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Abstract

A mobile application is a software program that runs on mobile device. In

2017, 178.1 billion mobile apps downloaded and the number is expected to grow

to 258.2 billion app downloads in 2022 [19]. The number of app downloads poses

a challenge for mobile application testers to find the right approach to test apps.

This dissertation extends the FSMWeb approach for testing web applications [50] to

test mobile applications (FSMApp). During the process of analyzing FSMWeb how

it could be extended to test Mobile Apps, a number of shortcomings were detected

which we improved upon. We discuss these first. We present an approach to generate

black-box tests to test fail-safe behavior for web applications. We apply the approach

to a large commercial web application. The approach uses a functional (behavioral)

model to generate tests. It then determines at which states in the execution of

behavioral test failures can occur and what mitigation requirements need to be

tested. Mitigation requirements are used to build mitigation models for each failure

type. From those mitigation models failure mitigation tests are generated.

Next, this dissertation provides an approach for selective black-box model-based

fail-safe regression testing for web applications. It classifies existing tests and test

requirements as reusable, retestable, and obsolete. Removing reusable test require-

ments reduces test requirements between 49% to 65% in the case study. The ap-

proach also uses partial regeneration for new tests wherever possible. Third, we

present the new FSMApp approach to test mobile applications and compare the
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approach with several other approaches [88, 37]. A number of case studies ex-

plore applicability, scalability, effectiveness, and efficiency of FSMApp with other

approaches. Future work makes suggestion on how to improve test generation and

execution efficiency with FSMApp.
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Chapter 1

Introduction

1.1 Problem

A Mobile Application, or App, refers to software run on mobile phones or smart

devices. Millions of Apps are available via App stores like Google Play1 and Apple

App2 Store [135]. The revenues from Mobile Apps are projected to reach $188.9

billion in 2020 [5]. The pervasiveness of App use also means that quality becomes

a major concern. Fierce competition [204] means that a reliable App will be more

successful.

While Apps share common technology with other software, especially web ap-

plications, they differ from desktop software in some important ways [224]:

• Interaction with other applications,

• Sensor handling such as touch screens and cameras,

• Both native and mobile web applications,

• A multitude of hardware devices and platforms,

1https://play.google.com/store?lil=en
2https://itunes.apple.com/us/genre/ios/id36?mt=8
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• Heightened security concerns,

• Usability that is influenced by other Apps and by the common small size of

the smart phone,

• Power consumption,

• Complexity of testing.

The complexity of testing arises from the fact that, in addition to the same issues

as found in web applications, App testing must deal with issues related to mobility,

transmission through software, and the issues listed above. Testing mobile Apps is

clearly more complex than testing desktop applications.

Muccini et al. [169] investigated how mobile App testing differs from testing

traditional applications. Mobile connectivity needs to be tested for different con-

nectivity scenarios, networks, resource usage and associated performance degrada-

tion possibly resulting in incorrect system functioning. All of these items need to

be evaluated, as does energy consumption. Varying device screen resolutions, di-

mensions, etc. affect usability requiring usability testing. The large combination of

platforms, operating systems, diversity of devices, and rapid evolution is challenging

for a tester, as it can lead to computational explosion. Performance assessment is

crucial. Many of these testing needs require that a functional test be executed for a

number of specific environmental scenarios, set-ups, and devices.

This is one reason why test automation is clearly desirable and has been pursued

quite successfully [66, 40, 164, 228, 39, 43, 123, 115, 221]. In most cases, the tools

are not based on a model-based testing approach and still require the development

of a test suite up front. They capture test inputs and play them back, or simply

automate existing tests for different configurations, devices, and platforms.
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Our interest is in the model-based black-box testing of mobile applications. Specifi-

cally, we are interested in extending an existing technique, FSMWeb [51] so we can

apply it to test mobile Apps. In the cause of investigating this, we also realized that

existing work around the FSMWeb body of knowledge needed improvements.

1.2 Existing Body of Work Related to FSMWeb

FSMWeb [51, 49, 139, 185] is a widely cited approach that tests web applications.

Andrews et al. [51] proposed FSMWeb as a black-box model-based testing approach.

The model consists of a hierarchical collection of FSMs. In addition, Andrews et al.

[50] study the scalability issues of traditional FSMs of web applications compared

to FSMWeb. FSMWeb compresses inputs using a special purpose input constraint

language [50] reducing the model by as much as 90% . The case studies [50] show

that FSMWeb is more efficient than conventional FSM techniques. Ran et al. [186]

defined input selection for FSMWeb. They build two databases: a test database

whose values are consumed during testing and the application database of the system

under the test. Andrews et al. [49, 45] also propose an approach for selective

regression testing of web application using FSMWeb and develop a cost-benefit

tradeoff framework between brute force and selective regression testing.

An external failure is an undesirable event that affects system operation [141].

Examples include hardware failures, sensor failures, or network outages. External

failures are not a result of faults in the software. In web applications, such failures

can result in losses of millions of dollars, for example, when in 2006, Walmart.com

was inaccessible for 10 hours during the holiday season [182]. Boukhris [68] provides

an approach that systematically tests external failure mitigation for web applications

by extending FSMWeb. He generates mitigation test requirements using a Genetic
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Algorithm (GA) and proposes regressing testing for fail-safe testing. However, there

are a number of issues that led to the need for improvements which we address a

part of this dissertation:

• Lack of proper case study methodology.

• Lack of defining reusable test requirements for regression testing leading to

major inefficiencies.

• Use of GA where search space is too small.

These will be addressed in this dissertation, in addition to the major topic, i.e.

Black-Box Model-Based testing of Mobile Apps.

1.3 Research Agenda

Our main objective was to extend FSMWeb to test mobile Apps. However,

when we reviewed the existing body of work related to FSMWeb, we realized that

a number of improvements needed to be made, specifically:

• Show scalability with a larger case study: The approach to fail-safe testing [68]

needed a larger formal case study that meets the methodology requirements

of [190]. This case study is presented in Chapter 4.

• Make regression testing more efficient: The regression testing approach in [68]

did not address reusable test requirements, considering them retestable and

hence required a much larger number of regression tests than necessary. We

provided an approach to classify test requirements as retestable, reusable and

obsolete. This is discussed in Section 4.2.2.
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Title Year
Selective regression testing of safety-critical systems: a black box
approach[47]

2015

A case study of black box fail-safe testing in web applications[70] 2017
A Comparison of Strategies to Generate Test Requirements for Fail-
Safe Behavior[69]

2017

Black-Box model-Based regression testing of fail-Safe behavior in
web applications[46]

2019

Table 1.1: Publication

• Large case study for regression testing: The case study for fail-safe regression

testing in [68] did not meet case study methodology requirements. It also

used genetic algorithms to generate test requirements. According to our com-

parison [69] of using coverage criteria vs. genetic algorithm to generate test

requirements, this is not effective for the small amount of change in this case

study. We completely redid the case study using coverage criteria and per-

formed a comparison of the approaches. This is discussed in Section 4.1. We

also added formal case study research questions, analyzed results to answer

them, discussed threats to validity, and practical considerations.

• Improve performance: When reviewing test path generation, we noticed that

many of them had initial subpaths in common which we used to improve

performance. Likewise, parallel execution could reduce overall execution time.

This is explored in future work Section 8.5.

Table 1.1 shows the published papers of this dissertation. Table 1.1 shows the

title of the paper and the publication year. We published two journal papers and

two conference papers.

This document is organized as follows: Chapter 2 describes related work in test-

ing mobile apps, black-box testing approaches, regression testing approaches, and
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functional of testing of web applications, as well as fault and failure taxonomies

for web applications. Chapter 3 details the original FSMWeb approach as well

as its extensions for fail-safe testing of web applications. Chapter 4 presents the

improvements for fail-safe testing of web applications, including regression testing

and a formal case study. Chapter 5 presents the extensions to the FSMWeb ap-

proach for testing mobile application (FSMApp). Chapter 6 compares FSMApp to

several other approaches for MBT for mobile apps [88, 37] using one small exam-

ple app. Chapter 7 describes a number of case studies to compare FSMApp with

other approaches and to explore applicability, scalability, effectiveness and efficiency.

Chapter 8 suggests further work. Chapter 9 draws conclusions.
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Chapter 2

Background

The background chapter first summarizes Black-Box Model-Based Testing (MBT)

techniques to test web applications; then it explores existing work for testing mobile

Apps. Since we are also interested in regression testing, relevant work is presented

next. Finally, since our improvements to FSMWeb include fail-safe testing, we

present existing work in this area.

2.1 Black-Box Model-Based Testing

Nguyen et al. [176] define Model-Based Testing (MBT) as an approach to gen-

erate test cases using an abstraction of the system under test (SUT). The model

provides an abstract view of the SUT by focusing on particular system character-

istics. Utting et al. [211] provide a survey on MBT. They define six dimensions

of MBT approaches: model scope, characteristics, paradigm, test selection criteria,

test generation technology, and test execution. Dias-Neto et al. [92] characterize

219 MBT techniques after analyzing 271 MBT papers and describe approaches that

support the selection of MBT techniques for software projects, including risk factors.

Risk factors may influence the use of these techniques in industry.
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Utting et al. [211] classify MBT by notation used, such as State-Based, History-

Based, Functional, Operational, Stochastic, and Transition-Based. Transition-Based

notations are graphical node-and-arc notations that focus on defining the transitions

between states of the system, such as Finite State Machines (FSMs). Transition-

Based notations also include UML behavioral models, such as activity diagrams,

sequence, and interaction diagrams [211]. This research addresses the use of MBT

for functional testing of mobile applications. We apply MBT and utilize a hierar-

chical finite state machine model as described in Chapter 5.

Researchers provide many MBT techniques for web applications such as [166,

160, 98, 188, 142, 180, 103, 177, 51], including regression testing, for example [49,

139, 185, 207, 165, 138, 159, 95]. Andrews et al. [51] propose an approach to test

web applications with Finite State Machines (FSMWeb). The approach is based on

a black box functional model. FSMWeb is a hierarchical collection of FSMs. The

approach consists of two phases: (1) building a model of the web application and

(2) generating a test suite from the model. The first phase is completed in four

steps: an application is divided into clusters, logical web pages are defined, FSMs

are built for each cluster, and for the application (top) level [51]. The second phase

is completed in three steps: (1) test paths for each cluster are generated by a variety

of coverage criteria, such as edge coverage, (2) path aggregation generates abstract

test paths, and (3) inputs are selected for the abstract test paths.

Andrews et al. [50] study the scalability issues of the traditional FSM of web

applications compared to FSMWeb. The case studies [50] show that FSMWeb is

more efficient than traditional FSM techniques. Ran et al. [186] defined algorithmic

input selection for FSMWeb. They build two databases: a test database whose

values are consumed during testing and the application database of the system

under the test.
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2.2 Testing Mobile Apps

Our main interest in testing Mobile Apps is Black-Box functional testing of

mobile apps. As such, we are not interested in other testing activities for Mobile

Apps, such as usability testing, configuration testing, exception handling testing,

etc. This is reflected in how we review the literature. We first survey approaches

for MBT for testing Mobile Apps. Then, we quickly review major approaches for

test automation, primarily to determine what options we have to turn the tests

generated by an MBT approach into executable tests.

2.2.1 MBT and App Testing

Sahinoglu et al. [193] present a mapping study of testing mobile applications.

Their paper studies the research issues in mobile application testing and the most

frequent test type and test level of available studies in mobile testing. They cate-

gorize existing studies into test levels, test types, and research issues. Test levels

include system testing, acceptance testing, unit testing, component testing, and inte-

gration testing. Test types include compatibility, concurrency testing, conformance

testing, performance testing, security testing, and usability testing1. The research

issues discuss test execution automation, test case generation, test environments,

cloud testing, and model-based testing. The mapping study concludes functional

testing and usability testing are the most researched mobile testing areas. Also, they

classify the publications according to research issues (Model-Based Testing, Static

Code Analyze, Test Case Generation, Test Environment Management, Test Execu-

1These are outside the scope of our work.
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tion Automation, and Testing in the Cloud2). There is only six model-based testing

studies. This lack of MBT techniques shows that our proposed work is needed.

Sahinoglu et al. [193] studied 123 papers on testing mobile applications, and the

paper presents the count of every classification of test levels, test types and research

issues of each study in the paper, but they did not discuss or reference the papers

themselves. Table 2.1 defines the classification of the mapping study. Column one

shows the category of the study and column two shows subcategories for each cat-

egory. Column three defines what the subcategories are as defined in [193]. We

added reference [42] on testing levels to Table 2.1. The definition of Model-based

testing in Table 2.1 is not the same as the commonly used definition of MBT (see

for example [45]). Here, we focus on the use of a behavioral model such as state

transition diagram to generate tests.

Another systematic mapping study by Mendez-Porras et al. [164] discusses 83

empirical studies of automated testing of mobile applications. The paper shows the

challenges and approaches of automated testing of mobile applications. Mendez-

Porras et al. [164] address the variety of context events, fragmentation3 in both

software and hardware, and resource limitations of the mobile device. We are not

focused on the fragmentation in both software and hardware, but we are interested

in the different types of events: user GUI input such as a keyboard, physical context

events such as GPS or Bluetooth, and social events like Facebook friends [151]. Also,

the paper reports that the most commonly used method for empirical validation is

a case study. The mapping study presents the main approaches for automated test-

ing of mobile applications and the primary research of testing mobile applications

2We are interested in MBT only.
3Fragmentation means that Apps behavior is different on different android devices[111].
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Table 2.1: Classification Framework [193]

Category Subcategory Definition

Test Levels

System Testing “Access software with respect to architectural de-
sign and overall behavior." [42]

Acceptance
Testing

“Assess software with respect to requirements or
users’ needs.” [42]

Unit Testing “Assess software with respect to implementation.”
[42]

Component
Testing

“Assess software with respect to detailed design.”
[42]

Integration Test-
ing

“Assess software with respect to subsystem de-
sign.” [42]

Test Types

Compatibility “The ability of two or more systems or components
to perform their required functions while sharing
the same hardware or software environment.” [104]

Concurrency
Testing

“Testing to determine how the occurrence of two
or more activities within the same interval of time,
achieved either by interleaving the activities or by
simultaneous execution, is handled by the compo-
nent or system.” [104]

Conformance
Testing

“Conformance testing is testing to see if an imple-
mentation meets the requirements of a standard or
specification.” [20]

Performance
Testing

“Testing conducted to evaluate the compliance of
a system or component with specified performance
requirements.” [104]

Security Testing “Testing to determine the security of the software
product.” [12]

Usability Test-
ing

"Usability testing refers to evaluating software by
testing it with representative users. Typically
users will attempt to complete typical tasks while
observers watch, listen and takes notes." [12]

Research Issues

Test Execution
Automation

“The use of software, e.g. capture/playback tools,
to control the execution of tests, the comparison
of actual results to expected results, the setting up
of test preconditions, and other test control and
reporting functions.” [12]

Test Case Gen-
eration

“A computational method for identifying test cases
from data, logical relationships or other software
requirements information.” [2]

Test Environ-
ment

“An environment containing hardware, instrumen-
tation, simulators, software tools, and other sup-
port elements needed to conduct a test.” [104]

Cloud Testing “Cloud Testing uses cloud infrastructure for soft-
ware testing. Cloud computing offers use of virtu-
alized hardware, effectively unlimited storage, and
software services that can aid in reducing the ex-
ecution time of large test suites in a cost-effective
manner.” [209]

Model-based
Testing

“Testing based on a model of the component or
system under test, e.g., reliability growth models,
usage models such as operational profiles or behav-
ioral models such as decision table or state transi-
tion diagram.” [12]
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that have been validated using empirical studies4. It also analyzes the usefulness

and accuracy of automated testing of mobile applications. They classify the empir-

ical studies as follows: model-based testing, capture/replay, model-learning testing,

systematic testing, fuzz testing, random testing, and script based testing. The def-

inition of the categories is as follows:

• Model-based testing builds a model of the application under test and uses this

model to generate test cases [176].

• Capture/replay captures events while the test cases are executed and then

replays them automatically.

• Model-learning testing builds a model of the GUI application in conjunction

with a testing engine and guides the generation of user input sequences based

on the model. Depending on the quality of the tests used or generated by the

test engine, the model may be incomplete.

• Systematic testing automatically and systematically generates input events to

exercise applications. It is usually based on test criteria and an abstraction

of the software, hence has overlap with MBT. The systematic testing applies

symbolic execution [77, 105, 133] to generate inputs for Android apps. Sym-

bolic execution automatically partitions the domain of inputs such that each

partition corresponds to a unique program behavior while avoiding unneces-

sary inputs [157]. We are not interested in symbolic execution because it is

not black-box testing.

4This is narrower than our scope, since we also consider approaches that still lack empirical
validation.
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• Fuzz testing generates a large number of simple inputs to applications. Fuzz

testing is a black-box approach and fully automatic to generate random UI

events for to Android apps in a mobile device emulator. Fuzz testing does not

generate inputs that represent typical user action sequences such as playing

a game. The tool for Fuzz testing is Monkey [32]. We did not consider this

because FSMApp models black-box user behavior.

• Random testing generates random sequences of user input events for the ap-

plication being tested.

• Script based testing requires manually writing test cases in the script language.

These are then transformed automatically into executable tests and executed.

They conclude that 40% of the studies use GUI-based models of the application

and 30% of the approaches use model-based testing. This dissertation focuses on

Black-Box MBT of mobile applications. Hence, only the first category is of relevant

to the scope of this dissertation. Mendez-Porras et al. [164] cite [228, 37, 232, 91,

123, 221, 38, 194, 128, 55, 198, 102] as model-based testing papers. We exclude

a number of papers from this list as they are not in our scope. This subsection

already discussed [37, 128, 198]. This subsection does not discuss white-box testing

[91, 123] and grey-box testing [228]. We are also not interested in testing security

[194], data-flow analysis [55] and life cycle testing of the application [102] Zaeem et

al. [232] is not discussed in this dissertation because it is related to oracle problems.

Wang el at. [221] identify several difficulties for automating GUI testing and study

the high cost for achieving coverage of the traversal algorithm to generate a GUI

tree model. It extends the crawling technique in Amalfitano et al. [37] to increase

GUI coverage. Also, Amalfitano et al. [38] present a Event-Based Testing approach

that Mendez-Porras et al. [164] classify as MBT.
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This dissertation focuses on creating the model for testing mobile application

and we discuss Amalfitano et al. [37] later as one of the approaches that we will

compare to FSMApp.

Several research papers are not included in Mendez-Porras et al. [164]. Zein et

al. [233] present another mapping study of mobile application testing techniques.

The goal of the mapping study is based on the classification of empirical studies.

The main research question is what are the empirical studies that investigate mo-

bile application testing techniques and what are the challenges? Zein et al. [233]

consider studies of mobile testing techniques, services 5, security and usability test-

ing of mobile applications, and the challenges of testing mobile applications. The

mapping study uses five categories: Usability testing, Test automation, Context-

awareness, Security, and a general category. The general category includes all the

studies which are not in the other areas. The general category does not focus on

usability testing, test automation, context-awareness, security, performance testing

[75, 132] and compatibility testing of the mobile application with the underlying

operating systems [218, 219, 236]. Table 2.2 lists [58, 65, 99, 187, 61, 145, 212, 152,

183, 118, 184, 100, 137, 63, 62, 78, 67, 161, 225] as usability testing, [37, 175, 97, 199,

66, 39, 240, 130, 184, 153, 201, 235, 87, 168, 206, 55, 148, 84, 116, 220, 226, 239, 88,

36, 33, 124, 117, 40, 107] as test automation, [223, 38, 195, 125, 192, 222, 231, 215]

as context-awareness, [129, 194, 155, 53, 80, 108, 134, 114] as security testing and

[151, 75, 132, 101, 150, 102, 90, 91, 213, 202, 218, 236, 237, 219, 35] as general cate-

gory. Column one shows the category name and column two presents the references.

Column three shows the number of papers for each category. None of the categories

defined in this mapping study directly speaks to the scope of this dissertation.

5"Mobile services are currently targeting time and safety critical contexts such as abnormal and
disaster management situations"[233].
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However, the category Test Automation contains two potentially relevant sub-

categories: Model-based test automation and Black-box test automation. The other

categories are not relevant to our scope.

Table 2.2: Studies Under Each Topic (Subcategory) [233]

Category Studies Total # studies
Usability testing [58], [65], [99], [187], [61], [145], [212],

[152], [183], [118], [184], [100], [137],
[63], [62], [78], [67], [161], [225]

19

Test automation [37], [175], [97], [199], [66], [39], [240],
[130], [184], [153], [201], [235], [87],
[168], [206], [55], [148], [84], [116], [220],
[226], [239], [88], [36], [33], [124], [117],
[40], [107]

29

Context-awareness [223], [38], [195], [125], [192], [222],
[231], [215]

8

Security testing [129], [194], [155], [53], [80], [108], [134],
[114]

8

General category [151], [75], [132], [101], [150], [102],
[90], [91], [213], [202], [218], [236], [237],
[219], [35]

15

Test automation has the following subcategories: Data, Portable operating sys-

tem libraries with knowledge and reasoning, Sensitive-events, Scripted user inter-

face, Exhaustive test amplification, Reverse engineering, Static taint-style data flow

analysis, Depth-first exploration, Contextual fuzzing, Machine learning, Approxi-

mate execution, Automated mobile testing as a service, Parallel GUI testing using

a master-slave model, Search, Systematic exploration of test suites, Sensor and

event-stream based approach, and Sensor simulation6. Zein et al. [233] classify

[37, 39, 153, 87, 206, 88, 124, 40] as Model-based testing methods. Not all are

relevant to this dissertation.

6Zein et al. [233] classify test automation into too many categories. Most of them have only
one research paper.
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We exclude [40] because it is combination of machine-learning and model-based

testing and we are interested in Model-based testing only. Also, [206] focuses on

testing environments such as connection to the wireless network. [124] is a white-box

testing approach.

Examining the papers listed under Model-based testing and Black-box testing

yielded the following papers that fall into our scope [37, 39, 153, 87, 206, 88, 124,

40, 57].

Since we are interested in MBT and Black-box testing we categorize test au-

tomation into Model-Based testing, Black-Box Testing, and Testing Approach. The

Model-based testing approach builds a model of the application being tested and

uses this model to generate tests. Types of MBT: (1) The user will create the model

manually, (2) The tool will generate the model automatically, (3) The user generates

the test manually, (4) The tools generate tests and execute them. This dissertation

focuses on model-based testing black-box testing of Mobile Apps, whether or not

the steps are automated.

Table 2.3 summarizes research that use manual or automated model building or

test generation. [128, 153, 88] build the model manually and [37, 39, 87, 124, 40,

205, 57] build the model automatically. All methods generate the test case automat-

ically. This dissertation compares FSMApp with [88, 37] because they describe the

generation of the model in sufficient detail. First, we will describe the MBT methods

using manual model generation, then those that use an automated method.

Table 2.3: Manual and Automation Papers on Model building and Test Generation

Model-building Test generation
Manual [128], [88]

Automated [37], [153], [39], [87], [205],
[57]

[128], [153], [88], [37], [39],
[87], [205], [57]
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Jing et al. [128] present a Model-based Conformance Testing Framework (MCTF)

for Android Applications. Testers need to generate the model manually from the

requirements. MCTF consists of four steps: System Modeling, Test Case Gener-

ation, Test Case Translation, and Test Case Execution. System Modeling derives

the parameters and properties of an App, while Test Case Generation generates

abstract tests automatically with Alloy Analyzer. Alloy Analyzer is a language for

describing structures and exploring them. Test Case Translation converts abstract

tests into executable tests. Test Case Execution compiles executable test cases to

generate test packages. The Android apps or operating system is then tested with

the packages. Packages are defined as test cases generated by Alloy Analyzer. The

packages are run by Android’s Instrumentation Test Runner. They can access the

Android’s applications. The model is generated from requirement documents.

Lu et al. [153] propose an activity page based model to automate functional

testing for mobile applications. An activity page based model optimizes (reduces)

the code of the crawling algorithm to generate a test case. The Activity page based

model is a directed graph. An activity page is thus similar to a screen. It models

mobile activity as a state. Edges represent a trigger event between the states. The

mobile activity is the activity page with input components and related events. The

model can be generated either by (1) the UIAutomation tool [31]. It provides the

information about the activity page with all input components and events. or (2)

Create a Model-based on an image comparison for every event. The Monkeyrunner

tool [17] takes the screenshot of the activity page with the fired event. They generate

test cases by applying a crawling algorithm. Lu et al. [153] present two modeling

methods based on an activity page based model 7. Android apps contain activity

7We focus on the activity page based model from GUI ignoring the method that uses the source
code because our goal is black-box functional testing.
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component which helps to develop the user interface of an app. An app usually

contains one or more activity classes to provide GUI interfaces for the user. Lu et

al. describe the following phases:

1. Create the activity page based model. The activity page is described as a

tuple <activity page, event, visible component, properties of each components,

value component>. This tuple is similar to the input-action constraints in

FSMApp and the decision tables in the ESG method. The main user interface

is considered as the first activity page. All descriptions of the activity page

are collected. Then, the events are fired to capture all possible activity pages

which are accessible from the first activity page. This process continues until

all activity pages have been reached. The input selection is generated ad-hoc

and recorded on the edge.

2. The test cases are generated by the following crawling algorithm:

(a) Step 1: Get all nodes that connect to the "exit" node of the activity

page can be used as a test case to start up the rest of the activity pages

(start-up nodes).

(b) Step 2: Take the main activity page (start node) through the other nodes

from step1. Determine all the shortest paths from the start node to exit

nodes.

(c) Step 3: Create all single-loop paths of each start-up activity page that

start and end at the start-up activity page.

(d) Step 4: If there are uncovered edges by step 3, then calculate the shortest

multi-loop path for each uncovered edge. In step 4, uncovered edges will

be covered as complementary test cases.
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3. Robotium framework executes the test paths and captures any failures.

It is not clear how and when the tuples are used and at which stage input is

selected. The example on the paper does not help in that regard either. It is hard

to compare FSMApp with this activity page based model because (1) the description

of the input constraints is incomplete, especially related to dependencies between

inputs and (2) it is unclear at which phase the input constraints are resolved into

values. When we used the crawling algorithm to generate test paths, it also became

clear that for the small example in chapter 6, the paths were inordinately large.

The number of test paths is 62, consisting of 350 nodes. The execution time is 29

minutes. FSMApp generated 11 test paths with 45 nodes. The execution time is 11

minutes. FSMApp needs 80% fewer test paths and 60% less execution time.

Amalfitano et al. [39] present another GUI automated technique to test Android

apps. They implement the technique in a tool called AndroidRipper. The technique

is based on a GUIRipper. This is a dynamic approach in which the software’s GUI is

automatically traversed by opening all its windows and extracting all their widgets

(GUI Objects), properties, and values [163]. GUIRipping reverse engineers the GUI

of the application. The ripping generates a tree model. The ripping technique is

an iterative process with the following parameters: event, action, task, and GUI

exploration criterion. An event is a user event, such as fill text-box, or an event

related to activity classes like onStart function or events from other sources such as

GPS. The action is a data input and event command such as <click>. The task

consist of multiple actions, such as <click> where performs the action click. The

GUI exploration criterion is a logical criterion to explore the GUI tree. The tool

takes a long time to generate test cases for large apps, and it does not support some

input, such as sensors, whereas FSMApp tests large apps and includes more inputs.
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Costa et al. [87] adopt Pattern-Based GUI Testing (PBGT) to test mobile apps.

PBGT is based on User Interface Test Patterns [173] specifically developed to test

web applications. Costa et al. [87] aim to increase the reusability and reduce the

effort of modeling and testing mobile Apps. The differences between web and mobile

versions of their PBGT approach is in the mapping and interaction strategy, and the

fact that mobile apps can call other applications. PBGT has five main components:

1. PARADIGM-DSL is a domain specific language (DSL) for building GUI test

models based on user interface test patterns (UITP).

2. PARADIGM-ME supports tester to build the test models of the application

[167].

3. PARADIGM-TG is a tool to generate test cases from PARADIGM-ME model

with different coverage criteria, such as edge coverage to cover all the paths

from the start node to end node [172].

4. PARADIGM-TE is a tool to execute test cases and analyze the coverage on

the model and the code then create the test results reports [217].

5. PARADIGM-RE is an automated reverse engineering tool to create a model

of an existent mobile application into PARADIGM-ME model tool then the

designer can modify the model [174].

This approach does not include some gestures and components like swipe and

zooming whereas FSMApp (Chapter 5) supports components. Also, it does not

support varying screen size and loops. It needs a separate model for every function

of the mobile app. They cannot be connected together to create a hierarchical model

to test the mobile app. We therefore decided not to compare FSMApp with this

approach using our case studies.
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Costa et al. [87] use a domain specific language to model and test mobile ap-

plications. Because their annotation does not use a node and edge notation like

FSMApp, it is difficult to compare the two approaches. Therefore, we decided not

to include this method in our case study comparison.

Takala et al. [205] present a test automation solution for testing Android apps.

They use Model-based testing tools (TEMA) [205]. The TEMA tool is a set of

Model-based tools for different phases of MBT. The phases are modeling, design,

generation and debugging tests. TEMA models are Labeled State Transition Sys-

tems (LSTS) [121, 122] which contain: state, transition, actions, and labels. The

model can be divided into small components that are connected. Each component

has two levels: an action machine and a refinement machine. The action machine

explains the high-level functionality of the apps with words (action of transition)

and state verification (state of SUT). The refinement machine describes action words

and state verifications using a keyword. The keyword is an abstraction of a user ac-

tion or state verification such as "press key" or "search text". The model is complex

even for small apps because each component is a combination of action machine and

refinement machine of each function of a mobile application. Also, the two levels

make testing of large mobile apps difficult because a refinement machine state model

can only connect to one action machine. In our approach, we implement hierarchi-

cal levels, and the clusters can be used for many states which mitigate the state

explosion problem and simplify the generation of a model for large mobile apps.

Takala et al. [205] used TEMA tools with state machines to test mobile appli-

cations. They described the following phases:

1. Create a model with labeled state transition systems (LSTS). An LSTS has

states, labels of the state, transitions between states, actions of the transitions.
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The models can be divided into smaller model components to understand the

model quickly and make it easier to maintain. The full model is the result of

combining the components in a process called parallel composition. The par-

allel composition links specific actions of the models together. The component

consists of two levels of separate state machines: an action machine and a re-

finement machine. The action machine describes high-level functionality with

action words and state verification. An action word describes a small use case

in the app on the transition such as saving a file. A state verification describes

the state of the system under test and is used to verify that it corresponds

to the state of the model as described in the state label. The refinement ma-

chine describes the implementation of the action words and state verification

by keywords. A keyword is a defined combination of actions which describes

the execution of the test case. The advantage of the two-layer model archi-

tecture is that the action machines can be reused but the refinement machine

must be remodeled when they are used in a new content such as with other

mobile devices. The TEMA model supports localization tables or data tables

for the test data. A localization table contains the localized string. The lo-

calized string is chosen during test generation. The data tables store complex

structured data like input given to the App under test.

2. The test generation can use online or offline approaches. The online approach

generates tests while the SUT is tested with tests generated in earlier steps.

Later, the tool generates the other test cases depending on the returned result

to adapt test cases to different responses. The online approach allows random

tests. The offline approach generates test suites from the model then executes

them. The TEMA test generation tool uses the online approach.
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3. The TEMA execution tool runs the test suite alongside the test generation

(using the online approach).

Takala et al. [205] tested the BBC News Widget. It took a few days to generate

the model using the TEMA tool. The tool generated 240 test cases with 27000 action

words and 50000 keywords. The total time to execute the test cases was 115 hours

with an average of about 30 min for each test case. We applied the approach to the

todo app [30] because it is a small app. We created the model manually because

the TEMA tool does not have clear documentation for installation and use. The

model of the todo app [30] has 37 nodes, 61 edges, 1700 keywords, and 900 action

keywords. We estimated that it would take four hours to run the test cases with the

keywords. The number of test paths of this approach compared to FSMApp is very

large because FSMApp only required 11 minutes for executing all test paths. It is

complicated to generate the model and the keywords manually. For these reasons,

we excluded Takala et al. [205] approach.

Baek et al. [57] present a Model-based Black-box approach to test Android

apps with a set of multi-level GUI Comparison Criteria (GUICC). The approach

creates a directed graph which contains ScreenNode and EventEdge. The ScreenN-

ode is a GUI state which includes screen information to distinguish it from other

ScreenNodes by performing a GUI Comparison. GUI state represents the type of

GUI information: package name, activity name 8, layout and executable of the wid-

gets, and content information. GUICC has five levels. The first level compares the

package name of the running screen to visited ScreenNodes of the GUI graph. If the

package name is running in the background of the mobile device, then the approach

applies the second level.

8See Appendix for more details.
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The second level compares the activity names of the running screen with names

of the activities in the GUI Graph. If the activity name is not found in the GUI

graph, a new ScreenNode is created in the GUI Graph. The third level compares

the layout of the widgets with GUI graph ScreenNodes: if they have the same

package name and activity name. If the layout of the current widgets is different,

then GUICC creates a new ScreenNode and connects it to the GUI graph. The

fourth level compares the events of the widgets and the fifth level compares the

content information. Baek et al. [57] develop a testing framework around GUICC.

The framework has three modules: (1) The communication layer connects between

desktop and mobile device. (2) The EventAgent is a tool to run the test on a mobile

device. (3) The testing Engine generates a GUI graph with GUICC, test inputs,

and test cases. The framework is not open to the public and Baek et al. [57] do not

explain the approach in enough detail. Therefore we are not able to compare the

approach with our approach.

de Cleva Farto et al. [88] evaluate the use of MBT to verify and validate mobile

applications through automated tests. They use an Event Sequence Graph (ESG)

to build a test model of the App under test. An ESG expresses the requirements and

the functionality of the system under test. ESG is one of the modeling techniques

used in MBT [88]. ESG is a directed graph that represents the events (nodes) and

possible sequences of events (edges). The testing approach has three phases (1)

Create the ESG model, (2) Generate and implement test cases from the ESG model

and (3) Execute the test cases with Robotium and collect data. de Cleva Farto et al.

[88] generate test paths from the start node to the end node covering all edges. The

dissertation [59] shows an example with multiple test paths. Their tool determines

how many paths are generated. It does not allow for any other coverage criteria.
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This approach does not provide input information as part of the model such as

input constraints but they consider them separately in a decision table. There are

no coverage criteria for combinations from the decision table, such as defined in [64].

Chapter 6 describes and compares this approach with FSMApp in detail with an

example.

Amalfitano et al. [37] present a technique and a tool for crash testing and re-

gression testing for Android apps. Amalfitano et al. [37] use a crawler technique to

automatically build the model from the GUI and generate the test cases automat-

ically. The model generates a GUI tree using an iterative depth-first search. The

GUI tree is represented as nodes and edges. The nodes represent the user interfaces

of the Android application, and the edges describe the event-based transition be-

tween the nodes. The GUI tree is built using an iterative algorithm which relies on

two main temporary lists (for events and interfaces). The technique fires an event

to capture the user interface (screen) and data of the interface. The tree is gener-

ated by considering the interface as a node and links the interfaces together until it

reaches interface on for which the temporary interface’s list is created (to avoid a

cycle). After building the tree, test cases are generated. They also provide a tool for

the technique named A2T 2 (Android Automatic Testing Tool). The tool generates

the model and test cases. This technique generates a large number of test cases to

test a small mobile application as represented in the example [37]. Chapter 6 will

describe and compare this approach with FSMApp in detail with an example.

In summary, we will describe in detail the following approaches: [37, 88] and

compare them to FSMApp as part of our case study validation.
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2.2.2 General App Testing Tools

The previous section describes MBT techniques that may or may not also include

tools for making tests executable and running tests. This section discusses tools that

have been used in practice to build and execute test cases, regardless of whether

they are designed using MBT or not.

We discuss these techniques because our case studies need to use such tools to

execute tests. We are only interested in open source tools. Some tools generate

tests based on a testing strategy, others do not. Choudhary et al. [85] compare

the main mobile testing tools. They found 14 open source tools. They classify the

tools into random, model-based and systematic strategy. Table 2.4 defines the three

classifications and the differences between the model-based and systematic strategy.

Tools that implement random test generation include Monkey [32], Dynodroid [157],

DroidFuzzer [230], IntentFuzzer [196], and Null IntentFuzzer [18]. GUIRipper [39],

ORBIT [228], A3E − Depth − First [55], SwiftHand [84], and PUMA [113] are

Model-based strategy tools. The systematic strategy has four tools: A3E−Targeted

[55], EvoDriod [158], ACTEvo [43], and JPF-Android [214]. Choudhary et al. [85]

present a brief description of the tools and compares them by ease of use of the tool,

Android framework compatibility, code coverage achieved and fault detection ability.

This dissertation focuses on tools for model-based testing and test suite execution

tools to test mobile applications. Therefore, we will not discuses the random and

systematic tools. Also, ORBIT [228] is excluded because it is a grey-box testing

tool that uses data-flow analysis [55]. SwiftHand [84] is a usability testing tool.

PUMA [113] provides a programmable user interface automation framework for

conducting dynamic analyses of mobile apps at scale. GUIRipper [39] was discussed

in Subsection 2.2.1.
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Lamsa [140] presents a comparison of 26 GUI testing tools. He concludes that

five tools are popular based on a Google search for the tools using Google trends 9

and a computer science forum (Stack orverflow)10. He compares the five tools by ease

developing test suites, execution time, amount of code, reliability, and compatibility

with the mobile applications. These popular tools are Expresso [27], Tau [26],

Appium [7], Robotium [22] and UIAutomator [31]. He concludes that Espresso is

the best tool, Appium is in the middle, and the worst is UIAutomator.

Linares-Vasquez et al. [149] present a survey of frameworks, tools, and services

to test mobile applications. The tools are categorized into: automation frameworks

& APIs, record & replay, automated GUI-input generation, bugs & error reporting

monitoring tools, testing services, cloud testing services, and device streaming. Au-

tomated GUI-Input Generation tools have subcategory: Random-Based, systematic,

Model-Based and others. The categories are defined in Table 2.4. Column one shows

the category and subcategory of the tools. Column two defines the category, and

column three shows the tools that are based on MBT Black-box testing, applying

Finite State Machines to test mobile applications.

This dissertation is focused on MBT. The following are MBT tools:

Appium [7] is a test automation framework for testing native, hybrid, and mobile

web apps. Appium works cross-platform and supports most programming languages,

such as Java and Ruby. Appium also supports Jelly Bean (Android 4.2) or higher

but has weak documentation. Appium is an open-source tool to execute text cases.

Subsection 5.5 describes Appium in more detail.

Eggplant [8] is a black-box GUI test automation tool. Eggplant uses image

recognition algorithms for the GUI object-level of the application. Eggplant can

9https://www.google.com/trends/
10https://stackoverflow.com/
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identify images, texts, and record and replay, but only identifies web browser objects

in the phone, but not native or web application objects. Eggplant is not a free tool.

Ranorex [21] is a black-box GUI test tool for testing desktop, web-based, and

mobile applications. It uses a standard programming language, such as VB.Net, and

Delphi, for scripting. The tester can customize the test report engine. It also can

be used without a script. In this case, the user generates test cases while navigating

through the app. It does not support all gestures, drag and drop operations, or

launching of closed applications. Ranorex is not a free tool, hence out of our scope.

Robotium [22] is a test framework for Android applications. Robotium allows

test case developers to write function and system test scenarios. Robotium provides

user interaction such as clicking, touching, and any mobile application gestures.

Robotium cannot handle web components, or more than one application, and it is

slow to build test cases. This dissertation aims to provide a testing approach for all

types of mobile applications (native, web-based and hybrid).

In summary, this leaves Appium as the tool to use in our case studies for making

tests executable and running them.
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Table 2.4: Categories for Tools

Category & subcate-

gory

Definition Tools

Automation

APIs/Frameworks

It is a tool or framework to automate testing

of mobile applications.

Record and Replay

Tools

It is a tool to run the test without program-

ming knowledge.

Automated Test In-

put Generation Tech-

niques

It is a process to generate test cases auto-

matically.

Random Based Input

Generation

It is a tool generates random test with inde-

pendent inputs.

Model-based Input

Generation

The tool builds the model of the app under

the test to generate test cases.

[7, 8, 39, 21, 22]

Systematic Input

Generation

It is a tool to test a mobile app against a va-

riety of input to find errors. It uses symbolic

execution and evolutionary algorithms.[85]

Other Input Genera-

tion

It includes programmable, scripting, sym-

bolic, multiple and search-based mobile test-

ing tools.

Bug and Error Re-

porting/ Monitoring

Tools

It is a tool for supporting bug reporting or

monitoring crashes and resources consump-

tion at run-time. [149].

Test Services The tools include: Crowd-sourced, usabil-

ity testing, security testing, and localization

testing.

Cloud Testing Ser-

vices

Tools to test the mobile application by cloud

services.

Device Streaming

Tools

Tools for Device Streaming can facilitate the

mobile testing process by allowing a devel-

oper to mirror a connected device to their

personal PC, or access devices remotely over

the internet [149].
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2.3 Regression Testing (RT)

The purpose of regression testing is to check that new or modified functionality

works, to ensure the continuous working of the unmodified parts of the software, and

to validate that the modified software as a whole functions correctly [146]. There

are two main approaches for regression testing: Retest All and Selective Regres-

sion Testing. The Retest-All approach simply tests the system all over again. This

is appropriate when changes affect most of the software, but inefficient when only

selected parts of the software changed. Selective Regression testing considers the

modifications that affect parts of the software and only tests those. Selective Re-

gression Testing may reduce the time and cost of retesting the software. Rothermel

and Harrold [189] define a selective regression testing process as follows:

1. Identify changes that affect the software.

2. Determine obsolete test cases that are not valid for the new software version

and remove them from tests set T, resulting in T’.

3. Execute T’.

4. Generate new test cases T” for the modified or new part of the software that

are not tested with T’.

5. Execute T”.

Steps 2 and 3 test that the modifications have not broken any existing func-

tions. Steps 4 and 5 test that the modifications and new code work correctly. T’ is

determined based on the existing test cases and the regression testing approaches.

Leung and White [147] group the existing tests case into five categories: reusable,
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retestable, obsolete, new-structural and new-specification test cases. A reusable test

case tests an unmodified function and does not need to be executed. A retestable

test case tests the modified part of the software and needs to be executed. An

obsolete test case is no longer valid. A new-structural test case tests the changed

software structure. A new-specification test case tests the functionality of the mod-

ified specification for the software.

Chen et al. [82] characterize regression tests: A Targeted Test tests functionality

of the changed parts of the software, and a Safety Test addresses risks. Chen et al.

[82] generate test cases using UML activity diagrams. They classify two types of

changes; code changes and system behavior changes.

Orso et al. [178] present an approach similar to Chen et al. [82], but they apply a

statechart diagram instead of UML activity diagrams. Their approach first compares

between the new and the old versions of the statecharts and identifies test cases

that are affected by the changes. Briand et al. [72] [74] present a regression testing

technique using use case, sequence, and class diagrams. They provide definitions

for the types of changes in diagrams (e.g. added/deleted attribute, added/deleted

method) and use them to classify tests into reusable, retestable and obsolete. Iqbal

et al. [120] introduce a regression test selection method using UML state machines

and class diagrams.

Regression testing can be very costly, hence Test-suite reduction techniques are

used to reduce the number of test cases. Korel et al. [136] propose a requirement-

based regression test suite reduction approach. They use an EFSM model to reduce

the size of a regression test suite. Chen et al. [83] extend the work of Korel et

al. [136] but propose a reduction approach in terms of modified transitions and de-

pendencies between transitions. Andrews et al. [49] present a black-box regression

testing technique for FSMWeb. Furthermore, Andrews et al. [45] study and com-
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pare a cost-benefit tradeoff framework between brute force and selective regression

testing. Their framework considers various cost factors related to steps in regression

testing. FSMWeb does not address testing Mobile Apps because it cannot model

all possible screens and actions in mobile Apps. Our goal is to extend FSMWeb to

enable testing of mobile Apps and to partially automate the testing process. Also,

none of these approaches consider fail-safe testing with regression testing or testing

of mobile Apps.

2.4 Fail-Safe Testing

This type of testing is interested in external failures and their proper mitigation.

An external failure is an undesirable event that affects system operation [141]. Ex-

amples of external failures are a database crash, loss of a network connection, or

unavailability of a server on which the software depends. External failures are not

a result of faults in the software.

Many researchers try to classify external failures or a fault taxonomy. Some types

of the failures or faults required mitigation actions. Pertet and Narasimhan [182]

study the causes and effects of web failures. They show cause of the affects of most

failures: software failures, human/operator errors, hardware/environmental failures,

and security violations. They show the failures: unavailable systems, exceptions,

access violations, incorrect answers, data loss and corruption, and poor performance.

Ardagna et al. [52] classify web fault types into infrastructure and middle-ware

faults, web service faults, and web application faults. Additionally, they define

recovery actions as retry services, substitute services, missing parameter completion,

service reallocation and changing of process structure. Ma and Tian [156] classify

web failures as host, network, or browser failures, source or content failures, and
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user errors.

Guo and Sampath [109] study logic faults and compatibility faults and they

classify browser interaction faults, session faults, paging faults, server-side parsing

faults under Logic faults. All the papers are great for classifying web faults and

failures, only Ardagna et al. ([52]) consider both failures and recovery.

Zeng et al. [234] propose recovery in the form of exception management in term

of web services. They study the application and process exceptions. A service can

be affected by a time delay or experience a degradation of service quality. They clas-

sify the types of recovery action as retry, skip, replace, try alternative, compensate,

and timeout. Lu et al. [154] define the exceptions and exception handling policies

formally for state charts. They define mitigation policies: skip, abort, retry, try

alternative, compensate, replace, and timeout. Finally, Brambilla et al. [71] cate-

gorize exceptions as user-generated, application generated or infrastructure related.

They defined the policies of exception handling as accept, reject, abort, ignore,

and resume. Cabral and Marques [76] analyze frequently used exception handler

categories for Java and .net applications: empty, log, alternative, throw, continue,

return, rollback, close, assert, delegates, and an "other" category which includes

action types that do not correspond to any of the prior categories.

Avizienis et al. [54] present a taxonomy for fault handling such as rollback,

rollforward, and compensation. Ye et al. [229] provide a systematic approach for

the selection of suitable mitigation strategies based on a taxonomy of failure types.

Their approach confers the use of an unreliable component in the critical application

with increased confidence. There is no one of the paper study the mitigation with

Model-Based Testing. Furthermore, more formal exception handling patterns have

been described for process and Work-flow models [144, 110, 171, 106, 210]. Jiang et

al. [127] build an exception control flow graph. The graph uses data flow coverage
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criteria on variables that are related to the exception. Sinha et al. [200] also

investigate white-box testing with exception handling by using control flow and

data flow analysis. Andrews et al. [44] propose a method to enhance an existing

MBT technique, FSMWeb [51] that leverages a black box test suite derived from the

model and transforms it into a series of tests for various failures that test their proper

mitigation. These tests are called Failure Mitigation Tests (FMT). This approach

also has the advantage that one can proceed with functional testing as usual, i.e.

existing test suites do not have to be regenerated, failures can be injected at selected

points in the existing test suite, and a mitigation test is created by modifying the

functional test at the point of failure with required mitigation behavior.

Many papers classify failure type of web applications [156, 182, 52], but there is

little in terms of categories treating external failures of mobile apps. Cinque et al.

[86] present a measurement based failure characterization for Mobile apps. They

classify failures as: (1) Freeze when a device does not respond to the user input, or

the device output becomes constant. (2) Self-shutdown when the device turns off by

itself. (3) Unstable behavior when the device changes behavior without user input

such as blacklight flashing. (4) Output failure when the device’s output differs from

the configuration such as a different ring. (5) Input failure such as when a user input

has no effect on the smartphone (e.g. when a soft keyboard input does not work).

Also, Cinque et al. [86] classify user-initiated recovery as: (1) Repeat the user action

until the device responds. (2) Wait an amount of time for the device to respond. (3)

Reboot the device. (4) Remove battery (this is mainly performed when the device

freezes; however, in newer phones the user cannot remove the battery easily). (5)

Service at the phone center.

Vijayalakshmi [216] analyzes the Android operating system by using failure mode

and effect analysis [208]. Vijayalakshmi [216] categorizes failures into hardware and
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software. Vijayalakshmi uses the same software failures categories from Cinque

et al. [86]. The hardware failure modes are: (1) Keyboard does not work (e.g.

the phone fell into the water) (2) Battery Failure due to inappropriate use of the

battery or overcharging. (3) Mobile phone breaks due to low quality manufacturing

(e.g. the user should be careful not to drop the phone, otherwise it will break. (4)

Screen quality can affect the system such as color change or low image quality. (5)

Manufacturing Error of power supply unit. Since fail-safe testing of mobile apps is

outside of our scope, we are only concerned with fail-safe testing related to using

FSM, and the case study and regression testing approach described in Chapter 4.
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Chapter 3

Original Approach

3.1 Testing Fail-Safe Behavior w/FSM Web

This section describes the approach of testing fail-safe behavior for which we

develop a selective regression testing approach (section 3.1.1), similar to Boukhris

et al. [70]. It differs in how test requirements are generated.

3.1.1 Process

The black-box test generation process for testing fail-safe behavior consists of

the following steps:

1. Generate test cases from the behavioral model (section 3.2).

2. Identify failure events and their mitigation (section 3.3).

3. Generate mitigation tests from the mitigation models (section 3.6).

4. Generate test requirements using coverage criteria (section 3.5).

5. Generate abstract test paths for each test requirement by weaving mitigations

into the primary test path using weaving rules (section 3.7).
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6. Generate, execute and validate tests (section 3.8).

The failure mitigation test process uses FSMWeb [51] black box testing of re-

quired functionality, and its associated behavioral testing criteria (BC), and result-

ing behavioral test paths (BT ). System requirements identify types of failure events

and any required mitigation actions. This is used to build failure mitigation models

(MM) for which mitigation coverage criteria (MC) can be identified and mitiga-

tion test paths (MT ) can be created. A State Event Matrix (SE) determines which

failure types are possible in which behavioral states. This matrix and the test paths

BT are then used in combination with failure scenario coverage criteria (CC) to

determine mitigation test requirements. The failure mitigation test paths (FMT )

are then created based on selecting an appropriate mitigation test (m ∈ MT ) and

weaving it into the behavioral test according to the weaving rules associated with the

selected mitigation test. These are then transformed into executable tests, executed,

and validated. Note, that this process does not address corrective maintenance after

failures are found, nor adaptive, or perfective maintenance or enhancements, all of

which have the potential for selective regression testing. The following sections de-

scribe each of these steps in more detail. We generate test cases from the FSMWeb

behavioral model (Section 3.2).

3.2 FSMWeb Approach

Functional testing for a web application follows the approach in [51]:

• Build a hierarchical model HFSM:

– Partition the web application into clusters (Cs).

– Define Logical Web Pages (LWPs) and Input-Action constraints for each.
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– Build FSMs for clusters as a multi-level hierarchy.

– Build an Aggregate FSM (AFSM) to represent the top level of the appli-

cation.

• Generate tests from the HFSM.

– Generate paths through each FSM that meet the coverage criteria.

– Aggregate paths form abstract tests.

– Choose inputs along the paths to create executable tests.

The term cluster is used to refer to collections of software modules/web pages

that implement a logical, user level function. The first step partitions the web

application into clusters. At the highest level of abstraction, clusters represent

functions that can be identified by users. At a lower level, clusters represent cohesive

software modules/web pages that work together to implement a portion of a user

level function.

Many web pages contain HTML forms, each of which can be connected to a dif-

ferent back-end software module. To facilitate testing for these modules, web pages

are modeled as multiple Logical Web Pages (LWPs). A LWP is either a physical

web page or the portion of a web page that accepts data from the user through an

HTML form and then sends the data to a specific software module. FSMWeb is

a functional model meant for black-box testing. Hence the web application can be

written in any language appropriate for web applications (e.g. HTML, JavaScript,

.. etc.). LWPs are abstracted from the presentation defined by the HTML and

are described in terms of their sets of inputs and actions. All inputs in a LWP are

considered atomic: data entered into a text field is considered to be only one user

input symbol, regardless of how many characters are entered into the field. There
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may be rules about the inputs. Some inputs may be required; others may be op-

tional; users may be allowed to enter inputs in any order, or a specific order may be

required. Table 3.1 shows the input constraints for both types while Table 3.2 shows

how typical input types found in web applications are represented as constraints on

(single) edges in an FSMWeb model.

Table 3.1: Constraints on Inputs

Input Choice Order
Required (R) Sequence (S)
Required Value (R(parm)) Any (A)
Optional (O)
Single Choice (C1)
Multiple Choice (Cn)

Table 3.2: FSMWeb Constraint of Typical Input Types

Input Type FSMWeb Edge Annotation
Text Field R (input name)
Text Area Field
Optional Text Field O (input name)
Optional Text Area Field
Optional Checkbox
Radio Box C1 (option 1, ..., option n)
Drop Down Box
(with n options)
Optional Radio Box O (C1 (option 1, ..., option n)
(with n options)
Set of Checkboxes O (Cn (option 1, ..., option n))
Multi-Select Box A (option 1, ..., option n)
(with n options
requiring 0 to n selections)

This edge annotation via input-action constraints compresses an FSMWeb model

because options for input selection and sequencing no longer need to be coded ex-

plicitly (which would inflate a traditional state-based model). Figure 3.1 shows how

an FSM model that represents a selection with only three choices is reduced to two

nodes and one transition in FSMWeb.

The lowest level cluster FSMs are generated with only LWPs and navigation

between them. Input-action constraints annotate each edge [51]. Higher level FSMs

represent FSMs from a lower level cluster by a single node and may contain LWP
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Figure 3.1: Three Optional Inputs, Any Order

nodes as well. Ultimately, a top-level Aggregate Finite State Machine (AFSM) is

formed and represents a finite state model of the application at the highest level of

abstraction.

Test sequences are generated during phase 2 of the FSMWeb method. A test

sequence is a sequence of transitions through the application FSM and through each

lower level FSM. FSMWeb’s test generation method first generates paths through

each FSM based on some graph coverage criterion such as edge coverage. These

paths are then aggregated based on an aggregation criterion for each FSM’s paths,

such as all combinations or each path at least once [51].

This process results in a set of aggregate paths. We call them abstract tests. The

final step of the test generation is selecting inputs to replace the input constraints

for the transitions of the aggregate paths.

Input selection uses a technique [186] that builds two databases: a synthetic

database, which consists of values that are consumed during testing, and an appli-

cation database, which contains values previously inserted by the application being
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tested. Values are saved into the application database during execution and saved

into the synthetic database during testing. Details about the database creation and

input selection can be found elsewhere [186].

Hence, an HFSM = {FSMi}ni=0 with a top level FSM0 = AFSM . Each FSM

has nodes that represent LWPs or clusters. Edges are internal or external to an

FSM. External nodes span cluster boundaries. (They become internal at the next

higher level.) External edges can either enter or leave a cluster FSM.

The FSM Tool parses HTML files and builds a FSMWeb model. The user

can select coverage criteria such as node, edge, edge-pair, simple round trip and

prime path coverage. The FSM Tool then generates test paths through each cluster

that satisfy the selected criteria. For aggregation criteria, FSM Tool offers all-

combinations, each choice and base choice coverage.

3.2.1 Example

The leftmost column of Figure 3.2 shows three FSMs and two levels of hierarchy1.

This is an example of a behavioral model (BM). Solid circles represent LWP nodes,

the others are cluster nodes (i.e c1 and c2 in AFSM). It also shows FSM1 and FSM2

for c1 and c2 clusters. Table 3.3 shows paths through each FSM that achieve edge

coverage. These test paths are aggregated to form abstract tests through the AFSM.

As aggregation coverage criterion we use all combinations [51]. We illustrate this

on t01 = n1c2n2. Substituting t21 and t22 for c2 results in two paths: p1 = n1n5n7n2

and p2 = n1n5n6n7n2. Both paths consist of LWP nodes and do not have to be

aggregated further.

Aggregation of t02 which visits cluster node c1 requires aggregation of one test

1For simplicity, we omitted input predicates. The right half shows changes to the model which
are discussed in Section 4.
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Figure 3.2: Behavioral Models BM , BM ′

Table 3.3: Test Paths Through AFSM,FSM1,FSM2

FSM Test paths
AFSM t01 = n1c2n2, t02 = n1c1n2

FSM1 t11 = n3n4n3

FSM2 t21 = n5n7, t22 = n5n6n7

path through FSM1. This results in one path. There are 3 paths when test paths

are fully aggregated. Table 3.4 shows these paths, including derivation rules used

and test path lengths.

3.3 External Failures (F), State-Event matrix (SE)

We only need to test proper failure mitigation for those failure types that have

mitigation requirements as stated in the software requirements description. Let
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Table 3.4: Test Paths for BM

Test Test Paths BT Derivation Rules Full test path Length
t01 : n1c2n2

bt1 n1t21n2 c2 → t21 n1, n5, n7, n2 4
bt2 n1t22n2 c2 → t22 n1, n5, n6, n7, n2 5

t02 = n1c1n2

bt3 n1t11n2 c1 → t11 n1, n3, n4, n3, n2 5

F = {f1, ..., fk} be the failure types, and S = {s1, ..., sn} be the behavioral states.

Failures may not be applicable in all behavioral states. For example, a failure type

such as "expired session" is not applicable in the start state of a web application,

since no session has been started yet. We express this in a State-Event matrix SE

where element seij is given by:

seij =

 1, if failure type j applies in node si ∈ S

0 otherwise.

Using our example in section 3.2.1, for simplicity, we assume 4 failure types (see

column 2 in Table 3.7 ). SE is defined as shown in Table 3.5, columns 2-8 and rows

2-5.

Table 3.5: State-Event Matrix SE

Behavioral States
(N)/ Failure Type (f )

n1 n2 n3 n4 n5 n6 n7

1 1 0 0 1 1 0 1
2 0 0 1 0 1 1 0
3 0 1 0 1 1 1 1
4 0 1 0 0 0 0 1
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3.4 Potential Failure Scenarios

Unlike Andrews et al. [70], we define mitigation test requirements based on three

items:

• i - the test bti in the test suite BT = {bt1, ..., btl} 1 ≤ i ≤ l

• p - the position in test bti 1 ≤ p ≤ length(bti)

• e - the type of failure 1 ≤ e ≤ |F |

Feasible failure scenarios are:

{(i, p, e)|1 ≤ i ≤ l, 1 ≤ p ≤ Length(bti), 1 ≤ e ≤ |F | , SE(node(p),e) = 1} where node

(p) is the index of the behavioral state in position p of bti

A mitigation test requirement (i, p, e) thus states in which test bti and where

(position p) in test bti, a particular failure of type e is to be applied to test its

proper mitigation. We call these potential failure scenarios.

Note that we only apply a failure fe once in a given test. Depending on the

mitigation, applying a second failure later in the test may not even be possible,

for example when the mitigation requires going to a safe state and stopping (the

remainder of the behavioral test is discarded and no other failures are possible).

Table 3.6 shows the potential failure scenario matrix SP. Row 1 shows the index

of bt. Row 2 of Table 3.6 shows the behavioral tests (from Table 3.4 in section

3.2.1). Row 3 identifies positions p in each test. Row 4 lists the sequence of nodes

for each test. The remaining rows state a ’1’ when a failure is applicable in a state,

a ’0’, if it is not.
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Table 3.6: Potential Failure Scenarios SP

i 1 2 3
bt bt1 bt2 bt3

Position (p) 1 2 3 4 1 2 3 4 5 1 2 3 4 5
F/N n1 n5 n7 n2 n1 n5 n6 n7 n2 n1 n3 n4 n3 n2

f1 1 1 1 0 1 1 0 1 0 1 0 1 0 0
f2 0 1 0 0 0 1 1 0 0 0 1 0 1 0
f3 0 1 1 1 0 1 1 1 1 0 0 1 0 1
f4 0 0 1 1 0 0 0 1 1 0 0 0 0 1

3.5 Generate Test Requirements

We use the following coverage criteria from Andrews et al. [48] in this paper2.

Criteria: All tests, all unique nodes, all applicable failures. This requires that

when unique nodes need to be covered they are selected from tests that have not

been covered. The shaded ’1’ entries in Table 3.6 fulfill this criteria.

Coverage criteria are attractive since they allow for the systematic algorithmic

generation of failure scenarios. The result of this step is the set of failure scenarios

PE that constitute the failure mitigation test requirements.

3.6 Mitigation Requirements and Models

Common mitigation requirements include:

• Compensate ((Partial) Fix and Proceed): When a failure is raised, mitigation

has to treat the failure and then return to the state where the failure occurred.

• Go to Fail-Safe State (Fix and Stop): When a failure cannot be mitigated and

proceeding with a test case is not advisable due to adverse effects, the system

2This is a coverage criteria that performed well in a simulation study [69].
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is forced to enter a fail-safe state (including shutting down).

• Rollforward (End Activity): This mitigation pattern will ship part of the

remainder of the test.

• Rollbackward: Brings the system back to a previous state before the failure

occurred.

• Retry: When a failure is detected an action is performed to resolve the failure

and the activity that caused the problem is tried again.

• Internal compensate (no user action required). This can happen if a system

switches to a backup activity or hardware that solves the problem.

Mitigation requirements can be expressed in the form of mitigation models. Fig-

ure 3.3 shows an example.

Each failure fj is associated with a corresponding mitigation model MMj where

j = 1,. . . ,k. The models are of the same type as the behavioral model BM. Graph-

based [41], mitigation coverage criteriaMCj can be used to generate mitigation test

paths MTj = mtj1 , . . . ,mtjhl for failure fj.

Using the example of failure types in section 3.3, the corresponding mitigation

requirements are summarized in Table 3.7 with the corresponding mitigation models.
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Figure 3.3: Mitigation Models.

Table 3.7: Mitigation Requirements

MM Explanation Model
MM1 Go to Fail Safe State:

keep the system run-
ning even if there is no
connectivity

see Figure 3.3-a,
MT1 = {mt11} where
mt11 = si, sg and sg =
LWP : errorpage

MM2 End All: session ex-
pired, start over from
the start node

MT2 = φ and sb =
n1,where sb is the start
node

MM3 Fix & proceed: pa-
rameter incompatibil-
ity such as data mis-
match

see Figure 3.3-b,
MT3 = {mt31} where
mt31 = si, si

MM4 Alternative: incorrect
service

see Figure 3.3-c ,
MT4 = {mt41,mt42}
where mt41 =
si, s1, s2, si+1 and
mt42 = si, s1, s3, si+1
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3.7 Weaving Rules and Test Generation

Based on test requirements, PE, mitigation test paths are woven into the be-

havioral tests to create failure mitigation tests. Given a test requirement (i,p,e)

failure fe is applied at position p in the behavioral test bti and mitigation test mte

is applied subject to weaving rules wre. Table 3.8 states weaving rules formally for

each type of mitigation. Let t = {s1, . . . , sb, . . . , node(p), . . . , sf , . . . , sk}. Let sg be

a fail safe state.

Table 3.8: Mitigation Patterns and Weaving Rules

Mitigation pattern Weaving Rule Name WR#
Alternative Fix - option 1 1
fmt =s1 . . .node(p) mt node(p) . . . sk

Retry Rollback - option 3 2
fmt =s1 . . .node(p) node(p)r . . . sk

Fix and Proceed Fix - option 1 3
fmt =s1 . . .node(p) mt node(p) . . . sk
End Activity Rollforward - option 1 4

fmt =s1 . . .node(p) mt sf . . . sk
End All Rollback - option 2 5

fmt =s1 . . .node(p) mt sb
Rollback Rollback - option 1 6
fmt =s1 . . .node(p) mt sb . . . sk
Ignore No user action required 7

Internal compensate
Go to fail-safe Fix - option 2 8

fmt = s1 . . .node(p) mt sg

Using the example in section 3.2.1, Table 3.9 shows the selected triplet and the

fmts created based on them. The first column in Table 3.9 numbers each failure

mitigation test (fmt1 − fmt16). The second column lists each (i, p, e) triplet. The

third column refers to the failure type whose mitigation is tested. The fourth column
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states the node at position p. The fifth column identifies the behavioral test used

in constructing fmti (i = 1, · · · , 16). The sixth column identifies which mitigation

model is used as described in Table 3.7. The seventh column lists which mtij is used

as described in Table 3.7. The seventh column shows the failure mitigation test.

The last column states its length.

Table 3.9: Selected (i, p, e) Triplets and Resulting FMT .

# Triplets Failure Node BT used mtij used FMT Length
1 (1,1,1) f1 n1 bt1 mt11 n1, sg 2
2 (1,2,1) f1 n5 bt1 mt11 n1, n5, sg 3
3 (1,3,1) f1 n7 bt1 mt11 n1, n5, n7, sg 4
4 (3,3,1) f1 n4 bt3 mt11 n1, n3, n4, sg 4
5 (1,2,2) f2 n5 bt1 mt21 n1, n5, n1 3
6 (2,3,2) f2 n6 bt2 mt21 n1, n5, n6, n1 4
7 (3,2,2) f2 n3 bt3 mt21 n1, n3, n1 3
8 (1,2,3) f3 n5 bt1 mt31 n1, n5, n5, n7, n2 5
9 (1,3,3) f3 n7 bt1 mt31 n1, n5, n7, n7, n2 5
10 (1,4,3) f3 n2 bt1 mt31 n1, n5, n7, n2, n2 5
11 (2,3,3) f3 n6 bt2 mt31 n1, n5, n6, n6, n7, n2 6
12 (3,3,3) f3 n4 bt3 mt31 n1, n3, n4, n4, n3, n2 6
13 (1,3,4) f4 n7 bt1 mt41 n1, n5, n7, s1, s2, n2 6
14 (1,3,4) f4 n7 bt1 mt42 n1, n5, n7, s1, s3, n2 6
15 (1,4,4) f4 n2 bt1 mt41 n1, n5, n7, n2, s1, s2, n2 7
16 (1,4,4) f4 n2 bt1 mt42 n1, n5, n7, n2, s1, s3, n2 7

3.8 Generate Tests, Execute and Validate

The set of failure mitigation test paths now have to be transformed into exe-

cutable tests. For the FSMWeb model, this means resolving the input predicates

(cf. section 3.2). The sequences of inputs form the executable tests. These are

now executed. The failure is injected at the proper position in the test execution.

Execution monitoring is used to reveal mitigation defects.
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Chapter 4

Approach Improvements

4.1 Mortgage System Case Study: Fail-Safe Testing

4.1.1 Case Study Research Questions

We used a case study to explore the following research questions:

1. RQ1: Applicability. So far, this approach has only been evaluated with respect

to effectiveness and efficiency of generating test requirements via a GA using

a simulation [44]. No case study has ever been done. Can it be applied to an

actual system?

2. RQ2: Scalability. Much of the approach of generating FMT is manual. How

feasible is this for a large system?

3. RQ3: Effectiveness. While simulation results show superior effectiveness to

random search, will this approach be effective in a case study?

4. RQ4: Efficiency. How efficient is this approach or, to put it another way, how

much effort is involved in the systematic testing of proper failure mitigation?

We explore these questions in the following sections.
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4.1.2 Mortgage System

The mortgage system is an example of a critical web application as failures can

be drastic: borrowers lose their home, the company loses its value, and employees

lose their jobs. Not all system components are critical, e.g., components not related

to the loan process. The system provides different services in each stage of the loan

process. It includes the following functions:

1. Create the loan.

2. Acknowledge the loan based on the type of pricing.

3. Review the loan to make an approval decision.

4. Request legal documentation via external web services (document disclosure).

5. Keep and update accounting information for funding and selling the loan

through selected warehouse banks and investors who buy loans.

6. Close the loan by shipping and tracking the loan’s data with the investor.

7. Manage various data used in the system, e.g., adding/editing/deleting users

or investors via an administration tool.

8. Provide utilities for loan processing, e.g., import/export loan data.

Software characteristics of the Mortgage System are shown in Table 4.1: It lists

average cyclomatic complexity per class, maximum depth of inheritance, maximum

class coupling, lines of code, number of files, size on disk, number of SQL database

tables and number of logical web pages. We used the code metrics tool in Visual

Studio for all numbers except the number of Logical Web Pages (LWP). The average

complexity per class is 170,476/2934 = 58. Size is measured for type file folder as
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"size on disk". The system consists of 6,887 files in 1002 folders. The number of web

pages is the number of logical web pages determined as per the FSMWeb modeling

approach. Figure 4.1 shows a logical view of the mortgage system and its HTML

links. The next step is to build the behavioral model.

Table 4.1: Software Characteristics of the Mortgage System [70]

Avg Cyclomatic Complexity per class 58
Max. Depth of Inheritance 9
Max. Class Coupling 1490
Lines of Code 257592
Number of Files 6887
Size in Gigabytes (on Disk) 1.48
SQL database Tables 204
Number of Logical Web Pages (LWP) 127
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Figure 4.1: Mortgage System Logical View
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4.1.3 FSMWeb Behavioral Model

4.1.3.1 Partition FSMWeb Model

The highlighted items in Figure 4.1 identify the clusters for the FSMWeb model.

Table 4.2 shows the partitions. The full model of this commerical web application

consists of 127 LWPs, 22 clusters, and 224 transitions. Due to page limitations, we

present only a key portion to illustrate the approach. The Closing Documents (CD)

cluster is a lower level cluster in the LPD cluster (cf. Table 4.2). Figures 4.2-4.4 show

the Aggregate FSM for the mortgage system, and the FSMs for Loan Processing

Data and Closing Documents Service, respectively. For more detail see Boukhris

[68]. Figure 4.4 shows the navigation among the logical web pages that represent

the Closing Documents (CD) service. Table 4.3 shows the nodes and logical web

pages related to CD.

What is interesting in this FSMWeb model is that the individual cluster FSMs are

relatively small and compact, while an approach that models the whole application

as one graph would be too large to handle manually.1

4.1.3.2 Input Constraints for Logical Web Pages

Table 4.4 shows all input constraints for the Aggregate FSM (see Figure 4.2).

The FSM input constraints for LPD of Figure 4.3 are shown in Table 4.5. Table

4.6 lists all FSM input constraints for the CD cluster as shown in Figure 4.4. In

these input constraint tables, the leftmost column encodes each set of constraints

(Σ). The second column describes the action of the LWP, the third column identifies

the constraints, the fourth column specifies transitions by their edges, and the fifth

1The full model has 127 nodes and 224 transitions
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Table 4.2: Decomposition of Mortgage System into Partitions

AFSM Cluster Loan status
Entry Portal (w0) Any
Home Page Any
Search Page (SP) Simple Search /Advance Search Any

Loan Processing Data (LPD)

Loan Notes Form (LN) Any
Loan Profile Form (LP) Open

LIP

Loan status tab (LS) Any
Lock Tab (KT) Open-Lock
Review Tab (RT) Lock-Suspended

Approve with condition
Insurance Tab (IT) Lock-Suspended

Approve with condition
Closing Document Tab (CD) Approve to close

Approve with condition
Funding Form (FF) Approve to close

Funding - Sold
Accounting Form (AF) Approve to close

Funded – Sold
Audit Form (UF) Not Funded or Sold

Post Closing Form (PC) Funded – Sold
Loan Balance Form (LB) Approve to close

Approve with condition
Note (LN) Any

Loan Tool (LT)
Title policy Entry (LT1) Funded - Sold
Deed of Trust Mass (LT2) Funded - Sold

Import Investor deficiencies (LT3) Funded - Sold
Import Warehouse Bank (LT4) Funded - Sold

Admin

Users (A1)

NABranches (A2)
Investors (A3)

Warehouse Banks (A4)

Table 4.3: Nodes for CD Form-FSM

Node LWP Explanation

np3 Selection tab menu Select service from tab
DC Documents to close Request legal document, show, requested documents
CI Closing Instructions Request legal document, show, closing fees
SI Show past instructions Show the history of requested documents
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Figure 4.2: Aggregate FSMs with Partition and Top Level Navigation

Figure 4.3: Loan Processing Data (LPD) Cluster

column (Ω) lists the next node or output. This information is used to provide a

partial test oracle.
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Table 4.4: Input Constraints of Aggregate FSM for Mortgage System

Σ Actions Constraints Transition Ω
z Dummy edge,

reflect access to
menu bar

R(n0,Click) (Home/SE/LT/ n0

LPD/Admin,n0)
a Access Home tab R(tab=Home,Click),

Any(User Type,Loan
Status)

(n0,Home) Home

b Access Search
tab

R(tab=SP,Click), Any(User
Type,Loan Status)

(n0,SE) SE

c
Access Loan
Tool tab

R(tab=LT,Click), (n0,LT) LT

R(User Type in
(CU,QC,AU,RU),
Loan Status in (Open,Lock,
Approve to
Close,Funded,Sold))

d Access Admin
tab

R(tab=Admin,Click), (n0,Admin) Admin

R(User Type=Admin)
e Access to LPD R(A(Borrower

Name,Click)),
(Home,LPD) LPD

A(User Type, Loan Status)

f Access to LPD O(R(Loan Number,Click), (SE,LPD) LPD
R(Search Result match
Specific Loan,Click))

i Login the sys-
tem

R(User Name,Password) (w0,n0) n0

o Log out the sys-
tem

R(Logout,Click) (w0,n0) w0
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Table 4.5: Input Constraints for LPD Cluster

Σ Actions Constraints Transition Ω
po Dummy edge,

reflect Back to
ne

R(ne,Click) (LP/LIP/CD/ ne

FF/AF/UF/LB/
PC/LN,ne)

p1
Access LP tab R(tab=LP,Click) (ne,LIP) LIP

Editing: R(User type=LO, Loan status=Open)
Viewing: A(User type , Loan status)

p2 Access LIP tab R(tab=LIP,Click), A(User type,Loan Status) (ne,LIP) LIP

p3

Access CD tab R(tab=CD,Click) (ne,CD) CD
Editing: R(User type=SU, Loan Status in Ap-
prove to Close, Approve with Condition)
Viewing: A(User type,Loan status)

p4

Access FF tab R(tab=FF,Click) (ne,FF) FF
Editing: R(User type=AU, Loan Status in Ap-
prove to Close,Funded,Sold)
Viewing: A(User type,Loan status)

p5

Access AF tab R(tab=AF,Click) (ne,AF) AF
Editing: R(User type=AU, Loan Status in Ap-
prove to Close, Funded,Sold)
Viewing: A(User type,Loan status)

p6
Access UF tab R(tab=UF,Click) (ne,UF) UF

Editing: R(User type=QC, A(Loan Status))
Viewing: A(User type,Loan status)

p7

Access LB tab R(tab=LB,Click) (ne,LB) LB
Editing: R(User type in QC,LO, Loan Status in
Approve to Close,Approve with Condition)
Viewing: A(User type,Loan status)

p8

Access PC tab R(tab=PC,Click) (ne,PC) PC
Editing: R(User type=CU,Loan Status in (Funded, Sold))
Viewing: A(User type,Loan status)

p9 A(User
type,Loan
Status)

R(tab=LN,Click) (ne,LN) LN

Editing/Viewing: A(User type,Loan Status)
p10 Add note R(Add,Click) (LN,AN) AN
p11 Back to Notes R(O(Save,Cancel),Click) (AN,LN) LN

p12
Update Loan
profile by calling
external web
service

R((import button,Click), User type in Admin,LO,
Loan Status =Open)

(LP,LP) LP

p13 Revert Funding R ((Revert button,Click), User type=AU, Loan
Status = Funded)

(FF,FF) FF

z Back to n0 R(n0,Click) (ne,n0) n0
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Figure 4.4: FSM For Closing Documents (CD) Service

As an example, the second row in Table 4.6 is a transition from np3 (menu

selection bar) to access the Documents to Close page (DC) tab. The code in column

1 (p3_1) is used as an abbreviation for the full constraint in column 3. The output

DC (in the column marked Ω) is the target state of the transition.

Input constraints can vary widely in size, depending on how much data needs to

be input. The Closing Document cluster only has a limited number of inputs since

the loan information has already been entered and most of the inputs merely relate

to different closing actions.

4.1.3.3 Generate Test Paths through Clusters

For the Closing Documents (CD) service, we apply transition coverage to the

FSM, generating test sequences to cover each transition. Test sequences for the

CD FSM are shown in Table 4.7. The first column indicates the test path through

CD. The second column indicates the constraint sequence (using the abbreviations

defined in the Σ column in Table 4.6). The third column elaborates the input

constraints for this test path.

Test paths for the Aggregate FSM are shown in Table 4.8 and for the LPD

cluster in Table 4.9. Given that the cluster FSMs are fairly compact, the paths are
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Table 4.6: Input Constraint for Closing Documents (CD) FSM

Σ Actions Constraints Transition Ω
p3_1 Access CD R((tab= CD, Click), User

type=SU, Loan Status in Ap-
prove to close,Approve with
condition )

(np3,DC) DC

p3_2 Access CI R((tab= CI, Click), User
type=SU, Loan Status in
Approve to close,Approve with
condition )

(np3,CI) CI

p3_1_1 Calling ex-
ternal web
service

R((Sync from IDS,Click), User
type=SU, Loan Status in Ap-
prove to close,Approve with con-
dition )

(DC,DC) DC

p3_2_1 Calling ex-
ternal web
service

R((Sync from IDS,Click), User
type=SU, Loan Status in Ap-
prove to close,Approve with con-
dition)

(CI,CI) CI

p3_2_2 Access SI R((Show Past Instructions
,Click), User type=SU, Loan Sta-
tus in Approve to close,Approve
with condition)

(CI,SI) SI

p3_2_3 Back to CI R(Close,Click) (SI,CI) CI
p3_o Back to

np3

R(np3,Click) (DC/CI,np3) np3

po Back to ne R(ne,Click) (np3,ne) ne

Table 4.7: Test Sequence for Closing Documents (CD) FSM

Test Path Constraint Sequence Constraint
(np3,DC,np3) p3_1,p3_o R((tab= CD,Click), User type=SU, Loan

Status in Approve to close,Approve with
condition )

(np3,CI,SI,CI,np3) p3_2,p3_2_2,p3_2_3,p3_oO(R((tab= CI,Click),R((Show Past Instruc-
tions, Click)), User type=SU, Loan Status in
Approve to close,Approve with condition )

(np3,CI,CI,np3) p3_2,p3_2_1,p3_2_2,p3_oR((tab= CI,Click), User type=SU, Loan Sta-
tus in Approve to close,Approve with condi-
tion)

60



fairly short and limited in size. Obviously, the coverage criterion influences required

test paths and their length. For example, prime path coverage would have required

more tests. What is important to notice is that there is no problem with scalability

related to test paths required for the CD cluster. This confirms scalability results

in [50].

Table 4.8: Test Paths of Aggregate FSM for the Mortgage System

Test # Path
T0 w0,n0,Home,n0,w0

T1 w0,n0,Home,LPD,n0,w0

T2 w0,n0,SE,n0,w0

T3 w0,n0,SE,LPD,n0,w0

T4 w0,n0,LT,n0,w0

T5 w0,n0,Admin,n0,w0

Table 4.9: Test Paths of FSM for LPD Cluster

Test # Path
TLPD1 ne,LP,LP,ne

TLPD2 ne,LIP,ne

TLPD3 ne,CD,ne

TLPD4 ne,FF,FF,ne

TLPD5 ne,AF,ne

TLPD6 ne,UF,ne

TLPD7 ne,LB,ne

TLPD8 ne,PC,ne

TLPD9 ne,LN,AN,LN,ne

4.1.3.4 Aggregate Paths to Generate Abstract Tests

Table 4.10 summarizes the number of tests for the whole mortgage system as

well as for the CD Cluster. The first row lists the number of tests through individ-

ual cluster FSMs. Next, we list their length as well as the number of aggregated

abstract test paths and their length. We used the FSM Tool to generate the paths
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for the whole system. Inputs were selected according to Ran et al. [186]. Genera-

tion, execution, and validation of the behavioral test suite took approximately two

staff months of effort (assuming 160 hours per month). We need on average 12.5

min/webpage to generate, execute, and validate a test. This is a reasonable effort

for a system of this size. It also demonstrates further the scalability of FSMWeb

which was already shown with different case studies [50].

Table 4.10: Statistics of Tests Size

Mortgage System CD Cluster

Number of tests through FSMs 106 3
Size of test suite (Number of nodes) 127 12
Number of aggregated tests 266 12
Size of aggregated test suite 3998 169

As a more detailed example, we will perform the substitution for T1 and T3 paths

from Table 4.8. This means substituting test sequences in Table 4.9 for LPD in order

to resolve all test paths for CD. This substitution results in a total of 12 abstract

test paths as shown in Tables 4.11 and 4.12. (VC,VC) is a path through the Home

Cluster. The paths starting with SP and ending in SR are paths through the SE

cluster. Due to space limitations, their FSMs are not shown.

Table 4.11: Paths Generated by Substitution of T1

Clusters Test No. Test Path
Home-LPD-CD TCD1 w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0

Home-LPD-CD TCD2 w0,n0,VC,VC,ne,np3,CI,CI,np3,ne,n0,w0

Home-LPD-CD TCD3 w0,n0,VC,VC,ne,np3,CI,SI,CI,np3,ne,n0,w0

4.1.4 Failure Applicability and Mitigation Requirements

We will detail the cluster Closing Documents(CD). Table 4.13 lists mitigations

for all failure types and gives an example of each. Corresponding mitigation re-
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Table 4.12: Paths Generated by Substitution of T3

Clusters Test No. Test Path
SE-LPD-CD TCD4 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD5 w0,n0,SP,SP,AS,SR, ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD6 w0,n0,SP,AS,SP,AS, SR,ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD7 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD8 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD9 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD10 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne,n0,w0

SE-LPD-CD TCD11 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0

SE-LPD-CD TCD12 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0

quirements are summarized in Table 4.14 which also specifies the corresponding

mitigation models and associated weaving rules for each failure type. The last col-

umn in the table refers to the weaving rule number defined in Table 3.8. Table 4.15

shows the State-Event matrix for the CD cluster. It indicates that not all failure

types are applicable in all states. For example, f1 (no network connection) is ap-

plicable in all states. f2 (session is expired) is not applicable for the entry portal

web page (node w0). Similarly, f6 (user switches back and forth in the browser) can

occur in all states except w0. In the DC state, all failure types except f10 can occur

(DC does not export data). What is interesting is that the mitigation requirements

cover all types of mitigations and all weaving rules. Further, most mitigation models

are fairly compact, indicating that failure mitigation tests involve only a few extra

actions. This shows that only a relatively small proportion of failure scenarios are

feasible, reducing potential test requirements.

From Table 4.10, we know that the CD cluster has a test suite of length 169.

Given the 10 failure types, the total search space including infeasible positions is

169*10=1690. Because not all failures are applicable in all behavioral states, the

feasible search space is 638, which is about 38% of all pairs. By contrast, the

Mortgage system overall has a test suite length of 3998 with a total search space of
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39980 (including infeasible pairs). The feasible search space is 13034 which is about

32% of all pairs.

Table 4.13: Failure Types in Cluster Closing Documents (CD)

Failure Type Mitigation Example
f1: unavailability Go to Fail Safe

State
No network connection

f2: time out End ALL Session expired
f3: Parameter incompatibility Fix & proceed Input error (Integer vs.

string)
f4: response error Rollback Database server response

error
f5: Misunderstood behavior End Activity Access tab needs specific

user role.
f6: Work flow inconsistency Ignore Back and forth user browser

navigation
f7: incorrect order Fix & proceed Required loan process step
f8: Browser incompatibility Retry Java Script for viewing does

not work correctly
f9: Interface change Roll Back External service changes the

mapping
f10: incorrect service Alternative Incorrect service to export

data grid into a file

Figure 4.5: Mitigation Model MM7.

4.1.5 Test Requirements and their Effectiveness

To illustrate our approach, we use the GA on the CD cluster using the abstract

tests determined in Table 4.11 and 4.12. Table 4.16 shows the behavioral test
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Table 4.14: Mitigation Requirement for CD Cluster

MM Explanation Model WR#
MM1 Go to Fail Safe State:

keep the system running
even if there is no connec-
tivity

see Figure 3.3-a,
MT1 = {mt11} where
mt11 =(si, sg) and
sg = LWP : errorpage

8

MM2 End All: session expired,
so start over from the
start node

MT2 = φ and sb =
w0,where sb is the start
node

5

MM3 Fix & proceed: param-
eter incompatibility such
as data mismatch

see Figure 3.3-b,
MT3 = {mt31} where
mt31 =(si, si)

3

MM4 Rollback: database
server error

MT4 = φ where sb =
DC, and sb is DC state
where trying to save data

6

MM5 End Activity: misunder-
stood behavior such as
try to access CD cluster
without having SU user
role

MT5 = φ where sf =
np3,and sf is a menu se-
lection bar of CD cluster

4

MM6 Ignore: work flow in-
consistency such as using
browser navigation incor-
rectly

Internal compensate 7

MM7 Fix & proceed: incorrect
order

see Figure 4.5 ,
MT7 = {mt71} where
mt71 =(si,mti, si)

3

MM8 Retry: Java Script error MT8 = φ where node(p)r 2
MM9 Rollback: Interface

change
MT9 = φ where sb = np3 6

MM10 Alternative: incorrect
service

see Figure 3.3-c ,MT10 =
{mt1,mt2} where
mt1 =(si, n1, n2, si)
and mt2 =si, n1, n3, si

1
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Table 4.15: State-Event Matrix for CD Cluster

Behavioral
States/ Fail-
ure Type
(f )

w0 n0 VC ne np3 SP SR AS EE DC CI SI

1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1
3 1 0 0 0 0 1 0 0 0 1 0 0
4 0 0 0 0 0 1 0 1 0 1 0 0
5 0 0 0 0 0 0 0 0 0 1 1 1
6 0 1 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1 1 0
9 0 0 0 0 0 0 0 0 0 1 1 0
10 0 0 0 0 0 0 1 0 0 0 0 1

paths BT for them. It identifies the clusters the test covers, the test identifier, the

sequence of nodes and the length of each test path. The last row shows the length

of the concatenated test paths.

Table 4.16: Abstract Test Paths (CD Cluster)

Clusters Test ID Test Path Length
Home-LPD-CD TCD1 w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0 12
Home-LPD-CD TCD2 w0,n0,VC,VC,ne,np3,CI,CI,np3,ne,n0,w0 12
Home-LPD-CD TCD3 w0,n0,VC,VC,ne,np3,CI,SI,CI,np3,ne,n0,w0 13
SE-LPD-CD TCD4 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0 14
SE-LPD-CD TCD5 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 14
SE-LPD-CD TCD6 w0,n0,SP,AS,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 15
SE-LPD-CD TCD7 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 15
SE-LPD-CD TCD8 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 15
SE-LPD-CD TCD9 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 16
SE-LPD-CD TCD10 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne,n0,w0 14
SE-LPD-CD TCD11 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 14
SE-LPD-CD TCD12 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 15

Length of |I|: 169

Table 4.17 shows the failure mitigation test paths (FMT) for the first generation.

The first column identifies the test. The second column shows the test requirements

(p,e) used to construct the test. The next two columns state failure type and node

at position p. The fifth column identifies the mitigation model as described in Table
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4.14. The sixth and eighth columns state the resulting fail-safe mitigation test fmt

and which behavioral test bt was used to create it. Notice that f10 has two mitigation

test paths for MM10 as explained in Table 4.14 and hence two failure mitigation

tests for the pair (105,10).

Table 4.17: Initial FMT for First Generation

# (p,e) Failure Node MM used FMT Length BT used Length
1 (46,1) f1 DC MM1 w0,n0,SP,SR,EE,SR,ne,np3,DC,Sg 10 TCD4 14
2 (19,2) f2 CI MM2 w0,n0,VC,VC,ne,np3,CI,w0,n0,VC, 19 TCD2 12

VC,ne,np3,CI,CI,np3,ne,n0,w0

3 (40,3) f3 SP MM3 w0,n0,SP,SP,SR,EE,SR,ne,np3,DC, 15 TCD4 14
DC,np3,ne,n0,w0

4 (56,4) f4 AS MM4 w0,n0,SP,SP,AS,AS,SR,ne,np3,DC, 15 TCD5 14
DC,np3,ne, n0,w0

5 (32,5) f5 SI MM5 w0,n0,VC,VC,ne,np3,CI,SI,np3 9 TCD3 13
6 (41,6) f6 SR MM6 TCD4 14 TCD4 14
7 (61,7) f7 DC MM7 w0,n0,SP,SP,AS,SR,ne,np3,DC,mti, 16 TCD5 14

DC,DC,np3,n_e,n0,w0

8 (75,8) f8 DC MM8 w0,n0,SP,AS,SP,AS,SR,ne,np3,DC, 16 TCD6 15
DC,DC, np3,ne,n0,w0

9 (8,9) f9 DC MM9 w0,n0,VC,VC,ne,np3,DC,DC,np3 9 TCD1 12
10 (105,10) f10 SI MM10 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI, 18 TCD8 15

n1,n2,SI,CI, np3,ne,n0,w0

10 (105,10) f10 SI MM10 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI, 18 TCD8 15
n1,n3,SI,CI, np3,ne,n0,w0

11 (1,1) f1 w0 MM1 w0,Sg 2 TCD1 12
12 (2,1) f1 n0 MM2 w0,n0,Sg 3 TCD1 12
13 (3,1) f1 VC MM3 w0,n0,VC,Sg 4 TCD1 12
14 (5,1) f1 ne MM4 w0,n0,VC,VC,ne,Sg 6 TCD1 12
15 (6,1) f1 np3 MM5 w0,n0,VC,VC,ne,np3,Sg 7 TCD1 12
16 (42,1) f1 EE MM6 w0,n0,SP,SR,EE,Sg 6 TCD4 14

Next, we explore the effectiveness of the GA for this case study. We assumed

a mitigation defect rate of 5% and seeded the CD subsystem with three defects,

similar to what was used in [44] as the lower defect density. Since the number of

ones in the state-event matrix (see Table 4.15) is 50; 50 × 5% = 2.5. The number

of seeded defects is rounded up to 3.

Table 4.18 shows how many pairs and number of generations were needed to

find all mitigation defects. The GA generated 352 (p,e) pairs to find 3 mitigation

defects. There are a total of 12 generations.
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According to Table 4.18, the GA finds the first defect in the first generation

and it takes seven generations to find the next defect, but it takes only four more

generations to find the third defect.

Table 4.18: Effectiveness of GA

# of Generation # of Pairs Defect Found %

initial population 16 33%
2-7 149 33%
8-11 146 67%
12 41 100%

Total pairs 352

Table 4.19 shows the FMTs for the last generation based on 41 test requirements.

Table 4.20 shows the fmts that detected the 3 mitigation defects. Pair (7,1) finds the

defect for f1 (unavailability of network) in state DC using the behavioral test case

TCD=(w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0). The mitigation of f1 is to keep

the system running even when there is no connectivity by going to the Fail Safe

state sg. This is an error page describing the defect and asking to contact system

administration. The mitigation model is MM1 as shown in Table 4.14. The failure

mitigation test path (fmt) is given by: (w0,n0,VC,VC,ne,np3,DC,sg). Similarly, the

mitigation defect for f2 is found by using the pair (32,2) (state SI in test path TCD3)

and constructing the fmt using the weaving rule "End All" and starting over. Lastly,

the mitigation defect for f3 is found using pair (60,3) (state DC in test path TCD5).

The failure mitigation test is constructed by repeating the edge that showed the

failure and then proceeding. In our case, it is the edge (DC,np3).

In Boukhris [68], we apply the GA to the whole system. We seed the same

percentage of defects. This results in 25 defects. Table 4.21 shows the total number

of generations needed and the cumulative number of pairs generated to expose all

mitigation defects. The GA needs 42 generations to find all defects. For the whole
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Table 4.19: FMT for Last Generation

# (p,e) Failure Node MM used FMT Length BT used Length
1 (33,3) f3 SI MM3 TCD3 13 TCD3 13
2 (60,3) f3 DC MM3 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,

DC,np3,ne,n0,w0

15 TCD5 14

3 (75,4) f4 DC MM4 w0,n0,SP,AS,SP,AS,SR,ne,np3,
DC,DC,DC,np3,ne,n0,w0

16 TCD6 15

4 (165,4) f4 CI MM4 TCD12 15 TCD12 15
5 (89,5) f5 CI MM5 w0,n0,SP,SR,EE,SR,ne,np3,CI,np3 10 TCD7 15
6 (133,5) f5 ne MM5 TCD10 14 TCD10 14
7 (56,6) f6 AS MM6 TCD5 14 TCD5 14
8 (135,6) f6 CI MM6 TCD10 14 TCD10 14
9 (7,6) f6 DC MM6 TCD1 12 TCD1 12
10 (105,6) f6 SI MM6 TCD8 15 TCD8 15
11 (46,7) f7 DC MM7 w0,n0,SP,SR,EE,SR,ne,np3,DC,

mti,DC,np3,ne,n0,w0

15 TCD4 14

12 (90,7) f7 SI MM7 TCD7 15 TCD7 15
13 (120,8) f8 CI MM8 w0,n0,SP,AS,SP,AS,SR,ne,np3,

CI,CI,SI,CI,np3,ne,n0,w0

17 TCD9 16

14 (19,9) f9 CI MM9 w0,n0,VC,VC,ne,np3,CI,np3 8 TCD2 12
15 (129,9) f9 SP MM9 TCD10 14 TCD10 14
16 (148,9) f9 np3 MM9 TCD11 14 TCD11 14
17 (81,10) f10 w0 MM10 TCD7 15 TCD7 15
18 (32,10) f10 SI MM10 w0,n0,VC,VC,ne,np3,CI,

SI,n1, n2,CI,np3,ne,n0,w0

15 TCD3 13

19 (32,10) f10 SI MM10 w0,n0,VC,VC,ne,np3,CI,SI,
n1, n3,CI,np3,ne,n0,w0

15 TCD3 13

20 (159,1) f1 SP MM1 w0,n0,SP,AS,SP,sg 6 TCD12 15
21 (47,1) f1 DC MM1 w0,n0,SP,SR,EE,SR,ne,np3, DC,DC,sg 11 TCD4 14
22 (56,1) f1 AS MM1 w0,n0,SP,SP,AS,sg 6 TCD5 14
23 (107,1) f1 np3 MM1 w0,n0,SP,SP,AS,SR,ne,np3,

CI,SI,CI,np3,sg
13 TCD8 15

24 (15,1) f1 VC MM1 w0,n0,VC,sg 4 TCD2 12
25 (7,1) f1 DC MM1 w0,n0,VC,VC,ne,np3,DC,sg 8 TCD1 12
26 (5,1) f1 ne MM1 w0,n0,VC,VC,ne,sg 6 TCD1 12
27 (38,1) f1 w0 MM1 w0,sg 2 TCD4 14
28 (85,1) f1 EE MM1 w0,n0,SP,SR,EE,sg 6 TCD7 15
29 (130,1) f1 SR MM1 w0,n0,SP,SR,sg 5 TCD10 14
30 (119,1) f1 np3 MM1 w0,n0,SP,AS,SP,AS,SR, ne,np3,sg 10 TCD9 16
31 (153,1) f1 n0 MM1 w0,n0,SP,SP,AS,SR,ne,

np3,CI,CI,np3,ne,n0,sg
14 TCD11 14

32 (136,2) f1 CI MM2 w0,n0,SP,SR,EE,SR,ne, np3,CI,CI,sg 11 TCD10 14
33 (158,2) f1 AS MM2 w0,n0,SP,AS,sg 5 TCD12 16
34 (6,2) f1 np3 MM2 w0,n0,VC,VC,ne,np3,sg 7 TCD1 12
35 (7,2) f2 DC MM2 w0,n0,VC,VC,ne,np3,DC,w0,n0,

VC,VC,ne,np3,DC,DC,np3,ne,n0,w0

19 TCD1 12

36 (32,2) f2 SI MM2 w0,n0,VC,VC,ne,np3,CI,SI,w0,n0,VC,
VC,ne,np3,CI,SI,CI,np3,ne,n0,w0

21 TCD3 13

37 (157,2) f2 SP MM2 w0,n0,SP,w0,n0,SP,AS,SP,AS,SR,ne,np3,
CI,CI,np3,ne,n0,w0

18 TCD12 15

38 (101,2) f2 SR MM2 w0,n0,SP,SP,AS,SR,w0,n0,SP,SP,AS,
SR,ne, np3,CI,SI,CI,np3,ne,n0,w0

21 TCD8 15

39 (131,2) f2 EE MM2 w0,n0,SP,SR,EE,w0,n0,SP,SR,EE,SR,
ne,np3,CI,CI,np3,ne,n0,w0

19 TCD10 14

40 (152,2) f2 ne MM2 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,
ne,w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,
ne,n0,w0

26 TCD11 14

41 (94,2) f2 n0 MM2 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,
ne,n0,w0,n0,SP,SR,EE,SR,ne,np3,CI,
SI,CI,np3,ne, n0,w0

29 TCD7 15
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system, the GA generated 8276 test requirements. The corresponding FMT has a

length of 99312 nodes. As it did for the Closing Documents (DC) subsystem, the

GA finds all mitigation defects.

Table 4.20: fmti that Found Defects

FMT Failure State BT used GA Pairs MM used Explanation
fmt1 f1 DC TCD1 (7,1) MM1 w0,n0,VC,VC,ne,np3,DC, Sg

fmt2 f2 SI TCD3 (32,2) MM2 w0,n0,VC,VC,ne,np3,CI,SI,w0,n0,VC,
VC, ne, np3,CI,SI,CI,np3,ne,n0,w0

fmt3 f3 DC TCD5 (60,3) MM3 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,DC,
np3, ne,n0,w0

Table 4.21: Test Requirements and Mitigation Defects Found for Mortgage Lending
System

# of Generation # of Pairs Defect Found %

initial population 170 0%
2-4 530 0%
5-11 1340 4%
12-16 1141 8%
17-18 583 16%
19 324 27%

20-22 1056 33%
23-24 751 42%
25 391 46%

26-27 817 53%
28 418 58%
29 430 67%

30-31 895 72%
32 457 75%

33-35 1385 77%
36 469 80%
37 472 85%

38-40 1428 93%
41 484 95%
42 485 100%

In summary, the test requirements generated by GA were successful in finding

all mitigation defects for both the CD subsystem and the whole mortgage system.

The size of the FMT is an order of magnitude larger than the behavioral test BT.

Given that the weaving approach reuses a lot of the original BT, this helps to make
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the generation of FMT more efficient. Due to the compact nature of the mitigation

models, added mitigations are short, so most of the original BT can be reused. This

can be seen, for example by comparing length of FMT (e.g. column 7 in Table 4.19)

with length of BT (e.g. column 9 in Table 4.19)

4.1.6 Comparison of Effort: GA vs. Exhaustive Search

At several points, we claimed that exhaustive search, i.e., converting all feasible

pairs to executable tests, executing, and validating them is prohibitive. To investi-

gate this claim, we measured the time it took to translate a set of test requirements

into executable tests, executing and validating the results. We then computed aver-

age effort per node in the test path. We computed the length of the failure mitigation

test suite for the exhaustive search for both the CD subsystem and the whole system

and multiplied with the average effort per node to arrive at an effort estimate for

exhaustive search.

Table 4.22 shows the results. For the CD subsystem, the test requirements

using GA requires 352 pairs, the total length of all failure mitigation tests is 3565.

Estimated average test effort is about six work days (note a work day=8 hours)

while using exhaustive search requires more than 11 work days of testing. However,

for the whole system, the differences are much more drastic: more than 155 work

days for GA vs. about 525 work days for exhaustive search. This is more than three

times as long. Given that both find all mitigation defects, the choice is obvious.

Table 4.23 shows the number of nodes, transitions, the total number of behavioral

test paths BT , and their length. Note that the effort estimates reported in Table

4.22 refer to mitigation testing only and do not include testing primary functionality.
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Table 4.22: Effort Comparison Between GA vs. Exhaustive Search

Approach Test Require-
ments (# of
pairs)

length(FMT) Time Es-
timation
(min)

Total
Hours

Work
Days

The Subsystem (CD)
GA 352 3565 2674 45 5.6

Exhaustive search 638 7195 5396 90 11.25
The Whole system

GA 8276 99312 74484 1241 155.23
Exhaustive search 27986 335920 251940 4199 524.88

Table 4.23: The Size of BT for CD vs. Mortgage System

# of nodes # of transitions size of BT Length (I)
CD subsystem 12 9 12 169

Mortgage System 127 224 266 3998

Given the large length of the behavioral test suite for the mortgage system, the

search space is quite large (almost 40,000 entries). Note however that the SE Matrix

only is based on the number of web pages (127) and the number of the failure types

(10). We constructed it separately for the LWPs in each FSM, taking advantage of

the clustering to keep each matrix as compact as possible.

4.1.7 Findings

Even for the relatively large mortgage system, the behavioral model is still com-

pact, primarily due to the FSMWeb’s clustering and input compression approach.

Hence scalability even for a large web application is evident. We also took advan-

tage of the clusters, using them to construct the SE matrix as a series of smaller

matrices, one for each FSM’s LWPs. The number of behavioral tests is reasonable

as is the time it took to test (about two person months).

The external failure mitigation requirements for the mortgage system include all

the failure types defined in Section 3.3, demonstrating their applicability. Similarly,

all eight weaving rules are needed. What is interesting is that the mitigation models
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are very small.

Both the CD subsystem and the mortgage system as a whole have an applicability

level of only a little over 30%, which is helpful in that it reduces possible mitigation

testing requirements and thus mitigation test effort.

The weaving approach in conjunction with the fact that the mitigation actions

are usually small, allow a large proportion of BT to be reused (see for example Table

4.19). This speaks to the efficiency of our approach.

Failure mitigation testing is an order of magnitude more expensive (1241 hours)

than testing regular behavior (320 hours). This should come as no surprise, as

industry practice has long confirmed that testing invalid and problem situations

consumes more of a test team’s time than testing regular operation [162]. Fortu-

nately, the GA approach presented here is less expensive than exhaustively testing

all possible failure scenarios while being effective in finding all mitigation defects.

We also investigated with the software development team how long they tested the

mortgage system using their prior approach. The (rough) estimate was about six

staff months. This is lower than what is needed for our approach but lacks the

systematic approach to testing external failures and carries no assurance that all

mitigations for external failures were properly tested. In summary, the case study

showed that systematic testing for proper mitigation of external failures is both

practically feasible and effective even for a relatively large web application.

4.1.8 Threats to Validity

The threats are related to the choice of the parameters used in the GA. We

address each in turn: the weights wr and ws are based on tuning experiments per-

formed in Andrews et al. [44]. We follow the recommendations based on their
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simulation results although they use a somewhat different fitness function.

Their tuning relies on the use of published mitigation defect rates (around 20%)

(i.e Sawaelpong et al. [197]). They also experiment with a much lower defect rate

(5%). This supports our use of a common defect rate of 20%, contrasting it with

a low one (5%) as well. While it may be possible to tune these weights for higher

efficiency, this would expose to potential overfitting. We are hence willing to accept

that the GA is not always optimally tuned.

As for the choice of mutation rate and crossover, we use values that have been

suggested in the literature. We used a crossover rate of CR=0.50 and a mutation

rate of MR=0.30. Typical rates based on De Jong’s simulations are between 0.5-

0.6 [73, 89]. As for the mutation rate, theoretical work reports a rule of thumb

of 1/N (N is the number of genes, in our case N = 2) [56]. By contrast, typical

mutation rates in the literature are around 0.15 [73]. The mutation rate we chose

is a compromise between the two.

Like Patton et al. [181], we aim to provide the GA with a semi-ideal starting

position. It has been known that good initial populations can reduce the number

of individuals and generations during the search and increase the chance of finding

a good solution [93]. Thus, it is preferable to seed the initial population with a

possible or partial solution to the problem. For us, this means using defect potential

to determine the initial population. We evaluate how good the initial population

is by comparing an initial population selected via defect potential against multiple

runs of randomly selected initial populations (10 runs). The results clearly show that

using defect potential to generate test requirements outperforms random selection

of the initial population.

Multiple runs are possible when the use of a GA is explored with a simulator as

in [181][60]. However, when actual test cases need to be generated, executed and
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validated to determine a test requirement’s fitness, this GA evaluation cost becomes

prohibitive for multiple runs. We accept a local rather than global optimum as long

as the mitigation defects are found. For quantitative results on evaluation, cost see

Section 4.1.6 in our case study. Note also that the global minimum in terms of

the number of test requirements is equal to the number of mitigation defects that

exist. Additionally, Cantú-Paz and Goldberg [79] explore whether multiple runs can

reach solutions of higher quality or reach acceptable solutions faster. Their results

suggest that with a fixed evaluation budget a single run reaches a better solution

than multiple independent runs.

As with any case study, generalizability is limited. We cannot guarantee that a

future case study performs the same way. Similarly, seeding of faults for effective-

ness evaluation in Section 4.1.5 may not exactly represent actual failure mitigation

defects. However, this is an accepted practice in many studies [119]. We did show

through this case study that the approach can be applied to a relatively large web

application from the financial sector.

4.2 Regression Testing Approach

In Boukhris [68], an approach for regression testing was provided that used GA

even when changes are small. As we discovered GA is not always advisable [69]. We,

therefore, change the approach to use coverage criteria. We also noticed that the RT

requirements were inefficient as they required to retest reusable test requirements.

We modified the approach to remove reusable test requirements. We also did a

significant case study and compared efficiency improvements to not having them.

Additionally, we modified the testing process.
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4.2.1 Process

Based on the changes to the artifact used in the test generation approach in

Subsection 3.1, we classify tests as retestable, reusable, or obsolete. Only the steps

from that point on the need to be repeated. Figure 4.6 shows the regression testing

process and references the sections that describe the changes.

Figure 4.6: Regression Testing Process

The process steps to build a regression test suite outlined in Figure 4.6 is based

on the types of changes to various artifacts:

1. Changes in the behavioral model:

We classify the behavioral tests as obsolete, retestable, or reusable using the

classification rules in Andrews et al. [49]. We determine if any parts of the new

behavioral model have not been tested and generate new tests for them. We

construct the new behavioral test suite. If there are no changes to F , we build

a new state-event matrix and potential failure scenarios, then apply coverage
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criteria to select failure scenarios. In case of added failure types, we add the

new failure types to the new state-event matrix and the new potential failure

scenarios. If mitigation models are not changed, we use the mitigation tests

from the existing mitigation models for each failure type. Then we generate

the new failure mitigation tests. In case the mitigation models are changed, we

classify the mitigation tests as obsolete, retestable, or reusable. We generate

new mitigation tests if necessary. Next, we weave the new mitigation test suite

to generate new failure mitigation tests. In case of changes to the weaving

rules, we apply the new weaving rules to the mitigation tests if there are no

changes to mitigation models; otherwise, we use the new weaving rules with

the new mitigation test suite to generate new failure mitigation tests.

2. Changes in the state-event matrix:

If there are no changes to the behavioral model or the failure types, the changes

to the state-event matrix require building a new set of potential failure sce-

narios. We select failure scenarios based on coverage criteria. If mitigation

models are not changed, we then weave the mitigation tests to create the new

failure mitigation tests.

If there are changes to the behavioral model as well, we follow the same steps

that are described in step one and generate the new behavioral test suite. We

add any new nodes as new columns in the new state-event matrix. We build

the new potential failure scenarios.

If there are added failure types, we simply extend the state-event matrix to

include the new failure types and build the new potential failure scenarios

based on all changes. Next, we apply coverage criteria to select failure scenar-

ios and generate new failure mitigation tests. If there are any changes to the
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mitigation models or weaving rules, we also apply step 4 and 5 below.

3. Changes in failure types:

Adding new failure types requires building a new state-event matrix by adding

a new row to the matrix for each new failure type. Then, we construct po-

tential failure scenarios and select failure scenarios for the new failure types

only. We build new mitigation models for the new failure types, and create

new mitigation tests.

If there are no changes to the behavioral model and weaving rules, we gener-

ate the new failure mitigation tests by weaving the new mitigation tests into

behavioral tests. Otherwise, we use the new behavioral test suite from step 1

and generate new failure mitigation tests. In case of changes to the mitigation

models or weaving rules, we follow steps 4 and 5 below. If failure types are

deleted, we simply delete all the associated mitigation models, weaving rules

and failure mitigation tests for the deleted failure types.

4. Changes in mitigation models:

We only need to consider changes to individual mitigation models since all

other changes to various artifacts are already covered. We classify the mit-

igation tests for the changed mitigation model into obsolete, retestable, or

reusable. We generate new mitigation tests for edges that are not covered in

the modified mitigation model. This process applies to each mitigation model

that has changed. Next, we use the new mitigation tests to build the new

failure mitigation tests. If there are added failure types, we include the new

mitigation tests derived from the new mitigation models that have been built

for the new failure types with new failure scenarios to build failure mitigation

on tests. In case of changes to weaving rules, we apply the new weaving rules
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to the new mitigation test suite to generate new failure mitigation tests.

5. Changes in weaving rules:

We reweave all mitigation tests using the new weaving rules to generate the

new failure mitigation tests. All changes to other artifacts have been dealt

with in prior steps.

6. Execute the failure mitigation test suite.

In determining how to execute the test suite, considerations like avoiding cross-

contamination of tests need to be taken into account. This may require bring-

ing the System Under Test (SUT) into a known state before executing a test.

While test execution environments like Selenium [23] can be used to execute

tests, injecting external failures (testing their mitigation is the point of our

approach) would still have to be covered separately. Another consideration in

making the test suite executable is how test methods are written. The use

of assertions has been shown to correlate with test effectiveness [238]. Our

approach allows making tests executable in whatever way the tester deems

appropriate. Thus assertions may be used in this step, but do not have to be

used.

7. Validate Results.

Tests can pass or fail. When they fail, it can be due to a defect in the system

under test (SUT), a defect in the model, or a defect in the test(s) derived from

the model. Validation determines which is the case.
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4.2.2 Detailed Approach

Now, we describe the regression test generation in detail and illustrate each step

with a running example. We define changes to the models in the example of Section

3.1 as we formalize the algorithms in each step to illustrate how they work. Figure 3.2

shows three FSMs and two levels of hierarchy. This is our behavioral model. It also

shows FSM1 and FSM2 before and after changes resulting in FSM1′ and FSM2′.

Table 3.3 and Table 3.4 in section 3.2.1 show paths through each FSM that achieve

edge coverage, including derivation rules and the test path lengths. In section 3.3,

the failure applicability matrix SE is defined as shown in Table 3.5. In section 3.4,

Table 3.6 shows the potential failure scenarios. In section 3.7, Table 3.7 shows the

corresponding mitigation models and associated weaving rules for each failure type

and Table 3.9 shows the selected failure scenarios and resulting failure mitigation

tests.

4.2.2.1 Changes to the Behavioral Model (BM)

The right side of Figure 3.2 shows both the original and the changed behavioral

model. In FSM1, edge (n4, n3) was deleted and cluster node coverage criteria and

edges (n3, c2),(c2, n4) were added. In FSM2, edge (n6, n7) was deleted. LWP node

n8 and edges (n6, n8),(n8, n7) were added.

4.2.2.1.1 Classify BT into obsolete, reusable and retestable behavioral tests

The test classification rules are as follows:

• Obsolete Tests Paths (BTo)

Andrews et al. [49] define a set of rules for defining obsolete test paths based

on the type of change: node deletion affects all paths that include the deleted
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node, rendering it obsolete. Node modifications change the type of node from

LWP to a cluster node or vice versa. This type of modification affects the

paths as the node needs to be replaced by another node or a sequence of

nodes. Thus, both node deletions and node modifications render test paths

obsolete that tour these nodes: let the set of behavioral test paths be BT =

{bt1, . . . , btl}. Let No ={n| n ∈ N; n is deleted or modified } where N is

the set of behavioral nodes, then the set of obsolete test paths due to node

changes is given by

ON ={bti| ∃ n ∈ No : bti visits n}, where bti is a behavioral test path. For our

example, No = φ, and ON = φ.

Edge deletion makes any test paths that tour the edge obsolete. Any edge

modification that requires changes in the inputs, guards, actions, outputs,

and messages associated with it, will also make test paths obsolete that visit

the modified edge.

Let Eo ={e| e ∈ E; e is deleted or modified} where E is the set of behavioral

edges, then the set of obsolete test paths due to edge changes is given by

OE ={bti | ta tours e ∈ Eo }. For our example, Eo = {(n4, n3), (n6, n7)}, and

OE = {bt2, bt3}. Thus, the set of obsolete behavioral test paths is given by:

BTO = ON ∪ OE. Hence BTo = φ ∪OE = {bt2, bt3}.

• Retestable Test Paths (BTr)

In Andrews et al. [49], retestable tests are defined as those that are still valid

and test portions of the application and visit part of the FSMWeb model that

are affected by the changes. This can be determined in different ways. For

example, Andrews et al. [49] consider any node n that is one edge away from

a modified or deleted node as impacted by the change, except for the source
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and sink nodes of the AFSM. Using this definition:

Nrnode
={n| ∃ e : (n, n̂) or (n̂, n); n̂ ∈ No;n 6= nsource; n 6= nsink }.

Since in our example No = φ, Nrnode
= φ as well. When edges are changed, the

set of retestable edges depends on the type of change. When edges are deleted

or modified, we assume that the starting and ending nodes of the changed

edges are potentially impacted and hence nonobsolete tests that visit these

nodes are retestable (except for the source and sink nodes of the model):

Nredm = {n|ê ∈ Eo; ê = (ni, n) or ê = (n, ni);n 6= nsource;n 6= nsink}. In the

example Nredm = {n3, n4, n6, n7}.

Similarly, when we add new edges, existing nodes at which these new edges

start or end are considered potentially affected by the modification and hence

non-obsolete tests that visit these nodes are retestable (Except for the source

and sink nodes of the model):

Let E be the set of edges in BM . Let E ′ is the set of added edges in BM ′

Then E ′ \ E is the set of added edges.

Nrea = {n|n ∈ Nj : ê = (n, ni) or ê = (ni, n); ê ∈ E ′ \ E, ni ∈ N ′;n 6=

nsource;n 6= nsink}

In the example, E ′ \ E = {(n3, c2), (c2, n4), (n6, n8), (n8, n7)} =⇒ Nrea =

{n3, n4, n6, n7}. This happens to be the same as Nredm .

The set of retestable nodes is then given by Nr = Nrnode
∪ Nredm ∪ Nrea and

the set of retestable abstract test paths is

BTr = {bti | bti visits n ∈ Nr, bti ∈ BT} \ BTO

In the example, Nr = {n3, n4, n6, n7} =⇒ BTr = {bt1, bt2, bt3} \ {bt2, bt3} =

{bt1}

In our example, the only non-obsolete test path bt1 is also retestable.
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• Reusable Test Paths (BTu)

Those tests are neither obsolete nor retestable. BTu = BT \ (BTo∪BTr). The

example has no reusable test paths BTu = φ.

• New Test Paths (BT ′)

New test cases need to be designed whenever current test cases do not meet

coverage requirements for BM ′. This happens when edges or nodes are added.

Obsolete test cases can also cause gaps in coverage that need to be addressed

with new tests. In the example, the following edges in the modified model

BM ′: {(n3, c2), (c2, n4), (n6, n8), (n8, n7)} are not covered. Thus, new test

paths are generated: bt′1 = {n1, n3, n4, n2}, bt′2 = {n1, n3, n5, n7, n4, n2}, bt′3 =

{n1, n3, n5, n6, n8, n7, n4, n2}, and bt′4 = {n1, n5, n6, n8, n7, n2}. As a result, the

new test paths are BT ′ = {bt′1, bt′2, bt′3, bt′4}.

The new test suite will be as follows: BT ′′ = BTr ∪BT ′. In the example, Table

4.24 shows the classification of behavioral test paths BT and the new test path BT ′

for the modified model. So, the new test suite will be as follows:

BT ′′ = BTr ∪BT ′ = {bt1, bt′1, bt′2, bt′3, bt′4}.

Table 4.24: Classification of BT After the Changes

BT Path Classification

bt1 n1, n5, n7, n2 Retestable
bt2 n1, n5, n6, n7, n2 Obsolete
bt3 n1, n3, n4, n3, n2 Obsolete

BT ′ Path Classification

bt′1 n1, n3, n4, n2 New
bt′2 n1, n3, n5, n7, n4, n2 New
bt′3 n1, n3, n5, n6, n8, n7, n4, n2 New
bt′4 n1, n5, n6, n8, n7, n2 New

83



4.2.2.1.2 Build New SE’ matrix

Any change in the BM such as adding, modifying, or deleting a node requires to

rebuild the state event(SE) matrix. When adding a new node, we add a new column

to SE, and similarly, when deleting a state, we delete a column from SE.

The new state-event matrix SE ′ is shown in Table 4.25. It is the same as the original

SE except for the added column for the new states n8, and c2.

Table 4.25: New State-Event Matrix SE ′

Behavioral States/
Failure Type (f )

n1 n2 n3 n4 n5 n6 n7 n8

1 1 0 0 1 1 0 1 0
2 0 0 1 0 1 1 0 1
3 0 1 0 1 1 1 1 0
4 0 1 0 0 0 0 1 0

4.2.2.1.3 Build New Potential Failure Scenarios SP’ and new Failure Mitigation

Tests FMT”

The new potential failure scenarios consider the new tests BT ′ and the retestable

BTr (BT ′′=BT ′ ∪BTr). This requires constructing a new potential failure scenario

matrix SP ′ . The new potential failure scenario matrix SP ′ uses BT” instead of BT.

We use SP’ to select new triplets PE ′. We assume that any changes in mitigation

models have been dealt with and the new mitigation test suite MT ′ has been built

or that MT ′ = MT if no changes occurred. We generate failure mitigation tests

FMT ′ with PE ′. Row 1 in Table 4.24 identifies the 4 test paths in (BT”). Row 2

shows the new (BT’) and retestable test path and row 3 shows their node sequences.

The shaded entries in Table 4.26 mark triplets that fulfill our coverage criterion

using [48]. However, some of the failure scenario triplets do not have to be retested

(i.e. the requirements are reusable), because generating failure mitigation tests from
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Table 4.26: New Potential Failure Scenarios SP ′

1 2 3 4 5
BT ′′ bt′1 bt′2 bt′3 bt4 bt1
p 1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4

n1 n3 n4 n2 n1 n3 n5 n7 n4 n2 n1 n3 n5 n6 n8 n7 n4 n2 n1 n5 n6 n8 n7 n2 n1 n5 n7 n2

f1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0
f2 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0
f3 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1
f4 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1

them would result in failure mitigation tests that were already in the original failure

mitigation test suite FMT (i.e. have been run).

For example, generating a new fmt from (1,1,1) would result in fmt1 in Table

3.9. The reusable triplets are PEreusable = { (1,1,1), (1,4,4), (2,2,2), (5, 2,1), (5,2,2),

(5,2,3), (5,3,1)}.

The remaining shaded entries in Table 4.26 are selected to meet coverage criteria.

Hence PE’ = { (1,4,3), (3,4,2), (3,4,3), (3,5,2), (3,7,1), (3,7,3), (4,5,3), (4,5,4)}. This

is only 53% of the failure mitigation testing requirements in [48]. Next, we generate

new failure mitigation tests FMT ′ using the existing weaving rules that are defined

in Table 3.7.

Table 4.27 shows the selected (i, p, e) triplets and resulting FMT ′ for the mod-

ified model BM ′. The first column in Table 4.27 numbers each failure mitigation

test (fmt1 − fmt9). The second column lists each (i, p, e) pair in PE ′. The third

column refers to the failure type whose mitigation is tested. The fourth column

states the node at position p. The fifth column identifies the behavioral test used

in constructing fmt′i (i = 1, · · · , 10). The sixth column lists which mtij is used as

described in Table 3.7. The seventh column shows the failure mitigation tests. The

last column shows their length.
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Table 4.27: FMT ′′ for Modified Model BM ′.

# triplets PE ′ Failure Node BT” used mtij used FMT” Length
1 (1,4,3) f3 n2 bt′1 mt31 n1, n3, n4, n2, n2 5
2 (3,4,2) f2 n6 bt′3 mt21 n1, n3, n5, n6, n1 5
5 (3,4,3) f3 n6 bt′3 mt31 n1, n3, n5, n6, n6, n8, n7, n4, n2 9
6 (3,5,2) f2 n8 bt′3 mt21 n1, n3, n5, n6, n8, n1 6
6 (3,7,1) f1 n4 bt′3 mt11 n1, n3, n5, n6, n8, n7, n4, sg 8
6 (3,7,3) f3 n4 bt′3 mt31 n1, n3, n5, n6, n8, n7, n4, n4, n2 9
7 (4,5,3) f3 n7 bt′4 mt31 n1, n5, n6, n8, n7, n7.n2 7
8 (4,5,4) f4 n7 bt′4 mt41 n1, n5, n6, n8, n7, s1, s2, n2 8
9 (4,5,4) f4 n7 bt′4 mt42 n1, n5, n6, n8, n7, s1, s3, n2 8

4.2.2.2 Changes to State-Event Matrix (SE)

Two types of changes can occur in SE ′: (1) some failures become applicable

in some states (changes from 0 to 1) or (2) not applicable (changes from 1 to 0).

In many cases, the system requirements are changed for some states that impact

some failure types to be feasible or infeasible for those states. For example, when the

typed input (which can be incorrect) is replaced with button selection, an incorrectly

typed input no longer occurs. Similarly, if power backup is provided, loss of power

no longer is applicable. On the other hand, when new requirements are added that

require mitigations where none were required before, this changes entries in the SE

matrix from 0 to 1.

• Case A: Feasible to infeasible (changes from 1 to 0)

Let Finf be the failure types that have become infeasible. Then Einf = {e|fe ∈

Finf}. Any failure mitigation tests that were derived from a triplet (i, p, e)

where the node in position p is a node for which the failure e is no longer

applicable is now obsolete. These obsolete tests are given by FMTo. Note

that the failure mitigation test suite FMT \FMTo is reusable, not retestable,

since we have run these tests already and they are not affected by the change.

Back to our example in Subsection 3.1, assume failure type f3 is no longer
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applicable in state n6. From Table 3.6 and Table 3.9, we have three tests

associated with f3 but only one test, fmt11, that uses n6. Hence, only the test

scenario (2,3,3) is obsolete. It was used to create fmt11 which is now obsolete.

Thus, FMTo = {fmt11}.

Note that we do not have to rerun the remaining tests in Table 3.9, since they

have already been executed.

• Case B: Infeasible to feasible (changes from 0 to 1)

This requires building a new potential failure scenario for failures that have

became applicable. Let Fse be the subset of failure types that become now

feasible such that Fse ⊂ F . Let Sse be the subset of states that become

applicable for any failure fj where fj ∈ Fse and Sse ⊂ S.

Using our example, let failure type f1 become applicable in state n6 and f4

become applicable in state n5. Thus, Fse = {f1, f4}, and Sse = {n5, n6}. The

new SE ′ is defined in Table 4.28. It includes both making f3 inapplicable in

state n6 as well as making failures f1 and f4 applicable in states n5 and n6

respectively.

Table 4.28: New State-Event Matrix SE’

Behavioral States/
Failure Type (f )

n1 n2 n3 n4 n5 n6 n7

1 1 0 0 1 1 1 1
2 1 0 1 0 1 1 0
3 0 1 0 1 1 0 1
4 0 1 0 0 1 0 1

The new potential failure scenarios SP ′ and new selected triplets are based on

the following:

– Remove tests from BT that do not visit states in Sse (states for which

certain failure types have become applicable). The remaining behavioral

87



tests BTse will be: BTse = {bti|∃s ∈ Sse : bti visits s}.

Next, we build the potential failure scenario matrix based on BTse and

Fse. In the example, the affected node n5 exists only in bt1 and bt2, and

n6 exists only in bt2. Thus, BTse = {bt1, bt2}.

– Remove all failures that are not in Fse. In our example, we exclude f2

and f3.

– Rebuild the new potential failure scenarios as SP ′. Table 4.29 shows the

new potential failure scenarios SP ′ marking each feasible entry as a "1".

Since we are not concerned with nodes other than n5 and n6, entries for

other nodes are marked with ’x’.

Table 4.29: The New Potential Failure Scenarios SP ′

i 1 2
bt1 bt2

BTse 1 2 3 4 1 2 3 4 5
F/N n1 n5 n7 n2 n1 n5 n6 n7 n2

f1 x x x x x x 1 x x
f4 x 1 x x x 1 x x x

– Select a new set of triplets PE ′. Table 4.29 shows these as shaded entries.

PE ′ = {(1, 2, 4), (2, 3, 1)}.

There are no reusable triplets. Note, that the definition of PE ′ requires

to select as test requirements all occurrences of nodes s ∈ Sse. If such

nodes occur many times, it may be useful to restrict the number of times

that position p is selected where node(p) ∈ Sse. We can use coverage

criteria.

– Generate new failure mitigation tests FMT ′′ as in Subsection 3.7. Ta-

ble 4.30 shows the selected triplets and new failure mitigation regression
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tests.

Subsection 4.2.2.4 describes the case when there are multiple changes to

the artifacts (BM,SE, F ).

Table 4.30: Selected Triplets and Constructing FMT ′′ for Fse.

# Selected triplets (PE ′) Failure Node BT used mtij used FMT ′′ Length
1 (1,2,4) f4 n5 bt1 mt41 n1, n5, s1, s2, n5, n7, n2 7
2 (1,2,4) f4 n5 bt1 mt42 n1, n5, s1, s3, n5, n7, n2 7
3 (2,3,1) f1 n6 bt2 mt11 n1, n5, n6, sg 4

4.2.2.3 Changes to Failure Types (F)

First, we assume that the changes to failure types are the only changes. Later,

we will discuss the situation when changes to multiple artifacts occur. We describe

the change in failure type as follows:

• Delete failure types Fd = {fd1, · · · , fdm} where m is the number of deleted

failure types: F ′ = F \ Fd

An example of deleting a failure type: a faulty network can no longer cause

a network connection error by using a backup router to quickly swap out the

faulty network. Suppose, we delete the failure types (f2 and f3) from our

example. Thus, Fd = {f2, f3}.

Next, we remove the mitigation models {MMd1 , · · ·MMdm} and weaving rules

{WRd1 , · · ·WRdm}. Any failure mitigation tests that test proper mitigation

for a failure f ∈ Fd is removed as well. Let FMTFd
⊆ FMT such that

each t ∈ FMTFd
was constructed to test a failure type f ∈ Fd. FMTFd

=

{fmt|fmt ∈ FMT ∧ fmt based on pair (bt, p, e′) ∈ PE where fe′ ∈ Fd and

1 ≤ p ≤ Length(btc)}. Note that FMT \ FMTFd
is reusable, not retestable,

since we have executed these tests already.
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Back to our example, we remove the mitigation modelsMMFd
= {MM2,MM3}

and weaving rules WRFd
= {WR2,WR3}. From Table 3.9, the deleted failure

mitigation tests are FMTFd
= {fmt2, fmt3, fmt6, fmt8, fmt9}. Table 4.31

shows the reusable tests after deleting failures f2 and f3. We do not have to

rerun these tests.

Table 4.31: Reusable Tests After Deleting Failures f2 and f3

# Selected triplets (PE) Failure Node BT used mtij used FMT Length
1 (1,2,1) f1 n5 bt1 mt11 n1, n5, sg 3
2 (2,8,4) f4 n7 bt2 mt41 n1, n5, n6, n7, s1, s2, n7, n2 8
3 (2,8,4) f4 n7 bt2 mt42 n1, n5, n6, n7, s1, s3, n2 7
4 (2,3,1) f1 n7 bt2 mt11 n1, n5, n6, n7, sg 5

• Add new failure type Fa = {fa1, · · · , fan} where n is the number of new failure

types:

In this case, we need to build a state-event matrix for the new failure, construct

a potential failure scenario matrix for the test suite and the new failures, and

generate (i,p,e) triplets. We also must define mitigation models and weaving

rules for the new failures and create failure mitigation tests for the failure

scenarios. Note that we do not need to rerun FMT , nor include existing

failure types in the construction of the potential failure scenarios. Thus, a

new state-event matrix SEa is an n× |S| matrix where

SEa(i, j) =

 1 if failure type j applies in node ni ∈ S

0 otherwise

Note that the number of states i = 1, · · · , |S| and number of failures types

j = 1, · · · , n.

Using our example, we add two new failure types (f5 and f6), so Fa = {f5, f6}.
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Next, we have to build a new state-event matrix (SEa) that includes the new

failure types Fa as shown in Table 4.32.

Table 4.32: New State-Event Matrix SEa

Behavioral States/
Failure Type (f )

n1 n2 n3 n4 n5 n6 n7

5 0 0 0 0 0 1 0
6 0 1 0 0 0 0 1

Next, we create new mitigation modelsMMa = {MMa1, · · · ,MMan} for each

failure type in Fa. Let WRa = {WRa1 · · ·WRan} be the weaving rules for the

new mitigation models. Next, we generate the new mitigation test suites

MTa = {MTa1, · · ·MTan}. In the example, we add new mitigation models

MMa = {MM5,MM6} and new weaving rules (WR5 and WR6) for the new

failure types. They are shown in Table 4.33. The first mitigation model returns

to state n6 after a database error, the second returns to the start node n1 and

ends the test.

Next, we create new mitigation test paths MTsa using the new mitigation

models. In our case, there are no mitigation test paths. Applying the weaving

rule is the only task required (c.f Table 4.33).

Then, we build the new potential failure scenario matrix. The new potential

failure scenario matrix is defined as follows: SPa = {(i, p, e)|1 ≤ i ≤ l, 1 ≤

p ≤ len(bti), 1 ≤ e ≤ n, SEa(node(p), e) = 1}. We select a new set of triplets

(i, p, e) ∈ PEa based on coverage criteria. How we select the (i, p, e) triplets

depends on the size of the new potential failure scenario.

In the example, the new potential failure scenario is shown in Table 4.34.

Using our coverage criteria results in selecting three triplets as shown in Table

4.35.
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Table 4.33: New Mitigation Requirements

MM Explanation Model WR#
MM5 Retry: database server

error
MT5 = φ where node(p)r
is the state in which we
are trying to save data
node(p) = n6 and r = 1
(retry once)

2

MM6 End Activity: misunder-
stood behaviour such as
try to access node with-
out having specific user
role

MT6 = φ where sf =
n1,and sf is the start
node and stop

4

Table 4.34: New Potential Failure Scenario SPa Due to the Added Failures Fa

i 1 2 3
BT bt1 bt2 bt3

1 2 3 4 1 2 3 4 5 1 2 3 4 5
n1 n5 n7 n2 n1 n5 n6 n7 n2 n1 n3 n4 n3 n2

f5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
f6 0 0 1 1 0 0 0 1 1 0 0 0 0 1
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Finally, new failure mitigation tests FMTFa are generated from triplets in

PEa. Hence, FMT ′′ = FMTFa .

In the example, new failure mitigation tests FMTFa are generated based on

new weaving rules WR5 and WR6 for the new failure types in Fa = {f5, f6}.

Table 4.35 shows the selected triplets and FMT ′′.

Table 4.35: Selected Triplets and Resulting FMTFa

# Selected triplets (PE) Failure Node BT used mtij used FMTFa = FMT ′′ Length
1 (1,3,6) f6 n7 bt1 mt61 n1, n5, n7, n1 4
2 (2,3,5) f5 n6 bt2 mt51 n1, n5, n6, n6, n7, n2 6
3 (3,5,6) f6 n2 bt3 mt61 n1, n3, n4, n3, n2 5

So far, we assumed that the addition of new failures does not impact existing

failure mitigations. Otherwise, we would need to include mitigation tests

for failures that have been affected by mitigation of new failures. This can

happen when the mitigations for two different failure types share some of the

mitigation code. Let impacted failures types Fc = {f1, · · · , fq} be the failures

impacted by new mitigation requirements, where q is the number of affected

failures. Let the impacted failure mitigation tests FMTc = {fmt|fmtj built

from pair (i, p, e) ∈ PE where fe ∈ Fc}. The new failure mitigation tests

derived from Fc will be as follows: FMT ′′ = FMTFa ∪ FMTc.

Note: FMT does not have to be rerun and FMTc is a selection not a creation

of new tests.

In our example, suppose that mitigation of new failures impacts existing failure

mitigation. Let failure type f1 be impacted by new mitigation requirements. As a

result, Fc = {f1}, and from Table 4.31 (after deleting failure mitigation tests based

on deleted failures FMTFd
), the impacted failure mitigation tests are FMTc =

{fmt1, fmt4}. The new failure mitigation tests FMT ′′ consist of those in Table
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4.31 plus FMTc.

4.2.2.4 Changes to Behavioral Model (BM), Failure Types (F) and State

Event Matrix (SE)

When BM, F and SE have been changed at the same time, we need to perform

the following steps:

• Classify BT into BTr, BTu, and BTo as in section 4.2.2.1.1.

• Generate new behavioral test cases BT ′ due to the changes to BM .

• Create new mitigation models MMaj; add the weaving rules for the new fail-

ures Fa, and generate new mitigation tests MTaj for new failure types Fa.

• Delete the mitigation models and weaving rules, and failure mitigation tests

FMTFd
for all deleted failures in Fd.

• Remove any obsolete mitigation tests FMTo due to the changes to SE for any

inapplicable failure types.

• Define the subset of failure types Fse and subset of states Sse that are affected

and become now feasible due to the changes to SE.

• Build a new state-event matrix SE ′ that includes any new states due to the

changes to BM and the added failure types due to the changes to F . Also,

because of the changes to SE, the new state-event matrix SE ′ includes any

failure types in Fse.

• Construct new potential failure scenarios SP’ as follows :

– Use BT ′′ = BT ′ ∪BTr as in 4.2.2.1.3.
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– Use the current failure types F ′ = (F \Fd)∪Fa. That is we remove deleted

failures and add new failures for the rows in SP’ (Section 4.2.2.3).

– Construct the current SE’ matrix by applying any changes to applicability

for existing nodes/failures, adding new rows for new failures and new

columns for new nodes (Section 4.2.2.2, 4.2.2.3) and removing columns

for deleted nodes.

– SP’ is then constructed based on F’ and SE’.

Because of the changes to SE, f1 becomes applicable in state n6 and f4 becomes

applicable in state n5. Table 4.36 shows these changes as shaded ’1’. It also has 2

new columns for newly added node n8. Thus, Fse = {f1, f4}, and Sse = {n5, n6}. In

our example, BT” is as before. It’s concatenation is shown in row 3 of Table 4.37. In

the example, we delete the failure types (f2 and f3), and add new failure types (f5

and f6). Thus, Fd = {f2, f3}, and Fa = {f5, f6}. Hence F = {f1, f4, f5, f6}. These

are shown in column 1 of Table 4.37.

Table 4.36: New State-Event Matrix SE ′

Behavioral States/
Failure Type (f )

n1 n2 n3 n4 n5 n6 n7 n8

1 1 0 0 1 1 1 1 0
4 0 1 0 0 1 0 1 0
5 0 0 0 0 0 1 0 0
6 0 1 0 0 0 0 1 1

Table 4.37: New Potential Failure Scenarios SP ′
1 (BM Change and f2, f3 Deleted)

1 2 3 4 5
bt′1 bt′2 bt′3 bt′4 bt1

Position (P) 1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4
I ′/F n1 n3 n4 n2 n1 n3 n5 n7 n4 n2 n1 n3 n5 n6 n8 n7 n4 n2 n1 n5 n6 n8 n7 n2 n1 n5 n7 n2

f1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0
f4 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1
f5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
f6 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1
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The next step is to select a new set of triplets from the potential failure scenarios.

Tables 4.37 marks triplets that meet the coverage criteria according to [48]. There

are 12 triplets. However, three of the triplets are reusable and can be removed:

(1,1,1), (1,4,4), (5,3,1), resulting in a 25% saving over [48]. (The corresponding 12

FMT’ are shown in Table 4.38).

Table 4.38: Constructing FMT ′ with PE ′.

# triplets PE ′ Failure Node BT’ used mtij used FMT ′
1 Length

1 (2,5,1) f1 n4 bt′2 mt11 n1, n3, n5, n7, n4, sg 6
2 (3,3,1) f1 n5 bt′3 mt11 n1, n3, n5, sg 4
3 (3,3,4) f4 n5 bt′3 mt41 n1, n3, n5, s1, s2, n5, n6, n8, n7, n4, n2 11
4 (3,3,4) f4 n5 bt′3 mt42 n1, n3, n5, s1, s3, n5, n6, n8, n7, n4, n2 11
5 (3,4,1) f1 n6 bt′3 mt31 n1, n3, n5, n6, sg 5
6 (3,4,5) f5 n6 bt′3 mt51 n1, n3, n5, n6, n6, n8, n7, n4, n2 9
7 (4,4,6) f6 n8 bt′4 mt61 n1, n5, n6, n8, n1 5
8 (4,5,4) f4 n7 bt′4 mt41 n1, n5, n6, n8, n7, s1, s2, n7, n2 9
9 (4,5,4) f4 n7 bt′4 mt42 n1, n5, n6, n8, n7, s1, s3, n7, n2 9
10 (5,3,6) f6 n7 bt1 mt61 n1, n5, n7, sg 4
11 (5,4,4) f4 n2 bt1 mt41 n1, n5, n7, n2, s1, s2, n2 7
12 (5,4,4) f4 n2 bt1 mt42 n1, n5, n7, n2, s1, s3, n2 7

4.2.2.5 Changes to Mitigation Models (MM)

We assume that BT ′, F ′, SE ′, and PE ′ have been constructed based on changes

to corresponding artifacts and algorithms in Subsections 4.2.2.1,4.2.2.2,4.2.2.3, and

4.2.2.4. We also assume that MT ′
j have been constructed for any changed model:

j ∈ modMM = {j|1 ≤ j ≤ |F | ∧ MM ′
j 6= MMj}. When changes to mitigation

models occur, we need to do the following:

• determine mitigation test paths for the changed mitigation model(s).

• determine retestable FMT and triplets upon which they are based that use

mitigation tests from the changed model(s).

Note that we do not have to consider PE ′
2 or PE ′

3 since they are based on new

mitigation models, not changed ones, or failure types that used to be inapplicable,
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hence no retestable failure mitigation tests exist. Note that SE ′
3 only specifies

feasible triplets that did not exist in the prior version. Note also that PE ′
1 describes

new test requirements from which new failure mitigation tests are created (regardless

of changes to the mitigation models).

Hence we only need to consider two cases:

• failure mitigation tests that are based on retestable mitigation tests. These

need to be rerun.

• failure mitigation tests that were built based on failure types for the modified

mitigation model. These need to be rebuilt with the new mitigation test.

We remove any obsolete failure mitigation tests FMTo.

4.2.2.5.1 Determine Mitigation Test Paths for Changed Mitigation Models

Since the mitigation model is similar to the behavioral model (FSMWeb), the

same concept is applied to the mitigation test paths using Andrews et al. [49].

The same classification will be used in terms of obsolete, reusable, or retestable test

paths. We classify mitigation tests (MTj) of failure type fj as obsolete (MTjo),

retestable (MTjr), and reusable (MTju). We determine new mitigation test cases

(MT ′
j) for uncovered edges in the mitigation model of failure type fj.

Back to our example, the mitigation model MM4 for failure type f4 is modified as

shown in Figure 4.7. We modify the model from export to Excel to be exported

to Word format. We delete edges: (s1, s2), (s2, sf ). The deleted edges make mit-

igation test mt41 obsolete. Thus, MT4o = {mt41}. We also add node (s4) and

edges: (s1, s4), (s4, sf ). As a result, a new mitigation test path is needed: mt′41 =

{si, s1, s4, sf}. Thus, MT ′
4 = {mt′41}. Since mitigation test mt42 = {si, s1, s3, sf}

visits si, this makes mt42 retestable. Consequently, MT4r = {mt42}. Since only one
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mitigation model has been changed, modMM = {4}. The new mitigation test for

MM ′
4 is MT ′′

4 = MT4r ∪MT ′
4 = {mt42,mt′41}.

Figure 4.7: Modified Mitigation Model MM4 or MM6.

4.2.2.5.2 Failure Mitigation Tests Based on Retestable Mitigation Tests

As stated before these tests need to be rerun. They constitute the retestable

failure mitigation tests FMTr. They are defined as follows: FMTr = {fmt|fmt ∈

FMT based on: (i, p, j) ∈ PE, j ∈ modMM ,mtj ∈ MTjr}. We need to rerun

FMTr. From Table 3.9, the only failure mitigation tests used for f4 are fmt13,

fmt14, fmt15 and fmt16. However, fmt13 and fmt15 are obsolete because of us-

ing mt41, and fmt14 and fmt16 become retestable because of using mt42. Hence

FMTr = {fmt14, fmt16}.

4.2.2.5.3 Build New Failure Mitigation Tests

Here we need to make sure that all mtj ∈ MT ′
j (j ∈ modMM) are used to

build new failure mitigation tests. This requires identifying all triplets: PEMM ′ =

{(i, p, j)|j ∈ modMM} and then using mtj ∈ MT ′
j to build the new failure mit-

igation tests FMT ′
MM . FMT ′

MM = {fmt′| based on (i, p, e) ∈ PEMM ′ using
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mtj ∈MT ′
j , j ∈ modMM}. These new tests need to be run.

In the example and from Table 3.9, PEMM ′ = {(1, 3, 4), (1, 4, 4)} and MT ′
4 =

{mt′41}. We generate new failure mitigation tests using mt′41. Thus, fmt′13 =

{n1, n5, n7, s1, s4, n2}, and fmt′15 = {n1, n5, n7, n2, s1, s4, n2}.

4.2.2.5.4 Potential Impact on Other Failure Mitigations

Changes to failure mitigations can impact mitigations of other failures whose

models have not changed. This can happen when they share portions of the mitiga-

tion code, for example. In such a case, the failure mitigation tests for these failures

need to be rerun. Let EI be the failure types impacted. Then all failure mitigation

tests based on PEI = {(i, p, e)|e ∈ EI} need to be rerun. The failure mitigation

tests FMTI = {fmt|fmt ∈ FMT , based on (i, p, e) ∈ PEI} are the impacted set

of tests.

From the example, we assume the changes to MM ′
4 have affected the failure

mitigation associated with failure type f1. Using Table 3.9, EI = {1}, PEI =

{(1, 3, 4), (1, 4, 4)} and FMTI = {fmt1, fmt7}. These need to be rerun.

In summary, the regression test suite FMT ′′ to execute consists of retestable

tests FMTrt, new failure mitigation tests FMT ′
MM and tests for failures that are

impacted by mitigation model changes in other failures FMTI . Hence FMT ′′ =

FMTr ∪ FMT ′
MM ∪ FMTI = {fmt14, fmt16} ∪ {fmt′13, fmt′15} ∪ {fmt1, fmt7}

4.2.2.6 Changes to Weaving Rules (WR)

When a weaving rule is modified, we need to identify which (i, p, e) triplets are

affected and we need to regenerate tests that were created using the old weaving

rule, as these failure mitigation tests are now obsolete. Let modWR = {failure

types for which weaving rule changed}. Let PEWR = {(i, p, e)|(i, p, e) ∈ PE ∧ e ∈
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modWR}. We generate new failure mitigation tests for these (i, p, e) triplets. Then

FMT ′ = {fmt′|(i, p, e) ∈ PEWR used to construct fmt′}. We simply regenerate

failure mitigation tests using appropriate coverage criteria and rerun these tests.

In the example, we update the weaving rule "End All" for failure f2 to be "Fix

and proceed". Hence PEWR = {(1, 2, 2), (2, 3, 2), (3, 2, 2)} (cf. Table 3.9). Tests

fmt2, fmt6 and fmt7 are obsolete and need to be regenerated. Table 4.39 shows

the result. Using Table 3.9, we use the new weaving rule wr′f2 and generate new

failure mitigation tests FMT ′′ for them using the new weaving rule for triplets in

PEWR. The new failure mitigation tests are shown in Table 4.39.

In case of multiple changes to artifacts, we do not have to consider PE ′
1 or PE ′

3,

since they are based on new mitigation models (and weaving rules), not changed ones

or failures that used to be inapplicable, hence no retestable failure mitigation tests

exist. Since PE ′
1 describes new test requirements, we would have already constructed

failure mitigation tests with the new weaving rules as described in Subsection 4.2.2.4.

FMT ′ refers to reconstruction of existing tests.

Table 4.39: PEWR and Resulting FMT .

# triplets (PE) Failure Node BT used mtij used FMT” Length
1 (1,2,2) f2 n5 bt1 mt21 n1, n5, n5, n7, n2 5
2 (2,3,2) f2 n6 bt2 mt21 n1, n5, n6, n6, n7, n2 6
3 (3,2,2) f2 n3 bt3 mt21 n1, n3, n3, n4, n3, n2 6

4.2.3 Discussion

We built the framework for selective regression testing of fail-safe behavior. We

provide a systematic method by showing the formalization steps for each type of

change to the various models (BM, SE, F, MM, WR) and build a regression test

suite based on each type of change, allowing for multiple changes to artifacts. We use
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coverage criteria [48] to construct the new test requirements. We improve efficiency

by removing reusable test requirements. In case changes to the behavioral model are

the only change and the changes did not add many new states/edges or delete many

states/edges, there will be few new mitigation tests. When failure types no longer

apply or when some failure types become not applicable in some nodes (entries in SE

matrix change from 1 to 0), the number of failure mitigation tests becomes smaller.

However, when new failure types are required to be mitigated, or some failure types

become applicable in states where they were not applicable before, the number of

failure mitigation tests increases. Therefore, the changes to behavioral models BM ,

the changes to SE, or adding new failure types have higher impact as more work is

involved such as building SE ′, potential failure scenarios SP , and generating more

failure mitigation tests. On the other hand, changes to mitigation models or weaving

rules have less impact because they are local changes and occur late in the failure

mitigation test generation process. Multiple changes to the artifacts can become

expensive and may require to create a full new test suite.

Table 4.40 summarizes and compares the effects of the various changes and com-

binations of changes to our example. The top half of the table reports changes to

BM, SE, and F while the botton will discusses multiple changes to all three artifacts.

For phase 1, we list the number of retestable behavioral tests |BTr|, the number of

retestable failure mitigation tests |FMTr|, and the number of new behavioral tests

|BT ′|, for phase 2, the length of BT ′′, as well as the number of failure scenario

triplets and the number of reusable ones. For Phase 3, we list the number of failure

mitigation tests in the new test suite |FMT ′′| and their length. The top half of

columns 2 and 3 compares selective regression testing (SR) against a full new test

path suite (FR) for changes to BM only. The top half of columns 4 and 5 compares

selective regression testing (SR) and a full retest (FR) for changes to SE. The re-
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maining pairs of columns compare SR and FR with respect to changes to F, and

changes to failures that may impact other failures (F with impact). Row 10 and 20

of Table 4.40 show the proportion of the length of the test suite for selective regres-

sion testing compared to a full retest. The second half of Table 4.40 reports results

based on multiple changes to BM, SE and F as well as changes to mitigation models

(with and without impact) and weaving rules. Results are reported for selective

regression testing (SR) and a full retest (FR), so a comparison can be made.

Table 4.40: Effect of Changes Using Selective Regression Testing (SR) and Full
Retest (FR)

Phase # BM SE F F with impact
SR FR SR FR SR FR SR FR

1 |BTr| 1 0 2 0 3 0 2 0
|FMTr| 0 0 0 0 0 0 4 0
|BT ′| 4 0 0 0 0 0 0 0

2 Length (BT”) 28 27 9 14 14 14 14 14
PE Triplets 8 15 2 16 3 9 3 9

Reusable Triplets 7 0 0 0 0 0 0 0
3 |FMT ′′| 10 17 3 19 3 11 7 11

Length 65 99 18 96 15 56 28 56
4 SR/FR (%) 66 19 27 50

Phase # BM, SE, F MM MM with impact WR
SR FR SR FR SR FR SR FR

1 |BTr| 1 0 1 0 2 0 3 0
|FMTr| 0 0 0 0 4 0 0 0
|BT ′| 4 0 0 0 0 0 0 0

2 Length (BT”) 28 27 4 14 4 14 14 14
PE Triplets 9 12 2 14 2 14 3 14

Reusable Triplets 3 0 0 0 0 0 0 0
3 |FMT ′′| 12 15 4 16 8 16 3 16

Length 87 90 26 82 39 82 17 86
4 SR/FR (%) 97 32 48 20

Table 4.40 shows that changing the behavioral model alone or in conjunction

with other changes requires the most regression testing, but is still no more than

97% of a full retest. When changes are made to the behavioral model alone (columns

2/3 in the upper half of Table 4.40) selective regression test is shorter (65 vs. 99).

The length of the regression test suite is the second highest. This is because we

added two nodes and deleted one edge, a relatively large change for a small model.
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This increased the number of possible failure scenarios. Changing applicability,

failure types, mitigation models or weaving rules favors selective regression testing

in all cases. Changing SE affects failure f4 and because of multiple mitigation paths

results in two new failure mitigation tests for each failure scenario. Yet we still only

have 19% of the length of a full retest. Changes to F deleted two failures and added

two new ones. Depending on whether failures impact others, selective regression

testing needs between 27% and 50% of a full retest. The smallest proportion of

tests occurs for changes in weaving rules (20%). This makes sense as weaving is the

last step in the test path generation for failure mitigation tests. Overall, a full retest

is always a lot more expensive in this example. Selective regression testing can be

as small as 19% of a full retest. Note that changes to the behavioral model can and

do result in reusable triplets. Removing them results in 47%, and 25% reduction

in test requirements respectively, of the mitigation testing requirements Andrews et

al. [48] would have used. For larger models, this can result in significant savings

due to fewer failure mitigation tests that need to be generated and executed. We

will explore this further in the case study of Section 4.3.

4.2.4 Comparison to Earlier Work

Table 4.41 summarizes contributions of earlier works. Boukhris et al. [70] pro-

pose an approach that leverages a test suite derived from an FSMWeb model of a

web application [51] and transforms it into a series of mitigation tests for various

failures. A similar approach was defined for generating safety-mitigation tests for

safety-critical systems [48]. The two approaches differ in the models used and the

rules to generate mitigation test requirements. They describe an approach that

• uses a primary behavioral model and its associated behavioral test suite,
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• considers a set of defined failures and how they need to be mitigated,

• generates a set of mitigation tests for each failure type,

• uses failure mitigation coverage criteria [48] or a genetic algorithm [70] to

determine where in the behavioral test suite a failure should occur (fail-safe

test requirement).

• creates fail-safe behavior tests based on these failure scenarios.

Table 4.41: Comparison of Approaches

Reference External
Failure
Testing

Selective
Regres-
sion
Testing

Coverage
Criteria

Model Eliminate
Reusable
Failure
Scenarios

Domain

A case study
of black box
fail-safe test-
ing in web ap-
plications [70]

YES NO NO FSMWeb NO Web
Appli-
cation

Testing Web
applications
by modeling
with FSMs
[51]

NO NO YES FSMWeb NO Web
Appli-
cation

Fail safe test
generation in
safety critical
systems [48]

YES NO YES CEFSM NO Safety-
Critical

Selective
regression
testing of
safety-critical
systems: a
black box
approach [47]

YES YES YES EFSM NO Safety-
Critical
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Neither of these discusses selective regression testing. Boukhris et al. [70] do

not address regression testing. However, they treat primary behavior, failures, and

mitigation distinctly in the stages described above. Thus the approach is naturally

suited for partial regeneration of tests after changes in behavior, failures, or failure

mitigation requirements. Subsections 4.2.1, 4.2.2, and 4.2.3 provide this extension.

Depending on where in the process changes occur, only a subset of safety mitigation

test generation stages will have to be repeated. We also define rules on how to do

this. The approach presented here also extends Boukhris et al. [70] by providing an

alternate way (coverage criteria instead of a genetic algorithm) to generate mitiga-

tion test requirements. This is important because the simulation study in Boukhris

et al. [69] found that the genetic algorithm is inferior to coverage criteria when

the search space (i.e. the potential failure scenarios) is small. This happens when

changes are limited.

We also extend work in Andrews et al. [47] as follows:

• First, we use a different behavioral model (FSMWeb, instead of EFSM) and

(regression) test generation technique for it. Note also, that Andrews et al.

[47] does not use clusters in the model and generates behavioral test differently

due to the reachability issues inherent in (C)EFSMs.

• Second, we use a different domain (web applications rather than safety-critical

systems).

• Third, we use external failures and mitigation requirements common to web

applications rather than safety-critical systems.

• Fourth, we formalize in detail the regression testing and partial test regener-

ation procedure.
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• Fifth, we remove inefficiencies by identifying reusable failure scenarios and

not requiring them to be tested again. As we saw in the example (rows 6/7

and 16/17) this led to a removal of 47% (of 15 triplets, 7 are reusable, 8 are

required) of reusable test requirements for behavioral changes and 25% (of 12

triplets, 3 are reusable, 9 are required) in the case of multiple types of changes

compared to using Andrews et al. [48] or [47]. As we will see in the case

study in Subsection 4.3, Table 4.42, efficiency is improved by 65% and 45%,

respectively.

• Sixth, we present a large case study of a mortgage system at one of our indus-

trial partners, a major lending firm to show applicability to a large commercial

web application.

Table 4.41 summarizes the differences.

4.3 Mortgage System Case Study: Regression Test

4.3.1 Case Study Objectives

Boukhris et al. [70] use a mortgage system as a case study for their approach

to test fail-safe behavior. They explored applicability, scalability, effectiveness and

efficiency. Here, we propose to investigate the efficiency of our proposed selective

regression testing approach by defining changes to the system and comparing selec-

tive regression testing to a full retest of the system. Unlike Boukhris et al. [70],

we do not use a genetic algorithm to generate failure scenarios. Instead we use the

coverage criteria introduced earlier.

106



4.3.2 Case Study Research Questions

1. RQ1: What are the results when we apply criteria-based selective regression

testing to a large web application? So far, coverage criteria together with a

selective regression testing approach in Andrews et al. [47] have only been

applied to a tiny example with 4 nodes and 6 edges (and a different behavioral

model that does not use a hierarchical approach with clusters). What are the

results for a large web application?

2. RQ2: Are there any efficiencies to be obtained compared to a full retest of the

application? If so, what are they?

3. RQ3: Would it have been possible to apply a genetic algorithm instead of

coverage criteria?

4. RQ4: How many tests can be omitted by eliminating reusable failure scenarios?

4.3.3 General Description

We focus on the Closing Documents subsystem (CD) as shown in the top of

Figure 4.4 in Subsection 4.1.2. Figure 4.4 shows the behavioral model for CD before

and after changes.

We now make the following changes:

1. Changes to the behavioral model: we add a new funding page and remove the

web page that shows past closing instructions (See the bottom of Figure 4.4).
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2. Changes to the applicability matrix: we assume that f7 becomes in-applicable

on the web page that shows documents to close (DC) in the CD cluster and

becomes applicable for the web page that shows advanced search (AS) results

in the Search cluster.

3. Changes to external failure types: first, we delete f1 as a faulty network can no

longer cause a network connection error by using a backup router to quickly

swap out the faulty network, and f2 assuming session expiration failure is no

longer valid. Then, we add a mitigation requirement for power outage (failure

f11) (end activity).

4. Changes to mitigation models: first, we modify MM4 from export to Excel

to be exported to Word format as shown in Figure 4.5. Then, we assume the

change toMM4 has affected the failure mitigation associated with failure type

f1.

5. Changes to weaving rules: we update the weaving rule "End All" for failure

f2 to be "Fix and proceed".

First, we apply each of the above changes separately, then we apply them to-

gether. Table 4.42 shows the comparison for selective regression testing (SR) vs. a

full new regression test path suite (FR).

4.3.4 RQ1: Applicability

We were successfully able to apply the regression testing approach. The changes

were made to all types of artifacts (see above). Table 4.42 reports our results. It

is organized the same as Table 4.40. Classifying behavioral tests due to changes

to the Closing Documents cluster results in 4 retestable tests (|BTr|) and requires
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Table 4.42: Selective Regression Testing vs. a Full New Regression Test Suite

Phase # Change BM Change SE Change F
SR FR SR FR SR FR

1 |BTr| 4 0 1 0 12 0
|FMTr| 0 0 0 0 0 0
|BT ′| 4 0 0 0 0 0

2 Length BT” 106 3935 14 3998 169 3998
Triplets (PE) 14 7976 1 7976 12 7962

Reusable Triplets 26 0 0 0 0 0
3 |FMT ′′| 14 7978 1 7978 12 7964

Length 174 96360 17 96359 68 96153
4 SR/FR (%) < 1 < 1 < 1

Phase # Change BM, SE, F Change MM Change WR
SR FR SR FR SR FR

1 |BTr| 4 0 12 0 12 0
|FMTr| 0 0 0 0 0 0
|BT ′| 4 0 0 0 0 0

2 Length BT” 106 3935 169 3998 169 3998
Triplets (PE) 23 7966 4 7972 3 7972

Reusable Triplets 22 0 0 0 0 0
3 |FMT ′′| 23 7968 4 7974 3 7974

Length 206 96206 66 96377 40 96377
4 SR/FR (%) < 1 < 1 < 1

4 new tests (|BT ′|). Their combined length is 106 nodes. Applying the coverage

criteria generates 40 external failure mitigation test requirements, but 26 of these

triplets are reusable, hence only 14 (35%) have to be converted into failure mitigation

tests. This is a considerable saving. Only 14 external failure mitigation tests must

be generated (|FMT ′′|) at a length of 174. Selective regression testing requires

only less than 1% of a full retest when the length is compared. The test effort in

Boukhris et al. [70] was roughly proportional to test case length. While this cannot

be assumed to hold for all systems, the large size of the web application may have

led to averaging effects.
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This means that one might be tempted to use this as an initial effort estimate

using the same proportionality parameter as in [45], but due to the very small

selective regression test suite, it would not be advisable to do that. We will explore

this further in Subsection 4.3.8. Changes to the applicability matrix SE only require

one new failure mitigation test. This is because the node where f7 has become

applicable only occurs in one behavioral test. The mitigation (fix and proceed)

adds 3 nodes to the test path length of the single reusable behavioral test (cf. Table

4.13).

Adding power outage as a new failure requires building a new SE Matrix for all

12 tests. The coverage criteria is fulfilled with 12 triplets as it covers all tests and

all unique nodes.

When multiple changes to BM, SE, and F are made, the changes to the behavioral

model determine the number of retestable and new tests (4 in each case), they are

the same as for changes to BM only. Likewise, the length of the new test suite

which is used to build the matrix for the potential failure scenarios is the same.

The changes to applicability and the new row for failure f11 account for the higher

number of required failure scenarios (28 instead of 22) and the reduction in reusable

ones (22 as opposed to 24 due to changes in applicability).

Modifying the mitigation model for failure f4 makes all failure mitigation tests

for failure f4 obsolete. We select all failure test requirement triplets (i, p, 4) in PE

to build new failure mitigation tests. There are 4 such triplets, resulting in 4 new

failure mitigation tests.

Similarly, changing the weaving rule for failure f2 makes all failure mitigation

tests for failure f2 obsolete. We select all test requirement triplets (i, p, 2) in PE.

There are three such triplets for which to build three new failure mitigation tests.

Table 4.42 also reports on the savings in the regression test effort by removing
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reusable test requirement triplets. Reusable triplets can occur whenever changes to

a behavior model are made. The new approach to remove reusable triplets results

in a 65% reduction when changes to the behavioral model are made and a 45%

reduction when multiple changes are made (Rows 6/7 and 16/17 respectively). This

is a substantial improvement.

Table 4.42 also allows a limited comparison of our selective regression testing ap-

proach to existing work: Andrews et al. [51] present the original FSMWeb approach

but it did not discuss regression testing nor testing of fail-safe behavior. Table 4.42

shows in columns 2 and 3 under length BT” a comparison of selective regression

testing for changes to the behavioral model using selective regression testing (106)

vs a full retest using [51] (3935) for the behavioral model. Boukhris et al. [70]

represent a full retest (columns marked FR); however, Table 31 reports data using

coverage criteria, as opposed to the genetic algorithm used in Boukhris et al. [70].

Boukhris et al. [70] reports a total fail-safe test suite length of over 96,000 for the

original model, given the limited amount of change, this is similar to the numbers

reported here for a full retest. So, for this case study, having to test fail-safe be-

havior increases the test suite considerably. One might also want to consider test

case length comparing Andrews et al. [51] and Andrews et al. [48], however, that

is not possible due to the fact that the models are not the same, hence what they

model is difficult to compare. Even a comparison between Andrews et al. [48] and

Boukhris et al. [70] and this paper is limited, as this paper and Boukhris et al. [70]

use 10 failure types and Andrews et al. [48] only uses 4. The same issues also limit

the comparability of this paper and Andrews et al. [47].
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4.3.5 RQ2: Efficiency of Selective Regression Testing

Rows 10 and 20 of Table 4.42 allow for a comparison between selective regression

testing and a full retest. The savings are even more impressive than for the example

(Table 4.40). This is because compared to the size of the behavioral model, the

changes to the behavioral model are quite minor and localized to the CD subsystem.

For the behavioral model, we only added one node and two edges leading to 4

new test paths. This leads to a selective regression test suite which is only less than

1% of a full retest. We only make two applicability changes, only one of which affects

potential failure scenarios. Less than 1% of a full retest is necessary. Deletion of f1

results in the removal of the failure with the most test requirement pairs. Adding

failure f11 which is applicable in all states in CD is relatively expensive, but it is still

much cheaper than a full retest. The most expensive selective regression test occurs

with multiple changes, but is still only less than 1% of the test suite size of a full

retest. As before in the example, changes to mitigations and weaving rules lead to

much shorter selective regression tests compared to a full retest. Generally speaking,

extensive changes to the behavior models are the most expensive. This is because

it changes the behavioral test suite for selective regression testing the most. Since

the behavioral test suite with the SE Matrix determines test requirement triplets,

the test generation process in phases 2 and 3 is affected more, less of the existing

failure mitigation tests are retestable or reusable. The later in the generation process

that changes to artifacts occur, the more partial regeneration is possible, increasing

efficiency.

In summary, unless a large web application experiences massive changes (and

that is rare for mature software for stable application domains), we should expect

selective regression testing to be a less expensive testing effort than a full retest.
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4.3.6 RQ3: Genetic Algorithm vs. Coverage Criteria

In Boukhris et al. [70] a genetic algorithm was used to specify failure scenarios.

This worked well because the search space (the potential failure scenarios SP) was

rather large. Simulation experiments were conducted in Boukhris et al. [69] to

compare the effectiveness of the genetic algorithm versus a number of coverage

criteria. For the coverage criteria used here, the simulations indicate that (depending

on the defect density of the external failure mitigation code) as the potential failure

scenarios decrease, the coverage criteria outperformed the genetic algorithm. Most

of the changes in our case study result in too few potential failure scenarios than

a genetic algorithm can handle, hence it was necessary to use coverage criteria.

A major reason for this is the removal of reusable potential failure scenarios which

basically reduces the search space for the genetic algorithm. This is not only causing

problems when using a genetic algorithm, it also increases efficiently dramatically

when using coverage criteria.

4.3.7 RQ4: Reusable Failure Scenarios

One of the improvements in this paper is to remove reusable failure mitigation

scenarios (triplets) from those that are required to be used in generating the failure

mitigation test suite. Table 4.42 shows the number of triplets required (PE) and

the number of triplets that are reused. Reusable triplets only occur when behav-

ioral model changes are involved, with or without changes to failure applicability or

failures.

For our case study, of 40 triplets selected with the coverage criteria only 14

are required, 22 are reusable. Only 35% of failure mitigation test requirements

mandated by the coverage criteria are actually needed, meaning that only 35% of
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tests need to be generated, executed and validated. When multiple changes are made

the coverage criteria mandates 45 failure mitigation test requirements, of which 22

are reusable and can be removed, reducing PE to 51% of triplets required by the

coverage criteria. Multiple changes increase the number of required triplets (e.g.

when proper mitigation of a new external failure needs to be tested) and reduce

reusable ones due to changes in failure applicability. Thus, the case study shows

that identification and removal of reusable triplets are quite beneficial. Our case

study shows significant efficiency improvement over Andrews et al. [47].

4.3.8 Threats to Validity

Wohlin et al. [227] define external validity as the extent to which it is possible

to generalize the findings in a case study. As is common in case study research,

external validity is an issue for ours as well. While we applied the regression testing

method to a sizable web application (see Table 4.1) other web applications may

not show the same positive results for improving the efficiency of regression testing.

This depends partly on the types of changes. In our case, the changes were localized

to a single component, enabling reuse of retestable tests. Had changes been made

to every component (cluster model), all failure mitigation tests that are based on

obsolete paths through these cluster models would have been obsolete resulting in

far less efficiency than reported in Table 4.42. We thus do not claim that the results

are typical. The running example in Section 4 had changes in both clusters, (FM1

and FM2), resulting in fewer savings through selective regression testing.

In Wohlin et al. [227], construct validity refers to the extent that the operational

measures reflect what the researcher had in mind. There is a potential issue with

construct validity, related to measuring the length of a test suite in terms of the
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number of nodes. While in Boukhris et al. [70] length was roughly proportional to

effort, we do not suggest this here for our case study. Given the small size of the

selective regression test suite, the impact of a large number of inputs for some web

pages vs. others might make the total number of inputs a better indicator of effort.

This was also noticed in Andrews et al. [45] where tradeoff formulas comparing

selective regression testing with brute force regression testing had two options as

driving effort: length of test suite or size of inputs. In our case, Table 4.42 is trying

to offer an efficiency comparison, This means that the actual efficiency improvement

might be slightly less, but certainly will still be very, very good. Further, Andrews et

al. [45] also report on an experiment with students to apply the selective regression

testing approach in Andrews et al. [49]. They noticed that students in subsequent

tasks became more efficient in applying the algorithms, indicating a learning effect.

As they only worked with the graphs, not the inputs, the size of the inputs could not

have made a difference. We, therefore, suggest that using the length of the test suite

as part of an estimator of efficiency needs to be considered carefully in practice.

4.3.9 Practical Considerations

Because of the phased test generation, it is possible to use partial regeneration

to replace obsolete test cases and thus, potentially improve efficiency. For example,

an obsolete mitigation for failure e, mte, only requires replacing a new mt′e at the

very last stage of generating failure mitigation tests, no changes are required for

behavioral tests, generating required failure scenarios, nor weaving rules. We simply

replace the obsolete mitigation paths with new ones.

Some changes require no new test generation, as when failure types no longer

have to be mitigated or no longer apply in a particular state. This mainly re-
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quires removing the obsolete models and tests, but no test execution. By contrast,

widespread changes to the behavioral model may require regenerating most tests.

If there are no changes to failures and their mitigation, we at least do not have to

regenerate mitigation test paths; otherwise, we may as well start over. Andrews et

al. [45] suggest to determine thresholds for changes to behavioral models. There are

two thresholds, one for the proportion of FSM models changed and another for the

proportion of edges changed to determine whether to use partial regeneration versus

a full regeneration. Setting these thresholds initially depends on how conservative

the estimate should be. A low threshold will lead to full regeneration, a higher

one to more partial reconstruction. Similarly, when considering failure mitigation

testing as we do, the threshold can be defined for a degree of change in mitigation

models and applicability matrix. These changes tend to affect partial regeneration

more than adding failures, for example, since that requires regeneration starting at

the point of building a new failure applicability matrix through the remainder of

the generation process. Still, the existing behavioral test suite can be reused as is.

If it is possible to localize changes and implement more extensive software changes

in stages, the test generation for selective regression testing will be simpler, lead to

fewer potential failure scenarios and fewer test cases. This was true for our case

study, which only dealt with changes in one functional component, the Closing

Documents Cluster.

In our approach, we assumed that the function of the software under test changed

resulting in changes to models used in our MBT Black-box approach. What if defects

were fixed, but no new functionality was added? In this case, there are no model

changes. At the minimum, we have to rerun the failure mitigation tests that led to

failures (i. e. uncovered the presence of defects). This may not be enough as changes

to fix the defect may have introduced new defects. For example, when an incorrect
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external failure mitigation for failure e is discovered one may want to rerun tests

for all required failure scenarios for failure e again, even if they did not all uncover

this mitigation defect. How far to go is a matter of risk trade-off, comparing the

consequences of not testing external failure mitigation to the cost of testing their

proper mitigation. This can involve prioritizing failure types and failure scenarios

by the potential cost of a defective external failure mitigation. These priorities can

then be used to run more important tests early until times runs out, accepting the

consequences of defective external failure mitigation for less costly ones.
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Chapter 5

Extensions: Testing Mobile Apps

Our approach to testing Mobile Applications using Finite State Machines (FSMApp)

is an extension of FSMWeb [51] which is described in Subsection 3.1. Figure 5.1

shows the phases of the FSMApp process. FSMApp proceeds in three phases: Phase

1 builds a hierarchical model HFSM, Phase 2 generates tests from the HFSM, and

Phase 3 compiles and executes tests through automated mobile testing tools.

5.1 Testing Process for Mobile Apps

Functional testing for mobile app follows the following approach:

• Phase 1: Build a hierarchical model HFSM:

– Partition the mobile app into clusters (Cs). (Subsection 5.3.1.)

– Define Logical App Pages (LAPs) and Input-Action constraints for each

page. (Subsection 5.3.2.)

– Build FSMs for clusters as a multi-level hierarchy including an Aggregate

FSM (AFSM) to represent the top level of the application. (Subsection

5.3.2.)
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Figure 5.1: Process Mobile App

• Phase 2: Generate tests from the HFSM.

– Generate paths through each FSM that meet the coverage criteria. (Sub-

section 5.4.1.)

– Aggregate paths to form abstract tests. (Subsection 5.4.2.)

– Choose inputs along the paths to create abstract tests. (Subsection 5.4.3.)

• Phase 3: Compile and execute tests through automated mobile testing tools.

We will translate the abstract tests into a framework like Selenium and use

Appium to execute the tests on a mobile device with the target mobile appli-

cation. (Subsection 5.5.)
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5.2 Example Used to Illustrate Approach

We illustrate our approach using the Family Medicines List application as the

example. The Family Medicines List [9] is an open source mobile application offering

the essential functions to manage medical information for a family. It is built using

Basic4Android (B4A) [4] for Android operating systems. B4A is a graphical user

interface tool to create native Android applications where the backend of the app is

programmed in Java. Figure 5.2 shows screens for the Family Medicines List.

Appendix B shows a full set of screens and transitions for the App. The app

has the following basic functionalities: (1) manage medicine information for a set

of medicines. This includes adding, editing, deleting, and searching functions, (2)

manage family member information alongside their medicine, (3) manage dosage and

individual instruction for each medicine, and (4) list view with images for medicine

lists. Figure 5.2 shows the three main pages of the Family Medicines List. Figure

5.2 (a) shows the list of all the medical information in the view list (component) of a

family member after selecting a name from the list of users, Figure 5.2 (b) displays

the form for user information management based on a database of all the information

the user entered, and Figure 5.2 (c) add information about new medication page.

5.3 Phase 1: Build Model

5.3.1 Partition the Mobile App into Clusters (Cs).

The term cluster is used to refer to collections of software modules/app pages

that implement a logical or user level function. The first step partitions the app

application into clusters. At the highest level of abstraction, clusters represent
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Figure 5.2: Family Medicines List App

functions that can be identified by users. Hence, an HFSM = {FSMi}ni=0 with a

top level FSM0 = AFSM . Each FSM has nodes that represent either Logical App

Pages (LAPs) or clusters. Edges are internal or external to an FSM. External nodes

span cluster boundaries. (They become internal at the next higher level.) External

edges can either enter or leave a cluster FSM.

Clusters may be an individual Activity1 or software modules that represent a

major function. Clusters can be identified from the site navigation layout, coupling

relationships among the components, and design information. Our example has

one system to manage the medication of each member of a family. The lower level

clusters are Info member medication (new name), Add and edit new medication of

the family member. Figure 5.3 shows the top level of the Family Medicines List

App. There are three main clusters: entering a new medication, entering a new

name, modifying a medication and exiting the App.

1See Appendix A.
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We will use Android mobile application to illustrate our approach. Android is a

mobile operating system (OS) based on the Linux kernel [3]. It is designed for touch-

screen mobile devices, for example, smartphones and tablets. Mobile applications

fall in to three categories: native, web-based or hybrid. Native mobile applications

are built to run directly on the OS. Web-based apps run on the browser of the de-

vice. A hybrid app is a combination of native app and web-based apps. Obviously

since it is a black-box approach, it can be applied to other operating systems such

as IOS or Windows with their components.

We apply FSMApp to the Family Medicines List App. Figure 5.3 shows the top

level of the Family Medicines List App, while Figures 5.4 to 5.12 show the detail for

the other clusters of the Family Medicines List App.

Appendix B presents Family medicines List App Screens. Screen (A) shows the

main screen of the app. It has three functions: (1) Add new family member with

new medication, dosage, when to take medicine and instructions. It presents as

screen (C). (2) Add new medication for the available member of the family with all

medication information (as shown in Screen (B) of Appendix B). (3) Edit and delete

medication (as shown in Screen (C) of Appendix C).

We classify the main Screen (A) into three clusters (B, C, D) as shown in Figure

5.3. The AFSM for this example also the exit of the application as Exit LAP. We

describe cluster (B), (C) and (D) in detail. Cluster (B) has four subclusters: New

med in Figure 5.8, Dosage in Figure 5.9, When in Figure 5.10 and Instruction in

Figure 5.11. We have two LAPs with two buttons, cancel and add New, as shown in

Figure 5.5. Cluster (C) has five subclusters: "New name" in Figure 5.7, "New med"

in Figure 5.8, "Dosage" in Figure 5.9, "When" in Figure 5.10 and "Instruction" in

Figure 5.11. The Main Screen has two LAPs with two buttons, cancel and add New,

as shown in Figure 5.4. Cluster (D) has one subcluster which is Edit in Figure 5.12.
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We have two LAPs with two buttons, delete and cancel, as shown in Figure 5.6.

Subcluster(E) has three subclusters: Dosage in Figure 5.9, When in Figure 5.10 and

Instruction in Figure 5.11. We have two LAPs with two buttons, cancel and add

New, as shown in Figure 5.12. Also, We have two LAPs with two buttons, cancel

and accept, for each subclusters (F, G, H, I, J) shown in figs. 5.7 to 5.11 2.

Figure 5.3: Main Page

Figure 5.4: Family Medicines List New Med

2Appendix D.1 shows more details about the clusters nodes.

123



Figure 5.5: Family Medicines List New Name

Figure 5.6: Family Medicines List Modify Med
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Figure 5.7: Family Medicines List New NameP

Figure 5.8: Family Medicines List New Medicines
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Figure 5.9: Family Medicines List Dosage

Figure 5.10: Family Medicines List When
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Figure 5.11: Family Medicines List Instructions

Figure 5.12: Family Medicines List Edit
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5.3.2 Define Logical App Pages (LAPs) and Input-Action

Constraints for Each

Mobile apps have a variety of screens. We will consider screens as input compo-

nents, or logical app pages (LAPs), and the inputs and their constraints on these

LAPs next. For illustration purposes, we list the actives (screens) for Android. Sim-

ilar components exist for other types of mobile devices. Many app actives (screens)

contain XML forms, each of which can be connected to a different back-end software

module. To facilitate testing of these modules, app pages are modeled as multiple

Logical App Pages (LAPs). A LAP is either a physical app page, physical app com-

ponent, or the portion of an app activity that accepts data from the user through

a XML form, and then sends the data to a specific software module. LAPs are

abstracted from the presentation defined by the XML and are described in terms of

their sets of inputs and actions. FSMApp is an MBT meant for black-box testing

hence, the mobile application can be written in any language appropriate for mobile

applications (e.g. Ruby, JavaScript, HTML, etc.). All inputs in a LAP are consid-

ered atomic: data entered into a text field is considered to be only one user input

symbol, regardless of how many characters are entered into the field.

There may be rules about the inputs: some inputs may be required, while others

may be optional; users may be allowed to enter inputs in any order, or a specific

order may be required. Table 5.1 shows the input constraints, and the order of the

inputs. Required (R) means that required input must be entered. Required Value

(R(parm)) means that one must enter at least one value. Optional (O) means that

an input may or may not be entered. Single Choice (C1) means that one input

should be selected from a set of choices, and Multiple choice means that more than

one input should be selected from a set of choices. Table 5.2 shows how typical
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input types found in mobile applications are represented as constraints on edges in

an FSMApp model. The difference between the web input types and mobile input

types are swipe and scroll. Swipe (W) means that a swipe is required to change the

value of a component. Scroll (L) indicates that the input required is to scroll up or

down the content. Our language express the input constraints in a BNF grammar

in Appendix C.

Input Choice Order

Required (R) Sequence (S)

Required Value (R(parm)) Any (A)

Optional (O)

Single choice (C1)

Multiple choice (Cn)

Table 5.1: Constraints on Inputs

FSMWeb [51] and FSMApp differ in their input types. FSMApp has many more

input types than FSMWeb. FSMApp models components, whereas FSMWeb does

not provide for components. In our Family Medicine Example, Figure 5.2 shows the

medicine list as a lists component.

Mobile applications can have a variety of components that can be modeled via

input constraints. While they vary a little between different mobile operating sys-

tems, they also have many types of components in common. To illustrate what

components look like we explain common components of Android applications and

what FSMApp’s input constraints would look like 3:

3These are the 21 components that Google lists for Android Apps.
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1. A bottom sheet is a sheet of material that slides up from the bottom edge

of the screen. The action of the bottom sheet is a click. The input constraint

is R(<Click>).

2. A button indicates what action will occur when the user touches. The action

of the button is click. The input constraints are R(<Click>), or select the

button then click C1(Select Button, Click).

3. A card is a sheet of material with unique related data that serves as an entry

point to more detailed information. The actions of the card are click, swipe,

scroll, and pick-up-and-move. The input constraint is C1( <Click>, <Swipe>,

<Scroll>, <Pick>).

4. Chips represent complex entities in small blocks, such as a contact. The

action of the chip is a click. The input constraint is R(S( <Select Button>,

<Click>)).

5. Data tables are used to represent raw data sets, and usually appear in desktop

enterprise products. The actions of the data tables are row hover, row selec-

tion, column sorting, column hover, and test editing. The input constraint is

C1( <Row hover>, <Selection>, <Sort>,<Column hover>, <Edit>).

6. Dialogs inform users about critical information, require users to make deci-

sions, or encapsulate multiple tasks within a discrete process. The action of

the dialog is click. The input constraint is R(<Click>).

7. Dividers group and separate content within lists and page layouts. The action

of the divider is click. The input constraint is R(<Click>).
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8. Grid lists are an alternative to standard list views. The actions of the grid

list are vertical scrolling or filtering. The input constraint is C1(<Scroll>,

<Filter>).

9. Lists present multiple line items in a vertical arrangement as a single contin-

uous element. It has a checkbox, a switch and a reader. The action of the list

is sort. The input constraint is R(<Sort>).

10. Menus allow users to take an action by selecting from a list of choices revealed

upon opening a temporary, new sheet of material. The actions of the menu

are scroll and click. The input constraint is C1(<Scroll>, <Click>).

11. Pickers provide a simple way to select a single value from a pre-determined

set. For example, time and date pickers. The actions of the pickers are drop-

down and click. The input constraint is C1(<Dropdown>, <Click>).

12. Progress & activity indicators are visual indications of an app loading con-

tent. The action of Progress & Activity is loading. The input constraint is

R(<Load>).

13. Selection Controls allow the user to select options. The action of selection

controls is click. The input constraint is R(<Click>).

14. Sliders let the user select a value from a continuous or discrete range of values

by moving the slider thumb. The action of slider change is scrolling. The input

constraint is R(<Scroll>).

15. Snackbars & toasts provide lightweight feedback about an operation by

showing a brief message at the bottom of the screen. The action of snackbars

& toasts is click. The input constraint is R(<Click>).
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16. Subheaders are special list tiles that delineate distinct sections of a list or

grid list and are typically related to the current filtering or sorting criteria.

The action of subheader is click. The input constraint is R(<Click>).

17. Steppers convey progress through numbered steps. They may also be used

for navigation. The action of the steppers is to show the next steps. The input

constraint is R(<Follow>).

18. Tabs make an app easy to explore and switch between different views or

functional aspects of an app or to browse categorized data sets. The action of

tab is scroll. The input constraint is R(<Scroll>).

19. Toolbars appear above the view affected by their actions. The action of

toolbars is scroll. The input constraint is R(<Scroll>).

20. Tooltips are labels that appear on hover and focus when the user hovers over

an element with the cursor, focuses on an element using a keyboard (usually

through the tab key), or upon touch (without releasing) in a touch UI. The

actions of tooltips are click and hover. The input constraint is C1(<Click>,

<Hover>).

21. Text fields allow the user to input text, select text (cut, copy, paste), and

lookup data via auto-completion. The actions of test fields are lookup table,

select text, and write text. The input constraint is C1(<Lookup>, <Select>,

<Write>).

Table 5.2 summarizes the components for Android Apps. LAPs are at the lowest

model level. They can be an input type as defined in Table 5.2 or a component.

For example, "card" is a component. A component can contain another compo-

nent. Column 1 shows the number of components. The (c) mark means that the
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component can contain another component. Column 2 of Table 5.2 shows the name

of the component. Column 3 shows the interface controls (i.e. the input types for

the mobile application or for the mobile component). Column 4 shows the input

constraints and transition information. Column 5 shows the effect of executing the

component, when entering inputs that satisfy the input constraint. The last column

represents the types of interface control: Text and Non-Text.

Table 5.2: Components of Mobile Application (LAPs)

No Components Interface Controls Actions Effect Input

Type

1
Bottom sheets

A. Button A. R(Button, click) Non-

Text

B. Link B. R(Button = X ,

click)

Close

2

Buttons

A. Floating action

button

A. R(Content,

click)

Search Non-

Text

B. Raised button B. R(Content,

click)

Save

C. Flat button C. R(Button, click)

D. R(Button, click) Show list or

select button

3

(c)

Cards A. Image A. R(Image, click) Display Text

B. Video B. R(Image, click) Change size

C. Textbox C. R(Video, click) Run

D. Text Area D. R(Textbox) Display text

E. Button E. R(Text Area) Display

many lines

of text

Continued on next page
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Table 5.2 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

F. Links F. R(Button, click)

G. R(Link, click) Show other

website or

page

4

(c) Chips

A. Textbox A. R(Enter text) Save Text

B. Cards B. R(Display con-

tent, choose)

Show details

C. R(Click on chip) Display card

5

(c)

Data Tables

A. Checkbox A. R(Select, select

dialog, add con-

tent)

Save Text

B. Link B. R(Select, click

button)

Delete Non-

Text

C. Textbox C. R(Click link) Transfer

D. Menu D. R(Select) Show card

E. Button

F. Card

6

(c)

Dialogs A. Button A. R(Show warn-

ing, click close)

Text

B. Textbox B. R(Select dialog,

input content)

Save Non-

Text

C. Date picker C. R(Select dialog,

click date picker,

choose date, close)

Save

Continued on next page
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Table 5.2 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

D. Checkbox D. R(Select dialog,

click Time picker,

choose date, close)

Save

E. Time picker E. R(Click menu,

choose from list)

Close

F. Radio Box

G. Menu

H. Bar slide input

7
Dividers

A. Images A. R(Show Divider) Show images Text

B. R(Show Divider) Show con-

tent

8

Grid lists

A. Images A. R(Select image,

zoom in)

Show images

list

Text

B. Text B. R(Select grid

list, scrolling )

Show text

list

C. R(Select title,

sort)

Sort text

9
Lists

A. images A. R(Select title,

sort)

Show title

list

Text

B. Text Sort title list

10

(c)

Menus

A. Button A. R(Select text,

copy)

Show list in a

menus

Text

B. Text B. R(Select com-

bobox, choose con-

tent)

Links of but-

ton to an-

other pages

Non-

Text

Continued on next page
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Table 5.2 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

C. Combobox C. R(Select text,

write content)

D. Checkbox

E. Switch

F. Reorder

G. Ex-

pand/collapse

H. Leave-behinds

11

(c)
Pickers

A. Dialog A. R(Select dialog,

choose info)

Save Non-

Text

B. R(Select dialog,

cancel)

12 Progress &

activity

A. Button A. R(Click button) Loading Non-

Text

13
Selection

controls

A. Checkbox A. R(Click check-

box, change behav-

ior of page)

Change the

behavior of

the page

Non-

Text

B. Radio Buttons B. R(Click radio

button, change be-

havior of page)

C. On/Off switches C. R(Change

switch, change

behavior of page)

14 Sliders A Slide bar A. R(Change slider,

effect on page)

Insert input

Continued on next page
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Table 5.2 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

Change be-

havior of the

page

Non-

Text

15 Snackbars &

toasts

A. Button A. R(Click button,

display change)

Dismiss or

cancel the

action

Text

B. Text B. R(Show text) Non-

Text

16
Subheaders

A. Button A. R(Click button,

change page)

Filtering or

sorting the

content

Text

B. Text

17

Steppers

A. Button A. R(Click button

= next, next step)

Show feed-

back of the

process

Non-

Text

B. R(Click button

= previous, previ-

ous step)

C. R(Click button

= cancel, cancel

process)

18
Tabs

A. Dropdown Menu A. R(Select tab) Show con-

tent

Text

B. Text label B. R(Select tab) Show drop

menu

Continued on next page
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Table 5.2 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

19 Toolbars A. Button A. R(Click tool-

bars, display list,

click button)

Display the

list

Non-

Text

20 Tooltips A. Images A. R(Hover images) Show text Text

21

Text fields

A. Single-line text

field

A. R(Content,

click)

Save the con-

tent

Text

B. Floating Label

C. Multi-line text

field

D. Full-width field

text field with

Character counter

E. Multi-line with

character counter

F. Full-width text

field with character

counter

G. Auto-complete

text field

H. Inset auto-

complete

I. Full-width inline

auto-complete

J. In-line auto-

complete

The transitions connect the nodes and the clusters. Transitions are annotated

with input constraints to indicate what inputs and actions lead to the next node

138



Figure 5.13: Annotated FSM for New Medicines Cluster of Table 5.8

or cluster. Figure 5.13 shows the Add New Medicines input-action constraints. In

the New Medicines cluster, there are two states: either you enter the new medicine

by name (parMed) and accept it (buttonANMA), or you cancel the new medicine

(with or without giving the medicine name). Incoming and outgoing edges for this

cluster connect to the parent cluster. They don’t require any user actions. We also

added two dummy transitions to keep the graph single-entry-single exit.

Tables 5.3 to 5.12 show the transitions, explanation, and input action constraints.

Column 1 uniquely identifies each transition. Column 2 shows an explanation of the

transition. Column 3 shows all input action constraints with all required or optional

inputs. The corresponding graphs are mentioned in the caption of the tables. Table

5.3 shows 5 transitions for the main page cluster (AFSM). The transitions connect

the main page with four clusters and one LAP (Exit App). Table 5.4 shows 8 tran-

sitions for New Med cluster to connect with 4 clusters and two LAP nodes (Update

and Cancel). Table 5.5 shows 9 transitions for New New cluster to connect with 5

clusters and two LAP nodes (Update and Cancel). Table 5.6 shows 4 transitions for

modify med cluster to connect with Edit medicine cluster, delete LAP and cancel

LAP. Table 5.7 shows 3 transitions for New NameP cluster to connect with the ac-

cept LAP and the cancel LAP. Table 5.8 shows 3 transitions for the New Medicines

cluster to connect with the accept LAP and the cancel LAP. Table 5.9 shows 3

transitions for the Dosage cluster to connect with the accept LAP and the cancel
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LAP. Table 5.10 shows 3 transitions for the When cluster to connect with the accept

LAP and the cancel LAP. Table 5.11 shows 3 transitions for the Instructions cluster

to connect with the accept LAP and the cancel LAP. Table 5.12 shows 6 transitions

for the Edit cluster to connect with 3 clusters (Dosage, When, Instructions) and two

LAP nodes (Update and Cancel).

Table 5.3: Transitions of Figure 5.3 (Main Page Cluster AFSM)

Transition Explanation Constraints

A1
Access New

Medicines

R(selectN, buttonANM)

S(selectN, buttonANM)

Continue-use(SelectN)

A2 Access New

Name

R(buttonANN)

A3
Access Modify

Medicines

O(selectN), R(selectM)

S(selectN, selectM)

Continue-use(SelectN, SelectM)

A4 Exit the System R(buttonBack)

A5 Back to Main

Page

none
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Table 5.4: Transitions of Figure 5.4 (New Med Cluster)

Transition Explanation Constraints
B1 Access New Medicines R(buttonANM)
B2 Access Dosage R(buttonAD)
B3 Access When R(buttonAW)
B4 Access Instructions R(buttonAI)
B5 Cancel Add New Med R(buttonCNM)
B6 Add New Medicines R(buttonAM)
B7 cancel to New Med none
B8 Back to Main Page none

Table 5.5: Transitions of Figure 5.5 (New Name Cluster)

Transition Explanation Constraints

H1 Access New NameP R(buttonANNP)

H2 Access New Medicines R(buttonANM)

H3 Access Dosage R(buttonAD)

H4 Access When R(buttonAW)

H5 Access Instructions R(buttonAI)

H6 Cancel Add New Name R(buttonCNN)

H7 Add New Name R(buttonANNA)

H8 cancel to New Name none

H9 Back to Main Page none
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Table 5.6: Transitions of Figure 5.6 (Modify Med Cluster)

Transition Explanation Constraints

I1 Edit the Medicine O(Parname, parMed), R(buttonE)

S(Parname, parMed, buttonE)

Continue-use(parName, parMed)

I2 Delete the Medicine O(Parname, parMed), R(buttonD)

S(Parname, parMed, buttonD)

I3 Cancel to Previous Page O(Parname, parMed), R(buttonCE)

S(Parname, parMed, buttonCE)

I4 Back to Previous Page none

Table 5.7: Transitions of Figure 5.7 (New NameP Cluster)

Transition Explanation Constraints

C1 Add the new name R(parName, buttonANNPA)

S(parName, buttonANNPA)

Continue-use(parName)

C2 Cancel to Previous Page O(parName), R(buttonANNPC)

S(parName, buttonANNPC)

C3 Back to Previous Page none
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Table 5.8: Transitions of Figure 5.8 (New Medicines Cluster)

Transition Explanation Constraints

D1 Add the new Med R(parMed, buttonANMA)

S(parMed, buttonANMA)

Continue-use(parMed)

D2 Cancel to Previous Page O(parMed), R(buttonANMC)

S(parMed, buttonANMA)

D3 Back to Previous Page none

Table 5.9: Transitions of Figure 5.9 (Dosage Cluster)

Transition Explanation Constraints

E1 Add the new dosage R(parDosage, buttonADA)

S(parDosage, buttonADA)

Continue-use(parDosage)

E2 Cancel to Previous Page O(parDosage), R(buttonADC)

S(parDosage, buttonADC)

E3 Back to Previous Page none
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Table 5.10: Transitions of Figure 5.10 (When Cluster)

Transition Explanation Constraints

F1 Add the new when R(parWhen, buttonAWA)

S(parWhen, buttonAWA)

Continue-use(parWhen)

F2 Cancel to Previous Page O(parWhen), R(buttonAWC)

S(parWhen, buttonAWC)

F3 Back to Previous Page none

Table 5.11: Transitions of Figure 5.11 (Instructions Cluster)

Transition Explanation Constraints

G1 Add the new instructions R(parInstructions, buttonAIA)

S(parInstructions, buttonAIA)

Continue-use(parInstructions)

G2 Cancel to Previous Page O(parInstructions), R(buttonAIC)

S(parInstructions, buttonAIC)

G3 Back to Previous Page none
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Table 5.12: Transitions for Figure 5.12 (Edit Cluster)

Transition Explanation Constraints

J1 Access Dosage R(buttonAD)

J2 Access When R(buttonAW)

J3 Access Instructions R(buttonAI)

J4 Update the Medicine R(buttonEEU)

J5 Cancel to Previous Page R(buttonEEC)

J6 Back to Previous Page none

In addition to input-action constraints, there may be rules concerning how and

whether selected input values may be or must be reused (propagated). The types

of the propagated input values are:

• Continue-use: the selected input values must be reused later in the test path.

For example, the patient name must be passed to add new medicines cluster.

• Single-use: the selected input value must be used only once. For example,

when one deletes the medicine of a patient, it cannot used in the test again,

unless a new medicine is added with this name.

• Not-propagated: The input has no constraints on reuse. We may or may not

use it later in the test.

Table 5.13 shows the input constraints and the propagation rules for the main

page (AFSM) of Figure 5.3. Column 1 shows the Transition Annotation. Column

2 shows the input constraints.
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Table 5.13: Annotations for Main Page (AFSM) Transitions of Figure 5.3

Transition Constraints
A1 O(selectN), R(selectM)

S(selectN, buttonANM)
continue-use(selectN)

A2 R(buttonANN)
A3 O(selectN), R(selectM)

S(selectN, selectM)
continue-use(selectN, selectM)

A4 R(buttonBack)
A5 none

5.4 Phase 2: Generate Test Sequences

5.4.1 Paths through FSMs/AFSM

Test sequences are generated during phase 2 of the FSMApp method. The

user can select coverage criteria such as node, edge, edge-pair, simple round trip

and prime path coverage. A test sequence is a sequence of transitions through

the aggregate FSM and through each lower level FSM. FSMApp’s test generation

method first generates paths through each FSM based on some graph coverage

criterion, such as edge coverage.

We generate the test sequences for each cluster that satisfy edge coverage. Ta-

bles 5.14 to 5.23 show test paths for each cluster as sequences of nodes. The cor-

responding graphs are mentioned in the caption. Nodes in bold indicate the node

is a cluster node. For this App, with 10 clusters, several clusters only need a single

test path and only one cluster needs 4 paths. The total number of paths is 20. The

paths are relatively short.
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Table 5.14: Main Page Test Sequences of Figure 5.3

ID Test Sequence Length

1 [Main, New Med, Main, Exit] 4

2 [Main, New Name, Main, Exit] 4

3 [Main, Modify Med, Main, Exit] 4

Table 5.15: New Med Cluster Test Sequences of Figure 5.4

ID Test Sequence Length

1 [New medicines, New Med, New medicines, New Med,

Dosage, New Med, Cancel, Main Exit]

8

2 [New medicines, New Med,When, New Med, Cancel, Main

Exit]

6

3 [New medicines, New Med, Instructions, New Med, Add

New, Main Exit]

6

Table 5.16: New Name Cluster Test Sequence of Figure 5.5

ID Test Sequence Length

1 [New medicines, New Name, New medicines, New Name,

New nameP, New Name, Cancel, Main Exit]

8

2 [New medicine, New Name, Dosage, New Name, Cancel,

Main Exit]

6

3 [New medicines, New Name, When, New Name, Cancel,

Main Exit]

6

4 [New medicines, New Name, Instructions, New Name,

Cancel, Main Exit]

6
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Table 5.17: New NameP Cluster Test Sequences of Figure 5.7

ID Test Sequence Length

1 [New NameP, Accept, New NameP, Cancel, New NameP] 5

Table 5.18: New Medicines Cluster Test Sequences of Figure 5.8

ID Test Sequence Length

1 [New medicines, Accept, New medicines, Cancel, New

medicines]

5

Table 5.19: Dosage Cluster Test Sequences of Figure 5.9

ID Test Sequence Length

1 [Dosage, Accept, Dosage, Cancel, Dosage] 5

Table 5.20: When Cluster Test Sequences of Figure 5.10

ID Test Sequence Length

1 [When, Accept, When, Cancel, When] 5

Table 5.21: Modify Med Cluster Test Sequences of Figure 5.6

ID Test Sequence Length

1 [Modify Med, Edit, Modify Med] 3

2 [Modify Med, Cancel, Modify Med, Delete, Modify Med] 5

Table 5.22: Instructions Cluster Test Sequences of Figure 5.11

ID Test Sequence Length

1 [Instructions, Accept, Instructions, Cancel, Instructions] 5
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Table 5.23: Edit Cluster Test Sequences of Figure 5.12

ID Test Sequence Length

1 [Edit, Dosage, Edit, Cancel, Edit] 5

2 [Edit, When, Edit, Cancel, Edit] 5

3 [Edit, Instructions, Edit, Cancel, Edit] 5

By the end of this step, we generated all the test paths for each cluster.

5.4.2 Path Aggregation

The test sequences through FSM in HFSM are now aggregated into test se-

quences for the whole model. A number of aggregation criteria have been pro-

posed: all-combinations, each choice and base choice coverage [42]. We apply all-

combinations coverage. This is the most expensive aggregation coverage criteria.

The process results in a set of aggregate paths. We call them abstract tests. Algo-

rithm 1 shows the procedure to aggregate test paths .

The inputs to the algorithm are AFSM and cluster test paths. The output of

algorithm 1 is a set of aggregated test paths. Line 1 of the algorithm copies AFSM

test paths into an input List. Line 2 iterates through every test path from the input

list. Line 3 takes one test path from the list. Then, we sequentially check each node

in the path whether it is a cluster node. If there is a cluster node in the path, then

a loop replaces the cluster node with each cluster path and creates as many new

partially aggregated paths as there are paths through this cluster node.

For example, the first test path in AFSM [Main, New Med, Main, Exit] in

Table 5.14 can be aggregated as follows: The test path has one cluster node (New

med). The cluster node should be replaced by the New Med cluster test paths from
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Input: AFSM and Cluster Test Paths
Result: outputList = Set of Aggregated Paths
1: inputList = AFSM paths
2: while inputList has next path do
3: currentPath = get one path from inputList
4: pathDone = true
5: for i = 1 to Length(currentPath) do
6: if nodei is cluster node then
7: for j = 1 to Length(Cluster paths) do

replace nodei with cluster pathj and add new path into inputList
8: end for
9: add list paths to inputList
10: remove currentPath from inputList
11: i = length (currentPath) +1
12: pathDone = false
13: end if
14: end for
15: if pathDone is true then
16: Move currentPath into outputList
17: end if
18: end while

Algorithm 1: Aggregated Test Paths
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Table 5.15. The results of this step are three paths:

1. Main, New Medicines, New Med, New Medicines, New Med, Dosage,

New Med, Cancel, Main Exit, Main, Exit

2. Main, New Medicines, New Med, When, New Med, Cancel, Main Exit,

Main, Exit

3. Main, New Medicines, New Med, Instructions, New Med, Add New, Main

Exit, Main, Exit

Test 1 still has three cluster nodes: New Medicines, New Medicines and Dosage

cluster nodes. Test 2 has New Medicines and When cluster nodes. Test 3 has New

Medicines and Instructions cluster nodes. After we replace all the cluster nodes, we

get the following test paths.

1. Main, New medicines, Accept, New medicines, Cancel, New medicines, New

Med, New medicines, Accept, New medicines, Cancel, New medicines, New

Med, Dosage, Accept, Dosage, Cancel, Dosage, New Med, Cancel, Main Exit,

Main, Exit

2. Main, New medicines, Accept, New medicines, Cancel, New medicines, New

Med, When, Accept, When, Cancel, When, New Med, Cancel, Main Exit,

Main, Exit

3. Main, New medicines, Accept, New medicines, Cancel, New medicines, New

Med, Instructions, Accept, Instructions, Cancel, Instructions, New Med, Add

New, Main Exit, Main, Exit

Table 5.24 shows the aggregated test paths of the Family Medicines list app as

sequences of nodes. Column one shows the id of the test path. Column two shows

151



the abstract test paths. Column three shows the length of the test paths in terms of

nodes. The total length of the test paths is 181 nodes. The longest path consists of

23 nodes, but there are only two of those. The shortest has 8 nodes. Median length

is 17 nodes.

Id Test Path Length

1 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Med, New medicines, Accept, New medicines, Cancel, New

medicines, New Med, Dosage, Accept, Dosage, Cancel, Dosage, New

Med, Cancel, Main Exit, Main, Exit ]

23

2 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Med, When, Accept, When, Cancel, When, New Med, Cancel, Main

Exit, Main, Exit ]

17

3 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Med, Instructions, Accept, Instructions, Cancel, Instructions, New

Med, Add New, Main Exit, Main, Exit ]

17

4 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Name, New medicines, Accept, New medicines, Cancel, New

medicines, New Name, New NameP, Accept, New NameP, Cancel, New

NameP, New Name, Cancel, Main Exit, Main, Exit ]

23

5 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Name, Dosage, Accept, Dosage, Cancel, Dosage, New Name, Cancel,

Main Exit, Main, Exit ]

17

6 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Name, When, Accept, When, Cancel, When, New Name, Cancel,

Main Exit, Main, Exit]

17

7 [Main, New medicines, Accept, New medicines, Cancel, New medicines,

New Name, Instructions, Accept, Instructions, Cancel, Instructions, New

Name, Add New, Main Exit, Main, Exit ]

17

8 [Main, Modify Med, Cancel, Modify Med, Delete, Modify Med, Main,

Exit ]

8
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9 [Main, Modify Med, Edit, Dosage, Accept, Dosage, Cancel, Dosage, Edit,

Cancel, Edit, Modify Med, Main, Exit ]

14

10 [Main, Modify Med, Edit, When, Accept, When, Cancel, When, Edit,

Cancel, Edit, Modify Med, Main, Exit ]

14

11 [Main, Modify Med, Edit, Instructions, Accept, Instructions, Cancel, In-

structions, Edit, Cancel, Edit, Modify Med, Main, Exit ]

14

Total Length 181

Table 5.24: Aggregated Test Paths

When we build the model, we added dummy nodes and transitions to ensure

single-entry-single exit cluster models. Table 5.24 shows them in italics. These do

not require any inputs as they are not really testing steps. However, they increase the

length of the test paths. The next step removes these dummy nodes and transitions

and replaces each remaining node pair (edge) with its corresponding input action

constraint.

Input: Set of Aggregated Paths , Number of Paths n
Result: Sequence of Input constraints for Each Aggregated Test Path
1: for i = 1 to n do
2: for j = 1 to Length(pathi)-1 do
3: if edge(nodej,nodej+1) has constraint then
4: add to constraint sequence for pathi
5: end if
6: end for
7: end for

Algorithm 2: Test Step Reduction

Algorithm 2 shows the procedure for test step reduction. The algorithm has two

inputs: the set of Aggregated Paths and the number of paths. The output of the

algorithm is the sequence of input constraints for each aggregated test path. The

algorithm has two loops: the first loop processes all test paths. The second loop
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visits each node pair (edge) of the test path and adds the constraint on the edge to

the sequence if there is one. Table 5.25 shows the result of the test step reduction for

the first aggregated test path. Column one shows the id of the test path. Column two

shows the Transition Id for constraint sequence. Column three shows the Constraint

Sequence of the reduced test path. Each input action constraint is separated by a

horizontal line. The last column shows the length of the constraint sequence.

Note that test path length is reduced by more than half, from 23 to 11 steps. We

added the input constraints based on Tables 5.3 to 5.12. Table D.11 in Appendix D

shows the aggregated test paths with the transitions. The first test path of Table

D.11 can be reduced by removing the transitions without constraints. The transi-

tions without constraint are A5, B7, B8, D3, and E3. Table D.11 in Appendix D

shows the test sequences in the form of input constraint sequences for all aggregated

paths in its column 3.

One of the goals of this approach is to extend the FSMWeb to test mobile

applications while keeping the size and the complexity of test paths manageable.

For this example, there are 11 test sequences, their length varying between 4 and

11 with a total length of 87. Table 5.26 shows length before and after the reduction

step. Column 1 shows the id of the test path. Column 2 shows the length of the

aggregated test path from Table 5.24 in terms of number of nodes. Column 3 shows

the length of the test paths after the reduction as number of edges in order to

compare the result with the other approaches in Chapter 6. Column 4 and 5 show

the inputs and actions. Since, every step includes one action, the number of actions

and test steps is the same. Input action constraints may or may not require inputs

or multiple inputs before an action (like a button click) leads to a transition event.

We will discuss Column 4 and Column 5 in more detail in subsection 5.4.3. The

last row of the table shows the total length of aggregated test paths as 181 nodes
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Table 5.25: Test Path After Reduction Step

ID Edge Id Constraint Length
1 A1 R(SelectN, buttonANM) 11

S(SelectN, buttonANM)
continue-use(SelectN)

D1 R(parMed, buttonANMA)
S(parMed, buttonANMA)
Continue-use(parMed)

D2 O(parMed), R(buttonANMC)
S(parMed, buttonANMC)

A1 R(buttonANM)
D1 R(parMed, buttonANMA)

S(parMed, buttonANMA)
Continue-use(parName)

D2 O(parMed), R(buttonANMC)
S(parMed, buttonANMC)

H3 R(buttonAD)
E1 R(parDosage, buttonADA)

S(parDosage, buttonADA)
Continue-use(parDosage)

E2 O(parDosage), R(buttonADC)
S(parDosage, buttonADC)

B6 R(buttonAM)
A4 R(buttonBack)
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Table 5.26: Length of Before and After Reduction Step

Test Path ID Before Reduction Step After Reduction Step Inputs Actions
1 23 11 6 11
2 17 8 4 8
3 17 8 4 8
4 23 11 6 11
5 17 8 4 8
6 17 8 4 8
7 17 8 4 8
8 8 4 4 4
9 14 7 4 7
10 14 7 4 7
11 14 7 4 7

Total 181 87 48 87

(170 edges) and the total length of the test sequence after the reduction step as 87

transitions. We reduce the transitions by 49%. After the reduction step, the longest

test sequence consists of 11 transitions, but there are only two of those. The shortest

has 4 transitions. The median length is 8 transitions. The reduction step helps to

keep the size and complexity of the test sequences manageable.

5.4.3 Input Selection

The final step of test generation is selecting inputs to replace the input con-

straints in the test sequence constructed in subsection 5.4.2. The test values are

selected by the test designer.

We do not require specific input domain coverage to keep the test designer free

to make their own decision in this regard. For example, the test designer can

generate input values by covering partitions or randomly selecting values from a

list as long as input selection constraints are met. The test designer chooses values

for related inputs. For example, the test designer chooses which medicine to match
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with the patient name. At the end of this step, we have a set of inputs for the

execution phase. Table 5.27 shows the set of inputs for test path 8 of Table 5.24.

Column one shows the constraint sequence, and column two shows the input values

that meet the constraints. The last column explains each value. Test 8 has four

inputs and five actions. The inputs are patient name (parname) and medicine name

(parMed) which occurs twice in test 8. The input values are selected by the test

designer. Both ad-hoc and coverage based value selection are possible. The actions

are select patient name (SelectN), select medicine (SelectM), Click delete button

buttonD), click cancel button (buttonCE) and click back arrow to exit the mobile

app (buttonBack).

In Appendix D, Table D.11 shows the input selection for all test sequences of the

Family Medicine List app. Table D.11 is structured similarly to Table 5.27, except

that it adds Test Id as the first column. The total number of inputs is 48, and the

total number of actions is 87. There is a difference between the inputs and the actions

because some of the test steps only require clicks (actions). The unique inputs are

name (parname), medicine name (parMed), amount of dosage (parDosage), time

of medicine (parWhen) and medicine instruction (parInstruction). Their are five

unique inputs, and 27 unique actions (Buttons or Combobox).

5.5 Phase 3: Execute and Validate Tests

Unlike FSMWeb which assumes that testers make their tests executable manu-

ally, for Mobile Apps many Automatic tools are available to run the test cases, as

long as we know which inputs need to be used. For example, tests can be converted

to Selenium or any of the other candidate execution environments we identified in

Subsection 2.2.2. If we use Selenium, the Appium server executes the Selenium
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Table 5.27: Test Path 8 With input values

Edge Id Constraint Value Explanation
A3 O(SelectN), R(SelectM) selectN =

"Trev"
Random selec-
tion from name
list

S(SelectN, SelectM) selectM = "As-
prin"

Random se-
lection from
medicine list

Continue-use(SelectN, Se-
lectM)

I3 O(parName), R(parMed, but-
tonCE)

parName =
"Trev"

Random selec-
tion from the
database

S(parName, parMed, but-
tonCE))

parMed = "As-
prin"

Random selec-
tion from the
database

continue-use(parName,
parMed)

buttonCE =
click

Push Cancel
Edit Button

I2 O(parName), R(parMed, but-
tonD)

parName =
"Trev"

Random selec-
tion from the
database

S(parName, parMed, but-
tonD)

parMed = "As-
prin"

Random selec-
tion from the
database

buttonD buttonD = click Push Delete
Button

A4 R(buttonBack) buttonBack =
click

Push back arrow
to exit the app

code and reports results, including pass or fail for each test. Appium is easy to set

up and available open-source. Hence, we chose it to execute our test cases for the

example. Selenium [23] is an open source software testing framework for web and

mobile applications. Selenium provides a test domain-specific language to write the

tests such as Java, Python, C# and PHP. Selenium runs on Windows, Linux and

MAC. Figure 5.15 shows the Selenium code of Test 8 in Table 5.24. First, the test

function calls setUP() in line 4. The SetUp() function is shown in Figure 5.14. The
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setup() function connects Appium with the mobile device before executing each test

case. Desired capabilities specify the set up for the Appium server as well as the test

values. This includes the connection type, device name, operating system version

(platformVersion), operating system (platformName), app package and app activity.

They are sent to the Appium server by the Android Driver via a URL Connection.

Lines 6-9 in Figure 5.15 find the combobox of the patient name then select the

name. Selenium will look for the input types in Table 5.2 and save the reference

to the input types using the findEelementByAndroidUIautomator function. Then,

we can send the input values and the events using the reference of the object such

as AddMed.click(). Lines 10-12 find the medicine name combobox and select the

medicine to enter for the edit page. Lines 13-15 find the cancel element and perform

the cancel action. Line 16 enters the edit page again because we reference the edit

page. Lines 17-19 finds the delete button and performs the delete action, then goes

back to the main page. Line 20 presses the back button on the Android device.

Finally, line 23 disconnects the connection with the mobile app to start a new test

case.

The test cases were executed on a Samsung edge 6 phone with Android version

7.0. Figure 5.16 shows the results of the test executions: ten test cases passed and

one failed. Test 9 failed because the app was unable to change the patient and

medicine name. The execution time for the test suite is 10 minutes. Figures D.1

to D.10 in Appendix D show the selenium code for the remaining test cases. All

but one test case passed. Test 9 (in Table D.8) failed. Figure 5.16 shows that test

9 failed.
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Figure 5.16: Example Execution Results
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Chapter 6

Comparing FSMApp and other Approaches

In Chapter 2, we identified 2 approaches ([88, 37]) that also perform Black-Box

MBT for Mobile Apps. In this chapter, we compare FSMApp with these approaches

[88, 37]. Later in Chapter 7, we perform a number of case study comparisons.

The example used here to compare FSMApp and other approaches is the Family

Medicine App (Subsection 5.2) which we introduced as our running example to

illustrate how the FSMApp method works. Subsection 6.1 introduces the ESG

method [88]. Subsection 6.2 describes the GUI Crawling-Based Technique [37]. We

apply these techniques to the Family Medicine App. Subsection 6.3 compares the

results for FSMApp with these approaches.

6.1 Event Sequence Graph (ESG) Method

de Cleva Farto et al. [88] used an Event Sequence Graph (ESG) to test mobile

apps. Their approach consist of the following phases:

1. Create the Event Sequence Graph (ESG) test model. An Event Sequence

Graph (ESG) is a directed graph which includes events (nodes)1 and edges to

1FSMApp refer to events as actions

163



connect the events. The nodes "start" and "end" of the graph represent the

start and the end of node of the graph. The ESG does not include (multiple)

inputs in the graph explicitly rather, they are modeled with decision tables

nodes that are associated with nodes that are marked as double circles.

2. Generate paths and implement test cases from the ESG model. de Cleva

Farto et al. [88] use TSD4WSC to generate the ESG model and complete

Event Sequences (CESs). An CES is a linear sequence test path. The CESs

are generated from ESG to cover all edges. Input and output values are

determined using the decision table(s) mentioned above. Then, CESs are

converted to Robotium. The input selection is ad-hoc from the decision table.

3. Execute implemented test cases with Robotium and collect data. The CESs

are executed in the Android Virtual Device (AVD). Execution time is measured

and faults are identified.

We apply this method to the Family Medicines List App. Figures 6.1 to 6.3 show

the Event Sequence Graph of the Family Medicines List application. We divided

the ESG into three figures since even for this small app, the graph is rather large.

The double-circled nodes associated with providing a decision table(s). Decision

tables (DT) describe type of input data required for test cases and any constraints

for value selection[170]. Decision tables help to select inputs for the events of the

ESG model. A decision table [59] is defined as DT = {C, E, R} where

• C is a set of constraints with value true, false or do not care.

• E is a set of events.

• R is a set of rules for inputs that causes an event to occur.
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This is similar to the input selection constraints in FSMApp. Tables 6.1 to 6.6

shows the DTs of the family medicine list app. For example, Table 6.1 shows the

decision table for new medicines. The constraints (C) are Medicine value (parMed),

accept button (buttonANMA) and cancel button (buttonANMC). The Events are

accept or cancel "add new medicine". The first rule (R1) means if perMed has a

value and buttonANMA is clicked, then the medicine name is saved. R2 means

regardless of when that perMed has a value and buttonANMC is clicked, then the

medicine is cancelled. The decision table also covers error message events (See nodes

in Figure 6.1). If a value is selected that does not meet any of the constraint in the

decision table or if a required field is not filled in, an error message is sent.

Table 6.1: New Medicines (ESG) Decision Table

Rules

New Medicines R1 R2

Constr.

parMed T DC

buttonANMA T F

buttonANMC F T

Events
Accept X

Cancel X
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Table 6.2: New NameP (ESG) Decision Table

Rules

newNameP R1 R2

Constr.

parName T DC

buttonANNPA T F

buttonANNPC F T

Events
Accept X

Cancel X

Table 6.3: Dosage (ESG) Decision Table

Rules

Dosage R1 R2

Constr.

parDosage T DC

buttonADA T F

buttonADC F T

Events
Accept X

Cancel X
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Table 6.4: When (ESG) Decision Table

Rules

When R1 R2

Constr.

parWhen T DC

buttonAWA T F

buttonAWC F T

Events
Accept X

Cancel X

Table 6.5: Instruction (ESG) Decision Table

Rules

Instructions R1 R2

Constr.

parInstruction T DC

buttonAIA T F

buttonAIC F T

Events
Accept X

Cancel X
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Table 6.6: Edit (ESG) Decision Table

Rules

Edit R1 R2

Constr.

parName T T

parMed T T

buttonE T F

buttonCE F T

Events
Delete X

Cancel X

ESG generates a single test path or multiple test paths that full fills edge cov-

erage. Table 6.7 lists the 17 test paths. It consists of 210 nodes including decision

table nodes. The test paths in Table 6.7 provide edge coverage.
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Table 6.7: Family Medicines List (ESG) Test Paths

Id Test Path Length

1 [, Show_Main_Screen, Press_back,] 2

2 [, Show_Main_Screen, Press_Add_New_Med_Button,

New_Med, Press_cancel_Button, Show_Main_Screen,

Press_Add_New_Med_Button, New_Med, Inform_Data, Dis-

play_error_message, Inform_Data, Press_Add_New_Button

,]

11

3 [, Show_Main_Screen, Press_Add_new_med_button,

new_med, click_to_enter_instruction_button, cancel, new_med,

click_to_enter_instruction_button, press_back, New_Med,

Click_to_enter_Instruction_Button, inform_data, dis-

play_error_message, inform_data, press_accept_button ,]

14

4 [, Show_Main_Screen, Press_Add_New_Med_Button,

New_Med, Click_to_enter_when_button, cancel, New_Med,

Click_to_enter_when_button, press_back, new_med,

click_to_enter_when_button, inform_data, dis-

play_error_message, inform_data, press_Accept_Button,]

14

5 [, Show_Main_Screen, Press_Add_New_Med_Button,

New_Med, Click_to_enter_med_button, cancel, new_med,

click_to_enter_new_med_button, press_back, new_med,

click_to_enter_new_med_button, inform_data, dis-

play_error_message, inform_data, press_accept_button,]

14

6 [, Show_Main_Screen, Press_Add_New_Med_Button,

New_Med, click_to_enter_dosage button, cancel, new_med,

click_to_enter_dosage_button, press_back, new_med,

click_to_enter_dosage_button, inform_data, dis-

play_error_message, inform_data, press_Accept_button, ]

15

Continued on next page
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Table 6.7 – continued from previous page

Id Test Path Length

7 [, Show_main_screen, select_name, show_med_list, select_med,

show_med, cancel, show_main_screen, select_name, show_med_list,

select_med, show_med ,delete,]

12

8 [, Show_main_screen, select_name, show_med_list, select_med,

show_med, edit, edit_entry, press_back, edit_entry, inform_data,

display_error_message, inform_data, update, ]

13

9 [, show_main_screen, select_name, show_med_list, select_med,

show_med, edit, edit_entry, click_to_enter_dosage, cancel,

edit_entry, press_back, edit_entry, click_to_enter_dosage, in-

form_data, display_error_message, inform_data, accept, ]

17

10 [, Show_main_screen, select_name, show_med_list, select_med,

show_med, edit, edit_entry, click_to_enter_when, cancel, edit_entry,

press_back, edit_entry, click_to_enter_when, inform_data, dis-

play_error_message, inform_data, accept,]

17

11 [, Show_main_screen, select_name, show_med_list, se-

lect_med, show_med, edit, edit_entry, press_back,

edit_entry, click_to_enter_instructions, cancel, edit_entry,

click_to_enter_instructions, inform_data, display_error_message,

inform_data, accept, ]

17

12 [, Show_main_screen, press_new_name_button, cancel,

show_main_screen, press_new_name_button, inform_data,

display_error_message, inform_data, update ,]

9

13 [, show_main_screen, press_new_button, click_to_enter_new_name,

cancel, press_new_name_button, click_to_enter_new_name,

press_back, press_new_name_button, click_to_enter_new_name,

inform_data, display_error_message, inform_data, accept, ]

13

Continued on next page
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Table 6.7 – continued from previous page

Id Test Path Length

14 [, show_main_screen, press_new_name_button,

click_to_enter_new_med, cancel, press_new_name_button,

click_to_enter_new_med, press_back, press_new_name_button,

click_to_enter_new_med, inform_data, display_error_message,

inform_data, accept, ]

13

15 [, Show_main_screen, press_new_name_button,

click_to_enter_new_dosage, cancel, press_new_name_button,

click_to_enter_new_dosage, press_back, press_new_name_button,

click_to_enter_new_dosage, inform_data, display_error_message,

inform_data, accept, ]

13

16 [, Show_main_screen, press_new_name_button,

click_to_enter_when, cancel, press_new_name_button,

click_to_enter_when, press_back, press_new_name_button,

click_to_enter_new_when, inform_data, display_error_message,

inform_data, accept, ]

13

17 [, Show_main_screen, press_new_name_button,

click_to_enter_instructions, cancel, press_new_name_button,

click_to_enter_instructions, press_back, press_new_name_button,

click_to_enter_instructions, inform_data, display_error_message,

inform_data, accept, ]

13

de Cleva Farto et al. [88] consider the selection of inputs a constraint satisfaction

problem (CSP) [191]. CSP is defined by a set of variables and conditions (C). A

variable consider a all possible values of the nonempty domain. The constraint

constant of subset of variables and combinations of values which make an event

true. Table 6.1 has two CSPs:

• C1 = {parMed = "Aspirin"; buttonANMA= Click}
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• C2 = {buttonANMC= Click}

de Cleva Farto et al. [88] execute a test path with CSPs using Robotium frame-

work [22]. We execute the test path on Appium so as to better compare the ap-

proaches. The test cases were executed on a Samsung edge 6 phone with Android

version 7.0. Table 6.12 shows the summary of ESG execution. The execution time

is 15 minutes. All test cases passed except two test paths failed (Test 5 and 8). ESG

found one defect which cannot update the patient name and medicine name. Also,

ESG tests failed because when the test performs a press back button action to the

previous state, the test setup failed, because the app exits instead of going to the

previous page.

6.2 A GUI Crawling-Based Technique for Android

Mobile Application Testing

Amalfitano et al. [37] used a crawler-based automated technique to test mobile

applications for crash testing and regression testing. We focus on black-box func-

tional testing without crash testing to compare with FSMApp. Amalfitano et al.

[37] described the following phases:

1. Create the model using a crawler-based technique. The technique generates a

GUI Tree using an iterative depth-first search. The nodes of the tree represent

the user interfaces (mobile screens) of the mobile app and the edges represent

the event based transitions between the nodes. The model reaches a leaf node

when it encounters an event that causes a loop. The tool captures data of

the screens and events. When events are fired, they are written on the edges.

Amalfitano et al. [37] also provide a supporting tool A2T 2 (Android Automatic
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Testing Tool). The tool developed in Java with three main components: the

Java code instrumentation, the GUI Crawler, and the Test Case Generation.

The Java code instrumentation allows java to capture the crashes at run-

time. The GUI Crawler generates GUI tress. The Test Case Generation

generate the abstract executable testing case with the support of crash testing

and regression testing. The tool supports TextView labels, TextEdit fields,

Buttons, and Dialogs only.

The GUI crawler relies on two main temporary lists: an event list and an

interface list. The event list captures the fired events and the interface list

captures the information on the screens. The GUI tree is generated by the

following steps:

(a) When the app is opened, the first screen is considered the root of the tree.

The first screen should be described in term of activity instance, widgets,

properties and event handlers (See Appendix A). The screen description

adds into interface list to distinguish between the mobile screens.

(b) Find all the interface fireable events, choose random values to fire the

event that sets into the widget editable properties and add the description

(pre-conditions) into event list.

(c) Choose one fireable event from the event list with the needed precondi-

tions and fire it.

(d) Get the current interface and add a node for the interface to the GUI tree

and connect the node with an edge between the node and the associated

nodes.

(e) Describe the current interface in terms of activity instance, widgets, prop-

erties and event handlers and store the description in the interface list.
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Check the current interface is equivalent to previous any visited interfaces

or it is new interface. if the current interface is equivalent or it does not

have any fireable event, the current interface node will be a leaf. Oth-

erwise, the current interface considers as new interface, describes each

events of the interface and add it to the event list. The event to call the

current interface removes from the event list.

(f) repeat steps (c)-(e) until the fireable event list is empty

2. Test cases are the event sequences from the root node of the tree to the leaves of

the tree. The test cases are generated with the A2T 2 tool using the Robotium

framework2. Test cases meet edge coverage.

3. A2T 2 tool and Robotium framework execute the test cases and captures the

injected faults. The test cases are JUnit test cases.

We apply this method to the Family Medicines List App. Figures 6.4 to 6.6

show the tree of the Family Medicines List application. We divided the tree into

three figures since even for this small app, the graph is rather large. The actions

associated edges are shown in Table 6.8 to keep the tree simple. Table 6.8 has four

columns. Columns 1 and 3 represent Edges id on the figures, and columns 2 and 4

represent the action on the edges. The tree has 88 nodes and 88 edges. We generated

the model in 44 minutes.

2The Robotium framework is a testing tool for mobile apps and for analysing the components
of Android apps when they are executing.
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Table 6.8: A GUI Crawling-Based Technique for Android Mobile Application Test-
ing Edges

Edges Actions Edges Actions

E1 Select Name E45 Click on Cancel Button

E2 Click on Selected Medicines E46 Click on Accept Button

E3 Click on Cancel Button E47 Click on Add New Button

E4 Click on Delete Button E48 Click on Cancel Button

E5 Click on Edit Button E49 Click on Add new Button

E6 Click on Cancel Button E50 Click on OK Button

E7 Click on Dosage Button E51 Click on New Name Button

E8 Click on When Button E52 Click on Cancel Button

E9 Click on Instruction Button E53 Click on Cancel Button

E10 Click on Update Button E54 Click on Accept Button

E11 Click on Cancel Button E55 Click on Cancel Button

E12 Click on Accept Button E56 Click on Accept Button

E13 Click on Cancel Button E57 Click on Accept Button

E14 Click on Accept Button E58 Click on Cancel Button

E15 Click on Cancel Button E59 Click on Accept Button

E16 Click on Accept Button E60 Click on Cancel Button

E17 Click on Add New Med Button E61 Click on Cancel Button

E18 Click on Add Cancel Button E62 Click on Accept Button

E19 Click on Add New Button E63 Click on Accept Button

E20 Click on Add New Med Button E64 Click on Cancel Button

E21 Click on Dosage Button E65 Click on Accept Button

E22 Click on When Button E66 Click on Cancel Button

E23 Click on Instruction Button E67 Click on Cancel Button

E24 Click on OK Button E68 Click on Accept Button

E25 Click on Cancel Button E69 Click on Accept Button

E26 Click on Accept Button E70 Click on Cancel Button

E27 Click on Cancel Button E71 Click on Accept Button

E28 Click on Accept Button E72 Click on Cancel Button

E29 Click on Cancel Button E73 Click on Cancel Button

E30 Click on Accept Button E74 Click on Accept Button

E31 Click on Cancel Button E75 Click on Accept Button

E32 Click on Accept Button E76 Click on Accept Button

E33 Click on Add Cancel Button E77 Click on Cancel Button

E34 Click on Accept Button E78 Click on Cancel Button

E35 Click on Add Cancel Button E79 Click on Cancel Button

E36 Click on OK Button E80 Click on Accept Button

E37 Click on Add Cancel Button E81 Click on Accept Button

E38 Click on Accept Button E82 Click on Accept Button

E39 Click on Add Cancel Button E83 Click on Cancel Button

E40 Click on Accept Button E84 Click on Cancel Button

E41 Click on Add Cancel Button E85 Click on New Med Button

E42 Click on Accept Button E86 Click on Instruction Button

E43 Click on Add Cancel Button E87 Click on When Button

E44 Click on Accept Button E88 Click on Dosage Button
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Table 6.9 lists test cases. Columns 1 and 2 show the test id. Columns 2 and 4

show the test paths. Columns 3 and 6 show the length of test paths. The Crawler-

based approach generated 51 test paths with a total length of 240 steps. Table 6.10

shows the unique inputs for test cases. The total inputs and actions for test cases

are 272. Most of the inputs are repeated because we have many test paths.

Table 6.9: Family Medicines List (GUI Crawling-Based Technique) Test Paths

Id Test Path Length Id Test Path Length

1 [I1, I2] 2 26 [I1, I18, I41, I42, I43] 5

2 [I1, I3, I4] 3 27 [I1, I18, I41, I42, I44] 5

3 [I1, I3, I5] 3 28 [I1, I18, I41, I45, I46] 5

4 [I1, I3, I6, I7] 4 29 [I1, I18, I41, I45, I47] 5

5 [I1, I3, I6, I8, I9] 5 30 [I1, I48, I49] 3

6 [I1, I3, I6, I8, I10] 5 31 [I1, I48, I50, I51] 4

7 [I1, I3, I6, I11, I12] 5 32 [I1, I48, I52, I53, I82] 5

8 [I1, I3, I6, I11, I13] 5 33 [I1, I48, I52, I53, I83] 5

9 [I1, I3, I6, I14, I15] 5 34 [I1, I48, I52, I88, I54] 5

10 [I1, I3, I6, I14, I16] 5 35 [I1, I48, I52, I88, I55] 5

11 [I1, I3, I6, I17] 4 36 [I1, I48, I56, I57, I58] 5

12 [I1, I18, I19] 3 37 [I1, I48, I56, I57, I59] 5

13 [I1, I18, I20, I21] 4 38 [I1, I48, I56, I60, I61] 5

14 [I1, I18, I22, I23, I80] 5 39 [I1, I48, I56, I60, I62] 5

15 [I1, I18, I22, I23, I81] 5 40 [I1, I48, I63, I64, I65] 5

16 [I1, I18, I22, I24, I25] 5 41 [I1, I48, I63, I64, I66] 5

17 [I1, I18, I22, I24, I26] 5 42 [I1, I48, I63, I67, I68] 5

18 [I1, I18, I27, I28, I29] 5 43 [I1, I48, I63, I67, I69] 5

19 [I1, I18, I27, I28, I30] 5 44 [I1, I48, I70, I71, I72] 5

20 [I1, I18, I27, I31, I32] 5 45 [I1, I47, I70, I71, I84] 5

21 [I1, I18, I27, I31, I33] 5 46 [I1, I48, I70, I73, I74] 5

22 [I1, I18, I34, I35, I36] 5 47 [I1, I48, I70, I73, I85] 5

23 [I1, I18, I34, I35, I37] 5 48 [I1, I48, I75, I76, I77] 5

24 [I1, I18, I34, I38, I39] 5 49 [I1, I48, I75, I76, I86] 5

25 [I1, I18, I34, I38, I40] 5 50 [I1, I48, I75, I78, I79] 5

51 [I1, I48, I75, I78, I87] 5
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Table 6.10: Parameter for GUI-Crawling-based Technique

Name Value
Select Name Trev
Select Med Aspirin : 25 mg
Dosage 25 mg
When Everyday

New Med FIBER
New Name Ahmed
Instruction One Per Day

Table 6.12 shows the summary results of the Crawler-based approach execution.

The execution time is 23 minutes. Crawler-based results are 50 passed and one

failed (Test 31). The approach found one defect which cannot update the patient

name and medicine name.

6.3 Comparison of Results

We will compare FSMApp, ESG and the Crawler-based techniques with respect

to models, path generation, input generation and test execution.

Table 6.11 compares FSMApp, ESG and the Crawler-based techniques with re-

spect to model building, test generation, input selection, and making tests exe-

cutable and test execution. During model building, input constraints are repre-

sented on the edges in FSMApp as compared to an event list in the Crawler-based

technique whereas ESG represents them with double circles node with an associ-

ated decision table. Actions are represented on the edges in both FSMApp and the

Crawler-based technique, but in ESG they are represented as a node. App Screen

(Active) is a LAP in FSMApp, but a node in ESG and the Crawler-based technique.

FSMApp, ESG and the Crawler-based approaches navigate the model of the mobile

application by edge traversal.
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Clusters are only available in FSMApp. FSMApp generates the test paths by

first generating paths for each cluster FSM, and then aggregating paths based on

coverage criteria. ESG and Crawler-based approaches use a tool to determine the

test paths. Only FSMApp removes dummy nodes from test paths to reduce test

sequences. Input generation for test sequences in FSMApp is based on resolving

input-action constraints. ESG uses ad-hoc selection from the decision table. In

case of an incorrect value or a lack of filling a field an error message is sent. The

Crawler-based approach generates the input randomly and stores them in the event

list.

FSMApp does not require to use any particular tools to make tests executable

and execute them. Subsection 5.5 showed how to automate this step using Se-

lenium/Appium. ESG and the Crawler-based approaches run their tests using

Robotium.

Table 6.12 compares the results of FSMApp, ESG, and Crawling approaches on

the Family Medicines App. Column one and two identify the four phases of test

generation and execution. Phase 1 is model building. Phase 2 is test sequence

generation, Phase 3 is input selection, and Phase 4 is execution and validation of

tests. Column three shows units of comparison. For model generation, we compare

model size in terms of nodes, edges, and clusters, as well as model generation time.

For test sequence generation, we compare the size of the test sequence in terms of the

number of sequences and the total number of test steps. We also compare the time

it takes to generate them (in minutes). For input selection, we compare the number

of inputs and actions, as well as input generation time. Finally, for test execution,

we compare how much test code needed to be written, the number of tests that

failed/ passed and the number of defects found. We also compare execution time.

Column 4-6 show the results for FSMApp, and ESG [88], and the Crawler-based
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technique [37], respectively.

We compare the results in Table 6.12 for each phase:

• Model generation: The FSMApp model is far smaller than both ESG and the

Crawler-based technique in terms of nodes and edges. Building the model for

FSMApp takes much less time (12 versus 29 and 44 minutes), respectively.

One reason for this is of course that the model for FSMApp is much smaller,

but the cluster also required fewer repeated nodes and edges. The Crawling-

based technique and ESG have the same number of nodes and edges, whereas

FSMApp has half the number of nodes because the clusters reduce the number

of the nodes and the edges instead of repeating them.

• Generation of test sequences: FSMApp generated 11 test sequences compared

to 17 and 51 test sequences, respectively. The Crawler-based approach gen-

erates a large number of test sequences because the approach does not sup-

port loops, and stops when it encounters a repeated screen. The FSMApp

has significantly fewer total test steps (87 steps versus 219 and 240, respec-

tively). The ESG and the Crawler-based approach have far more steps because

these approaches result in many repeated actions and have many more test

sequences. The Crawler-based approach takes the least time to generate test

sequences, because it is easy to follow the path from the root to the leaf of the

tree. FSMApp takes 31 minutes (compared to 88 and 15 for the other two)

because we generate the test sequences for each cluster, aggregate them, and

then perform test step reduction.

• Input selection: The total number of inputs and actions is comparable for

ESG and FSMApp, with 135 versus 150 inputs and actions. The Crawler-

based approach requires 272 inputs and actions. They take 30 minutes to
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generate. The time is large compared to other approaches because there are

so many repeated inputs and many more test sequences.

• Execution time: The test code required for FSMApp and ESG are roughly

comparable (547 versus 635 LOC), whereas the Crawler-based approach needs

almost three times as many test LOC as FSMApp. Due to the large number

of test and inputs, this approach also needs more than twice the execution

time of FSMApp. ESG has a slightly higher execution time (15 compared to

11 minutes). They each find one defect. However, an additional of the ESG

tests failed because when the test performs a press back button action to the

previous state, the test setup failed, because the app exits instead of going to

the previous page.

Next, we compare the overall time for testing (last row). ESG and the Crawler-

based approach take the same time with 113 minutes. This is much longer than for

FSMApp which only takes 76 minutes. This is because model generation, time to

choose inputs, and execution time for test cases required much less time than the

other two techniques. We can therefore conclude that FSMApp is more efficient

than the other approaches.
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Chapter 7

FSMApp Validation via Case Studies

7.1 Rationale

As we explained in the approach, we provided an example mobile app to illustrate

how the FSMApp approach works. Now, we would like to compare and validate the

FSMApp with the other approaches for testing mobile applications. The case studies

cover a number of mobile apps from different domains and with different sizes.

7.2 Case Study Objectives

We propose to investigate the applicability, scalability, efficiency and effectiveness

of FSMApp for testing mobile applications. Furthermore, we want to know how

FSMApp to compares [88, 37] in these evaluation areas.

7.3 Preparation for Case Study

Before we executed the case studies, we studied each approach and applied all

examples in the research papers using each method. Then, we applied all approaches
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to the small example in chapter 6. This was done to reduce learning effects that

might bias the time needed to test each case study mobile app. We also carefully

studied all functions for each of the 10 mobile apps, before applying the approaches.

This was done so the time for learning how all functions of each mobile app work

would not confound testing time for the mobile app. Learning effects for applying

testing methods are more likely for the example rather than the case studies.

7.4 Case Study Research Questions

The research questions derived from the case study objectives fall into two cate-

gories: those related to FSMApp and those related to comparison with the two other

techniques. Research Question RQ1-RQ4 deal with FSMApp, while RQ5 emphasize

comparison studies.

• RQ1: Applicability. Can we apply FSMApp to a variety of mobile apps in

different application domains and of different sizes? Android Play [11] presents

the top categories of mobile apps in the store: Photography, Family, Music &

Audio, Entertainment, Shopping, Personalization, Social and Communication.

AppBrain [6] presents slightly different top apps categories in the play store:

Education, Business, Lifestyle, Entertainment, Music & Audio, Tools, Books

& Reference, Personalization, Health & Fitness and Productivity. Some of

the top categories overlap. The apps used in our case studies are taken from

different categories to show the applicability of the FSMApp.

• RQ2: Scalability. How does FSMApp scale when models become larger? The

case study includes multiple apps in the same category because we would like

to test the scalability of the FSMApp with different sizes. The apps size on
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the disk ranges from 1.18MB to 43.3MB. However, the size of the app does

not necessarily correlate with the model size needed for MBT. The case study

compares the model size with respect to number of the nodes, and number of

edges.

• RQ3: Efficiency. How efficient is FSMApp? This is evaluated by steps in the

test generation process, thus relates to efficiency of models (size), length of

test paths and test suite, and test execution effort.

• RQ4: Effectiveness. How effective is FSMApp at finding defects for Mobile

Apps of different sizes and in different domains? The case study executes the

test cases and captures the number of the defects.

• RQ5: The following sub-questions compare FSMApp with other approaches

using the same measurement for RQ1-RQ4.

RQ5.1: How does FSMApp compare to the other methods in terms of

applicability?

RQ5.2: How does FSMApp compare to the other methods in terms of

scalability?

RQ5.3: How does FSMApp compare to the other methods in terms of

efficiency?

RQ5.4: How does FSMApp compare to the other methods in terms of

effectiveness?
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7.5 Units of Analysis

Table 7.1 shows the measurement units on every phase. Column one presents

the phase of FSMApp, and column two presents the measurement. These are the

same metric, we used in Subsection 6.3.

Table 7.1: Units of Analyses

Phase Measurement
Generate Model Size (#Nodes, #Edge, #Clusters), time to generate

the model
Generate Test Sequences Size (Number of test sequences, total test steps), time

to generate the test sequences
Input selection #inputs, #actions, Time to choose input

Execute Test Cases Test line of code, Execution time, #fail, #success,
#defects

7.6 Case Study General Descriptions & Rationale

We have identified 10 Android Mobile Applications as candidates for our case

study.:

• Family Medicines List [9] is a student project for medical information. It

manages medications by category, dosage, and special instructions. It also

prioritizes medications.

• Memory Game Application [13] is a game where pairs of matched images need

to be found. The player wins if he matches all images.

• Timber Music Player [28] is an open source Android application for playing

music. It does not download music. The features of the app are browse songs,

albums and artists, create and edit playlists. It supports six different playing
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styles, and provides homescreen widgets. The user can browse device folders,

and customize theme and the user interface. Timber supports lyrics for the

music and shows the playing queue in the notification of your smartphone.

• An Explorer File Manager (File Explorer) [10] is an all-in-one file management

tool. It is an open source Android application. It is a simple, small, fast and

efficient file explorer and one of the best file manager apps of the Google

Play Store. It is the only file manager to support RTL and to show the

size of all folders stored. File Manager is designed for all Android devices

including Phones, Tablets, and Android TV. It supports all Android versions

from Jellybean, KitKat, Marshmallow to Nougat. The Top Features are a full

featured file manager, a smart library file explorer, an external storage file

manager, a secure super file manager, a root file manager, an app manager, a

process manager, and a network file manager. One can transfer files via FTP

from a phone to a PC. The document editor allows editing files on the go. It

supports all types of text files such as HTML, XHTML, TXT etc.

• ML Manager [16] is an open-source customizable Android application pack-

age (APK) manager for Android. It allows to extract any installed mobile

applications, to mark them as the favorite, and to share mobile application

(.apk) files. Further features include Extract any installed and system apps

and save them as APK, including a batch mode to extract multiple APKs at

the same time, the ability to share any APK using other apps like Telegram,

Dropbox, email, etc. It organizes your apps by marking them as favorite mak-

ing access easier, it uploads your latest APKs to APKMirror, it Uninstalls any

installed app. Customization is available in settings, including a dark mode,

customizing main colors and more, and no root access required.
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• Simple Calendar [24] is an open source Android application with optional

protocol calendar synchronization (CalDav). The Simple Calendar allows the

user to create recurring events, reminders and displays a week id. It has

different views of events in the calendar: a monthly view and an event list

widget where you can customize the color of the text and the color of the

background.

• Amaze File Manager [1] is an open source Android application. It manages

the files on a mobile device with basic features like cut, copy, delete, com-

press, extract etc. Additional features provide multiple tabs, multiple themes,

a navigation drawer for quick navigation, an App Manager to open, backup,

or directly uninstall any app. One can quickly access history. It provides

bookmarks. One can also search for a file. For advanced users, Root explorer

provides AES Encryption and Decryption of files for security, and Cloud ser-

vices support. It also supports building a database and provides a database

reader, a Zip/Rar Reader, Apk Reader, and Text Reader.

• Todo List [30] is a simple todo list manager that can only add and delete tasks.

• Minimal ToDo [14] is an open source Android App, a very light and useful

app, allowing you to manage a ToDo List easily and quickly. Both Minimal

ToDo and Todo List [30] have the same functions: add and delete. Minimal

ToDo has a different style and forms to manage the task list. Also, Minimal

ToDo has a notification reminder and mark the task as done.

• MIRAKEL: Task Management [15] is an open source Android application.

It manages tasks with the following features: create tasks super fast with

keywords, smart prioritization for the current day or week, as well as for
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overdue tasks.

Table 7.2 summarizes the ten Android mobile applications for the case study.

The first column shows the name of the application. The second and the third

columns show the number of user reviews and the rating of the application in Google

Play. The fourth and fifth columns are related to the Android version that supports

the App. The sixth and seventh columns show the size of the application code in

terms of download size and size on disk. The eight column gives the type of the

application. The last two columns provide the last update to the mobile application,

and how many times the application was installed on mobile devices.

The case studies cover seven domains: calendar, simple game, todo list, task

management, music manager and File manager. We selected case studies that are

Android open source apps with a review rating of 4 or over. The last three rows in

Table 7.2 describe case studies that are available with source code from the Titanium

development tool [29] or from student projects. The apps differ in size from small

to larger to so we can validate the scalability of the FSMApp.
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Table 7.2: Android Mobile Applications

Apps User

Re-

view

Rate

/5

Android Current

version

Download

Size

Code

Size

(on

Disk

)

type last update installs category

Family

Medicines

List [9]

Sample Code 02/25/2018 Health & Fit-

ness

Memory Game

Application [13]

Sample Code 02/25/2018 Game

Timber[28] 3044 4.3 4.1 and

up

1.6 7.87 MB 5.14

MB

Music

Player

12/12/2017 100k -

500k

Music & Audio

File Manager

[10]

1303 4.1 4.2 and

up

3.7 2.32 MB 1.18

MB

File

Manager

11/19/2017 100k -

500k

Tools

ML Man-

ager [16]

1345 4.6 4.1 and

up

3.3 2.47 MB 3.48

MB

APK Ex-

tractor

01/23/2018 50k -

100k

Tools

Simple Calen-

dar [24]

2634 4.3 4.1 and

up

3.3.2 3.13 MB 4.32

MB

Calendar 02/22/2018 500k -

1M

Tools

Amaze File

Manager [1]

9796 4.3 4.0 and

up

3.2.1 4.59 MB 5.8

MB

File

Manager

08/22/2017 500k -

1M

Tools

Todo List [30] Sample Code 02/25/2018 Productivity

Minimal To

Do[14]

725 4.5 4.1 and

up

1.2 2.14 MB 12.3

MB

ToDo

List

09/23/2015 10k -

50k

Productivity

MIRAKEL:

Task Manage-

ment [15]

281 4 4.0 and

up

3 4.78 MB 43.3

MB

Task

Manage-

ment

07/29/2015 10k -

50k

Productivity

7.7 Case Study Results & Discussion

7.7.1 RQ1: Applicability

We applied FSMApp to ten mobile applications from different categories. The

apps fall into five categories: Health & fitness, Game, Music & Audio, Tools, and
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Productivity. We were successfully able to apply FSMApp to all ten mobile appli-

cations. Tables 7.7 to 7.15 report our results. They are organized the same as Table

6.12. They show the results for each phase: model generation, test sequence genera-

tion, input selection, and test case execution. Column 3 of Tables 7.7 to 7.15 shows

the results of FSMApp. We successfully applied for FSMApp all these different

categories app.

7.7.2 RQ2: Scalability

We apply FSMApp to mobile apps ranging in size and application domain as

shown in Tables 7.7 to 7.15. We compare the FSMApp scalability with regards

to fours phases: Generate Model, Generate test sequence, input selection, and test

execution and validation. Figure 7.1 shows the total number of edges versus the

time to generate the model. Figure 7.1 shows the time increases slowly but far the

app whose model has 200 edges and the time reaches 60 minutes then go down to 30

min for a model with more edges. The time reaches 60 minutes because the behavior

of the app is different and learning the app function for the first time needs more

time. The number of components affects on the number of edges as shown in Table

7.3. MIRAKEAL app has 78 buttons. It means that we need more time to draw the

connection between them. In general, since the tester’ performance in the model

build is measured, learning effects can occur.

Figure 7.2 shows the total number of test sequences versus the time to generate

the test sequences. Figure 7.2 shows the time first decreases then it increases highly.

There are two spikes. These apps have more clusters, and components. The second

phase can be effect by loops and the number of edges.

Figure 7.3 shows the total number of test inputs and actions versus the input

197



selection time. The time increase linearly for less than 180 inputs and actions. It

is increasing faster after 320 inputs. This depends on the number of components

and types of inputs. The spike in the middle is related to clusters that have a lot of

inputs which we do not consider them as nodes.

Figure 7.4 shows the test LOC versus the execution/validation time. The execu-

tion/validation time increases rapidly with more than 1000 LOC. For Lower LOC,

the tests need less than 10 minutes to execute the test sequences. The time depends

on the number of actions and how long it takes the mobile device to response. It is

important to know that even for the larger apps the execution of the tests is well

below two hours.

Figure 7.1: Generation Time vs Number of Edges

7.7.3 RQ3: Efficiency

We studied the efficiency of FSMApp. The efficiency is evaluated in the test

generation process, length of test sequences, and test execution effort (time). Table

7.4 presents a summary for each app model size and time for generation model

phase. Column 1 shows the name of the apps. Columns 2-4 show the number of

nodes, edges, and clusters of the model, respectively. The last column shows the
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Figure 7.2: Generation Time vs Number of Test Sequences

Figure 7.3: Input Selection Time vs Inputs and Actions

Figure 7.4: Execution/Validation Time vs Test LOC

model generation time. The model generation time is measure by the designer while

drawing the model. Game Memory App [13] has the smallest model with six nodes
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and eight edges and no cluster. Therefore, MIRAKAL app [15] has the largest model

with 167 nodes, 465 nodes, and 12 clusters.

The model generation time of the ten apps took between 2 to 60 minutes. Tool

Category has four apps: File Manager [10], ML Manager [16], Simple Calendar [24],

and Amaze [1]. The four apps have vary in the model size in term of nodes, edges and

clusters. Simple Calendar has the smallest model size with 82 nodes, 149 edges, and

5 clusters, whereas File Manager, has the largest model with 188 nodes, 194 edges,

and 18 clusters. The difference between the two models in term of size is around

30% for nodes and edges. File Manager app has the maximum model generation

time because it has 18 clusters. The clusters require more time to identify them and

find the connection between them. We also include three apps from the productivity

category: Todo list [30], Minimal Todo [14] and task Management (MIRAKEL) [15].

Todo List has the smallest model with 12 nodes, 18 edges and one cluster whereas

MIRAKEL app has the largest model with 167 nodes, 365 edges and 12 clusters.

The difference between the two models in term of size is 90%. FSMApp can be

applied to the same category app with many different sizes.
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Table 7.4: Model Size Summary

App Nodes Edges Clusters Model Time

Family Medicines 45 87 9 14

Memory Game 6 8 0 3

Timber 52 87 8 12

File Manager 118 194 18 60

ML Manager 87 149 7 18

Simple Calendar 82 149 5 21

Amaze 83 139 11 16

Todo list 12 18 1 2

Minimal 15 23 2 3

MIRAKEL 168 365 12 30

Table 7.5 shows the results of applying FSMApp on ten mobile apps. Column

one indicates mobile apps name. Columns 2-4 show the number of test sequences,

number of steps (after reduction) and the time (in minutes) for generating test

sequence. The time is calculated by the tester. The includes generation of cluster

test paths and the aggregation test sequences. Columns 5-7 show the number of

inputs, number of actions, and time to choose inputs (in minutes) for the input

selection phase. The time is calculated by the tester. The time includes identification

of inputs boundaries and input selection to execute the test sequences. Column

8 shows the execution time in minutes (the time is measure with the tool) and

Column 9 shows the total time in minutes for all phases: model generation, test

cases generation, input selection, and test case execution. The last column shows

the time per step in seconds ((total time/ number of steps) * 60). We calculate the
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step time to know the average time of testing the apps because we have different

sizes with the model and the size of app in the disk. By the number of steps, we

can estimate the average of total time for the future case studies.

The time range of step for all apps is between 27-56 seconds except the game app

required 172 seconds per step. The game app took a long time per step because the

implementation of the game has the images with a sources id. In this case, we use

a loop to check all the photos. The average time to execute each step is 42 seconds.

The smallest model required 48 seconds for each step. The largest model needed 41

seconds to execute the step, and the second largest model required 35 seconds. We

can conclude that FSMApp is efficient for the large model as small models.

Table 7.5: Summary of Test Generation and Execution

Apps #Tests #Steps Time #Inputs #Actions Choose

Time

Execution

Time

Total

Time

Step

Time

Family

Medicines

11 87 31 48 87 20 11 76 52

Game

Memory

6 8 2 0 5 1 17 23 172

Timber 8 120 9 3 190 59 7 87 44

File Man-

ager

29 381 50 11 381 80 69 259 41

ML Man-

ager

8 122 11 2 170 26 10 65 32

Simple

Calendar

8 105 25 30 276 40 12 98 56

Amaze 11 188 13 14 266 40 14 83 27

Todo list 2 17 5 3 16 3 1 11 39

Minimal 3 20 5 6 35 6 2 16 48

MIRAKEL 13 277 20 19 308 49 62 161 35
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7.7.4 RQ4: Effectiveness

The case study executes the test cases and captures the number of defects. Table

7.6 shows the execution results for ten apps. Column one shows the name of the

mobile application. Columns 2 and 3 show the number tests that failed and passed,

respectively. The last column shows the number of defects. All the apps do not show

any defect except Family Medicines list app has one defect. This may be because

we selected highly rated apps (see Subsection 7.5) and hence they are not likely to

show many defects. The only except is the Family Medicines List app which was

developed by student. Hence, with our selection of case studies, we were not able

to show full effectiveness.

Table 7.6: Defect Summary

App #Failed #Passed #Defect

Family Medicines 1 11 1

Game Memory 0 1 0

Timber 0 8 0

File Manager 0 14 0

ML Manager 0 8 0

Simple Calendar 0 8 0

Amaze 0 11 0

Todo list 0 1 0

Minimal 0 3 0

MIRAKEL 0 13 0
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7.7.5 Compare FSMApp with Other Approaches

7.7.5.1 RQ5.1: Applicability

FSMApp can be applied in many domains and for varying sizes of mobile apps

as show in Subsection 7.7.1. We applied ESG approach of the same mobile app

with different categories. Tables 7.7 to 7.15 show the result of ESG approach on

Column 5 and the Crawler-based approach on Column 6. We applied the ESG

and the Crawler-based approach to all ten mobile apps using four phases: model

generation, test sequence generation, input selection and test case execution. The

Crawler-based approach cannot be used in different categories. We cannot apply

the Crawler-based approach to the game category because the approach does not

support loops. Also, the Crawler-based approach reach the leaf of the tree when

visit the same mobile screen. When we tried to create the model, we stopped when

we flip the screen because we reach to the same screen. FSMApp and ESG can be

applied to any mobile category, whereas the Crawler-based approach cannot apply

to all categories.

7.7.5.2 RQ5.2: Scalability

We compare the scalability of FSMApp, ESG, and the Crawler-based approach

with the model size in terms of edges, model generation time, number of test se-

quences, generation test sequences time, total of inputs and actions, time to choose

input, test lines of code and execution time. Tables 7.7 to 7.15 show the comparison

of applying techniques. The tables are organized same as Table 6.12.

Figure 7.5 shows the total number of edges versus the time to generate the model

for FSMApp, ESG, and Crawler-based approach. Figure 7.5 shows the time increases
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slowly compare to the other two approaches until 20 minutes with 150 edges. Then,

the time reaches 60 minutes of FSMApp because the behavior of the app is different,

and learning the app functions for the first time needs more time. The ESG and

the Crawler-based approach increase linearly above 200 edges. In general, since the

tester’ performance in the model build is measured, learning effects can occur. We

can exclude point 60 minutes with 200 edges for FSMApp then we will have a linear

line for from 20 minutes to 30 minutes. Overall, Figure 7.5 shows FSMApp scalable

compared to the other two approaches in phase 1. Also, FSMApp tests all apps

with less time and edges using clusters.

Figure 7.6 shows the total number of test sequences versus the time to generate

the test sequences. FSMApp has a maximum of 29 test sequences with maximum

time 50 minutes. The number of sequences has a bigger increase than FSMApp

because of the number of the nodes is high, whereas FSMApp applies clusters.

Also, the Crawler-based approach increases linearly because the approach does not

support the loops in the model.

Figure 7.3 shows the total number of test inputs and actions versus the input

selection time. The time increase linearly for less than 180 inputs and actions. It is

increasing faster after 320 inputs more than ESG and the Crawler-based approach.

We do not have any mobile apps with more than 500 inputs and actions. ESG and

the Crawler-based approach has more than 500 inputs and action, and the time

increase linearly. The other two approaches have a lot of input and actions because

the number of test sequence is higher than FSMApp.

Figure 7.4 shows the test LOC versus the execution/validation time. The execu-

tion/validation time increases rapidly with more than 1500 LOC for FSMApp and

ESG. The Crawler-based approach increases linearly. The approaches have a high

increase. ESG and Crawling-based approach increases linearly. The largest app
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shows that FSMApp has lowest LOC because of the number of inputs and actions,

and the number of test steps.

Figure 7.5: Generation Time vs number of Edges

Figure 7.6: Generation Time vs Number of Test Sequences

7.7.5.3 RQ5.3: Efficiency

In this subsection, we compare the efficiency of FSMApp with ESG and Crawler-

based approach. The efficiency is evaluated for all phases of test generation and

execution.
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Figure 7.7: Input Selection Time vs Inputs and Actions

Figure 7.8: Execution/validation Time vs Test LOC

Table 7.14 shows the comparison of applying techniques in Game App. The

FSMApp model is almost half of ESG, whereas we cannot apply the Crawler-based

approach. Building the model for FSM takes much less time than ESG (3 versus 6

minutes), respectively. The reasons for this is the model for FSMApp is much smaller

(6 nodes and 8 edges) than the model for ESG (12 nodes and 20 edges). The ESG

model has twice the number nodes and more than double the edges compared to

FSMApp. FSMApp generated 6 test sequences with eight steps, and the generation

time is 2 minutes for Memory game app, as shown in Table 7.14. ESG generated
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one test sequence with 39 steps, and the generated time is 5 minutes. There is a big

difference in the number of test steps between FSMApp and ESG. For FSMApp,

the total time for the four phases is 23 minutes. The FSMApp takes less than half

the time ESG.

Table 7.9 shows the comparison result for Timber app. We built the model with

FSMApp in 12 minutes, whereas it takes almost 20 minutes to build the model

with ESG and Crawler-based approach. The difference is due to the clusters in

FSMApp. The use of clusters reduces repeated of nodes and edges. FSMApp has

almost 40% less than ESG and Crawler-based approach. FSMApp tests the Timber

app with eight tests sequences compared to 77 and 66 test sequences for ESG and

the Crawler-based approach, respectively as shown in Table 7.9. ESG generates a

large number of test sequences because there are many loops in the model. The

FSMApp has fewer test steps compared with other two approaches (120 versus 592

and 289 respectively). The ESG and the Crawler-based approach have far more

steps because these approaches result in many repeated actions and have many

more test sequences. As before, Crawler-based approach takes the least time to

generate test sequences time. The overall time for testing is 66 versus 125 minutes

and 88 minutes.

Table 7.11 shows the results of applying the techniques to the File Manager App.

FSMApp reduces the model generation time and the model size by 70% compare

to the ESG and Crawler-based approach. FSMApp uses 18 clusters to reduce the

number of nodes and edges. The FSMApp model has 188 nodes, and 194 edges,

while the Crawler-based approach model has 358 nodes and 357 edges. The ESG

model is even bigger (476 nodes and 732 edges). For the File Manager app (Table

7.11), FSMApp generated few test sequences (29 versus 201 and 234, sequentially).

The FSMApp has fewer steps compared with the other two approaches (381 versus
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1451 and 1126, respectively). The time to generate test cases is roughly half of other

approaches. The overall time for testing is 259 versus 489 and 435 minutes.

Table 7.10 reports the results of applying the techniques to the ML Manager.

The table shows different results than for the other apps. The FSMApp model is a

little bigger than ESG and far smaller than the Crawler-based approach. Building

the model for FSMApp takes more time than ESG (by one minute). The reason

for this result is that FSMApp has dummy nodes and edges between clusters. Also,

to build the model for FSMApp takes less than half the time than the Crawler-

based approach. The ML Manager app can be tested by 8 test sequences versus 54

and 77, respectively, for other two approaches. FSMApp needs less than half the

steps of other two approaches, partly due to the reduction step test. FSMApp also

need fewer inputs and actions. The overall time is 65 versus 131 and 124 minutes,

respectively.

Table 7.7 shows the results of applying the techniques to the Simple Calendar.

Building a model for FSMApp and ESG takes the same time, but both models

take much less time (21 versus 27 minutes). The model for FSMApp has three

more nodes nodes than Crawler-based approach, whereas it has 5 fewer nodes than

ESG. Also, The model for FSMApp has more edges than Crawler-based approach by

100%, whereas it is less than ESG by 13 edges. The difference comes from dummy

nodes and edges. Simple Calendar can be tested by 8 test sequences versus 22 and

54 respectively for the other two approaches. The number of test sequences for

FSMApp is very small compared to ESG because ESG has many loops. To makeup

for the lack of loops in the Crawler-based approach, it needs to generate many more

test sequences than both FSMApp and ESG. FSMApp considers components as

inputs resulting in fewer edges in the model. A radio button is considered an input

in FSMApp, but it is considered a node in the Crawler-based approach. FSMApp
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has half steps of the other approaches because of the reduction step. There are also

fewer inputs and actions. The overall test time is 88 versus 128 and 94 minutes.

Table 7.8 shows the results for the Amaze File Manager app model. The results

shows similar results to the other apps. The FSMApp model is more efficient and

has fewer nodes and edges than the ESG and the Crawler-based approach. FSMApp

generated fewer test sequences (11 versus 54 and 120, respectively) . The FSMApp

also has fewer test steps compared to the other two approaches (188 versus 384 and

500 respectively). The time to generate test sequences is about half of the two other

approaches. The overall time for testing is 83 versus 110 and 156 minutes. The time

is almost double because of the large number of test sequences for the other two

approaches.

Table 7.15 shows the comparison of applying the techniques to the Todo list app.

Todo list app is the smallest app of the selected apps. the FSMApp model is smaller

than the ESG model and the Crawler-based approach. Building the model for

FSMApp takes larger than Crawler-based approach by two minutes. The FSMApp

model has more nodes and edges because of the clusters. FSMApp generated 2

test sequences with 17 steps, the test generation sequence time is 5 minutes, as

shown in Table 7.15. ESG generated 6 test sequences with 39 steps, and the rest

sequence generation time is 6 minutes. The Crawler-based approach generated 7

test sequences and 19 test steps. There is a large difference in test steps between

FSMApp and ESG. However, the number of test steps in the Crawler-based approach

is comparable. FSMApp’s total test time of the four phases is 11 minutes versus

18 and 12 minutes. The test time for FSMApp is near the crawler-based test time

because the test sequences are short and the app is small.

Table 7.12 shows the comparison of applying the techniques to the Minimal ToDo

app. Building FSMApp and Crawler-based approach models take the same time but
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they both take more time. The FSMApp model has more nodes and edges because

of the dummy nodes and edges. FSMApp generated 3 test sequences with 20 test

steps, with a test sequence generation time of 5 minutes, as shown in Table 7.12.

ESG generated 6 test sequences with 58 test steps, with generated time is 7 minutes.

The Crawler-based approach generated 6 test sequences and 20 test steps. There is

a large difference in test steps between FSMApp and ESG. The overall test time is

16 versus 25 and 19 minutes. The FSMApp performs much better than ESG but

is close to the crawler-based approach because the test sequences are short and the

app is small.

Table 7.13 shows a comparison of Applying the techniques in MIRAKEL Test

Management. Building FSMApp and Crawler-based approach models have the same

time, whereas both of them takes more time. The FSMApp model has more nodes

and edges. The MIRAKEL app can be tested using FSMApp with 13 test sequences

versus 96 and 118 respectively for the other two approaches. Also, the number of

inputs and actions is much smaller. The overall test time is 151 versus 267 and 208

minutes. The difference shows from the fact that the other two approaches need

more test steps and input. FSMApp saves time between 25% and 66% compare with

ESG whereas FSMApp saves time between 6% and 48% compare than Crawler-based

approach.

7.7.5.4 RQ5.4: Effectiveness

The case study executes the test cases and captures the number of defects.

Tables 7.7 to 7.15 show the number of defect for FSMApp, ESG and Crawler-

based approach in Phase 4. FSMApp, ESG, and Crawler-based approach found one

defect. However, an additional ESG test failed because when the test performs a

press back button action to the previous state, the test setup failed, because the
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app exits instead of going to the previous page. Also for ESG, one test failed in

Tables 7.7, 7.9 and 7.13 because of it executes a press back button.

Overall, FSMApp compares favorably in effectiveness to the other two approaches.

However, the high quality of the apps used in the case study make conclusions related

to efficiency limited

7.8 Threats to Validity

We performed a number of the case studies to evaluate the applicability, scala-

bility, effectiveness, and efficiency of FSMApp to test Android mobile applications

versus two other approaches, i.e. [88, 37].

We cannot yet generalize the results for other platforms. We only applied

FSMApp to Android Applications and did not consider IOS and Windows. The

second issue is the configuration of automation tools which test a mobile application

for one Android device only. The third issue is the knowledge of the functionality

of the tested mobile apps and how the functions are linked. Our choice of apps that

have high rating make effectiveness conclusions limited. We should follow up with

less robust apps.

We already compared the FSMApp results to ESG approach and the Crawler-

based approach. The cost of execution is calculated as a function of the number of

steps in the test sequences. This may not be appropriate in all cases, since some

steps, with more inputs to enter, and longer App execution time may affect results.

However, Chapter 4.1 successfully applied the same approach. Further, the number

of nodes can be affected by developer experience when generating test paths for the

FSMApp, ESG or the Crawler-based approach Model.

Generalizability is limited as with any case study. We cannot guarantee that a
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future case performs and gives the same result for other Android applications, for

example, advanced games, reservation applications, and significant medical appli-

cations. We showed with our case studies that the FSMApp could be applied to

different categories of Android mobile application: a simple game, task management,

file management, and music management.

Learning effects might bias the times needed to test each mobile app. One

learning effect relates to the time it takes to understand how all functions in each

mobile app work. If uncontrolled this could possibly lead to longer testing times for

the first testing method applied to an app (generally this was FSMApp). To avoid

this confounding factor, we studied all functions for each of the 10 mobile apps in

detail to understand all components and the connections between the mobile screens,

before applying the testing approaches. These learning effects were thus controlled

by carefully analyzing how apps work before applying any of the testing methods.

Exploratory testing is testing software without pre-designed test cases (based

on some systematic method) [34]. We are not interested in exploratory testing.

Input constraints effectively partition the input space into input values that will

cause a desired transition or event vs. those that do not. Often, there are multiple

values that fulfill any given input constraint. We leave it up to the tester to select

among those. This leaves the possibility (explored by Hamlet et al. [112]) that some

selected inputs that meet the constraints will uncover a fault, but others may not.

As this is the case for all methods studied, they all face the same issue. We tried to

select similar values, when possible, to mitigate this problem.
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Chapter 8

Future Work

In future work, the dissertation could be extended in many ways:

8.1 Regression Testing

We need to extend FSMApp for regression testing with case studies so that we

can show applicability, scalability, and efficiency. Also, we would like to compare

the approach with other regression testing approaches [37, 81, 94, 126].

8.2 New system domains

This dissertation is focused on web and mobile applications domain. We plan

to apply the FSMApp in different system domains such as safety-critical systems,

flight control systems, robotics device, IOT, and medical systems.

8.3 Building Tools

We will build tools to automate model and test phases. This would decrease the

cost of generating the model, test sequences, choose the input and action, write the
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code for Appium, and execute them. Now, there is no tool to generate FSMApp

model or test sequences.

8.4 Effectiveness

We would like to study the effectiveness of FSMApp with apply more case studies

on pre-released apps.

8.5 Improving Efficiency of Test Execution

8.5.1 Efficiency Improvements During Execution

In this section, we explore ways how we can shorten execution of tests generated

as test paths which are then turned into subtract tests and executable tests from

FSMWeb in Subsection 3.2. Figure 8.1 shows an example graph used to illustrate

our improvements. Figure 8.1 has five FSMs and three levels of hierarchy [45]. Table

8.1 shows the test paths through the graph that meet edge coverage.

8.5.1.1 Serial Execution

During serial execution, test inputs are executed sequentially. Let ti be a test, T

be a set of tests T = t1, . . . , tk. If E(t) is the time required to set up and execute a

test t, the total execution time for the set of tests T will be Eserial(T ) =
∑k

i=1E(ti).

In our example, we would execute the tests generated from the test paths in

Table 8.1 one after another. Assuming the same effort as reported in [70] the test

suite T would take three hours to execute.
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Figure 8.1: FSMs Example

8.5.1.2 Parallel Launch

Launching test generation tasks in parallel can reduce E(T ) by spreading the load

among multiple processors. Then the time for a full parallel launch is Eparallel(T ) =

E(tmax) + S, where tmax is the execution time of the longest task and S is the time

needed to divide the test suite among multiple threads or processes. S depends on,

among other variables, the implementation, the speed and number of processors in

the hardware, and the load of the system at the time of path execution.

Executing test generation tasks in parallel requires that the initial state be

copied. Each task must maintain and operate only on its own copy of the sys-
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Table 8.1: Test Paths for AFSM

t01 : n1c2n2

Test Test Paths Derivation Rules Length
1 n1t21n2 c2 → t21 4
2 n1n6t41t31n7n2 c2 → t22, t22 → n6c4c3n7, c4 → t41, and c3 → t31 11 = 4 + 4 + 3
3 n1n6t42t31n7n2 c2 → t22, t22 → n6c4c3n7, c4 → t42, and c3 → t31 12 = 4 + 5 + 3
4 n1n6t41t32n7n2 c2 → t22, t22 → n6c4c3n7, c4 → t41, and c3 → t32 16 = 4 + 4 + 8
5 n1n6t42t32n7n2 c2 → t22, t22 → n6c4c3n7, c4 → t42, and c3 → t32 17 = 4 + 5 + 8

t02 = n1c1n2

Test Test Paths Derivation Rules Length
6 n1n3n4t21n5n4n3n2 c1 → t11, t11 → n3n4c2n5n4n3, and c2 → t21 9 = 7 + 2
7 n1n3n4n6t41t31n7n5n4n3n2 c1 → t11, t11 → n3n4c2n5n4n3, c2 → t22, t22 → n6c4c3n7, 16 = 9 + 4 + 3

c4 → t41, and c3 → t31
8 n1n3n4n6t42t31n7n5n4n3n2 c1 → t11, t11 → n3n4c2n5n4n3, c2 → t22, t22 → n6c4c3n7, 17 = 9 + 5 + 3

c4 → t42, and c3 → t31
9 n1n3n4n6t41t32n7n5n4n3n2 c1 → t11, t11 → n3n4c2n5n4n3, c2 → t22, t22 → n6c4c3n7, 21 = 9 + 4 + 8

c4 → t41, and c3 → t32
10 n1n3n4n6t42t32n7n5n4n3n2 c1 → t11, t11 → n3n4c2n5n4n3, c2 → t22, t22 → n6c4c3n7, 22 = 9 + 5 + 8

c4 → t42, and c3 → t32
11 n1n3n4t21n5t31n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t21, and c3 → t31 11 = 6 + 2 + 3
12 n1n3n4t21n5t32n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t21, and c3 → t32 16 = 6 + 2 + 8
13 n1n3n4n6t41t31n7n5t31n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 18 = 8 + 4 + 3 + 3

c4 → t41, c3 → t31 (first c3), and c3 → t31 (second c3)
14 n1n3n4n6t42t31n7n5t31n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 19 = 8 + 5 + 3 + 3

c4 → t42, c3 → t31 ((first c3), and c3 → t31 (second c3)
15 n1n3n4n6t41t32n7n5t31n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 23 = 8 + 4 + 8 + 3

c4 → t41, c3 → t32 (first c3), and c3 → t31 (second c3)
16 n1n3n4n6t42t32n7n5t31n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 24 = 8 + 5 + 8 + 3

c4 → t42, c3 → t32 (first c3), and c3 → t31 (second c3)
17 n1n3n4n6t41t31n7n5t32n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 23 = 8 + 4 + 3 + 8

c4 → t41, c3 → t31 (first c3), and c3 → t32 (second c3)
18 n1n3n4n6t42t31n7n5t32n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 24 = 8 + 5 + 3 + 8

c4 → t42, c3 → t31 (first c3), and c3 → t32 (second c3)
19 n1n3n4n6t41t32n7n5t32n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 28 = 8 + 4 + 8 + 8

c4 → t41, c3 → t32 (first c3), and c3 → t32 (second c3)
20 n1n3n4n6t42t32n7n5t32n3n2 c1 → t12, t12 → n3n4c2n5c3n3, c2 → t22, t22 → n6c4c3n7, 29 = 8 + 5 + 8 + 8

c4 → t42, c3 → t32 (first c3), and c3 → t32 (second c3)

tem state. Because of this, parallel execution requires more total memory usage

than serial execution.

Each test generation task is implemented as a Java task that can be executed

in a single thread. A supply of worker threads is supplied via Java’s ThreadPool

implementation. The tasks are assigned to worker threads according to a queue.

When a worker completes its task, it is returned to the ThreadPool to receive another

task. This process continues until there are no tasks remaining in the queue.

The degree of parallel execution is dependent on the number of threads in the thread

pool, which may be scarce (there are more tasks than threads) or abundant (there

are at least as many threads as there are tasks). If the threads are abundant,

execution will proceed in the same manner as the parallel launch. If threads are
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scarce, execution time will be longer.

We assume that there are q processors (q > l). We will also order the tests in

descending execution time (E(T1) > E(t2) > · · · > E(th)). We can then assign test

to process ones as follows: Assign t1 . . . tq to process one 1 - q. Assign the next test

to the processor I such a way that overall time for the tests assigned to i is minimal

among all processors.

For both the ideal parallel launch and this possible Java Thread implementation,

the number of processors available used is the main determining factor of perfor-

mance improvement. In the example Java implementation, it is possible to create

a ThreadPool containing, for example, 100 Java Threads, but this does not mean

that all 100 Threads will be executing concurrently on a computer with four pro-

cessing cores. At most, only a part of the processing cores would be available to

the Java Virtual Machine, the others being used by the operating system and other

processes. For this reason, it may be that significant improvement may require using

a dedicated parallelism apparatus such as OpenCL or by otherwise distributing the

tasks among multiple physical platforms.

Duarte et al. [96] presents a GridUnit framework to distribute the execution

of software tests automatically. GridUnit uses a computational grid to distribute

execution of JUnit test suites. GridUnit provides resources universalization for its

nodes, creating isolated environments for test execution then there is no test case

contamination. The task level is the test case. By contrast, our task level is one or

more steps in a test case. Their assumption is that test cases are independent and

should be executed in no pre-determined order. By contrast, we have an order due

to sequential dependencies of parts of test case. This approach does not work with

us because of the dependencies of the parts of test cases.

There is an exists testing infrastructure that do the parallel launch to avoid test
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cross-contamination. Kappler [131] presents the proposed approach by developing a

graph-based technique that parallels test execution with dependencies of other parts

of test case. In future work, We will investigate his cloud tool to describe his parallel

execution approach which depends of the store test case parts to avoid re-running

the previous parts of test cases.

8.5.1.3 Parallel Execution from Points of Commonality

Rationale: many test paths have parts in common. In the example, test cases

all start at a web portal that requires user authentication. This means that, if

we can execute the test once, for the partial path that the tests have in common

and then launch parallel execution from the last point of commonality, we can

save test execution time. For example, let T = {t1,t2,t3} , t1 = n1,n2,n3,n8 , t2 =

n1,n2,n4,n5,n8 and t3 =n1,n2,n4,n6,n7,n8.

Point of commonality pc(ti, ... ,tj):

pc(t1,t2,t3) = n1, n2

pc(t2,t3) = n4

Execute to earliest point of commonality (in tree)

We will execute n1 and n2 then pass the result to n3 and n4 to execute all the

three tests.

8.5.2 Implementation

Capture-replay is an automated functional web testing approaches, and regres-

sion testing supports it. Software testers use capture-replay tools to capture the

actions of GUI movements. Many capture-replay tools available, for example, Se-

lenium IDE [23], jRapture [203] and SolEx [25]. The tools allow software testers
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to record, modify and replay the test cases suite. Furthermore, the tools support

management of the inputs and run the test cases for web applications. The capture-

replay will capture the previous results of the last state in point of commonality.

Ostrand et al. [179] implemented an experimental test development environment

(TDE). TDE raises the effectiveness of test cases for GUI and it links test designer, a

test design library, and test generation engine with the capture-replay tools. Leatta

et al. [143] compare between two web testing approaches capture-replay and pro-

grammable web testing. Leatta et al. [143] showed that capture-replay involves low

developments but higher maintenance effort than programmable web testing. The

capture-replay helps to capture the result of each execution of each part. Then, the

new part uses the database to execute.
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Figure 8.2: Commonality Subpaths

We applied the idea of last point of commonality on aggregated paths of table
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8.1. Figure 8.2 shows the common sub paths between the paths. The numbers on

the edge represent the number of execution.

Table 8.2: Save Execution

SubPath Number of Number Total Nodes
Node of Nodes Executed
Executions

n8 2 1 2
n7n5 3 2 6
n3n4n6 15 3 45
n15 12 1 12
n16 11 1 11
n17n18n8 5 3 15
n13n14n7n5n8 2 5 10
n9n10n12n9n10n11n14n7n5 3 9 27
n8 2 1 2
n19n17n18 6 3 18
n8n13n14n7n5 3 5 15
n8 2 1 2
n8n9n10 3 3 9
n12n9n10n11n14n7n5 2 7 14
n6 6 1 6
n15n16 4 2 8
n17n18n8 2 3 6
n19n17n18n8 2 4 8
single node 1 124 124
n1 20 1 20

Total length of test paths 360

Total length when applying 180
Last point of commonality

Saving (%) 50

Table 8.2 presents the savings as a function of number of nodes executed when

applying the last point of commonality. Column one shows the subpath in Figure 8.2.

Column two shows the number of nodes to be executed for the test paths. Column
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three shows the number of the nodes in the subpath and column four calculates the

total of nodes executed.
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Chapter 9

Conclusions

This dissertation is divided into two parts: Regression testing for web fail-safe

applications and extension FSMWeb to test mobile apps. First, Testing mitiga-

tion of failures in the modified web applications is essential since defects can case

expensive outages, such as bank systems. We proposed a selective regression test-

ing approach to test fail-safe behavior in web applications. Based on changes to

the behavioral model, external failure types, and mitigation requirements (includ-

ing failure applicability and weaving rules) it classified failure mitigation tests into

retestable, reusable, and obsolete. It used partial regeneration for obsolete failure

mitigation tests and generated new ones to achieve coverage. It used retestable as

well as new failure scenarios. Reusable failure scenarios are removed when building

new failure mitigation tests.

We compare test suite length for selective regression test versus a full retest for

both an example and a large case study. Because the proportion of changes for the

case study was small when compared to its overall size, selective regression testing

was much more efficient. The overall selective regression testing effort is driven by

how much change there is to the behavioral model (see also [45]) for a trade-off

analysis related to changes to the FSMWeb behavioral model) and whether there
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are multiple types of changes. The least expensive selective regression testing relates

to changes in weaving rules. Finally, because potential failure scenarios tended to be

small the genetic algorithm approach in [70] had to be abandoned, since it was less

effective than coverage criteria ([69]). When changes to a web application are limited

to specific functional areas and are not pervasive or affecting the whole system, the

selective regression test approach presented can be expected to be more efficient

than retesting the whole system.

Second, We extend the FSMWeb [51] to test the mobile application by compress-

ing the model with the input components and reduction steps for test sequences. The

FSMApp is a model-based black-box testing approach. FSMApp has four phases:

1. Generate Model: generate a hierarchical collection of FSMs model.

2. Generate Test Sequences: generate test sequences for each FSM then we ag-

gregate them.

3. Input Selection: select the input constraints for the test sequence.

4. Execute Test Cases: execute the test sequences and run them by Appium.

We applied FSMApp on Family Medicine list app. The Family Medicine app has

45 nodes, 87 edges, and 9 clusters. By using our approach on this app, we generate

the model, 11 test sequences with 87 steps, 48 inputs, 87 actions, and execute test

cases with Appium. FSMApp has ten passed test cases, and one failed test case

because the app was unable to change the patient and medicine name.

In this dissertation, we also define two approach ESG and the Crawler-based

approach that also perform Black-Box MBT for Mobile Apps. de Cleva Farto et

al. [88] used an Event Sequence Graph (ESG) to test mobile apps. Their approach

consist of the following phases:

234



1. Create the Event Sequence Graph (ESG) test model. The ESG does not

include (multiple) inputs in the graph explicitly rather, they are modeled with

decision tables nodes.

2. Generate paths and implement test cases from the ESG model.

3. Execute implemented test cases with Robotium.

Amalfitano et al. [37] used a Crawler-based approach automated technique to

test mobile applications. They create the model using a Crawler-based approach.

The technique generates a GUI Tree using an iterative depth-first search and test

cases are the events of the sequence from the root node of the tree to the leaf of the

tree.

We apply FSMApp, ESG, and the Crawler-based approach on Family medicine

list app. The FSMApp model is far smaller than the other two approaches in

terms of model size. The FSMApp is smaller because the cluster required less

repeated nodes and edges. Also, FSMApp generated 11 test sequences compared

to 17 and 51 test sequences, respectively. The Crawler-based approach generates

many test sequences because the approach does not support loops, and stops when

it encounters a repeated screen. The FSMApp has significantly fewer total test steps

(87 steps versus 219 and 240, respectively). The total number of inputs and actions

is comparable for ESG and FSMApp, with 135 versus 150 inputs and actions. The

Crawler-based approach requires a large number of inputs and actions because of

repeated inputs and action.

ESG and the Crawler-based approach take 113 minutes, which is much higher

than for FSMApp by 37 minutes. This is because model generation, time to choose

inputs, and execution time for test cases required a shorter time than ESG and the

Crawler-based approach. We can conclude that FSMApp is more efficient than ESG
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and the Crawler-based approach.

This dissertation also proposed several case studies to investigate the applicabil-

ity, scalability, efficiency, and effectiveness of FSMApp for testing mobile applica-

tions with ten mobile apps in different categories. Also, we compare FSMApp with

ESG and the Crawler-based approach in these evaluation areas.

FSMApp can be applied to different app categories. FSMApp model is better

than the other two approaches in 8 apps when comparing the test time and model

size. ESG model for ML Manager app shows almost the same as FSMApp model for

model building time and model size. Crawler-based approach model for the Simple

calendar app has the same model building time as the FSMApp model, but the

FSMApp is bigger than for the model size than Crawler-based approach.

FSMApp generates half of the test sequences compared with ESG and the

crawler-based approach. The number of steps is almost half that of the other two

approaches. Also, The execution time is much lower than ESG and the Crawler-

based approach. FSMApp save between 25% and 66% of total time compare to ESG.

Also, FSMApp save between 6% and 48% of total time compare to Crawler-based

approach.
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Appendix A

Android Terms

Table A.1: Android Terms

Terms Description
Activity An Activity is a page (screen) that is displayed to the

application user. The Activity contains a set of layouts
that organizes the item in the page.

View Widget A View widget is GUI control that is in the layout of a
mobile application such as label or EditText.

Service A service is a background component to perform long-
running tasks without user interaction such as playing
video.

Broadcast Receiver A Broadcast Receiver is an Android component to com-
munication the application with Android system such as
the battery is low.

Content Provider A Content Provider manages the data on the database
or the file system.

Intent Messaging An Intent Messaging is a message object which is al-
lowed to communicate between Activities, Services, and
Broadcast Receivers.

Event Handler The method handles the event from the event listener
to execute the method registered.

237



Appendix B

Family Medicines List App Screens

Figure B.1: Family Medicines List App Screens
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Appendix C

BNF Grammar for Input Selection Constraints

Table C.1 describes the grammar for input constraint language. Table C.1 ex-

tends the grammar language [51]. The input constraint contains single or multiple

input choices, followed by none or any order constraints, followed by none or more

propagation constraints. The input choices type can be required, optional or choice.

The operators of required, optional and choice inputs are R, O, and C. R and O

are followed by a list of string named inputs (parameters). They can have value

like (Name = "Ahmed"). C is followed by an integer operator, such as C2, with

optional bound (+ or -). Then, C followed by a list of named inputs. The integer

operator shows the number of constraints selector. For example, C2 required to

select precisely two input constraints. The choice input bound shows the limit of

the selected constraints. For example, C2- is select input constraints up to 2 and

C2+ is select input constraints at least 2.

The order of input constraints is sequential order (S) or any order (A). The order

is following by an input constraint list. S order of input constraints should follow

the order of the input list. For example, S(username, password, login) then the

username entered first then password and finally click on login button. A order of

input constraint should not follow any order. For example, A(name, date of birth)
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then the inputs should be entered by any order name than the date of birth or date

of birth then name. The input constraint list can include inputs or order constraints

such as A(A(name, age, date), S(country, state, city)).

Propagation of input constraints can continue to use with other clusters. The

continue operator followed by a list of input. The single operator is used to show

that the input constraints cannot show again. The operators of Swap and switch

for mobile application are W, and L. W is followed by a list input constraints such

as W(Data Table), and L is followed a list of input constraints like L(logoff).
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Table C.1: Grammar for Input Constraint Language

Constraint (InputChoices [OrderConstraint] [PropagationConstraints]) — None
None none
InputChoices InputChoice [ InputChoice ]*
InputChoice RequiredInput — OptionalInput — ChoiceInput
RequiredInput Required InputList
Required R
InputList Left RequiredParameterList Right
Left (
Right )
RequiredParameterList Parameter [ AdditionalParameter ]*
Parameter SimpleParameter [ FixedConstraint ]
SimpleParameter string
FixedConstraint Equals Value
Equals =
Value Quate string Quote
Quote ’
AdditionalParameter Comma Parameter
Comma ,
OptionalInput Optional InputList
Optional O
ChoiceInput Choose Number [Bound] Left ParameterList Right
Choose C
Bound - — +
Number integer
OrderConstraint Order ConstraintList
ConstraintParameterList ConstraintParameter [ AdditionalConstraintParameter ]*
ConstraintParameter SimpleParameter — OrderConstraint
ConstraintList Left ConstraintParameterList Right
AdditionalConstraintParameter Comma ConstraintParameter
Order AnyOrder — SequentialOrder
AnyOrder A
SequentialOrder S
PropagationConstraints [ ContinueUseList ] [ SingleUseList ]
ContinueUseList ContinueUse SimpleParameterList
ContineUse continue
SingleUseList SingleUse SimpleParameterList
SingleUse signle
SimpleParameterList SimpleParameter [ AdditionalSimpleParameter ]*
AdditionalSimpleParameter Comma SimpleParameter
Single choice C1
Multiple choice Cn
Swipe w
Scroll L
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Appendix D

Family Medicines List App

D.1 Clusters and Nodes

Table D.1: Clusters and Nodes For Main

Node Cluster/LAP Explanation

Main Main Page Main Screen of the mobile app

New Med New Medication Add new medication for the pa-

tient with his information

New Name New Patient Name Add new patient name with his

information

Modify Med Modify Medication Edit medication information or

delete the medication

Exit Exit app Exit the mobile application
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Table D.2: Clusters and Nodes For New Med

Node Cluster/LAP Explanation
New Med New Medication Connection from main page

New medicines New Medicines Information Page related to medicines infor-
mation

Dosage Dosage Information Page related to Dosage Informa-
tion

Instruction Instruction Information Page related to Instruction Infor-
mation

When When Information Page related to When Informa-
tion

Add New Add New Submit new medicines informa-
tion

Cancel Cancel new Cancel new medicines
Main Exit To main page Return to main page of mobile

application

Table D.3: Clusters and Nodes For New Name

Node Cluster/LAP Explanation
New Name New patient name Connection from main page
New nameP New patient name Information Page related to patient name

information
New medicines New Medicines Information Page related to medicines in-

formation
Dosage Dosage Information Page related to Dosage Infor-

mation
Instruction Instruction Information Page related to Instruction In-

formation
When When Information Page related to When Informa-

tion
Add New Add New Submit new patient name in-

formation
Cancel Cancel new Cancel add new name patient

Main Exit To main page Return to main page of mobile
application
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Table D.4: Clusters and Nodes For Modify Med

Node Cluster/LAP Explanation
Modify Med Modify Medicines Connection from main page

Edit Edit Medicines Information Page related to edit information
Delete Delete Medicines Delete Medicines information
Cancel Cancel Cancel edit Medicines informa-

tion

Table D.5: Clusters and Nodes For New NameP

Node Cluster/LAP Explanation
New NameP Enter new name Connection from Add new name

page
Accept Accept Submit new patient name
Cancel Cancel Cancel new patient name

Table D.6: Clusters and Nodes For New Medicines

Node Cluster/LAP Explanation
New medicines Enter new medicine Connection from Add/Edit new

medicine page
Accept Accept Submit new medicine
Cancel Cancel Cancel new medicine

Table D.7: Clusters and Nodes For Dosage

Node Cluster/LAP Explanation
Dosage Enter new dosage Connection from Add/Edit new

medicine page
Accept Accept Submit new dosage
Cancel Cancel Cancel new dosage

Table D.8: Clusters and Nodes For When

Node Cluster/LAP Explanation
When Enter new when Connection from Add/Edit new

medicine page
Accept Accept Submit new when
Cancel Cancel Cancel new when
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Table D.9: Clusters and Nodes For Instructions

Node Cluster/LAP Explanation
Instructions Enter new instruction Connection from Add/Edit new

medicine page
Accept Accept Submit new instruction
Cancel Cancel Cancel new instruction

Table D.10: Clusters and Nodes For Edit

Node Cluster/LAP Explanation
Edit Edit medicine information Connection from modifying page

Dosage Dosage Information Page related to Dosage Informa-
tion

When When Information Page related to When Informa-
tion

Instruction Instruction Information Page related to Instruction Infor-
mation

Update Update medicine Submit medicine information
Cancel Cancel Cancel edit medicine

D.2 Reduced Test Sequences and Test Values

Table D.11: Aggregated Test Paths Values

Id Edge Id Constraint Values

1 A1 R(SelectN, buttonANM) selectN = "Trev"

S(SelectN, buttonANM) buttonANM = click

continue-use(SelectN)

D2 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

A1 R(buttonANM) buttonANM = click
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H3 R(buttonAD) buttonAD = click

E1 R(parDosage, buttonADA) parDosage = 25 mg

S(parDosage, buttonADA) buttonADA = click

Continue-use(parDosage)

E2 O(parDosage), R(buttonADC) parDosage = 25 mg

S(parDosage, buttonADC) buttonADC = click

B6 R(buttonAM) buttonAM = click

A4 R(buttonBack) buttonBack = click

2 A1 R(SelectN, buttonANM) selectN = "Trev"

S(SelectN, buttonANM) buttonANM = click

continue-use(SelectN)

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H5 R(buttonAW) buttonAW = click

G1 R(parWhen, buttonAWA) parWhen = "when needed"

S(parWhen, buttonAWA) buttonAWA = click

Continue-use(parWhen)

G2 O(parWhen), R(buttonAWC) parWhen = "when needed"

S(parWhen, buttonAWC) buttonAWC = click

B5 R(buttonCNM) buttonCNM = click

Continued on next page
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

A4 R(buttonBack) buttonBack = click

3 A1 R(SelectN, buttonANM) selectN = "Trev"

S(SelectN, buttonANM) buttonANM = click

continue-use(SelectN)

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H5 R(buttonAI) buttonAI = click

G1 R(parInstruction, buttonAIA) parInstruction = "when re-

quired"

S(parInstruction, buttonAIA) buttonAIA = click

Continue-use(parInstruction)

G2 O(parInstruction), R(buttonAIC) parInstruction = "when re-

quired"

S(parInstruction, buttonAIC) buttonAIC = click

B5 R(buttonCNM) buttonCNM = click

A4 R(buttonBack) buttonBack = click

4 A2 R(buttonANN) buttonANN = click

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H2 R(buttonANM) buttonANM = click

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continued on next page
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H1 R(buttonAD) buttonAD = click

E1 R(parDosage, buttonADA) parDosage = 25 mg

S(parDosage, buttonADA) buttonADA = click

Continue-use(parDosage)

E2 O(parDosage), R(buttonADC) parDosage = 25 mg

S(parDosage, buttonADC) buttonADC = click

B6 R(buttonAnnA) buttonAnnA = click

A4 R(buttonBack) buttonBack = click

5 A2 R(buttonANN) buttonANN = click

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H3 R(buttonANNP) buttonANNP = click

E1 R(parName, buttonANNPA) parName = "Trev"

S(parName, buttonANNPA) buttonANNPA = click

Continue-use(parName)

C1 O(parName), R(buttonANNPC) parName = "Trev"

S(parName, buttonANNPC) buttonANNPC = click

C2 R(buttonCNN) buttonCNN = click

A4 R(buttonBack) buttonBack = click

6 A2 R(buttonANN) buttonANN = click

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

J2 R(buttonAW) buttonAW = click

F1 R(parWhen, buttonAWA) parWhen = "when needed"

S(parWhen, buttonAWA) buttonAWA = click

Continue-use(parWhen)

F2 O(parWhen), R(buttonAWC) parWhen = "when needed"

S(parWhen, buttonAWC) buttonAWC = click

H6 R(buttonCNN) buttonCNN = click

A4 R(buttonBack) buttonBack = click

7 A2 R(buttonANN) buttonANN = click

D1 R(parMed, buttonANMA) parMed = "Asprin"

S(parMed, buttonANMA) buttonANMA = click

Continue-use(parMed)

D2 O(parMed), R(buttonANMC) parMed = "Asprin"

S(parMed, buttonANMC) buttonANMC = click

H5 R(buttonAI) buttonAI = click

G1 R(parInstruction, buttonAIA) parInstruction = "when re-

quired

S(parInstruction, buttonAIA) buttonAIA = click

Continue-use(parInstruction)

G2 O(parInstruction), R(buttonAIC) parInstruction = "when re-

quired"

S(parInstruction, buttonAIC) buttonAIC = click

H6 R(buttonCNN) buttonCNN = click

A4 R(buttonBack) buttonBack = click

8 A3 O(SelectN), R(SelectM) selectN = "Trev"

Continued on next page
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

S(SelectN, SelectM) selectM = "Asprin"

Continue-use(SelectN, SelectM)

I3 O(parName), R(parMed, but-

tonCE)

parName = "Trev"

S(parName, parMed, buttonCE)) parMed = "Asprin"

continue-use(parName, parMed) buttonCE = click

I2 O(parName), R(parMed, buttonD) parName = "Trev"

S(parName, parMed, buttonD) parMed = "Asprin"

R(buttonD) buttonD = click

A4 R(buttonBack) buttonBack = click

9 A3 O(SelectN), R(SelectM) selectN = "Trev"

S(SelectN, SelectM) selectM = "Asprin"

Continue-use(SelectN, SelectM)

I1 O(parName), R(parMed, buttonE) parName = "Trev"

S(parName, parMed, buttonE) parMed = "Asprin"

Continue-use(parName, parMed) buttonE = click

H3 R(buttonAD) buttonAD = click

E1 R(parDosage, buttonADA) parDosage = 25 mg

S(parDosage, buttonADA) buttonADA = click

Continue-use(parDosage)

E2 O(parDosage), R(buttonADC) parDosage = 25 mg

S(parDosage, buttonADC) buttonADC = click

J5 R(buttonEEC) buttonEEC = click

A4 R(buttonBack) buttonBack = click

10 A3 O(SelectN), R(SelectM) selectN = "Trev"

S(SelectN, SelectM) selectM = "Asprin"

Continue-use(SelectN, SelectM)

I1 O(parName), R(parMed, buttonE) parName = "Trev"

Continued on next page
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Table D.11 – continued from previous page

Id Edge Id Constraint Values

S(parName, parMed, buttonE) parMed = "Asprin"

Continue-use(parName, parMed) buttonE = click

H4 R(buttonAW) buttonAW = click

F1 R(parWhen, buttonAWA) parWhen = "when needed"

S(parWhen, buttonAWA) buttonAWA = click

Continue-use(parWhen)

F2 O(parWhen), R(buttonAWC) parWhen = "when needed"

S(parWhen, buttonAWC) buttonAWC = click

J4 R(buttonEEU) buttonEEU = click

A4 R(buttonBack) buttonBack = click

11 A3 O(SelectN), R(SelectM) selectN = "Trev"

S(SelectN, SelectM) selectM = "Asprin"

Continue-use(SelectN, SelectM)

I1 O(parName), R(parMed, buttonE) parName = "Trev"

S(parName, parMed, buttonE) parMed = "Asprin"

Continue-use(parName, parMed) buttonE = click

H5 R(buttonAI) buttonAI = click

G1 R(parInstruction, buttonAIA) parInstruction = "When re-

quired"

S(parInstruction, buttonAIA) buttonAIA = click

Continue-use(parInstruction)

G2 O(parInstruction), R(buttonAIC) parInstruction = "When re-

quired"

S(parInstruction, buttonAIC) buttonAIC = click

J4 R(buttonEEU) buttonEEU = click

A4 R(buttonBack) buttonBack = click
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D.3 Selenium Code of Test Paths
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