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Chapter 1 

Introduction 

The demonstration of aggressive behaviors in the workplace can usually lead to negative 

professional consequences. However, combat-related professions may involve life and 

death decision making on an almost daily basis. This is one occupational area in which 

major duties may invoke or even require aggression. Today’s Army leaders face a different 

set of challenges than those faced by leaders of the past. Leaders of today must be 

trained to be both assertive and aggressive at the appropriate times while also displaying 

empathy. While this is not a new task for an Army leader, it is one that is approached 

differently among millennials. 

Millennial are individuals who became adults in the early 21st century [2]. These indi¬ 

viduals may have adapted to a communication style that is not as directly confrontational 

as the style seen in the former generation of Army leaders. This may be due to the heavy 

use of technology-oriented communication channels (e.g., texting, social media), which 

often occur in the place of face to face styles of communication. Army Basic Officer 

Leadership instructors face the challenge of preparing young leaders for combat and 

also guiding them into using more confrontational communication styles while exhibiting 

high levels of empathy. Such characteristics may prepare young officers to be decisive 

and effective leaders during combat.[2] 

One of the most important aspects of those Army leadership skills is the interpersonal 

skill-set. Army leaders must be able to understand and value the perspectives of their 

comrades while balancing this understanding with their own perspectives enough to make 

clear and effective team-based decisions. On top of all of this, they must also be able 

1 



    

           

             

                

             

             

                 

            

           

            

           

     

           

            

          

             

             

               

              

             

           

           

            

       

            

           

           

             

              

          

                 

             

2 Chapter 1 Introduction 

to make these decisions quickly while under-pressure and, often-times, while physically 

depleted. The ability to carry out emotionally conscientious conversation can be one of 

the most imperative life skills to possess. For Army leaders who are working in a high-

intensity environment in which many decisions can affect and influence an entire squad 

of subordinates, in such cases, the ability to carry out effective, emotionally intelligent 

dialogue within a short time frame can be a matter of life and death or toxic leadership 

and effective leadership. Thus, instructors who are training officers focus heavily on 

determining what kinds of interpersonal leadership attributes junior officers have and 

how to develop them. To develop such interpersonal skills instructors and researchers 

must first assess the initial interpersonal skill-set of student officers. [2] 

1.1 Weaknesses of Traditional Assessments 

The most commonly used assessments for interpersonal skills are traditional assessments. 

A traditional assessment is one that uses forced-choice measurement items (e.g., multiple 

choice, true and false, fill-in-the-blank, matching responses). Such assessments mainly 

evaluate a student’s ability to recall previously obtained information and do not neces¬ 

sarily require demonstration or higher order application of that knowledge [3]. The issue 

with traditional assessments is that they do not always provide an accurate picture of how 

much a student may know or whether that knowledge can be applied effectively within 

a real-world context. This limitation may present a problem since such assessments may 

yield misleading results and leave students ill-prepared for handling real-world problems 

(Schwartz and Arena, 2013). Despite their weaknesses, traditional assessments are still 

highly popular because they are cheap, relatively easy to construct, produce quantifiable 

results, and are easy to administer [3]. 

In order to remedy the weaknesses found among traditional assessments, researchers like, 

Schwartz, are proposing that performance assessments become an alternative to tradi¬ 

tional assessments. A performance assessment is an assessment that requires students 

to formulate solutions rather than choose from a limited sample of proposed solutions 

and to demonstrate abilities in a given area (e.g., medical school students’ clinical skills 

assessments, driving tests, Army Physical Fitness Tests, writing assessments). Perfor¬ 

mance tests can be costly and are not as quick and easy to construct and administer as 

traditional assessments. One way to create a cost and time effective performance test 



    

            

             

             

        

   

               

           

               

            

             

            

              

                

               

              

  

             

    

       

            

 

          

          

                

              

             

        

3 Chapter 1 Introduction 

is through the development of a model for interactive intelligent conversational agents 

with transient emotional states that can be used for assessment purposes. Through in¬ 

teracting with those intelligent agents, student officers may be able to demonstrate their 

interpersonal skill sets (empathy and perspective taking). [3] 

1.2 Thesis Statement 

The long-term aim of this research is to develop a computational model for an intelligent 

conversational agent with transient emotional states, in order to potentially support 

future research aims at the Army Research Institute, at Fort Benning. Such an agent may 

be embedded within a simulation environment that examines junior officers’ empathy and 

perspective-taking as attributes of leadership. The junior officers in OCS courses may be 

able to demonstrate these skills through their responses to utterances within interpersonal 

Army training scenarios, in future phases of research. For the current research scope for 

this thesis project, the success of the model is determined by how well the model maps 

utterances to four regions on the Circumplex Model of Affect [4] based on their intended 

or expected emotional impact. This outcome will be assessed, in both a quantitative and 

qualitative manner. 

Future ARI research aims that the current research thesis research may leverage or 

support include the following: 

1. "Allowing nonlinear conversations to unfold" [5] 

2. "Making agents more flexible by tracking emotional states, etc. across scenarios" 

[5] 

3. "Identify scenario characteristics most responsible for improved language matching 

and better predictive validity to improve assessment techniques overall "(5) 

The aim of the current research is to develop a generalized framework that will allow for 

the development of a generative affective conversational model that will be used to as 

part of an objective assessment of interpersonal Army leadership traits. Thus the goals 

of the current research aims are the following: 



    

              

       

           

            

 

            

            

    

          

            

      

              

              

          

           

           

            

               

  

              

               

            

              

          

             

             

              

               

             

4 Chapter 1 Introduction 

1. Develop a Corpus of Professional and Army Based Dialogue for the purpose of 

supporting the development of a conversational model 

2. Develop a model that receives open-ended text input, computationally evaluates 

the affective quality of the input and provides a contextually appropriate outputted 

response 

3. Provide a general framework for a conversational model that generates human-level 

affective conversation between a human user and intelligent agent (i.e., chatbot) in 

a nonlinear, generative manner. 

4. Qualitatively assess the differences in the classification-based chatbot performance; 

identify nuances in the datasets and differences in the presentation of scenarios 

1.3 Problem Statement and Our Contribution 

One pertinent problem that will be addressed using these techniques in the current re¬ 

search is the assessment of interpersonal leadership skills of Army leaders through the use 

of conversational agents. As previously mentioned, traditional assessments are plagued 

with a plethora of weaknesses, recent developments like deep learning-based intelligent 

systems can facilitate a more well-rounded structure for identifying communication pat¬ 

terns of subjects. Additionally, deep learning approaches allow for the generation of 

helpful feedback in order to gauge and increase the effectiveness of learning, in an objec¬ 

tive manner. 

The current research will mainly explore the application of the deep learning algorithm to 

the development of a generalized framework that will be utilized in future research at the 

Army research institute at MCoE (Maneuver Center Of Excellence) facilities. The aim 

of ongoing research is to train junior officers in basic leadership courses. The algorithmic 

python-based implementation of the generative conversation models is adapted from 

two primary code sources. These code sources are inspired by the following Udemy 

Tutorial:Deep Learning and NLP A-Z™- How to create a ChatBot. The source code 

is documented and cited in Appendix D. For the purpose of current research, several 

customized modifications will be made to the original code source in order to support the 

current research aim [6]. This generalized framework will mainly be based upon modeling 



    

         

               

           

             

     

   

               

              

      

              

           

            

       

            

           

       

           

         

            

 

              

            

            

5 Chapter 1 Introduction 

empathetic conversation between an intelligent conversational agent (chatbot/bot) and 

a human user (e.g., junior officer student in Army leadership courses) in order to allow 

for higher level observation of communication patterns. This generalized framework will 

contribute to the long-term and continued efforts of overall improvements in the training 

of interpersonally effective Army leaders. 

1.4 Thesis Organization 

This thesis is organized as follows: Chapter 2 provides a background of the research aim 

and a literature review of the related works. This chapter also presents the foundational 

framework that supports the current investigation. 

Chapter 3 provides an overview of conversational agents as well as recent approaches to 

modeling interaction between a human user and intelligent conversational agent; further¬ 

more, this section presents conversational agent development platforms that can be used 

train an affective conversational agent (e.g., DialogFlow). 

Chapter 4 examines deep learning techniques and their application to natural language 

understanding tasks like affective conversational modeling. This chapter covers the se¬ 

lected algorithm and architecture in greater depth. 

Chapter 5 examines the experimental evaluation of the current methodological approach 

(i.e., classification task methodology, generative conversational modeling task method¬ 

ology). This chapter presents the quantitative and qualitative analyses of model perfor¬ 

mance. 

Chapter 6 examines the implications of the current research aim and results in long-term 

research endeavors. Furthermore, the upcoming chapter will propose steps that can be 

taken to extend current research aims in upcoming phases of the investigation. 



  

    

            

            

           

           

              

              

            

              

          

           

            

     

           

          

               

                 

   

 

Chapter 2 

Background and Related Works 

Emotional expression through language is a highly complex phenomenon influenced by a 

variety of socio-cultural linguistic factors. For example, expressions of emotion are gen¬ 

erally more indirect within collectivist cultural contexts than those within individualistic 

cultural contexts [7]. Furthermore, some emotions, like anger, are commonly expressed 

through the use of metaphors ("e.g., you make my blood boil"). Emotional linguistics is 

highly ambiguous. Thus, textual affect sensing continues to be a hard problem of artifi¬ 

cial intelligence because the ambiguity of language, particularly emotional dialogue is a 

highly challenging computational task for a machine to tackle. A variety of textual affect 

sensing techniques have attempted to capture linguistic emotional complexities within 

recent years. These techniques have relied on previously developed representations of 

emotion. A few popular frameworks will be explored in the upcoming section. 

2.1 Foundational Frameworks of Emotion 

Currently, there are two dominant frameworks of emotion: discrete and dimensional 

representations. Robinson and Baltrusaitis [8] discovered that the traditional discrete 

representation of emotion can be problematic. This may be due to the fact that emotion, 

as experienced on a daily basis, is not just a discrete point in the (valence, arousal) space, 

see Figure 2.1. 

6 



       

 
   

        

   

  
   

 
 

    

 
  

   

  
 

   

 

  
   

  
   

 
  

   

 
  

       

   

             
             

              
   

               

             

             

               

           

             

             

  

      

               

           

            

7 Chapter 2 Background and Related Works 

XII 
XI Activation | 

Unpleasant Activation (e'9 ' aroused’ activated) Pleasant Activation 
(e.g., energetic, excited)(e.g., frenzied. jittery) 

II 

Activated Pleasure 
Activated Displeasure (e.g.. enthusiastic, elated)

(e.g., distressed, upset) 

IX 
Displeasure - Pleasure 

(e.g . unhappy, dissatisfied) (e.g., satisfied, pleased) 

VIII IV 
Deactivated Displeasure Deactivated Pleasure 

(e.g.. sad. gloomy) (e.g.. serene, peaceful) 

V 
Unpleasant Deactivation Pleasant Deactivation VI 

(e.g.. sluggish, tired) Deactivatjon (e.g., placid, tranquil) 

(e.g., quiet, still) 

Figure 2.1: Russell’s Circumplex Model of Affect; Notice here that the roman numeral 
annotations are labeling the twelve segments of Core Affect. For example, the segment 
between 30 degrees and 60 degrees falls within the Pleasant Activation (I) and Activated 

Pleasure (II) states. 

They proposed an alternative way to represent emotion as a combination of two or more 

dimensions. The use of a continuous, dimensional emotional model was explored as in 

Russell’s Circumplex Model of Affect, see Figure 2.1. Most of the previous research 

that has evaluated the use of such models have been limited to nonverbal expressions of 

emotion (i.e., facial expressions, audible utterances), so generalizability to the current 

research effort may be limited. Still, this research provides a powerful compass for 

determining the effectiveness of dimensional models as will be further explored in the 

following section. 

2.1.1 Russell’s Circumplex Model of Affect 

Russell’s Circumplex Model of Affect has been determined to be one of the most effective 

representations of emotion [4], For temporal trajectories of emotion over dimensional 

space (e.g., videos), this model has been shown to especially effective representation. 



       

             

    

             

            

             

              

           

            

              

           

            

              

   

            

              

             

                

            

          

             

              

            

             

         

          

               

              

            

            

             

            

            

8 Chapter 2 Background and Related Works 

This is particularly the case when representing emotion as a temporal trajectory within 

a dimensional space. [8] 

Robinson and Baltrusaitis [8] conducted an assessment of the Circumplex Model of Affect 

utilizing an internet gaming database composed of short videos of facial expression. 

First human raters assessed the emotional evocation of displayed within a video clip 

along the valence (the degree of positive or negative sentiment evoked by an utterance) 

and arousal dimensions. An automatic classification system then categorized the facial 

expression along the valence and arousal dimensions. Results indicated a strong positive 

correlation (R = 0.78) between human rater scores and machine scores along the valence 

dimension. No significant relationship was determined between the human ratings and 

machine scores along the arousal dimension, however. These findings indicate that facial 

expressions are a better indicator of affect within the valence dimension more so than 

the arousal dimension. 

Furthermore, it was determined that vocal expressions are better indicators of arousal 

than valence [8]. This research does not suggest how much textual affect sensing tech¬ 

niques will be influenced by the valence or arousal dimensions. However, based on 

findings from other studies (e.g., [9]), it can be inferred that valence is a more dom¬ 

inant determinant of overall affective quality of utterances (i.e., textual affect sensing 

tasks). Additionally, Robinson and Baltrusaitis [8] suggested that "universal emotion 

meters" are generally inadequate. They suggest that a domain specific model of emo¬ 

tion should be used within a specialized contextual application, given the large range of 

dimensional overlap between specific emotions. Thus the current research aim will be 

to create Army-based professional conflicts dialogue corpus that can be used to support 

emotion classification and dialogue generation tasks. Furthermore, the methodological 

approach will be scenario/vignette specific, to assure high domain specificity. 

Previous models of emotions, such as the one proposed by Charles Darwin in The Ex¬ 

pression of Emotions in Man and Animals [10], later revised by Paul Ekman represent 

emotions within 6 discrete categories (joy, anger, disgust, fear, sadness, and surprise). 

Ekman’s model has received particular popularity for affective computing tasks over the 

past four decades. However, these emotional states are not reflective of daily emotional 

experiences, given that more subtle and ephemeral mental states are experienced within 

daily interactions. Broader taxonomies of emotion have been introduced in an attempt 



       

           

            

            

              

         

           

           

             

            

             

            

             

                

       

             

             

            

              

              

            

              

        

              

           

              

          

            

               

       

            

            

9 Chapter 2 Background and Related Works 

to acknowledge this limitation. This includes the Simon Baron-Cohen linguistic analy¬ 

sis taxonomy. The Simon Baron-Cohen representation is an extension of the previous 

Ekman model, it contains 412 emotional concepts grouped within 24 disjoint categories. 

These 24 categories included Ekman’s six as well as 18 complex mental states identified 

over continuous observations (i.e., videos) rather than static images. 

Furthermore, James Russell [4] addressed the limitations of previous discrete models 

through the development of a continuous, dimensional classification approach. The de¬ 

veloped model was created through the task of placing 28 emotion-derived words around 

a unit circle representation. A Principal Component Analysis (PCA) was applied in 

order to identify major dimensions within the data. The PCA uncovered two primary 

dimensions, valence (located upon the horizontal axis) and arousal (located upon the 

vertical axis). Robinson and Baltrusaitis [8] concluded that this model is more effec¬ 

tive for the continuous identification of emotions on a scale of -1 to +1 when measured 

continuously over time using video frame rates. 

While the findings of this study demonstrate the effectiveness of the Russell Circum-

plex Model representation of emotion there are limitations to be considered. First, the 

analysis involved the observation of facial recognition video datasets. The currently de¬ 

veloped model will be applied to a textual affect sensing task. Assumptions about the 

effectiveness of the model in application to the currently proposed task cannot be made. 

Furthermore, the low correlation values for assessment arousal scores indicate that the 

use of the Circumplex model may render to the inadequate identification of the intensity 

or arousal scores for the currently proposed framework. 

On the other hand, this study demonstrates the effectiveness of Russell’s model for the 

recognition of emotions over temporal trajectories. This will be particularly pertinent 

to the current research given the usage of the sequence to sequence architecture. The 

sequence to sequence architecture represents the conversational temporal trajectory us¬ 

ing implicit vectorization of the given conversation. Overall, results indicate that the 

Circumplex Model of Affect will be an effective framework to apply to the given compu¬ 

tational task especially within the valence dimension. 

Posner, Russell, and Peterson [11] conducted a meta-analytical exploration of the ap¬ 

plication of the Circumplex Model of Affect to existing behavioral, cognitive science, 



       

          

            

           

             

            

           

            

            

             

  

        

            

            

              

          

             

              

           

  

     

            

             

              

             

            

              

           

           

10 Chapter 2 Background and Related Works 

neuroimaging and development theories. Researchers defined emotion as a neurophys¬ 

iological linear combination of two dimensions of varying degrees valence and arousal. 

Emotions arise from activation within unique neural pathways (i.e., mesolimbic, reticu¬ 

lar). Emotions are hence a continuum of overlapping states. As suggested by previous 

research there is often very little differentiation within the arousal dimension, especially 

for emotions like (anxiety and depression). Furthermore, findings indicated that emo¬ 

tional states are not always characterized by affective behavior changes (e.g., anxious 

state not always demonstrated by changes in facial expression). These findings illus¬ 

trate how some emotions may not be explicitly identifiable using the currently developed 

textual model. 

2.1.2 Overview of the Circumplex Model of Affect 

Willigen [12] represented emotional states using the Circumplex Model of Affect shown 

above. Figure 2.1 illustrates the representation of emotional states using the Circumplex 

Model of Affect [13]. This model conceptualizes affective states as the product of two 

neurophysiological systems, valence (levels of pleasantness or unpleasantness) and arousal 

(levels alertness or activation). Each affective state is interpreted as a combination of 

these two spectrums. For example, elation may be a combination of a high positive 

valence and a moderate arousal level within the two aforementioned neurophysiological 

systems [11). 

2.2 Frameworks of Emotional Transitions 

Thorton and Tamir [14] examined the accuracy of emotional transition predictions using 

mental models. Findings suggested that human beings are highly adept to the predictions 

of emotional transitions up to two transitions into the future [14], Raters predicted many 

transitions with high accuracy (e.g., transitions from feeling touch to distress [and vice 

versa], transitions from gloomy to sad states, transitions between emotions with similar 

valence (e.g., sad and gloomy) were predicted as most likely to occur). Although four 

main conceptual dimensions were identified as pivotal determinants of emotional transi¬ 

tions (i.e., valence, social impact, rationality, human mind [overall holistic similarity]), 



       

             

  

          

          

               

              

             

            

             

             

            

           

              

     

             

            

              

            

           

             

  

           

           

             

            

         

              

            

           

    

11 Chapter 2 Background and Related Works 

the process was primarily indicated as being heavily intuitive and reliant on inherent 

mental models. 

Results unveiled an illuminating phenomenon, emotions predict emotions (i.e., current 

emotions predict future emotions) and furthermore emotions generally predict actions 

(e.g., tired people rest). The ability to predict emotions is a highly beneficial skill to 

possess as social creatures (e.g., can predict the likelihood of career success, family in¬ 

teractions, skill acquisition). Hence, the best source of models for emotional dynamics is 

pointed towards human mental models. Thorton and Tamir [14] utilized Markov mod¬ 

eling to explore temporal models of emotion. First, an estimation of real-world mental 

states was identified. The accuracy of the mental models was assessed using correlational 

and normal root mean square error (NRMSE) analysis. This analysis revealed strong 

associations between average mental models and experience samplings (e.g. Spearman R 

of 0.77) over 60 different emotions. This study demonstrates the high accuracy of human 

mental models of emotion transition. 

Overall these findings indicate that human beings are the primary experts for emotional 

transitions. While these findings are highly illuminating to the currently proposed re¬ 

search questions there are a couple of limitations. First, the analyzed data was mainly 

self-report data. The currently developed model proposes the extraction of emotional dy¬ 

namic trajectories using Natural Language Processing (NLP) vectors. Secondly, we can 

not determine how applicable the findings are to emotional transition within a text-based 

chatbot model. 

Furthermore, these results are particularly informative to the currently developed model 

because they demonstrate that emotional transition predictions should be dyadic and 

that transitions should take place within the same valence range). Hence, the arousal 

dimensions may be as informative to the process of determining emotional transitions 

(through implicit sequence analysis) vectorization as the valence dimension. 

The current study will utilize these findings through the development of a Real World 

Professional Conflicts Dialog Corpus, This corpus will be compiled through a process 

of collecting predictions of emotional transitions, in response to various professional 

conflicts, from human participants. 



       

   

             

             

             

               

             

             

            

          

           

            

       

             

           

          

               

             

              

            

              

        

            

             

             

            

            

              

          

             

12 Chapter 2 Background and Related Works 

2.2.1 Emotion Dynamics 

Emotional inertia is the degree to which an emotional experience transfers over from 

moment to moment, while inter-speaker emotional influence is the degree to which one 

person’s emotions influence another individual to state [15]. Both of these concepts play 

a vital role in the nature of emotional transitions and thus should be of consideration 

when informing the development of the current model. It is important to distinguish 

these two factors of emotional dynamics given that emotional experiences are not solely 

subjective but are subject to change based upon socio-environmental factors (i.e., given 

mental state of dyadic conversational counterpart). The currently developed framework 

will assume that emotional dynamics are mirrored between dyadic counterparts (e.g, 

speakers tend to match the emotional states of their speaking partners) [14]. 

2.3 Traditional Approaches to Textual Affect Sensing 

One of the most popular traditional textual affect sensing techniques is keyword spot¬ 

ting. This technique categorizes utterances into affective classifications using words with 

obvious emotional salience (e.g., "happy", "despondent", "frustrated") [16]. While this 

technique is popular and relatively easy to carry out, results may be poor and limited 

due to the high emphasis on surface-level feature extraction. For example, the sentence 

"Today is a new day for me," may yield scant affective information, computationally, but 

may be high in emotional intensity in actuality. Statistical Natural Language Processing 

(e.g., support vector machine) techniques work well for large text parsing but yield poor 

results for sentence or word level parsing [16]. 

Notably earlier applications focused on the development of relational agents. For ex¬ 

ample, Bickmore and Gruber [17] explored the development of a relational agent that 

was used for "health counseling and the encouragement of health behavior changes (e.g., 

medication compliance)." The system’s ability to build rapport with patients was also 

evaluated. The developed relational agent was able to evaluate patient compliance levels 

and thus alter the communication style in order to foster patient understanding of the 

necessary interventions. However, this system utilizes multiple choice selection instead 

of free response input. The use of such a "forced-choice" conversational system could 
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introduce many of the limitations presented by traditional assessments [3] if implemented 

within the currently developed framework. 

Lui, Lieberman, and Selker [18] explored a novel approach to textual affect sensing using 

a real-world common sense knowledge base. An open mind common sense corpus of 

nearly half a million sentences was used to evaluate the affective nature and underlying 

semantic structure of presented sentences. Sentences were emotionally categorized using 

the Ekman emotional model (composed of six primary emotions [i.e., happy, sad, angry, 

fearful, disgusted, surprised]). The approach went beyond the traditional surface-level 

feature extraction techniques seen in traditional approaches to textual affect sensing 

(e.g. keyword spotting, Statistical Natural Language Processing, lexical affinity, rule-

based methods), analyzing underlying semantic meanings related to affect on a sentence 

level. This developed system was embedded in an email browser. Users reported that 

the implementation was robust enough to be used in day to day communication (i.e. 

emails). Metric-based outcomes, however, were ambiguously presented. Researchers 

utilized generic common sense knowledge database containing English sentences like the 

following: "Some people find ghosts to be scary"; "A consequence of riding a roller¬ 

coaster may be excited. [18]" These sentences were analyzed using linguistic processing 

that facilitated subject-verb object identification as well as semantic processing. The 

use of emotion ground keywords allowed for emotional classification upon the six Ekman 

emotion model. Finally, an affective valence score was computed utilizing a propagation 

trainer. The text analyzer was composed of five main modules: text segmented, linguistic 

processing suite, story interpreter, smoother, an expresser. Disambiguation metrics were 

used to generate a final emotion annotation score after utterances passed through these 

five main components. [18] 

A major limitation of this study is the modularity of the system architecture. In the case 

of this system architecture, affect sensing operates independently of the user and story 

contexts [18]. Furthermore, while this approach allows for advances in affect sensing, 

affect understanding remains unexplored. The currently developed system will address 

this weakness through the use of end-to-end encoder-decoder system architecture (i.e., 

sequence to sequence). This may lead to a greater performance on textual affect analysis 

and textual affect generation tasks. Furthermore, through the use of a popular conversa¬ 

tional corpus, Cornell Movie Dialogue Conversation Corpus [19], the currently developed 



       

                

    

             

           

            

           

            

           

             

              

          

            

            

            

            

            

           

       

             

             

              

              

            

           

             

              

             

           

           

               

         

14 Chapter 2 Background and Related Works 

system will be allowed to use the strength of a common sense knowledge base in an 

unconventional and implicit manner. 

Although there are a plethora datasets for sentiment analysis (e.g. [20]), these datasets 

may often lack generalizability to emotion-based tasks. Mohammad and Turney [21] 

have addressed this problem through the use of crowd-sourcing platforms like Amazon 

Mechanical Turk. They developed an emotionally annotated dataset of 14,000 English 

words. An existing highly popular lexicon, WordNet-Affect, has been used in many 

applications of sentiment analysis, opinion mining, and emotion detection. The De-

peche Mood emotional lexicon [22], LIWC [23], and ANEW (Affective Norms for English 

Words) [24] are three other lexicon based datasets that have been annotated based on 

dimensional models of emotions, dimensions including valence, arousal, and dominance. 

Vector Space Modeling has offered some ways of increasing performance of emotional 

classification models (e.g., [25]). The methodology was based on the deconstruction of 

semantic models through word embeddings. Within this model, the individual words are 

represented as vectors of n-dimensional space. Within this vector, the distance between 

vectors corresponds to the level of semantic similarity between words. This modeling 

technique has been applied to machine translation, Named Entity Recognition (NER) 

and has produced modest to robust results. 

Supervised Learning approaches to textual affect sensing have faced a variety of chal¬ 

lenges, mainly related to the lack of high-quality balanced data-sets. Some research has 

mitigated this limitation through the use of social media posts and microblogs, most com¬ 

monly Twitter data (e.g., [26], [27]). Emoticons, hashtags, and emojis have all been used 

as labels that support supervised training (e.g., [28], [26]). Previous approaches have 

utilized three main frameworks of emotion to support classification including Plutchik’s 

Wheel [29], Ekman 6 Emotional model [18], and Russell’s Circumplex Model of Affect 

[30]. A variety of training methods have been explored. Many of these techniques are 

within the traditional Bag of Words (BOW) domain (e.g., Support Vector Machines [31], 

Support Vector Regression [e.g., [32]). Others have mainly explored lexicon approaches 

(e.g., LIWC (Linguistic Inquiry and Word Count), MPQA, WordNet-Affect, POS) [7]. 

KNN and Decisions Trees have also been applied to the analysis of emotion within the 

text. Such approaches have produced mediocre to modest results. 
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Suttle and Ide [33] created a binary classifier using the Plutchik’s wheel and used a man¬ 

ually annotated twitter dataset with hashtags, emoticon, and emojis as labels. Results 

varied between 75 percent and 91 percent accuracy. This discrepancy in performance 

could mainly be attributed to the differences in the amounts of high-quality data for 

various emotions. For example, tweets that depicted anger and happiness were more 

common than those that depicted surprise. Still, these results are highly promising and 

demonstrate the benefits of using microblog data to support training. Other approaches 

have produced results with high levels of disparity between under-represented and highly 

representative emotions. Purver and Battersby (2012) developed a Support Vector Ma¬ 

chine (SVM) classifier. Results were moderately strong for happy emotions (82 percent) 

but were as low as 13 percent for other underrepresented emotions. Balabantaray [34] 

addressed this disparity by identifying a plethora of features to extract from manually 

labeled data (e.g., Unigrams, Bigrams, Personal-pronouns, Dependency- Parsing). 

Particularly pertinent to the current research efforts are results indicating the robust¬ 

ness of unigram models for the identification of emotions within the Circumplex model 

framework (i.e., within the four main emotional categories). Results have produced ac¬ 

curacy rates close to 90 percent (i.e., [35]) and have exploited a variety of techniques in 

combination with Naive Bayes, Support Vector Machines, Decision Trees, and KNNs. 

Furthermore, some of the previous approaches to textual affect sensing have included 

unsupervised learning techniques. Many of these techniques have utilized dimensionality 

reduction methods (e.g. Latent Semantic Analysis [LSA], Probabilistic Latent Semantic 

Analysis [PLSA], Non-Negative Matrix Factorization [NMF]). Instead of the traditional 

emotional frameworks(e.g, Circumplex Model of Affect, Ekman, Plutchik’s Wheel), un¬ 

supervised learning approaches have utilized other dimensional models (e.g., ANEW 

[Affective Norms for English Words], WordNet-Affect, NAVA (Nouns, Adjectives, Verbs, 

Adverbs). For such approaches, emotional assignments can be based upon the proxim¬ 

ity or level of syntactic dependency between words within the vectors (cosine similarity, 

Point-Wise Mutual Information [PMI] Measures). These approaches have generally pro¬ 

duced modest performance outcomes (e.g., [36]. 

Rule-based NLP systems have demonstrated robust performance within the realm of 

unsupervised learning. Rules that distinguish linguistic language patterns and the Rule-

based Emission Model have been used in combination with LIWC (Linguistic Inquiry 



       

               

        

       

       

             

             

            

             

              

              

             

      

              

           

            

              

             

              

            

         

               

             

              

            

             

            

               

              

            

16 Chapter 2 Background and Related Works 

and Word Count) Lexicon and have produced results comparable to the state of the art 

supervised learning vector-space modeling techniques (e.g., [37] ). 

2.4 Novel Approaches to Textual Affect Sensing 

2.4.1 Examining a Traditional Deep Learning Approach 

The Microsoft research lab explored the application of a simple deep learning algorithm 

to the textual emotion detection and recognition task and yielded modest results. Re¬ 

searchers addressed the lack of high-quality datasets through the use of human-expert 

labeling services like Mechanical Turk [38]. Mechanical Turk (MT) is a low-cost service 

that recruits workers to perform tasks that require some level of human intelligence (i.e., 

in this case labeling the emotional categorization of an English phrase or utterance) [38]. 

For this study, MT raters determined the regressional levels of each emotion presented 

in the text upon a continuum. 

Furthermore, the model was trained using a dataset that consisted of 784,349 samples of 

informal short English messages (tweets) within five emotional categories including the 

following: anger, sadness, fear, happiness, and excitement. The training to validation to 

testing ratio was 60 percent: 20 percent: 20 percent, respectively [38]. This dataset was 

formulated using several sources of data including the ISEAR database and the SemEval 

2007 database, two of the few, existing emotional text databases with labeled data. The 

remaining data was extracted from product reviews, journals, fiction excerpts, and news 

articles and then labeled utilizing Mechanical Turk services [38]. 

While the overall results were not state of the art, the unweighted accuracy of emotional 

recognition through text was 64.47 percent. Findings indicated that fear was the most 

difficult emotion for the model to classify accurately. On the other hand, the model 

did moderately well in recognizing emotions like anger, sadness, and excitement. The 

developed artificial neural network model consisted of three layers. The first layer has 

125 neurons, the second, 25 neurons, and the third, five neurons [38]. 

There are several limitations presented by the results of this study. [38] The sample of 

MT raters may have consisted of a small number of individuals with similar linguistic 

and cultural backgrounds. The emotional rating within the datasets may lack external 
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validity, for this reason. Perhaps a more high-quality dataset could have led to higher 

accuracy rates. Another possible limitation was the selected training model. While the 

use of a general deep learning architecture yields modest results, some studies (e.g., cite 

Seq2seq here) have shown the use of an end-to-end Recurrent Neural Network(RNN) 

based algorithm generates more high-quality results more consistently (e.g. classification 

accuracy rates of 85 percent or greater). This study was conducted in 2015 and since 

that time more and more research has surfaced that has produced more sources of high 

quality annotated emotional databases of text (e.g., Sem-Eval 2018, Clean-Balanced 

Emotional Tweets [CBET] dataset). Current and future work may utilize similar sources 

of emotionally rich annotated data [38]. 

2.5 Sequence to Sequence Architecture 

Sutskever, Vinyals, and Le [1] examined the application of a novel model to NLP deep 

learning tasks. They discovered that the performance of existing translation models 

using recurrent neural networks could be augmented through the use of the Sequence to 

Sequence Architecture (seq2seq) [1]. A state of the art performance on an English to 

French translation task was achieved. The overall performance score was within-in five 

points of the existing state of the art system ([39], achieving a BLEU score of 34.81). 

One of the identified limitations of this study’s findings was the inability of the model 

to handle words that were not presented in the training sample. However, the strengths 

of this study greatly outnumbered potential presented weaknesses.fi] Unlike previous 

models (e.g., Bag of Words Model) this model was semantically sensitive to word order 

and was able to represent new meanings for vectors with the same elements and varying 

degrees of order within the presented vector. Additionally, the proposed system was able 

to robustly handle both relatively long utterances and short utterances [1]. 

The Long-Short Term Model (LSTM), as well as the use of attention mechanisms, support 

long-range conversational flow [1]. It is important to note that this approach was not 

specifically oriented toward the contextuality of emotion through language but rather 

focused on the improvement of a generalized contextual conversational agent. Still, the 

findings of this study are relevant and applicable to the current research project.[1] The 

currently developed framework will need to utilize a system that is able to handle the 

https://weaknesses.fi


       

           

      

         

 

           

             

              

               

             

             

            

            

              

            

          

           

          

          

            

            

             

   

           

           

            

             

            

             

               

            

18 Chapter 2 Background and Related Works 

contextuality of emotional utterances throughout a conversation in order to preserve 

meaning beyond a specific conversational domain. 

2.6 Sequence to Sequence Approaches to Textual Affect Sens¬ 

ing 

Mohammad, Marquez, Salameh, and Kiritchenko (2018) [26] examined a previously de¬ 

veloped approach to Affect Sensing in Tweets ([40]). A multilingual dataset was utilized 

(i.e., datasets for English, Arabic, and Spanish). The dataset was assembled using a vari¬ 

ety of tools including DeepMoji [41], a neural network used for matching emojis to expres¬ 

sions in tweets. Altogether a dataset of over 22,000 multi-labeled tweets was assembled 

and used for training 5 comparative machine learning models on emotion analysis tasks. 

Tweets were analyzed for both coarse-level and fine-grained level of effective content. 

Finely grained scores were generated using Best-Worse Scaling (BWS) and were shown 

to have high levels of validity (e.g., split-half reliability greater than 0.80). A compara¬ 

tive examination of two machine learning approaches was conducted. It was determined 

that overall, deep learning approaches outperformed the traditional SVM-unigram ap¬ 

proaches. The top-performing models related to deep neural network representations but 

performed particularly well when combined with manually engineered features, common 

among traditional approaches (e.g, features derived from affect lexicons) [41]. 

While deep learning representation learning approaches were indicated to be highly ef¬ 

fective, it was determined that lexicons like ANEW(Affective Norms for English Words) 

([24]) and the NRC Emotion Lexicon ([42]) greatly improve the performance of generative 

deep learning models. 

Overall the system’s methodology yielded robust results. Particularly pertinent to the 

current research endeavor was the use of a regressional-dimensional emotional modeling 

framework. In fact, researchers conducted emotional analysis tasks in 5 main separate 

steps instead of one conglomerate step (i.e., 1. Regression analysis of emotional intensity; 

2. Classification of emotional intensity 3; Regressional analysis of valence; 4. Classifica¬ 

tion of emotional valence; 5. Classification of emotion). Given that the current study 

will focus on the use of a deep learning representation upon a dimensional framework of 

emotion, these results are particularly promising. However, the current study will not 
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utilize a deep learning model in conjunction with a traditional machine learning algo¬ 

rithm (e.g., Support Vector Machine/Support Vector Regression approach, as seen in 

lexicons like PlusEmo2Vec). Thus performance outcomes may have limited applicability 

to the current study. Furthermore, it was not particularly clear whether the models 

with Recurrent Neural Network (RNN) layers or Convolutional Neural Networks (CNN) 

layers yielded more robust results [26]. 

Honghao, Zhao, and Ke [43] developed a generative chatbot model using Seq2Seq ar¬ 

chitecture. Unlike typical Seq2Seq approaches, however, the system architecture was 

augmented with internal and external memory modularity. Overall, this system was de¬ 

termined to generate “reasonable responses.” This study utilized a categorical approach 

to emotion analysis, that was based upon the Ekman 6 emotion framework. Eighty-eight 

million subtitles of movies and TV programs were retrieved for model training. Another 

distinguishing characteristic of this study was the use of a pre-trained model for word 

vectorization along with the co-training word vectorization typical of seq2seq models. 

The quantitative outcomes of this study were unclear. However, it is clear that results 

were promising and indicated the strength of sequence to sequence architecture when 

applied to the generation of emotionally contextual responses [43]. 

Zhou et ah, [44] extended the previous investigation of the generation of effective dia¬ 

logue through the proposal of novel architecture, namely the Emotion Chatting Machine. 

This architecture consisted of three main mechanisms, including the following: Emotion 

Category Embedding Mechanism, Internal Memory Mechanism, External Memory Mech¬ 

anism. In contrast to some traditional approaches this approaches, that focus primarily 

on emotion detection and classification, this approach focused on providing the genera¬ 

tion of contextual responses (within an emotional domain). Overall system evaluation 

revealed that the model successfully accomplished the task of generating emotionally 

contextual responses. This system achieved a perplexity score of 65.9 compared to the 

conventional seq2seq architecture which achieved a perplexity score of 68.0. Overall this 

system attained an accuracy rate of 77.3 percent compared to the accuracy produced 

through the use of the traditional(vanilla) seq2seq model, 17.9 percent. Particularly the 

use of a knowledge corpus for the course-grained detection of emotion in conjunction 

with an internal memory module may have augmented the performance of the proposed 

model [44], 
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Perhaps the currently proposed system should seek to implement a memory module 

within current and future versions of the proposed model [44], Although the Emotion 

Chatting Machine architecture is highly state-of-the-art, it should be noted that the 

findings of this research may have limited generalizability to the currently proposed model 

given that the utilized dataset was composed of mainly Chinese (Weiblo) blog posts. 

Furthermore, a discrete categorical emotional representation (Ekman’s Framework) was 

utilized. It should be considered that current, efforts will utilize dimensional emotion 

models. Particularly pertinent to the current study is the high level of focus on the 

generative module of the system architecture, and thus the system’s overall ability to 

produce emotionally appropriate responses [44]. The current model will contribute to 

research efforts that ultimately seek to accomplish a generative dialogue task, not just 

emotion detection and analysis in isolation. Thus, the developed system produced a 

variety of responses corresponding to the intended emotion for an inputted utterances 

like, "Best day ever. I just had a huge piece of my favorite chocolate fudge cake!" 

Gee and Wang [45] expanded a previous implementation of emotional analysis tasks 

of tweets [26], through the use of transfer learning. The WASS-2017 Shared task of 

emotional intensity dataset was utilized in this research effort [46]. They found that 

the transfer learning from sentiment tasks allowed the system training to overcome the 

general lack of emotionally labeled training data. The utilized approach, transferal of 

knowledge from sentiment to emotion, is relatively unique and novel but demonstrates 

the promising potential of utilizing such an approach in the development and testing of 

the current model. 

Gee and Wang [45] utilized a previously trained model (i.e., [26]) and combined the 

penultimate layers into a single vector, through the use of hierarchical clustering. Multi¬ 

dimensional word embedding in conjunction with a single dimension lexicon base features 

allowed for the improvement of the performance of previous implementations. The devel¬ 

oped system outperformed traditional systems that train specific emotions independently. 

Zahiri and Choi [47] introduced a new corpus for emotion detection utilizing spoken dialog 

from the television show, Friends. They proposed an attentive Sequential Convolutional 

Neural Network (SCNN) model. It was revealed that this approach outperformed the 

base Convolutional Neural Network (CNN) on emotion detection tasks. Researchers 

chose to use a SCNN model due to the inability of traditional CNN approaches to take 



       

            

              

              

               

            

                

            

           

               

             

            

            

       

            

           

            

             

           

               

             

            

            

     

              

            

           

      

                 

                    

                

             

   

21 Chapter 2 Background and Related Works 

the historical context of utterances into account. While RNNs are traditionally highly 

adept at historical contextual tasks, this methodology was utilized due to the fact that 

RNNs generally require a hefty amount of data in order to prevent model overfitting 

as well as the rather slower training performance of RNNs. Through the use of the 

SCNN approach, the system attained an emotional detection accuracy of 54 percent. 

This accuracy is higher than the CNN baseline but is still less robust than some recent 

RNN approaches. These approaches will be further explored in the next section. 

Overall, RNN methodologies have achieved more robust performance outcomes on textual 

affect sensing tasks. Mageed and Ungar [48] achieved a state of the art performance on 

a system that analyzed 24 fine-grained categories of emotion, and produced an average 

accuracy rate of 87.58 percent. They extended those findings through the application 

of Robert Plutchik’s Eight Primary Emotion framework and achieved a superior overall 

accuracy of 95.68 percent (coarse-grained emotion analysis). 

This research effort augmented model performance by addressing the absence of large 

labeled datasets and demonstrating the superiority of Gated Recurrent Neural Networks 

(GRNNs), in particular, on emotion detection tasks. One potential limitation of this 

study is that it utilized a different framework than the selected dimensional emotion 

framework utilized for current research endeavors (Circumplex Model of Affect). Per¬ 

haps, for this reason, findings may not be as applicable to the current research aim. 

However, this is unlikely given the use of large high-quality dataset. Furthermore, it 

should be noted that the GRNN architecture may perform significantly better than 

RNN approaches if applied to methodologies of current and future development efforts 

of the proposed framework [48]. 

Shirai et al. [49], conducted a comparative analysis of several deep learning algorithms on 

textual affect sensing. This analysis was conducted through the development of complaint 

classification systems. Several RNN models were utilized including the following: FNN, 

GRU, LSTM, GRU-GRU, LSTM-GRU, GRU-LSTM, LSTM. 

The FNN model outperformed most of the others by a slight margin (i.e., p = 0.859, r 

= 0.856) but was followed by the GRU (i.e., p = 0.847, r = 0.845) and LSTM (i.e., p = 

0.857, p = 0.55) approaches. It should be noted that findings from this study may have 

limited generalizability due to the use of a non-English dataset (consisting of utterances 

in Thai) [49]. 
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Majumder et al. [50] analyzed dyadic emotion conversations recorded through video. 

They utilized the conversational memory network architecture to conduct this analysis. 

This model augmented previous state of the art approaches (e.g., LSTM) which generally 

perform poorly on long-range summarization tasks, though they have robust overall per¬ 

formance (e.g, [51]). They developed a system capable of handling long-range emotional 

trajectories through the use of contextual memory networks, that is a continuous vector 

that keeps a historical recollection of contextual cues within memory cells. The use of an 

attention module further augmented the performance of the model. Overall this model 

outperformed the existing state of the art approach (increased accuracy rate by three to 

four percent). 

While the findings are informative to the current study, the analyzed dataset consisted of 

video-based conversations. The current model will examine datasets that contain textual 

affective utterances, thus these results have limited applicability. 

2.7 Limitations of Previous Approaches to Textual Affect 

Sensing 

Textual Affect Sensing continues to be a hard problem of Artificial Intelligence [1]. Emo¬ 

tional representations as a framework continue to be a difficult task within various fields 

of psychology. Previous attempts to determine emotional salience through text have 

focused heavily on rule-based and Support Vector Machine (SVM) approaches. While 

these approaches have yielded modest results, the outcomes have been limited, due to the 

lack of consideration for the order of presented words in a vector. The currently proposed 

model seeks to extend previous research in the area of textual affect sensing, by apply¬ 

ing a recently developed approach to natural language processing, deep-learning focused 

sequence analysis. The current approach will address these limitations by leveraging the 

strengths of the seq2seq architecture [1]. 
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2.8 Overview of Currently Proposed System Architecture 

This architecture is the current state of the art for natural language processing tasks and 

has been used in recent years for the improvement of textual affect analysis and conversa¬ 

tional models. There are several pertinent benefits to applying the seq2seq architecture 

to the current system. First, unlike the previous machine learning architectures, seq2Seq 

allows for robust performance outcomes on both relatively long utterances (e.g., greater 

than or equal to 255 characters) and relatively short utterances (e.g., shorter than 255 

characters). This will be a particular benefit for the current study seeing that users of 

the interactive educational system under long-term development may offer utterances of 

varied length. While it is preferred that the utterances should have a brief conversational 

length. It is beneficial to have system architecture should be prepared to handle a variety 

of verboseness among inputted utterances. 

The most pertinent benefit of the proposed system architecture is that the seq2seq ar¬ 

chitecture would allow the model to vectorize inputted utterances in a way that takes 

linguistic ordering into account. The previous Bag of Words models have accounted for 

the frequency of words in the "system vocabulary" more so, than the contextual cues 

between and surrounding those words. The current system will seek to address the limi¬ 

tation by utilizing a Recurrent Neural Network approach. Recurrent Neural Networks are 

Artificial Neural Networks that feed the output back into the network recursively. The 

use of such networks allows for the contextual remembrance between neuronal network 

layers and thus the analysis of input in a sequence (e.g., the sequence of words in the 

text). This will be a particularly important strength given that future uses of the devel¬ 

oped model at the Army Research Institute will enhance currently developed interactive 

learning simulation software, which presents scenarios to junior officers. Junior officers 

will be required to provide verbal utterances that demonstrate empathetic leadership 

styles to virtual agents within interactive scenarios. It is expected, that in the future the 

virtual agents will remember emotional context between scenes (e.g., a virtual character 

will keep a historical recollection of the previous user utterances and the corresponding 

influence on the agent’s state within a previous scene; the agent may offer an utterance 

that will reflect the resulting emotional state). The use of the Seq2Seq architecture will 

allow for the representation of an "emotional memory" of virtual characters in future 

research endeavors. 
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2.9 Overview 

Overall, traditional textual affect sensing expert methodologies have produced mediocre 

to modest results. This can be attributed to several limitations. Linguistic emotional 

expression is a highly complicated phenomenon. The use of metaphorical expressions 

and implicit context dependencies make linguistic expressions of emotions even more 

ambiguous. This is still a hard-task for machine learning algorithms and has yet to be 

fully explored in current and past bodies of research. Secondly, high-quality datasets cor¬ 

responding to contiguous emotional models (e.g., Circumplex Model of Affect). While 

micro-blog datasets (tweets) have allowed for the mitigation of limitations related to the 

expressions of emotions on social media are not necessarily characteristic of day to day 

emotional expression seen in everyday dialogues. There is still a high need for annotated 

conversational data with balanced amounts of data for various emotions. Lastly, current 

models of emotions are inefficient, most of them are limited to Bag-of-Words representa¬ 

tions. Such limitations have relied more heavily on the content of words within a vector 

rather than the relationships between words in those vectors. This is a huge limitation 

given that linguistic emotional expression is highly contextual. 

More novel approaches may utilize neural networks in order to fully characterize those 

dependencies within emotional analysis tasks. LSTM-based Recurrent Neural Networks, 

which allow for the “historical recollection” of contextual cues throughout the conversa¬ 

tional vectors, can be particularly useful in the accomplishment of the Natural Language 

Understanding (NLU) based textual affect sensing tasks. The goal of NLU is to un¬ 

cover deeper semantic meanings within text [6]. Chapter three will overview recent deep 

learning approaches to conversational agent development. 



  

  

            

             

             

            

            

              

           

            

          

                

            

            

              

      

           

              

           

              

              

              

       

 

Chapter 3 

Conversational Agents 

Dialog has become a common interactional medium between human users and machines 

in recent years [52], Some examples of popular or commonly known chatbots include 

personal home assistants Amazon Alexa, Amazon Echo, and Google Home. A few of 

the advantages offered through conversational agents include the decrease in cost for 

customer service resources among major companies, the use of an intuitive interface 

with which more users may be more familiar (e.g., ’Alexa open YouTube,’ instead of 

fire-stick buttons). Furthermore, due to recent advances (e.g., deep learning approaches 

to sentiment analysis (e.g., [26]), recent approaches to information delivery (e.g.,[52]) in 

conversational agent development, delivery has become more personalized (e.g., ’Traffic 

is low this morning, it will take you 11 minutes to arrive’). Due to these advances, 

conversational agents are getting closer to passing the infamous Turing Test, simulating 

a human conversation convincingly and realistically. Some may argue that this feat 

has already been accomplished. The current research aim is to model the simulation of 

empathy-based human to human conversation ]53]. 

Conversational agents are dialog systems that mimic realistic interactions between peo¬ 

ple [53] [54]. They may embody conversational agents (e.g., be presented as the avatar, 

humanoid), be traditional voice-based (systems that receive mainly sensory speech in¬ 

put) , or text-based systems (receive mainly text input). One type of conversational agent 

is the chatbot. Chatbots receive natural language input and utilize this to produce a 

goal-directed output on behalf of the human user. Chatbots are considered to be both 

social agents and intelligent agents [53] [54], 

25 



     

           

              

          

              

            

               

           

     

             

           

            

          

            

              

               

             

             

             

             

  

              

           

          

               

             

           

           

             

            

           

           

26 Chapter 3 Conversational Agents 

Intelligent agents are autonomous, reactive, social and most importantly adaptable [54] 

[53]. Chatbots that are adaptable are intelligent and are to learn from previous experi¬ 

ences (i.e., dialog exchanges). Generally, intelligent conversational agents can generate 

novel responses given novel inputs. They also train them to respond differently to those 

utterances in the future. Machine learning algorithms (e.g., Markov, Deep Neural Net¬ 

works) have allowed for the emergence of state of the art chatbots that anticipate future 

interactions from previous interactions with human users. However, chatbots have not 

always been adaptable [54] [53]. 

Early approaches to chatbot development focused on the use of hand-crafted rules, key¬ 

word matching, and minimal context identification techniques. [53] These systems (e.g., 

ELIZA, ALICE (particularly popular for a pattern matching XML based chatbot devel¬ 

opment language, and Artificial Intelligence Markup Language (AIML)) were exemplary 

stepping stones within the field of conversational agent development because they at¬ 

tempt to pass the Turing Test. However, when conversing with many of these earlier 

systems, it was clear to most human users that conversation was taking place with a 

machine instead of a person. While today’s chatbots have not been unanimous "Turing 

Test approved," great advances have been made that provide more realistic and fluid 

interactions between humans and machines. For example, this is used to deceive users 

on online social media platforms, like Twitter (e.g., Sybil bots) to propagate malicious 

software [53]. 

The interaction between chatbots and human users are determined by the use of the 

conversational interface [54], There are two main types of conversational interfaces: 

transactional and conversational. Transactional chatbots are utilized for the accomplish¬ 

ment of specific tasks (e.g., "place an order for matcha green tea on Amazon," "show 

me the movie schedule for today"). Conversational chatbots are mainly used for social 

(“chit-chat”) purposes. Chatbots may be either text-based or voice-based. Overall, these 

interaction styles determine the delivery of human-centered services and responses. To 

support this style of interaction, chatbots must be capable of more than rudimentary 

processing of natural language, going a step further to extract meaningful information 

from presented utterances. This is why Natural Language Understanding continues to 

be a related task in the development of conversational agents [54], 



     

       

 

           

             

               

            

     

            

            

             

      

           

            

             

    

            

            

            

               

             

             

 

             

           

              

            

   

              

         

27 Chapter 3 Conversational Agents 

3.1 Natural Language Understanding for Conversational In¬ 

terfaces 

Many modern natural language toolkits are utilized for Natural Language Understanding 

(NLU) tasks [54], These toolkits extract intents and entities for natural language input. 

The intents are actions or goals that the user seeks to accomplish (e.g., "Request an 

Uber ride," "Order my favorite three topping mushroom pizza"); entities are parameters 

necessary to achieve those tasks. 

Intent recognition is typically a machine learning task (e.g., traditionally Support Vector 

MachinefSVM] / Bag of Words (BoW) Classification) [54], For these machine learn¬ 

ing tasks sample, utterances are introduced to the machine, and the similarities and 

variations among those samples are determined. 

As previously mentioned, intents are parameters that allow leverage intent recognition 

tasks. Examples of intents include location, time, and pizza toppings. Recurrent Neural 

Networks have been particularly useful for entity extraction in recent research (e.g., [55]). 

3.1.1 Conversational Interaction Styles 

The requirements of NLU tasks often guide conversational interaction. There are four 

main types of interactional styles between users and agents: one-shot queries dialogue, 

slot filling dialogue, mixed interaction, and open-ended dialogue) [54]. One shot queries 

are user-initiated and occur in the simple input-output pair format (e.g., '‘play a song that 

will lift my mood”). Slot filling dialogue systems collect information to fulfill requirements 

for user responses(e.g., "User: schedule an Uber ride," "System: What time?", "User: 9 

a.m."). 

For this interactional style, follow up questions are useful because they leverage the 

collection of pertinent information for entity extraction. Mixed dialogue systems are 

both system initiated (as are slot filling dialogue systems) and user-initiated (as are one-

shot queries). Developmental efforts may be centered upon the right balance between 

the two [54]. 

Open-ended dialogue systems strive for a blend of interactional styles (e.g., mixed init iate, 

multi-turn, multi-contextuality maintenance) and allow for more fluid, conversational 



     

              

           

          

           

             

                

    

      

           

          

                 

             

           

              

         

               

                

             

              

             

             

          

               

              

 

           

              

        

28 Chapter 3 Conversational Agents 

flow. These are the most popular systems in current use today (e.g., Google Home, 

Siri, Amazon Alexa). There are currently popular platforms for open-ended dialogue 

system development (e.g., Dialog Flow, Motion.AI, Amazon Alexa Developer, Microsoft 

Bot Framework/Cortana, and IBM Watson Conversation). While they are all useful 

and adept at NLU tasks, DialogFlow is the platform utilized within current research 

efforts. Furthermore, this will be allowed due to the low cost to users and the natural 

developmental interface style [54], 

3.2 Using Google’s DialogFlow Dialogue Platform 

DialogFlow is a Google-owned chatbot development platform that facilitates the aug¬ 

mentations of the human-computer interaction through conversation [54]. This company 

was founded in 2010 and bought by Google in 2016. Dialog Flow is used to create conver¬ 

sational interfaces for an eclectic range of purposes (e.g., phone apps, wearables, smart 

devices, and customer service chatbots). The robust support of voice-recognition, text 

to speech tasks, and text-based text speech conversion tasks make this platform an ideal 

choice for the simplified development of specific task chatbots. 

Dialog Flow has a plethora of strengths such as easy and natural invocations (e.g., can 

invoke chatbot to begin a conversation the same way you would a friend, the flexible use 

of intents (i.e., context, user utterances events, action, and responses); robust training of 

intents (i.e., bot can recognize specific intents from a wide range of presented utterances 

with very little training data). The flexible use of entities (e.g., parameters identified 

by the agent during a conversation [i.e., time, location, weather]); increased flexibility of 

agent responses provided through the use of fulfillment requests [54]. 

Along with these benefits, the system has an intuitive setup for users with an existing 

Google account. In addition, it has a free non-enterprise edition available to all customers 

[54]. 

DialogFlow offers a cheap, quick, and effective chatbot development environment [54]. 

DialogFlow does all the heavy lifting on the front-end side of development to facilitate 

testing and simulation on the back-end development side. 

https://Motion.AI


     

           

          

             

             

             

            

           

             

           

            

             

               

           

           

               

             

               

 

       

            

            

           

         

             

            

               

             

               

     

29 Chapter 3 Conversational Agents 

Most importantly Dialog Flow, being Google-owned, offers similar benefits as other 

Google natural language processing platforms (e.g., DeepMind) (robust and powerful 

state of the art mechanisms for extracting semantic meaning from language) [54). Intent 

recognition is still powerful and highly accurate with relatively low sample size. Af¬ 

ter intent training, the system can recognize valid intent, handle errors, and recognize 

similar natural language utterances while also retrieving valid responses for the user. 

Furthermore, the agents contains pre-defmed default intents (e.g., parent intent, follow 

up intent) as well as fallbacks for queries (e.g., yes/no, cancel) [1] [54], 

Dialog Flow allows simultaneous deployment of multiple specialized domain chatbots to 

conduct analytical comparisons of the datasets. [54] DialogFlow will support the current 

research in the following ways: all the determination of the proportion of validation 

data to train data in the production of optimal accuracy rates; allow for observation of 

alternative conversational modeling techniques for future usage in future tools [54]. 

This model provides a human-level conversation with the agent (i.e., Tensorflow-based 

agent predicted to be more likely to pass the Turing test). Unlike the traditional NLP 

model, this particular model will be a generative natural language model. Through the 

use of this model; it will be able to generate novel responses to novel inputted-utterances 

[54]-

3.2.1 Other Approaches to Conversational Agent Development 

As previously mentioned in Chapter 2, previous approaches to conversational agent de¬ 

velopment have been costly, error-prone, and lack generalizability to an external do¬ 

main (e.g., handcrafted rule based chatbots like ELIZA). Statistical conversational agents 

leverage unsupervised reinforcement learning and Markov Decision Processing (POMDPs); 

however, they suffer weaknesses of having intractable decision sample spaces. End to End 

deep learning approaches are the most recent developmental efforts. They produce large 

corpora of dialog word by word and require large amounts of data (typical among super¬ 

vised machine learning training tasks). The current research effort examines the use of 

this type of end to end conversational modeling, that is the application of the sequence 

to sequence architecture (seq2seq) [54], 



     

     

            

            

             

             

             

             

         

            

                

            

           

  

          

               

               

           

            

          

                 

             

           

      

30 Chapter 3 Conversational Agents 

3.2.2 Quality Attributes of Chatbots 

Several factors determine the quality of a chatbot (e.g., performance, humanity, affect, 

and accessibility) [54]. Particularly relevant to current research aims are the performance 

and affect qualities. Conversational agents should pass the Turing test and include human 

errors to add an element of realism since communication between humans is generally 

not perfect. Interaction should be natural and seamless. Affect is a particularly appro¬ 

priate quality for the current project given the intended purpose of assessing empathetic 

conversation among soldiers. Conversational agents should provide greetings, convey 

personality, warmth, and authenticity. They should to offer and evaluate emotional cues 

(read and respond to the state of the human user). The use of a quality emotion-based 

dialog corpus in conjunction with general conversation corpus (e.g., Cornell Movie Dialog 

Corpus [19]) will allow for the facilitation of affective qualities [54], 

3.3 Overview 

Overall, traditional conversational agents, generally do not produce human-level dia¬ 

logue exchanges. The tasks like the Turing Test, continue to pose a challenge for even 

modern dialog systems. Thus, this task remains to be a hard problem of Artificial In¬ 

telligence. Still, recent advances allow for practical and realistic interaction modeling 

between human users and conversational agents. A platform like DialogFlow allow for 

cost-effective development of highly adaptable and flexible free-range dialog exchanges 

at a low cost, with a relatively small dataset. This may be because of the inner workings 

of DialogFlow; which may be parallel to state-of-the-art models that utilize the Seq2Seq 

architecture. Current research explores the use of both DialogFlow chatbot development 

and implementation of the Seq2Seq architecture. 



  

  

             

            

             

             

              

           

          

           

          

              

               

                  

               

               

         

             

               

            

            

           

 

Chapter 4 

Deep Learning 

The most common goal of artificial intelligence is to make machines adaptable [56]. 

Adaptability is a strength that has been commonly identified within human cognition 

(e.g., visual or audio perception). For this reason, machine learning experts may of¬ 

ten seek to draw inspiration from the inner workings of neuro-anatomy. This source 

of inspiration facilitates the design of algorithms that may be used to tackle daunting 

computational tasks (e.g., speech or image recognition). Most traditional computer pro¬ 

grams are not adaptable. Traditional computing facilitates quick arithmetic calculations 

and the efficient sequential execution of predefined instructions. However, when applied 

to problems that require human intelligence and computational flexibility, traditional 

computing has its limits. An example of such a problem is the automatic recognition 

of handwritten digits [56]. In what way could a program be written to capture the 

nuances of this type of tasks flexibly? Perhaps, a rule like, ‘if it is a closed loop, the 

digit is a O’, could be considered, however, there would be many exceptions to consider 

(i.e., what if the loop is incomplete?). A program like this could be convoluted and 

lengthy. Biologically-inspired computational techniques offer a more sophisticated ap¬ 

proach. Deep Learning is a field that has experienced numerous advances within the 

past ten years and may provide better ways to solve problems that require human intel¬ 

ligence. Current research aims to develop a computational approach for classifying and 

generating emotional text-based utterances. For problems that require a high level of 

human intuition, Seq2Seq deep learning architectures may be more effective [56]. 

31 



     

        

  

               

             

          

            

             

     

           

               

       

         

 

          

         

            

            

           

    

           

              

            

            

          

              

                

        

32 Chapter 4 Deep Learning 

4.1 Deep Learning, A Biologically Inspired Machine Learn¬ 

ing Approach 

Deep Learning is a field that may be challenging to define universally. However, there is 

one consensus, deep learning is based upon a set of experience-driven machine learning 

techniques. Machine Learning, a subset of Artificial Intelligence, provides techniques 

that allow models to learn through the presentation of examples. These techniques 

are reflective biological learning (i.e., changes in the way neurons respond to salient 

environmental stimuli, over time) [56]. 

Machine Learning algorithms are more concise than traditional rule-based programs. A 

small set of rules supplement Machine Learning models and allow for a decrease in the 

error during each iteration of training [56]. 

4.1.1 Recent Deep Learning Approaches to Natural Language Under¬ 

standing 

Experience-driven machine learning techniques are becoming a ubiquitous standard for 

approaching Natural Language Understanding (NLU) tasks (e.g., emotion extraction 

from the text). Two popular NLU algorithms include Recurrent Neural Networks (RNNs) 

and Convolutional Neural Networks (CNNs). Both sets of algorithms have produced high 

accuracy rates on emotion ([57]) and sentiment ([58]) analysis problems [59]. 

4.1.2 Approaches using CNNs 

Convolutional Neural Networks (CNNs) extract high level features for word constitutions 

(n-grams) and have been used for a variety of linguistic tasks including, sentiment analy¬ 

sis [51] , text summarization[60], question answering systems [61], and sarcasm detection 

(62]. These hierarchical systems rely on computational techniques like max pooling to 

mimic biologically inspired sensation perceptual systems (e.g., visual information pro¬ 

cessing which relies on a hierarchy of specialized cells between light processing cells in 

the eye and the visual cortex). The strength of CNNs is the algorithm’s ability to extract 

the most important word constitutions(n-graxns) from text [63]. 



     

             

             

           

           

            

            

             

  

    

              

           

            

           

          

             

         

       

           

            

            

            

           

          

             

              

33 Chapter 4 Deep Learning 

The Latin etymology of the word convolution, ’convolere,’ means to ‘roll together.’ Con¬ 

volutional Neural Networks are inspired by the visuosensory perception that is the hi¬ 

erarchical aggregation of lower level information (environmental stimuli) to higher level 

information. Similarly, word n-grams are aggregated into sentence vectors, as informa¬ 

tion passes through convolutional and max-pooling layers. For these reasons, CNNs are 

adept at high-level feature extraction and semantic representation but utilized within the 

current architecture due to the general inability of CNNs to capture long-range temporal 

dependencies [64], 

4.1.3 Approaches using RNNs 

RNNs offer an effective way to model the inherent sequential nature of language. The 

inner-workings of this algorithm will be further explored later. Additionally, RNNs 

perform robustly on the extraction of context dependencies from utterances of variable 

length. Multi-level text categorization [64], image captioning [65], speech recognition [66], 

machine translation [39], multi-modal sentiment analysis [67], subjectivity detection [68], 

sentiment analysis [69], emotion detection [70], and language modeling [71] are all tasks 

to which RNN approaches have been effectively applied. [72] 

4.1.4 Training a Neural Network through Backpropagation 

Backpropagation is the algorithm that facilitates the "learning" process within artifi¬ 

cial neural networks. Within, traditional networks, the goal of backpropagation is to 

minimize training error (the difference between target output values and actual output 

values) through the iterative adjustment of weights within the network’s layers [73]. 

The back-propagation algorithm within RNNs is slightly modified. Within RNNs the 

backpropagation algorithm is referred to as, Backpropagation Through Time (BPTT). 

The main difference is that this algorithm allows for training that "unfolds" temporally 

through time. In this way, weight updates are aggregated during each time step. [73]. 
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4.1.5 RNN Cell Types 

The basic unit of an RNN is the recurrent cell, which contains parameters within matri¬ 

ces. These matrices utilize the current input and current state of the cell to compute the 

upcoming state and output values. [72] The most basic representation of the recurrent 

memory cell is a simple RNN. The simple cell takes two input values (current and previ¬ 

ously hidden states) and generates two output values. An output that can be passed to 

the next hidden layer or softmax layer is computed. The other output is fed back into 

the hidden state [72], 

Within the simple RNN cells, inputs are concatenated together as they pass through 

the feed-forward layers. The computation of the current state involves the repeated 

multiplication of coefficients within the weight matrices and can, therefore, lead to a 

couple of well-known problems within neural network training: exploding gradient and 

vanishing gradient. When some of the coefficients with the weight matrices are greater 

than one output values may become very large too soon. When coefficients are close to 

zero, the network quickly loses information as the network training propagates through 

time. The solution to the exploding gradient within traditional natural networks is the 

use of a nonlinear function that limits the coefficient to one. In order to solve this 

problem, alternative RNN cell types have been developed(i.e., LSTM, GRU) [72], These 

cell types will be discussed further in upcoming sections. 

4.1.5.1 Long Short-Term Memory (LSTM) 

LSTM cells originated in 1997 and are more complex than the traditional vanilla RNN. 

These cells have three gates (i.e., forget gate, input gate, and output gate) that limit the 

amount of information processed by the network at a given time step. The forget gate 

determines how much of the previously hidden gate to pass on to the next time step; 

the input gate determines how much the current input to consider in the computation 

of the output, and the output gate determines how much of the output will be included 

by the hidden state. This modified approach allows for increased management of long 

term dependencies. The LSTM architecture addresses the vanishing gradient problem 

through the use of an activation function that utilizes an identity activation function with 
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a derivative of one. This way, the gradient neither subject to vanishing or exploding and 

remains constant throughout network training [72]. 

4.1.5.2 Gated Recurrent Units (GRU) 

The Gated Recurrent Units (GRU) is an alternative cell type that addresses the vanishing 

and exploding grading descent problems seen within traditional RNNs architectures. [73] 

It does so through the use of two gates (i.e., reset gate, update gate). These gates incre¬ 

mentally determine how much of the hidden state’s information is retained or forgotten 

throughout the sequential information processing steps. This architecture is simpler than 

that of the LSTM. Within this architecture, there is no need for an output gate. Thus, 

fewer parameters are required through the use of this cell type within the architecture. 

Furthermore, it utilizes a single state vector that does not distinguish between the cur¬ 

rent and hidden step. Recent comparative research has concluded that LSTM and GRUs 

both have superior performance compared to the vanilla architecture; however, there are 

no indicators that one performs better than the other. [73] [59] 

(a) Long Short-Term Memory (b) Gated Recurrent Unit 

Figure 4,1: GRU and LSTM cell architecture [1] 

4.2 Examining RNN Model Inputs: Word Embeddings 

Now that a foundational understanding of the Recurrent Neural Network, the learning 

process, and the basic units that facilitate this learning (cells), has been established the 

model input may now be considered. Recurrent Neural Networks, like all ANNs, take 

in inputs as numerical values. For this reason, for inputted sentences, words must first 

be converted into numerical representations. Likewise, characters may be converted into 

numerical representations, depending on the needs of the algorithm. The one hot word 
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vector is the most simple and naive input form. It consists of an array that is the same 

length as the input dictionary. Within this representation, indices that do not correspond 

to a word in the dictionary contain zeros [73], 

Other approaches combine stemming and lemmatization. Stemming reduces the size of 

the vocabulary by stripping words down to just their roots (without the suffixes) while 

lemmatization applies more powerful rules for the removal of information within the 

vocabulary [73]. 

All of these approaches have one huge limitation. There is no consideration of semantic 

and syntactical information or the relation between words. These traditional embeddings 

leave the model to do all of the arduous work of extracting meaning. The inclusion of 

prepossessing layers at the beginning of the neural network that predicts words based 

on their context allows for training that is quicker and more efficient. Distributional 

semantics address this weakness through mapping of words a dense real vector of fixed 

dimensions. This optimized semantic distributions approach allows for the retention of 

the maximum amount of relational information [73]. 

These distributional semantic representations are often referred to as word embedding, 

address the well-known curse of dimensionality. Distributional semantics reduce the 

dimensions of the input dictionary vectors and are usually pre-trained on a large corpus 

of unlabeled data [59] [73]. 

Vectors make it possible to consider the similarity of words and find semantic neighbors. 

Additionally, they allow for the grouping of words(n-grams) that convey similar meanings 

(e.g., n-grams)[59] [73]. 

Word embeddings were highly popularized by works that made use of the Continuous Bag 

of Words (CBOW) and Skip-Gram Models for the production of high quality distributed 

vector representations [63] [73]. 

4.2.1 Word2Vec Embeddings 

Mikolov [74] revolutionized word embeddings with a novel contextuality based approach. 

This approach utilizes Continuous Bag of Words (CBOW) models and Skip Gram models. 

CBOW models compute the conditional probability of the target words based upon the 
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context of words in a surrounding window of a specified size, while skip grams do the 

opposite. They predict the surrounding context of words given a central target word. 

This approach is particularly useful because it allows for the representation of word 

groups (phrases). However, one concern is that, depending on the size of the context 

windows, word of different sentiments (i.e., good, bad) can be labeled with the same 

embedding [63] [73]. 

4.2.2 Character Embedding 

While word embeddings are adept at capturing syntactic and semantic information they 

may not be adequate for some other Natural Language Understanding(NLU) tasks like 

POS Tagging, Named Entity Recognition (NER), and intra-word morphology determi¬ 

nation. NLU systems that process character-level input may be useful for such tasks. 

Character-Level embeddings have been particularly effective on multilingual neural lan¬ 

guage models. Making them particularly useful is their ability to deal effectively with 

Out of Vocabulary (OOV) words (e.g., grammatical errors) [59]. 

4.3 RNNs Augmented with Attention 

RNN model-augmentations like the use of LSTM cells and distributed representations 

(word embeddings) have improved the preservation of information within long-term con¬ 

text dependencies. However, this model has been further improved through the use of 

attention mechanism techniques [63] [73]. 

The traditional encoder-decoder architectures have been required to process irrelevant 

information for the model task. The processing of the irrelevant information has been 

prone to decreasing overall model efficiency, especially when lengthy or information-

heavy inputs are supplied. One way this limitation has been mitigated is through the 

use of selective encoding techniques that allow for the continual back-referencing to the 

encoder. A context vector is calculated using an input hidden state sequence is utilized 

by the decoder as a way of keeping a reference of only the most pertinent information 

for task-handling within the encoder. Namely, this particular technique is known as an, 

attention mechanism. Sequential Tasks like text summarization and machine translation 



     

             

  

        

    

              

             

           

             

                

            

             

               

        

       

            

          

           

           

             

             

   

38 Chapter 4 Deep Learning 

(e.g., [39], [75]) have been improved through the use of attention mechanism techniques 

[63] [73], 

4.4 More on Tackling Sequential Machine Learning Tasks 

with RNNs: Seq2Seq Architecture 

Sutskever, Vinyals, and Le [1] examined the development of a model that allows for 

the mapping of sequential information to vector representations, that is sequences to se¬ 

quences. A multi-layered LSTM that mapped inputted vectors to a fixed-dimensionality 

vector was utilized in conjunction with another LSTM that decided the sequence from 

the context vector. State of the art results was achieved (i.e., BLEU score of 34.81 on 

Neural Machine Translation task). Since the introduction of this new technique, this 

model has become the state of the art on sequential information processing research. 

This architecture is generally known as Seq2Seq and will be utilized for the modeling of 

sequential information with affective-conversation within specific conversational domains 

(scenarios) for the current research aim [1]. 

As previously mentioned RNNs are adept at mapping sequences to sequences partic¬ 

ularly when alignments between the inputs and outputs predetermined. Weaknesses 

of the vanilla RNNs were previously examined. Particularly those weaknesses include 

long-range temporal dependencies limitations and the loss of information as propaga¬ 

tion through network takes place. The seq2seq architecture is the specific model that 

addresses the deficiencies through the use of the combined LSTM encoder and LSTM 

decoder networks [1]. 
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Figure 4.2: As seen, here given the source sequence xl, x2,.xm and a target 
sequence yl, y2, ... .ym this model estimates the conditional probability Pr(yl, y2, 
.yn | xl, x2, ... xm). As seen in the figure, “How”, “are”, “you”, “<EOL>” computes 
the probability of the sequence “I”, “am”, fine”, “<EOL>” where EOL represents a special 

end-of-sentence symbol. [1] [76] 

4.5 Applying Seq2Seq Architecture to Textual Affect Anal¬ 

ysis 

Long-term temporal context dependencies allow for state of the art of processing both 

long and short term dependencies. This has been shown in previous bodies of litera¬ 

ture that have examined the application of the architecture to sentiment analysis tasks 

and some aspects of textual affect analysis (e.g., [77]). Making this architecture par¬ 

ticularly useful, is the maintenance of input representations for utterances of variable 

length. Furthermore, this model allows for the consideration of relevant and appropriate 

information for the output of responses, through the use of attention mechanism-based 

model embeddings that focus on selective regions of an inputted sentence). This means 

that from a human perspective, the model output should make more sense to a human 

user given the intent of the inputted emotional utterance (e.g., input: "SGT you’ve done 

a fantastic job with keeping the platoon in top shape. Great work!", response: "Thanks 

Sergeant I am elated to hear that."; vs input: "SGT you’ve done a fantastic job with 

keeping the platoon in top shape. Great work!", "I know what I am doing. Stay out of 

my business and get your platoon in shape.") Furthermore, based on previous research 

current predictions of model support the prevalence of an evaluative perplexity score 
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within 5 points of the LSTM standard (47.2 points) [78]. It is important to note that the 

application of Seq2Seq to emotion analysis within conversational models has not been 

widely examined, due to the complexity of this task. 

4.6 Overview 

This chapter has covered the basics of the deep learning models that can tackle the 

contextual processing of sequential information, like that seen in affective conversational 

analysis. The current research aims to develop a model adept at extracting and leveraging 

emotional data from text. RNN models, particularly the Seq2Seq architecture, facilitates 

robust sequence analysis tasks, and allow for the training of model’s that can "remember" 

previously inputted emotional cues. [1] Leveraging the strength of these models will be 

pertinent to current and future research endeavors. The upcoming chapter will cover 

experimental evaluations of the currently proposed model, using two primary platforms, 

DialogFlow and a TensorFlow based implementation in Python. Both of these approaches 

offer ways to extract emotionally and contextually relevant information from text within 

conversational agents, utilizing the seq2seq architecture. 



  

  

            

         

              

             

           

            

               

            

             

           

            

 

   

           

             

              

 

             

           

 

Chapter 5 

Experimental Evaluation 

This chapter presents the evaluation of two comparative methodologies for two machine 

learning tasks: emotion classification, and emotional response generation. Methodologies 

for the first task consists of the following: the development of a conversational dialogue 

corpus (i.e., Real World Professional Conflicts Dialog Corpus), the training of a Dialog 

Flow-based emotion classifier with the compiled dataset. The Real World Professional 

Conflicts Dialogue Corpus contains utterances in four emotional regions on the Circum-

plex Model of Affect. The second task entails two phases of model training: 1) training 

a generative conversation model on a general conversation corpus (i.e., Cornell Movie 

Dialogue Corpus); 2) Fine-tuning the conversational model by training on a specific set 

of emotion-based utterances (i.e., Real World Professional Conflicts Dialog Corpus). Up¬ 

coming sections will further detail the experimental evaluation of the current research 

aim. 

5.1 Evaluation Metrics 

The classification task is performed utilizing the DialogFlow conversational agent plat¬ 

form. This platform allows for the training of various chatbots utilizing intent recognition 

and entity. Accuracy is the primary metric utilized in evaluating the performance of this 

model. 

Evaluation of the generative conversational model makes a note of the following defi¬ 

nition of conversational modeling: “The mapping of utterances to responses[79]. The 
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42 Chapter 5 Experimental Evaluation 

current research aim utilizes a combined encoder LSTM (which takes in the utterance) 

and decoder LSTM (which produces a response to that utterance). Thus the general aim 

of current methodological evaluation is to observe how well the generative model maps 

inputted responses to target utterances within the intended emotional and conversational 

contexts. This is a highly complex task to evaluate. Currently, there are no automatic 

evaluation metrics for chatbots. Thus, many chatbots are evaluated with a Turing Test. 

Turing Test evaluations can be costly and time-consuming. For this reason, automatic 

neural machine translation metrics may be more useful for the current evaluation process. 

Many traditional seq2seq conversation tasks have done so utilizing the neural machine 

translation automatic evaluation metric, BLEU (i.e., inspired by Google’s zero-shot mul¬ 

tilingual translation system [80]). The general goal of BLEU is to determine how well 

the model produces reasonable responses to input (i.e., carry out decent conversation 

and the level of entropy among inputted and outputted utterances) [27] [79]. 

5.2 Datasets 

5.2.0.1 Real World Professional Conflicts scenario-Corpus 

The Real World Professional Conflicts Corpus was developed at Army Research Insti¬ 

tute facilities at the Fort Benning Installation. Over 3400 utterances were collected in 

response to Army-specific real-world professional conflict scenarios. The majority of ut¬ 

terances were collected at MCoE Army Training facilities while the remaining utterances 

were collected via a Qualtrics delivered assessment. Some SONA participants received 

varying degrees of extra credit as determined by various instructors in the Psychology 

department. 

A self-report survey was administered through Qualtrics, a web-based survey deploy¬ 

ment platform available through Columbus State LIniversity’s Technology Department 

[81], The sample included participants who were 18 years of age or older from all demo¬ 

graphics. Approximately 49 participants from the Columbus State University Psychology 

Department provided responses that contributed to this corpus. Responses for 29 of these 

participants were utilized in the dataset. The remainder of these responses were set aside 

for future research endeavors at ARI facilities. These responses were not utilized in cur¬ 

rent iterations of training, because these utterances did not correspond to the four main 
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domains(scenarios) of interest; or were incomplete. A total of 96 students from IBOLC 

and ABOLC provided responses that contributed to this corpus. A free response battery 

was delivered to junior officers in MCoE facilities via Portable Document Format-based 

assessments. To optimize the quality of the dataset, responses from participants who did 

not respond conversationally, and instead responded in an instructional manner (e.g., 

"Tell the soldier that he needs to straighten up his attitude or he’s out") were omitted. 

Participants were asked to provide two responses that corresponded to each of the four 

quadrants on the Circumplex Model of Affect [4], The responses were generally limited 

to 255 characters. 

There were two sets of scenarios with overlapping content created for the current research 

aim. The first consisted of 12 scenarios and the second consisted of 4 scenarios. Within 

each of these sets, scenario descriptions were between 100 and 250 words long. For 

the first set eight of the 12 scenarios were domain specific (i.e., Army Training-Based 

Scenarios). Four of the 12 scenarios were domain-nonspecific (civilian-related professional 

conflicts). Here is a general description of each these scenarios: 

• Scenario 1 (Absenteeism): Presents a situation involving a worker at a law firm who 

calls out sick from work for four days and forgets to thank his coworkers for taking 

over his responsibilities, during his hiatus. [Source: RealCareer1M Employability 

Skills Program Scenario Resources.] [82] 

• Scenario 2 (Respect): Presents a situation involving a grocery store clerk who 

arrives to work in an irritable mood and is seen yelling at one of his coworkers out 

this frustration. [Source: RealCareer™ Employability Skills Program Scenario 

Resources.] [82] 

• Scenario 3 (Depressed Staff Writer): Presents a situation involving a staff writer at 

an established magazine company who feels overwhelmed with external life stres¬ 

sors (e.g., a child who is ill, the financial strain of medical bills, financial under¬ 

compensation at work). This character reveals that she is abusing depression med¬ 

ications during a counseling session for inconsistent work performance. 

• Scenario 4 (Patience): Presents a situation involving a team member who shows up 

late to a major conference presentation, unapologetically. [Source: RealCareer™ 

Employability Skills Program Scenario Resources] [82] 
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• Scenario 5 (ELDMIC Motor Pool): Presents a situation involving the delay of a 

field training exercise development due to systemic training issues. Despite the 

collective frustrations of the overall platoon, one subordinate is openly expressing 

her elation about not having to complete the required exercise. [Source: Designing 

Scalable, Objective Assessments of Interpersonal Leadership Skills; Building Auto¬ 

mated Assessments of Interpersonal Leadership Skills][5] [83] 

• Scenario 6 (Taking Charge): Meeting the Platoon Sergeant): Presents a situation 

involving the exchange between a new platoon leader and an Acting Platoon Leader 

as the former leader reveals details regarding a potential problem in the state of 

the platoon. The acting platoon leader is providing an overview of the state of the 

platoon and is expressing concerns for a squad leader who struggles with alcoholism. 

[Source: Videodisc Interpersonal Skills Training and Assessment (VISTA). Volume 

3. Scenarios] [84] 

• Scenario 7 (Verbal Abuse): Presents a situation involving counseling of a Squad 

Leader who has repeatedly been verbally abusing his squad members due to marital 

problems that he has been facing at home. [Source: Videodisc Interpersonal Skills 

Training and Assessment (VISTA). Volume 3. Scenarios\ [84] 

• Scenario 8 (Hand Receipt Altercation Interjection): Presents a situation involv¬ 

ing a physical altercation between two subordinates. [Source: Designing Scalable, 

Objective Assessments of Interpersonal Leadership Skills', Building Automated As¬ 

sessments of Interpersonal Leadership Skills] [? ] [83] 

• Scenario 9 (Emergency Crisis - Suicide Threat) Presents a situation in which a 

subordinate expresses suicidal ideation after being called in for counseling for in¬ 

consistent work performance. [Source: Videodisc Interpersonal Skills Training and 

Assessment (VISTA). Volume 3. Scenarios] [84] 

• Scenario 10 (Emergency Crisis - Emergency Leave) Presents a situation in which 

a Staff Duty Officer requests to go home to attend to the acute, fatal illness of a 

family member. [Source: Videodisc Interpersonal Skills Training and Assessment 

(VISTA). Volume 3. Scenarios] [84] 

• Scenario 11 (Insubordination - Haircut): Presents a situation involving a subor¬ 

dinate who is refusing to get his haircut to military standards and is defiant of 
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disciplinary procedures. [Source: Videodisc Interpersonal Skills Training and As¬ 

sessment (VISTA). Volume 3. Scenarios] [84] 

• Scenario 12 (Performance Counseling): Presents a situation in which a section 

leader who is being counseled for his erratic performance and shows up unapolo-

getically late to his counseling session. [Source: Videodisc Interpersonal Skills 

Training and Assessment (VISTA). Volume 3. Scenarios] [84] 

Initially, all 12 of these scenarios were utilized during the initial phases of the data collec¬ 

tion (see Appendix A). However, these were reduced down to four specific Army related 

scenarios, for simplified analysis. A record was kept with the initial responses for the 

original set of scenarios. However, they were not utilized within the scope of the current 

research aim. These utterances may instead be utilized for future research endeavors at 

ARI facilities. Thus, the finalized Real World Professional Conflict scenarios Corpus con¬ 

sists of responses to only four of the original scenarios (i.e., Scenario 6[Taking Charge], 

Scenario 7[Verbal Abuse], scenario 9 [Emergency Crisis - Suicide Threat], Scenario 12 

[Performance Counseling]). 

Participants were presented with scenarios in which they took on the role of leader (i.e., 

Lieutenant) who is conversing with a professional subordinate after the presentation of 

a conflict. 

Within each scenario, the target characters initial emotional state begins in a different 

emotional region (see Appendix A). As previously mentioned, participants were asked to 

generate two responses that would transfer the character’s emotions from one state to 

another within the four quadrants on the Emotional Circumplex Model of Affect [4]. The 

four quadrants included the following regions. Region 1: Contains states that are higher 

in emotional intensity (activation) and more highly pleasant (higher valence). Region 2: 

Contains states that are higher in emotional intensity and less pleasant (lower valence). 

Region 3: Contains states that are lower in emotional intensity (activation) and less 

pleasant (lower valance). Region 4 Contains states that are lower in emotional intensity 

(activation) and more highly pleasant (higher valence). 

Examples of emotions in Region 1 includes states that are happy, enthusiastic, excited, 

elated, and alert. Examples of emotions in Region 2 include states that are frustrated 

stressed, nervous, intense, upset, and angry. Examples of emotions in Region 3 include 
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states that are' sad, depressed, bored, lethargic, and fatigued. Examples of emotions 

in Region 4 include states that are relaxed, complacent, contented, serene, calm, and 

comforted. 

The final dataset, the Real World Professional Conflicts scenario-Corpus, was utilized in 

the training of classification and generative conversational model. 

5.2.1 Cornell Movie-Dialogs Corpus 

This dataset was developed by Cristian Danescu-Niculescu-Mizil and Lilian Lee and con¬ 

tained over 220,579 conversational exchanges (i.e., 9,035 characters, 617 movies, 304,713 

total utterances) [19]. The conversations within this corpus are not realistic to everyday 

professional dialog (i.e., themes include love, violence, murder). While it would be more 

appropriate to utilize a dataset with containing conversations within a professional do¬ 

main; this dataset is well formatted and allowed for Phase I model training. Generally, 

the use of this dataset produced an erratic conversational flow. This weakness may be 

addressed through the conduction of two separate training phases which will be discussed 

in an upcoming section [19]. 

5.3 Methodology 

The methodology is specific to each conversational task covered under the scope of the 

current research aim: that is the classification conversation modeling task using Di-

alogFlow generative conversational modeling task using TensorFlow, an open-source ma¬ 

chine learning library [85] [86]. 

5.3.1 Classification Task Methodology 

DialogFlow [86] was used for the training and evaluation of the classification model. Par¬ 

ticipants provided responses that were used to train four intents corresponding to the 

four main regions on the Circumplex Model of Affect. Approximately 200 utterances 

were used to train each intent. Overall, over 800 utterances were utilized for the training 

and testing of each model(90 percent training [e.g., approximately 720 utterances], 10 
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percent testing [e.g., approximately 80 utterances for each scenario]). The further anal¬ 

ysis evaluated model performance at different training to testing data ratios for two of 

the four chatbots (e.g., 70 percent training, 30 percent testing; 80 percent training, 20 

percent testing). 

Overall, a methodology for the classification task entails of the following steps. 

1. A dataset of 3400 utterances was divided into four datasets. Each of these four 

datasets contained over 800 utterances corresponding to four primary emotion re¬ 

gions on the Circumplex Model of Affect and was presented during the data col¬ 

lection process of the Real World Professional Conflicts Dialogue Corpus. 

2. Each of the four datasets was split again into four smaller datasets corresponding 

to the four primary emotion regions (e.g., Region 1 [high valence, high intensity], 

Region 2 [low valence, high intensity], Region 3 [low valence, low intensity], Region 

4 [high valence, low intensity]. Each dataset contains over 200 utterances specific 

to a corresponding emotional quadrant. 

3. Four chatbots, SFC Johnson, SSG Burch, PFC Lewis, SSG Rogers, were created 

using DialogFlow; the Machine Learning Classification Threshold was set to a 

confidence score of 0.3. Thus, inputted dialog corresponding with classification 

confidence scores less than 30 percent were triggered the fallback intent. Four 

user-specified intents, corresponding to the four primary emotional regions were 

created. 

4. Model training was conducted for each of the four chatbots. A CSV containing 

ninety percent of the subsetted data points was uploaded for training for each of the 

four emotion-based intents. The remaining 10 percent of utterances, within each 

subset, was set aside for model testing. Sixteen total CSV files were uploaded, 

and 16 intents (among the four chatbots) were trained to utilize the uploaded data 

points. 

5. For automated intent detection a webhook, an HTTP request, was enabled within 

each of the four chatbots. Ngrok, a web-tunneling tool was employed and allowed 

for the exchange of JSON formatted data between the client (a local Python-based 

micro web framework, Flask, ) and server (Google’s DialogFlow API). More details 

are included in Appendix B. 
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6. Using the python-client based webhook, model testing was conducted for each 

chatbot. The testing set consisted of 10 percent of the sub-dataset corresponding 

to each intent, 

7. Model testing was conducted for each of the four chatbots. 

5.4 Generative Conversational Model Methodology 

5.4.1 Sequence2Sequence(Seq2Seq) Model 

The model is based on Google’s Neural Machine Translation model (Vinyals, 2016). 

This model is a sequence to sequence architecture with attention mechanism. This 

mechanism allows the decoder to access hidden states of the encoder more flexibly, to 

leverage improved model predictions. 

As mentioned, in Chapter 1, the algorithmic implementation of the generative conver¬ 

sation models was adapted from code sources that are inspired by the following Udemy 

Tutorial: Deep Learning and NLP A-Z™- How to create a ChatBot. The source code 

is documented and cited in Appendix D. For the current research, several customized 

modifications to the source code to support the generation of affective dialogue [6]. 

The Recurrent Neural Network (RNN) utilizes LSTM cells. The hidden units are set to 

a size of 512. The learning rate is set to 0.0001. The vocabulary threshold (minimum 

number of token occurrences) is set to five. 

Eighty-three percent (150 utterances) of the modified Real World Professional Conflicts 

Dialogue was used for model training, and the remaining seventeen percent (30 utter¬ 

ances) were utilized for model evaluation. 

The model utilizes a greedy approach, selecting the token with the highest conditional 

probability at each decoder step. 

5.4.2 Training 

Training for this model is inspired by the architecture of previous seminal research 

projects (e.g., Nguyen, Morales, and Chin [79], Huang et ah, [27]). Due to the small 
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number of training utterances, four chatbot models are trained over two phases. These 

four models correspond to the four regions on the Circumplex Model of Affect. Phase I 

trains the model on the Cornell Movie Dialog Corpus for 100 iterations. This training 

phase captures the general conversational flow. Phase II limits training to the domain-

specific affective datasets (i.e., a modified subset of the Real World Professional Conflicts 

Dialog Corpus [for which response utterances are created by researchers]). This training 

phase limits training to only utterances specific to the emotional class (along with the 

Circumplex Model of Affect). Phase II allows the model to produce realistic expressions 

within an emotional, contextual domain. 

Phase II allows the model to generate conversation more specific to the target domain, 

Army-interpersonal dialogue. Training is extended utilizing the Real World Professional 

Conflict Scenarios Corpus utterances specific to each emotional domain. 

5.4.2.1 Vocabulary and Hyperparameters 

The vocabulary of both datasets was combined (i.e., Real World Professional Conflicts 

Corpus). For the Cornell Dataset, tokens that appeared at least five times were included 

in the vocabulary. Training buckets were set at the following parameters: BUCKETS = 

[(10, 15), (15, 25), (25, 45),(45, 60), (60,100)]. Within this bucket, pairs of utterances 

with similar encoder-decoder lengths are grouped for training purposes. During training 

preceding tokens are used to predict upcoming tokens. 

During the second phase of training (on the emotion-specific dataset), buckets were 

reduced to the following parameters: BUCKETS = [(50, 30)]. For this phase, buckets 

were reduced to one single, encoder-decoder pair, due to the decreased size of the training 

dataset. 

5.5 Results 

5.5.1 Affective Classification Model 

Accuracy rates for emotion-based intent recognition among the four developed chatbots 

are presented within the confusion matrices in Figures 5.2, 5.3, 5.4, and 5.5. The overall 
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performance for the developed DialogFlow chatbots was modest, yet promising (e.g., SGT 

Burch chatbot accuracy of 56.8 percent; Staff Sergeant (SSG) Rogers chatbot accuracy of 

51.25 percent; Private First Class (PFC) Lewis chatbot accuracy of 48.75 percent). The 

overall accuracy rates for the Sergeant First Class (SFC) Johnson chatbot were lower 

than expected (i.e., identified the correct intent for 35.7 percent of evaluation utterances). 

A couple of factors may explain modest performance: a relatively low dataset and con¬ 

fusion of the given assessment task among participants. While most Seq2Seq models 

and evaluated using large datasets (i.e., thousands or millions of training utterances), 

this dataset was testing using over 800 utterances per chatbot, and 200 utterances per 

regional intent. The small data-set may influence the robustness of training within each 

regional intent the Circumplex Model of Affect, for this reason, the system may not 

recognize or adequately classify intents with infrequent utterances, "You’re fired, Mate." 

This weakness may be mitigated through the use of a larger higher quality general con¬ 

versation dataset that can improve the training of the smaller dataset through transfer 

learning. Another general issue was the confusion of the target task. Some participants 

provided responses that described a general response to the scenario instead of a specific 

response (e.g., "To make him feel like they want his help"). Differences in user responses 

can be normalized in the future by providing additional instructional guidance cues. 

A DialogFlow API (see Appendix B) was utilized as an evaluative classifier for testing 

utterances. Each of the four models was tested utilizing the testing utterances, and 

the resulting emotional classification was determined. A DialogFlow evaluation classifier 

was trained using the Real World Conflicts Dialog Corpus. Utterances (produced by the 

models) were passed to the DialogFlow server via a combined Flask/Ngrok. application, 

during the evaluation phase. A resulting classification of the utterances was outputted 

via this API and used to evaluate the performance of the classification model. 

DialogFlow chatbots were deployed through a Slack Integration. Figure 5.1 presents an 

example of a conversational flow between a human user and a character-based slack bot. 



     

     

             

    

                         

                        

          

    

             

           
              

           
           

   

            

     

                         

                        

         

   

                  

     

               

           
              
           

          

    

            

    

                          

                        

          

     

               

     

                     

            
              

            
         

51 Chapter 5 Experimental Evaluation 

I IS Aemili 1:07 PM 

81 Hi SGT Burch. I've heard you've been verbally abusing our squad members. 

Dialogflow Bot app i:07PM 

First of all, I am not abusing anyone. I admit I have been going through a tough time. My wife's got me sleeping on the 

couch nowadays. Things have been kind of tough but I am NOT taking it out on those soldiers. They need a kick in the 

***. They have been half-way performing for a long time. 

I Aemili 1:08 pm 

Well, I think that you've been doing a great job. Keep it up! 

Figure 5.1: Sample conversation with DialogFlow chatbot, SGT Burch. SGT Burch’s 
initial state is angry. In this conversational context, he is being counseled for verbally 
abusing his subordinates. Here, various emotional utterances with a high intensity-level 

and high valence-level invoke a similar emotional response from the chatbot. 

Aemili 1:08 PM 

So I've heard you've been verbally abusing our men. What's going on? 

Dialogflow Bot app nos pm 

First of all, I am not abusing anyone. I admit I have been going through a tough time. My wife's got me sleeping on the 

couch nowadays. Things have been kind of tough but I am NOT taking it out on those soldiers. They need a kick in the 

They have been half-way performing for a long time. 

Aemili 1:09 PM 

You have no right to take out your frustrations on our troops. Keep your personal problems at home. 

Dialogflow Bot app i:09 pm 

I don't have to listen to you! I know what I am doing. Back off! 

Figure 5.2: Sample conversation with DialogFlow chatbot, SGT Burch. SGT Burch’s 
initial state is angry. In this conversational context, he is being counseled for verbally 
abusing his subordinates. Here, emotional utterances with a high intensity-level and 

low valence-level invoke a similar emotional response from the chatbot. 

I Aemili 1.10 PM 

■ Wait, I just overheard you verbally abusing your troops. What's up? 

Dialogflow Bot app iuopm 

yP First of all, I am not abusing anyone. I admit I have been going through a tough time. My wife's got me sleeping on the 

couch nowadays. Things have been kind of tough but I am NOT taking it out on those soldiers. They need a kick in the 

"**. They have been half-way performing for a long time.

IH Aemili i ll PM 

■ Well, you demoralized all of your soldiers. You owe everyone out there an apology. 

Dialogflow Bot app in pm 

I apologize to everyone here. I never meant to cause any trouble. I just want these soldiers to be their best. 

Figure 5.3: Sample conversation with dialog flow chatbot, SGT Burch. SGT Burch’s 
initial state is angry. In this conversational context, he is being counseled for verbally 
abusing his subordinates. Here, emotional utterances with a low intensity-level and low 

valence-level invoke a similar emotional response from the chatbot. 
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1^8 Aemili 1:13 PM 

■ So I've heard you verbally abusing your soldiers? What makes you think you can talk to them that way? 

gjjg Dialogflow Bot app 1:13 PM 

First of all, I am not abusing anyone. I admit I have been going through a tough time. My wife's got me sleeping on the 

couch nowadays. Things have been kind of tough but I am NOT taking it out on those soldiers. They need a kick in the 

***. They have been half-way performing for a long time.I Hi Aemili 1:13 pm 

■ Well man, relax. You don't have to worry. I know that you're doing the best job you can do. 

Dialogflow Bot app i:i3PM 

Yes, it's about time. A promotion is coming my way. 

Figure 5.4: Sample conversation with dialog flow chatbot, SGT Burch. SGT Burch’s 
initial state is angry. In this conversational context, he is being counseled for verbally 
abusing his subordinates. Here, emotional utterances with a low intensity-level and 

high valence-level invoke a similar emotional response from the chatbot. 
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Figure 5.5: SFC Johnson Emotion Classification Accuracy 

T
ru

e
 l

a
b
e
l 



 
 

T
ru

e 
la

be
l 



 
 

     

       

  

  

  

  

 

 

 

 

      

  

 

 

  

 

 

 

 

 

       

54 Chapter 5 Experimental Evaluation 
T

ru
e

 l
a
b
e
l 

Normalized confusion matrix, RFC Lewis Chatbot Performance 

Region 1 0.05 07 

06 

Region 2 0.10 
0 5 

Region 3 0.00 04 

03 

Region 4 0.00 
02 

Unclassified nan nan nan nan nan 01 

00 

Predicted label 
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Normalized confusion matrix, SSG Rogers Chatbot Performance 
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Figure 5.8: SSG Rogers Emotion Classification Accuracy 

Figures 5.6, 5.7, 5.8 and 5.9 present the classification accuracy within two selected chat¬ 

bots at three different training to testing ratios (i.e., 90 percent: 10 percent; 80 percent: 

20 percent; 70 percent: 30 percent, respectively). As shown in the figures below, the clas¬ 

sification accuracy generally improved with the increase in the training data. The chatbot 

corresponding to the character, SSG Burch, improved with each graduated increase in 

training data. The chatbot corresponding to the character SFC Johnson demonstrated 

counter-intuitive performance results. While SGT Burch’s performance increases as the 

percentage of training data increases, SFC Johnson’s performance generally decreases as 

the amount of training data increases. A possible explanation for unexpected perfor¬ 

mance trends could be the need for K-fold cross-validation [87]. K-fold cross-validation 

randomly systematically shuffles the data points. K-fold cross-validation may ensure that 

the test cases are not mainly edge cases within the dataset. Possible explanations for 

discrepancies in performance will be explored in further analyses. Future research aims 
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will explore differences within the datasets themselves (e.g., context-based differences 

within the scenarios). 

As seen in Figure 5.2, SFC Johnson classified most intents as responses within Region 1. 

This may be indicative of an issue with training to testing validation. The use of K-Fold 

cross-validation may mitigate this issue in future phases of training [87]. 

The Staff Sergeant (SSG) Burch chatbot (see Figure 5.3), indicates the best overall 

performance, with Region 3 indicating highest accuracy. 

Figures 5.3, 5.4, and 5.5 indicates that Region 1 responses are often misclassified as 

Region 4 responses (and vice versa). This may occur because both of these categories 

of utterances have a high valence. Like-wise Region 2 is often misclassified as region 3. 

As mentioned in chapter 2, this may be due to the dominance of valence-wise analysis 

within textual affect classifiers. 

This performance trend indicates that the current DialogFlow based model has a more 

robust performance for classification along the valence dimension than the arousal di¬ 

mension. 

One potential way, to equalize the robustness of performance within both dimensions is 

to develop a custom made-emotion classifier. While using a chatbot development tool 

like DialogFlow may be cost and time effective, users do not have access to internal 

hyper-parameters. Thus, fine-tuning model performance, beyond intent detection and 

entity extraction are challenging. Furthermore, training is less automated and may be 

laborious on the development side. 
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High Energy (Emotional 
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Figure 5.9: Overall classification accuracy at three comparative training to testing 
ratios for SSG Burch and SFC Johnson Chatbots. This dimension represents the clas¬ 
sification accuracy among all four regions regions on the Circumplex Model of Affect. 
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Intensity) 
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Figure 5,10: Valence-level classification accuracy at three comparative training to 
testing ratios for SSG Burch and SFC Johnson Chatbots. This dimension represents 
the classification accuracy among all the two regions regions on the Circumplex Model 
of Affect (i.e., Percentage of utterances correctly classified as either high valence (i.e., 
Region 1 or Region 4 [unpleasant emotions]) or low valence (i.e., Region 2 or Region 3 

[pleasant emotion]) 
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Percentage of Testing Data vs Intensity-Dimensional Model Accuracy 

am Chatbot: SGT Burch 

■H Chatbot: SFC Johnson 

60 

SO 

40 

30 

30 

10 

0 
90% Training, 10% testing 80% Training, 20% testing 7C% Training 30% testing 

Figure 5.11: Classification within the arousal (intensity) dimension at three compar¬ 
ative train to testing ratios for SSG Burch and SFC Johnson Chatbots. This dimension 
represents the classification accuracy among two regions on the Circumplex Model of 
Affect (i.e., Percentage of utterances correctly classified as either high intensity (i.e., 
Region 1 or Region 2 [more highly arousing emotions]) or low intensity (i.e., Region 3 

or Region 4 [minimally arousing emotions]) 
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High Energy (Emotional 
Intensity) 

Region 2 Region 1 

HappyFrustrated 
EnthusiasticStressed 

ExcitedNervous 
ElatedIntense 
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Bored Contented 
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Fatigued Calm 
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Region 3 Region 4 

Low. Energy Emotional 
Intensity) 

Figure 5.12: Classification among regionally-diagonal dimensions at three compara¬ 
tive train to testing ratios for SSG Burch and SFC Johnson chatbots. This dimension 
represents emotions classified as the complete opposite of the intended emotion(e.g., 
Percentage of utterances identified as low valence, low intensity emotions [Region 3 
- sad, depressed, bored, lethargic, fatigued] identified as high valence, high intensity 

emotions [Region 1 - happy, enthusiastic, excited, elated, alert]). 

Table 5.1: Classification Accuracy within Various Dimensions 

Valence- Intensity- Dimensionally-
Overall 

Chatbot Level Level Diagonal 
Accuracy 

Accuracy Accuracy Accuracy 

SFC Johnson 36.14% 74.69% 42.17% 55.42% 

SSG Burch 56.82% 78.41% 65.91% 62.50% 

PFC Lewis 48.75% 71.25% 53.75% 57.50% 

SSG Rogers 51.25% 75.00% 56.25% 56.25% 

This table presents the classification accuracy percentages within four dimensions on 

the Circumplex Model of Affect; As shown here the highest percentages of correctly 

classified utterances were within the valence dimension. *These classification results 

correspond to a 90 percent training to 10 percent testing ratio. 



     

    

            

             

             

            

 

 
                     
         
                                      

 
      
            

           

                 
               

                          

                         
               
                        
                             
              
                                 
                 
                          
                   
                                
                      

                           
     
            
                     
                              
              
              
                      
               
          
          

                                   
      
           
         
    

  
     

                  
        
               
       

  
 

 

       
         

     

            
            

       
             
        
 
         
          
          

 
 

     
       
      

      
         

           

         
      
  

           
   

            

             

            

              

             

             

             

            

            

            

              

          

             

  

Chapter 5 Experimental Evaluation 61 

5.5.2 Generative Conversation Model 

The performance of the generative conversation model was evaluated with the BLEU 

score metrics. Seventeen percent of the selected subset of the Real World Professional 

Conflicts Dialog Corpus was utilized for model evaluation. This subset consisted of 150 

training utterances. Figure 5.10 presents the BLEU scores for thirty selected evaluation 

utterances. 

User Chatbot 
0 I don't care if you fiave personal problems ai home, you can't fly off fhc hanaio on your soldiers, ponce. You are a sorry leodor yourself.. 
1 Your no better than the person you train. You arc a sorry loader with the morals of your leadership \ 
2 Th s is not the first time that we have hear- you lash cut at a soldier ano f it happens agan we ni l have to :a jrroctivo action to find a more permanent solution If you doni mind you1 own business. I will be out.. 

3 I did not ash for excuses SSG. I do not want to sec that happening again. You suck.. 0 
4 Your wife probably makes you sleep on the couch because of your horrible attitude. You arc a sorry man 0_ 
5 That Is unacceptable the way you treated your soldier. You cannot take out your frustrations on them. You will have oxtra staff duty this weekeno. No you dont know me about that. You a-o a horrible leado- yourself. You are a sorry loader 

6 I don't understand how your fanvly could bo mad about that. I dont blame you for getting after the soldiers like that at ail 
7 Stop being an intolerable leader and taking your frustration cuton your squad members 

. You are a horrible loader yourself yourself.. 
I dont know how to do my iob. I know how to do my job 
It is a direct reflection on it.. 

0.242281 
MMK2 

8 There one thing that! know you can control and that's your attitude. If I sec this again you will be receiving a counseling. 
9 SSG Burch, what you said to the soldiers was dcptorablo. I will bo letting our Company Commander know what you said and have him/her ooai with the situation. you arc a sorry oxamplc of loadorship 
10 Have you ever thought that it might just bo t-mc for a divorce’ Weil, you dont know how to do my job.. 
-. It does not matter what is going on at homo When you took this Job. you devoted yourself fuBy to this tob. Justbecause things got stressful at home does not mako 

1 this accoptab'e. If you can not handlo the stress of a family, you cant handle this. You arc a rota>d t. 

12 I doni care about your personal problems! You are a soldier and a leader, and need to act more of a pretessiona1 around your squad. Wai! a minute. Dont tcli me how to do my job .. 
13 If you want to use the 't-werd.' you must not want to be a leader. You're suspended indefinitely. I am a professional! You am a sorry oxcusc to be 1 
14 SSG Bursh. you read to leave the issues you're having with your family at home. You need to apo ogize to Jones and go somewhore tor awhile to cool off- You are a sorry example of leadership 
15 If I catch you speaking to a soldier like that again! will have to counsel you and rccommond further disciplinary action. You cannot! you are a sorry cxcuso for a treat you to fight.. 
161 think you should just leave work for today... be in my office at 0700 In the morning in your dress uniform. You have done it now. Yes sir. I wtl. I amaprofessional.. 
17 Your wifo is ungrateful. Yes 
18 what a nag! doni listen to hor. you did nothing wrong! Hold up , stop calling me in hero .. 
19 You arc a complete fuck up and you justwcnl stop fucking up. Hpw would you like the sametreatment’ Well you dont know howto do myjob .. 0.242291 
20 You're behavior was wrong anc it will do repo-tad today. I wan’ you to go outmoreand apologize. You will bo working overtime tor the next tow nights. You suck leader . I am a grown man . C.127129 
21 That is no excuse for treating him mat way.! am writing you i*> 
22 That sort cf behavior is absolutely unacceptable. Your tailing marriago isnl Jones' problem! lai uro cf leadership .. 
23 Why did you yell at him tike mat. You canY vent off your frustrations at your subordinates Work on yoursoif first. c a sorry for your n‘ormation . 
24 Hone of that matters. Got out of here and front your men with respect1 refuse to let you handle mis! 
25 You need to calm down and lot it go. dont need you tolling me . 
26 You w£ be formally counseled for your mnapropnate oehavior. DONT !! I DONT have to Istor. to y 

SSG Burch, you wore wrong to call him out like that. As a loader you should know better than that. How would you l.fco it if I started to yet at you! i am counseling I am a grown man I will not apologize .. 0.0404592 
7 you tor that wrongfu' action 

28 aont bring youro problems to work. Just do your job Hold up you arc a sorry man .. 0 
29 Kocp it up and your ass is gone. You are doing nothing ! 0 
30 Average Bleu Score nan 0.202086 

Figure 5.13: Sample utterances and their corresponding BLEU scores; The average 
score is 0.20 

As previously mentioned, Turing Tests offer a robust measure of chatbot performance. 

However, they may require a substantial investment of time and resources. Thus, BLEU 

scores were utilized for the evaluation of the generative chatbot model performance. 

As seen in Figure 5.10, the average BLEU score for emotional utterances produced by 

the chatbot within the low valence, high arousal dimension was 0.20. Generally, higher 

BLEU scores are more desirable (i.e., greater than 0.50) [88]. However, for preliminary 

phases of model training, with a relatively small dataset, this chatbot’s performance is 

highly promising. Furthermore, while BLEU scores offer a feasible automated metric for 

conversational modeling evaluation, these scores are generally used for the evaluation of 

neural machine translation tasks (e.g., translation from English to German) and would 

not be a sufficient option for chatbot testing. An informal qualitative analysis of the 

chatbot performance, however, reveals the effectiveness of two-phase model training. 

This may be extended to a three-phase model training methodology in future extensions 

of research. 



  

 

    

              

             

           

            

             

             

             

              

         

             

             

                

            

              

           

           

            

             

 

Chapter 6 

Conclusions 

6.1 Implications and Discussion 

This Master’s Thesis describes the research aim examined as part of the author’s work 

as a Consortium Research Fellow at the Army Research Institute facilities. Within this 

work two major conversational modeling tasks are presented: an emotion classification 

task through the application of Dialog Flow and a Generative Conversational Model 

through the use of a Neural Machine Translation Model. The classification model pre¬ 

dicts the combined emotional valence and emotional intensity of a given utterance upon 

the Circumplex Model of Affect in a discrete manner. The generative model predicts 

expressions that are generated in response to a given utterance within regions on the 

Circumplex Model of Affect, in a regressional manner [4]. 

Emotional Intelligence is the ability to operate from a place of another’s perspective 

when assessing a given situation. The ability to carry out emotionally intelligent conver¬ 

sation is a highly crucial life skill. For Army leaders, the ability to carry out effective, 

emotionally intelligent dialogue can be the difference between toxic leadership and ef¬ 

fective leadership. The proposed model may offer a way to objectively assess an Army 

leader’s interpersonal strengths and weaknesses in future research endeavors at Army 

Research Institute Facilities, at the Fort Benning Installation [2], Future scenario-based 

assessment tools may leverage generative conversational models in order to facilitate af¬ 

fective dialogue between a human user and chatbot. Furthermore such a model may 

62 



    

            

         

            

              

              

              

             

              

      

            

              

          

          

       

           

              

             

            

     

   

              

           

           

           

             

            

          

             

    

63 Chapter 6 Conclusions 

be used to keep track of long-term dependencies during a scenario-specific conversation, 

thus allowing for a historical recollection of conversational cues. 

The current research project sought to answer three major fundamental questions in¬ 

cluding: How can a conversation between a virtual agent (character) and human user be 

modeled? In what way should data be collected in order to generate realistic affective 

conversational flow? How much training data is needed in order to produce a robust 

model performance? A couple of informal examined questions include what role do fac¬ 

tors like situational complexity and scenario verbosity play in the quality of the overall 

dataset, and thus model performance [5]? 

Examination of the current research aim indicates that conversation can be effectively 

modeled between a human user and conversational agent through the use of deep learning 

methodologies. Specifically, Seq2Seq architecture provides an effective way to leverage 

fluent and contextually appropriate conversation. This architecture will be particularly 

effective with a large, high-quality dataset [1], 

Preliminary results indicate that neural machine translation methodologies may be effec¬ 

tively applied to current and future research projects at ARI. These research projects see 

to assess interpersonal attributes of leadership in an objective manner. The outcomes of 

the current thesis research project provide foundation guidelines for current and future 

research endeavors within this domain. 

6.2 Future Directions 

Outcomes of the current study were limited due to the use of small, heterogeneous 

datasets that were not necessarily conversational in nature. Currently openly avail¬ 

able emotionally-annotated dialogue corpuses are not as readily available for research 

purposes as are general conversational corpuses (e.g., OpenSubtitles Dataset [89], Cor¬ 

nell Movie Dataset [19]). Future research endeavors should consider the creation of a 

larger more high-quality dataset through the use of impromptu-style actors who provide 

scenario-specific emotional responses. Current researchers at ARI facilities should lever¬ 

age the work of past ARI investigators who examined the development of interactive 

interpersonal training tools [84]. 



    

             

                

             

           

               

               

             

            

             

             

            

     

              

             

              

             

              

              

            

               

             

         

  

                

              

             

           

            

             

           

64 Chapter 6 Conclusions 

These tools were developed through the use of an impromptu-acting style data collection 

process and provide a good example of how to effectively expand the current dataset in a 

way that can effectively train a generative conversation model that can model multi-turn 

fully expressive human to human conversation. The model developed using DialogFlow 

is limited due to the use of a classification based training methodology, that classifies the 

user responses and provide a single-turn response to a character in a given scenario based 

upon that classification. In this way, the model appears to generate erratic responses 

that are not realistic to everyday emotion expression. The everyday human emotional 

expression can take several turns within the conversation before invoking shifts in the 

expressed emotional dynamics. Creating a model on this level may require a substantial 

investment in time, resources, expertise, and participation among the target users (junior 

officers in MCoE training facilities). 

Furthermore, due to the limited scope of the current research aim a small conversational 

dialogue corpus was utilized (i.e., Cornell Movie Dialogue Corpus) this dataset could be 

expanded in order to allow for more robust model performance in future iterations of 

model training. One example of a high-quality well-formatted dataset that could be used 

in future research aims is the Open Subtitles Dataset. The Open Subtitles Dataset is 

one of the largest and most popular corpuses [90]. Particularly useful is the preprocessed 

version which contains 11.3 million human utterances (each utterance contains at least 

six words) [78]. This dataset may be leveraged in future phases of the current research 

aim in order to provide a more robust and less erratic conversational model. 

6.2.1 Additional Datasets To Be Used in Future Research 

6.2.1.1 ISEAR 

The ISEAR database was compiled during the early 1990s and was the result of a project 

on which psychologist from all over the world collaborated. This project was laid by 

Klaus R. Scherer and Harold Wallbott. Respondents were asked to report situations in 

which particular emotions were experienced. These emotions include joy, fear, anger, 

sadness, disgust, shame, and guilt. Participants appraised the given situation and then 

provided their verbal reactions to those situations. The final sample was collected from 

3000 respondents from 37 countries. Although the current project analysis emotions 
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within four major categories on the Circumplex Model of Affect (i.e., happy/enthusiastic, 

angry/intense/frustrated, sad/despondent/bored, calm/relaxed); the ISEAR dataset will 

still be useful. Particularly, when can utilized joy, anger, shame, and guilt as categorical 

training utterances for the high valence/high intensity, low valence/high intensity, low 

valence, and the low-intensity revisions of the Circumplex Model of Affect. Hence the 

only region that this dataset may not adequately address is the high valence, low-intensity 

region (e.g., representing emotions like calm/relaxed). This weakness will be addressed 

through the use of multiple datasets that represents varying categorical utterances of 

emotion [91]. 

6.2.2 The Valence and Arousal Facebook Posts Dataset 

Pietro [92] delivered a dataset of emotional expressions utilizing 3,120 Facebook posts. 

These Facebook posts were qualitatively examined by human-annotators along the two 

dimensions of the Circumplex Model of Affect. An Interval scale was utilized for deter¬ 

mining the valence (1 [very negative]-5 [neutral]- 9[very positive]) and arousal (1 [neutral, 

objective] - 9 [very high intensity] ) of a given utterance. For the purpose of the current 

study responses with natural valence scores(i.e., V = 5) may be omitted. Since the cur¬ 

rent research aims utilize the Circumplex Model of Affect as the foundational framework 

this dataset may be particularly pertinent to the current research aim. [92] 

6.2.3 Clean Balanced Emotional Tweets (CBET) Dataset 

The Clean Balanced Emotional Tweets (CBET) dataset contains 81,000 utterances, each 

labeled with up to two emotions [93]. Emotional labels for this dataset include anger 

surprise, joy, sadness, fear, disgust, guilt, and thankfulness. This dataset can be used to 

train utterances within three quadrants on the Circumplex Model of Affect. Quadrant 1, 

which contains emotions that are higher in valence and higher in intensity (e.g., happy, 

enthusiastic) may utilize instances with the emotional labels: joy, thankfulness, and love. 

Quadrant 2, which contains emotions that are lower in valence and higher intensity (e.g., 

angry, frustrated) may utilize instances with emotional labels: anger, fear, and disgust. 

Quadrant 3, which contains emotions that are lower in valence and lower in intensity 

may utilize instances with emotional labels: sadness and guilt [93] [94]. 
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As previously mentioned CBET instances can only be leveraged to train utterances within 

three quadrants on the Circumplex Model of Affect, the resulting overall dataset may be 

imbalanced. In order to address this weakness, the Valence and Arousal Facebook Posts 

Dataset may be used. Particularly, utterances with valence scores between 5 and 9 and 

intensity scores between 1 and 5 correspond to the Quadrant 4 Emotional Region [93] 

[94]-

6.2.4 Overall 

The current research aim explored the use of a generalized neural machine translation 

based conversational architecture to the modeling of empathy-based conversation. While 

the current implementation demonstrated the promising potential of this approach fur¬ 

ther examination should be considered. Namely, the current modeling approach should 

be extended with the use of pre-trained word2vec word embedding architecture (i.e., 

Google News Word2Vec) [95]. The use of such a model may slow down model training 

but will make the overall model performance more robust. As mentioned in chapter 4, 

word embeddings allow syntactical and semantic relationships to be mapped out dur¬ 

ing the input pre-processing steps. Overall, this approach may increase the accuracy of 

the model during training and may yield a more human-to-human level of conversation. 

However, it should be noted that a generic word2Vec word embedding architecture may 

have a limited application to the modeling of affective discourse. Thus, it will be im¬ 

portant to fine-tune word embeddings to a specific high-quality emotion based corpus 

during upcoming phases of research. 

Further investigation is required in order to increase the robustness of model training. 

Future research may focus on the creation of a more well-rounded emotion-based dia¬ 

logue corpus with a real human to the human multi-turn conversation. While DialogFlow 

facilitated an illuminating analysis for the current research scope, future research may 

focus on implementing custom made models in python with through the use of Tensor-

Flow Libraries. In the future, model training should be broken into three phases: Gen¬ 

eral Conversation Generation, Emotion-Specific Conversation Generation, and Domain-

based(i.e., Scenario) Emotion Specific Conversation, remembering that narrowing the 

domain of conversation, increases model performance. Overall, results were promising 
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and indicated the effectiveness of current methodologies in supporting empathetic dia¬ 

logue exchanges within professional Army leadership contexts. 



  

   

 

   

             

            

             

 

     

                

              

                 

             

              

 

Appendix A 

Real-World Professional Conflict 

Assessment 

A.l Assessment Preview 

The following is an example of an instructional scenario included within the assess¬ 

ment that supported the creation of the Real World Professional Conflicts Corpus. 

The entirety of this assessment can be found within the following GitHub repository: 

https://github.com/adowdelll8/RealWorldProfessionalConflictsDialogCorpus 

A.2 Instructions and Exercise Overview 

The activity that you will be completing will involve the following tasks: You will be pre¬ 

sented with a scenario that will describe the character’s emotional state at the beginning 

of a given scenario. You will then be asked to generate a response that may alter the 

character’s internal emotional state from one position on the Emotion Grid (see Figure 

1), to another position (e.g., Region 1, Region 2, Region 3, and Region 4). 

68 
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69 Appendix A Real-World Professional Conflict Assessment 

High Energy (Emotional 
Intensity) 

Figure A.l: You will be asked to transition the presented characters to emotions 
listed within the four regions on this grid. 

A.2.1 Task 

You will be presented with a series of 4 scenarios. After reading each scenario you must 

generate a unique response that relates to an emotion listed in the specified region of the 

emotional grid (below). 

A.2.2 Example 

Instructions: Please read the scenario below and generate several responses, 

as specified. 

"You have now been in the position as the Platoon Leader of the 1st platoon for one 

month. You are sitting in your office on Monday afternoon. The entire Company is 

scheduled to deploy for a field training exercise (FTX) tomorrow morning. The unit is 

conducting its final checks and preparations. You overhear a conversation directly outside 

your office between your platoon sergeant, SFC Smith and SPC Kelly, the maintenance 



       

                

                   

              

              

              

                

              

                

               

                  

       

      

                

             

               

       

       

70 Appendix A Real-World Professional Conflict Assessment 

clerk, and, it appears to be getting louder. SFC Smith is questioning SPC Kelly about the 

reports that indicate that 3 out of 4 of the platoon’s vehicles are down. She is irate and is 

expressing her frustration towards SPC Kelly. As you walk into the room the exchange 

appears to escalate and SFC Smith continues to reprimand SPC Kelly for not providing 

a more timely update. SPC Kelly, clearly frustrated and confused, begins to defend herself. 

She implies that she was not the individual assigned to the completion of the motor pool 

reports. You have the opportunity to intervene. You approach SPC Kelly and ask to 

speak to her privately. She agrees. While in your office, she reveals that she is often 

targeted as the scapegoat when something goes wrong. As LT you are required to respond 

to her in an effective way. Please indicate the way you would respond to her in this given 

situation. Please provide two example responses. " 

A.2.2.1 What do you say now? 

Currently (at the beginning of your conversation with SPC Kelly) she is in a high energy, 

unpleasant emotional state: (see region 2 in the image below) frustrated and stressed. 

What would you say to shift her emotions to the following states? Please provide two 

responses for each of the four states. 

Transition state to low energy, pleasant state 



       

       

       

                    

         

     

   

 

            

          

 

71 Appendix A Real-World Professional Conflict Assessment 

Transition state to high energy, pleasant state 

Transition state to low energy, unpleasant state 

'SFC Kelly, if you want to do well you need to learn to shut your mouth and do what you’re 

told. You are on your last strike right now._y 

/f^FC Kelly, get it together. How many times do we have to ask you to follow througlh 

with your responsibilities? You are holding our whole unit up with your inconsistent 

^performance. _) 
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Maintain high energy, unpleasant state 

High Energy (Emotional 

SFC Kelly, you say that you are the scapegoat but in actuality you work quality is unac¬ 

ceptable. _y 

FC Kelly, who do you think you are speaking to a superior this way? It is your responsiX 

bility to make sure reports are filled out properly. 



  

     

  

               

            

              

            

 

Appendix B 

Dialog Flow Intent Recognition API 

B.l Description 

The current study required the development of an API tool that was used for testing 

the intent of evaluation utterances. This automated testing tool allowed for speedy 

model evaluation. An NGROK tool was utilized for interfacing a local server with the 

DialogFlow server, along with required API keys. The script is detailed below. 

73 



        

  
  

    
    
    
    
  

       

   

    
     

  
    

  
  

 

 
 

            

      
  

   
  

  
   

  
  

   
  

  
   
    

        
       

        
            

      
  

   
  

  
   

  
  

       

  
  

   
    

    
   

  

  
   

  

  
   

 
   

   
   
    

      
         

       

              
              

 

74 Appendix B Dialog Flow Intent Recognition API 

|import json 
import os 
from flask import Flask 
from flask import request 
from flask import make_response 
from pprint import pprint 
import csv 

#flask app should start in global layout 

app - FlaskC_name_) 

##app.routeCVwebhook', methods = ['POST’]) 
@app.route('/butterfly’, methods » ['GET*, 'POST']) 

def webhook(): 
req - request.get_json(silent*True, force-True) 
printC'Request: ") 
print(json.dumps(req, indent=4)) 

print(getUtterance(req)) 

print(getActualClassfication(req)) 
print(getExpectedClassificaiton()) 
### Allows us to write data to file and then use it 

with open ('dataJSON.js', *w') as outfile: 
json.dumpCreq, outfile) 
printC'We did it!") 

return r 

def getUtterance(req): 
utterance - req.get('queryResult").get("queryText") 

return utterance 
def getActualClassfication(req): 

ac - req.get("queryResult").get("intent").get("displayName") 
return ac 

def getExpectedClassificaiton(): 
ec - -100 
for row in csv_f: 

if rowran — oahu- fsssmc&z _ 
— - — -— —. .,-- -

prini:(gettxpectedLLasstlTtlcai ton(.)) 
### Allows us to write data to file and then use it 

with open ('dataJSON.js', *wT) as outfile: 
json.dumpCreq, outfile) 
print(”We did it!,!) 

return r 

def gettJtterance(req): 
utterance » req.get("queryResult").get("queryText'') 

return utterance 
def getActualClassfication(req): 

ac = req. getC'queryResult''). get('' intent"). getC'displayName”) 

return ac 
def getExpectedClassificaiton(): 

ec - -100 
for row in csv_f: 

if row[0] »» getUtterance: 
ec - row[l] 

return ec 

def printUserlnput(req): 
^response - strCreq.getC"result,').getC,lresolvedQuery'1)) 

return response 

if_name_=» '_main_': 
#string - "Hey!” 
#print(string) 
writeLine *» □ 
f - open('test~90.csv’) 
csv_f » csv.readerCf) 
port » int(os.getenvC'PORT’', 5000)) 
printC'Starting app on port &d" X(port)) 
app.run(debug • True, port - port, host » ’0.0.0.0’) 

printC'Starting app on port Xd" % (port)) 

Figure B.l: Python script that allowed a local server to pass text based utterances 
within an inputted CSV to a DialogFlow server; script outputs a CSV of corresponding 

intents 

https://dataJSON.js
https://dataJSON.js


        

    
        
    

     
    
    

         
         

 

 

  

  

 
  

  

 
 

 

 

  
  
  

 
 

 
 

  
   

 

  
  

  
        

  

 

              

 

  

  

 

   

  

 
             

       

 
   

            
 

                    

   

 

 

 

  

  

   

                    

                

          

  

      

     

 

  

   

   

      

   
          

             

    

       

 

 

           

  

  

       

  

            
          

75 

3 

Appendix B Dialog Flow Intent Recognition API 

* Debug mode: on 
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit) 
* Restarting with stat 
Starting app on port 5000 
* Debugger is active! 
* Debugger PIN: 141-822-434 

127.0.0.1 - [29/Oct/2018 09:46:43] "GET / HTTP/1.1" 404 -
127.0.0.1 - [29/Oct/2018 09:46:43] "GET /favicon.ico HTTP/1.1" 404 -
Request: 

< 

"queryResult": { 

"fulfillmentMessages": [ 

{ 
"text": { 

"text": [ 

> 

> 

3, 
"allRequiredParamsPresent": true, 
"parameters": { 

"ordinal": [], 
"last-name": 
"number": 
"geo-city": 
"given-name": 

"date": [], 
"date-period": [] , 

>, 

"languageCode": "en", 
"intentDetectionConfidence": 1.0, 

"intent": { 
"displayName": "Region 1 - High Valence, High Activation", 
"name": "projects/sfc-johnson-42cdc/agent/intents/6028dee3-31d9-420b-bd40-cc71ac4bb7e9" 

>, 

"queryText": "You are one of the best NCOs in this unit, keep it up." 

>, 

"originalDetectlntentRequest": { 

"payload": {} 

>, 

"session": "projects/sfc-johnson-42cdc/agent/sessions/fb544046-afe6-e2db-4054-3ebd036cfc3a" , 

"responseld": "babd99ab-0e65-46a6-90e0-680201ffl046" 

> 
You are one of the best NCOs in this unit, keep it up. 

Region 1 - High Valence, High Activation 

-100 
We did it! 

Figure B.2: Terminal view of DialogFlow python/flask interface via Ngrok web ser¬ 
vices. 

DISMISS© Dialogflow API VI will be deprecated on October 23rd, 2019. Learn how to migrate to API V2 here. 

10 Dialogflow Fulfillment Try it now \|/ 

SFC_Johnson_90_10 

Intents 

r Entities 

+ 
Webhook enabled ^ 

Your web service will receive a POST request from Dialogflow in the form of the response to a user query 

matched by intents with webhook enabled. Be sure that your web sendee meets all the webhocA 

requirement specific to the AP' version enabled in this agent. 

URL* http://ba9eebab.ngrok.io/butterfry 

See how it works in Goog'p Assistant. 

or 

Agent 

(Q Knowledge 

BASIC AUTH Enter username Enter passive-o 
You are one of the best NCOs in this unit, keep 

it up 

HEADERS Enter key Enter value 

Not available 

Training 

© History 

i ‘ Analylics 
DOMAINS 

© Add header 

Disable webhook for all domains 
Region 1 - High Valence High Activation 

L-, Prebuilt Agents 
Inline Editor (Powered by Cloud Functions for Firebase) DISABLED M Nol available 

Build and manaae fulfillment directly in Dialoqflow via Cloud Functions for Firebase Docs 

Figure B.3: Web interface view of Dialog Flow web-hook fulfillment. This fulfillment 
allows for the transmission of JSON data via a server. 

http://0.0.0.0:5000


  

    

  

   
         

           
  

                   
                  

             
                  
                  

                 
                

                
                  

      
               
                  
                   
                   

                   
                 
              

              
                   
                   

                  
     
                  
                

                 
               

                

    
     
                  

               
                  

                  
                   

                      
             
                
          
                  

                 
                   

                  
               

                    
               

                  
               

                   
                

              
              
                

            
                

                 
               

                
                 

  
     

                 
              

                 
            

               
                 
                  
                
                 

                   
                
   
                

                    
               
               

             
              

             
              

                    
              

     
                    

               
                

                   
              
                

    
     

                 
                

                   
                   

                
               

              
                      
                  

               
           

                
                   

                
                
                
                 

                 
              
               

              
              
                

                   
                 

               
    

                   
                   

 

Appendix C 

Real World Professional Conflicts 

Dialog Corpus 

SSG Burch.csv • 
"Region 4(High Valence, Low Intensity)",."Region 1 (High Valence, High 

, Intensity)",."Region 3( Low Valence, Low Intensity)",."Region 2 (Low Valence, High 
' Intensity)", 

"We need to keep hone and work separate the best we can. There is a reason why your the 
squad leader and they answer to you. And, the answer has a lot to do with experience and 
professionalism. Just try to keep that in mind. ",I'll help with overseeing maintenance. 
Take a few moments and lets think though this. ."That was not the right way to go about 
it. But hey, your right to upset. What Can I do to help?",Just know you have my full 
support. Probably should not have called him that but I'll take the heat for it. Try to 
call him something a little more socially acceptable. ,It sounds like a hard time. It will 
probably always be hard and you could always just leave the Army. ,What to also start 

, worrying about job? I can make that happen. .Keep it up and your ass is gone.,Your no 
better than the person you train. 
"I understand what you are going through, family life in the military can be difficult. 
You are a trusted SL, so I know you will get through this. “."Let's just relax and take 
the rest of the day off. Blow off some steam, maybe get some flowers for your wife and put 
in that quality time. ",How about you and I go get a drink? Your squad and my platoon have 
their orders for the day so let's go have a cold one. ,"Man, was that a talking to? That 
thing about retarded kids made me crack up! Keep that up and he'll be licking his weapon 
clean. “,“SSG, pull yourself together. This is pathetic, if you can't handle your issues 
at home, don't bring them to the office. “.“Stop complaining about your family problems, 
you don't think we all have shit going on? Be a man for God's sake. "."Well, SSG your men 
are a direct reflection of your leadership so these screw ups are on you as far as I am 
concerned. “."You know who needs a talking to is you, get yourself and your men in line. I 
don't want your excuses. " 
"It's okay to have those feelings, but don't take it out on the soldiers. If you need some 
time off to sort out your personal life, take it. “,"If you come to work with 
frustrations, try not to show it to the soldiers. Feel free to come into my office and 
talk anytime you need to vent or get negative feelings out of your system.",“You should 

I take some time off and relax. You work hard, and I'm thankful for it.",,,,Your wife_ 

1 SFC Johnson.csv -
'Region 4,,Region 1,,Region 3,,Region 2, 

"Hey, ease up on it a bit. These things are taken very seriously now and could lead to 
(something you don't want hanging over your head.",I can't have this going on under my 

watch. Tone it down and I'll go to bat for you when the time comes.,"I love the motivation 
! but, be careful of that last comment. You know how things are. Definitely let me know the 
‘next time something is up. ",I‘d say let them have it but it could be one more thing that 
, higher has to deal with and I want to be able to keep you at the top of the list for 
1 promotion. .People are not finding your comments helpful. This problem ends here.,"The 
■ next time this happens, I'll write you up. Knock it off. ",I think you need 
[ mediation. .Quit it or you'll be out of here. 
I "SFC Johnson, I do see that the platoon is mostly in order and I appreciate all your 

efforts up to this point alongside the previous PL. But as always, there is some work to 
I be done. "."While all of this is good, SFC Johnson, I'd like te evaluate the company on ay 

own as well to see what I think of our squad leaders and work ethic. Your information is 
crucial to starting my review.","SFC Johnson, I am more than impressed. Keep up the good 
work with your troops. ","I think at this point I can go home for the day as you have it 
all figured out with the platoon, thanks SFC Johnson. "."Honestly, from what i have seen, 
I am not sc sure I believe with your analysis. There are men missing from squads, we have 
a drinker and harassment. These are not things I take lightly. “."You seem to be 
sugarcoating a lot of the problems of the platoon, I need to take a deep look at you and 
the others to assess issues and see how we can move forward at full strength. ","SFC 
Johnson, are you seriously trying to say that drinking and harassment within the platoon 
can be dealt with using an informal conversation? You know the severity and consequences 
of these issues, what were you thinking?","That's simply not what I see. Your platoon is a 

i mess, and it is clear your leadership is at fault. " 
I look forward to seeing what the future holds with this platoon,,"It sounds like you are 
doing a fantastic job at leading the platoon, and I am thankful to have a platoon sergeantIwith so much positivity and skill.“.This platoon is deserving of a pizza party.,"I like 
your positive attitude, but you need to do a better job with Sgt. Cramer",,“Your only as 
strong as your weakest link, so you need to fix Sgt. Cramer before you're both out of_] 

SSG Sogwsxsv 
Region 4,,Region 1,,Region 3,,Region 2, 
Nice of you to come in today.,Bring me any?,Is that sausage! .Want the day off? We got 
nothing going on. .Guess who doesn't have a job anymore?,Lets do some corrective training 
right now. ,Go back home and think about what your going to say at your chapter 15 
board. ,Say goodbye to the Army. We don't need people like you. 
"How is it going, SSG? Having a good morning, I see."."Thanks for reporting, please sit 
down. "."Great to see you, SSG. Tell me about your weekend! Let's try to make this meeting 
short. ‘V'Come on in, thanks for meeting with me as I know you are busy working with your 
great squad. ","SSG, you are late. Please sit down immediately so we don't waste any more 
time. "."Please sit, do you know the time? I don't prefer to be waiting. ","SSG, this is 
not the first time you have missed a hit time this week. I am going to formally write this 
up. ",Who do you think you are? Sauntering in here late for our counseling session. Sit 
your ass down. 
"Even though your priorities are in the wrong place, I'm not going to fire you.",“I need 
you to apply yourself a little more. The work you do is pretty good, I just need you to be 
more punctual.".let's have this meeting at a different venue. I know a place that serves 
killer turkey sausage and salsa scrambled eggs.,You are a calm and positive person who can 
keep cool in stressful situations. I admire that.,"I'm glad you're cals, but am 
discontented by your lack of punctuality. Enjoy this formal £9.W3£jAtnSL-".I find your lack 
of effort disturbing. Please try harder in the future.,I'm aggravated that you lack 
punctuality. I hope you can still afford turkey sausage and salsa scrambled eggs when 
you're out of a job.,"If you are ever late again, I will see to it that you spend the rest 
of your service days serving turkey sausage and salsa scrambled eggs to soldiers who 
actually care about their duty." 
"Happy you had such a good start to your day SSG Rogers, come on in so we can discuss a 
few things. ",'*SSG Rogers, good to see you. Let's get this conversation started after some 
coffee. Have a seat, make yourself comfortable. ",“SSG Rogers, just who I wanted to see! I 
have a few things to speak with you about, but first I just want to let you know that 
first section is looking great.",“I have to say, your section is performing amazingly SSG 

Regers, keep those guys motivated just like this and you are on your way to a 

9 9 PFC Lewis.csv 
Region 4,,Region 1,,Region 3,,Region 2, 
“All right, sit back. Let me get you something to drink. Do you drink coffee? (or beverage 
of preference) How long as this been going on for? (about the troubled marriage) to Hey, 
stick around a bit. I'm going to get someone to sub in for you, ok?“,"Try to keep in mind 
that we have a mission to do. However, we need to be in the right state of mind to 
complete our mission. Lets talk about what we can do to keep you here. ".Sometimes it's 
best to switch focus. How do you think we should approach our next task? (continue 
involvement questions as a way to access temperament changes) ."Know that you have family 
here and we will look out for you. Just keep us in the loop as to what is going on. It is 
easy to turn away when times turn for the worse. But, we can provide more than a simple 
paycheck, ".life is going to suck.,"Think of the positive, the food was good this morning, 
(knowing this does not help but actually propagates negative thoughts)",Imagine losing 
your job on top of all that. ,"How about you focus on work, you bum. " 
“Private, I am glad you have come to me for this. Let's get you some help anc someone to 
talk to. "."Private, I am concerned for you, what a tough time. You are indispensable to 
this unit and I cannot do without you. ","I understand what you are going through and 
these recent behaviors make sense. Let's see if we can get you some block leave, you 
deserve it! “,"Private, you are one of our best. You always lead by example. What can we 
do to make you happy and help you through this time?","Sounds rough, but you cannot let it 
impact your work. ","Wow that is depressing. All around the same time. Tough luck, 
private. ","Pull yourself together, you are a grown man. Your parents are how old? Get 
over it and don't come crying to your superiors again.“."That's pathetic, no wonder your 
.tiAQSft left you- Get your work in line or there will be consequences. “ 
Suicide is never the answer. I know you're strong and you can get through this.,"I'm not 
going to pretend like I know what you are going through, and I'm sorry you have to do it, 
but if there's anyone that can make it through, it's you. If you need anything, let me 
know."," I know you're going through tough times, but everything happens for a reason. You 
do great work here.",,,,, 
"PFC, i just want you to know that it gets better. I know for a fact that you're thinking 
this is how life is always going to be, but I can assure you that it's not. You'll get 

76 



         

             

              

           

          

  

            

    

  

                               

                      

               

                                      

                    

                        

                        

                             

                        

             

                             

             
          

 

77 Appendix C Real World Professional Conflicts Dialog Corpus 

Q adowdeli18/ RealWorldProfessionalConflictsDialogCorpus <•> Watch •- 0 ★ Star 0 V Ferx 0 

<> Code Issues 0 i PuH requests 0 Projects 0 Wiki kb. Insights Settings 

Branch: master ~ ftealWorldProfessionalConflictsDialogCorpus / PFC Lewis.csv Find file Copy path 

jjj£ adowdell18 Add files via upload a3c84c0 41 seconds ago 

1 contributor 

152 lines (146 sloe) 96.4 KB Raw Blame History Q y' @j 

Q, Search this file... 

Region 4 

All right, sit back. Let me get you something to drink. Oo you drink coffee? (or beverage of preference) How long as this been going on for? (about the troubled mar 

Private, I am g ad you have come to me for this. Let's get you some help and someone to talk to. 

Suicide is never the answer. I know you're strong and you can get through this. 

PFC, i just want you to know that it gets better. 1 know for a fact that you're thinking this is how life is always going to be, but I can assure you that it's not. You'll get 

Tnese kinds of things happen in life. You can't let other people's choices effect you in such a negative manner. 

If you want someone to talk to i am always here, I have enough experience to listen you out and even give an advice. 

Ending it is never the answer to any problem. You're not in any trouble. Use the rest of the day to clear you head. 

You can ask anybody here, you're one of the best around. Who else is going to sit around and make MRE coffee for us on those cold, cold mornings? 

That’s a tot to deal with all at once. I would recommend just being aware of your situation but not letting it control you. 

Know that you are never alone, I am always here with open ears. 

Life is not always easy, but it is worth it. If you ever need anyone to talk to about what is going on, I am always willing to listen. 

Figure C.l: A corpus of emotional utterances were compiled for this project. The 
dataset can be found in the following GitHub repository: https://github.com/ 

adowde!118/RealWorldProfessionalConflictsDialogCorpus/ 

https://github.com


  

   

              

      

          

   

  

 

Appendix D 

Seq2Seq Conversational Model 

The source code and corresponding datasets for the Seq2Seq model, may be found here 

https: //github. com/adowdelll8/Seq2Seq-Conversation-Models. Code and comments 

were provided, sourced, and/or modified from the following Udemy-tutorial inspired 

repositories: https://github.com/AbrahamSanders/seq2seq-chatbot, https://github 

com/lucko515/chatbot-startkit, https://www.udemy.com/chatbot/. 
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https://www.udemy.com/chatbot
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https://github.com/AbrahamSanders/seq2seq-chatbot
https://github.com/adowdelll8/Seq2Seq-Conversation-Models


     

  

  

  

   

     

  

   

  

  

    
 

       

     

        

    

       

        

     

     

        

        

     

        

       

      

        

    

     

        

      

     

                
    

    
    

     
    

    
    
    
    

       
    

    
         

         
       

      

         

       

         
        

     
  

  
         
         

          

     
    

  
  
    

  
    

  
     
     

 

         

Appendix D Seq2Seq Conversational Model 

epoch_accuracy.append(get_accuracy(np.array(y_batch), np.array'preds))) 

bucket_accuracy.append(got_accuracy(np.array(y_batch), np.array(preds))) 

bucket_loss.append(cost) 

epoch_loss.append(cost) 

ifffor s in preds; 

Sprint("Chatbot: ”,int2str(s)) 

#saver.save(session, “gdrive/My Drive/checkpoint/epoch{}/chatbot_{}.ckpt".format(i,b)) 

print{"Bucket format(b+1), 

Loss; {}".format(np.mean<bucket_loss)), 

Accuracy: {} " .format(np.mean(bucket_accuracy))) 
BucketID»0 

1001 ;M—— 2/2 ( 00:04<00; 00, 2.54s/it) 

0%| | 0/2 [00;00<?, ?it/s] 

Bucket 1: | Loss; 2.521085023880005 | Accuracy: 0.134375 

100%|HMHBHH 2/2 {00:01<00:00, 1.23it/sj 

0%| | 0/2 I 00:00<?, ?it/s J 

Bucket 1: | Loss: 2.472428798675537 | Accuracy: 0.14010416666666667 

100i|HHH: 2/2 [ 00:01<00:00, 1.22it/s] 

0%| i 0/2 100:00<?, ?it/s] 

Bucket 1: | Loss: 2.3946547508239746 | Accuracy: 0.14375 

100% ! ■raw 2/2 | 00:01<00: 00, 1.23it/s] 

0%| I 0/2 [00:00<?, ?it/s] 

Bucket 1: | Loss: 2.3234572410583496 | Accuracy: 0.13932291666666666 

100% {■■■■■■■I 2/2 I 00:01<C0: 00, 1.22it/sJ 

0%| | 0/2 [00:00<?, ?it/s J 

Bucket 1: | Loss: 2.242194414138794 | Accuracy: 0.14036458333333335 

100%jHHMMH; 2/2 [00:01<00:00, 1.23it/s] 

0%| i 0/2 |00:00<?, ?it/s] 

Bucket 1: | Loss: 2.171445369720459 | Accuracy: 0.14244791666666667 

100t!HHH| 2/2 [ 00: 0KC0:00, 1.23it/s] 

G%| j 0/2 100:00<?, ?it/s] 

#The following code and comments are provided, sourced, and/or modified from the! following repositories from: https://github.com/AbrahamSanders/seq2seq--ch 
for i in range(0,EPOCHS): 

epoch accuracy = [J 
epoch loss = [J 
for b in ranje(Q,ler.(bucketed data)): 

bucket - bucketed data]b) 
questions bucket - [] 
answers bucket = l] 
bucket accuracy - () 
bucket loss * l] 
for k ir. range(len(bucket)) : 

questions bucket.append(np.array(bucket[k][0)> > 
answers bucket.apper.d(np.array(bucketikj [ 1J)) 

#for ii in tqdm<range(len(questions bucket) U BATCH SIZE)): 
Number of Loop = ler.(questions bucket) / BATCH SIZE 
Number of Loop - math.trunc<Number of Loop) 
for ii in tqdn(range(Number of Loop)): 

#for ii in tqdm(range(len(questions bucket) // BATCH SIZE)): | 

starting id - ii * batch size 

X batch - questions bucket[starting idsstarting id+BATCH SIZE] ! 
y batch * answers bucket[starting id:starting id+3ATCK SIZE] 

teed diet = {model.inputssX batch, 
model.targets:y batch, 
model.keep_probs:keep probs, 
model.decoder seqlen: | len(y batch[C ]) ]’BATCH SIZE, '■ 
model.encoder seq len:[len(X batch10 J >)*BATCH SIZE} ; 

cost, , preds = session.run([model.loss, model.opt, model.predictiohs), feed dict=feed diet) 

epoch accuracy.append(get accuracy(np.array(y catch), np.array(preds!))> 
bucket accuracy.append(getaecuracy(np.array(y batch), np.array(pred6ii) 

bucket loss.append(cost) 
epoch loss.append(cost) 
#for s in preds: 

#print("Chatbot: ",int2str(s)) 
#saver.save(session, "gdrive/My 3rive/checkpoint/epoch{}/chatbot {).ckptf.format(i,b)) 
prirt(*Bucket {}:'.format(b+1), 

’ I Loss: {}'.format(np.mean(bucket loss)), 
" I Accuracy: {}’,format(np.aean(bucket accuracy))) 

Bucket13=0 

Figure D.l: Code Snippets from Seq2Seq Conversation Model [1] 

https://github.com/AbrahamSanders/seq2seq--ch
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