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Abstract 

Although renewable energy provides a viable solution to address ongoing 

challenges of the economy and the environment in modern power systems, the variable 

generation of this technology results in major technical challenges for system operators. 

This issue is becoming more severe as the penetration of renewable generation is 

increasing. This dissertation addresses the variability challenge of renewable energy 

resources in transmission and distribution levels of modern power systems.  

For transmission level, this dissertation focuses on wind generation fluctuation. 

Three methods of reducing wind generation fluctuation are investigated from an 

economic perspective, including (a) dumping the wind generation, (b) using battery 

energy storage system (BESS) to capture excess wind generation, and (c) a hybrid 

method combining these two approaches. The economic viability of the hybrid method is 

investigated via a developed linear programming model with the objective of profit 

maximization, which in extreme cases will converge to one of the other methods. This 

dissertation further proposes a BESS planning model to minimize wind generation 

curtailment and accordingly maximize the deployment of this viable technology. 

For distribution level, this dissertation investigates the issue of microgrids net 

load variability stemmed from renewable generation. This is accomplished by 

investigating and comparing two options to control the microgrid net load variability 

resulted from high penetration of renewable generation. The proposed options include (a) 
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Local management, which limits the microgrid net load variability in the distribution 

level by enforcing a cap constraint, and (b) Central management, which recommends on 

building a new fast response generation unit to limit aggregated microgrid net load 

variability in the distribution level. Moreover, the aggregated microgrid net load 

variability is studied in this dissertation by considering the distribution system operator 

(DSO). DSO would calculate the microgrids net load in day-ahead basis by receiving the 

aggregated demand bid curves. Accordingly, two models are proposed considering the 

DSO role in managing the grid operation and market clearing. The first one is security-

constrained distribution system operation model which maximizes the system social 

welfare. The system security consists of distribution line outage as well as microgrid 

islanding. None of these two security events are in the control of the DSO, so associated 

uncertainties are considered in the problem modeling. The second one aims at 

reconfiguring the distribution grid, i.e., a grid topology control, using the smart switches 

in order to maximize the system social welfare and support grid reliability. 

The conducted numerical simulations demonstrate the effectiveness and the 

merits of the proposed models in identifying viable and economic options in capturing 

renewable generation variability. 
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Chapter One: Introduction 

The renewable energy is expected to lead the future of energy generation as the 

governments in developed countries encourage to increase the renewable installations via 

offering incentives and setting renewable mandates to increase penetration and reap the 

benefits of this viable and environmentally-friendly technology. In the United States 

many incentives and regulations can be found for this purpose, including but not limited 

to environmental regulations, interconnection standards, net metering policy, feed-in 

tariffs, and property assessed clean energy [1]–[4]. In some countries, the existing 

renewable energy capacity exceeds 40% of the total installed capacity [5]. Wind energy 

has the largest installed capacity worldwide among other renewable resources. In case of 

wind turbine technology, the focus is on both offshore wind generation, as well as 

onshore generation [6], which is boosted by recent improvements in wind energy 

technology and increased net benefits [7], [8]. In 2017, the cumulative installed wind 

generation capacity reached 539.6 GW up from 487.7 GW in 2016 with an increase of 

10.65%[9], [10]. The global growth of wind generation capacity is shown in Fig. 1.1. 

Wind energy is considered a viable energy resource to use as it is clean and inexpensive, 

however, it poses several challenges when it comes to grid integration. One of the 

challenges is that wind generation is variable and uncontrollable [11]. In other words, it is 

subject to volatility (constant fluctuations) and intermittency (frequent unavailability), 
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which makes integration and operation of this viable energy resource to the power grid a 

difficult task for system operators in order to make the power system stable and balanced. 

This issue will be more severe as the wind penetration increases in the system, and the 

drawback will be seen by both system operators and wind farm owners [12]. Moreover, 

this high penetration of wind generation makes wind integration a difficult task as it 

affects various aspects of the power system operation such as power quality, stability, and 

economics [13]. 

 
Fig. 1.1 Global cumulative installed capacity of wind generation [10] 

 

The second challenge in wind integration, which is more economical than 

technical, is the large capital cost associated with the technology, although offering 

extremely low operation costs. Considering this, wind turbines are commonly operated 

on maximum power point tracking (MPPT), so the payback period is reduced [14], [15]. 

When a wind turbine is connected to the grid, the injected wind generation into the grid 

must follow the power grid’s standards [16], which are followed and complied by all 

generation resources in the grid. Therefore, the highly fluctuating wind power has to be 

smoothed to its allowable limits from a power system operator’s perspective. This 

reduction in fluctuations, however, should be carried out while taking the economic 
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benefits of the wind farm owners into consideration [17]. In [18], authors found that 

uncertain wind power variations must be compensated by units with fast generation 

response, for example natural gas or hydro, to ensure system/nodal power balance and to 

maintain grid stability. The California Independent System Operator (CAISO) has 

conducted a study and found that the variations in renewable generation can cause 

significant issues in power system supply-demand balance. The supply-demand 

imbalance causes oversupply risk, mainly in morning hours when the load demand is low 

while the wind generation is high. Therefore, it is required to increase the system 

elasticity using fast up or down ramping, see Fig. 1.2 [19]. 

 
Fig. 1.2 The California ISO duck curve [19] 

Although an aggregation of wind turbines (i.e., wind farm) would result in less 

variable output, the generation fluctuations would still be noticeable and significant in 

power system operation [20]. The study in [21] proposes to equip wind turbines with a 

control system for inertial power smoothing in a frequency range of 0.01 Hz or higher. It 

is found that the losses of wind power at these frequencies will not exceed 1.5% 

regardless of the wind speed. In addition, the power electronics can be used to smooth the 
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wind power fluctuations but these methods may reduce the power produced by the wind 

turbines [22]. Additional studies found that various types of the storage systems could 

shape the wind turbine output power to the desired profile. In [23], another approach is 

proposed to smooth a large scale wind farm power,  suggesting the conversion of 

conventional parking lots to smart parking lots, thus to create a huge charging and 

discharging capacity That can be used for reducing renewable generation fluctuations.  

This dissertation focuses on capturing energy variability in modern power systems 

at both transmission (large-scale) and distribution (small-scale) levels. The large-scale 

integration include renewable energy resource in transmission level which ranges in 10s 

of MWs [24], where variability could be as large as 70% of the installed capacity in 5 to 

10 minutes [25]. The small-scale integration comprises renewable energy resource in 

distribution networks, and particularly within microgrids, which may cause microgrids 

net load variability in distribution level. 

1.1 Reducing Wind Power Variability in Transmission level 

There are many methods are proposed to reduce the power fluctuation while wind 

turbines generate the maximum power, such as dumping wind power [26], using pumped 

hydro storage system [27] and having energy storage systems [4]. These methods can 

help with the grid stability and reliability while ensuring maximized economic benefits 

for the wind farm owners and developers. In chapter two, a new hybrid model is 

proposed to address the wind power fluctuation reduction. This model joins two methods 

together: 1) the first one is dumping any excess power over the utility-imposed limit and 

2) the second one is to use a BESS. The developed hybrid model determines the optimal 

size of the BESS as well as the amount of wind generation that needs to be dumped.  
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Despite that it is imperative to curtail wind generation at some strategic points of 

the system under these conditions, it is deemed less desirable and considered as a loss for 

both system operator and the wind farm owners. Wind generation curtailment is defined 

as reduction in wind generation from what it could generate, or in other words, the 

amount of wind generation that the system operator is unwilling to inject into the network 

[14]. Wind generation curtailment has been practiced in many electricity markets inside 

and outside the United States. Some examples and practices as well as the main reasons 

behind curtailment are found in [14], [28]–[30]. Fig. 1.3 shows the curtailment level that 

occurred in some electricity markets inside the United States from 2007 to 2013. Most of 

curtailments were ranged from 1% to 4% of the total wind generation. However, in some 

areas, such as in ERCOT territory, wind generation curtailments as high as 17% were 

recorded. Wind generation curtailment has also occurred in New England ISO (NE-ISO) 

and CAISO, which are not mentioned in Fig. 1.3. NE-ISO reduced wind generation 

capability of a 45 MW wind unit in Vermont NE to only 20 MW [31]. In 2017, CAISO 

curtailed 60 GWh and 80 GWh of wind generation in February and March, respectively, 

up from 21 GWh and 47 GWh in the corresponding months of the previous year [32]. 

The reasons of wind generation curtailment vary from market to market, but the common 

reasons are the lack of adequate transmissions capacity to transmit the generated power 

(i.e., under transmission congestion), and the simultaneous oversupply of wind generation 

with low load. 
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Fig. 1.3 The wind generation curtailment in the U.S. by electricity market [14] 
 

The massive wind generation curtailment experiences mentioned above show an 

increase in energy waste. However, it is crucial to curtail the wind generation to 

acceptable levels under some operating conditions, such as oversupply. In [33], authors 

present applications of wind curtailment reduction in different countries. Reducing the 

wind generation curtailment can be accomplished by increasing the power system 

flexibility through installation of BESS. The excess wind generation can be stored in 

BESS by the charging process for later used by discharging when wind generation is low. 

In chapter three, a planning model is proposed to reduce the wind generation curtailment. 

The main objective is to find the optimal amount of wind generation curtailment that 

allows an efficient integration in the power system, as well as the optimal size of the 

BESS which helps to save some or the entire curtailed amount of wind generation. 
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1.2 Managing Net load Variability in Distribution level 

Chapter four proposes a model to address the challenge of integrating renewable 

generation in microgrids. One reason of microgrids net load variability is integration of 

renewable energy resources into in a small-scale power system, such as microgrids. Since 

wind energy has the largest installed capacity among renewable energy resources, as 

mentioned above, this dissertation focuses on its variability in distribution level as well. 

In [34], a study of integrating wind generation within a microgrid is conducted. The study 

proposes operational controls to help with the wind integration and managing the wind 

generation variability. Wind energy, as mentioned above, is rapidly growing in power 

systems, primarily due to the falling cost of the technology and strict environmental 

mandates. The wind generation variability, however, has presented a significant 

challenge in ensuring a reliable supply-demand balance when utilizing this technology in 

microgrids. As the penetration of wind generation increases in the microgrid and there is 

a high microgrid penetration in the utility grid, the wind generation variability may cause 

a severe negative impact on the microgrid net load from utility’s perspective.  

Consequently, it is worth to study the increase of microgrids penetration in 

distribution level and investigate their impact on distribution market. Microgrids help to 

increase the distribution system reliability and resiliency by allowing consumers to 

partially or fully supply their demand [35], while at the same time add technical 

complexity to grid management. Microgrids, as advanced technologies that integrate and 

manage several DERs and loads, are also responsive to day-ahead price signals which 

leads to microgrids net load variability [36]. In either case, it has become evident that a 

distribution system operator (DSO) to manage the local distribution grid and solve this 
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added complexity in a local manner is necessary. The DSO offers many advantages for 

the distribution system such as increasing the participation of proactive customers and 

allowing them to play a direct role in the electricity market, removing the uncertainty of 

proactive loads, and further reducing the required two-way communications between the 

ISO and proactive customers by forming an intermediate point of contact.  

Distribution system operators (DSOs) will play an important role in future power 

grids to incentivize and increase the participation of proactive customers in distribution 

electricity markets, and accordingly, address many operational challenges caused by the 

growing proliferation of such customers [37]. In the past few years, there has been a 

growing interest in studying various DSO models to help transform the distribution 

system operations. Examples in the U.S. are the concept of Distribution System Platform 

Provider (DSPP) in New York introduced through Reforming the Energy Vision (REV) 

program [38], the DSO concept proposed in California [39], and the idea of transforming 

the utility to a platform business model proposed by ComEd in Illinois [40], to name a 

few. Additional models have also been discussed, including but not limited to 

Distribution Network Operator (DNO) [41], Distribution Market Operator (DMO) [42], 

and Independent distribution system operator (IDSO) [43].  

Despite different terminologies, existing models share a somewhat similar 

definition for the DSO, i.e., an independent entity placed between the proactive 

customers and the ISO to streamline customers’ participation in the electricity market as 

well as to coordinate with the electric distribution company to enhance grid operations 

[44]. This dissertation, furthermore, proposes two models considering DSO, chapter five 

proposes a security-constrained distribution system market clearing model while chapter 
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six focuses on maximizing the social welfare in the distribution market through grid 

reconfiguration. 
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Chapter Two: Wind Power Variability Reduction in Transmission Level 

2.1 Introduction 

In this chapter, two methods are studied to address the variable wind generation 

[45]. The first one is dumping any excess power over the utility-imposed limit. The 

second one is to use a BESS. The main objective of these methods is to make the wind 

generation smoother (i.e., less variable), and to some extent, dispatchable. Both methods 

are investigated through a developed hybrid model that can simultaneously accounts for 

both methods using an economic viability approach in which the investment cost of the 

BESS is compared with the lost revenue from dumping wind generation. The developed 

hybrid model determines the optimal size of the BESS as well as the amount of wind 

generation that needs to be dumped. This method further has the capability to select only 

one of these two methods if the other one is deemed less desirable in terms of ensuring 

economic benefits.  

2.2 Wind Power Smoothing Model Outline and Formulation 

The main objective of the proposed model is to find a method that helps smooth 

the wind power fluctuations to meet the utility grid limits while maximizing economic 

benefits from selling wind generation to the grid. The proposed model combines two 

different methods of wind power dumping (power curtailment) and the BESS application. 

For wind power dumping, some power electronics is applied to avoid generated power 
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having big fluctuations when the wind speed increases, but when the wind speed 

decreases, the power electronics cannot help (power electronics can help dump power but 

it cannot generate power or store energy). The advantage of this method lies in the small 

capital cost or maintenance cost as no additional equipment needs to be installed and 

coordinated with the wind turbine. Depending on the fluctuations, BESS can be used to 

reduce the power fluctuation by properly charging and discharging energy, i.e., shifting 

the excess generations to other hours with relatively lower generation. However, the 

BESS imposes an investment cost which needs to be carefully considered in studies. The 

proposed hybrid model considers both these methods at the same time and offers the 

capability to select a combination of the two methods. The BESS budget constraint is 

added to impose a specific budget that cannot be exceeded. All costs and prices in this 

model are annualized. The proposed formulations are modeled using a Mixed-Integer 

Linear Programming (MILP) approach. 

The objective function is proposed as in (2.1) which seeks to maximize the total 

annual profit of the wind farm owner. This profit is presented as the cost of wind 

generation minus the BESS investment cost. 

   max w w b b
td td td

t d

P D P PCC E ECC 
   

 
      (2.1) 

,min ,maxb b bP P P          (2.2) 

,min ,maxb b bE E E          (2.3) 

0 ,dch b
td tdP P u t d        (2.4) 

0 ,b ch
td tdP v P t d         (2.5) 
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1, 1,
dch

chtd
td t d td

P
E E P t d

         (2.6) 

1,
1, 24, 1 1, 1

dch
d ch

d d d

P
E E P d

         (2.7) 

0 ,b
tdE E t d        (2.8) 

1 ,td tdu v t d        (2.9) 

,td
t d

u k t d       (2.10) 

,w dch ch w
td td td tdP P P D L t d          (2.11) 

b bP PCC E ECC B          (2.12) 

 
The first term in the objective (2.1) represents the profit of wind power which is 

always positive and is considered as an income as the wind energy is sold by the wind 

farm to the utility grid. The second and third terms represent the BESS investment cost 

which includes BESS power and energy capital costs, respectively. The BESS sizing is 

modeled by (2.2) and (2.3) by restricting the power and energy ratings between minimum 

and maximum values. The BESS charging and discharging powers are modeled by (2.4) 

and (2.5). The charging power is always negative since it is considered as a load, whereas 

the discharging power is positive as it is considered a generation source. The stored 

energy in the BESS is calculated for each hour via (2.6)-(2.7) and is constrained by (2.8). 

Constraint (2.7) calculates the stored energy at hour 1 of each day (based on the stored 

energy at hour 24 of the previous day), while (2.6) calculates the stored energy for other 

hours of the day. The stored energy is calculated as the stored energy at the previous hour 
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minus the amount of charged/discharged power. Since the charging power is considered 

as a negative variable, the stored energy will increase when the BESS is charging. The 

BESS charging/discharging efficiency is considered by adjusting the discharged power. 

The charging and discharging states are represented by binary variables v and u, 

respectively. The binary discharging indicator u equals 1 when the BESS is discharging 

otherwise it is 0. Similarly, the binary charging indicator v equals 1 when the BESS is 

charging, otherwise 0. It is made sure that these two binary variables are not 1 at the same 

time using (2.9). A battery life cycle constraint (2.10) is imposed on the BESS charging/ 

discharging cycles to prolong the battery lifetime. The net output power of the combined 

wind farm and the BESS, which is defined as the summation of the wind power and the 

BESS net power, is calculated and ensured that it does not violate the utility-imposed 

limit (2.11). This limit ensures that the combined wind power and BESS power will not 

exceed the imposed limit, hence the variability in wind power will be captured by the 

BESS whenever necessary, and thus the fluctuations will be mitigated. A dumping 

variable is further added to this constraint to determine the optimal amount of hourly 

dumping if necessary. The wind generation dumping appears as a load, or as shown in 

(2.11), a negative generation. The impact of the generation dumping is further reflected in 

the objective (2.1). Finally, the BESS budget constraint is modeled by (2.12) to ensure 

that the investment cost does not exceed the available budget.  

The outcome of this optimization problem will be three variables: the optimal 

BESS rated power (Pb), the optimal BESS rated energy (Eb), and the amount of hourly 

dumping (Dw
td). If the first two are zero, it means that the generation dumping is the most 
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economical solution, while if last variable is zero, it means that the BESS installation was 

successful in fully capturing all fluctuations over the imposed limit. As discussed, a 

solution in between is also possible which represents that both methods are required to be 

utilized at the same time to ensure highest possible economic benefits. 

2.3 Numerical Simulations 

The proposed hybrid wind power-smoothing model is applied to a test wind farm 

with an aggregated capacity of 14 MW. One-year time horizon of forecasted wind power 

data and market price data are used in the studies. The BESS characteristics are selected 

and presented in Table 2.1. The proposed MILP model is utilized to solve the following 

cases:  

Case 1: Base case (dumping the wind power without adding the BESS) 

Case 2: Using a fixed BESS capacity  

Case 3: Solve the optimization model to find the optimal BESS size and 

generation dumping for the wind farm 

Table 2.1: BESS Characteristics 

Maximum Power 
rating (MW) 

Maximum 
Energy rating 

(MWh) 

Power rating 
capital cost 
($/MW/yr) 

Energy rating 
capital cost 
($/MWh/yr) 

BESS 
efficiency 

(%) 
10 20 20,000 11,000 90 

 

Case 1: In this case the wind generation is dumped whenever necessary to meet 

the utility-imposed limit. A sample one-week data of the wind power profile is shown in 

Fig. 2.1. The imposed limit is selected as 6 MW. The total profit of the base case is 

calculated before and after dumping the power is calculated, in which the difference 

would represent the lost revenue. The total profit without the limit is calculated as 
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$5,825,912, which is reduced to $5,173,639 after imposing the limit and dumping 

generation. The lost revenue is calculated as $652,273. Despite the large lost revenue, 

which represents more than 11% of the initial profit, the wind power has to be dumped 

since the fluctuations can potentially harm the power system. The overall dumped energy 

is 4470 MWh for this case. Fig. 2.2 shows the dumped wind power profile for one week. 

The red line is sold wind generation to the utility grid which is less variable but 

considerably lower than the maximum generated wind power in many hours. 

 
Fig. 2.1 Wind power profile for one sample week 
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Fig. 2.2 Smoothed wind power by dumping wind power (Case 1) 

 
Case 2: In this case a fixed BESS capacity, regardless of the wind power 

fluctuation, is added to the wind farm. The fixed BESS capacity is selected to be 5 MW 

and 10 MWh for rated power and rated energy, respectively. The imposed limit is still 

selected to be 6 MW to enable comparisons. Using this BESS, the wind power profile 

will be smoothed as shown in Fig. 2.3, but it may not represent the optimal solution. The 

total profit is $5,220,632 which represents an increase of approximately 0.91% compared 

to Case 1. By using fixed BESS, the total dumped energy is reduced to 3349 MWh. This 

result advocates that using BESS has increased the total wind farm profit and while 

considerably improved the wind power profile. 
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Fig. 2.3 Smoothed wind power by fixed BESS capacity (Case 2) 

 
Case 3: The proposed optimization model to find a hybrid solution is studied in 

this case, which would find the optimal BESS capacity and the amount of dumped 

generation. The optimal capacity of BESS in this case is calculated as 2.7 MW for rated 

power and 3 MWh for the rated energy. The total profit of the wind farm is calculated as 

$5,263,126, which is the highest profit among the three studied cases and is more than 

1.73% of the profit in Case 2. The dumped energy is calculated as 3939 MWh. The wind 

power fluctuations are also less than the other two cases as shown in Fig. 2.4. 

Table 2.2: Summary of Studied Cases 
 Total profit ($) BESS cost ($) Cost of dumped generation ($) 

Case 1 5,173,639 0 652,273 
Case 2 5,220,632 210,000 395,280 
Case 3 5,263,126 87,000 475,786 

 

Table 2.3: The Fluctuation Reduction Based on Standard Deviation In Studied Cases 
Original wind profile Studied cases 

3.412 
Case 1 2.738 
Case 2 2.725 
Case 3 2.705 

 



 

18 

Table 2.2 summarizes the results of these three cases, including the total profit, 

BESS cost, and total dumped generation. To measure the variability improvement for 

each case, the standard deviation is calculated and listed in Table 2.3, where smaller 

standard deviations represent less fluctuation. As presented, the Case 3 solution ensures 

less fluctuations compared to other two cases.  

 
Fig. 2.4 Smoothed wind power profile by optimal BESS capacity (Case 3) 

 

The impact of the utility-imposed limit on the BESS rated power and rated energy 

is further analyzed and shown in Fig. 2.5 and Fig. 2.6, respectively. It is clear that when 

the limit is increased, the BESS capacity decreases and vice versa. In addition, it can be 

concluded from these figures that using only the dumping wind power method is more 

economical than using hybrid method when the limit more than 6 MW. Otherwise, it is 

more beneficial to use the proposed hybrid method when the limit is less than or equal 6 

MW. 



 

19 

 
Fig. 2.5 Impact of wind power limit on BESS rated power 

 

 
Fig. 2.6 Impact of wind power limit on BESS rated energy 
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Chapter Three: Optimal Battery Energy Storage Sizing for Reducing Wind 

Generation Curtailment 

3.1 Introduction 

In this chapter, a planning model is proposed to reduce the wind generation 

curtailment [46]. Despite the benefits of wind generation curtailment to make the power 

system stable and balanced, it is deemed less desirable since the wind generation is 

inexpensive and the curtailment is considered a loss for both the system and the wind 

farm owner/developer. The proposed planning model is using a BESS to reduce and 

minimize the wind generation curtailment by storing the curtailed power and use it again 

at other operation hours when wind generation is low or the transmission network is not 

congested [45], [47]–[50]. The main objective of the proposed planning problem is to 

find the optimal amount of wind generation curtailment that allows an efficient 

participation in the system, as well as the optimal size of the BESS which helps to save 

some or the entire curtailed amount of wind generation. 

3.2 Wind Generation Curtailment – Model Outline and Formulation  

The proposed planning model seeks to maximize the economic benefits of the 

wind generation. This objective is achieved by simultaneously minimizing the investment 

cost of the BESS (that is an optimal sizing problem) along with minimizing the amount 

of curtailed wind generation. To curtail the wind generation, power electronics devices 
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are used which would prevent overgeneration whenever the curtailment is needed. The 

BESS is used to reduce the wind generation curtailment by properly charging and 

discharging energy, i.e., shifting the surplus generation to other low wind generation 

hours. The BESS budget constraint is further considered to maintain a certain investment 

budget that cannot be surpassed. The model is developed based on annualized costs. The 

objective function is proposed in (3.1) which minimizes the total annual system operation 

cost, considering the wind generation curtailment, plus the BESS investment cost. The 

first term in (3.1) represents the operation cost of units and the second term denotes the 

BESS investment cost. 

   min R R
i it

i t

F P P CP E CE        (3.1) 

The objective function is subject to a number of system operation (3.2)-(3.5) and 

BESS constraints (3.6)-(3.15).  

3.2.1 Operation Constraints 

The operation problem is formulated as an economic dispatch (3.2)-(3.5). 

Dispatchable units generation is limited between its associated maximum and minimum 

generation capacities (3.2). The power flow equation (3.3) determines the active power 

that flows in each transmission line. Transmission line flow is further limited to ensure 

the power flow in each line does not violate the transmission line capacity (3.4). The 

nodal load balance equation (3.5) ensures that the total generated power by generation 

units (dispatchable and renewable), plus the power of the added BESS equals the system 

total load demand. A positive variable for the wind generation curtailment is further 

added to (3.5) to determine the optimal amount of curtailment, if necessary.  
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min max ,i it iP P P i t        (3.2) 

,G
lt lm mt

m

PL P l t       (3.3) 

max max ,l lt lPL PL PL l t         (3.4) 

,w B w
it t t mt t

i m

P P P PD C m t           (3.5) 

3.2.2 BESS constraints 

The BESS rated power and energy limits are modeled in (3.6) and (3.7), 

respectively, followed by discharging and charging powers in (3.8) and (3.9). The 

discharging power is always positive since BESS is producing power while it is 

discharging. Conversely, the charging power is negative as BESS is consuming power 

when it is charging. The BESS output power is the summation of BESS charging and 

discharging powers (3.10). The hourly BESS stored energy is calculated in (3.11) as the 

stored energy at the preceding hour minus the charged/discharged power, so the stored 

energy will increase when the BESS is charging (as the charging power is negative) and 

will decrease when the BESS is discharging (as the discharging power is positive). The 

stored energy is restricted by (3.12) considering the BESS depth of discharge. The 

charging and discharging states are denoted by binary variables u and v, respectively. The 

binary discharging state v is 1 when the BESS is discharging otherwise it is 0. The binary 

charging state u is 1 when the BESS is charging, otherwise it is 0. By using (3.13), it is 

ensured that both binary variables are not equal 1 at the same time (i.e., BESS is not 

charging and discharging simultaneously). A battery life cycle constraint (3.14) is applied 

on the BESS charging/discharging cycles to prolong the BESS lifetime. Furthermore, a 
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BESS budget constraint (3.15) is added to ensure that the investment cost does not 

surpass the available budget. 

R,min R,maxRP P P          (3.6) 

R,min R,maxRE E E          (3.7) 

0 dch R
t tP P v t       (3.8) 

0R ch
t tP u P t        (3.9) 

B dch ch
t t tP P P t       (3.10) 

1

dch
B B cht
t t t

P
E E P t

        (3.11) 

 1 R B R
tD E E E t        (3.12) 

1t tu v t       (3.13) 

t
t

v k t      (3.14) 

R RP CP E CE IB          (3.15) 

Solving the proposed optimization problem results in the optimal BESS size (PR 

and ER), and the amount of hourly wind generation curtailment (Cw
t). A zero value for the 

BESS size indicates that the wind generation curtailment is considered more economical 

than installing the BESS. However, if the optimal BESS size is non-zero, it can be 

concluded that the BESS is installed and it is capturing, partially or fully, wind 

generation. 
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3.2.3 The Robust Solution by Considering Wind Forecasting Uncertainty 

The main objective of robust solution is to consider the uncertainty of wind 

generation forecast, and thus, to further ensure practicality of the obtained solutions. A 

robust optimization approach is applied to solve the problem under worst-case wind 

generation accuracy conditions [51]. The above proposed model will be modified to 

include the impact of forecasting error of wind generation. The objective function (3.1) of 

the above proposed model is modified to include robust optimization in (3.16). which 

minimizes the total annual system planning cost. The objective is simultaneously 

maximized to obtain the worst-case solution under the prevailing uncertainty of wind 

generation forecast. 

   
PU

max min R R
i it

i t

F P P CP E CE        (3.16) 

 
where i and t are the indices for dispatchable units and time, respectively. F(.) 

represents the operation cost function of dispatchable units. P is the amount of generated 

power by each unit. PR and ER are the BESS power and energy ratings. CP and CE are 

the annualized BESS investment cost for power and energy ratings, respectively. U and P 

are  the uncertain parameters and primal variables, respectively. Uncertain parameters 

include the wind generation forecast and primal variables include the generated power by 

dispatchable units and the BESS size (i.e. rated power and energy variables). The robust 

optimization finds the worst-case solution as uncertain wind forecast varies within the 

uncertainty intervals. The worst-case solution is obtained by maximizing the minimum 

value of total planning cost over the uncertain parameter (i.e. the wind generation). The 
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robust solution ensures that the total planning cost is minimized based on the possible 

variation of the forecasted wind generation within its uncertainty interval. 

The new objective function is subject to constraints (3.2)-(3.15), plus uncertainty 

constraint of wind generation forecast (3.17). Wind generation is obtained from the 

forecast and expanded within a range of uncertainty (i.e. a polyhedral uncertainty set). 

The range of uncertainty is  the upper and lower limits that  the wind generation forecast 

is expected to lie within  [52].  

ˆw w w w
t t t t t tP P P x P x t        (3.17) 

 t t
t

x x t        (3.18) 

 
Considering a polyhedral uncertainty set, the uncertainty of wind generation 

forecast is modeled in (3.17) to identify the worst-case solution. P̂t
w  represents the 

forecasted wind generation. The upper/lower bars in (3.17) represent the upper/lower 

limits of the uncertainty range, and x is the binary variable to ensure that the upper and 

lower limits do not occur at the same time (when x  is one, x  should be zero and vice 

versa). Using (3.18), the freedom of binary variables associated with wind generation 

uncertainty is restricted by the uncertainty limit Γ. The uncertainty limit ensures that the 

wind generation uncertainty cannot exceed a certain limit, which is bounded by 

restricting the number of hours during which the uncertain forecast can reach either of its 

bounds. The robustness of the solution can be further controlled by the uncertainty limit 

to allow application based on risk-aversion. The risk-aversion solutions are considered as 

conservative, moderate and aggressive. The conservative solution considers larger 
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uncertainty limit and provides a more robust solution against uncertainty. Conservative 

solution results in large total planning cost with lower risk of unserved energy. On other 

hand, the total planning cost of the aggressive solution (i.e. smaller uncertainty limit) will 

be small while the solution is less robust than the conservative solution. The moderate 

solution considers an uncertainty limit between the conservative and aggressive solutions 

[52].  

3.3 Numerical Simulations 

The proposed model is applied to IEEE 118-bus test system, as shown in Fig. 3.1, 

to investigate the model viability. This system has 54 thermal generation units, 186 

transmission lines, and 91 loads. A wind farm is considered at bus 2, with a capacity of 

200 MW, which has two transmission lines connected to it with maximum capacity of 

100 MW each. Table 3.1 shows the characteristics of the BESS to be considered [53], 

[54]. The proposed planning problem is solved for a one-year period in the following 

cases:  

Case 1: Wind generation curtailment without BESS installation  

Case 2: Wind generation curtailment with BESS installation 

Case 3: Impact of changing wind farm capacity 

Case 4: Considering wind generation uncertainty 

Case 5: Impact of changing forecast uncertainty 
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Fig. 3.1 IEEE 118-bus test system 
 

Table 3.1: BESS Characteristics 
Power Rating Capital 
Cost ($/MW-yr) 

Energy Rating Capital 
Cost ($/MWh-yr) 

Depth of Discharge 
(%) 

Efficiency (%) 

20,000 11,000 80 90 

 

Case 1: In this case, the wind generation is curtailed with no BESS installation. 

The wind farm has to curtail a total of 4751.7 MWh from its generation, which represents 

10.25% of the total wind generation. Fig. 3.2 depicts the total wind generation as well as 

its curtailment. The total planning cost is found as $234,132,300. 
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Fig. 3.2 Wind generation versus wind generation curtailment 

 
Fig. 3.3 Wind generation curtailment without using BESS 

 
Case 2: In this case, a BESS is considered for installation at the wind farm to 

investigate the impact of the BESS on the wind generation curtailment. The optimal 

BESS size is determined to be 32.5 MW and 40.5 MWh for rated power and rated 

energy, respectively. Using BESS reduces the wind generation curtailment to 36.25 

MWh, which represents a reduction of 99% comparing to previous case, as further shown 
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in Fig 3.2. This is considered a significant reduction of wind generation curtailment as the 

BESS captures 99% of generation curtailment to use it at other high load demand hours. 

The total planning cost is decreased in this case to $225,500,500, which is lower than 

previous case by 3.7%. Table 3.2 summarizes the results from Cases 1 and 2. 

Table 3.2: Summary of the Results 

 
Wind Generation 

Curtailment (MWh) 
Total Operation Cost 

($) 
Investment Cost ($) 

Total System 
(Planning) Cost ($) 

Case 1 4751.7 234,132,300 - 234,132,300 
Case 2 36.25 224,405,000 1,095,500 225,500,500 

Reduction 99% 4.15% - 3.7% 

 

 
Fig. 3.4 Wind generation curtailment with using BESS 

 

Case 3: In this case, a sensitivity analysis is conducted to investigate the impact 

of changing the wind farm capacity on wind generation curtailment, the total planning 

cost, and the optimal BESS size. Figs. 3.3 and 3.4 show the impact of changing wind 

farm capacity on the wind generation curtailment with and without using BESS. It is 

found that the wind farm is not required to curtail wind generation when its capacity is 
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less than or equal to 160 MW. Wind generation starts to be curtailed when the wind farm 

capacity exceeds 160 MW; however, the curtailed amount of wind generation when using 

BESS is considerably less than the curtailed amount when BESS is not used (range of 10s 

of MWhs instead of 1000s of MWhs).  In the absence of the BESS, the total planning 

cost is decreased as wind farm capacity increases, but it starts to increase when the wind 

generation needs to be curtailed. This is further shown in Fig. 3.5.  

 

 
Fig. 3.5 Total planning cost of the power system 
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Fig. 3.6 The optimal BESS size versus the wind farm capacity 

 

On the contrary, when using BESS, the total planning cost is decreased when 

wind farm capacity increases regardless of the required wind generation curtailment, as 

again shown and compared in Fig. 3.5. Although BESS has a substantial investment cost, 

the total planning cost keeps decreasing.  

Finally, the impact of changing wind farm capacity on the optimal BESS size is 

investigated. As shown in Fig. 3.6, it is not economical to install BESS when the wind 

farm capacity is less than or equal 160 MW. Then, the optimal BESS size is increased 

when the wind farm capacity increases. 

Case 4: In this case, the wind generation uncertainty is considered in the robust 

optimization model to obtain a more practical solution. In this case, the wind generation 

curtailment is increased to be 43 MWh, i.e., a change of 18.6% compared to case 2. The 

total planning cost is increased in this case to $225,827,300, which exceeds case 2 by 

0.15%. This small increase in the total planning cost increases the solution robustness 
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against the wind generation uncertainty. Similarly, the optimal BESS size is increased in 

this case to be 53 MW and 106 MWh for rated power and rated energy, respectively. This 

is a large increase in BESS size; however, it is required to increase the solution 

robustness. Figs. 3.7 and 3.8 compare the results in Cases 2 and 4. 

Case 5: A sensitivity analysis on changing the upper and lower limits of the 

uncertainty range is studied to determine the impact of the uncertainty range on the wind 

generation curtailment and the total system planning cost. The range of uncertainty is 

selected to be 0, ±5%, ±10%, and ±15%. Fig. 3.9 illustrates the impact of changing the 

uncertainty range. It is clear that the total planning cost is minimum when there is no 

forecast uncertainty, which means the forecast is 100% accurate; however, this solution is 

less practical as this error is almost impossible to achieve. When the uncertainty range 

increases, the solution robustness against the uncertainty is increased which results in a 

larger total planning cost. The wind generation curtailment is further increased as the 

forecast uncertainty increases. 

 
Fig. 3.7 Comparison between Cases 2 and 4 on wind generation curtailment and total planning cost 
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Fig. 3.8 Comparison between Cases 2 and 4 on optimal BESS size 

 

 
Fig. 3.9 Impact of changing forecast uncertainty 
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Chapter Four: Managing the Microgrid Net Load Variability 

4.1 Introduction 

Microgrids are small-scale power systems which consist of at least one distributed 

energy resource (DER) and one load that are connected to the main distribution grid. The 

microgrid is an autonomous system; so it can island itself from the utility grid during 

outage events and reconnect itself when the disturbance is removed. The islanding 

capability makes the microgrid an important technological development in modern power 

systems as it can considerably increase the power system resilience and reliability [55]–

[58]. Moreover, microgrids facilitate the control and operation of a large number of 

DERs by utilizing a local controller. Renewable energy resources, such as wind and solar, 

can also be efficiently integrated to the power system via microgrids.  

A reliable coordination of renewable generation within the microgrids requires a 

viable microgrid scheduling model. The microgrid optimal scheduling problem 

determines the least-cost schedule of local loads and DERs as well as the transferred 

power while considering prevailing operational constraints. The microgrid optimal 

scheduling problem and its formulation can be found in [59]–[62].  

This chapter builds upon the available studies in the literature to develop a 

microgrid optimal scheduling model that incorporates microgrid net load variability 

limits [63]. This model, furthermore, will be used to analyze the local management option 
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for limiting microgrid net load variability. The solution will be compared with the central 

variability management option of installing a centralized power plant from an economic 

perspective. The levelized cost of energy (LCOE) will be moreover used as an alternative 

measure to ensure that the decision is made correctly. LCOE is a convenient measure that 

integrates the capital cost, fuel costs, fixed and variable operations and maintenance 

(O&M) costs, and financing costs to obtain one fixed number representing the energy 

cost of any specific generation type [64]. 

4.2 Model Outline 

4.2.1 Microgrid Components 

The microgrid components that are modeled in the proposed microgrid optimal 

scheduling problem include local generation units and loads. The local generation units 

can be either dispatchable or nondispatchable. Dispatchable units can be controlled by 

adding operation constraints to the optimal scheduling problem depending on the unit 

type such as generation limits, minimum on/off time limits, thermal limits, and ramping 

rate limits. Nondispatchable units are typically renewable energy resources such as wind 

turbines and solar photovoltaic which cannot be controlled by the microgrid due to the 

uncontrollable nature of the primary source of energy. 
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Fig. 4.1 Proposed microgrid net load variability-limiting model 

 
4.2.2 Microgrid net load variability management model 

Fig. 4.1 depicts the flowchart of the proposed model. The main objective of this 

model is to find the optimal solution to limit the microgrid net load variability between 

two consecutive hours (i.e., a ramping constraint). The model consists of an optimal 

scheduling problem and two cost calculation problems. The optimal scheduling problem 

determines the units schedule, the utility transferred power with the microgrid, and the 

total operation cost of the microgrid before adding the microgrid net load variability 

constraint. In the local management option, a variability constraint (i.e., a cap) will be 

Microgrid optimal scheduling problem 
 

Adding the 
variability cap 

Cost before 
including 

variability cap 
(TC1) 

 

Cost after 
including 

variability cap 
(TC2) 

 

Cost of adding variability cap 
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gas generation 

Cost of building a 
new gas 

generation 
 

LCOE of gas 
generation 

 

LCOE of 
adding variability cap 

 

Which one is smaller? 
 

The optimal solution of the microgrid net load variability 
 

Option 2 Option 1 

TC2-
TC1 



 

37 

added to the problem to restrict the net load variability between any two consecutive 

hours. A new utility transferred power flow will be compared with the old one and the 

impact of adding the constraint is observed. A new total operation cost will be obtained. 

When the microgrid net load variability is forced to be small between two consecutive 

hours, the total operation cost will be increased depending. The difference between the 

new and the old operation costs is calculated to find the cost of adding the cap. In the 

central management option, a new fast response generation unit (here a gas unit) is 

considered to be built to deal with the aggregated microgrid net load variability in the 

distribution level. The planning cost of building the new unit is calculated and 

annualized. After calculating the cost of both options, a comparison between them will be 

conducted to find the more economical solution. Alternatively, the LCOE of each option 

will be calculated in order to enable further comparison. The option that has the smallest 

LCOE is considered to be the optimal solution of limiting the microgrid net load 

variability. 

4.3 Model Formulation 

4.3.1 Microgrid optimal scheduling problem formulation 

The microgrid optimal scheduling problem is modeled by mixed-integer 

programming. The objective of the optimal scheduling problem is to minimize the total 

operation cost of the microgrid (4.1) subject to operational constraints (4.2)-(4.8). The 

first term in the objective represents the generation cost of the dispatchable units, no-load 

cost, and startup and shut down costs. The second term is the cost of purchasing power 

from the utility grid. The microgrid net load (also known as the transferred utility power) 
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is the transferred power from or to the microgrid through the point of common coupling 

(PCC). The transferred power cannot exceed the capacity of the transmission line 

connecting the utility grid to the microgrid as modeled in (4.2). The microgrid net load 

might be positive (i.e., microgrid imports power from the utility where the transferred 

power is less expensive than local generation). On the other hand, when the microgrid net 

load is negative, microgrid delivers power to the utility grid since the local generation is 

less expensive than the transferred power. The power balance equation (4.3) guarantees 

that the summation of local generation and transferred power equals the hourly microgrid 

net load. The nondispatchable unit generation (here the wind generation) is represented as 

a negative load in (4.3). 

The microgrid components are modeled in (4.4)-(4.8). The maximum and 

minimum generation capacity limits for each dispatchable unit are modeled by (4.4). The 

ramping up and down rate limits between two consecutive hours are represented by (4.5)-

(4.6). The minimum number of successive hours that the unit can be up or down is shown 

by (4.7)-(4.8). The commitment state of a dispatchable unit, the startup state and the 

shutdown state are binary variables. The commitment state I will be one when the unit is 

ON, otherwise it is zero. The startup indicator y is one when the unit is started up, 

otherwise it is zero. The shutdown indicator z will be one when the unit is shut down, 

otherwise it is zero.  

  ,min i itd i itd i itd i itd td M td
i t d t d

C P NL I CSU y CSD z P         (4.1) 

max max
, ,M M td MP P P t d         (4.2) 
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, ,itd M td td td
i

P P D W t d         (4.3) 

min max , ,i itd itd i itdP I P P I i t d        (4.4) 

( 1) , ,itd i t d iP P RU i t d        (4.5) 

( 1) , ,i t d itd iP P RD i t d         (4.6) 

( 1) , ,itd i i t dsu MU z i t d       (4.7) 

( 1) , ,itd i i t dsd MD y i t d       (4.8) 

 
The startup and shut down indicators are determined as in (4.9)-(4.10). The 

startup and shut down counters are modeled as in (4.11)-(4.14).  

( 1) , ,itd i t d itd itdI I y z i t d         (4.9) 

1 , ,itd itdy z i t d        (4.10) 

0 , ,itd i itdsu MN I i t d        (4.11) 

  ( 1)1 1 , ,i itd i itd i t dMN I MN su su i t d           (4.12) 

0 (1 ) , ,itd i itdsd MF I i t d         (4.13) 

  ( 1)1 1 1 , ,i itd itd i t dMF I sd sd i t d           (4.14) 

 
4.3.2 Adding variability cap  

The local management option adds a variability cap to the microgrid net load, i.e., 

the power transferred with the utility grid. The variability cap is modeled in this proposed 

model for the inter-hour variability (4.15) and the inter-day variability (4.16).  

 

, M,( 1) 1,M td t dP P k t d        (4.15) 
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,1 M,24( 1) , 1M d dP P k t d        (4.16) 

 
The optimal scheduling problem will be used again to find the optimal scheduling 

of microgrid units after adding the variability limit constraints (4.15) and (4.16). A new 

microgrid units schedule and a new total operation cost (TC2) will be obtained. The cost 

of the local management option can be found by calculating the cost increase after adding 

the variability cap as in (4.17). 

 
Option 1: 2 1Cost TC TC       (4.17) 

 
The variability cap cost ($/yr) will be levelized to obtain the LCOE in $/MWh for 

the cap value. The LCOE of the variability cap will be compared with the LCOE of gas 

generation for making the decision on optimal solution. 

  
4.3.3 Building a new gas generation  

Building a new gas generation is another option to deal with the increasing 

variability in the microgrid net load. The cost of building a new gas power generation is 

divided into capital and operation and maintenance (O&M) costs. The operation cost is 

also divided into fixed O&M cost and variable O&M cost. The cost of the central 

management option can be calculated as in (4.18). 

 

Option 2:    *
* * *

GPC OCC
Cost GPC FC GPC VC H

PBP
     

   (4.18) 

 
The LCOE for gas generation is determined in order to compare it with the LCOE 

for the adding variability cap option. 
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4.4 Numerical Simulations 

The proposed microgrid net load variability-limiting model is applied to a test 

microgrid with four dispatchable units and one nondispatchable unit (wind turbine). The 

characteristic of generating units and nondispatchable unit are given in Table 4.1. One-

year time horizon of forecasted wind, load and market price is used in the studies. Mixed 

integer programming is used to model and solve the microgrid optimal scheduling 

problem. The following cases are studied: 

Case 1: Adding a variability cap (local management option) 

Case 2: Building a new gas generation (central management option) 

Table 4.1: Characteristic of generating units (D: Dispatchable, ND: Nondispatchable) 

Unit Type 
Cost Coefficient 

($/MWh) 
Min.-Max. 

Capacity (MW) 
Min. Up/Down 

Time (h) 
Ramp Up/Down 

Rate (MW/h) 
G1 D 27.7 4-10 3 5 
G2 D 39.1 4-10 3 5 
G3 D 61.3 2-6 1 3 
G4 D 65.6 2-6 1 3 
G5 ND 0 0-4.16 - - 

 

  
Fig. 4.2 The cost ($/h) of each reduction value of the variability cap 
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Case 1: Adding a variability cap is the first option to limit the microgrid net load 

variability. The solved optimal scheduling problem is used as a base case to determine 

the total operation cost before limiting the microgrid net load variability. Different values 

of variability cap are added as a constraint to the optimal scheduling problem. The values 

of variability cap are ranging from 32 to 14 MW, as the maximum power ramp between 

two consecutive hours is 32 MW. The impact of adding variability cap on the total 

operation cost is shown in Table 4.2 for each reduction value of the variability cap. Figs. 

4.2 and 4.3 show the cost curve and the LCOE curve of each reduction value of the 

variability cap, respectively.  

 
Fig. 4.3 The LCOE ($/MWh) of each reduction value of the variability cap 

 
Table 4.2: The Impact of Adding Variability Cap on the Total Operation Cost 

The reduction value of 
the variability cap (MW) 

The Total Operation 
Cost ($/yr) 

Variability Cap 
Impact ($/yr) 

 
Increased percentage of 

the total cost (%) 
0 3,298,764.81 0.00 0.000 
1 3,2988,28.28 63.47 0.002 
2 3,298,951.71 186.90 0.006 
3 3,299,157.72 392.91 0.012 
4 3,299,522.56 757.75 0.023 
5 3,300,120.17 1,355.36 0.041 
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6 3,300,709.51 1,944.70 0.059 
7 3,301,531.67 2,766.86 0.084 
8 3,302,908.66 4,143.86 0.126 
9 3,304,056.97 5,292.16 0.160 

10 3,305,888.04 7,123.24 0.216 
11 3,309,006.74 10,241.93 0.310 
12 3,311,828.03 13,063.22 0.396 
13 3,317,997.43 19,232.62 0.583 
14 3,325,759.41 26,994.60 0.818 
15 3,335,443.35 36,678.54 1.112 
16 3,346,110.91 47,346.10 1.435 
17 3,363,908.34 65,143.54 1.975 
18 3,377,189.12 78,424.31 2.377 

 
Case 2: The second option is building a new gas generation unit in the 

distribution network to address the microgrid net load variability. The capacity of the gas 

generation unit should be equal to the variability cap value. The annualized cost of 

building a 1MW gas generation, which is only for 1 MW/h variability cap, is around 

$80,000/yr. So, the cost of building a new gas generation is significantly greater than the 

cost of adding a 1 MW variability cap. Similarly, for the rest of the variability cap values, 

adding variability cap is more economical than building a new gas generation unit.  

Another measure (i.e., the LCOE) is used to decide the more economically viable 

option. The average LCOE of gas generation in the United States is $66.3/MWh [64]. 

Fig. 4.4 depicts the LCOE for each variability cap along with the LCOE of gas 

generation. It is obvious that the gas LCOE is much greater than the LCOE of all 

variability caps. So, adding a variability cap is always a more viable decision than 

building a new gas generation unit. 
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Fig. 4.4 The LCOE of both reduction value of the variability cap and gas generation 



 

45 

 

 

 

Chapter Five: Aggregated  Microgrids Net Load Variability  in Active Distribution 

Networks 

5.1 Introduction 

In this chapter, a security-constrained distribution system market clearing model 

is proposed. The proactive customers, including microgrids, communicate with the ISO 

through a DSO. The proposed model considers the system security which consists of 

distribution lines outages and microgrids’ islanding. Following distribution lines outages, 

microgrids’ islanding may happen to avoid load curtailment and protect microgrid loads 

from upstream disturbances and voltage variations. 

5.2 Existing Research on DSOs 

The existing work on DSOs focuses on a variety of topics including design, 

operation, and planning of the DSO, congestion management enabled by the DSO, 

performance evaluation of this new entity, and grid reliability improvement by the DSO 

through voltage and reactive power management.  

In the context of operation, planning, and economic analysis of the DSO, studies 

can be found in [37][42][44][65][66][67][68] [69][70][71][72][73][74]. The study in [37] 

proposes a framework for the day-ahead transactive market which provides an optimal 

DER scheduling and presents an effective role for the DSO in the power system 

operation. In the proposed model, the prosumers communicate with the ISO indirectly 
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through the DSO. In [42], a market-based microgrid optimal scheduling model using 

DMO is proposed, and a comparison between market-based and price-based microgrid 

optimal scheduling schemes is provided. It is proved that market-based model 

outperforms the price-based model in the clearing process of the distribution market by 

ensuring a lower operation cost and capturing potential uncertainties. In [44], the needs of 

utilities in managing the challenges of large penetration of proactive customers are 

addressed by investigating the deployment of a DSO, along with the associated benefits 

and drawbacks of implementing this concept. In [65], a tariff structure for a large-scale 

microgrid in the distribution system managed by the DSO is proposed. The model is 

applied to a real large-scale microgrid which is under construction. The study in [66] 

presents a neurodynamic price-maker bidding algorithm for the DSO considering power 

flow constraints and uncertainties of DERs and loads. However, the proposed model is 

limited in a sense that it can be only applied to balanced distribution systems. The study 

in [67] proposes a game-based model for long-term multi-period planning of a 

distribution network composed of several DERs which models the mutual impact of 

decision making of the DSO on microgrid investment. The objective of the proposed 

model is to maximize both DSO’s and microgrid’s profits and reliability during a long-

term planning horizon. In [68], a market-based game theory algorithm is proposed to set 

the customer reliability preferences in smart distribution systems. This model takes into 

account the interactions among participants and solves the problem using a bilevel 

optimization approach. The study in [69] presents a long-term dynamic multi-objective 

model for optimal distribution system planning considering the benefits of the DSO. The 
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study in [70] introduces a new transactive energy scheme for distribution system planning 

by demonstrating decentralized energy trading between transactive nodes in transactive 

coordination systems. In this model, the DSO generates distribution locational marginal 

prices for transactive nodes. The model considers the uncertainty of load demand, 

electricity market price, and renewable generation. The study in [71] proposes a number 

of scenarios for integration of DSOs within the scheduling system. These scenarios are 

used to investigate the influence of the coordinated market and grid operation approach 

developed within regenerative renewable electricity system. In [72], a general dual-

horizon rolling scheduling model for flexible active distribution system management 

based on a dynamic AC optimal power flow is proposed. The model provides an optimal 

operation of distribution system with a high penetration of DERs considering operational 

uncertainties and market constraints. The study in [73] investigates the future role of the 

DSO in distribution systems with high penetration of solar PV units. The results show 

that a certain level of operational real-time interventions by DSOs is inevitable. In [74], a 

decentralized decision-making method is proposed for optimal power flow 

implementation between ISOs and DSOs.  

Studies in [75][76][77][78][79] focus on DSO-enabled congestion management. 

In [75], an algorithm to minimize the DSO’s operation cost through congestion 

management using demand-side flexibility is proposed. In [76], the benefits of scheduling 

flexible residential loads for distribution systems are investigated. The household 

electricity costs are minimized, and the problem is formulated by bilevel mixed-integer 

linear programming (MILP). It is shown that harnessing load flexibility allows the DSO 
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to minimize network congestion. The study in [77] proposes a dynamic management 

method for congestion management in distribution systems. A coordinative congestion 

management framework through the coordination of the DSO and a virtual power plant is 

presented in [78]. This method makes use of flexibility of DERs controlled by a virtual 

power plant. The study in [79] presents a heuristic optimization model for day-ahead unit 

commitment in microgrids. This model incorporates a congestion management approach 

to eliminate congestion by providing an effective unit scheduling according to signals 

from the DSO. 

In the context of DSO performance evaluation, various models are proposed in 

[80][81][82]. In [80], a framework for performance evaluation of the DSO after a 

contingency in the system is proposed. Various technical and economic criteria are 

considered in this process. The optimal size and location of DERs are further determined 

in this problem. The study in [81] proposes a multi-criteria approach for performance 

evaluation of DSOs, and discusses that it is important to evaluate DSOs’ performance as 

they face various problems caused by contingencies which should be addressed quickly 

to maintain power supply quality. The proposed model focuses on five dimensions of the 

total quality control, where various economic, technical, and personal criteria are used in 

the problem formulation. The performance of services provided by ISOs and DSOs is 

investigated in [82] along with a list of new technical regulations’ targets to ensure 

acceptable operation of users connected to the same node in the network.  

The DSO’s role in reliability improvement is studied in [83][84][85]. The study in 

[83] emphasizes on the deployment of the DSO to provide the proactive customers with 
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an efficient and reliable electric power. It is discussed that the DSO is capable of 

efficiently scheduling DERs to improve system reliability and resiliency on one hand and 

to reduce emissions and greenhouse gases on the other hand. In [84], a reactive power 

management model is presented. In the proposed model, the DSO can establish a 

framework to keep the voltage profile in an acceptable range and reduce the effects of the 

real power infeed of DGs to the system. A new voltage controller for the DSO that 

manages an active distribution network is proposed in [85]. The objective of this study is 

to minimize power losses while obtaining an efficient voltage regulation in the entire 

system.  

The existing work on DSOs as reviewed, particularly on its operation, shows two 

shortcomings: (1) the importance of contingency scenarios in distribution system 

management by the DSO is completely overlooked. In other words, it is unclear how the 

distribution grid will be operated in case of outage of network components or proactive 

customers, and (2) a focused investigation on the impact of microgrids on the distribution 

market is not performed. Microgrids show the highest level of flexibility and control 

among proactive customers [44] and will be core players in distribution markets, so a 

detailed modeling and analysis of their potential impacts is of great significance. 

5.3 Model Outline 

This chapter proposes a security-constrained distribution system operation model 

which maximizes the system social welfare, defined as the load benefit minus the cost of 

energy purchased from the upstream network. The proposed model is developed for a 

DSO which is placed between the distribution system and the ISO (Fig. 5.1). Proactive 
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customers in the distribution grid, including microgrids, send their day-ahead demand 

bids to the DSO and the DSO sends an aggregated demand bid to the ISO. The ISO runs 

a day-ahead unit commitment and dispatch, and accordingly sends the awarded power 

information back to the DSO. The DSO is then responsible for disaggregating and 

assigning the awarded power to proactive customers based on their original bids. In case 

of line outages in the distribution system, the operation will not be as straight-forward as 

in the no-outage case. For example, any microgrid upstream an outaged line can remain 

connected to the system, while those downstream will switch to the islanded mode, thus 

completely changing the grid’s topology and load profile.  
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Fig. 5.1. Market structure in the presence of the DSO 
 

The bid sent to the DSO from each microgrid includes the demand curve and the 

associated ramp rate curve. Fig. 5.2 shows a typical microgrid’s demand bid (Fig. 5.2a) 

and ramp rate curve (Fig. 5.2b). These curves reveal the following information to the 

DSO: 1) the microgrid fixed load which is not curtailable and should be fully supplied in 

both normal and contingency cases; 2) different price bids of the exchanged power that 
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microgrid can import from the DSO (when in the positive side of the demand bid curve) 

or export to the DSO (when in the negative side of the demand bid curve); and 3) the 

ramp rate of each load segment; for example, when the exchanged power between the 

microgrid i and the DSO occurs in load segment 1, the ramp rate of this segment should 

be RRi1. 

 

Fig. 5.2 Microgrid’s (a) demand bid and (b) ramp rate curve 
 

The proposed security-constrained distribution system operation model is 

developed based on a set of linear AC power flow equations, thus is capable of solving a 

full AC power flow and accordingly identifying the impact of real and reactive power 

injections, as well as thermal overload and voltage magnitudes. The proposed model 

further considers an N-1 security criterion, which simply means that the system can 
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adequately supply the loads in case of single component outages at any given time. A 

reliability cost is further considered to account for potential power outages in contingency 

cases.  

The proposed model is capable of modeling microgrid islanding in case of 

upstream disturbances. In other words, if the status of a line changes from operational to 

outage, any microgrid upstream that line can remain connected to the grid, while those 

downstream would be islanded and must supply their loads locally. Fig. 5.3 shows an 

illustrative example in which the system is initially in the normal operation (Fig. 5.3a). If 

line 1 is on outage, the fixed load (which is outside the microgrids) will not be supplied 

and both microgrids A and B become islanded (Fig. 5.3b). If line 2 is on outage, the fixed 

load will be supplied from the main grid, while both microgrids A and B become islanded 

(Fig. 5.3c) as the fixed load is upstream the outaged line, but both microgrids are 

downstream. If line 3 is on outage, only microgrid B switches to the islanded mode while 

the fixed load is supplied and microgrid A remains connected to the grid (Fig. 5.3d). In 

all cases that microgrids are islanded, they would supply their loads locally. 
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Fig. 5.3. Microgrid islanding in case of power disturbance in the upstream lines 

5.4 Model Formulation 

The distribution system social welfare is defined as load benefit minus the system 

cost, which comprises the cost of purchasing energy from the upstream grid plus the cost 

of unserved energy in case of system outages (5.1). The load benefit is the dollar amount 

that microgrids are willing to pay for a desired level of supplied power. The exchanged 

energy with the upstream grid can be positive, when imported, or negative, when 

exported to the upstream grid. The cost of unserved energy represents the reliability cost 

and is defined as the value of lost load (VOLL) times the hourly amount of scenario-

based load curtailment. The VOLL depends on various factors and represents customers' 

willingness to pay in order to avoid power interruptions [86]. The cost of unserved 

reactive power is defined as a small positive constant times the amount of reactive power 

not supplied. There is no actual cost for reactive power curtailment, however this term is 

added to ensure solution feasibility in case of lack of adequate reactive power in the grid. 
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This small cost coefficient ensures that this term is relatively smaller than other terms in 

the objective and thus does not impact the solution optimality.  

Index s represents contingency scenarios in which s=0 is associated with the 

normal operation mode and s≥1 are associated with contingency scenarios.  

m m

MG,net T M
0 0

D C

max ( ) P Q
i it ct ct mts mts

i t c t m t s m t s

B P P PS QS  
 

 
   

 
            (5.1) 

The objective function (5.1) is subject to nodal load balance constraints (5.2)-( 

5.6), network power flow constraints (5.7)-( 5.13) and microgrid constraints (5.14)-( 

5.21). 

Nodal load balance: 

m m m

M MG,net

C B D
cts mnts its mt mts

c n i

P PL P PD PS m, t, s
  

               (5.2) 

m m m

M MG,net

C B D
cts mnts its mt mts

c n i

Q QL Q QD QS m, t, s
  

               (5.3) 

M,max M M,max , ,c cts cP P P c t s            (5.4) 

0 mts mtPS PD m, t, s           (5.5) 

0 mts mtQS QD m, t, s             (5.6) 

Network power flow:   

(1 ) ( ) ( )

ˆ ( ) (1 ) L ,

mnts mnts mn mts nts mn mts nts

mn mts mts nts mnts

M w PL g V V b θ θ

g V V V M w mn , t s

       

         
       

(5.7) 

(1 ) ( ) ( )

ˆ ( ) (1 ) L ,

mnts mnts mn mts nts mn mts nts

mn mts mts nts mnts

M w QL b V V g θ θ

b V V V M w mn , t s

        

            
       (5.8) 

max max L ,mn mnts mnts mn mntsPL w PL PL w mn , t s      
 
       (5.9) 
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max max L ,mn mnts mnts mn mntsQL w QL QL w mn , t s            (5.10)
 

1 0 ,ts t s               (5.11) 

1 0 ,tsV t s         (5.12) 

min max ,m mts mV V V m, t s           (5.13) 

Microgrid constraints:  

 MG,D MG,max MG,net MG,D
it i its its it itsP P I P P I i, t, s          (5.14) 

 MG,D MG,max MG,net MG,D
it i its its it itsQ Q I Q Q I i, t, s           (5.15) 

 
MG,net MG,D

its its ijts
j

P P PX i, t, s            (5.16) 

L L

1
i i

its mni mni mnts
nm nm

I a a w i, t, s
 

             (5.17) 

MG,net MG,net sel
( 1)its i t s itsP P RR i, t, s          (5.18) 

max0 , , ,ijts ijts ijPX PX i j t s          (5.19) 

1 , ,ijts
j

i t s          (5.20) 

sel(1 ) (1 ) , , ,ijts its ij ijtsM RR RR M i j t s               (5.21) 

The nodal load balance equations for real and reactive power are represented by 

(5.2) and (5.3), respectively. These equations ensure that the net real and reactive power 

supplied through the network to each bus equal the net load of that bus. Real and reactive 

load curtailment variables are further added to these equations to ensure feasibility in 

case of supply shortage. Each microgrid’s exchanged power with the utility grid can be 
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positive (when the microgrid imports power) or negative (when the microgrid exports 

power). As presented in (5.2) and (5.3), when a microgrid imports power from the grid, it 

is considered as a demand by the DSO, while treated as a generation source when 

exporting power. The amount of real power supplied by the upstream grid cannot exceed 

the capacity of the line connecting the upstream grid to the distribution grid (5.4). 

Furthermore, the real and reactive hourly load curtailments at each bus are limited by the 

associated hourly real and reactive load demands as shown in (5.5) and (5.6).  

The nonlinear AC power flow equations are linearized following the method 

proposed in [87], [88]. Linear power flow equations for real and reactive powers are 

represented by (5.7)-( 5.10). These equations consider line outage by defining parameter 

w which is 0 when the line is out of service and 1 when it is operational. If the line is out 

of service, (5.7) and (5.8) would be relaxed and (5.9) and (5.10) set the real and reactive 

power flows in that line to zero. On the other hand, when the line is in service, (5.7) and 

(5.8) would force the line flow equation and (5.9) and (5.10) dictate the line limit. It 

should be noted that the term ΔV̂mts (ΔVmts - ΔVnts) in (5.7)-( 5.8) is nonlinear and solved 

in two steps. In the first step, the term ΔV̂mts (ΔVmts - ΔVnts) is considered zero to obtain a 

linear model. Once solved, the calculated ΔV̂mts  is plugged back to the equations to solve 

the model again. Detailed discussions of this two-step method can be found in [87] and 

[88]. 

Variables Vm and θm are the variations in voltage magnitude and angle for each 

bus relative to that of POI. The POI is considered as a reference bus with voltage 

magnitude of 1 pu and an angle of 0 degrees. These variations are zero at the reference 
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bus (5.11)-(5.12). To ensure there will be no voltage violation in downstream distribution 

buses, (5.13) is imposed.  

Constraints (5.14) and (5.15) constrain microgrids’ exchanged real and reactive 

powers between their minimum and maximum limits, further considering microgrids’ 

islanding state. At each time, the minimum would be the microgrid load minus the 

microgrid’s maximum local generation capacity, and the maximum would be the 

microgrid fixed load (i.e., in case of no local generation). The binary microgrid islanding 

variable Iits is set to 0 when the microgrid operates in the islanded mode and to 1 when it 

operates in the grid-connected mode. This variable is multiplied by the limits in (5.14) 

and (5.15) to force the microgrid net power to zero in case of islanding. The exchanged 

power of each microgrid is equal to the microgrid fixed load minus the sum of all 

selected demand segments (5.16). Equation (5.17) determines microgrid islanding based 

on the state of the upstream lines in the distribution system. If all upstream lines are 

operational, the microgrid remains connected to the grid, otherwise becomes islanded. 

Ramp rate constraints are represented by (5.18)-( 5.21). The changes of power exchange 

of all microgrids in two consecutive hours cannot exceed the selected ramp rate (5.18). A 

binary variable  is considered for each segment which is set to 1 when that segment is 

selected, and set to 0 otherwise. The microgrids’ demand segments are limited by their 

minimum and maximum power (5.19). Equation (5.20) ensures that only one segment is 

selected for each microgrid. The selected ramp rate of each microgrid at any given time is 

determined by (5.21). If a segment is selected (associated with =1), the selected ramp 

rate would be equal to that segment’s ramp rate. 
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5.5 Numerical Simulations 

The proposed model is applied to a modified IEEE 33-bus test system as shown in 

Fig. 5.4. This system has 33 buses, 32 distribution lines, and 11 fixed loads. A total of 4 

microgrids is considered in this system, with respective POIs as shown. Of the 32 

distribution lines, 17 lines considered to be within these microgrids. The distribution 

system is connected to the upstream grid via bus 1. The microgrids’ characteristics are 

summarized in Table 5.1. The hourly electricity market price and the microgrids’ hourly 

fixed load data are listed in Tables 5.2 and 5.3, respectively. Three price segments are 

assumed for each microgrid’s bid. Microgrids’ ramp rate is assumed to be 50% of their 

respective capacity in each segment. VOLL is considered as $10/kWh [89]. The problem 

is formulated as mixed integer linear programming (MILP) and solved by CPLEX 12.6 

[90]. Following cases are discussed:  

Case 0:  Normal system operation without contingency scenarios 

Case 1:  Security-constrained operation considering N-1 contingency without 

microgrids’ islanding 

Case 2:  Security-constrained operation considering N-1 contingency with 

microgrids’ islanding  

Case 3:  Security-constrained operation considering only the outage of the line 

connected to the distribution network POI  

Case 4:   Impact of microgrids’ islanding on nodal prices 
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Fig. 5.4. Modified IEEE 33-bus standard test system 
 

Table 5.1: Microgrids’ Characteristics 

 
MG 1 MG 2 MG 3 MG 4 

Price ($/kWh) 
Segment 1 0.065 0.072 0.085 0.089 
Segment 2 0.039 0.064 0.065 0.069 
Segment 3 0.017 0.019 0.025 0.029 

 Ramp Rate (kW/h) 
Segment 1 50 35 50 75 
Segment 2 50 40 100 125 
Segment 3 100 75 200 150 

 Capacity (kW) 
Segment 1 100 70 100 150 
Segment 2 100 80 200 250 
Segment 3 200 150 400 300 

 
Table 5.2: Electricity Price ($/kWh) 

Hour 1 2 3 4 5 6 7 8 
Price 0.015 0.011 0.0135 0.0154 0.0185 0.0218 0.0173 0.0228 
Hour 9 10 11 12 13 14 15 16 
Price 0.0218 0.0271 0.0371 0.069 0.0658 0.0666 0.0654 0.0798 
Hour 17 18 19 20 21 22 23 24 
Price 0.1155 0.1103 0.0961 0.0905 0.0774 0.071 0.0594 0.0567 

 
Table 5.3: Microgrids’ Fixed Load (kW) 

MG 1 
Hour 1 2 3 4 5 6 7 8 
Load 318 316 315 315 315 315 333 326 
Hour 9 10 11 12 13 14 15 16 
Load 325 326 330 330 331 330 330 330 
Hour 17 18 19 20 21 22 23 24 
Load 331 324 318 316 316 316 315 313 

MG 2 
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Hour 1 2 3 4 5 6 7 8 
Load 254 253 252 252 252 252 266 260 
Hour 9 10 11 12 13 14 15 16 
Load 259 260 263 263 264 263 263 263 
Hour 17 18 19 20 21 22 23 24 
Load 264 258 254 253 253 253 252 250 

MG 3 
Hour 1 2 3 4 5 6 7 8 
Load 656 653 651 651 651 651 688 673 
Hour 9 10 11 12 13 14 15 16 
Load 671 673 681 681 683 681 681 681 
Hour 17 18 19 20 21 22 23 24 
Load 683 668 656 653 653 653 651 646 

MG 4 
Hour 1 2 3 4 5 6 7 8 
Load 649 646 644 644 644 644 681 666 
Hour 9 10 11 12 13 14 15 16 
Load 664 666 674 674 676 674 674 674 
Hour 17 18 19 20 21 22 23 24 
Load 676 661 649 646 646 646 644 639 

 

Case 0: In this case, normal distribution system operation without contingency 

scenarios (line outages) is studied. The optimal operation problem is solved for one day, 

i.e., 24 h, in which the total load benefit, the cost of purchased energy from upstream grid 

and the reliability cost are calculated as $1424, $1429 and $0, respectively. There is no 

load curtailment as no outage is considered in this case. The exchanged power of all 

microgrids with the upstream grid is shown in Fig. 5.5. The exchanged powers change 

over hours due to the changes in the electricity price. When the electricity price is high, 

the imported power decreases, while when the price is low, the microgrids switch to local 

generation and even in some cases sell excess generation back to the grid (associated with 

negative exchanged power).  It should be noted that microgrids 3 and 4 have higher fixed 

load compared to that of microgrids 1 and 2, thus their respective exchanged power is 

relatively higher. Furthermore, the energy from the upstream grid is less expensive than 

microgrids’ local generation in early hours of the day, thus all microgrids would import 
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power from the upstream grid to supply their loads. However, due to the high price of the 

upstream grid’s energy during peak hours, the microgrids prefer to locally supply their 

loads and sell the excess power back to the grid. No outage is considered in this case, so 

microgrids are scheduled to achieve the highest social welfare possible without concerns 

for reliability. To increase the system reliability, it is important to consider the system 

contingency when solving the optimal operation problem which is investigated in 

following cases. 

 

Fig. 5.5. Microgrids’ exchanged power in Case 0, without contingency scenarios 
 

Case 1: In this case, system contingency is considered while assuming microgrids 

would not switch to an islanded mode, regardless of the upstream lines’ contingencies. In 

other words, microgrids are treated as prosumers that own and operate local DERs but do 

not have an islanding capability. An N-1 contingency is considered, which includes the 

outages of all 15 lines in 24 hours (a total of 360 scenarios). The total load benefit and 

cost of upstream purchased energy are calculated as $905 and $1134, respectively. 

Following line outages, the load benefit and the cost of upstream purchased energy are 

decreased because microgrids’ exchanged power is reduced as shown in Fig. 5.6. 
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Moreover, loads are partially curtailed due to line outages. Fig. 5.7 shows the average 

load curtailment at each bus. The total average load curtailment in this case is calculated 

as 206.2 kWh. As shown in Fig. 5.7, the load curtailments occur both inside and outside 

of microgrids. The average load curtailment in microgrids’ buses is 151.8 kWh, whereas 

it is 54.4 kWh on buses outside microgrids. This case shows that the microgrids’ loads 

would be curtailed when microgrids do not have the islanding capability. The load 

curtailment in microgrids is undesirable as the purpose of microgrids deployment is to 

improve system reliability by avoiding load curtailments. Therefore, it is extremely 

important to consider microgrids’ islanding in case of system contingencies.  

 

Fig. 5.6. Microgrids’ exchanged power with the upstream grid for Cases 1 

 

Fig. 5.7. Average load curtailment for all scenarios in Case 1 
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Case 2: In this case, similar contingency scenarios as in Case 1 are considered 

while considering microgrids islanding. The total benefit and cost of upstream purchased 

energy are respectively calculated as $1053 and $1198, which show an increase of 16.4% 

and 5.5%, respectively, compared to the previous case. Moreover, the total benefit is 

decreased by 26% compared to Case 0 (base case). This loss of benefit is considered as 

the expense of obtaining a more practical solution by considering line contingencies. Fig. 

5.8 illustrates the exchanged power of all microgrids when simultaneously considering 

contingency scenarios and microgrids’ islanding. The exchanged power in this case still 

has a somewhat similar profile to that of previous cases, especially in terms of power 

import/export. However, the imported power from the upstream grid is generally 

decreased compared to Case 0 mostly over early hours of the day. The reason of this 

decrease in power import is that line outages result in microgrid islanding, therefore 

microgrids turn on local generation resources to ensure adequate reserve capacity for 

switching to the islanded mode whenever needed. However, the microgrids’ exchanged 

power is increased compared to Case 1, and that explains the 16.4% increase of the total 

load benefit in this case. This increase in the exchanged power happens due to islanding 

capability in which microgrids can island during power outages to protect their loads 

from curtailment. The total average load curtailment in this case is calculated as 281.9 

kWh. Fig. 5.9 shows the average load curtailment at each bus in this case. As shown in 

Fig. 5.9, all load curtailments occur on buses outside microgrids as there is no curtailment 

of microgrids loads. This result shows that the microgrid reliability is improved 

compared to Case 1. It is worth mentioning that the average load curtailment is increased 
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by 36.7% compared to Case 1, but all load curtailments in this case are outside 

microgrids. In other words, these loads are only supplied by the upstream grid in case of 

microgrids’ islanding. As a result, the load curtailments are inevitable in case of 

contingency that causes power interruption at upstream grid. The computation time in 

this case is about one hour.  

 

Fig. 5.8. Microgrids’ exchanged power with the upstream grid for Cases 2 

 

Fig. 5.9. Average load curtailment for all scenarios in Case 2 
 

Case 3: The contingency of only the first line connecting the distribution system 

to the upstream grid in 24 hours (a total of 24 scenarios) is studied in this case. This case 

is selected because the outage of line 1 represents the worst-case scenario. The results in 

this case are very close to those of Case 2. Therefore, this case can be used for 
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simulations instead of Case 2 with much less computation time which is about 2 minutes. 

The total benefit is calculated as $1051 which is very close to the result of Case 2 (0.19% 

difference). This small error is negligible as the exchanged power of all microgrids is also 

very close to the results of exchanged power in Case 2. 

Case 4: The nodal prices of the buses outside microgrids when a microgrid 

switches to the islanded mode are studied in this case. The nodal prices are calculated in 

Case 0 under normal operation (i.e., no line outages and all microgrids operate in the 

grid-connected mode). In this case, only microgrid 1 is selected to be islanded in two 

scenarios: when the microgrid is importing power (hour 1) and the when it is exporting 

power (hour 20). The nodal prices after islanding are compared to those in Case 0 as 

shown in Figs. 5.10 and 5.11. When the microgrid imports power, it acts as a load in the 

distribution system, therefore when islanded, the total load in the system would decrease. 

As a result, the nodal prices would decrease (Fig. 5.10). However, when the microgrid 

exports power to the upstream grid, it acts as a generator. If the microgrid switches to the 

islanded mode, the total generation in the system would decrease. Hence, the nodal prices 

would increase (Fig. 5.11). This case clearly shows the impact that the microgrid 

islanding can make on nodal prices of the network, and accordingly, on market clearing 

and settlement. It further highlights the important role of islanding considerations in 

distribution markets.   
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Fig. 5.10. Nodal prices under microgrid 1 islanding during power import 
 

 

Fig. 5.11. Nodal prices under microgrid 1 islanding during power export 
5.6 Discussions 

The proposed model aims at modeling and analyzing the impacts of microgrid 

participation in the distribution market. According to the studied cases, the following 

could be concluded: 

 The system social welfare decreases when considering contingency scenarios. The 

reason of this decrease is that the microgrids’ generation cost is increased due to the 

increase of their power generation to overcome the power delivery interruption which 

is caused by contingencies. In this case, microgrids would have less exchanged 

power, and they should supply their loads with their local generation. As a result, 
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microgrids’ participation in the distribution market would be lower, hence a lower 

benefit. However, microgrids’ reliability increases in response to lines contingencies 

when islanding is considered.  

 Without considering microgrids’ islanding capability (treating microgrids as 

prosumers), there would be load curtailment in microgrids in case of line contingency 

in the upstream grid. The reason is the loads downstream the contingency would be 

curtailed and the local generation of nearby microgrids would supply those loads 

outside their boundaries. As a result, the microgrids become overloaded and cannot 

fully supply their local loads. However, considering islanding capability would 

improve microgrids reliability by making them operate in islanded mode and 

supplying their local loads only. 

 In all cases, the exchanged power does not significantly change in early hours of the 

day, but it changes during the peak hours. The reason is that in early hours, the 

upstream grid’s energy is less expensive than local generation, therefore microgrids 

import as much power as possible from the upstream grid to supply local loads. In 

other words, the exchanged power follows microgrids’ fixed load profile. However, 

during peak hours, the upstream grid’s energy becomes more expensive than local 

generation, hence the microgrids’ local generation would increase to minimize their 

operation cost. As a result, the exchanged power follows the extra generation in 

microgrids. 

 The contingency scenarios of only the first line connecting the distribution system to 

the upstream grid is the worst-case scenario where the results in this case are almost 
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the same as in the case considering all line contingency scenarios. Solving the 

proposed model with considering only the first line’s contingency helps significantly 

reduce the computation time by decreasing the number of scenarios. 

 If a microgrid switches from the grid-connected to the islanded mode, the network 

nodal prices will accordingly change. This change depends on the microgrid power 

exchange status, in which in case of power import, the nodal prices would drop and in 

case of power export the nodal prices would go up. 
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Chapter Six: Impact of Grid Reconfiguration in Distribution Market Clearing and 

Settlement 

6.1 Introduction 

In this chapter, a distribution market clearing model is proposed to maximize the 

local social welfare while supporting grid reliability. This least-cost reliability-

constrained objective is achieved through grid reconfiguration, i.e., a grid topology 

control. This chapter builds on the existing work in this area and focuses on maximizing 

the social welfare in the distribution market through grid reconfiguration. 

6.2 Model Outline and Formulation 

The proposed model aims at reconfiguring the distribution grid using the smart 

switches in order to maximize the system social welfare. The system social welfare is 

defined as the load benefit minus the cost of purchasing energy from the upstream grid 

(6.1).   

m mD C

max ( )MG T M
i i c c

i c

B P P
 

 
 

 
                        (6.1) 

where, i is the index for number of flexible loads, and or microgrids, in the distribution 

system and c is the index for the points of interconnection (POI) with the upstream grid. 

B(.) represents the load benefit of flexible loads, i.e., the amount that customers are 

willing to pay for a desired level of power. λT and PM represent the price and amount of 

power exchange with the upstream grid, respectively. The objective function is subject to 
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operational and radiality constraints. Active and reactive power balance constraints are 

represented in (6.2) and (6.3), respectively, to ensure the supply-demand balance for all 

buses.  

m m mC B D

M MG
c mn i m

c n i

P PL P PD m
  

               (6.2) 

m m mC B D

M MG
c mn i m

c n i

Q QL Q QD m
  

               (6.3) 

where, PLmn and QLmn represent the distribution line active and reactive power flow from 

bus m to bus n. PMG and QMG are the flexible load active and reactive power, and PDm 

and QDm represent the fixed load active and reactive power. The line that connects the 

distribution grid to the upstream grid has a capacity limit as represented in (6.4). 

Similarly, the flexible loads need to be within certain operation limits as represented in 

(6.5) and (6.6). 

 

,max ,max
mCM M M

c c cP P P c              (6.4) 

,min ,max
mDMG MG MG

i i iP P P i            (6.5) 

,min ,max
mDMG MG MG

i i iQ Q Q i            (6.6) 

The proposed model is developed using a linearized AC power flow. The details 

of linearization can be found in [88]. Active and reactive AC power flow equations are 

represented in (6.7) and (6.8), respectively. The distribution lines’ capacity is modeled by 

(6.9) and (6.10) to impose active and reactive power flow limits. 

(1 ) ( ) ( ) ( ) (1 ) Lmn mn mn m n mn m n mn m m n mnM w PL g V V b θ θ g V V V M w mn                  (6.7) 

(1 ) ( ) ( ) ( ) (1 ) Lmn mn mn m n mn m n mn m m n mnM w QL b V V g θ θ b V V V M w mn                   (6.8) 
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max max Lmn mn mn mn mnPL w PL PL w mn              (6.9) 

max max Lmn mn mn mn mnQL w QL QL w mn            (6.10) 

where, M is a large positive number which is used to relax the power flow equations 

when the line is switched off, and wmn is a state variable which is used to decide the state 

of distribution lines (wmn is 1 when the switch is closed and 0 otherwise). When the state 

variable of the distribution line, i.e., wmn, is 0, (6.9) and (6.10) force to switch off the line 

and make sure no power flows in that line, whereas (6.7) and (6.8) would be relaxed. On 

the other hand, the distribution line would be in service when wmn = 1. Thus, the power 

flow limits (6.9) and (6.10) allow the power flow in the line and (6.7) and (6.8) would be 

forced. Vm and θm are the variations in voltage magnitude and angle for each bus 

relative to the POI. The POI bus is considered as a reference bus with voltage magnitude 

of 1 pu and an angle of 0 degrees. These variations are constrained by (6.11) to make sure 

there will be no voltage violation in the distribution buses.  

min max
m m mV V V m              (6.11) 

The radial structure of the distribution grid should not be affected by the grid 

reconfiguration. The term “radial structure” means that all nodes are connected but they 

do not form any loops. The radiality constraint (6.12) is added to make sure the 

distribution system stays radial and does not form loops. 

1 Lmn
mn

w L mn


              (6.12) 
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where, L is the number of distribution lines in each possible loop. This constraint would 

force the number of closed lines to be one less than the number of lines that can form a 

loop. Hence, there should be one open line in each potential loop. 

6.3 Numerical Simulations 

The proposed model is tested on a modified IEEE 33-bus distribution system 

shown in Fig. 6.1. This system consists of 33 buses, 32 sectionalizing switches (normally 

close), 5 tie switches (normally open), 29 fixed loads, and 3 microgrids. Closing any tie 

switch would form a loop. All potential loops are shown in Table 6.1. The proposed 

formulation is modeled by mixed integer linear programming (MILP) and solved using 

CPLEX 12.6. It is solved for only one-hour; however, it can be extended to be solved for 

any other selected time horizon, including day-ahead. The total fixed load is 2620 kW, 

and the generation capacity of each microgrid is 1000 kW. The market price at the POI is 

$0.070/kWh. The fixed load of microgrids 1, 2, and 3 at this selected hour are 63.379 

kW, 296.204 kW, and 42.427 kW, respectively. Table 6.2 shows the microgrids 

characteristics. The proposed model is solved for two cases with and without grid 

reconfiguration to show the impact on the results. 
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Fig. 6.1. The IEEE 33-bus distribution test system 

 
Table 6.1: The potential loops 

Loop No. Lines in the loop 
1 2, 3, 4, 5, 6, 7, 18, 19, 20, 21, 33 
2 9, 10, 11, 12, 13, 14, 34 
3 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35 
4 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 32, 36 
5 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37 

 
Table 6.2: Microgrids' Characteristics 

Segments 1 2 3 

 
Quantity 

(kW) 
Price 

($/kW) 
Quantity 

(kW) 
Price 

($/kW) 
Quantity 

(kW) 
Price 

($/kW) 
Microgrid 1 500 0.065 300 0.039 200 0.027 
Microgrid 2 450 0.072 350 0.065 200 0.029 
Microgrid 3 400 0.085 400 0.064 200 0.035 

 
Case 1: Without grid reconfiguration: In this case, the proposed model is 

solved for a one-hour period without allowing any changes in the grid topology. This is 

achieved by forcing all tie switches to stay open by fixing the state variable wmn=0. The 

social welfare is calculated as $150.54. The total power purchase from the upstream grid 

is 1233.09 kW. Microgrids 1, 2, and 3 generate 703.949 kW, 600 kW, and 142.418 kW, 
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respectively. The total power loss is calculated as 59.46 kW. In this case, the payment to 

the upstream grid is $86.32, and the customers’ payment to the DSO is $183.88. 

 
Case 2: With grid reconfiguration: In this case, the grid reconfiguration is 

considered in the proposed model. This is accomplished by allowing the state variables of 

the tie and sectionalizing switches to change (to either 0 or 1) in the optimization 

problem. In this case the optimal grid reconfiguration is achieved by closing 2 tie 

switches (36 and 37) and simultaneously opening 2 sectionalizing switches (15 and 22) to 

prevent forming loops in the distribution system. The social welfare is increased in this 

case to $153.56, which is more than the previous case by 2%. The total power purchase 

from the upstream grid is 616.76 kW, which is decreased by 49.98% compared to 

previous case. In this case microgrids 1, 2, and 3 generation are increased by 7.1%, 

66.67%, and 104.16%, respectively. The total power loss is decreased by 30.26% 

compared to the previous case, reaching 41.47 kW. Moreover, the payment to the 

upstream grid in this case is $43.17, which is decreased by 49.98%. However, the 

customers’ payment to the DSO is increased by 1.02% to $185.76. The upstream grid 

payment is decreased as the power purchase from the upstream grid is dropped, and 

instead power is purchased locally from microgrids to maximize the system social 

welfare. As a result, microgrids generation is increased in in this case compared to Case 

1. Table 6.3 and Fig 6.2 compare the market clearing and power flow results in Cases 1 

and 2, respectively.   
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Table 6.3: Comparison between results of Cases 1 and 2  

 Without 
Reconfiguration 

With 
Reconfiguration 

Change 

Social Welfare ($) 150.54 153.56 2% 

Upstream power purchase (kW) 1233.09 616.76 -49.98% 

Microgrids power (kW) 

MG1 703.949 753.949 7.1% 

MG2 600 1000 66.67% 

MG3 142.418 290.765 104.16% 

Power Loss (kW) 59.46 41.47 -30.26% 

Upstream grid payment ($) 86.32 43.17 -49.98% 

Customers payment ($) 183.88 185.76 1.02% 

 

 
Fig. 6.2. Power flow comparison between cases 1 and 2 

 
As shown in Fig 6.2, the power flow when reconfiguration is not considered is 

high for most of the lines compared to the case with reconfiguration. This is because of 

the opportunity that is provided for local generators, within microgrids, to supply local 

loads and change the grid power flow. This change in power flow also helps reduce the 

power loss as shown in the results. 
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Chapter Seven: Conclusion and Future Work 

7.1 Conclusion 

This dissertation investigated the challenge of generation variability resulted from 

renewable energy resources integration in both transmission and distribution levels in 

modern power systems. Two subtopics were covered by this dissertation to overcome 

variability challenges of renewable energy resources integration. The first was variability 

of renewable energy resources on transmission level. The second was variability of 

microgrid net load on distribution level through microgrid-integrated renewable 

generation and based on a DSO-operated energy market.   

In chapter two, a hybrid model for smoothing wind power fluctuations was 

proposed and tested and analyzed on a large-scale wind farm. Two methods were 

considered to work simultaneously, were the first method investigated dumping of 

generated wind power to smooth the wind power considering a certain limit, and the 

second method investigated the application of the BESS for the same purpose. The 

proposed hybrid model was examined on three cases: without BESS, with fixed BESS 

capacity, and with optimal BESS capacity. The wind power profile was less variable in 

all cases, but the smoothing quality was different in each case. The wind farm profit in all 

three cases was further calculated for comparison purposes. The results illustrated that 

using the proposed hybrid model on the wind farm could identify the most economical 
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solution for addressing the wind power variability. Since the power curtailment is an 

energy waste and it is not desirable, chapter three proposed a planning model to reduce 

wind generation curtailment. The model was capable of determining the optimal amount 

of wind generation curtailment based on transmission network congestion while at the 

same time finding the optimal BESS size, thus it could efficiently minimize the energy 

waste caused by wind generation curtailment. Simultaneously, the proposed model was 

capable of determining the worst-case solution under prevailing uncertainty of wind 

generation forecast. The proposed model was tested on the standard IEEE 118-bus test 

system with a wind farm and a BESS. Five cases were examined by using the proposed 

model where the comparison of the results showed the effectiveness of the proposed 

model. The numerical simulations further exhibited that using BESS technology is 

valuable as both the total planning cost and the wind generation curtailment were 

remarkably reduced. Numerical simulations, furthermore, investigated how the wind farm 

capacity affected the decision of installing BESS as well as curtailing the wind 

generation. Moreover, it investigated the considering of the wind generation uncertainty 

in the planning problem. The total planning cost, wind generation curtailment and the 

optimal BESS size, however, were increased compared to ignoring uncertainty. As a 

result, including wind forecast uncertainty provided a more practical solution to avoid 

further investments in support of existing electricity infrastructure. 

An efficient model for limiting the microgrid net load variability was proposed in 

chapter four. Two options were considered, were the first option investigated the addition 

of a variability cap to limit the microgrid net load variability within two successive hours 
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and the second option investigated the addition of a new gas generation unit to the 

distribution system. The impact of adding the cap on the total operation cost in the first 

option was noticed by comparing the microgrid total operation cost in both cases (i.e., the 

original solution and the solution after adding the variability cap). The difference was 

considered to be the cost of adding variability cap. The cost of build a new gas generation 

and the LCOE of gas generation were further calculated for comparison purposes. The 

model was tested and analyzed on a microgrid test system. The numerical simulations 

were shown that adding a variability cap on the microgrid net load was always the more 

economical solution for addressing the microgrid net load variability. The aggregated 

microgrids net load variability was investigated in this dissertation when the microgrids 

penetration increased in distribution level. This was accomplished by considering DSO to 

clear the distribution market. Two models were proposed in chapters five and six. 

Chapter five proposed a security-constrained distribution system operation model to 

maximize the system social welfare by increasing microgrid participation in the 

distribution market. The model was applied to a modified IEEE 33-bus standard test 

system, and contingency scenarios were defined as outage of one line at each hour (N-1 

criteria). The proposed model was capable of modeling microgrid islanding based on 

contingencies in the upstream lines. The results showed that the microgrids changed their 

operation in response to contingency scenarios compared to the normal operation, and as 

a result, the total benefit decreased. The results further showed the importance of 

considering microgrids’ islanding capability in improving microgrid’s reliability. When 

considering microgrids’ islanding capability, load curtailment in microgrids was avoided. 
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Therefore, it was concluded that it would be crucial to simultaneously consider 

contingency and microgrids’ islanding capability in distribution market clearing. It was 

also shown that the contingency scenario of the first line in the distribution system could 

be used instead of considering all line outages as the results were almost the same. 

However, the computation time significantly reduced because only 24 scenarios were 

considered. Finally, chapter six proposed a grid reconfiguration model to maximize the 

social welfare in a distribution market. The proposed model was also tested on a modified 

IEEE 33-bus distribution system. The results showed that the social welfare could be 

improved by applying the grid reconfiguration. Moreover, the proposed model showed 

the capability to serve as a congestion relief and loss reduction method by revising the 

power flow within the grid. Overall, the proposed model advocated that the 

reconfiguration can provide a level of flexibility in distribution markets to improve the 

system social welfare and help with better utilization of distributed resources within 

radial distribution grids.  

7.2 Future Work 

The DSO model in this dissertation focuses only on energy market without 

considering other distribution system ancillary services. Therefore, the DSO role in the 

distribution systems can be extended to consider and clear different ancillary services 

markets. Ancillary services that could be consider in the DSO model include regulation 

and reserve markets. In addition, the impact of electric vehicles (EVs) presence in the 

distribution system could be investigated in terms of distribution market clearing.  
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