Another H-super magic decompositions of the lexicographic product of graphs

by Nisa Ayunda

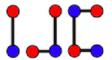
Submission date: 14-Nov-2019 06:15AM (UTC-0800)

Submission ID: 1213676888

File name: 35-333-1-PB - NISA AYUNDA MIPA.pdf (895.56K)

Word count: 4438

Character count: 17216



INDONESIAN JOURNAL OF COMBINATORICS

Another H-super magic decompositions of the lexicographic product of graphs

Hendya, Kiki A. Sugengb, A.N.M. Salmanc, Nisa Ayunda

hendy@mipa.unipdu.ac.id, kiki@sci.ui.ac.id, msalman@math.itb.ac.id, nisaayunda@mipa.unipdu.ac.id

Abstract

Let H and G be two simple graphs. The concept of an H-magic decemposition of G arises from the combination between graph decomposition and graph labeling. A decomposition of a graph G into isomorphic copies of a graph H is H-magic if there is a bijection $f:V(G)\cup E(G)\longrightarrow \{1,2,...,|V(G)\cup E(G)|\}$ such that the sum $\{1\}$ abels of edges and vertices of each copy of H in the decomposition is constant. A lexicographic $\{1\}$ duct of two graphs G_1 and G_2 , denoted by $G_1[G_2]$, is a graph which a $\{1\}$ s from G_1 by replacing each vertex of G_1 by a copy of the G_2 and each edge of G_1 by all edges of the complete bipartite graph $K_{n,n}$ where G_1 is the order of G_2 . In this paper we provide a sufficient condition for $G_1[K_m]$ in order to have a $G_1[K_m]$ -magic decompositions, where G_1 and G_2 and G_3 the provided a sufficient condition for G_3 and G_3 in order to have a G_3 and G_3 and G_4 and G_5 and G_5 and G_5 and G_7 are G_7 and G_7 and G_7 and G_7 and G_7 and G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 and G_7 and G_7 are G_7 and G_7 are G_7 and G_7 are G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 and G_7 are G_7 and G_7 and G_7 are G_7 are G_7 and G_7 are G_7 are G_7 and G_7 are G_7 and G_7 are G_7 are G_7 are G_7 and G_7 are

Keywords: complement of graph, lexicographic product, *H*-magic decomposition Mathematics Subject Classi 29 ion: 05C78,05C70

DOI: 10.19184/ijc.2018.2.2.2

1. Introduction

Let G a simple graph and H be a subgraph of G. A decomposition of G into isomorphic copies of H is called H— magic if there is a bijection $f: V(G) \cup E(G) \longrightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is

Received: 17 Oct 2017, Revised: 15 May 2018, Accepted: 08 Jun 2018.

^aDepartment of 44 thematics, Universitas Pesantren Tinggi Darul 'Ulum, Jombang, Indonesia

^bDepartment of Mathematics, Universitas Indonesia, Depok, Indonesia

^cDepartment of Mathematics, Institut Teknologi Bandung, Bandung, Indonesia

constant. A lexicographic product of two graphs G_1 and G_2 is defined as graph which constructed from the graph G_1 and then replacing each verter of G_1 by a copy of G_2 and each edge of G_1 by edges of complete bipartic graph $K_{n,n}$, where |V(G)| = n. The lexicographic product of G_1 and G_2 with this construction is denoted by $G_1[G_2]$ [1].

A labelize of a graph G = (V, E) is a bijection from a set of elements of graphs to a set of numbers. The edge magic and super edge magic labelings were first introduced by Kotz and Roza [9] and Enomoto, Lladò, Nakamigawa, and Ringel [3], 28 pectively. There are some results in edge magic and super edge magic, such as in [2, 3, 12, 13]. The notion of an H – (super) magic labeling was introduced by Gutièrrez and Lladò [5] in 2005. In 2010, Maryati and Salman [11] used multiset partition concept to obtain a super magic labeling of path amalgamation of isomorphic graphs. Inayah et al. [8]have improved the concept of labeling graphs became H – (anti) magic decomposition. In almost the same time, Liang [10] discused cycle-suggraphs decompositions of complete multipartite graphs and in 2015, Hendy [6] has discused the H – super(anti)magic decompositions of antiprism graphs. For a complete results in graph labeling, see [4].

In this research we interest in decomposing the lexicographic product of graphs $\overline{C_n[K_m]}$ then labeling of the edges and vertices of each isomorphic copies of $P_t[\overline{K_m}]$ to obtain $P_t[K_m]$ magic decomposition, where n > 3, m > 1, and t = 3, 4, n - 2.

Preliminaries

Let G test simple graph. Complement of G, denoted by \overline{G} , is graph which $V(\overline{G}) = V(G)$ and $\forall u, v \in V(G)$ uv is edge of \overline{G} if and only if uv is not edge of G. A family $\mathbb{B} = \{G_1, G_2, ..., G_t\}$ of subgraphs of G is an H-decomposition of G if all subgraphs are isomorphic to graph H, $E(G_i) \cap E(G_i) = \emptyset$, for $i \neq j$, and $\bigcup_{i=1}^t E(G_i) = E(G)$. In such case, we write $G = G_1 \oplus G_2 \oplus ... \oplus G_t$ and G is said to be H-decomposable. if G is an H-decomposable graph, then we also write H|G. Let \mathbb{B} is an H-decomposition of G. The graph G is said to be H-magical if there exists a bijection

 $f: V(G) \cup E(G) \longrightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that $\forall B \in \mathbb{B}$, $f(v) + \sum_{e \in E(B)} f(e)$ is constant. Such a function f is called an H-magic labeling of G. The sum of all the vertex and edges labels of H (under a labeling f) is denoted by $\sum f(H)$. The constant value that every copy of H takes under the labeling f is denoted by m(f).

The one of the concept of multi set partition, k-balance multi set, was presented by Maryati et al. [11]. In this paper, $\sum_{x \in X} x$, denoted by $\sum X$. Multi set is a set which may has the same elements. For positive integer n and k_i with $i \in [1, n]$, multi set $\{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ is a set which has k_i elements a_i for $i \in [1, n]$. Suppose V and W are two multi sets with $V = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ and $W = \{b_1^{l_1}, b_2^{l_2}, ..., b_m^{l_m}\}$. Defined by: $V \biguplus W = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}, b_1^{l_1}, b_2^{l_2}, ..., b_m^{l_m}\}$. Let $k \in N$ and Y is a multi set of positive integers. Y is a k-balance multi set if there exists k subsets of Y such as: $Y_1, Y_2, ..., Y_n$ such that for all $i \in [1, k]$, $|Y_i| = \frac{|Y|}{k}$, $\sum Y_i = \frac{\sum Y}{k} \in N$ and $\biguplus k_{i=1}^k Y_i = Y$.

Lemma 1.1. [7] $P_n[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $P_n|\overline{C_n}$

Theorem 1.1. [7] Let t be any integer with t > 1. If $P_t[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ then $n(n-3) \equiv 0 \pmod{2(t-1)}$ Theorem 1.1. [7] Let n and m be integed with n > 3 and m > 1. The graph $\overline{C_n}[\overline{K_m}]$ has $P_2[\overline{K_m}]$ super magic decomposition if and only if m is even or m is odd and $n \equiv 1 \pmod{4}$, or m is odd and $n \equiv 2 \pmod{4}$, or m is odd and $n \equiv 3 \pmod{4}$.

2. Results

Lemma 2.1. $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \neq 4$, $n \equiv 0 \pmod{4}$ or $n \equiv 3 \pmod{4}$.

Proof. (\Rightarrow) Let $P_3[\overline{K_m}][\overline{C_n}[\overline{K_m}]$, then from Lemma 2.1 we have that $P_3[\overline{C_n}]$. From Lemma 2.2 we have that $n \equiv 0 \pmod{4}$ or $n \equiv 3 \pmod{4}$. Because of $\overline{C_4}$ doesn't have P_3 , this is not occur for

 $(\Leftarrow) \text{ Now let } n \neq 4, \ n \equiv 0 (mod 4) \text{ dan } V(\overline{C_n}) = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = \{v_1,...,v_{4k}\}, \ k \in Z^+. \text{ Let } N(v_i) = V(\overline{C_n}) \setminus \{v_i\} = V$ $\{v_{i-1}, v_{i+1}\}$. Follow this algorithm decompose $\overline{C_n}$.

Algorithm 1:

- 1 Choose the path $P_1: v_3 v_1 v_4$ and let v_1 be the center of the rotation. Rotate P_1 such that v_1 on v_3 , v_3 on v_5 and v_4 on v_6 , thus we have $P_2: v_5 - v_3 - v_6$. Do the next rotation until v_1 on $v_5,..., v_{4i-1},..., v_{4k-1}$. Then we have 2k of P_3 -paths.
- 2 Choose the cycle $v_2 v_4 \dots v_{4k}$. Decompose this 2k-cycle to k of P_3 -paths.
- 3 Do the rotation again $(v_1 \rightarrow v_3 \rightarrow v_5 \rightarrow ...)$, with choosing two vertices which close with the vertices that is rotated in step 1. If this rotation is not the last rotation, do the rotation again until v_1 on position of v_{4k-1} , such that we have 2k of P_3 -path. If this rotation is the last rotation, first do the rotation in step 1 until v_1 on position of v_{2k-1} such that we have k of P_3 -path. Then rotate $P' = v_{n-2} - v_2 - v_{n-1}$ with v_2 as a center of this rotation until v_2 on position of v_{2k} and we have k P_3 -path.

From the **Algorithm 1** above, we have that $P_3|\overline{C_n}$. Then from Lemma 2.1 $P_3|\overline{K_m}||\overline{C_n}|\overline{K_m}|$ for $n \neq 4, n \equiv 0 \pmod{4}$.

Let $n \equiv 3 \pmod{4} \text{ dan } V(\overline{C_n}) = \{v_1, ..., v_{4k+3}\}, k \in \mathbb{Z}^+$. Let $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Decompose $\overline{C_n}$ with the following steps.

Algorithm 2

Choose the path $Q_1 = v_3 - v_1 - v_4$ with v_1 is the center of rotation. Rotate Q_1 such that v_1 on v_2 and we have $Q_2 = v_4 - v_2 - v_5$. Do the next rotation such that v_1 on $v_3, v_4, v_i, \dots, v_{4k+3}$. Do the rotation such that we have $kn P_3$ -path.

From Algorithm 2, it's clearly that $P_3|\overline{C_n}$. Thus from Lemma 2.1 $P_3|\overline{K_m}||\overline{C_n}|\overline{K_m}|$ for $n\equiv$ $3 \pmod{4}$.

See Figure 1 to see graph $\overline{C_8}$ can be decomposed into 10 P_3 -path.

Theorem 2.1. Suppose $n, m \in \mathbb{Z}^+$ and m > 1. For $n \equiv 3 \pmod{4}$, or $(n \equiv 0 \pmod{4})$ and m is even, Graph $\overline{C_n}[\overline{K_m}]$ have $P_3[\overline{K_m}]$ -magic decomposition.

Proof. Let $n \equiv 3 \pmod{4}$. From Lemma 2.1 we have for $n \equiv 3 \pmod{4}$, $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Let $m \equiv 3 \pmod{4}$. be 22n. Do the next vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Let $V_1, V_2, ..., V_n$ be the partitions of $V(\overline{C_n}[\overline{K_m}])$, where $V(\overline{C_n}[\overline{K_m}]) = V_1 \cup V_2 \cup ... \cup V_n = V_n \cup V_n$ $\{v_{1,1}, v_{1,2}, ..., v_{1,m}\} \cup \{v_{2,1}, v_{2,2}, ..., v_{2,m}\} \cup ... \cup \{v_{n,1}, v_{n,2}, ..., v_{n,m}\}$. Consider the set $A^* = [1, mn] = [1, mn]$

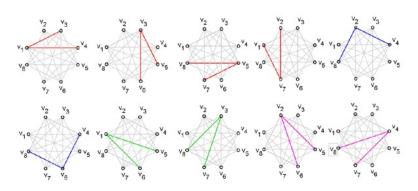


Figure 1. P_3 -decomposition of $\overline{C_8}$

$$[1,(2k)n], k \in \mathbb{Z}$$
. for every $i \in [1,n]$, $A_i^* = \{a_j^i/1 \le j \le m\}$, where $a_j^i = \begin{cases} k(j-1)+i, & \text{if j is odd;} \\ 1+nj-i, & \text{if j is even.} \end{cases}$

is a balance subset of A^* .

Define a vertex labeling f_1 of $\overline{C_n}[\overline{K_m}]$ which will label vertices of $V_1, V_2, ..., V_n$ using elements of $A_1^*, A_2^*, ..., A_n^*$ respectively.

Consider the set
$$B^* = [mn+1, mn+\frac{n(n-3)m^2}{2}]$$
. For every $i \in [1, \frac{n(n-3)}{2}]$, $B_i^* = \{b_j^i/1 \le j \le m^2\}$, with $b_j^i = \begin{cases} mn+\frac{n(n-3)}{2}(j-1)+i, & \text{if j is odd;} \\ (mn+1)+(\frac{n(n-3)}{2})j-i, & \text{if j is even.} \end{cases}$

 $B_i^* = \{b_i^i/1 \le j \le m^2\}$ is a balance subset of B^* . Define an edge labeling f_2 of $\overline{C_n}[\overline{K_m}]$ with

label all edges in $P_2[\overline{K_m}]_i$, $i \in [1, \frac{n(n-3)}{2}]$ with the elements in B_i^* . Since for all $i \in [1, \frac{n(n-3)}{4}]$, $m(f_1 + f_2)(P_3[\overline{K_m}_i) = 3m(f_1) + 2m(f_2) = 3(m^2n + m) + 2(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2}) = 3m^2n + 3m + m^2(2mn + 1 + \frac{n(n-3)m^2}{2})$ then $\overline{C_n}[\overline{K_m}]$ has $P_3[\overline{K_m}]$ magic decomposition.

Now let m is odd. Do the vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1.

(a) Let m=3. Consider the set $A=[1, m(n+\frac{n(n-3)}{2})]=[1, 3(n+\frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})], A_i = \{a_i, b_i, c_i\}$ where

$$\begin{array}{ll} a_i & = & 1+i; \\ b_i & = & \left\{ \begin{array}{ll} (n+\frac{n(n-3)}{2}) + \lceil \frac{n(n-3)}{2} \rceil + i, & \text{for } i \in [1, \lfloor \frac{n(n-3)}{2} \rfloor]; \\ (n+\frac{n(n-3)}{2}) - \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor + i, & \text{for } i \in [1, \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor]; \\ c_i & = & \left\{ \begin{array}{ll} 3(n+\frac{n(n-3)}{2}) + 1 - 2i, & \text{for } i \in [1, \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor]; \\ 3(n+\frac{n(n-3)}{2}) + 2\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil - 2i, & \text{for } i \in [\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil, n+\frac{n(n-3)}{2}]. \end{array} \right. \end{array}$$

 $A_i = \{a_i, b_i, c_i\}$ is a balance subset of A. Consider the set $B = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $B_i = \{b_j^i/1 \le j \le m^2 - 3\}$, where

$$b_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$$

 $B_i = \{b_j^i/1 \leq j \leq m^2 - 3\} \text{ is a balance subset of } B. \text{ Define a function } h_1: V(\overline{C_n}[\overline{K_m}]) \rightarrow \{A_i, i \in [1, n]\} \subset A \text{ and label all vertices in every } V_i \text{ with the elements of } A_i. \text{ Define a function } h_2: E(\overline{C_n}[\overline{K_m}]) \rightarrow \{A_i, i \in [n+1, (n+\frac{n(n-3)}{2})]\} \bigcup B \text{ and label all edges in every } P_2[\overline{K_m}]_i, i \in [1, \frac{n(n-3)}{2}] \text{ with the elements of } A_{n+i} \bigcup B_i.$

(b) Let m > 3 and m be odd. Considering the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be two sets. $A = [1, 3(n + \frac{n(n-3)}{2})];$ $E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})].$

Follow the same way with (a), for m=3, A is a $(n+\frac{n(n-3)}{2})$ -bala not multi set and for every $i\in[1,(n+\frac{n(n-3)}{2})]$, A_i is a balance subset of A. Consider the set $E=[3(n+\frac{n(n-3)}{2})+1,m(n+\frac{n(n-3)}{2})]$. For every $i\in[1,(n+\frac{n(n-3)}{2})]$, $E_i=\{e_j^i/1\leq j\leq m-3\}$, where

$$e^i_j \ = \ \left\{ \begin{array}{l} 3(n+\frac{n(n-3)}{2})+(n+\frac{n(n-3)}{2})(j-1)+i, & \mbox{if j is odd;} \\ 3(n+\frac{n(n-3)}{2})+1+(n+\frac{n(n-3)}{2})j-i, & \mbox{if j is even.} \end{array} \right.$$

 $E_i = \{e_j^i/1 \le j \le m-3\} \text{ is a balance subset of } E. \text{ Considering the set } M = \underbrace{m(n+\frac{n(n-3)}{2}) + 1, m^2(n+\frac{n(n-3)}{2}) + mn}_{j}. \text{ For every } i \in [1,\frac{n(n-3)}{2}], \ M_i = \{m_j^i/1 \le j \le m^2-m\}, \text{ where } m_j^i = \begin{cases} m(n+\frac{n(n-3)}{2}) + (\frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ m(n+\frac{n(n-3)}{2}) + 1 + (\frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

 $M_i = \{m_j^i/1 \le j \le m^2 - m\}$ is a balance subset of M.

Define a function $q_1:V(\overline{C_n}[\overline{K_m}]) \to \{A_i^*=A_i \bigcup E_i, i \in [1,n]\} \subset A^*$ and label all vertices in every V_i with the elements of $\{A_i^*, i \in [1,n]\}$. Define a function $q_2:E(\overline{C_n}[\overline{K_m}]) \to \{A_{n+i}^*=A_{n+i} \bigcup E_{n+i}\} \bigcup M$ and label all edges in every $P_2[\overline{K_m}]_i, i \in [1,\frac{n(n-3)}{2}]$ with the elements of $A_{n+i}^* \bigcup M_i$.

Since $\forall i \in [1, \frac{n(n-3)}{4}], \ (q_1+q_2)(P_3[\overline{K_m}]_i) = 5\sum A_i^* + 2\sum M_i = 5(\sum A_i + \sum E_i) = 5((2+4n+2n(n-3)+\lceil\frac{2n+n(n-3)}{4}\rceil)+(\frac{m-3}{2})(3(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2})))+2(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2})))+2(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2})))+2(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m^2(n+\frac{n(n-3)}{2})+mn))$ then $\overline{C_n}[\overline{K_m}]$ has $P_3[\overline{K_m}]$ -magic decomposition. Now let $n\equiv 0 \pmod 4$ and m be even. From Lemma 3, we have for $n\equiv 0 \pmod 4$, $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Do the vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1. Since for all $i\in [1,\frac{n(n-3)}{4}],\ m(f_1+f_2)(P_3[\overline{K_m})=3m(f_1)+2m(f_2)=3(m^2n+m)+2(\frac{m^2}{2}(2mn+1+\frac{n(n-3)m^2}{2}))=3m^2n+3m+m^2(2mn+1+\frac{n(n-3)m^2}{2}),$ then $\overline{C_n}[\overline{K_m}]$ have $P_3[\overline{K_m}]$ -magic decomposition.

Figure 2 give an example that graph $\overline{C_8}[\overline{K_2}]$ have $P_3[\overline{K_2}]$ - super magic decomposition with the constant value $m(f_1+f_2)=503$.

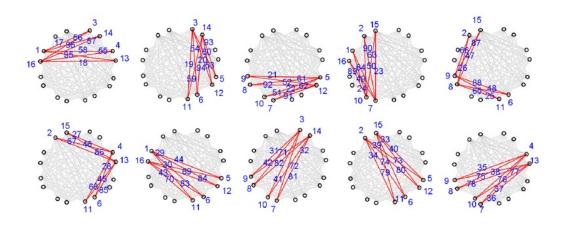


Figure 2. $P_3[\overline{K_2}]$ -super magic decomposition of $\overline{C_8}[\overline{K_2}]$

Lemma 2.2. $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \equiv 0 \pmod{6}$ or $n \neq 3, n \equiv 3 \pmod{6}$

Proof. (\Rightarrow) Let $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$, then from Lemma 2.1, $P_4|\overline{C_n}$. From Lemma 2.2 $n\equiv 0 \pmod{6}$ or $n\equiv 3 \pmod{6}$. Clearly that this is not occur for n=3.

 (\Leftarrow) Let $V(\overline{C_n}) = \{v_1, ..., v_{3k}\}, k \in Z^+$ and $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Do the algorithm 3 bellow to decompose $\overline{C_n}$.

Algorithm 3

Choo 46 he path $R_1: v_1-v_3-v_6-v_4$ and let v_1 be the center of the rotation. Rotate R_1 such that v_1 on v_2 , v_3 on v_4 , v_6 on v_1 and v_4 on v_5 , thus we have $R_2=v_2-v_4-v_1-v_5$. Do the next rotation such that v_1 on v_3 ,...etc, and redo the process until $\frac{(k-1)}{2}$ rotations.

Figure 3 shows that graph $\overline{C_9}$ can be decompose into 9 P_4 -path.

Theorem 2.2. Let n > 3 and m > 1. For $n \equiv 3 \pmod{12}$ or $n \equiv 6 \pmod{12}$ or $n \equiv 9 \pmod{12}$ or $n \equiv 0 \pmod{12}$ and m is even, Graph $\overline{C_n[K_m]}$ have $P_4[\overline{K_m}]$ -magic decomposition

Proof. Let $n \equiv 3 \pmod{12}$. From Lemma 2.2, we have that for $n \equiv 3 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now, let m be even. Do the next vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}]$, $(f_1 + f_2)(P_4[\overline{K_m}_i) = 4m(f_1) + 3m(f_2) = 4(m^2n + m) + 3(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2}))$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition.

Let m be odd. Do the next vertex labeling steps and edge labeling steps such in **case 4** in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}], m(q_1+q_2)(P_4[\overline{K_m}]_i) = 7\sum_i A_i^* + 3\sum_i M_i = 7(2+4n+2n(n-3)+\lceil\frac{2n+n(n-3)}{4}\rceil) + (\frac{m-3}{2})(3(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2})) + \frac{3m^2-3m}{2}(m(n+\frac{n(n-3)}{2})+1+m^2(n+\frac{n(n-3)}{2})+mn)$, then $\overline{C_n[K_m]}$ has $P_4[\overline{K_m}]$ -magic decomposition.

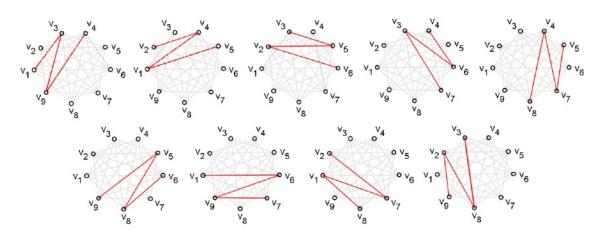


Figure 3. P_4 -decomposition of $\overline{C_9}$

Let $n \equiv 6 \pmod{12}$. From Lemma 2.2, we have that $n \equiv 6 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now let m is even. Do the vertex labeling steps and edge labeling steps in **case 1** Theorem 1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1 + f_2)(P_4[\overline{K_m}]) = 4 \sum Z_i + 3 \sum X_i$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition. Let m is odd. Do the vertex labeling steps and edge labeling steps such in **case 3** in Theorem 2.1.

Let m=3. Consider the set $D=[1, \frac{m(n+\frac{n(n-3)}{2})}]=[1, 3(\frac{n+\frac{n(n-3)}{2}})]$. For every $i\in[1, (n+\frac{n(n-3)}{2})]$, $D_i=\{a_i,b_i,c_i\}$ where:

$$\begin{array}{ll} a_i &=& 1+i; \\ b_i &=& \left\{ \begin{array}{ll} (n+\frac{n(n-3)}{2}) + \lceil \frac{n(n-3)}{2} \rceil + i, & \text{for } i \in [1, \lfloor \frac{n(n-3)}{2} \rfloor]; \\ \frac{18}{n} + \frac{n(n-3)}{2}) - \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor + i, & \text{for } i \in [\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil, (n+\frac{n(n-3)}{2})]. \\ c_i &=& \left\{ \begin{array}{ll} 3(n+\frac{n(n-3)}{2}) + 1 - 2i, & \text{for } i \in [1, \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor]; \\ 3(n+\frac{n(n-3)}{2}) + 2\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil - 2i, & \text{for } i \in [\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil, n+\frac{n(n-3)}{2}]. \end{array} \right. \end{array}$$

 $D_i = \{a_i, b_i, c_i\}$ is a balance subset of D.

Considering the set $E = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $E_i = \{b_j^i/1 \le j \le m^2 - 3\}$, with $b_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

 E_i is a balance subset of E.

Define a function $h_1:V(\overline{C_n}[\overline{K_m}])\to \{A_i,i\in[1,n]\}\subset A$ and label all vertices in every V_i with the elements of A_i . Define a function $h_2:E(\overline{C_n}[\overline{K_m}])\to \{A_i,i\in[n+1,(n+\frac{n(n-3)}{2})]\}\bigcup B$ and label all edges in $P_2[\overline{K_m}]_i,i\in[1,\frac{n(n-3)}{2}]$ with the elements of $A_{n+i}\bigcup B_i$.

Let m > 3 and m be odd. Consider the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be the two

sets A and E where $A = [1, 3(n + \frac{n(n-3)}{2})];$ $E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})].$

With the same way for m=3, A is $(n+\frac{n(n-3)}{2})$ -become set and for every $i\in[1,(n+\frac{n(n-3)}{2})]$, A_i is a balance subset of A. Consider the set $E=[3(n+\frac{n(n-3)}{2})+1,m(n+\frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n+3)}{2})], E_i = \{e_i^i/1 \le j \le m-3\}, \text{ where }$

$$e_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$$

 $E_i = \{e_j^i/1 \le j \le m-3\}$ is a balance subset of E. Considering the set $M = [m(n + \frac{n(n-3)}{2}) + \frac{n(n-3)}{2}]$ $1, m^2(n + \frac{n(n-3)}{2}) + mn]. \text{ For every } i \in [1, \frac{n(n-3)}{2}], \ M_i = \{m_j^i/1 \le j \le m^2 - m\}, \text{ where } m_j^i = \begin{cases} m(n + \frac{n(n-3)}{2}) + (\frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ m(n + \frac{n(n-3)}{2}) + 1 + (\frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

is a balance subset of M. Define a function $q_1:V(\overline{C_n}[\overline{K_m}])\to \{A_i^*=A_i\bigcup E_i, i\in[1,n]\}\subset$ A^* and label all vertices in every V_i with the elements of $\{A_i^*, i \in [1, n]\}$.

Define a function $q_2: E(\overline{C_n}[\overline{K_m}]) \to \{A_{n+i}^* = A_{n+i} \bigcup E_{n+i}\} \bigcup M$ and label all edges in every $P_2[\overline{K_m}]_i, i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i}^* \bigcup M_i$.

Since for all $i \in [1, \frac{n(n-3)}{6}], (q_1+q_2)(P_4[\overline{K_m}]_i) = 7\sum A_i^* + 3\sum M_i$ then $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ magic decomposition.

Now let $n \equiv 9 \pmod{12}$. From Lemma 2.2 we have that for $n \equiv 9 \pmod{12}$, $P_4[\overline{K_m}] |\overline{C_n}[K_m]$ Now, let m be even. Do the verte labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1+g)(P_4[\overline{K_{m_i}})) = 4\sum Z_i + 3\sum X_i$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ magic decomposition. Suppose m is odd. Do the vertex labeling steps and edge labeling steps such in case 2 of Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}], (f_2+h)(P_4[\overline{K_m}]_i) = 3\sum Y_i + 2\sum P_i^*$ and $(f_3+h)(P_4[\overline{K_m}]_i)=3(\sum W_i+\sum X_i)+2\sum P_i^*$ then $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ -magic decomposition.

Now let $n \equiv 0 \pmod{12}$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Do the vertex labeling steps and edge labeling steps such in **case 1** of Theorem 1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1+g)(P_4[\overline{K_{m_i}}) = 4\sum Z_i + 3\sum X_i \text{ then } \overline{C_n}[\overline{K_m}] \text{ have } P_4[\overline{K_m}]\text{-magic}$ decomposition.

Lemma 2.3. $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \equiv 0 \pmod{2}$

(contradiction).

Proof. (\Rightarrow) Suppose $\overline{C_n}$ where $n \equiv 1 \pmod{2}$ are P_{n-2} -decomposable graphs, then $\begin{array}{ll} y. & (\Rightarrow) \text{ suppose } C_n \text{ mass } r = 1 \\ \frac{|E(C_n)|}{3} & = \frac{(2k+1)(2k-2)/(2)}{2k-2}, s \in Z^+ \\ & = \frac{2k+1}{2} \\ & = k + \frac{1}{2} \notin Z^+. \end{array}$

 (\Leftarrow) Let $V(\overline{C_n}) = \{v_1, ..., v_{2k}\}, k \in \mathbb{Z}^+$ and $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Do the next steps to decompose $\overline{C_n}$. Choose the path $L_1 = v_1 - v_3 - v_n - v_4 - v_{n-1} - \dots$ and let v_1 be the center of the rotation. Rotate L1 such that v_1 on v_2 , v_3 on v_4 , v_n on v_1 and etc. Do the next rotation such that v_1 on v_3 ,...etc, and continue the process until all edge are used up.

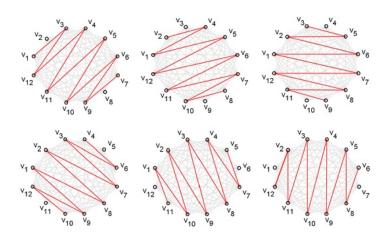


Figure 4. P_9 -decomposition of $\overline{C_{12}}$

For example, $\overline{C_{12}}$ in Figure 4 can be decomposed to be 6 P_9 -path.

Theorem 2.3. Let n > 3 and m > 1. For $n \equiv 2 \pmod{4}$ or $(n \equiv 0 \pmod{4})$ and m is even), $\overline{C_n}[\overline{K_m}]$ have $P_{n-2}[\overline{K_m}]$ -magic decomposition.

Proof. Let $n\equiv 2(mod4)$. From Lemma 2.2 we have that for $n\equiv 2(mod4)$, $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now, let m is even. Do the vertex labeling steps and 4 ge labeling steps such in **case 1** of Theorem 2.1. Because of $\forall i\in [1,\frac{n}{2}], (f_1+f_2)(P_{n-2}[\overline{K_m}])=(n-2)m(f_1)+(n-3)m(f_2)=(n-2)(m^2n+m)+(n-3)(\frac{m^2}{2}(2mn+1+\frac{n(n-3)m^2}{2}))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_{n-2}[\overline{K_m}]$ -magic decomposition. Let m be odd. Do the vertex labeling steps and edge labeling steps such in **case 3** of Theorem

Let m be odd. Do the vertex labeling steps and edge labeling steps such in case 3 of Theorem 2.1. Since for all $i \in [1, \frac{n}{2}], (q_1 + q_2)(P_{n-2}[\overline{K_m}_i) = (2n-5)\sum A_i^* + (n-3)\sum M_i = (2n-5)((2+4n+2n(n-3)+\lceil\frac{2n+n(n-3)}{4}\rceil) + (\frac{m-3}{2})(3(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2}))) + (n-3)(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m^2(n+\frac{n(n-3)}{2})+mn))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ -magic decomposition.

Now let $n \equiv 0 \pmod{4}$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0 \pmod{4}$, $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Do the vertex labeling steps and $\boxed{4}$ lege labeling steps such in case $\boxed{1}$ of Theorem 2.1. Since for all $i \in [1, \frac{n}{2}], (f_1 + f_2)(P_{n-2}[\overline{K_m}]) = (n-2)m(f_1) + (n-3)m(f_2) = (n-2)(m^2n + m) + (n-3)(\frac{m^2}{2}(2mn+1+\frac{n(n-3)m^2}{2}))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_{n-2}[\overline{K_m}]$ -magic decomposition. \square

Acknowledgement

This research was supported by Research Gra 20 Program Hibah Penelitian Kerjasama Antar Perguruan Tinggi (Pekerti) Unipdu-UI 2017 ", Ministry of Research, Technology and Higher Education No: 025/E3/2017.

References

- [1] D. Fronček, P. Kovář, T. Kovářová, Constructing Distance Magic Graphs From Regular Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing. 78 (2011), 349-354
- [2] M. Bača, M. Miller, Super edge-antimagic graphs, Brown Walker Press, Boca Raton, Florida USA (2008).
- [3] H. Enomoto, A. Lladó, T. Nakamigawa, G. Ringel, Super edge magic graphs, SUT Journal of Mathematics. 34 (1998), 105-109.
- [4] J. A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics. #DS6, 2016.
- [5] Gutiérrez, A. Lladó, A Magic Coverings, Journal of Combinatorial Mathematics and Combinatorial Computing. **55** (2005) 43–56
- [6] Hendy, The H- super (anti) magic Decomposition of Antiprism graphs, AIP Conference Proceedings 1707. 020007(2016);DOI: 10.1063/1.4940808.
- [7] Hendy, An H-super magic Decompositions of The Lexicographic Product of Graphs, preprint.
- [8] Inayah, A. Lladó, J. Moragas, Magic and Antimagic H-decompositions, Discrete Math. 312 (2012) 1367-1371.
- [9] A. Kotzig, A. Rosa, Magic valuation of finite graphs, Canadian Mathematics Bulletin. 13, (1970) 451 - 461.
- [10] Z. Liang, Cycle-supermagic decompositions of Complete multipartite Graphs, Discrete *Mathematics.* **312**, (2012) 3342–3348.
- [11] T.K. Maryati, A.N.M. Salman, On graph-(super)magic labelings of a path-amalgamation of isomorphic graphs, Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications. (2010) 228–233.
- [12] K.A. Sugeng, Magic and Antimagic labeling of graphs, University of Ballarat, (2005).
- [13] W.D. Wallis, Magic Graphs, Birkhäuser Boston, Basel, Berlin (2001).

Another H-super magic decompositions of the lexicographic

proc	duct of grap	ohs			
ORIGIN	ALITY REPORT				
	4% ARITY INDEX	15% INTERNET SOURCES	18% PUBLICATIONS	19% STUDENT PAPE	RS
PRIMAR	RY SOURCES				
1	Submitte Pakistan Student Paper		cation Commis	sion	2%
2	WWW.SCI Internet Source	ence.gov			2%
3	futur.upo				2%
4	WWW.COI	mbinatorics.org			2%
5	THEVAR DECOM GRAPHS	, SOLOMON STA R MARIMUTHU. ' POSITION OF C S", Communication atical Society, 20	'H-V ['] -SUPER OMPLETE BIF ons of the Kore	MAGIC PARTITE	2%
6		ryati, A.N.M. Saln	•		2%

"Supermagic coverings of the disjoint union of graphs and amalgamations", Discrete Mathematics, 2013

7	Submitted to Universitas Sebelas Maret Student Paper	1%
8	Submitted to Harran Üniversitesi Student Paper	1%
9	Submitted to University of Bath Student Paper	1%
10	SVANTE JANSON. "A Point Process Describing the Component Sizes in the Critical Window of the Random Graph Evolution", Combinatorics Probability and Computing, 07/2007 Publication	1%
11	issuu.com Internet Source	1%
12	Andrea Semaničová-Feňovčíková, Martin Bača, Marcela Lascsáková. "Two constructions of - antimagic graphs ", AKCE International Journal of Graphs and Combinatorics, 2017 Publication	<1%
13	R. Fitriani, K. A. Sugeng, N. Hariadi. "Rainbow cycles and paths in fan and wheel graph", AIP Publishing, 2018 Publication	<1%
14	www.deepdyve.com Internet Source	<1%

15	gittens.nl Internet Source	<1%
16	www.aejm.ca Internet Source	<1%
17	upcommons.upc.edu Internet Source	<1%
18	Submitted to Texas A&M University, College Station Student Paper	<1%
19	C. Chithra, G. Marimuthu, G. Kumar. " supermagic labeling of graphs ", AKCE International Journal of Graphs and Combinatorics, 2019 Publication	<1%
20	Susilawati, Edy Tri Baskoro, Rinovia Simanjuntak. "Total Vertex-Irregularity Labelings for Subdivision of Several Classes of Trees", Procedia Computer Science, 2015	<1%
21	Mateja Šajna. "Half-transitivity of some metacirculants", Discrete Mathematics, 1998	<1%
22	scitation.aip.org Internet Source	<1%

www.icm2010.in
Internet Source

		<1%
24	Yeva Fadhilah Ashari, A.N.M Salman. " (,)-supermagic labelings for some shackles of connected graphs and ", Journal of Physics: Conference Series, 2019 Publication	<1%
25	Submitted to Visvesvaraya Technological University Student Paper	<1%
26	Llado, A "Cycle-magic graphs", Discrete Mathematics, 20071106 Publication	<1%
27	am.vsb.cz Internet Source	<1%
28	K.M. Kathiresan, G. Marimuthu, C. Chithra. "Cm-supermagic labeling of graphs", Electronic Notes in Discrete Mathematics, 2015 Publication	<1%
29	tel.archives-ouvertes.fr Internet Source	<1%
30	prr.hec.gov.pk Internet Source	<1%
31	zenodo.org Internet Source	<1%

32	etd.uwaterloo.ca Internet Source	<1%
33	Swaminathan, V "Super edge-magic strength of fire crackers, banana trees and unicyclic graphs", Discrete Mathematics, 20060728 Publication	<1%
34	R Alfarisi, Dafik, R Adawiyah, R M Prihandini, E R Albirri, I H Agustin. "Super domination number of unicyclic graphs", IOP Conference Series: Earth and Environmental Science, 2019 Publication	<1%
35	Deogun, J.S "Catacondensed hexagonal systems with smaller numbers of Kekule structures", Journal of Molecular Structure: THEOCHEM, 20031103 Publication	<1%
36	www.slideshare.net Internet Source	<1%
37	cyberleninka.org Internet Source	<1%
38	mmc09.ubd.edu.bn Internet Source	<1%
39	"Medical Imaging and Informatics", Springer Nature, 2008 Publication	<1%

40	ijesrt.com Internet Source	<1%
41	Submitted to Glasgow Caledonian University Student Paper	<1%
42	vdocuments.mx Internet Source	<1%
43	Submitted to Indian Institute of Technology, Kharagpure Student Paper	<1%
44	Hengki Tasman, Asep K. Supriatna, Nuning Nuraini, Edy Soewono. "A Dengue Vaccination Model for Immigrants in a Two-Age-Class Population", International Journal of Mathematics and Mathematical Sciences, 2012	<1%
45	Slamin. "Total Vertex Irregularity Strength of the Disjoint Union of Sun Graphs", International Journal of Combinatorics, 2012 Publication	<1%
46	Submitted to University of Hong Kong Student Paper	<1%
47	Lecture Notes in Computer Science, 2008. Publication	<1%
48	Submitted to Liverpool John Moores University Student Paper	<1%

Shin, H.. "Partition function and open/closed string duality in type IIA string theory on a ppwave", Nuclear Physics, Section B, 20031006

<1%

Publication

D A Anggraeni, T S Martini, T A Kusmayadi. "Supermagic labeling on ⊙ and ⋄ ", Journal of Physics: Conference Series, 2019

<1%

Publication

Exclude quotes

Off

Exclude matches

Off

Exclude bibliography

Off

Another H-super magic decompositions of the lexicographic product of graphs

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
,	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	