.

4. Evolution of Agent-Based Simulation Models 38

4.1. Grid-Based Model

The first model for the simulation of software processes that we have created is based
on the work of Smith et al. [80]. They analyzed the relation of size, complexity, and
effort during the evolution of OSS. Furthermore, the complexity of a software module
is considered as a limiting factor in productivity. We implemented most features of
this model in Repast Simphony due to better understanding of the tool and ABMS in
general with discussed deviations. The proposed model consists of the agents shown

Module
Developer
0..n . R 1.n 0..n . c‘omplex.lty 3t 0.n
- location : int works 0 S fitness : int
+ createNewModule(r : Requirement) + changeOwnFitness()
+ RefactorModule(m : Module) + changeOwnComplexity()
+ improveModule(m : Module) + affectNeighbours(m : Module)
+ createNewRequirement() : Requirement
discovers Req uirement generates

0.1

- isFullfilled : bool
+ becomeNewModule(initFitness : int, initComplexity : int)

Figure 4.1.: Agent-based simulation model.

in Figure 4.1. According to our implementation, the developers and the modules are
considered as active agents, which means that they have their own behavior. The
requirements are considered as passive agents, because they have no own behavior
and their state can only be changed from outside by other active agents.

Since this model is grid-based, all agents live and act on a grid with fixed size.
Implementing the model with Repast Simphony allows us to use two different neigh-
borhoods. First, we can use the Von Neumann neighborhood [133] containing one
central cell and its four adjacent cells for a distance of one as depicted in Figure 4.2a
(for distances from 1 to 4). Second, the Moore neighborhood [134] is provided. It
contains one central cell and all its eight surrounding cells for a distance of one as
depicted in Figure 4.2b (for distances from 1 to 4).

Moving on such a grid, the active agents have the following characteristics to describe
the evolutionary process of the software.

Modules are representing arbitrary software entities. For example, a file or a class.
A module has two properties as defined in [80] as follows: the fitness represent-
ing how good a module fits the requirements and the complexity. The higher

39

4.1. Grid-Based Model

[l l [T

(a) Von Neumann neighborhood of a grid. (b) Moore neighborhood of a grid

Figure 4.2.: Possible neighborhoods of a grid space provided by Repast Simphony.

the complexity, the less likely it is for a developer to improve the module. The
own behavior of a module partly describes the intrinsic aging. Assuming that
the fitness suffers from bitrot (decrease of fitness over time) with aging while
the complexity increases, the module can change its own state according to
a given bitrot parameter. Furthermore, a module has a random probability
to create a new requirement in an empty cell in its neighborhood. Finally, a
module can lower the fitness of adjacent modules after a developer has worked
on it.

Developers perform a random walk on the grid. If a developer reaches the border

it can leave the project with a certain probability. Depending on the content
of the target cell a developer can perform three different actions. First, it can
create a new module with initial low fitness and complexity if it is on an unfilled
requirement. Second, if a developer is on a module with high complexity and
high fitness it can apply a refactoring. This will reduce the complexity of the
module by a random amount. Third, being on a module and no refactoring
was applied, a developer can work on it, if the complexity is not too high. This
work will increase the fitness and the complexity of the module by a random
amount.

At the beginning of each simulation run there is only one module and a certain
amount of developers. Through the behavior of developers and modules described
above the project evolves over time. If there are enough modules with low fitness,
they can attract developers and new developers will be created.

4. Evolution of Agent-Based Simulation Models 40

For the instantiation of the model a lot of parameters have to be set. There are,
for example, the initial complexity and fitness of a module, probabilities for new
developers and requirements, the impact of a refactoring or development work, or a
threshold for the maximum complexity to develop a module. Using a default param-
eter set provided by the authors of [80] the fitness of the project under simulation
using our implementation is quite low as depicted in Figure 4.3a.

(a) Simulation results with a default param- (b) Simulation results with a adapted pa-
eter set. rameter set.

Figure 4.3.: Simulation results of the grid based model simulated with Repast Simphony.
A cell represents the fitness of a module. The brighter the cell, the higher the
fitness of the module.

By adjusting the parameters, the simulated results as shown in Figure 4.3a could be
improved. For this result, we decreased the initial module fitness and complexity,
the complexity threshold, and the increase of complexity per development step.
Furthermore, and we increased the impact of a refactoring.

In contrast to the model proposed by Smith et al. in our simulation model we omitted
the developers motivation as factor to leave or join a project according to its fitness,
but we have introduced a threshold for the maximum number of developers. This
made the results more reproducible. Furthermore, we changed the behavior of the
developers so that they do not move randomly in the grid. They move more goal
directed and go to cells in the neighborhood where work is expected, for example,
due to a lower fitness.

With such a model we can reproduce the number of complex modules, the number of
touches, and distinct patterns for system growth of real software projects. However,
we require for almost each of them different parameter sets to get realistic results.
These results motivated the following suggestions for improvement, which will be
considered in our follow-up models, described in the next sections.

e The random number of developers and the condition for leaving the project
are not suitable for projects of different sizes. It seems to be promising to use

41 4.2. Network-Based Model for Monitoring Software Quality

empirical data based on mining software repositories to figure out how many
developers contributing to a project under investigation. Furthermore, we will
divide developers into different roles or types.

e The random walk on the grid performed by the developers does not seem to
be purposeful enough for modeling software evolution realistically. To model a
more goal direct behavior we want to consider the intention of each developer
per simulation round. For example, intentions may be to commit, or in more
detail, to fix a bug, to apply a refactoring, or to implement a new feature.

e The grid is also not suitable for realistically modeling the dependencies between
individual software entities. When using a grid, the project starts growing from
a startup cell and each module depends on its neighbors. Such a behavior does
not allow to model the architecture of the software system accurately. More
precisely, for example, core-modules with many dependencies could not be
modeled. To make this possible in a nearby way, other possibilities to model
dependencies are necessary.

With all these points in mind, we start to develop a complete new model for the
simulation of the evolution of software processes presented, in the next section.

4.2. Network-Based Model for Monitoring Software Quality

In this section, we describe the development of an ABM for the simulation of several
aspects of software evolution by modeling the dependencies between software entities
as networks. This means that the model presented here no longer contains grid-based
dependencies. Of course, the learned aspects of the grid-based model described in
Section 4.1 are incorporated into the development work. For the instantiation of the
following models, we use parameters generated by mining open source repositories.

We start with a basic model for simulating the growth of a project, for which no
modeled dependencies are necessary. Afterwards, we present a model to simulate
the lifetime of bugs as first quality aspect of the software under simulation. Finally,
we explain a detailed model that can be used to simulate several quality aspects of
a software project.

4.2.1. Growth Model Depending on Productivity

To model the growth trend of a software project only two agents are required. Firstly,
software entities that represent the software system under simulation. Secondly, the
developers actively influence the growth of the project with their contribution to the
project under simulation. The ABM to simulate the growth of software projects is
depicted in Figure 4.4.

4. Evolution of Agent-Based Simulation Models 42

As software entities, we consider files due to the fact that we only need the number
of files for growth statements according to [89]. A File has only a reference to
the developer who created it as attribute. Furthermore, a file can be considered
as a passive agent because its state depends only on the development work of the
developers in this model.

The Developer is the active agent because its development work adds, deletes, and
updates files. This contribution makes the project evolve over time and for growth
considerations we can omit the updates performed by the developers. A detailed
description of the developers contribution model and required parameters can be
found in Section 4.2.1.1.

SimulationContext

- simRounds : int
- maxProjectSize : int
- agents : List

AdjustableParameters I create Developer(iint)
- initialRounds : int File

- initialBoostFactor real create

- boostFactor : real / - creator : Developer

Developer

- commitCount : int
- pCommit : real
- pAddFiles : real
- pUpdateFiles : real
- pDeletefFiles : real

develop
+ work()

Figure 4.4.: Agent-based simulation model to replicate growth trends of software projects.

The SimulationContext is the initial class when executing the simulation model.
It creates a given number of developers at the start of the simulation and contains
project-specific parameters such as the maximum project size and the number of
rounds to simulate. Furthermore, the context knows all instantiated agents, passive
as well as active ones, as it is indicated by the list SimulationContext.agents.
The simulation is round-based and one round in the simulation represents one day
in real life. Every turn each developer has the opportunity to work. If the agent
works, the project will be further developed through its contribution. This is also
the basic principle of all further simulation models. The closer the project size
approaches the given maximum size, the fewer new files are created by the work of
the developers. This, together with the assumption that stronger growth is expected
at the beginning of the project, leads to the typical growth [90] of a software project
as depicted in Figure 4.5a. These parameters are gathered by mining open source
repositories than described in Section 5.2.

As mentioned in Section 3.2.1, we can have several growth trends. To config-
ure the simulation when mined parameters are not suitable to simulate growth

43 4.2. Network-Based Model for Monitoring Software Quality

trends like the super-linear one depicted in Figure 4.5c the AdjustableParameters
can be used. For this purpose, the project is divided into two parts. The
first part takes AdjustableParameters.initialRounds and the last one takes
the rest of the projects runtime. As a responsible parameter for growth, the
mined developers contribution can be adjusted for the first part with the pa-
rameter AdjustableParameters.initialBoostFactor and for the last part with
AdjustableParameters.boostFactor. These parameters allow us to simulate a
more realistic growth trend as with mined average parameters only.

To illustrate different growth trends, we plot the growth in the number of files for
the three open source projects commons-io!, gora?, and zookeeper® and the results
are presented in Figure 4.5. According to [91] all growth trends can be fitted with
a linear function.

Project Growth Project Growth Project Growth

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 o 200 400 600 800 1000 1200 1400
Number of Commits Number of Commits Number of Commits

(a) Growth of zookeeper. (b) Growth of commons-io. (¢) Growth of gora.

Figure 4.5.: Different growth trends of real software projects.

Since the contribution behavior of the developers are the driving factor for this
model, as well as for further models concerning the evolution of software processes,
this part will be described in detail in the next section.

4.2.1.1. Developer Contribution Behavior

Due to the round-based nature of the simulation, at the beginning of each round,
it must be decided whether a developer is working or not. Working means, that
the developer applies a commit. For this, we assume that the commits of one
developer are uniformly distributed. This decision depends on the probability
Developer.pCommit. The number of commits, each instance of the type Developer
has applied, is stored in the property Developer.commitCount.

When a developer applies a commit in the current round, the scope of the work still
needs to be determined. Therefore, the number of files that are added and deleted
in the commit are required. For this purpose, we assume that the number of file

"https://github.com/apache/commons-io
2https://github.com/apache/gora
3https://github.com/apache/zookeeper

4. Evolution of Agent-Based Simulation Models 44

changes follows a geometric distribution. We are using that form of the geometric
distribution in which the number of failures until the first success is modeled as
shown in Equation (4.1). This means that zero is allowed.

PX=n)=01-p)" p forn=1{0,1,2,3,...} (4.1)

For the simulation, this can be interpreted as being a success from a developer’s
point of view if it has nothing to do and thus zero files have to be updated. All
actions a developer can perform are modeled the same way, but for growth trend
analysis we only consider delete and add actions while the number of updated files
is omitted.

These both properties of a developer, i.e., the probability to apply a commit in the
current round and the number of files to add or delete in one commit are enough to
model the growth trend of software projects. However, the simulated set of files does
not represent any features of the actual software system except size. An extension
of the model will show in the next sections how other aspects of the software system
can be simulated. This allows extended research questions, which can be answered
by the model.

4.2.2. Model to Simulate the Lifetime of Bugs

To model the lifetime of bugs we extend the previous model as follows. First, we
add a new class representing occurring bugs in the software system under simulation.
For modeling purposes, bugs, just like the files, can be considered as passive agents.
Then, we introduce networks to model dependencies between agents. The entire
model is depicted in Figure 4.6 and our publications [4, 8, 135] are based on this
model.

A Bug is generated by the SimulationContext. For this, we assume that bug
occurrences are uniformly distributed. After the instantiation of the Bug, it will be
assigned to a almost randomly selected File. According to [95], a property that
makes a possible assignment of a bug to a file more likely is the coupling degree of
the file. We model this by computing SimulationContext.errorProne() based on
the coupling degree, i.e., the number of links to other files, of the file in the change
coupling network which will be also introduced for this model (see Section 4.2.2.1).
This bug creation strategy models bugs as they are managed in ITSs and created
by users, testers, or developers. We are using this approach due to missing links
between bugs and bug-fix commits [65].

4.2.2.1. Dependency Networks

To model a software system more accurately, dependencies between involved agents
have to be described. Repast Simphony provides networks for this purpose. Nodes

45 4.2. Network-Based Model for Monitoring Software Quality

create

SimulationContext Bug
- simRounds : int - roundOfCreation : int
- maxProjectSize : int - roundOfClosing : int
- agents : List

+ computelLifetime() : int
- changeCouplingNetwork : Network

- fileDeveloperNetwork : Network
- bugFileNetwork : Network
+ createDeveloper(i : int)

AdjustableParameters [
[
- initialRounds : int create File
- initialBoosFactor : real
- boostFactor : real

assigned to

- creator : Developer
- owner : Developer

Developer - touches : int

+ errorProne() : boolean

K

- commitCount : int
use | - pCommit : real

- pAddFiles : real

- pUpdateFiles : real

- pDeleteFiles : real

develop

+ work()

Figure 4.6.: Agent-based simulation model to analyze the lifetime of bugs.

represent the agents and these can be connected by weighted edges. Networks are
managed by the SimulationContext. The following three networks are introduced.

File — Developer Network This network represents the dependency between a File
and a Developer. The first edge connected to a file is created when a developer
creates the file. Further edges are created when a developer modifies a file that has
not previously connected to the developer. If a developer modifies a file and there
already exists an edge between them, then the weight of this edge will be increased.
The state of a file can change with every commit. An example of the file — developer
network is depicted in Figure 4.7. Such a network provides the following properties

Figure 4.7.: Example for a file — developer network. Touches are represented as weight of an
edge. The red marked edges represent the owner of a file. Behind the filename
is named in brackets the creator of the file.

4. Evolution of Agent-Based Simulation Models 46

of a file.

Owner: the owner references the developer that changed the file at most and is
independent of the creator. Therefore, the ownership of a file is dynamic and
can be taken over by other developers over the time.

Number of authors: The number of different authors is represented by the degree
of the file in this network.

Number of touches: The number of touches represents how often this file was part
of a commit. It can be calculated by summing up the weights of all connected
edges.

Bug — File Network After a Bug is created and the File to assign is selected, both
agents will be linked by an edge in this network. The edge contains information
whether a bug is closed or not. Thus, the bug does not have to be deleted and we
can reopen it, if required. An example for a bug — file network is shown in Figure 4.8.

Figure 4.8.: Example for a bug — file network. Any created issue is assigned to an already
existing file.

Change Coupling Network This network describes dependencies between files that
are changed several times together in a commit. In Figure 4.9 an example for a
change coupling network is presented. Such a network provides the change coupling
degree of a file, which is used among other things for the determination of error prone
files [95]. The change coupling network creates clusters of files that are changed often
together. According to [2], files of one cluster are semantically related. Therefore,
this network is the most precise representation of the software under simulation of
this model.

The algorithm presented in Figure 4.10 creates the change coupling graph. The
graph only contains edges between files that are changed together at least twice. To
ensure this condition, we store an edge for the first change in the set F with the
weight set to 1. The weight is the function w : E — NT. In the next commit that
changes both files the edge will be added to the coupling graph G and the weight gets
increased. Afterwards, additional changes only increase the weight. Commits that

47 4.2. Network-Based Model for Monitoring Software Quality

Figure 4.9.: Example for a change coupling network. The weights of the edges represent
how many times files are changed together in one commit. Bold printed edges
represent the membership in a cluster.

change a huge number of modules, for example, merge commits or large renaming
commits, are not considered due to the exit condition in line 4.

The behavior of the developers plays a crucial role in the evolution of the change
coupling network over time. Except for the following two differences, it is exactly
as described in Section 4.2.1.1. First of all, besides the number of files to be deleted
and added, we also need the number of files to be updated. For this, we assume
that this follows a geometric distribution as described for deletions and additions in
Section 4.2.1.1. If we know how many files have to be deleted, added or updated,
the files to be updated and deleted must be selected. This is a difficult task, because
we have no information about the intention of the developers. The selection process
is based on the first selected file which is randomly selected. Further files will be
selected based on information about the first one, like the owner, and the dependency
networks. The files selected this way represent the files that the developer changes
in a commit.

Using the networks described above, in combination with the developers contribu-
tion, it can be described how open bugs can be fixed. When a developer applies a
commit and the set of files to be updated contains a bug, this bug can be fixed with
a certain probability. This probability depends on the ownership and the coupling
degree of the file. It is most likely that the owner of the file fixes the assigned bug
if the file has a low coupling degree. Furthermore, older bugs are fixed with higher
probability than newer ones. This behavior allows the analysis of the lifetime of
bugs.

For this model, considering the software at the file level is quite sufficient, since
the representative of the software is the change coupling network. For some other
models, for example, for modeling refactorings using graph transformations, a more

4. Evolution of Agent-Based Simulation Models 48

1: X {List of updated files in one commit}
2: E {Set of edges between files that are updated together}

3: G = (V, P) {The change coupling graph with P C E'}
4: if | X| > 20 then

5: return

6: end if

7. for i =0 to | X| do

8: for j =i+ 1 to |X| do

9: T X[’L]

10: y < X[j]

11: if (z,y) € P then

12: Wy y & Wey + 1

13: else

14: if (z,y) € F then

15: V—VUu{z,y}
16: P+ PU{(z,y)}
17: Wy y ¢ Wey + 1
18: else

19: E+— FEU{(z,y)}
20: Wy,y < 1

21: end if

22: end if

23: end for

24: end for

Figure 4.10.: Pseudo code for generating the change coupling network as presented in [8].

detailed representation of the software is necessary. As a next step, this model will
be expanded in the following section to be able to answer more research questions
concerning software evolution with the simulation.

4.2.3. A Detailed Model to Investigate Several Aspects of Software
Evolution

The goal of this extended model is to answer more research questions regarding
software quality. For example, questions can concern the development team struc-
ture [136], the experience of team members [137], or design patterns [138]. Mainly
specializations of the classes Developer and Bug have been introduced and our pub-
lication [5] is based on the model depicted in Figure 4.11.

To analyze different team constellations, we added different developer types which
differ in the effort they spent to the project measured in the number of commits and
their bug fix probabilities. In our model, the developers are divided into maintainer,

4.2. Network-Based Model for Monitoring Software Quality

49

03 paugisse

|ess : xi4d - |eas : xi4d - |eas : xi4d - |eas : xi4d -
|ead : ywwodd - |ead : ywwo)dd - |ea4 : ywwodd - |eaJ : ywwodd -
JadojaaagJoulin Jadojanaguolen JadojpnagAsy Jauleulel
|eaJ : ()jsgeTeindwod + e
ues|00q : ()auoidiou + |eas : s9|1431913@d -
ML SaUN0} < |eaJ : saji4a1epdnd -
1adojana(: JaUMO - d (634 : S3|HpPYd - s
olan3p U1 : JUNODXY - n
1adojanaq : Jojeasd - :
JU[: JUNODNWWIOD -
sl Jadopasqg
1 7
ul: 3z -
Suls i sweu - aean
|eaJ : J019B41500(-
Aio3a1e) |3 : J03oB4S00g[RINUI -
Ul : spunoy
Sngjew.o SngJiouln SngJoley)seuo8ae)a1ea.0 +
gl N ! ! (3ur: 1)2d0PASQ31E3I + sis1aweleda|qeisnlpy
SMOMIBN : }JOMIBN3|I48Ng -
SMOMIBN : jJomiaNJIadopasgaly -
\vi J40MIaN : ydomiaNSulidnodasueyd -
21ean

Ul ()swnayaandwod +

1ul : SuIso|40puUNO. -
Ul 1 UOIIBAIDIOPUNOI -

3ng

1517 : S9110831e0 -
31517 : sjuase -

Ul : 9zIS13f0idxew -
Ul : Spunoywis -

1Xa1U0)UoRINWIS

10310

Figure 4.11.: Agent-based simulation model for different research questions.

4. Evolution of Agent-Based Simulation Models 50

key developer, major developer and minor developer. Maintainers are similar to key
developers, but they perform a lot of maintenance work like bug fixes, in addition.
Depending on the data from the mining (see Chapter 5), we can also simulate
the usual developer types (e.g. [106]) core and peripheral. Thus, we can answer
project specific research questions like: Can we simulate effects like the loss of a key
developer realistically?

The process of creating and processing bugs has been improved by specializing the
class Bug. The different types major, normal, and minor bug depend on their severity
and in their number of occurrences. This, in combination with the new developer
types, makes it possible to improve the bug fix strategy. For example, it is more
likely that the key developer fixes a major bug than that the minor developer fixes
a major bug.

Furthermore, we introduced a bug fix intention of developers. As mentioned in [116],
corrective activities, such as bug fixes, generate tiny commits changing 1 to 5 files.
Overall, about 80% of all commits are tiny ones. Therefore, instead of applying a
commit as described above, a developer can have the intention to fix a bug. In that
case, the set of files to be updated in this commit is selected as follows. First, one
file with at least one bug is selected randomly. Afterwards, up to 5 files connected
to the first one are selected also randomly. The selected bug can be fixed with a
certain probability depending on factors like the ownership, the coupling degree of
the file, and the developer type. This is the same decision process as when a normal
commit contains a file with an assigned bug. With this model we can simulate the
lifetime of the different bug types more precisely.

As additional class we introduced the Category. Categories represent folders or
packages of the software in which files are grouped together in a logical context. At
simulation start-up, the SimulationContext creates a given number of categories
with a given size. Both parameters are determined by mining open source repos-
itories. When a file is created, it will be assigned to a selected category with a
certain probability. The probability of choosing a category depends on its size. This
allows us to slightly adapt the file selection for a commit. The first file is selected
randomly like before. For subsequent selections, we can assume that files in a com-
mit are likely to belong to the same category. This update behavior structurally
improves the simulated change coupling graph. This is noticeable by the fact that
the clusters of the change coupling graph can be simulated more realistically.

Concerning the quality of each file we compute a label depending on assigned bugs
as follows. For each bug type (major, normal, and minor) values are set indicating
how much a certain bug type should decrease the label. Let us consider the following
factors: 0.825 for major bugs, 0.9 for normal bugs, and 0.98 for minor bugs. Then,
for each bug assigned to a file, the corresponding factors are multiplied. Thus, a file
without a bug has the label value of 1 and every assigned bug decreases this value.
This allows us, for example, to evaluate the overall quality of the software under
simulation concerning the bug fix behavior of different team constellations.

51 4.3. Modeling Refactorings based on Graph 'Transformations

Nevertheless, the update behavior of the developer remains almost unchanged, which
means that the selection of the first file to be modified still depends on chance.
As a result, the structure of the change coupling graph is strongly dependent on
coincidence and not on the intentions of the developers. To address this issue, we
present an approach to model further intentions of a developer in the next section.
These intentions influence the selection of the files of a commit, including the first
file selected.

4.3. Modeling Refactorings based on Graph Transformations

To improve the structure of the simulated software graph, we reduce the randomness
of the file selection process for a commit. Therefore, we introduce the developers
intention to refactor the code. For example, if a developer works on code with low
maintainability (e.g. a method with above average size), it can apply a refactoring
to improve the quality of the code. The developer’s decision process is depicted
in Figure 4.12. This behavior follows the prominent BDI [3] approach, where devel-
opers formulate goals based on their beliefs and build plans to reach them. Beliefs
are the current state of the software under simulation, represented as software and
graph metrics.

Refactorings are a common approach to describe well defined code structure changes
like described in Section 2.3. To model software refactorings we use graph trans-
formations (see Section 2.4). For each refactoring a transformation rule has to be
defined.

In order to create a plan for each considered refactoring, we need detailed information
about the software state before the refactoring is applied. The application of a
refactoring causes state changes of software entities like the change of metrics of
classes and methods as well as structural graph changes. This required data is
collected through mining software repositories.

To apply these transformation rules, we need a more detailed graph for the descrip-
tion of the software under simulation. The used graph as presented in Definition 1
was introduced in [7]. It is transformed by the work of the developers according
to formulated transformation rules. Due to the simplicity, it is easy to extend this
graph when required. For modeling inheritance, for example, an additional edge
label representing links between classes that belong to an inheritance hierarchy can
be introduced.

Definition 1. Let ¥ = {C, M} be a set of node labels and A = {mm,mc} be a set
of edge labels. The node types represent software entities: classes (C') and methods
(M). Edges represent relationships between nodes: method memberships (mm) and
method calls (mc). A graph over ¥ and A is a System G = (V,E,l), where V

4. Evolution of Agent-Based Simulation Models

52

has

t s selects

\
developer

performs

project size (number of files): 1100
complexity (LOC / method): 155

number of developers: 11

ok

Belief

ok

add feature
fix bug

improve maintainability v

Goals

extract method ¢/ cassa

move method I — % Actions
pull up method

method A method B

method A

class A

Figure 4.12.: Example for developer’s intentions adapted from [7]. The developer works on
a method that is hard to maintain because it has too many lines of code. To
improve maintainability, the developer applies the refactoring Extract Method.
Thus, parts of the origin method are moved to a newly created method that
is called from the origin method.

is a set of modes, | : 'V — ¥ is a function that assigns a label to each node, and
ECV xAXV isthe set of edges.

To restrict the edge creation the type graph depicted in Figure 4.13 is used. The type
graph is a generation specification such as the UML class diagram. For instance,
member method edges link a class and a method as well as method calls can only
occur between two methods.

C

M mc

Figure 4.13.: Type Graph adapted from [7].

To integrate the new entities into the existing model, two networks need to be
introduced. First, an undirected one that represents the membership of a method
to a class. Second, a directed network to model method calls. To keep the model

53 4.3. Modeling Refactorings based on Graph 'Transformations

simple, we assume that there is exactly one class per file. An example for both
networks is presented in Figure 4.14.

‘ Method A1 @

Method A2 ‘ Method Bl

Method A3 Method B2

Figure 4.14.: Example for method call and method membership networks. The blue edges
represent the method membership network. Method calls are represented by
red edges.

We introduced graph transformation rules for the three most frequently occurring
refactoring types based on the mining process. The transformation rules are shown
in Figure 4.15. The left hand side of the rule has to be replaced by the right hand
side of the rule. In these rules the method calls, that are not important for the
actual refactoring, are omitted. In the application of the rules it is ensured that all
incident edges to a removed vertex are deleted as well. Therefore, no dangling edges
occur after the transformation.

Since extract method is actually the opposite of inline method both refactorings are
depicted in Figure 4.15a.

To find a match for the rule’s left-hand side, not only the structure of the software
graph is taken into account. Also appropriate software metrics are considered. These
are, for example, the size measured in lines of code (LOC) for extract method
(Figure 4.15a) and the coupling measured in number of outgoing invocations (NOI)
for move method (Figure 4.15b). Furthermore, we assume that NOI of the origin
class of a method will be reduced when a move method refactoring is applied.

4. Evolution of Agent-Based Simulation Models 54

Class A |: Class A CIaSS A CIaSS A
mm mm mm
extract
Method A : Method A r1 Method A ﬁ Method A
inline '
: mm mc vortions mm
I
’7 Method B > Class B Class B
(a) Extract/Inline Method. (b) Move Method.

Figure 4.15.: Graph transformation rules for three software refactorings adapted from [7].
The left-hand side of the rule will be replaced by the right-hand side in the
software graph. The dotted edge represents outgoing invocations, this means
method calls to methods of the other class.

The modeling of refactorings reduces the randomness in the selection process of
the files which are included in a commit. Furthermore, the scope of possible re-
search questions is extended. How these models are implemented is described in the
following.

4.4. Implementation Details and Execution of the Models

As mentioned before we are using the ABMS framework Repast Simphony (see
Section 2.1.4) for modeling and simulation purposes in this thesis. For the imple-
mentation of the model Java is used and agents are implemented as POJOs.

The core class of all models is the SimulationContext. It serves as starting point
of the simulation and after reading the current parameters, the context instantiates
the configured number of each developer type and categories. The context knows all
instantiated agents and the relationships between them. For the second property, it
also creates and references the projections that represent the agents’ relationships
between each other. As projections, we only use networks in our models like the
one used to model the change coupling graph. After the simulation model has
been initialized, the simulation is executed for the configured number of rounds.
Furthermore, the SimulationContext is responsible for the random generation of
bugs during runtime. Each round an agent can execute its implemented behavior.

As active agents, we only have developers in all of our models. To mark the
executable behavior, we use Java annotations. For example, the annotation
@ScheduledMethod(start = 1, interval = 1) describes a method that is exe-
cuted every round starting in the first round. If a developer executes its behavior

55 4.4. Implementation Details and Execution of the Models

like described in Section 4.2.1.1, the software evolves round by round. When new
software entities are created by the developers, they are also added to the context.

To configure the simulation there are two different parameter sets available. Firstly,
the core parameters to initialize the simulation model. They are generated for
each analyzed project by an automated parameter estimation tool which is also
developed as part of the work performed for this thesis. An example can be found in
Section A.1. It contains the basic data for each project, for example, the maximum
size of the project, the number of commits, the number of rounds to simulate, and
the developers to instantiate. Furthermore, information about bugs, their fixes, and
the categories of a project are available. Secondly, to adjust the behavior of the
simulation based on the mined parameters, it is possible to change the parameters
described in Section B.1 in the running application before each simulation run. With
these parameters, for example, you can adjust the update behavior of the developers
so that different growth trends can be simulated more realistically. The simulation
at runtime is depicted in Section B.2.

Besides that, it is possible to start the simulation with any given commit or at
any desired point in time. For this, the change coupling graph originating from
the mining is read in (see Section A.2) and the simulation is initialized based on
it. Thereafter, the simulation proceeds as described previously. For example, this
feature can be used for validation purposes by comparing the real with the simulated
change coupling graph at different times.

The simulated change coupling graph is exported as dot file* as well as the graph
from the mining. The fact that real change coupling graph and simulated change
coupling graph are in the same format makes it easy to compare both with each
other.

Required Extensions for the Refactoring Model

For the implementation of the model of software refactorings, as described in Sec-
tion 4.3, we added new passive agents for classes and methods to our existing model.
Both have properties for size and complexity metrics. Furthermore, we added two
projections for the modeled dependencies method membership and method call.
Both are implemented as a network and the method calls use a directed network.
These networks also provide coupling metrics such as the number of outgoing or
incoming invocations.

Both networks together can be seen as a more abstract description of the software
under simulation like an abstract form of the AST. Since we currently analyze only
Java projects and there is predominantly one class per file, in the implementation a
file corresponds exactly to a class.

*http://www.graphviz.org/doc/info/lang.html

4. Evolution of Agent-Based Simulation Models 56

In order to parameterize the model, parameters for general commit patterns, such
as a bugfix or a feature add, as well as parameters for changes due to the application
of refactorings are required.

The general commit patterns are needed to change the graph on every commit ex-
cept for a refactoring. If a file in such a commit is added, a class is created and
it is important to know how many methods have to be created and how the class
is coupled to other classes. For updates of classes, the number of added, updated,
and deleted methods as well as the changes to the coupling of the class are re-
quired. When a method is created or changed, the changes of the following metrics
are considered: size measured in LOC, complexity measured in McCC (cyclomatic
complexity by McCabe, see for example [38]), and the coupling measured in number
of outgoing invocations (NOI) and the number of incoming invocations (NII). We
use average values based on the data presented in Section A.3 for the parameter-
ization. However, these average values are sufficient to simulate refactorings. We
assume that all simulated metric changes of the abstract software graph are geomet-
rically distributed like the number of files to be changed in a commit as described
in Section 4.2.1.1.

For the parameterization of a refactoring, we need the changes of the considered
metrics through the application of a refactoring. At this point, we also use average
values of the metric changes shown in Section A.4. Furthermore, the metrics of the
start class or method of the refactoring are considered in order to find an appropriate
starting point of the rules left-hand side as described above. The number of found
refactorings is used to decide how often a refactoring type is applied.

This resulted in the following changes to the contribution behavior of the developers.
When a developer applies a commit, it is first decided what intention the developer
has. If a developer has the intention to fix a bug or to add a feature, then the files
to update will be selected as described in Section 4.2.1.1 and the abstract software
graph will be changed as described above. However, if a developer intends to apply
a refactoring, the files to be modified will be selected based on the transformation
rule of the refactoring to be applied and the start metrics. To find a matching, the
abstract software graph is searched. This limits the randomness of selecting the files
to be modified in a commit. As a result, the more commits can be described by
well-defined patterns, the less random the selection process of the files will be.

B The Gathering of Parameters
for Model Execution

Contents
5.1. Overall process e 58
5.2. Automated Parameter Estimation for Network Based Models 59
5.2.1. Developer Identity Merging 60
5.2.2. Developer Classification 62
5.2.3. Change Coupling 62
5.3. Parameter Estimation for the Modeling of Refactorings 63
5.3.1. Parameters for the Description of General Commit Patterns . 63
5.3.2. Framework to Estimate Parameters for Refactorings 63
5.3.3. refSHARK to Estimate Parameters for Refactorings 65

In this chapter, we describe how we estimate the parameters required to instantiate
our simulation models. First, we describe the overall process of mining tools based
on SmartSHARK [79] in Section 5.1. Then, we introduce the automated parameter
estimation tool in Section 5.2. Afterwards, the process to find refactorings and how
the parameters for the transformation rules are estimated is presented in Section 5.3.

5. The Gathering of Parameters for Model Execution 58

5.1. Overall process

Most of the developed mining tools in this thesis are based on SmartSHARK. Thus,
these tools can use the data collected by several SmartSHARK plug-ins to com-
pute the required simulation parameters. The overall mining process is depicted in
Figure 5.1. As shown in this figure, the mining tools process data retrieved from

Pyson

AgentSpeak
BDI

Simulation
Parameters

Mining Process

Software
Graph
Information

Repast Simphony
Java agent-based
modeling
and simulation
framework

Figure 5.1.: Overall mining process using SmartSHARK.

the SmartSHARK database as well as in rare cases supplementary information from
the git repository. The generated output are simulation parameters to instantiate
the simulation models. These can be used by the implementation based on Repast
Simphony presented in this thesis as well as by the AgentSpeak platform developed
by our project partners [139, 140].

Since SmartSHARK is a collection of several tools, each of them for a specific task,
that store their computed data in a MongoDB, we have to retrieve required data from
this database as described in Section C.1. The following plug-ins of SmartSHARK
are important for our mining work.

vcsSHARK: This tool is a VCS parser and provides information about commits,
people, and files!.

"https://smartshark.github.io/vesSHARK

59 5.2. Automated Parameter Estimation for Network Based Models

mecoSHARK: This plug-in collects static product metrics as well as code clone

metrics?.

issueSHARK: This tool gathers information from ITSs and thus provides data for
the bug creation in the simulation®.

These three plug-ins of SmartSHARK provide the necessary data for our mining
tools to estimate simulation parameters. The data model created by the plug-ins is
presented in Section C.2.

For the experiments in this thesis, which are based on SmartSHARK data, we are
using a MongoDB hosted at the Institute of Computer Science at the University of
Gottingen. This database contains data of several Apache Java projects analyzed
with SmartSHARK.

5.2. Automated Parameter Estimation for Network Based
Models

The mining framework presented in this Section gathers simulation parameters of
projects that are analyzed with SmartSHARK before. It consists of the following
four components as depicted in Figure 5.2.

Developer Information Provider: Since we are mainly interested in the developer’s
contribution to the project for simulation parameters, this tool collects all
developers that are authors of at least one commit. Afterwards, two tasks are
performed. First, as one and the same developer partially applies commits
with different e-mail addresses, the identities of the developers are merged
using an adapted identity merging algorithm. Second, developers, or more
precisely the groups of developers belonging to one identity, are classified into
different types.

Bug Information Provider: This tool investigates the Issue collection and provides
information about the number of bugs that are created and fixed per year.
Furthermore, all occurring priorities are mapped to the following three: major,
normal, minor.

Commit Analyzer: To provide update probabilities for several commit types this
tool investigates the FileAction information for a Commit. Thus, the number
of updated, added, and deleted files per commit as well as the number of com-
mits by type are available. This information is used to calculate the geometric
distribution probabilities that describe the developer’s contribution behavior.
Currently, we use two commit types: an general commit type and a bugfix.
The commit classification based on [141] is provided by SmartSHARK.

2https://smartshark.github.io/mecoSHARK /intro.html
3https://github.com /smartshark /issueSHARK

5. The Gathering of Parameters for Model Execution 60

- Identity merging
- Developer classification

= Developer Information Provider

Information about
- open bugs
- fixed bugs
based on ITS information

Bug Information Provider

uses

Computes several commit probabilites

Commit Analyzer

Creates change coupling graph with additional
file information about

- developer touches and

- assigned categories

— Change Coupling Creator

Figure 5.2.: Components of the overall process of automated parameter estimation.

Change Coupling Creator: This tool creates a change coupling graph for every year
or any selected point in time as input for the simulation.

The computed data by the first three mining tools is exported as described in the
example in Section A.1. An example for the exported change coupling graph can be
found in Section A.2.

5.2.1. Developer Identity Merging

Our identity merge algorithm follows the algorithm presented in Figure 5.3 and
introduced by Geominne et al. [69]. This algorithm describes a default merge algo-
rithm which takes a set of people and returns a set of grouped identities. If people
are merged depends mainly on the decision whether the people currently not added
to an identity group can be merged with the person selected in the current run and,
thus, be added to the identity group tmpMerges currently under construction.

The function canMerge(m, i, t) returns a boolean representing whether an iden-
tity i can be merged to the identity group m according to the parameter t. To
decide whether an identity can be merged or not, we implemented an extended ver-
sion of the simple algorithm presented in [69]. Since the person objects from the
SmartSHARK database include the name, the email address and the username, we

61 5.2. Automated Parameter Estimation for Network Based Models
1. P {Set of persons P = {p1,p2,p3, "+ ,in}}
2: t {Similarity threshold, ¢t > 0}
3: identities < emptySet() {The merged identities}
4: while isNotEmpty(P) do
5: p < getFirstElement(P)
6: tmpMerges < emptySet() {merged ID group for the current person p}
T: insert(tmpMerges, p)
8: remove(P, p)
9: for all x € P do
10: if canMerge(tmpMerge, x,t) then
11: insert(tmpMerges, x)
12: remove (P, x)
13: end if
14: end for
15: insert(identities, tmpMerges)
16: end while
17: return identities

Figure 5.3.: General identity merge algorithm adapted from [69].

can use all these information to compare their identities. For each person we create
labels using all available information. For the username we create one label. An
additional label is created for the prefix of the e-mail address. Further labels are
created based on the name and on the number of parts in which a name can be split.
As separator a dot or a space is used. The following labels are created.

e Separators = 0: A label for the name is created.

e Separators = 1: Assuming that a name consists of tow parts, representing the
first name f and the last name [, we create labels for the following combina-

tions: I.f, f.I, If, fl.

e Separators = 2: Assuming that a name consists of three parts, representing
the first name f, the middle name m, and the last name [, we create labels for
the following combinations: [.f, f.l, If, fl, l.m, m.l, Im, ml, fml, fm.l.

To add a person to an identity group, all generated labels of the current person are
compared with the labels of the current merge group tmpMerges. If two are equal
in their first t characters, the person is added.

The comparison of the labels with each other is improved by the fact that a nor-
malization method is used during the generation of the label. This means that all
spaces are removed and uppercase letters are converted to lowercase letters.

To omit identities that are insignificant, we prevent the generation of labels for com-
mon email prefixes that probably do not represent a person like "mail”, ”dev_null”,
”dev-null”, "noreply”, or ”github”. Furthermore, the name ”unknown” is omitted.

5. The Gathering of Parameters for Model Execution 62

The authors of [69] figured out that a simple algorithm produces good results with
the parameter t set to 3. This parameter selection also works well in our implemen-
tation tested against a manually merged set of people.

5.2.2. Developer Classification

The developers are classified into core and peripheral according to the prominent
onion model as well as in key, major, minor, and maintainer like introduced for our
simulation models.

The classification is based on the contribution of the developer, more precisely on
the group of identities the developer belongs to. For this purpose, the contribution
of each developer in a group is added up. This requires that the identities have been
merged beforehand.

5.2.3. Change Coupling

To initialize the simulation at any time, we need a continuous change coupling graph.
This means that changes are not forgotten after a certain time. Therefore, realistic
developer information can be included in the graph. Before the change coupling
graph is generated, there are two preparatory tasks to do.

First, the collection of analyzed commits is sorted ascending by the commit date.
Second, all files in a commit that have been renamed are mapped to a representa-
tive. Thus, developer information can be assigned to a file. Afterwards, the change
coupling graph is created as follows.

During the iteration over all commits, the change coupling graph is generated suc-
cessively. For each commit, the following steps are executed:

1. For each file the representative is searched in the created map. This differs
from the actual file only if it has been renamed. When we talk about files,
always the representative is meant in the following.

2. It is checked whether the file is already contained in the current change cou-
pling graph. If so, the developer information is updated. These are, for exam-
ple, the number of touches as well as the owner. If this is not the case, a new
file will be generated with initial information about the creator, its category,
and a unique name.

3. Finally, the edges are created or updated. If an edge already exists between
two different files of a commit, their weight is incremented by 1. Otherwise, a
new edge of weight one is generated.

63 5.3. Parameter Estimation for the Modeling of Refactorings

Only code files are considered for the graph generation. Such a created change
coupling graph can be exported for any desired commit. By default, a graph is
exported for each year. An example can be found in Section A.2.

5.3. Parameter Estimation for the Modeling of Refactorings

In this section, we describe how we collect parameters used for the refactoring model.
First, we present parameter estimation for general commit patterns in Section 5.3.1.
Afterwards, we present a framework which collects detailed information about the
state of the software before a refactoring is applied and how the state changes when
a certain refactoring was applied in Section 5.3.2. This framework does not use
the SmartSHARK database as data source. Finally, we present a SmartSHARK
plug-in named refSHARK, that replaces the previously described framework, in
Section 5.3.3.

5.3.1. Parameters for the Description of General Commit Patterns

To find general commit patterns, each commit of a given project is analyzed as
follows. First, the commit is classified into different activities. Second, the state of
the software of the current commit is compared with the state of the parent commit.

For classification purposes, we use the four activities presented in [116]: forward en-
gineering as a development activity as well as re-engineering, corrective engineering,
and management as maintenance activities. The classification is key word based and
for each activity a keyword list based on [116] is created. For example, commits that
contain key words like "implement”, ”add”, "request”, and "new” in their commit
messages represent forward engineering commits.

After the commit is classified, the code entity states (see Section C.2) of files, classes,
and methods that are changed in this commit are used to read the desired metrics
like lines of code (LOC) for the size of the analyzed software entity. To describe the
changes, deltas of the desired metrics to the parent commit are calculated.

To parametrize the simulation model, we only consider the commit activities forward
engineering (add feature) and corrective engineering (bugfix). The results can be
found in Section A.3.

5.3.2. Framework to Estimate Parameters for Refactorings

To analyze the state of the software before a refactoring is applied as well as the
changes made by a refactoring the framework depicted in Figure 5.4 is proposed.

5. The Gathering of Parameters for Model Execution 64

Pre-Processing %

T

Refactorings_ll.csv Metrics.csv

Refactorings_l.csv

RefFinder

Git Software Repository Refactoring Database

Figure 5.4.: A framework for finding refactorings in software repositories adapted from [7].

The framework is limited to git repositories as data source. It analyzes transitions
between two consecutive code revisions by iterating over the commit history. In each
transition the tool searches for refactorings. If at least one is found, the metrics of
this transition as well as the corresponding deltas will be computed.

To find refactorings, the framework uses the tools Ref-Finder and RefDiff. Thus,
we can compare the results generated by the two tools. Both are described in
Section 2.3.

If a transition between two commits contains at least one refactoring, the desired
start metrics and metric changes are analyzed. To retrieve the required source code
metrics for classes and methods of both commits, the framework uses SourceMe-
ter [77], a tool for static source code analysis.

The results of all tools are stored as text files. Unfortunately, naming conventions of
the software entities are not unique. The framework provides preprocessing of this
data to facilitate the analysis. The preprocessor searches the appropriate metrics in
the output of SourceMeter for each refactoring found based on the output of Ref-
Finder and RefDiff. Afterwards, metric changes are computed and the data set is

65 5.3. Parameter Estimation for the Modeling of Refactorings

complemented with information from the git repository. Finally, a data set for each
found refactoring is stored in a MySQL* database.

Using this framework reveals efficiency and memory issues. It requires for mid-
sized projects up to a week to analyze all commits on a regular dual core PC with
4 GB RAM. Furthermore, the comparison of the results of Ref-Finder and RefDiff
showed that the results of RefDiff are more accurate for certain refactoring types.
Based on the knowledge gathered during the implementation of the framework, we
implemented refSHARK as described in the following section to improve the mining
process of refactorings.

5.3.3. refSHARK to Estimate Parameters for Refactorings

To address the issues of the previously described framework, we have implemented
a SmartSHARK plug-in named refSHARK. An advantage is that already calculated
metrics by other SmartSHARK plug-ins stored in the MongoDB can be used. As
a result, SourceMeter must not be executed at this point. Furthermore, to find
refactorings in the revision history of git repositories we only use RefDiff since it has
achieved more accurate results.

Since refSHARK requires commit and metric data, it is required that the plug-ins
vesSHARK and mecoSHARK are executed before. Afterwards, refSHARK iterates
over the commits and searches for refactorings using RefDiff. If at least one refactor-
ing is found, the tool searches for class and method metrics for the current commit
and its parents. The corresponding code entity states, which contain the metric
data, are stored in the MongoDB.

This plug-in stores the generated data in the MongoDB collections Refactoring and
RefactoringState. The parent entries of RefactoringState refer to the superordi-
nate elements in the AST. As an example, a class is parent of a method. However,
the entries of Refactoring.ParentStates refer to the states of the parent commits
in the git repository.

Such preprocessed data makes an analysis of found refactorings more efficient. Met-
ric values before the refactoring was applied as well as delta values of the metrics
can easily be retrieved by reading the corresponding code entity states.

The SmartSHARK plug-in refSHARK can also be found on Github?®.

*https://www.mysql.com/
®https://github.com/smartshark /refSHARK

B Case Studies

Contents
6.1. Simulating Software Evolution using an Agent-Based Model 68
6.1.1. A Grid-Based Model 68
6.1.2. A Model without Dependencies 70
6.1.3. A Network-Based Model 71
6.1.4. Discussiono 74
6.2. Project Specific Parameters, 75
6.2.1. Model Initialization with Project Specific Parameters 76
6.2.2. Model Initialization with Project Specific Parameters and
Change Coupling Snapshot 7
6.2.3. Discussion Lo 82
6.3. Mining and Simulating Software Refactorings 82
6.3.1. Feasibility of Refactoring Simulation 82
6.3.2. Integration of Refactorings to a Simulation Model for Software
Evolution 87
6.3.3. Discussion 88

This chapter presents the three case studies, that were conducted for this thesis.
The first case study compares the different ABMs developed in this thesis. The
second one investigates how project specific parameters for each analyzed project
influence the simulation results. Furthermore, the simulation results of different
simulation starting points are considered. The third case study concerns the mining
and simulation process required for the simulation of refactorings.

6. Case Studies 68

6.1. Simulating Software Evolution using an Agent-Based
Model

The experiments in this section show the variety of simulation models tailored to-
wards different aspects of software evolution and their combinations. Several aspects
of software evolution can be investigated with the proposed models. In general, the
more complex the model, the more research questions concerning software evolution
can be answered. With a specific question in mind, one can adapt a model to answer
that question.

The overall process is similar for every considered model. First, the model is initial-
ized with suitable parameters that are determined by the design of the model. Then,
the model is executed and the results are compared with the expected ones from
real software projects. If the results deviate too much, the model will be adjusted.
Agent-based modeling follows a bottom-up approach. Therefore, small methods de-
scribing the behavior are adjusted to improve the overall state of the simulation. In
rare cases, the parameters are also adjusted. Afterwards, the simulation is executed
again. This iterative process is repeated until the simulated results fits the expected
ones.

To validate the results, we use mainly easy to measure metrics like the number of
commits performed by a developer type as well as graph metrics for network-based
models. These metrics are compared with the ones from the real project over the
time. For each model, different metrics describing the selected software evolution
scenario are used for validation purposes.

In the following, we have experiments with different setups and results for the dif-
ferent models. Finally, we present a general discussion of the different models.

6.1.1. A Grid-Based Model

The implementation of the grid-based model is based on [80] as described in Sec-
tion 4.1. It helps us to experience how agent-based simulation works and what we
can achieve with this kind of simulation in general.

Setup: The model is initialized with parameters according to the example given by
the authors of [80]. This is the only model in which parameters are not based on min-
ing open source repositories. This means, that quite general and no project-specific
parameters are used here. The used parameter set is depicted in Figure 6.1. All of
these parameters can be adjusted independently of each other for each simulation
run.

For the evaluation of this model we are interested in the following characteristics
by way of example: the project growth measured in the number of modules, the

69 6.1. Simulating Software Evolution using an Agent-Based Model

Simulation Parameters

Bitrot Amount: |1
Bitrot Chance: |2
Boredom Threshold: |15
Boredom Tolerance: |30
Complexity Increase: IZ— -
Complexity Threshald: |5 -
Default Random Seed: | 551,328,335
Experience Counts: []

Initial Module Complexity: |3 .
Initial Module Fitness: |4 -
Make Meighbars Unfit:

Meighbors Unfit Adjust: | 1 .
Mew Developer Chance: |5

Mew Task Chance: |5

Refactoring Adjust: |8

Figure 6.1.: Parameter set for the grid-based model. The green marked parameters are
decreased in comparison to the given specifications and the red marked ones
are increased.

complexity of the entire software system and the fitness of the modules. To improve
the results of this model, we do not change the behavior of the agents, but only
change the parameters. For this, we decrease some parameters that increases the
initial complexity or the complexity over time. Furthermore, we increase the refac-
toring parameter which ensures that the complexity of a module decreases after the
application of a refactoring. These adjustments are also represented in Figure 6.1.

Results: The results, concerning the fitness of the modules as defined in Section 4.1,
are depicted in Figure 4.3. With the given parameter set a lot of modules with low
fitness occur. Using the adapted simulation parameters depicted in Figure 6.1, the
entire system has a higher fitness. Similar observations can be made for the number
of complex modules. With the default parameters there are many modules with
high complexity as depicted in Figure 6.2a. The changed parameter set leads to a
ratio as described in [80]. This means that about 10% of all modules are complex
ones which is presented in Figure 6.2b.

Concerning the simulated growth trend, the growth simulated with the given pa-
rameters are more common as the one simulated with adjusted parameters. We also
made this observation when trying to reproduce other properties of the software.

6. Case Studies 70

/

500 000 500

Ticks h Ticks

(a) Simulation results with a default param- (b) Simulation results with a adapted pa-
eter set. rameter set.

Figure 6.2.: Simulated complexity and growth of the grid based model. The number of
complex modules is shown in relation to the total number of modules over
time.

For various properties mostly different parameter sets are required. For this reason,
all subsequent models are initialized with parameters based on the mining of open
source projects.

Furthermore, the grid-based model does not allow the modeling of dependencies
between the different entities. To address this issue and to model a more goal
directed behavior of the agents, the following models are no longer based on a grid.

6.1.2. A Model without Dependencies

To analyze the growth of a software project no dependencies between the agents are
required and the model described in Section 4.2.1 can be used. For example, the
growth trend simulation in [4] is based on such a model.

Setup: To initialize the model presented in Section 4.2.1, parameters to describe
the contribution behavior of the developers (see Section 4.2.1.1) are required. Specif-
ically, this means that we need to know how often a developer performs a commit
and how many files are changed in a commit. Considering only the growth trend,
changes mean added and deleted files. For this, the probabilities for the geometric
distribution are calculated as described in Equation (4.1).

The mining process for this experiment is part of the work in [142]. As described
in [4], all these parameters are gathered for the open source project K3b!. For

"https:/ /kde.org/applications/multimedia/org.kde k3b

71 6.1. Simulating Software Evolution using an Agent-Based Model

mining purposes we used the framework presented by Makedonski [115]. With such
an instantiated model only the developer’s work is responsible for the evolution of
the software under simulation.

Results: The results depicted in Figure 6.3 show that we can reproduce the growth
trend of a real software project with the model presented in Section 4.2.1.

2000 2350
Round
Commitid

(a) Growth based on mining process. (b) Simulated growth.

Figure 6.3.: Simulated and mined growth trend of K3b adapted from [4].

This model is more or less limited to the simulation of the growth of a software
project. To simulate other interesting factors of software evolution, we extend this
model. A model extended with dependencies between the agents as well as more
entities is evaluated in the following section.

6.1.3. A Network-Based Model

In this experiment, the network-based model described in Section 4.2.3 is evaluated.
In doing so, the model for simulating the lifetime of bugs presented in Section 4.2.2
is also included in the evaluation since the former one is based on it.

This experiment is based on [5], where the following research question is analyzed:
”Can we simulate effects like the loss of a core developer realistically?”. To assess
the state of the entire software under simulation, we consider the number of open
and fixed bugs. Thus, the lifetime of bugs is an important factor for the evaluation
of the entire software system under simulation.

Setup: To initialize the simulation model parameters for the contribution behavior
and the bugfix frequency of the different developer roles are required. Furthermore,
the bug introducing probability for each modeled bug type and the number of initial

6. Case Studies 72

categories must be determined. The mining process for this experiment is based
on the mining framework described in [115]. To adapt the simulation, only the
parameters based on mining are changed for different runs.

For this experiment, three projects of similar size and duration are examined. How-
ever, these projects differ in the effort that the developers spent. A complete data
set to instantiate the model comes from K3b! from previous studies. For the other
two projects Log4j? and Kate?, only the parameters for project size, number of de-
velopers of a certain type, the project duration and the number of initial clusters
are determined. All other parameters are fixed and based on K3b. An overview of
several parameters is presented in Table 6.1.

Project || Commits | Files | Developers | Duration
K3b 6142 1046 | (1]1]6]116) 12
Log4j 8082 620 (1]116]13) 13
Kate 14282 681 | (1]1/10]|328) 11

Table 6.1.: Overview of project parameters.
For developers: (core|maintainer|major|minor).
Duration: in years. Adapted from [5].

Results: From the mining perspective, essential parameters for simulating a core
developer’s loss are information about the team constellation as well as the bug
introducing and fixing rates. The latter are used to monitor the impact on the
software quality. According to [111], changes in the team constellation influence
also the quality of the software.

The commit behavior of the developer types is shown in Figure 6.4 for K3b, in
Figure 6.5 for Kate, and in Figure 6.6 for Log4j. The following heuristics are based
on this results: core developers perform more than 20% of all commits; more than
25% of the commits of a maintainer are bugfixes; major developers apply more than
2% of all commits; minor developers perform less commits. The number of each
developer type shown in Table 6.1 is based on this heuristics.

Since the change coupling graph represents the number of files that are changed
together several times and files that are semantically related build clusters in this
graph [2], we add the number of clusters to the parameter set of the simulation. We
are more interested in clusters of higher dependency. Thus, we omit clusters with
less then 5% of the nodes of the graph. The evolution of the number of clusters
of the three projects is depicted in Figure 6.7. The number of larger clusters will
be between three and six for the analyzed projects after a strong growth in the
beginning.

2http:/ /logging.apache.org/log4j
Shttps://www.kde.org/applications/utilities /kate

73 6.1. Simulating Software Evolution using an Agent-Based Model

type

W commits core
W commits maintainer
commits. major

COMIMIts minor

commits

N bugfixes core
bugfiees maintainer

bugfiees major

BN bug fies minor

20-0 002
\0-z00z
20-E00Z _
|0-KO0E
204002 _
10-500Z _
20-5002
10-0002 _
20-000Z _
102007 _
20-2002
10-B00Z _
20-8002
|0GODZ _
20-600E_

month
Figure 6.4.: Commits by developer type of K3b per month adapted from [5].

type

R commits core
BN commits maintsiner
COMMits. major

COMITILS. minsr

commits

BN bugfives core
bugfiees maintainer
bugfiees major

BN bug fides minor

Figure 6.5.: Commits by developer type of Kate per month adapted from [5].

To model bugs, we use average values for overall reported and closed ones managed in
ITSs. We consider the bug types major, normal, and minor. Other types occurring
in the ITS are assigned to one of these three. For example, the reported and closed
bugs of Kate are depicted in Figure 6.8. For the instantiation of the model, we use
average values of all three projects. These are 0.87 reported and 0.81 fixed bugs per
day which is synonymous with a round in the simulation.

With these parameters, we can instantiate the simulation models. First, we simulate
the reference project K3b. Afterwards, we change particular parameters according
to the mined data for each of the other projects and simulate them. Parameters to
be changed are the project size and duration as well as the number of developers per
type. To answer the question whether the loss of a core developer can be simulated,
we perform two simulation runs for each project. First, a run without changes to
the mined parameters. Second, a run where the core developer leaves the project
after half of the duration. This results in 12% to 20% fewer bugs that are fixed due
to the reduced effort.

The simulated growth measured in the number of files of this model fits well for the
project K3b as depicted in Figure 6.9. The other analyzed projects have a similar

6. Case Studies 74

type

W commits core

W commits maintsiner
commits major

commits minor

commits

= bygfiees core
bugfices maintainer

bugfiees major

L . bygfiees minor

VOO
L0-HOE
o-Zioe

Figure 6.6.: Commits by developer type of Log4j per month.

NN\

project

— I

v _— gdj

Hate

oy

number of clusters

oooz
5002
ooz

year

Figure 6.7.: Number of clusters over time.

growth trend that can be reproduced as well. The results of simulating projects
with other growth trends can not be displayed with this setup. This is due to the
fixed parameters based on the mining of K3b.

Furthermore, we analyzed in [8] how change coupling networks generated by an
agent-based simulation evolves in comparison to the ones originating from the project
history. This study is part of the work presented in [142]. The setup is similar to
this experiment and K3b is used as the reference project. The simulation results are
validated with results of Log4j. We compared several graph metrics like the coupling
degree or the modularity. As a result, we figured out that the general evolution of
file dependencies can be presented by a network-based simulation model. However,
the modularity deviates in part from the reality.

6.1.4. Discussion

The experiments of this case study overall reveals that we can simulate aspects of
software evolution using an ABM. The first thing we learned is that we do not
need dependencies between the agents to simulate the growth of a project. Since
such a simple model is not suitable for answering more complex questions, we have

75 6.2. Project Specific Parameters

severty severity

- ingr = pinor

bugs closed

- rormal - rormal

bug reports

—rnjor —rjor

20°V00E
10€002 |

month month

(a) Reported bugs. (b) Closed bugs.

Figure 6.8.: Reported and closed bugs of Kate.

Project Growth

(((((

(((((

(((((

(((((

(((((

(((((

200 2%
Round

Figure 6.9.: Simulated growth of K3b.

introduced and evaluated network-based models. With these models we are capable
to simulate the loss of a core developer or the lifetime of bugs as one example.

However, we also figured out that such an instantiated simulation model can only
reproduce one growth trend similar to the growth of the project K3b as depicted
in Figure 6.9. Furthermore, these experiments reveal that the random selection of
files for a commit and the fixed parameters based on K3b influences the generated
change coupling graph negatively. These two topics are covered in the following case
studies.

6.2. Project Specific Parameters

In the experiments of the previous case study and in our previous work [4, 5, 8], we
combined a fixed parameter set based on K3b with parameters for the respective
project to instantiate the simulation. With this setup, we can only reproduce the of
growth of projects similar to K3b. To address this issue, we propose two approaches.
First, we gather a complete set of parameters automatically for each project and
initialize the simulation model with it in Section 6.2.1. Second, we analyze how the

6. Case Studies 76

results change when the model is instantiated with a real snapshot of the project at
any point in time in Section 6.2.2.

6.2.1. Model Initialization with Project Specific Parameters

To instantiate the simulation model described in Section 4.2.3 with a project specific
set of parameters, we use the automated parameter estimation tool presented in
Section 5.2. The parameters for each project are structured like the ones shown in
Section A.1.

Setup: For this experiment, we analyze for each growth trend depicted in Fig-
ure 4.5, two projects that are processed with SmartSHARK and their data is avail-
able in the MongoDB which is hosted at the institute. For each project the simula-
tion parameters are computed by the estimation tool and the simulation is executed
using the corresponding parameters. This setup should show that we can reproduce
more occurring growth trends of real software projects as with the setups before.

As projects we selected for a sub-linear growth trend at the end like depicted in
Figure 4.5a Zookeeper* and Directory Fortress Core®, for an approximately linear
growth as shown in Figure 4.5b Commons I0% and OI Safe™ as well as Gora® and
Nutch? for a super linear growth at the end like depicted in Figure 4.5c.

For all these projects, we compare the simulated with the real growth over time.
Afterwards, for selected projects the graph metrics presented in Section 2.4.2 are
computed for the simulated and the real change coupling graph. By comparing the
metrics over time, we can make statements about the quality of the simulated change
coupling graph.

The projects for the detailed analysis are Gora, Zookeeper, and Directory Fortress
Core. These three projects are selected because the parameters required for the
simulation of refactorings are based on exactly these projects. Thus, we can compare
the results of the following experiments with these results.

In order to improve the simulation results slightly, we adjusted the configurable
parameters for each project as described in Section B.1 if required.

“https://github.com/apache/zookeeper
Shttps://github.com/apache/directory-fortress-core
Shttps://github.com/apache/commons-io
"https://github.com/openintents/safe
8https://github.com/apache/gora
“https://github.com/apache/nutch

7 6.2. Project Specific Parameters

(a) Growth of Zookeeper. (b) Growth of Directory Fortress Core.

Figure 6.10.: Growth of projects over the time with a sub-linear trend at the end. The
empirical progress is colored red and the simulated progress is colored blue.

Results: The results depicted in Figure 6.10, Figure 6.11, and Figure 6.12 show
that we can reproduce the different growth trends of real world projects with this
simulation setup.

The evolution of the considered graph metrics is presented for Zookeeper in Fig-
ure 6.13, for Gora in Figure 6.14, and for Directory Fortress Core in Figure 6.15. It
can be seen that the simulated modularity and the simulated degree deviate from
the empirical values. This is especially the case for Directory Fortress Core, whereas
Zookeeper have the best simulated values overall. Furthermore, it can be seen that
the metrics density and diameter achieve good simulative values for all evaluated
projects.

6.2.2. Model Initialization with Project Specific Parameters and Change
Coupling Snapshot

This experiment investigates how the simulated results change when the simulation
model is instantiated with a snapshot of the real change coupling graph of the
analyzed project.

Setup: This setup is similar to the setup of the previous experiment presented in
Section 6.2.1, but in this case the simulation starts at a selected year. To achieve this,
the simulation model is not only instantiated with the project specific parameters
but also with the change coupling graph of the desired year to start with. Then, the
simulation is executed as usual. The change coupling graph is also generated by the
automated parameter estimation tool described in Section 5.2 and can be generated
for any point in time. An example of the change coupling graph can be found in
Section A.2.

6. Case Studies 78

e

(a) Growth of Commons IO. (b) Growth of OI Safe.

Figure 6.11.: Growth of projects over the time with approximately linear growth trend. The
empirical progress is colored red and the simulated progress is colored blue.

s

(a) Growth of Gora. (b) Growth of Nutch.

Figure 6.12.: Growth of projects over the time with a super-linear trend at the end. The
empirical progress is colored red and the simulated progress is colored blue.

79 6.2. Project Specific Parameters

(a) Number of nodes (growth). (b) Diameter.

o or o8 0 10 " o1 02 0 o o

(c) Average degree. (d) Average weighted degree.

pEann NN
/\

(e) Density. (f) Modularity.

Figure 6.13.: Graph metrics of Zookeeper over the time. The empirical progress is colored
red and the simulated progress is colored blue.

6. Case Studies 80

\

o

(a) Number of nodes (growth). (b) Diameter.

K

(c) Average degree. (d) Average weighted degree.

//\/\/\

/\/_\/

(e) Density. (f) Modularity.

/

Figure 6.14.: Graph metrics of Gora over the time. The empirical progress is colored red
and the simulated progress is colored blue.

81 6.2. Project Specific Parameters

. 74717@
-
.
o o
o 02 0 o4 o5 o6 o7 o8 o o7 o8

(a) Number of nodes (growth). (b) Diameter.

(c) Average degree. (d) Average weighted degree.
(e) Density. (f) Modularity.

Figure 6.15.: Graph metrics of Directory Fortress Core over the time. The empirical
progress is colored red and the simulated progress is colored blue.

6. Case Studies 82

For this experiment, the simulation model for all analyzed projects is instantiated
after about one third of the project duration. The projects to analyze are Gora,
Zookeeper, and Directory Fortress Core. These three projects are selected to com-
pare the results with the results of other experiments based on these projects.

Results: The evolution of the analyzed graph metrics is presented for Zookeeper in
Figure 6.16, for Gora in Figure 6.17, and for Directory Fortress Core in Figure 6.18.
In th figures one can see, that the simulation based on an initial snapshot improves
most graph metrics. In particular, the simulated degree has significantly improved.
An exception, however, is the growth of Directory Fortress Core as depicted in
Figure 6.18a.

6.2.3. Discussion

We figured out two important insights in the presented experiments of this case
study. First, with a project-specific parametrization of the simulation model, we
can simulative reproduce the usual growth trends. Second, a simulation model
initialized with a snapshot of the change coupling graph can simulative reproduce
the progression of the graph. For this, the simulation is started approximately after
one third of the project runtime and the graph metrics are used for statements about
the quality of the simulated graph.

6.3. Mining and Simulating Software Refactorings

In this case study, we first analyze the feasibility of modelling refactorings using
graph transformations in Section 6.3.1. Afterwards, we evaluate the integration of
refactorings into our simulation model for software evolution in Section 6.3.2.

6.3.1. Feasibility of Refactoring Simulation

In order to make a statement about whether refactorings can be simulated using
agent-based simulation and modeled by means of graph transformations, we must
be able to find suitable parameters. To find these, we use the mining framework
described in Section 5.3.2 for this experiment. After determining the parameters,
a transformation rule can be created for each refactoring to be simulated (see Sec-
tion 4.3).

83 6.3. Mining and Simulating Software Refactorings

\
4

(a) Number of nodes (growth). (b) Diameter.

.
7

d &

(c) Average degree. (d) Average weighted degree.

)

(e) Density. (f) Modularity.

Figure 6.16.: Graph metrics of Zookeeper for snapshot initialization. The empirical progress
is colored red and the simulated progress is colored blue.

6. Case Studies 84

(a) Number of nodes (growth). (b) Diameter.

o6 o

(c) Average degree. (d) Average weighted degree.

(e) Density. (f) Modularity.

Figure 6.17.: Graph metrics of Gora for snapshot initialization. The empirical progress is
colored red and the simulated progress is colored blue.

85 6.3. Mining and Simulating Software Refactorings

)

(a) Number of nodes (growth). (b) Diameter.

A
A

(c) Average degree. (d) Average weighted degree.

e
:

(e) Density. (f) Modularity.

Figure 6.18.: Graph metrics of Directory Fortress Core for snapshot initialization. The
empirical progress is colored red and the simulated progress is colored blue.

6. Case Studies 86

Setup: This study is based on [7]. Parameters to instantiate the refactoring model
are gathered using the mining framework described in in Section 5.3.2. To find refac-
torings between two revisions of open source projects, the framework uses the tools
Ref-Finder and RefDiff in parallel. Thus, we can compare the results of both tools.
As projects we analyze JUnit'® — a unit testing framework for Java, MapDB'' — an
embedded database engine for Java, and the GameController'? — used, e.g., for sev-
eral RoboCup competitions. Based on the parameters computed for these projects
the refactoring model is instantiated and simulated. Furthermore, the model is ini-
tialized with a snapshot of the code base representing one revision in the source code
repository. This means for this experiment that only refactorings are executed as
commits and we only have one developer that performs refactoring after refactor-
ing. For simulation purposes the simulation platform[139] developed by our project
partners is used.

Results: The parameters to parameterize the simulation model are depicted in
Figure A.1. The results show that Ref-Finder finds significantly more refactorings
of the type move method than RefDiff do. This finding corresponds to the results
of the authors of [45]. They figured out that Ref-Finder has a high number of false
positives for some analyzed projects, in particular for the refactoring type move
method. For this reason, we only use RefDiff for further examinations.

Furthermore, the mining process reveals that only a small amount of methods are
moved to already existing classes when the refactoring move method is applied.
Thus, in many cases methods are moved to newly created classes. The results are
presented in Table 6.2.

Tool
Project Ref-Finder RefDiff
JUnit 5,6 % 22,5%
MapDB 34,9% 28,0%
GameController 9,6 % 0,0%

Table 6.2.: The amount of applied refactorings of the type Move Method where the method
is moved to an already existing class.

This result justifies an extension of the transformation rule for the refactoring move
method from Section 4.3 as depicted in Figure 4.15b. The proposed new transfor-
mation rule for move method is shown in Figure 6.19.

Yhttps://github.com/junit-team/junit4
Hhttps://github.com/jankotek /mapdb
2https://github.com/bhuman/GameController

87 6.3. Mining and Simulating Software Refactorings

Class A Class A
mm

' Method A) g ————] Method A

|

u Ioin |
Irglotcg.atiois ! mm

| Vi

> ClassB Class B Class C

Figure 6.19.: Alternative transformation rule for Move Method adapted from [7]. The
method A is moved to a new created class C.

This setup is restricted to the simulation of software refactorings. The transfor-
mation rules are implemented and they work as expected. This means, that the
complexity decreases over time. For further investigations we need to integrate
refactorings into the simulation model for software evolution as introduced in the
following section.

6.3.2. Integration of Refactorings to a Simulation Model for Software
Evolution

In this experiment, we analyze how the change coupling graph changes when refac-
torings are simulated. To integrate the refactoring model into the model for software
evolution, we need to know how the abstract software graph required for the refac-
toring model changes when commits like a feature add or a bugfix are applied. This
knowledge is required to let the software graph also evolve over time.

Setup: To get the required parameters for commit patterns like feature adds or bug
fixes, we use SmartSHARK as described in Section 5.3.1. The mining process turned
out to be time and memory intensive. Thus, we have only parameters for three
projects as presented in Section A.3. The metric changes caused by a refactoring are
based on the results of refSHARK (see Section 5.3.3) and can be found in Figure A.2.
For each commit pattern we use fixed values based on the mined average.

To execute the simulation, the model is first initialized with the project specific
parameters like in the previous experiments. The number of refactorings to apply is
based on the mined data. Each time a refactoring is applied the transformation rule
is applied and the simulated software metrics change as the mining data states for
the rule. If a bugfix or a feature add is applied, the files for the commit are selected
as without refactorings and the metrics of the simulated software graph are changed
as described for the applied commit pattern.

6. Case Studies 88

Results: The evolution of the analyzed graph metrics of the change coupling graph
is presented for Zookeeper in Figure 6.20, for Gora in Figure 6.21, and for Directory
Fortress Core in Figure 6.22. It can be seen that apart from growth, no further
metrics improve.

6.3.3. Discussion

In this case study we show that we can figure out how the application of a refac-
toring change the software metrics. Furthermore, the approach to use graph trans-
formation for the modeling of refactorings can be integrated in our agent-based
simulation model for software evolution. However, to evaluate wether the simulated
change coupling graph can be improved we require more commit patterns for further
refactorings and other commits.

89 6.3. Mining and Simulating Software Refactorings

(a) Number of nodes (growth). (b) Diameter.

el

(c) Average degree. (d) Average weighted degree.
(e) Density. (f) Modularity.

Figure 6.20.: Graph metrics of Zookeeper for simulation with refactorings. The empirical
progress is colored red and the simulated progress is colored blue.

6. Case Studies

90

\

K

(a) Number of nodes (growth).

s-

(c) Average degree.

/

|

(e) Density.

(b) Diameter.

|3

(d) Average weighted degree.

(f) Modularity.

Figure 6.21.: Graph metrics of Gora for simulation with refactorings. The empirical
progress is colored red and the simulated progress is colored blue.

91 6.3. Mining and Simulating Software Refactorings

(a) Number of nodes (growth). (b) Diameter.

i

R

(c) Average degree. (d) Average weighted degree.

—

(e) Density. (f) Modularity.

Figure 6.22.: Graph metrics of Directory Fortress Core for simulation with refactorings.
The empirical progress is colored red and the simulated progress is colored
blue.

B Discussion

Contents
7.1. Contributions 94
7.2. Limitations e 95

In this chapter, the results of this thesis are discussed as a whole and research
contributions as well as limitations of this work are presented.

The evolution of our proposed simulation model, in combination with the first case
study, shows that we can determine the entities and relationships that are required
to simulate several aspects of software evolution. The model without dependencies
between the agents can reproduce the growth of a real software project when it
is initialized with the contribution behavior of the developers as well as the max-
imum size and the duration of the project. This means that these are important
parameters in the simulated software evolution process. To analyze more aspects
of software evolution, we added more developer types, different bug types, and net-
works representing relationships between the entities to the simulation model. One
of these networks represents the change coupling graph. As a representative of the
software’s semantic context, this graph is also used to analyze the quality of the
simulated software. With such a model we can analyze aspects concerning the team
constellation of the project. For example, the question what impact it has when a
core developer leaves the project can be answered.

When we initialize the simulation model with project specific parameters generated
by our mining tool, we are able to reproduce the common sub-linear growth trend as
well as a linear and a super-linear growth trends of the analyzed project. Concern-
ing the other compared graph metrics between simulated and real change coupling
graph the results are split. In particular, the modularity and the average degree of
the nodes differ simulative from the real values. This can be significantly improved

7. Discussion 94

if the simulation is started with real data after about one third of the project dura-
tion. This suggests that many software projects have an unpredictable behavior in
their initial phase. For this reason, it is an important possibility to instantiate the
simulation with real data at a certain point time to predict the future of a project.

Furthermore, we have shown that one can determine required software metrics and
additional entities to model software refactorings using ABMS and graph transfor-
mations in combination. Using a model that only executes refactorings based on
a given software snapshot, the application of refactorings works as expected and
the quality of the software improves in terms of the complexity. However, the inte-
gration of this model into the model for software evolution only results in a slightly
improved growth of the simulated project. We have expected this differently because
the randomness in the file selection process for a commit is reduced by the transfor-
mation rules, but it can be explained by the small number of modeled refactorings
and general commit patterns so far. It may also be that such an extended model is
too complex to significantly improve the results. On the one hand, the substantial
mining effort to model further transformation rules may not be justified if one looks
at the current results concerning the simulated change coupling graph. On the other
hand, the extension of the model would raise further questions regarding the impact
of various refactoring strategies on the quality of the simulated software.

7.1. Contributions

The research contributions of this work are versatile and briefly presented in this
section.

Showing that ABMS can be used to model software evolution. We presented an
evolutionary ABM with the needed entities and dependencies between the entities to
simulate software evolution. In terms of quality, we compare selected graph metrics
of the simulated with the real change coupling graph.

Answering questions concerning aspects of software evolution with the ABM.
We used our proposed ABM to answer specific questions concerning the reproducibil-
ity of growth or the impact of a leaving core developer. For the latter, the lifetime
of bugs is implicitly needed.

Instantiate the ABM with project specific parameters. We developed an auto-
mated parameter estimation tool that provides project specific parameters to instan-
tiate the proposed ABM. To generate these parameters, the different identities of
a developer are merged, and developers are classified into different types according

95 7.2. Limitations

to the effort they spent. As a result of such instantiated models, we can reproduce
several growth trends like sub-linear, linear, and super-liner ones.

Instantiate the ABM whit a snapshot of a real project. An output of automated
parameter estimation tool is also the real change coupling graph of a given point
in time. This graph is extended with developer information to instantiate the sim-
ulation model at this point. We showed that the metrics of the simulated change
coupling graph of models instantiated after one third of the project duration fits the
metrics of the real graph.

Mining parameters to model refactorings. We developed a mining framework that
computes the changes of selected class and method metrics between two software
revisions when a refactoring is applied. Based on this knowledge we implemented
the SmartSHARK plug-in refSHARK that computes code entity states of changed
classes and methods when a refactoring is applied in a commit. Both tools can output
parameters that describe how the software changes on class and method level when
a refactoring is executed. Furthermore, we developed a tool based on SartSHARK
that classifies commits using a keyword-based classifier to get parameters of software
changes on class and method level for commit types like bugfix or feature add.

Modeling refactorings using graph transformations. We present graph transfor-
mation rules with suitable parameters for changes on class and method level for
the three most occurring refactorings in analyzed projects. That these rules work
was shown on the basis of an example project, where after the initialization only
refactorings were applied.

Integrating the refactoring model into software evolution model. We present a
ABM extended by classes and methods as well as related metrics. This model is used
to apply the transformation rules for refactorings and for commits like bugfixes or
feature adds the class and method metrics change according to their commit pattern.
With this model, we can slightly improve the growth trend of the simulated software.

7.2. Limitations

In this section, the limitations of our approach are presented.

7. Discussion 96

Validation of the simulation results. Every simulation run with the same param-
eters outputs slightly different results due to the stochastic process that comes from
the nature of simulation. In order to obtain comparable results, the simulation can
be repeated several times with the same parameter set. Furthermore, the simulated
results are compared with the results of the mining process. It cannot be determined
whether the results of the mining process represent the real world project.

Runtime and memory consumption of the developed mining tools. A drawback
of the developed mining tools, especially the change coupling graph generation, is
the memory consumption. This is because we build up the graph successively and
expand it with more and more data over time. We can analyze projects with about
6000 commits and 2000 files.

Runtime of the simulation. Using Repast Simphony for agent-based modeling
and simulation purposes we can simulate projects with about 10000 files. For larger
projects we have to consider other tools like the scalable simulation platform devel-
oped by our project partner [139].

Third party tools used for mining. Some of the mining tools used by the tools we
have developed are not developed by us and we must rely on its results.

Metric selection. We use software metrics to describe and simulate several aspects
of software evolution, for example, the number of files for the growth. Appropriate
metrics are selected based on related work and achieved simulation results. For the
modeling of the contribution behavior of the developers we only consider the commit
frequency and the number of changes per commit. In [142] also the communication
behavior is considered. Nevertheless, we think that our approach is suitable for the
models presented in this thesis.

Project selection. The selection of projects to analyze is not only limited by its
size according to the maximum size capable for the mining or simulation tool. It is
also limited to the possibilities of the used mining framework. For the most mining
work in this thesis we are using SmartSHARK. Therefore, we are limited to projects
managed in git repositories. When this evaluation was made, the database hosted
at the institute contained about 15 projects that meet all the requirements of our
tools. From this we have selected six projects in such a way that we have at least
two examples for each growth type.

B Conclusions

Contents
8.1. Summary e 97
8.2. Main Findings 98
8.3. Outlook 99

In this chapter we summarize this thesis including our main findings and we present
an outlook on possible future work.

8.1. Summary

This thesis introduces the evolution of an agent-based simulation model to simu-
late software processes as well as mining tools to gather suitable parameters for the
instantiation of the model. This work is based on several research areas like soft-
ware evolution, multiagent systems, refactorings, graph transformations, and min-
ing software repositories. The interplay of these research areas makes the following
statements possible.

We presented a simple ABM without dependencies and this model can reproduce
the growth of a software system when it is initialized with parameters for the con-
tribution behavior of the developers. By adding entities and dependencies to the
model, more and more questions related to software evolution can be answered. One
of these question is: can we simulate aspects like the loss of the core developer?

When we initialize the simulation model with project specific parameters generated
by the developed automated parameter estimation tool in combination with minor
modifications using the adjustable simulation parameters, we can reproduce the
growth trend of the analyzed project. This means, we can simulate linear, sub-liner,
and super-linear growth trends with such parametrized models. We figured out that

8. Conclusions 98

the most accurate simulated change coupling graph according to all compared graph
metrics is generated with a snapshot initialization of the simulation model. For this,
we instantiate the model besides the base parameters with a change coupling graph
of a given point in time. As a starting point, we selected about one third of the
entire project duration.

Furthermore, a closer analysis of applied refactorings in open source repositories
allows us to determine parameters to model software refactorings based on graph
transformations. To integrate the rules into our previous agent-based model, we add
new entities and dependencies representing an abstract software graph on method
level. This model improves the simulated growth of a project slightly.

8.2. Main Findings

We have shown that the developed ABM presented in Section 4.2.3 is able to answer
various questions of a project manager. For example, these questions can concern
the lifetime of bugs or the team constellation based on the developer types work-
ing on the project. As a result, the simulation indicates different trends and no
special numerical values for aspects like the system growth, the effort spent by the
developers, or the number of open bugs.

Concerning the quality of the simulation we figured out that the ABM presented in
Section 4.2.3 can reproduce common growth trends of real software projects. For
this, the model is instantiated with project specific parameters (see Section 5.2).
Furthermore, the comparison of graph metrics of the simulated and the real change
coupling graph reveals that the results for density and diameter are significantly
better than the trends for modularity and degree. The simulated graph can be
improved by initializing the model based on a snapshot of the real project after
about one third of the project duration. This improves the trends of all metrics,
especially modularity and degree.

The integration of refactorings in our simulation model is far advanced but not
conclusive. We figured out that the modeling of refactorings with graph transforma-
tions (see Section 4.3) works for the considered refactorings. Furthermore, we can
parameterize the transformation rules based on our mining process described in Sec-
tion 5.3. The present integration of the refactoring model (see Section 4.3) results in
a slightly improved simulated growth trend. To be able to make further statements
more transformation rules are required. These rules include further refactoring as
well as other commits.

99 8.3. Outlook

8.3. Outlook

The results of this work show that we can reproduce a realistically change coupling
graph with our simulation model according to the growth and other compared graph
metrics. Furthermore, the model can answer several questions concerning software
evolution. To improve or to extend the model, the following work is planned.

To extend the number of possible projects to analyze we want to spend more effort in
optimizing our mining and simulation tools. Another aim concerning all used tools
is a common interface between SmarSHARK, our developed parameter estimation
tools, and the simulation framework. Such an interface would allow a project man-
ager to select a project to analyze on a GUI. For this project, automatically required
parameters would be created and the manager could be shown various simulation
results for different questions and parameter sets.

Concerning the modeled developers, we currently use a fixed number of developers
over the entire project duration with an average change behavior per applied commit.
It might be worthwhile to model the average change behavior per developer type.
Furthermore, a close look at the project period and how many developers of a certain
type are working on the project at a certain point could improve the results. This
is especially true for the difficult to predict initial project phase.

For the bug generation, we use currently the bug introduction probabilities based
on the ITS and bugs are created by the simulation context. Since the required
metrics are already available from the simulated networks, we plan to generate bugs
by certain commits which depend on the ownership as well as on the coupling degree
of the entity which correlates with defects [137].

If the effort is made to extend the refactoring model, which means to model further
refactorings and more general commit patterns, then further questions regarding
software evolution can be investigated. For example, different refactoring strategies
can then be investigated. Furthermore, when appropriate metrics are found to
simulate maintainability, one can exploit in the simulation that classes of lower
maintainability are subject to more refactorings [125].

In order to evaluate the refactoring model more accurate, we should be able to to
compare the refactoring model with the model without refactorings initialized with a
snapshot of the real software. For this, we must work on the retrieval of the snapshot
of the extended software graph on class and method level including all considered
software metrics.

Bibliography

1]

Reem Alfayez et al. “How does contributors involvement influence open
source systems”. In: 2017 IEEE 28th Annual Software Technology Confer-
ence (STC). IEEE. 2017, pp. 1-8.

Thomas Ball et al. “If your version control system could talk”. In: ICSE
Workshop on Process Modelling and Empirical Studies of Software Engineer-
ing. 1997.

Gerhard Weiss. Multiagent Systems. MIT Press, 2013.

Verena Honsel, Daniel Honsel, and Jens Grabowski. “Software Process Sim-
ulation Based on Mining Software Repositories”. In: ICDM Workshop. 2014.

Daniel Honsel et al. “Monitoring Software Quality by Means of Simulation
Methods”. In: 10th International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 2016.

Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

Daniel Honsel et al. “Simulating Software Refactorings Based on Graph
Transformations”. In: Simulation Science. Springer. 2017, pp. 161-175.

Verena Honsel et al. “Mining Software Dependency Networks for Agent-Based
Simulation of Software Evolution”. In: ASE Workshop. 2015.

V. Honsel. “Statistical Learning and Software Mining for Agent Based Sim-
ulation of Software Evolution”. In: Doctoral Symposium at the 37th Interna-
tional Conference on Software Engineering (ICSE). 2015.

Michael J. North et al. “Complex adaptive systems modeling with Repast
Simphony”. English. In: Complex Adaptive Systems Modeling (2013).

Michael Wooldridge and Nicholas R. Jennings. “Intelligent agents: Theory
and practice”. In: The knowledge engineering review 10.2 (1995), pp. 115—
152.

Stuart J. Russell and Peter Norvig. Artificial intelligence : a modern ap-
proach. Prentice-Hall, 2010.

RoboCup Technical Committee. RoboCup Standard Platform League (Nao)
Rule Book. online. May 2011. URL: http://spl.robocup.org/wp-content/
uploads/downloads/Rules2011.pdf.

http://spl.robocup.org/wp-content/uploads/downloads/Rules2011.pdf
http://spl.robocup.org/wp-content/uploads/downloads/Rules2011.pdf

Bibliography 102

[14]

B-Human. B-Human homepage. 2019. URL: https://b-human.de/index.
html.

Hiroaki Kitano et al. Robocup: The robot world cup initiative. 1995.

Thomas Rofer et al. B-Human Team Report and Code Release 2011. Only
available online: http : / / www . b - human . de / downloads / bhumani1 _
coderelease.pdf. 2011.

SoftBank. SoftBank homepage. 2019. URL: https://www.softbankrobotics.
com/emea/en/nao.

Seth Tisue and Uri Wilensky. “NetLogo: A simple environment for model-
ing complexity”. In: in International Conference on Complexr Systems. 2004,
pp. 16-21.

Arnaud Grignard et al. “GAMA 1.6: Advancing the Art of Complex Agent-
Based Modeling and Simulation.” In: PRIMA. Ed. by Guido Boella et al.
Vol. 8291. Lecture Notes in Computer Science. Springer, 2013, pp. 117-131.
URL: http://dblp.uni-trier.de/db/conf/prima/prima2013.html#
GrignardTGVHD13.

Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson. “Agent-
based simulation platforms: Review and development recommendations”. In:
Simulation 82.9 (2006), pp. 609-623.

Charles M. Macal and Michael J. North. “Introductory tutorial: Agent-based
modeling and simulation”. In: Simulation Conference (WSC), Proceedings of
the 2011 Winter. IEEE. 2011, pp. 1451-1464.

Eclipse-Foundation. The Platform for Open Innovation and Collaboration.
2019. URL: https://www.eclipse.org/.

Ross Thaka and Robert Gentleman. “R: a language for data analysis and
graphics”. In: Journal of computational and graphical statistics 5.3 (1996),
pp- 299-314.

Mark Hall et al. “The WEKA data mining software: an update”. In: ACM
SIGKDD explorations newsletter 11.1 (2009), pp. 10-18.

Brian Harvey. Computer Science Logo Style: Symbolic Computing. Vol. 1.
MIT press, 1997.

Jana Gormer et al. “JREP: Extending Repast Simphony for JADE Agent Be-
havior Components.” In: TAT. Ed. by Olivier Boissier et al. IEEE Computer
Society, 2011, pp. 149-154.

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
multi-agent systems with JADE. Vol. 7. John Wiley & Sons, 2007.

Serge Demeyer and Tom Mens. Software Evolution. Springer, 2008.

Nazim H. Madhavji, Juan Fernandez-Ramil, and Dewayne Perry. Software
evolution and feedback: Theory and practice. John Wiley & Sons, 2006.

https://b-human.de/index.html
https://b-human.de/index.html
http://www.b-human.de/downloads/bhuman11_coderelease.pdf
http://www.b-human.de/downloads/bhuman11_coderelease.pdf
https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/nao
http://dblp.uni-trier.de/db/conf/prima/prima2013.html#GrignardTGVHD13
http://dblp.uni-trier.de/db/conf/prima/prima2013.html#GrignardTGVHD13
https://www.eclipse.org/

103

Bibliography

[30]

Winston W. Royce. “Managing the development of large software systems:
concepts and techniques”. In: Proceedings of the 9th international confer-
ence on Software Engineering. IEEE Computer Society Press (August 1970)
— Reprinted in Proc. Int. Conf. Software Engineering (ICSE) 1989. 1989,
pp. 328-338.

IEEE. Standard IEEE Std 1219-1999 on Software Maintenance. IEEE Press.
Volume 2. 1999.

Meir M Lehman. “On understanding laws, evolution, and conservation in
the large-program life cycle”. In: Journal of Systems and Software 1 (1979),
pp- 213-221.

Meir M. Lehman. “Programs, life cycles, and laws of software evolution”. In:
Proc. IEEE 68.9 (Sept. 1980), pp. 1060-1076.

Manny M Lehman and Laszlo A Belady. Program evolution: processes of
software change. Academic Press Professional, Inc., 1985.

Meir M Lehman et al. “Metrics and laws of software evolution — The Nineties
View”. In: Proceedings Fourth International Software Metrics Symposium.
IEEE. 1997, pp. 20-32.

M.M. Lehman and J.F. Ramil. “Towards a Theory of Software Evolution -
And its practical impact (working paper)”. In: Invited Talk, Proceedings Intl.
Symposium on Principles of Softw. Evolution, ISPSE 2000, 1-2 Nov. Press,
2000, pp. 2-11.

William Thomson. “Electrical units of measurement”. In: Popular lectures
and addresses 1.73 (1883).

Jochen Ludewig and Horst Lichter. Software Engineering: Grundlagen, Men-
schen, Prozesse, Techniken. dpunkt. verlag, 2013.

IEEE. IEEFE Standard Glossery of Software Engineering Terminology. IEEE
Press. 1990.

Victor R Basili and David M Weiss. “A methodology for collecting valid
software engineering data”. In: IEFE Transactions on software engineering
6 (1984), pp. 728-738.

Norman Fenton and James Bieman. Software metrics: a rigorous and practi-
cal approach. CRC press, 2014.

Shyam R Chidamber and Chris F Kemerer. “A metrics suite for object ori-
ented design”. In: IEEE Transactions on software engineering 20.6 (1994),
pp. 476-493.

M. Fowler. Refactoring. 2019. URL: https://refactoring.com/.

Kyle Prete et al. “Template-based reconstruction of complex refactorings”.
In: 2010 IEEE International Conference on Software Maintenance. IEEE.
2010, pp. 1-10.

https://refactoring.com/

Bibliography 104

[45]

Danilo Silva and Marco Tulio Valente. “RefDiff: detecting refactorings in
version histories”. In: Proceedings of the 14th International Conference on
Mining Software Repositories. IEEE Press. 2017, pp. 269-279.

Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1. World scientific, 1997.

Rozenberg Grzegorz. Handbook Of Graph Grammars And Computing By
Graph Transformations, Vol 2: Applications, Languages And Tools. world
Scientific, 1999.

Hartmut Ehrig, Grzegorz Rozenberg, and Hans-J rg Kreowski. Handbook of
graph grammars and computing by graph transformation. Vol. 3. world Sci-
entific, 1999.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling lan-
guage reference manual, the. Pearson Higher Education, 2004.

Peter Pin-Shan Chen. “The entity-relationship model — toward a unified view
of data”. In: ACM Transactions on Database Systems (TODS) 1.1 (1976),
pp. 9-36.

Hans-Jorg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske. “Some
Essentials of Graph Transformation”. In: Recent advances in formal languages
and applications 25 (2006), pp. 229-254.

Andrea Corradini et al. “Algebraic approaches to graph transformation—part
i: Basic concepts and double pushout approach”. In: Handbook Of Graph
Grammars And Computing By Graph Transformation: Volume 1: Founda-
tions. World Scientific, 1997, pp. 163-245.

Richard J Trudeau. Introduction to graph theory. Courier Corporation, 2013.

Maarten Van Steen. “Graph theory and complex networks”. In: An introduc-
tion 144 (2010).

Tore Opsahl, Filip Agneessens, and John Skvoretz. “Node centrality in
weighted networks: Generalizing degree and shortest paths”. In: Social
Networks 32.3 (2010), pp. 245-251.

Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. “Gephi: an
open source software for exploring and manipulating networks.” In: Proc. of
the 3rd Intern. AAAI Conf. on Weblogs and Social Media (ICWSM). 2009.

Santo Fortunato. “Community detection in graphs”. In: Physics Reports
486.3-5 (2010), pp. 75-174. pOI: DOI:10.1016/j.physrep.2009.11.002.

Jure Leskovec, Kevin J Lang, and Michael Mahoney. “Empirical comparison
of algorithms for network community detection”. In: Proceedings of the 19th
international conference on World wide web. ACM. 2010, pp. 631-640.

Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of statistical mechanics: theory and experiment 2008.10 (2008),
P10008.

https://doi.org/DOI: 10.1016/j.physrep.2009.11.002

105

Bibliography

[60]

Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. “Specifying
Coherent Refactoring Software Artefacts with Distributed Graph Transfor-
mations”. In: Transformation of Knowledge, Information and Data: Theory
and Applications. IGI Global, 2005, pp. 95-126.

Tom Mens et al. “Formalizing refactorings with graph transformations”. In:
Journal of Software Maintenance and Evolution: Research and Practice 17.4
(2005), pp. 247-276.

Hartmut Ehrig et al. “Algebraic approaches to graph transformation—part II:
Single pushout approach and comparison with double pushout approach”. In:
Handbook Of Graph Grammars And Computing By Graph Transformation:
Volume 1: Foundations. World Scientific, 1997, pp. 247-312.

Hadi Hemmati et al. “The msr cookbook: Mining a decade of research”. In:
Proceedings of the 10th Working Conference on Mining Software Repositories.
IEEE Press. 2013, pp. 343-352.

Marco D’Ambros et al. “Analysing Software Repositories to Understand Soft-
ware Evolution”. English. In: Software Evolution. Springer Berlin Heidelberg,
2008, pp. 37-67.

Adrian Bachmann et al. “The missing links: bugs and bug-fix commits.” In:
SIGSOFT FSE. Ed. by Gruia-Catalin Roman and Kevin J. Sullivan. ACM,
2010, pp. 97-106.

Nicolas Bettenburg, Emad Shihab, and Ahmed E. Hassan. “An empirical
study on the risks of using off-the-shelf techniques for processing mailing list
data.” In: ICSM. IEEE Computer Society, 2009, pp. 539-542.

Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. “Towards a tax-
onomy of approaches for mining of source code repositories”. In: ACM SIG-
SOFT Software Engineering Notes. Vol. 30. 4. ACM. 2005, pp. 1-5.

Kamel Ayari et al. “Threats on building models from cvs and bugzilla repos-
itories: the mozilla case study”. In: Proceedings of the 2007 conference of
the center for advanced studies on Collaborative research. IBM Corp. 2007,
pp. 215-228.

Mathieu Goeminne and Tom Mens. “A comparison of identity merge algo-
rithms for software repositories”. In: Science of Computer Programming 78.8
(2013), pp. 971-986.

Apache. Subversion homepage. 2019. URL: https://subversion . apache.
org/.

Microsoft. Azure DevOps Server homepage. 2019. URL: https://azure.
microsoft.com/en-us/services/devops/server/.

git homepage. 2019. URL: https://git-scm.com/.

Mercurial homepage. 2019. URL: https://www.mercurial-scm.org/.

https://subversion.apache.org/
https://subversion.apache.org/
https://azure.microsoft.com/en-us/services/devops/server/
https://azure.microsoft.com/en-us/services/devops/server/
https://git-scm.com/
https://www.mercurial-scm.org/

Bibliography 106

[74]

Christian Bird et al. “The promises and perils of mining git”. In: 2009 6th
IEEE International Working Conference on Mining Software Repositories.
I[EEE. 2009, pp. 1-10.

Terry Weissman et al. Bugzilla. http://www.bugzilla.org. 1998. URL: http:
//www.bugzilla.org.

Atlassian. Jira homepage. 2019. URL: https : //www . atlassian . com /
software/jira.

FrontEndART. SourceMeter — Homepage. Online. URL: https : / / www .
sourcemeter.com/.

Robert Dyer et al. “Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories”. In: Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press. 2013, pp. 422-431.

Fabian Trautsch et al. “Addressing problems with replicability and validity
of repository mining studies through a smart data platform”. In: Empirical
Software Engineering 23.2 (2018), pp. 1036-1083.

Neil Smith and Juan Ferndndez Ramil. “Agent-based simulation of open
source evolution”. In: Software Process Improvement and Practice. 2006.

Marc I Kellner, Raymond J Madachy, and David M Raffo. “Software process
simulation modeling: why? what? how?” In: Journal of Systems and Software
46.2-3 (1999), pp. 91-105.

He Zhang, Barbara Kitchenham, and Dietmar Pfahl. “Software process sim-
ulation modeling: an extended systematic review”. In: International Confer-
ence on Software Process. Springer. 2010, pp. 309-320.

Redha Cherif and Paul Davidsson. “Software development process simula-
tion: multi agent-based simulation versus system dynamics”. In: International
Workshop on Multi-Agent Systems and Agent-Based Simulation. Springer.
2009, pp. 73-85.

Yongqin Gao and Greg Madey. “Towards Understanding: A Study of the
SourceForge.Net Community Using Modeling and Simulation”. In: Proceed-
ings of the 2007 Spring Simulation Multiconference - Volume 2. SpringSim
’07. Norfolk, Virginia: Society for Computer Simulation International, 2007,
pp. 145-150.

Nelson Minar et al. “The swarm simulation system: A toolkit for building
multi-agent simulations”. In: (1996).

Bojan Spasic and Bhakti S. S. Onggo. “Agent-based simulation of the soft-
ware development process: a case study at AVL.” In: Winter Simulation Con-
ference. Ed. by Oliver Rose and Adelinde M. Uhrmacher. WSC, 2012, 400:1—
400:11. URL: http://dblp.uni-trier.de/db/conf/wsc/wsc2012.html#
Spasic012.

http://www.bugzilla.org
http://www.bugzilla.org
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://www.sourcemeter.com/
https://www.sourcemeter.com/
http://dblp.uni-trier.de/db/conf/wsc/wsc2012.html#SpasicO12
http://dblp.uni-trier.de/db/conf/wsc/wsc2012.html#SpasicO12

107

Bibliography

[87]

[95]

[96]

Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for develop-
ment: guidelines for process integration and product improvement. Pearson
Education, 2011.

Ravikant Agarwal and David Umphress. “A flexible model for simulation of
software development process”. In: Proceedings of the 48th Annual Southeast
Regional Conference. ACM. 2010, p. 40.

Wladyslaw M Turski. “Reference model for smooth growth of software sys-
tems”. In: IEEE Transactions on Software Engineering 8 (1996), pp. 599
600.

Michael W. Godfrey and Qiang Tu. “Evolution in Open Source Software:
A Case Study”. In: Proc. Int’l Conf. Software Maintenance (ICSM). Los
Alamitos, California: IEEE Computer Society Press, 2000, pp. 131-142.

James W Paulson, Giancarlo Succi, and Armin Eberlein. “An empirical study
of open-source and closed-source software products”. In: IEEE Transactions
on Software Engineering 30.4 (2004), pp. 246-256.

Herraiz Israel and Robles Gregorio. “Comparison between SLOCs and num-
ber of files as size metrics for software evolution analysis”. In: Washing-
ton, USA: Proceedings of the Conference on Software Maintenance and R-
eengineering. IEEE Computer Society. 2006, pp. 206-213.

G. Robles et al. “Evolution and growth in large libre software projects”. In:
Author Index (2005), pp. 165-174.

Andrea Capiluppi and Juan F Ramil. “Studying the evolution of open source
systems at different levels of granularity: Two case studies”. In: Proceedings.
Tth International Workshop on Principles of Software Evolution, 2004. IEEE.
2004, pp. 113-118.

Marco D’Ambros, Michele Lanza, and Romain Robbes. “On the Relation-
ship Between Change Coupling and Software Defects”. In: Proc. of the 16th
Working Conf. on Rev. Eng. IEEE Computer Society, 2009.

Chakkrit Tantithamthavorn, Akinori Ihara, and Ken-ichi Matsumoto. “Using
co-change histories to improve bug localization performance”. In: 2018 14th
ACIS International Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing. IEEE. 2013, pp. 543—
548.

Igor Scaliante Wiese et al. “An empirical study of the relation between strong
change coupling and defects using history and social metrics in the apache
aries project”. In: IFIP International Conference on Open Source Systems.
Springer. 2015, pp. 3—12.

John Anvik, Lyndon Hiew, and Gail C. Murphy. “Who Should Fix This
Bug?” In: Proceedings of the 28th International Conference on Software Engi-
neering. ICSE '06. Shanghai, China: ACM, 2006, pp. 361-370. DOI: 10.1145/
1134285.1134336. URL: http://doi.acm.org/10.1145/1134285.1134336.

https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1134285.1134336
http://doi.acm.org/10.1145/1134285.1134336

Bibliography 108

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Sunghun Kim, E. J. Whitehead, and Yi Zhang. “Classifying Software
Changes: Clean or Buggy?” In: Software Engineering, IEEE Transactions
on (2008).

Ahmed Lamkanfi et al. “Predicting the severity of a reported bug”. In: 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010).
IEEE. 2010, pp. 1-10.

Cathrin Weiss et al. “How long will it take to fix this bug?” In: Fourth
International Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007). IEEE. 2007, pp. 1-1.

Liguo Yu and Srini Ramaswamy. “Mining CVS Repositories to Understand
Open-Source Project Developer Roles”. In: Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories. 2007.

Kevin Crowston et al. “Core and periphery in free/libre and open source
software team communications”. In: Proceedings of the 39th Annual Hawaii
International Conference on System Sciences (HICSS 06). Vol. 6. IEEE. 2006,
118a—118a.

Antonio Terceiro, Luiz Romario Rios, and Christina Chavez. “An empirical
study on the structural complexity introduced by core and peripheral devel-
opers in free software projects”. In: 2010 Brazilian Symposium on Software
Engineering. IEEE. 2010, pp. 21-29.

Chintan Amrit and Jos Van Hillegersberg. “Exploring the Impact of Soclo-
Technlcal Core-Periphery Structures in Open Source Software Development”.
In: journal of information technology 25.2 (2010), pp. 216-229.

Mitchell Joblin et al. “Classifying developers into core and peripheral: An em-
pirical study on count and network metrics”. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE). IEEE. 2017, pp. 164—
174.

Kevin Crowston and James Howison. “The social structure of free and open
source software development”. In: First Monday 10.2 (2005).

Gregorio Robles, Jesus M Gonzalez-Barahona, and Israel Herraiz. “Evolu-
tion of the core team of developers in libre software projects”. In: 2009
6th IEEE international working conference on mining software repositories.
IEEE. 2009, pp. 167-170.

Pamela Bhattacharya et al. “Graph-based Analysis and Prediction for Soft-
ware Evolution”. In: Proceedings of the 34th Intern.Conf. on Softw. Eng.
(ICSE). Zurich, Switzerland: IEEE, 2012.

Xu Ben, Shen Beijun, and Yang Weicheng. “Mining Developer Contribution
in Open Source Software Using Visualization Techniques”. In: Proceedings
of the Third International Conference on Intelligent System Design and Fn-
gineering Applications (ISDEA). 2013, pp. 934-937. DOI: 10.1109/ISDEA.
2012.223.

https://doi.org/10.1109/ISDEA.2012.223
https://doi.org/10.1109/ISDEA.2012.223

109

Bibliography

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

Matthieu Foucault et al. “Impact of Developer Turnover on Quality in Open-
source Software”. In: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering. Bergamo, Italy, 2015.

Jalerson Lima et al. “Assessing developer contribution with repository
mining-based metrics”. In: 2015 IEEFE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2015, pp. 536-540.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. “Measuring
Developer Contribution from Software Repository Data”. In: Proceedings of
the 2008 International Working Conference on Mining Software Repositories.
Leipzig, Germany, 2008.

Tudor Girba et al. “How developers drive software evolution”. In: FEighth
International Workshop on Principles of Software Evolution (IWPSE’05).
IEEE. 2005, pp. 113-122.

Philip Makledonski. “Developer-Centric Software Assessment”. PhD thesis.
University of Gottingen, June 2018.

Lile Hattori and Michele Lanza. “On the nature of commits.” In: ASE Work-
shops. IEEE, 2008, pp. 63-71.

Peter Weissgerber and Stephan Diehl. “Identifying Refactorings from Source-
Code Changes”. In: Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 231-240. poOI: 10.1109/ASE. 2006 . 41.
URL: http://dx.doi.org/10.1109/ASE.2006.41.

Deepak Advani, Youssef Hassoun, and Steve Counsell. “Extracting refactor-
ing trends from open-source software and a possible solution to the’related
refactoring’conundrum”. In: Proceedings of the 2006 ACM symposium on Ap-
plied computing. ACM. 2006, pp. 1713-1720.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. “Identification of move
method refactoring opportunities”. In: IEEE Transactions on Software En-
gineering 35.3 (2009), pp. 347-367.

Nikolaos Tsantalis et al. “Accurate and efficient refactoring detection in com-
mit history”. In: Proceedings of the 40th International Conference on Software
Engineering. ACM. 2018, pp. 483-494.

Beat Fluri et al. “Change distilling: Tree differencing for fine-grained source
code change extraction”. In: IEFE Transactions on software engineering
33.11 (2007), pp. 725-743.

Jean-Rémy Falleri et al. “Fine-grained and Accurate Source Code Differenc-
ing”. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE ’14. Vasteras, Sweden: ACM, 2014,
pp. 313-324. por: 10.1145/2642937.2642982. URL: http://doi.acm.org/
10.1145/2642937.2642982.

https://doi.org/10.1109/ASE.2006.41
http://dx.doi.org/10.1109/ASE.2006.41
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

Bibliography 110

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]
[134]

[135]

CVSAnalY on GitHub. 2019. URL: https://github.com/MetricsGrimoire/
CVSAnaly.

Gregorio Robles et al. “Remote analysis and measurement of libre soft-
ware systems by means of the CVSAnalY tool”. In: Proceedings of the 2nd
ICSE Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS). IET. 2004, pp. 51-56.

Istvan Kadar et al. “A code refactoring dataset and its assessment regarding
software maintainability”. In: 2016 IEEE 23rd International Conference on
Software Analysis, FEvolution, and Reengineering (SANER). Vol. 1. IEEE.
2016, pp. 599-603.

Istvan Kadér et al. “Assessment of the Code Refactoring Dataset Regarding
the Maintainability of Methods”. In: International Conference on Computa-
tional Science and Its Applications. Springer. 2016, pp. 610-624.

Tom Mens. “Conditional graph rewriting as a domain-independent formalism
for software evolution”. In: International Workshop on Applications of Graph
Transformations with Industrial Relevance. Springer. 1999, pp. 127-143.

Tom Mens. “Transformational software evolution by assertions”. In: CSMR
Workshop on Formal Foundations of Software Evolution, Lisbon. 2001.

Tom Mens, Serge Demeyer, and Dirk Janssens. “Formalising behaviour pre-
serving program transformations”. In: International Conference on Graph
Transformation. Springer. 2002, pp. 286-301.

G Taentzer et al. “Visual design of distributed systems by graph transforma-
tion”. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation 3 (1999), pp. 269-340.

Hans-Jorg Kreowski, Sabine Kuske, and Andy Schiirr. “Nested graph trans-
formation units”. In: International Journal of Software Engineering and
Knowledge Engineering 7.04 (1997), pp. 479-502.

Michael J. North and Charles M. Macal. “Product Design Patterns for Agent-
based Modeling”. In: Proceedings of the Winter Simulation Conference. WSC
’11. Phoenix, Arizona: Winter Simulation Conference, 2011, pp. 3087-3098.

Tommaso Toffoli and Norman Margolus. Cellular automata machines: a new
environment for modeling. MIT press, 1987.

Eric Weisstein. Moore Neighborhood. Online. 2019. URL: http://mathworld.
wolfram.com/MooreNeighborhood.html.

Verena Honsel et al. “Developer Oriented and Quality Assurance Based Sim-
ulation of Software Processes”. In: Proceedings of the Seminar Series on Ad-
vanced Techniques € Tools for Software Evolution (SATToSE) 2015. July
2015.

https://github.com/MetricsGrimoire/CVSAnalY
https://github.com/MetricsGrimoire/CVSAnalY
http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html

111

Bibliography

[136]

[137]

138

[139)]

[140]

[141]

[142]

[143)]
[144]

Nachiappan Nagappan, Brendan Murphy, and Victor Basili. “The Influence
of Organizational Structure on Software Quality: An Empirical Case Study”.
In: Proceedings of the 30th International Conference on Software Engineering
(ICSE). Leipzig, Germany: ACM, 2008.

Foyzur Rahman and Premkumar Devanbu. “Ownership, Experience and De-
fects: A Fine-grained Study of Authorship”. In: Proc. of the 33rd Intern.
Conf. on Softw. Eng. (ICSE). Waikiki, Honolulu, HI, USA, 2011.

M. Ali and M. O. Elish. “A Comparative Literature Survey of Design Pat-
terns Impact on Software Quality”. In: 2018 International Conference on
Information Science and Applications (ICISA). June 2013, pp. 1-7. DOL
10.1109/ICISA.2013.6579460.

Tobias Ahlbrecht, Jiirgen Dix, and Niklas Fiekas. “Scalable Multi-Agent Sim-
ulation based on MapReduce”. In: Proceedings of the 14th Furopean Confer-
ence on Multi-Agent Systems. EUMAS 2016. Springer, Dec. 2016.

Tobias Ahlbrecht et al. “Agent-based simulation for software development
processes”. In: Proceedings of the 14th Furopean Conference on Multi-Agent
Systems. EUMAS 2016. Springer, Dec. 2016.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. “When do
changes induce fixes?” In: ACM sigsoft software engineering notes. Vol. 30.
4. ACM. 2005, pp. 1-5.

Verena Herbold. “Mining Developer Dynamics for Agent-Based Simulation
of Software Evolution”. PhD thesis. University of Gottingen, 2019.

Morphia — The JVM Object Document Mapper for MongoDB. online. 2019.

MongoDB — Homepage. online. URL: https://www.mongodb. com/.

https://doi.org/10.1109/ICISA.2013.6579460
https://www.mongodb.com/

Acronyms

ABM Agent-Based Model.
ABMS Agent-Based Modeling and Simulation.

AST abstract syntax tree.
BDI belief-desire-intention.

DES Descrete Event Simulation.

DPO double-pushout approach.

GIS Geographic Information System.
GUI Graphical User Interface.

IDE Integrated Development Environment.

ITS Issue Tracking System.
JADE JAVA Agent DEvelopment.
LOC Lines of Code.

McCC McCabe’s Cyclomatic Complexity.
ML Mailing List.

MSR Mining Software Repositories.

NIl Number of Incoming Invocations.

NOI Number of Outgoing Invocations.
0SS Open Source Software.

POJO Plain Old Java Object.

Acronyms

114

PSP Personal Software Process.

SD System Dynamics.
SPO single-pushout approach.

UML Unified Modeling Language.

VCS Version Control System.

WMC Weighted Methods per Class.

Glossary

agent

Autonomous entity acting based on its own behavior and gathered data about
the (local) environment. 6, 10-13, 15, 16, 30, 31, 37, 38, 41, 42, 44-46, 54, 55,
69-71, 74, 93, 96-98

git
Distributed version control system. 22, 26, 58, 64, 65, 96

metric

A quantified statement about a product or a software process. 19-22, 25, 27,
31, 33-35, 51, 53, 55, 56, 59, 63-65, 132, 133

object

Compututional entity that ecaplulates a state (values of attributes), this state
can be changed by method calls. 12, 16, 20, 22

refactoring

Technique for restructuring an existing body of code, altering its internal struc-
ture without changing its external behavior. 2, 3, 6, 10, 20-22, 26, 27, 29,
33-35, 37, 39-41, 47, 51-57, 63-65, 67, 69, 76, 82, 86, 87, 94, 95, 97-99, 117,
133-135, 138

List

2.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.

4.11

4.12.
4.13.
4.14.
4.15.

5.1.
5.2.
5.3.
5.4.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.

6.12
6.13

of Figures

NAO robot playing soccer [14]. 12
Agent-based simulation model. L. 38
Possible neighborhoods of a grid space provided by Repast Simphony. 39
Simulation results of the grid based model. 40
Agent-based simulation model to replicate growth trends. 42
Different growth trends of real software projects. 43
Agent-based simulation model to analyze the lifetime of bugs. 45
Example for a file — developer network. 45
Example for a bug — file network.o 46
Example for a change coupling network. 47
Pseudo code for generating the change coupling network. 48
. Agent-based simulation model for different research questions. 49
Example for developer’s intentions. 52
Type Graph adapted from [7]. 52
FExample for method call and method membership networks. 53
Graph transformation rules for three software refactorings. 54
Overall mining process using SmartSHARK. 58
Components of the overall process of automated parameter estimation. 60
General identity merge algorithm. 61
A framework for finding refactorings in software repositories. 64
Parameter set for the grid-based model. 69
Simulated complexity and growth of the grid based model. 70
Growth trend of K3b. oo 71
Commits by developer type of K3b per month. 73
Commits by developer type of Kate per month. 73
Commits by developer type of Log4j per month. 74
Number of clusters over time. 74
Reported and closed bugs of K3b. 75
Simulated growth of K3b. 75
Growth of projects over the time with a sub-linear trend at the end. 77
Growth of projects over the time with approximately linear growth
trend. 78

. Growth of projects over the time with a super-linear trend at the end. 78
. Graph metrics of Zookeeper over the time. 79

List of Figures 118
6.14. Graph metrics of Gora over the time. 80
6.15. Graph metrics of Directory Fortress Core over the time. 81
6.16. Graph metrics of Zookeeper for snapshot initialization. 83
6.17. Graph metrics of Gora for snapshot initialization. 84
6.18. Graph metrics of Directory Fortress Core for snapshot initialization. 85
6.19. Alternative transformation rule for Move Method. 87
6.20. Graph metrics of Zookeeper for simulation with refactorings. 89
6.21. Graph metrics of Gora for simulation with refactorings. 90
6.22. Graph metrics of Directory Fortress Core for simulation with refac-

torings. 91
A.1. Mining results based on the old framework. 134
A.2. Mining results based on refSHARK. 135
B.1. Adjustable simulation parameters. 138
B.2. Simulation at runtime. Lo 140
B.3. Simulation at runtime. L L 141
C.1. Data model used for tools based on SmartSHARK. 145

List of Tables

2.1.
2.2.
2.3.

6.1.
6.2.

Al
A2.
A3.

Combination possibilities of multiagent systems (adapted from [3]). . 11
Lehmans laws of software evolution (adapted from [35]). 18
Overview of used software metrics. 20
Overview of project parameters. 72
Refactorings of the type Move Method where the method is moved

to an already existing class. oL Lo 86
Average metric changes for an updated or created class. 132
Metric changes of methods during a feature add. 133

Metric changes of methods during a bug fix. 133

B Simulation Parameters from
Mining

Contents
A.1. Core Parameter for Simulation Instantiation 121
A.2. Change Coupling Graph 127
A.3. Commit Pattern Data 132
A3.1. Class Changes 132
A.3.2. Method Changes 132
A.4. Refactoring Data o 133

This appendix presents simulation parameters gathered by mining open source
repositories as described on Chapter 5. For each analyzed project an own parameter
set is created.

A.1. Core Parameter for Simulation Instantiation

The parameters presented below are the core parameters to initialize the simulation
model. They are generated for each project by our automated parameter estimation
tool described in Section 5.2. As an example, the parameters for the open source
project oisafe! are shown below.

The basic data for each project are the maximum size of the project, the number
and change probabilities of commits, the number of rounds to simulate, and the
developers (identities) to instantiate with their role specific data. Furthermore,

"https://github.com/openintents/safe.git

A. Simulation Parameters from Mining 122

information about bugs, their fixes, and the categories of a project are available.
If the mining process reveals two different project phases such as one initial phase
with high project growth and a following development phase with lower growth,
both phases can be described with different probabilities for commit activities.

"maxFiles": 73,

"number0fCommits": 233,
"pAverageCommitUpdate": 0.4102112676056338,
"pAverageCommitDelete": 0.9549180327868851,
"pAverageCommitAdd": 0.7420382165605096,
"number0fInitialCommits": O,
"pInitialCommitUpdate": O,
"pInitialCommitDelete": O,
"pInitialCommitAdd": O,
"number0fDevelopmentCommits": 233,
"pDevelopmentCommitUpdate": 0.4102112676056338,
"pDevelopmentCommitDelete": 0.9549180327868851,
"pDevelopmentCommitAdd": 0.7420382165605096,
"firstCommitDate": 1294515834000,
"lastCommitDate": 1499363492000,
"monthToSimulate": 78,

"roundsToSimulate": 2372,

"keyDeveloper": 3,

"keyDeveloperCommits": 226,
"keyDeveloperFixes": 6,
"keyDeveloperMaintainer": 1,
"majorDeveloper": O,
"majorDeveloperCommits": O,
"majorDeveloperFixes": O,
"majorDeveloperMaintainer": O,
"minorDeveloper": 4,
"minorDeveloperCommits": 7,
"minorDeveloperFixes": 1,
"minorDeveloperMaintainer": O,
"peripheralDeveloper": 4,
"peripheralDeveloperCommits": 7,
"peripheralDeveloperFixes": 1,
"peripheralDeveloperMaintainer": O,
"coreDeveloper": 3,

"coreDeveloperCommits": 226,
"coreDeveloperFixes": 6,
"coreDeveloperMaintainer": 1,

123

A.1. Core Parameter for Simulation Instantiation

"issueInformationComplete": {

s

"CRITICAL": O,

"MINOR": O,
"MAJOR": O,
"NONE": 24

"issueInformationCompleteFixed": {

¥,

"CRITICAL": O,
"MINOR": O,
"MAJOR": O,
"NONE": 13

"issueInformationYearly": {

"2016": {
"CRITICAL":
"MINOR": O,
"MAJOR": O,
"NONE": 5

},

"2012": {
"CRITICAL":
"MINOR": O,
"MAJOR": O,
"NONE": 6

},

"2013": {
"CRITICAL":
"MINOR": O,
"MAJOR": O,
"NONE": 5

},

"2014": {
"CRITICAL":
"MINOR": O,
"MAJOR": O,
"NONE": 2

},

"2015": {
"CRITICAL":
"MINOR": O,
"MAJOR": O,
"NONE": 6

0,

A. Simulation Parameters from Mining 124

"exportPackages": [
{
"name": "org.openintents.safe",
"files": 51,

}
1,

"percent": 79.6875

"name": "org.openintents.safe.dialog",
"files": b,
"percent": 7.8125

"name": "org.openintents.safe.wrappers",
"files": 4,
"percent": 6.25

"name": "org.openintents.safe.service",
"files": 4,
"percent": 6.25

"identities": [

{

"objectID": "899b887e-8f0a-463d-alad-13573790a6bb",
"name": "Peli",
"number0fCommits": 92,
"percent": 39.48497854077253,
"type": "key",

"role": "core",

"maintainer": false,
"number0fFixes": O,
"number0fTests": O,
"numberOfFeatures": O,
"number0OfMaintenance": O,
"number0OfRefactorings": O,
"number0fDocumentation": 0

"objectID": "9bc989d5-9003-4d56-a8b7-3€99232022d6" ,
"name": "Randy McEoin",

"number0fCommits": 75,

"percent": 32.18884120171674,

"typell . Ilkeyll s

125 A.1. Core Parameter for Simulation Instantiation

"role": "core",
"maintainer": false,
"numberOfFixes": 1,
"number0fTests": O,
"numberOfFeatures": O,
"number0OfMaintenance": 0,
"number0fRefactorings": O,
"number0fDocumentation": 0

"objectID": "dcb22e5f-3750-4aa2-9a28-4c6e2f6adac6",
"name": "Friedger Mueffke",
"number0fCommits": 59,
"percent": 25.321888412017167,
"type": "key",

"role": "core",

"maintainer": true,
"number0fFixes": 5,
"number0fTests": O,
"numberOfFeatures": O,
"number0fMaintenance": 0,
"number0fRefactorings": O,
"number0fDocumentation": O

"objectID": "1941cc93-7186-447b-981d-ebde4517a903",
"name": "openintents-bot",
"number0fCommits": 4,
"percent": 1.7167381974248928,
"type": "minor",

"role": "peripheral",
"maintainer": false,
"number0fFixes": O,
"number0fTests": O,
"numberOfFeatures": O,
"number0fMaintenance": 0,
"numberOfRefactorings": O,
"numberOfDocumentation": O

"objectID": "05496fe2-978c-4fb9-9ffa-5e3b421f47£f2",
"name": "harshadura",

"number0fCommits": 1,

"percent": 0.4291845493562232,

A. Simulation Parameters from Mining 126

"type": "minor",

"role": "peripheral",
"maintainer": false,
"numberOfFixes": O,
"number0fTests": O,
"numberOfFeatures": O,
"numberOfMaintenance": O,
"number0OfRefactorings": O,
"number0fDocumentation": 0

"objectID": "£f398a6bf-a7c4-478d-al3a-7541a563cd00",
"name": "chaitanya",
"number0fCommits": 1,
"percent": 0.4291845493562232,
"type": "minor",

"role": "peripheral",
"maintainer": false,
"number0fFixes": 1,
"number0fTests": O,
"numberOfFeatures": O,
"numberOfMaintenance": O,
"number0fRefactorings": O,
"number0fDocumentation": 0

"objectID": "e06e9142-6543-450f-9edd-6el76ca76bfa",
"name": "andrew-codechimp",
"number0fCommits": 1,
"percent": 0.4291845493562232,
"type": "minor",

"role": "peripheral",
"maintainer": false,
"numberOfFixes": O,
"number0fTests": O,
"numberOfFeatures": O,
"number0OfMaintenance": O,
"numberOfRefactorings": O,
"number0fDocumentation": 0

127 A.2. Change Coupling Graph

A.2. Change Coupling Graph to Initialize the Simulation at
Different Starting Points

The change coupling graph is generated by our automated parameter estimation
tool like described in Section 5.2.3. As file format we use the dot format?. The
nodes represent the files of the software and the edges with their weights represent
how often files are changed together in one commit. To initialize the simulation, the
nodes contain additional information like the owner, the creator, all developers who
touched the file and how often they touched it, and the package the file belongs to.
By default, it is generated for each year, but it is also possible to get the graph for
any specific commit.

As an example, the change coupling graph of the the first analyzed year of the open
source project oisafe? is shown below.

strict graph G {

1 [label="SafeDemo/src/org/openintents/intents/CryptoIntents.java"
owner="899b887e-8f0a-463d-alad-13573790a6b5"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="899b887e-8f0a-463d-alad-13573790a6b5;1"
package="org.openintents.intents" J;

2 [label="SafeDemo/src/org/openintents/samples/testsafe/

TestSafe. java"
owner="899b887e-8f0a-463d-alad-13573790a6b5"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="899b887e-8f0a-463d-alad-13573790a6b5; 1"
package="org.openintents.samples.testsafe"];

3 [label="Safe/src/org/openintents/safe/dialog/

DialogHostingActivity. java"
owner="899b887e-8f0a-463d-alad-13573790a6b5"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="899b887e-8f0a-463d-alad-13573790a6b5; 2"
package="org.openintents.safe.dialog"];

4 [label="Safe/src/org/openintents/safe/AskPassword.java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="9bc989d5-9003-4d56-a8b7-3€9923202246;4"
package="org.openintents.safe"
dev2="899b887e-8f0a-463d-alad-13573790a6b5;2" 1;

5 [label="Safe/src/org/openintents/safe/PassView.java"
owner="9bc989d5-9003-4d56-a8b7-3¢99232022d6"

2http:/ /www.graphviz.org/doc/info/lang.html
3https://github.com/openintents/safe.git

A. Simulation Parameters from Mining 128

10

11

12

13

creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"

dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6;5"

package="org.openintents.safe"

dev2="899b887e-8f0a-463d-alad-13573790a6b5;1" 1;

label="SafeTest/src/org/openintents/safe/test/SafeTest.java"

owner="dcb22e5f-3750-4aa2-9a28-4c6e2f6adact"
dev3="899b887e-8f0a-463d-alad-13573790a6b5;1"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="dcb22e5f-3750-4aa2-9a28-4c6e2f6adac6;1"
package="org.openintents.safe.test"

dev2="9bc989d5-9003-4d56-a8b7-3e€99232022d6;1" 1;

label="Safe/src/org/openintents/safe/IntentHandler. java"

owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6;3"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/DBHelper. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e€99232022d6;4"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/CategorylList. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6;3"
package="org.openintents.safe"

dev2="899b887e-8f0a-463d-alad-13573790a6b5;2" 1];

[label="Safe/src/org/openintents/safe/Search. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6; 3"
package="org.openintents.safe"];

[label="Safe/src/org/openintents/safe/PassList.java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6;2"
package="org.openintents.safe"];

[label="Safe/src/org/openintents/safe/

SearchlListItemAdapter. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6; 1"
package="org.openintents.safe"];

[label="Safe/src/org/openintents/safe/SearchEntry.java"

129 A.2. Change Coupling Graph

owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3€99232022d6;1"
package="org.openintents.safe"];

14 [label="Safe/src/org/openintents/safe/Passwords. java"
owner="9bc989d5-9003-4d56-a8b7-3e99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3e99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6 ;2"
package="org.openintents.safe"];

15 [label="Safe/src/org/openintents/safe/CryptoHelper. java"
owner="9bc989d5-9003-4d56-a8b7-3e¢99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3€9923202246; 2"
package="org.openintents.safe"];

16 [label="Safe/src/org/openintents/safe/service/

ServiceNotification. java"
owner="9bc989d5-9003-4d56-a8b7-3e99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3e99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe.service"];

17 [label="Safe/src/org/openintents/safe/SimpleGestureFilter. java"
owner="9bc989d5-9003-4d56-a8b7-3¢99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3€9923202246; 2"
package="org.openintents.safe"];

18 [label="Safe/src/org/openintents/safe/Safe.java"
owner="899b887e-8f0a-463d-alad-13573790a6b5"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="899b887e-8f0a-463d-alad-13573790a6b5;1"

package="org.openintents.safe"];

19 [label="Safe/src/org/openintents/safe/Log0ffActivity. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="899b887e-8f0a-463d-alad-13573790a6b5"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe"
dev2="899b887e-8f0a-463d-alad-13573790a6b5;1" 1;

20 [label="Safe/src/org/openintents/safe/Restore.java"
owner="9bc989d5-9003-4d56-a8b7-3¢99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e€992320224d6;1"
package="org.openintents.safe"];

21 [label="Safe/src/org/openintents/safe/Preferences. java"
owner="9bc989d5-9003-4d56-a8b7-3e99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"

A. Simulation Parameters from Mining

130

22 [

23 [

24 [

25 [

26 [

27 [

28 [

dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/service/
ServiceDispatchImpl. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e€992320224d6;1"
package="org.openintents.safe.service"];
label="Safe/src/org/openintents/safe/CategoryEntry. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/CategoryEdit. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3e99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/Backup. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6; 1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/ChangePass. java"
owner="9bc989d5-9003-4d56-a8b7-3e€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3€992320224d6;1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/
CryptoContentProvider. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3€99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e¢99232022d6; 1"
package="org.openintents.safe"];
label="Safe/src/org/openintents/safe/
CryptoHelperException. java"
owner="9bc989d5-9003-4d56-a8b7-3€99232022d6"
creator="9bc989d5-9003-4d56-a8b7-3e99232022d6"
dev1="9bc989d5-9003-4d56-a8b7-3e99232022d6; 1"
package="org.openintents.safe"];
2 [weight="1.0" 1;
5 [weight="1.0"];
4 [weight="2.0" 1;
3 [weight="1.0" 1;

131

A.2. Change Coupling Graph

4 -- 3 [weight="1.0" 1;
10 -- 11 [weight="1.0" 1;
9 -- 11 [weight="1.0" 1;
9 —- 5 [weight="2.0" 1;
11 -- 5 [weight="1.0"];
12 [weight="1.0" 1;
10 [weight="1.0" 1;
13 [weight="1.0" 1;
12 -- 10 [weight="1.0" 1;
12 —- 13 [weight="1.0" 1;
10 -- 13 [weight="1.0" 1;
14 [weight="1.0" 1;
8 [weight="1.0" 1;
7 [weight="1.0" 1;
14 -- 8 [weight="2.0" 1;
14 -- 7 [weight="2.0" 1;
8 -- 7 [weight="2.0" 1;
15 -- 14 [weight="1.0"];
15 -- 8 [weight="1.0"];
15 -- 16 [weight="1.0" 1;
16 -- 7 [weight="1.0"
14 -- 16 [weight="1.0"

5__

8__
16 —-
17 —-
5__
5 —-
18 —-

16 [weight="1.
7 [weight="1.
5 [weight="1.

18 [weight="1.

19 [weight="1.
9 [weight="1.

18 -- 19 [weight="1.0"

Oll
O||
Oll
Oll
O||
Oll

9 —- 19 [weight="1.0"
20 -- 4 [weight="1.0"
20 —- 9 [weight="1.0"

20 -- 21 [weight="1.0'

4 -- 21 [weight="1.0"
9 -- 21 [weight="1.0"
19 [weight="1.0" 1;
24 [weight="1.0" 1;
25 [weight="1.0" 1;

22 --
23 —-

9 [weight="1.

Oll

]

3
)

-

1;

25 [weight="1.0" 1;

9 [weight="1.
9 [weight="1.

O||]

Oll

b

1;

27 [weight="1.0" 1;
15 [weight="1.0" 1];

A. Simulation Parameters from Mining 132

26 -- 28 [weight="1.0"
27 -- 15 [weight="1.0"
27 -- 28 [weight="1.0"
15 -- 28 [weight="1.0"

I
b

I

—_ e e

b

A.3. Commit Pattern Data

To describe the commit pattern as simple as possible, we assume that a file has
exactly one class. Thus, it is enough to know what happens in detail when a file is
added or changed. The two commit types feature add and bugfix are analyzed. The
following data consists of average values based on the open source projects gora?,

zookeeper®, and oisafe®. The mining is described in Section 5.3.1.

A.3.1. Class Changes

In Table A.1 we present the average metric changes for a new created or a updated
class.

Project Add Feature BugFix

MA | MU | MD | NOI | NII | MA | MU | MD | NOI | NII
Gora 10.75 | 6.01 | 1.17 | 4.99 | 2.39 | 15.30 | 10.70 | 2.50 | 7.34 | 3.54
Zookeeper 6.82 | 4.15 | 1.80 | 4.44 | 2.32 0.92 2.40 | 0.14 | 3.03 | 0.41
Oisafe 2.66 | 3.12 | 0.77 | 0.90 | 1.29 | 3.05 | 4.00 | 0.74 | 1.00 | 0.27

Table A.1.: Average metric changes for a updated or created class. MA is the number of
add methods, MU is the number of updated methods, MD is the number of
deleted methods, NOI is the number of outgoing invocations and NII is the
number of incoming invocations.

A.3.2. Method Changes

In this section the changes of common method metrics are presented for feature adds
in Table A.2 and for bug fixes in Table A.3. The values represent the delta of the
metrics between two commits.

“https://github.com/apache/gora
Shttps://github.com/apache/zookeeper
Shttps://github.com/openintents/safe

133

A.4. Refactoring Data

Project LOC McCC NOI NII
rojee A D U A D U A D U A D U
Gora 8.42 -11.74 0.13 | 2.02 -2.81 0.02 1.10 -1.30 0.10 | 0.79 -0.85 0.14
Zookeeper | 11.59 11.90 0.62 | 224 -2.44 0.14 1.66 -1.52 0.16 1.16 -1.27 0.30
Oisafe 14.35 -20.02 0.02 | 2.67 -3.73 -0.04 | 0.86 -1.15 0.22 | 0.99 -1.17 0.04
Table A.2.: Metric changes of methods during a feature add. LOC is the size measured in
lines of code, McCC is the McCabe cyclomatic complexity, NOI is the number
of outgoing invocations and NII is the number of incoming invocations.
Proiect LOC McCC NOI NII
rojec A D U A D U A D U A D U
Gora 8.77 -13.44 0.41 | 2.09 -3.02 0.13 | 1.19 -1.59 0.14 | 0.86 -1.08 0.27
Zookeeper | 14.09 -12.62 1.11 | 2.21 -2.82 0.09 | 220 -0.87 0.13 | 0.93 -1.18 0.13
Oisafe 11.12 -8.50 068 | 1.95 -1.57 025 | 0.86 -1.21 0.21 | 0.86 -0.29 -0.01
Table A.3.: Metric changes of methods during a bug fix. LOC is the size measured in lines

A.4. Refactoring Data

of code, McCC is the McCabe cyclomatic complexity, NOI is the number of
outgoing invocations and NII is the number of incoming invocations.

To describe the metric changes of a applied refactoring, we analyzed the follow-
ing metrics: size measured in lines of code (LOC), coupling measured in number
of outgoing invocations (NOI), and complexity measured in McCabe’s cyclomatic
complexity (McCC for methods) and weighted methods per class (WMC for classes).
The results presented in Figure A.2 are based on the mining framework presented in
Section 5.3.2 and the results depicted in Figure A.2 are based on the SmartSHARK

plug-in refSHARK which is described in Section 5.3.3.

134

ning

i

A. Simulation Parameters from M.

SSv BET TS'9T |6¥'8 L9L 18'GE [6¥'€0C ¢S‘€r 186C6 [TC'v- vI‘T- vO'ST- [29'0- €€ 9V S89T- ¥LT- T1TS 00T gpw
€€'T 19T L9'TT |00'TT €€'6 0008 [£9°9C 196 €€'80C |€E'T- £9'C- L9'T1- |€€'€ (90~ €E'ST |€€'0 000 €E'T- € o8
'l 97’1 97's 0 16T 'L S8'6C VSTl 6I'v6T |E¥'T- vC'T- TS [€0'0- 000 £9°0 ET'E- w0 LLLT- SET nunf
JAM ION 201 JAM ION 201 JAM ION 201 JAM ION 201 JAM ION 201 JAM ION 201 sway) pazAjeuy 13foud
POYIBIAl paulju| 1elS POYIB J3]|BD MBS sse|) uels POYISAI paulju] e3ag PoYIdAl J3jB) BYj2Q sse|) ejjeqg
POYIBIN 3ulju]
Lv'6 959 T0'6€ |SY'ETC 8T'9C SO'VOOT|0L'E S0‘c 06T [pS'O- 6E0- TWT- [ST'8 Sz'0 /8'St v0T gpw
059 80F 8565 |[St'8€ ST'TT SL'6vT |€8C €80 LT'YT [L1'0- LT'0 T¥TT- [L9'S w0 0S‘€T 49 28
JA x4 [4%3 8L'6 1197 SECT €TT9T |S¥'T 1€T 91T'S 12°0- L0°'0- Tv'Tl- |08C 670 €T'ET [444 punf
OANM ION 201 JAM ION 201 JAM ION 201 JAM ION 201 JAM ION 201 sway pazhjeuy 13loud
POYIdINl M3N HeIS sse|) ueis POYIBINI MAN e3j3a POYI3INl 3seq eyaa sse|) eaa
POYIaIA eNX]
96'T 65T €8'8 SP'8T vy PEVOT [¢S'89 8L'€ET 8¥'60S [S0'0- €00 £00 6v'Ly ET'€T TT'8PE |85'SS- ¥6'TT- 6LT6E- 62¢ gpw
60y T60 €/'ST |00°0 000 000 |v9'8€ €TL S6'60T €20 ¥I'0 ¥9T- |LT'L€ 9E'S YI'T8T |60°CE- 89V~ 60°9LT- [44 28
'T 8T ¥9's |06 6L'T [8'6T |SE'ST ¥6'8 09'v8 [00'0 ¥0°0- €00 S9'0T 1S9 6595 [09'8- 90'S- 98'St- 95€ punf
229N ION 201 OJANM ION 201 JAM ION 201 2N ION 201 JANM ION 201 JANM ION 201 sway) pazAjeuy 13loud
POYI3N Mels sse|) j98ieL pers sse|) aseq Meis POYIaN elj2a sse|) 398ie] e)2q sse|) aseq e}j2a
HIpJ31 - POYIBINI 3AOIN
00T 6T'T Se€'6 |9LvY S8 TL'ST |18°0€ €9°L SL'v6T [20‘0- C0'0- 80°0- [zT'St ¢1°9 6T6ST (94'9¢- Sv'9- 8T'69T- YITE gpw
9€'c 8€ET o |6T°0 110 v6°0 70’6 97'te 8919 [80°0- €0°0- 010 [SO8 €8°C 1§°CS [88'L- wL'T 6T'VS- 9€T 28
€7'T €7'T 6€'s [0 ov'o vI'v |09'S Lg€e 8T'SE [T0'0- 000 S0'0- |vsv 78T €767 |LE'v- 18T €€'8T- 99/1 punf
D29 ION 201 JAM ION 201 JAM ION 201 2N ION 201 JAM ION 201 JAM ION 201 sway pazhjeuy 193f04d
POYId\ 1iels sse|D uwm‘_mh uels sse|) aseg yels POYI9\ B}|2a sse|D uwm‘_mh ejeg sse|) aseg ejjleq

13pulyal - POYIBN SN0

Figure A.1l.: Mining results based on the old framework. Average metric changes of analyzed

refactoring types.

A.4. Refactoring Data

135

POYIdIA 1iel1S

sse|) aseg eI

POYIBIN EIf2Q

sse|) 128.e] eyaq

sse|) aseg eyad

00T |000 |00‘E €€'8 |00'vT |L9°L¥ [L9°C6 £9°0. |00°0Z0OT |00‘T- |00‘T- |00‘€- 190 000 19T €€°0 000 |€€0 € 24p.
8L'C |€€'T |e€tT [6€E'6 [TT9 689V (8LVL L9'LT |v¥'8SY 8L'C- |€€'T- |e€tT- |[egE 190 8Lt LTV LT'T |L9%C 8T Jadaayooz
€T'T |06'0 |SL'E €0y |SL6 61°0€ |ST'8Y 90'LT |S9'9vE €I'T- |06°0- |SL'e- 620 ST'0- [Tttt v6°C- vv'e- [29'6T 89 eJo3
000 |00°0 |000 000|000 000 000 000 000 000 |00'0 |00‘0 000 000 000 000 000|000 0 ajeslo
229N |ION |201 229 |ION 201 JAIM ION 001 222\ |ION 201 222\ |ION 001 JAM |ION 001 sway| 303loud
POYISN paulju| 1Ie1s POYIaN J3]|eD 1IeIS sse|) 1els POYIaIN paulju| e3j3@ PoYIsN 1318 eyjad sse|) eyaq
POYISIAl auljuj
98‘c |60°0T |TETE |[T5'€8 G8'CS |SL'Tse 8e'T |sLT [9T'L 9v‘0- [sz'0- |oT'E- wo- 850 |€6'ET- 80¢ 2yp
7’6 |88 T2'8S |9T9S SY'€C [€0'TTV e SS'T SSTT w'T- [TT'0- |S8'8- 65T 90T 19'TT €6L Jadaax00z
20'8 |98‘s S0‘TY [SP'99 08'sc |z0‘zov ey |sS‘c |sT'oz [90'c- |68°0- |8¥'ST- [9S'C- LY'T- |86°CT- [43 eJo3
SIS |S8C €L'¢€ |zT'60T |96'vT [TT'TL9 0S'T |50 [8€6 0. (LTt 699- 69°L v’ |€z’se 9t 9jes|o
D29 [ION 201 JAIM ION 001 229\ |ION 201 229\ |ION 001 JAM |ION 201 sway| 3d3loud
POYIdIN 3seq Heis Ssse|) uels POYIBIN M3N e}3a poyIaN 3seg eyaa sse|) eyag
POYI3IAl 1de4IX]
T€'s |€9C 95‘ee |ST'EL 186 STYT9 61°0- |1€0- |69°0- 0095 |v6'8 €T'8TS [61°8- 900 |v6°€9- 91 24P
80'c |8¥'C 9€’LT |v0'6L S6‘TE |¥6°TT9 00’0 |v0'0 |00 €€'9¢ [TT'0T |vL'TLT |LT'8T- [ev'T- |ST'STT- |LOT Jadaayo0z
6L'8 |6TT €v'LT [TL'00T |¥9'LT |6T°LES 00'0 |10 [TC'T 9g‘6E (VoY YT'T6T |TT'8y- [L0'0- |¥9'L0T- |VT .03
69°c |806 80°9T |T€0L €TTT [85°0TY 610 [¢1'0 [80C 6'8C |19’ 8€'6/T |8€We- [TE€T- |€L'TCT- |9C ajesio
D22\ [ION 201 JAIM ION 001 222\ |ION 201 JAM |ION 201 JAM |ION 201 sway| 303loud

Sse[) MaN 03 POYI3Nl A0

Figure A.2.: Mining results based on refSHARK. Average metric changes of analyzed refac-

toring types.

B Simulation at Runtime

Contents
B.1. Simulation Parameters at Runtime 137
B.2. Simulation Views at Runtime 139

This appendix describes parameters that can be adjusted in the simulation environ-
ment before each simulation run. Furthermore, some example views of the running
simulation provided by Repast Simphony are depicted.

B.1. Simulation Parameters at Runtime

Repast Symphony allows us to define parameters that can be changed in the running
application before each simulation run. For the models presented in this thesis, we
have defined parameters depicted in Figure B.1.

In the following we describe each parameter in more detail. Here, the parameters are
ordered according to their importance and not alphabetically as in the simulation.

Project Name The name of the project to simulate. According to the name, the
configuration files with mined parameters are read.

Start Year The starting point of the simulation. If the year is set to 0, then the
simulation starts with an empty change coupling graph. Otherwise, the simu-
lation is initialized with the change coupling graph of the given year. For this
the mined graph is loaded.

Developer This parameter represents the developer type to use for the next sim-
ulation run. If developer is set to type, then developers are divided into key,
maintainer, major, and minor. If this parameter is set to role, then developers
are classified into core and peripheral according to the onion model.

B. Simulation at Runtime 138

Parameters - od
+ X|=
Boost Factor:

0,8
Default Random Seed:

394297183
Delete Bonus:
1
Developer:
type
FixRuns:
2
Init Boost Factor:
0,35
Number of Init Rounds:
1]
Project Name:
gora
Simulate Refactorings:
Start Year:
a

Figure B.1.: Adjustable simulation parameters.

Number of Init Rounds If the mining reveals two different update behaviors, for
example, an initial phase with pronounced growth and, afterwards, a phase
with significantly less growth, then this parameter represents the duration of
the initial phase.

Initial Boost Factor This parameter adjusts the effort that the developers spend in
the initial phase.

Boost Factor This parameter adjusts the effort that the developers spend in the
second phase.

Delete Bonus If not enough files are deleted by the developers work, deleting files
can be rewarded using this parameter.

Fix Runs Due to the fact that the bug creation probabilities are based on I'TSs data
and the bugfix probabilities of the developers are based on VCSs discrepancies
between the number of created and the number of fixed bugs can occur. This
parameter adjusts the number of trials a developer tries to fix a bug.

Simulate Refactorings If this parameter is switched on, software refactorings are
additionally simulated. This can slow down the runtime.

Default Random Seed Default parameter of Repast Simphony used for random
number generation.

139 B.2. Simulation Views at Runtime

B.2. Simulation Views at Runtime

In this section, we present two views of the simulation environment at runtime.

140

B. Simulation at Runtime

paddons |

Junop 36p3 Buiidne) Buey po abesy S HACU Diap polgIN | SmAN SseD

juegmsn | 3MLOURES sopawesey suogdo umy

[unece) =]

WNeo 3P
00Z'E 000°€ 008 009°2 00k'Z 002'2 000 008'T 009°T OOFT 002'T 000°T 008 009 00+ 00z 0

=}

g

3
june) 214

o215 10aloid

.
[

pued 13501 [E] .-
SIS PRL
shelsIa g
USROS @
wnoad @
SNsEED @
no3stpED @
JomBesny &
S35 @1ea [
PO @
sispectereq -
SUIBH PO @
wnodad @
S sED @
uno320p300 @
Jopbemy @
Sy AT
onnjuziEMyos | 72
oo emyos |7

=R=l

331 opeURdS.

BT BTENBEOCANCR0000 AN

mopuipy S[o0L umy 3|4

2 - UoRN AT IENHOS 1Ay

Figure B.2.: Simulation at runtime with the scenario tree on the left side and the live view

of the project growth on the right side.

B.2. Simulation Views at Runtime

141

& SoftwareEvolution - Repast Simphany — o X

File Run Tools Window

Jdeeceod e OARAER

aranetrs - o o| I —oo x|
+ ¥ i i3
SeostFcar Average Work
o |
Default Random Seed: 175
| 304297183 | 170
Delete Bonus 165 4
160
Lk | 155 /
Developer: [
] 150 Il
145
] 140
135
| 130 A I
125 4 _ I A
120) — y
, | 115 ¥
Project Name: 110 ¢ ! A
|gora | 105 — b :
Simulate Refactorings 100 B z —,. : 1
=2 m, 95 / o 7 _
Start vear: g ® A v, : iy
[0 5 ® ¥ A ry r.
80 & Al J 3 3
75 I
70 J l af |t
65 Iy
50 "
55 et/ Y
50 i '
45 M
40
: £
30
25 2 ' 4
0 |
s 1 i
L]
10 E] L
s ;
o - -
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3.200
Tidk Count
= NumOfiddedfiles 8- NumODeletedFiles & NumOfUpdatedfiles]
Run Options parameters Scenario Tree User Panel Class Metrics Method Metrics Project Size Average Work. Change Coupling Edge Count
== | -

live view of the average work of all developers by round on the right side.

Figure B.3.: Simulation at runtime with the adjustable parameters on the left side and the

B Mining Implementation
Details

Contents
C.1. MongoDB with Morphia — A Basic Introduction 143
C.2. Used classes of the SmartSHARK data model 144

Here, we present details of our mining implementations. First, we introduce some
basics about the used mapping tool Morphia [143] in Section C.1. Afterwards, we
present the used data model of our mining applications based on SmartSHARK in
Section C.1.

C.1. MongoDB with Morphia — A Basic Introduction

Since the SmartSHARK database is a MongoDB [144], we use Morphia as JVM
object document mapper. By using Morphia, we can easily use all the classes shown
here like POJOs in the code.

To connect to a MongoDB with Morphia mainly two things are required. Firstly,
a Morphia instance must be created. This class configures among other things the
mapper. Secondly, the Datastore is created using the Morphia instance. For this, a
suitable connection string is required as described in the documentation.

Afterwards, we can save and query data using the datastore instance. This allows
us to iterate easily over, for example, all commits of a project.

C. Mining Implementation Details 144

C.2. Used classes of the SmartSHARK data model

In this section, we present the data model used for all our mining implementations
based on SmartSHARK.

The model presented in Figure C.1 contains all classes we use for our mining work
based on SmartSHARK in this thesis.

145

C.2. Used classes of the SmartSHARK data model

c Issue c Commit c CodeEntityState
=P labels List<String> P labels Map<String, Boolean= :P ceType String
=P environment String P message String -P startline int
2P resolution String P authorld Objectid :P cglds List<Objectlid>
:P updatedAt Date P authorDate Date B fileld Objectid
+P assigneeld Objectid P codeEntityStates List<Objectid> + B startColumn int
2P parentlssueld Objectid B vcSystemld Objectld 2B endCaolumn int
<P creatorld Objectid P committerDateOffset int - longName String
=P components List<String> P revisionHash String =P endLine int
=P issueSystemid Objectd P parents List<String> =P ceParentld Objectid
=P issuelinks List<Map<5tring, String=> P committerDate Date -P commitld Objectid
:P desc String P authorDateOffset int =P sKey String
=P priority String P branches List<String> =P metrics Map <String, Double>
:P affectsVersions List<String> P committerld Objectid P id Objectid
<P createdat Date P id Objectld
=P title String
=P externalld String
<P issueType String
=P fixversions List<String>
=P originalTimeEstimate Integer
:P status String
+P reporterld Objectid
P id Objectid
c Refactoring ' VCSystem c SmallCommit
=P description String =P lastUpdated Date -P revisionHash String
P type String <P url String <& authorld Objectid
=P state RefactoringState -P projectld Objectid -P authorDate Date
=P commitid Objectid =P repositoryTypeString P vesystemid Objectid
+P parentStates List<RefactoringState > <P id Objectid P id Objectid
FLENT | Objectid
c IssueSystem c People c File c Project
=P lastUpdated Date <P name String =P vcSystemid Objectld -P name String
2P url String P email String =P path String =P id Objectid
=P projectld Objectid =P username String P id Objectid
P id Objectid Pid Objectld
€ = RefactoringState © w FileAction
- parentCeBefore Objectd ;P mode String
-F ceAfter Objectid :0 oldFileld Objectid
-F ceBefore Objectid P commitid Objectid
.F parentCeAfter Objectd :¥ binary boolean

=P fileld Objectld

- linesadded int

P id Objectid

2P sizeatCommit int

Figure C.1.: Data model used for tools based on SmartSHARK.

	1 Introduction
	1.1 Scope of the Thesis
	1.2 Thesis Impact
	1.3 Thesis Structure

	2 Background
	2.1 Multiagent Systems
	2.1.1 What are Agents?
	2.1.2 Architectures for Intelligent Agents
	2.1.3 Fields of Application
	2.1.4 Tools for Agent-Based Modeling and Simulation

	2.2 Software Evolution
	2.2.1 Software Metrics
	2.2.2 Change Coupling Graph
	2.2.3 Abstract Syntax Tree

	2.3 Refactoring
	2.4 Graph Transformations
	2.4.1 Definitions
	2.4.2 Graph Analysis
	2.4.3 Rule-Based Graph Transformation

	2.5 Mining Software Repositories

	3 Related Work
	3.1 Simulation of Software Processes
	3.2 Mining Software Repositories
	3.2.1 Software Evolution
	3.2.2 Developer Classification and Contribution Behavior
	3.2.3 Commit Analysis and Source Code Differencing

	3.3 Modeling Refactorings using Graph Transformations

	4 Evolution of Agent-Based Simulation Models
	4.1 Grid-Based Model
	4.2 Network-Based Model for Monitoring Software Quality
	4.2.1 Growth Model Depending on Productivity
	4.2.2 Model to Simulate the Lifetime of Bugs
	4.2.3 A Detailed Model to Investigate Several Aspects of Software Evolution

	4.3 Modeling Refactorings based on Graph Transformations
	4.4 Implementation Details and Execution of the Models

	5 The Gathering of Parameters for Model Execution
	5.1 Overall process
	5.2 Automated Parameter Estimation for Network Based Models
	5.2.1 Developer Identity Merging
	5.2.2 Developer Classification
	5.2.3 Change Coupling

	5.3 Parameter Estimation for the Modeling of Refactorings
	5.3.1 Parameters for the Description of General Commit Patterns
	5.3.2 Framework to Estimate Parameters for Refactorings
	5.3.3 refSHARK to Estimate Parameters for Refactorings

	6 Case Studies
	6.1 Simulating Software Evolution using an Agent-Based Model
	6.1.1 A Grid-Based Model
	6.1.2 A Model without Dependencies
	6.1.3 A Network-Based Model
	6.1.4 Discussion

	6.2 Project Specific Parameters
	6.2.1 Model Initialization with Project Specific Parameters
	6.2.2 Model Initialization with Project Specific Parameters and Change Coupling Snapshot
	6.2.3 Discussion

	6.3 Mining and Simulating Software Refactorings
	6.3.1 Feasibility of Refactoring Simulation
	6.3.2 Integration of Refactorings to a Simulation Model for Software Evolution
	6.3.3 Discussion

	7 Discussion
	7.1 Contributions
	7.2 Limitations

	8 Conclusions
	8.1 Summary
	8.2 Main Findings
	8.3 Outlook

	Bibliography
	List of Acronyms
	Glossary
	List of Figures
	List of Tables
	A Simulation Parameters from Mining
	A.1 Core Parameter for Simulation Instantiation
	A.2 Change Coupling Graph
	A.3 Commit Pattern Data
	A.3.1 Class Changes
	A.3.2 Method Changes

	A.4 Refactoring Data

	B Simulation at Runtime
	B.1 Simulation Parameters at Runtime
	B.2 Simulation Views at Runtime

	C Mining Implementation Details
	C.1 MongoDB with Morphia – A Basic Introduction
	C.2 Used classes of the SmartSHARK data model

