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Abstract 

Atmospheric aerosols are ubiquitous throughout the Earth’s atmosphere and can be 

important with respect to environmental systems and human health. Pollen particles are a 

class of primary biological aerosol particles (PBAPs) that cost the United States billions 

of dollars a year in loss of productivity and healthcare costs due to allergy and respiratory 

effects. Traditional methods of pollen detection rely on collection and subsequent 

identification by visual microscopy, yet few measurement stations exist in the United 

States. As such, current pollen forecasting models have relatively high prediction 

uncertainty, especially in regions without sampling stations. Recently, laser-induced 

fluorescence instrumentation has been applied as one method to bridge gaps in bioaerosol 

detection and classification, though this instrumentation suffers from prohibitively high 

cost or analysis barriers. 

This thesis describes the development, characterization, and preliminary application of 

a new single-particle fluorescence spectrometer geared towards bioaerosol, particularly 

pollen, analysis. A sequence of four laser or LED sources are used to excite the particles, 

which emit fluorescent light that is magnified then diffracted through a transmission 

grating into a simple digital camera. This instrument operates similar to a traditional 

spectroscope, though is able to collect spectral light from several small particles 

simultaneously. This process allows for spectroscopic analysis of many particles at the 
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same time. The instrument went through several phases of both development and 

characterization. Development included the addition of several new excitation sources 

(two light-emitting diodes and one laser) to expand the number of fluorophores probed. A 

monochrome camera was also added to the system to circumvent issues caused by 

inexpensive point-and-shoot cameras. Methods to size the particles, as well as 

calibrations for camera parameters and systemic defects were also implemented. For 

defects in the optical surface and differences in source intensity, a spatial interpolation 

map was developed that reduces the error of identical particles depending on their 

location on the CCD from 17% to 3%. 

Utilizing these techniques, four clustering and classification methods were examined 

with 8 species of commercial pollen in Chapter 4. The random forest (RF) and gradient 

boosting algorithms performed exceptionally well, both classifying above 95% accuracy. 

The RF technique was examined further due to computational advantages. Testing on 

source reduction revealed that the 405 and 450 nm sources were less important in 

classification models, with the latter having particularly low (3%) importance. 

The classification techniques were utilized on freshly collected pollen standards in 

Chapter 5. 34 types of pollen were collected and classified to 90% accuracy at the species 

level. Pollen was also classified by species, allergenicity, as well as by plant type 

depending on their collection months, with one scenario being classified at 98% 

accuracy. A proof-of-concept was also provided for the prediction of new, ambient pollen 

samples to a developed random forest classification model from standard collections, in 
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which several particles collected in a central location of the Botanic Gardens were 

classified as a type of tree that was seen to be pollinating on the same day.  
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Chapter One: Introduction 

1.1 Primary Biological Aerosol Overview 

Aerosols are small airborne particles that are small enough to be suspended in the air 

and are ubiquitous throughout the Earth’s atmosphere. Large aerosols, known as coarse 

mode particles (i.e. > 2.5 μm in diameter), include material such as dust elevated 

mechanically into the air, sea-salt spray from ocean waves, and pollen ejected from trees. 

A sub-class of these aerosols are biological particles. These are often called primary 

biological aerosols (PBAPs), ejected directed from biological sources, e.g. pollen and 

fungal spores, as well as particles like plant fragments that are mechanically elevated into 

the atmosphere by other sources (Fröhlich-Nowoisky et al. 2016; Després et al. 2012). 

PBAPs have been observed to have a wide variety of influence on human life and 

climate. For example, bioaerosols can transport airborne disease, induce allergies, and it 

has been proposed that they can influence a number of environmental systems (Fröhlich-

Nowoisky et al. 2016; Douwes et al. 2003). Exposure due to important classes or species 

of bioaerosols has become an important area of study at places like composting facilities 

(Wéry 2014; Hryhorczuk et al. 2001; Bünger et al. 2000) and livestock farms (Wéry 

2014; Millner 2009; Mackiewicz 1998) due to the elevated risk of exposure to bacteria, 

fungal spores, and toxins that may be harmful to the body. Many pollen types are well-
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known allergens that up to 30% of U.S. adults suffer from seasonally (Sofiev and 

Bergmann 2013; Peden and Reed 2010). 

Bioaerosols represent a wide class of particles that can have a myriad of effects on 

many different systems, and their physical properties are less explored compared to other 

atmospheric aerosols (Morris et al. 2011; Ariya et al. 2009). Physical properties of the 

particles are extremely important in the identification of bioaerosols. PBAPs cover an 

extremely wide array of sizes, ranging from tens of nanometers to several hundred 

microns (Bartlett 2008; Pöschl 2005; Górny et al. 1999).  As a result, size and shape 

measurements of a particle can be used to classify them into broad groupings. Pollen, the 

primary focus of this dissertation work, are supermicron particles (e.g. 4-100 μm) though 

fragmentation of pollen, and other supermicron PBAPs, can occur in the atmosphere 

under certain conditions (Taylor et al. 2007; Green et al. 2006; Górny et al. 2002).  

1.2 Pollen Overview 

1.2.1 Definition and Brief Biology 

Pollen are microscopic grains released from the male portion of pollen-producing 

plants. Pollen grains are typically spherical or elliptical in shape and range between sizes 

of 4 and 100 μm, depending on the species (Bennett and Willis 2002; Leuschner 1993). 

These sizes can translate into different ejection and transport features. Conifer pollen, for 

example, tends to be large and have features such as air bladders, which are air-filled 

structures that increase surface area to help increase the ability of the pollen to stay aloft 

(Schwendemann et al. 2007). This allows conifer pollen to be ejected directly from the 

tree, inducing pollination after being carried through the air to another tree through a 
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process referred to as anemophily. Broadleaf pollen is produced in the stamen of the 

flower and is generally stickier. Most pollen grains are surrounded by protective material, 

a hard outer exine shell, to help reduce the impact of environmental conditions. Stickier 

pollen includes a layer made of lipid and carotenoid compounds, called pollenkitt, on the 

surface (Pacini and Hesse 2005; Runions and Owens 2002). Pollen with larger amounts 

of pollenkitt are generally pollinated by animals, referred to as zoophily, with a majority 

pollinated by insects, known as entomophily. Pollenkitt is not included in plant species 

that utilize plant or animal transport, however, as both types of pollen lie on a scale where 

pollenkitt inclusion correlates with entomophilous behavior (Hesse 1981). 

Entomophilous species tend to be characterized by highly-developed structures with 

protrusions (echinate) on the pollen grains, helping to provide a natural barrier as well as 

increase the ability to stick to pollinators (Tanaka et al. 2004). Anemophilous pollen 

tends to possess psilate, or smooth surfaced, grains or exhibit a reticulate structure. If 

echinates are present on anemophilous pollen, they are more likely to be much smaller 

than their entomophilous counterparts. Despite protective structures pollen can still 

rupture due to mechanical stress as well as elevated humidity (Pacini and Hesse 2005).  

Atmospheric lifetimes of pollen are of interest, as pollen exposure from the air is 

critical to triggering an allergenic response (Rapiejko et al. 2007). The release of 

anemophilous pollen is highly dependent on both temperature as well as humidity 

(Kuparinen et al. 2009; Sato and Peet 2005; Grote et al. 2003). Wind-born pollen 

generally travels distances of hundreds of meters or more, well past adjacent maternal 

neighbors, with one study showing a minimum of 62% of viable C. longifolium pollen 
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traveling 200+ meters (Kuparinen 2006; Stacy et al. 2002). Episodic scenarios also occur 

with pollen traveling hundreds of kilometers over a several-day period. Betula pollen has 

been seen to travel over 2000 km in some instances, over the course of up to 50 hours, 

and are still able to elicit allergenic reactions (Hjelmroos 1991). In certain circumstances, 

entomophilous pollen can also be ejected into the atmosphere due to high winds, forming 

a larger fraction of the pollen load than calm conditions (Dua and Shivpuri 1962), though 

it is less common. Settling coefficients of pollen impact its ability to be transported large 

distances or stay suspended in the air. Pollen diameter, morphology, and other properties 

such as hygroscopicity also directly affect the settling parameters of pollen (Aylor 1975).  

Clouds of boreal tree pollen have been observed by polarization LIDAR 

measurements in Alaska, lofted up to 2 km in the atmosphere from adjacent forests 

(Sassen 2008). Pollen is frequently detected by LIDAR measurements in Fairbanks 

during the summer months. Forests are a large contributor of atmospheric bioaerosols, 

and northern hemisphere boreal forests (specifically the species Pinus taeda) in the 

southeastern United States has been shown to contribute 3.3 Tg of pollen over the course 

of less than 100 days (Williams and Després 2017). Pinus taeda exceeded per-plant 

production of pollen by corn plants dramatically, despite Zea Mays pollen serving as the 

current source for modeling pollen emissions and transport (Williams and Després 2017). 

1.2.2 Pollen Allergies 

The primary health concern related to pollen is the propensity of certain species to 

induce an allergenic response. Though it is possible for entomophilous plants to be 

allergenic, anemophilous ones tend to drive pollen allergies. This is because 
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entomophilous pollen is much less likely to be lifted into the air, so the risk of contact is 

greatly reduced. However, some anemophilous species, such as those in the Pinus genus, 

do not illicit allergenic responses (Spieksma 1990), implying that a combination of 

allergenic potency and availability of contact is important. It has been suggested that the 

overall morphology and structure of anemophilous pollen types allow for easier access to 

the allergenic compounds within the pollen itself (Diethart et al. 2007). Since 

anemophilous plants pollinate during most of the year, usually peaking for trees in the 

spring, grasses in the summer, and weeds in the fall, they are a large influencer of human 

health. 

Pollen allergies are prevalent among humans, caused by an allergenic response 

following ingestion or inhalation of microscopic pollen grains (Douwes et al. 2003; 

Cohen et al. 1979). Allergies cause an immune system reaction that produces 

Immunoglobulin E (IgE) antibodies, which then travel to cells and trigger the release of 

histamines. These histamines are the chemicals responsible for the allergenic symptoms 

of coughing, sneezing, and inflammation. Many allergens present in pollen particles 

exhibit cross-reactivity, resulting in allergenic responses to many types of pollen 

allergens since the IgE epitopes are conserved between those allergenic proteins 

(Wopfner et al. 2005). Different types of pollen have also been shown to contain multiple 

allergenic proteins (Léonard et al. 2010; Asero et al. 2006; Wopfner et al. 2005). Though 

the locations of these allergens vary within the structure of the pollen, many of these 

allergens are water soluble (Vrtala et al. 1993; Staff et al. 1990), allowing for quick 

dissemination of these proteins in high humidity or aqueous conditions. Different types of 
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pollen have also been observed to rupture due to high humidity, releasing respirable 

fragments that further expose allergens deeper into airways and lungs (Taylor et al. 2004; 

Grote et al. 2003).  

Direct inhalation or contact is not the only pathway for the induction of the allergic 

resonse. Pollutants in the atmosphere can compound these problems in multiple ways. 

Previous studies have shown that nitration of proteins by atmospheric pollutants, such as 

nitrogen dioxide and ozone, in already allergenic pollen can lead to an increased 

allergenic response (Karle et al. 2012; Gruijthuijsen et al. 2006; Franze et al. 2005). 

Increases in carbon dioxide concentrations have also been seen to cause an increase in the 

production and growth of allergenic pollen, as seen in Ambrosia artemisiifolia, or 

common ragweed, pollen (Wayne et al. 2002; Ziska and Caulfield 2002). There has been 

an increase in overall plant colonization in regions in Europe due to increases in carbon 

dioxide concentrations and human activity (D’Amato et al. 2007). Some pollen species, 

such as Mugwort pollen, have been seen not to cause allergic reactions in humans unless 

the pollen was previously contaminated with endotoxins from certain bacteria (Oteros 

2019). Oral allergy syndrome is also caused by pollen, in which previous exposure to 

pollination allergens, or pollen presently existing on the food, causes an allergic reaction 

from inhalation while eating (Balková 2015; Katelaris 2010). 

1.3 Pollen Sampling and Monitoring 

1.3.1 Traditional Pollen Sampling 

Current atmospheric pollen detection typically relies on a combination of a collection 

and subsequent analysis technique. The collection mechanisms frequently involve the 
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capture of pollen particles with a sticky grease material, which can do this over time. The 

Hirst sampler, for example, collects within a spinning drum that slowly spins over the 

course of a period of time, usually a week (Mullins and Emberlin 1997). The pollen 

samples collected with this mechanism are then collected and examined by visual 

microscopy by a palynologist. Collected pollen needs to be prepared prior to microscopy 

is performed, usually to stain the pollen exine and nothing else. Pollen can then be 

identified to a taxonomic level, occasionally to the species, by applying an analysis of 

pollen grains for grain number, size, shape, surface structures, and internal structural 

details (Weber 2010). These pollen particles need to be identified individually based on 

the collections over approximately a week, for example, which can be both costly and 

time-consuming to perform because measurements are typically carried out by trained 

professionals. Studies of computational image analysis algorithms have shown that many 

human analysts may be under-performing when compared to emerging algorithm 

technologies (Mander et al. 2014). Human analysts were seen to produce mean accuracy 

results of 46.67% to 87.5% when attempting to identify grass pollen species alone 

(Mander et al. 2014).  

1.3.2 Current Monitoring Networks 

Monitoring networks for pollen exist around the world, though sampling sites are 

often widely separated and inefficient. Many countries or continental regions operate 

national networks of pollen monitors for the purposes of public health information. In 

continental Europe, for example, a well-developed network of sites (>525) collect data 



8 

 

about relative levels of key allergenic pollen and fungal spore species on a daily basis, 

whereas a smaller network of ~150 stations  is operated in the United States (Buters et al. 

2018). An interactive pollen measurement global map assembled by the Center for 

Allergies and Environment in Munich, Germany shows high density of pollen 

measurement in most of Europe, the Eastern United States, and Japan, additional points 

around China and Australia, and then at best sparsely scattered measurements across the 

rest of the world (Buters et al. 2018).  

Current pollen identification processes are costly due to the requirement of using 

technicians trained in the specialized biological identification process, provides data at 

relatively low time resolution (min. 2+ hr), and leads to poor spatial resolution of 

sampling sites. For example, only ca. 20 monitoring sites are operated in the vast 

geographic region of the western United States, and many states have no sites at all 

(National Allergy Bureau, 2019). Pollen counts at locations between measurement sites 

are interpolated, and thus the quality of prediction at the local level varies significantly. 

Local and regional topological effects influence pollen measurement and prediction 

accuracy for interpolated forecasting (Tseng and Kawashima 2019). Data from pollen 

monitoring stations is combined with meteorological conditions as input parameters for 

predictive models. The result is to forecast e.g. the beginning date of pollination season 

and the relative concentration of key allergenic pollen classes as a function of geography 

(Pauling et al. 2012; Stach et al. 2008; Galán et al. 2001). These forecasts are frequently 

then transmitted to the public via news channels and smartphone applications. 
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1.4 Fluorescence Spectroscopy 

1.4.1 Introduction to Fluorescence 

Fluorescence spectroscopy can be a useful tool to probe chemical compositions of 

substances. Electrons present in the matter absorb electromagnetic radiation at varying 

energy, depending on overall chemical structure. Fluorescence is generally referred to as 

the ability to absorb electromagnetic radiation in the UV and visible range on the 

electromagnetic spectrum and re-emit visible light. Absorption of photons by the 

substance’s electrons causes them to be excited, taking them from the ground state to a 

higher energy level. The energy then goes through internal conversions based on the 

chemical composition of the molecule, and when relaxing back to the ground state emits 

a new, lower energy photon as visible light (Atkins and De Paula 1989).  This can be 

seen in the example Jablonski diagram in Figure 1.1. Fluorescence instrumentation has 

been developed to take advantage of this property. A sample, liquid or solid, is 

illuminated, frequently with near/deep UV or blue-end visible light, and the subsequent 

fluorescence is collected, often at a 90° angle.  The fluorescent light is refracted through a 

monochromator or prism to separate the light into individual wavelengths and is 

measured from that point. 
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Figure 1.1. Simplified Jablonski diagram representing a typical 

absorption and re-emission of a photon in the process of fluorescence. 

Various instrumentation has been developed to take advantage of fluorescence. Simple 

fluorescence imaging (Dobrucki and Kubitscheck 2017), adding fluorescent tags (Sahoo 

2012), utilizing polarization with fluorescence (Lakowicz 2006), multifocal plane 

fluorescence microscopy (Prabhat et al. 2004), and even testing the effect of 

photobleaching as it related to fluorescence are all useful techniques that incorporate 

fluorescence spectroscopy (Axelrod et al. 1976).  Detected fluorescence signals can give 

insight into chemical composition, or changes in composition, depending on the 

wavelength, shape, and even ratio of fluorescent signals. In particular, ultra-violet laser-

induced fluorescence has become a commonplace technique in the detection of 

bioaerosols (Huffman et al. 2019; Huffman and Santarpia 2017). 

1.4.2 Pollen Fluorescence 

Many of the chemical compounds in pollen exhibit auto-fluorescence, the re-emission 

of light from natural structures, allowing for different fluorescence emission signals to be 
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detected based on the usage of excitation sources (Pöhlker et al. 2013; O’Connor et al. 

2011). Chemical structures such as chlorophyll, NADH, proteins, and the pollenkitt on 

the surface each exhibit different fluorescence characteristics that allow for 

differentiation in these particles. Phenolics, carotenoids, proteins, chlorophyll a, and 

other biological compounds all exhibit fluorescence modes at differing excitations and 

emission intensities. In particular, riboflavin, NADH, and tryptophan/tyrosine are three 

primary biological fluorophores that show large emission signals in the visible range, and 

are commonly present in most biological materials (Pöhlker et al. 2012). 

Fluorescence spectral characteristics of bulk pollen powder have been 

comprehensively analyzed, frequently presented in excitation emission matrices (EEMs) 

for individual pollen species (Pöhlker et al. 2013; Hill et al. 2009; Wlodarski et al. 2006; 

Satterwhite 1990). Based on spectral trends and general molecular composition 

assignments summarized by Pöhlker et al. (2013), the assessment of spectra analyzed 

here were grouped into eight spectral regions according to approximate location of 

spectral peaks: (0) e.g. protein signals; λEx 280 nm, λEm 350 nm (I) e.g. phenolics; λEx 280 

nm, λEm 450 nm (II) e.g. phenolics; λEx 360 nm, λEm 450 nm (III) e.g. phenolics; λEx 405 

nm, λEm 450 nm (IV) e.g. carotenoids; λEx 360 nm, λEm 500-520 nm (V) e.g. carotenoids; 

λEx 405 nm, λEm 500-520 nm (VI) e.g. carotenoids; λEx 450 nm, λEm 520-550 nm (VII) 

e.g. chlorophyll a; λEx 405 nm, λEm 675 nm (VIII) e.g. chlorophyll a; λEx 450 nm, λEm 675 

nm. The first signal is listed as (0) as the wavelength of emission is too low to be seen by 

this instrument. 
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Figure 1.2. An excitation-emission matrix spanning fluorescence modes of pollen 

from previous studies, as well as the information compiled in this thesis. The four 

colored lines represent excitation sources available in this instrument, and 

fluorophore modes above 0 are seen by this instrument. (Adapted from Pöhlker et 

al., 2013) 

1.5 Emerging Techniques for Pollen Analysis 

 As a result of the challenges of relying on manual identification processes, 

significant effort has gone into finding automated solutions to replace or supplement 

existing detection strategies (e.g. Huffman et al. 2019; Wu et al. 2018; Kawashima et al. 

2017; Tello-Mijares and Flores 2016; Oteros et al. 2015; Kiselev et al. 2013; Dell’Anna 

2010; Allen et al. 2008; Ranzato et al. 2007; Chen et al. 2006). Efforts to automate pollen 

analysis continue to face technical challenges, and so at present only a few groups have 

experimented with deploying prototypes of automated techniques (Buters et al. 2018). 
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The allergenic pollen burden of many regions of Japan is heavily dominated by a single 

pollen species (Japanese cedar), and so a single-particle light-scattering instrument (KH-

3000, Yamatronics; Japan) was developed largely to quantify this pollen type 

(Kawashima et al. 2007, 2017). The instrument is now functional in networks around 

Japan (Miki et al. 2019; Kawashima et al. 2007, 2017). The BAA500 (Hund-Wetzlar; 

Wetzlar, Germany) was develop to mimic the operational process of collection and 

microscopy analysis, and is being used in small numbers in the ePIN pollen monitoring 

network in southern Germany (Oteros et al. 2015).  

Many examples of ultra-violet laser-induced fluorescence (UV-LIF) instruments have 

been utilized to selectively detect biological fluorophores in atmospheric particulate 

matter and have been applied not only for pollen detection, but for rapid detection and 

classification of a wider range of biological aerosol types including bacteria and fungal 

spores (Huffman et al. 2019; Fennelly et al. 2017; Pöhlker et al. 2012, 2013; Després et 

al. 2012; Hill et al. 2009). Data from a new instrument (Swisens AG; Horw, Switzerland) 

using real-time holography measurements was shown to be applied to convolutional 

neural networking systems to identify pollen at a taxonomic level (Sauvageat et al. 2019).  

The Wideband Integrated Bioaerosol Sensor (WIBS, Droplet Measurement 

Technologies; Longmont, Colorado), for example, uses two excitation sources (280 nm 

and 370 nm) to selectively target biofluorophores, capturing fluorescence signal with 

coarsely binned resolution of two channels per emission spectrum (Savage et al. 2017; 

Hernandez et al. 2016; Gabey et al. 2010; Kaye et al. 2005). The WIBS has been applied 

for pollen detection (Ruske et al. 2018; Calvo et al. 2018; Savage et al. 2017; Perring et 
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al. 2015; D. O’Connor et al. 2014a; Healy et al. 2012), but with only limited success 

(Savage and Huffman 2018; D. O’Connor et al. 2014a; Kiselev et al. 2013). The Rapid-E 

(Plair SA; Geneva, Switzerland) acquires fluorescence spectra in 32 channels after 

excitation by a 400 nm laser and also records fluorescence lifetime and time-resolved 

light scattering signal in order to more finely differentiate between pollen species 

(Kiselev et al. 2011, 2013). The Rapid-E has been applied to ambient pollen monitoring 

in several studies, and shows the ability to discriminate between certain groups of pollen 

types with roughly 90% accuracy (Šaulienė et al. 2019; Crouzy et al. 2016).  

While these few examples of instrumentation able to identify or differentiate broad 

classes of pollen are under investigation for application for monitoring networks, their 

purchase cost is high at tens to hundreds of thousands of dollars per unit. As a result, the 

need exists both to improve upon recognition capabilities and to dramatically reduce the 

purchase cost of pollen sensors. 

Within the last few years, a separate paradigm of pollen detection has also become 

popular, shifting toward smaller, relatively inexpensive instrumentation. In most of these 

cases, the physical principles of detection are based on light-scattering, pattern 

recognition, or holography, using more advanced analysis computing to differentiate 

pollen types using field-portable instrumentation. One such prototype sensor generates 

diffraction holograms associated with individual particles, and deep learning techniques 

are then utilized to process and subsequently classify, or label, the measured particles 

from the hologram (Wu et al. 2018). The sensor was shown to successfully separate a 

mixture that included three species of pollen (Bermuda grass, oak, and ragweed), two 



15 

 

fungal spore types, and common dust, with a classification  accuracy of 94% (Wu et al. 

2018). Another recently available commercial sensor is the Pollen Sense™ (Pollen Sense, 

Salt Lake City, Utah), which is a portable and relatively low cost (~$8,000) sensor that 

utilizes a combination of visual microscopy and image analysis techniques to identify 

pollen types as well as other large particles (i.e. ~5 μm)  

1.6 Research Aim 

Detection and classification of pollen populations is essential to efficiently model and 

forecast the allergens carried by these particles. Currently existing monitoring networks 

exist but consist of costly and time-consuming techniques that do not encourage 

widespread utilization. This results in poor spatial coverage, leading to potentially 

inaccurate forecasts. In the United States, stations monitoring pollen are particularly 

sparse, and a system of automated sensors contributing to the network of available pollen 

information would be extremely beneficial. 

Emerging technologies in UV-LIF, holography, and other microscopic techniques, 

have shown promise in the detection and classification of pollen, and bioaerosols in 

general. Still, the majority of the techniques that have proven successful have not seen 

commercialization at a price-point that allows for wide distribution. We have developed a 

new single-particle fluorescence spectrometer that allows for the detection and 

subsequent classification of pollen particles. This sensor is comparatively inexpensive 

(e.g. <$5000 current prototype fabrication cost) and can detect and classify different 

types of pollen with relatively high accuracy (>90%) in most cases, as will be discussed. 

The ability to detect and classify certain subsets of local, allergenic pollen from 
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background materials, including other pollen, will represent a leap forward in alerting the 

public to the potential of an allergenic response. 

This thesis demonstrates the achievement of the following research goals: 

➢ To show early development of an inexpensive, single-particle fluorescence 

spectrometer that is capable of high-resolution fluorescence spectroscopy, as well 

as the operation from collection to analysis of individual particles (Chapter 2). 

➢ To suggest improvements on instrumental design for focus on pollen 

detection and classification, to demonstrate the spectral range obtained by the 

instrument, and also suggest strategies for instrumental calibration. (Chapter 3). 

➢ To introduce clustering and classification strategies that were utilized with 

the fluorescence/size data obtained from the instrument (Chapter 4). 

➢ To apply these strategies to pollen samples collected from local plants, as 

well as discuss spectral anomalies and various factors such as collection time, 

sample age, and other characteristics (Chapter 5). 

The instrument presented in this thesis is also patented under US Patent 

S20160320306A1 (Huffman and Huffman 2019)
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Chapter Two: Design and Basic Instrumental Operation of a Newly Developed 

Single-Particle Fluorescence Spectrometer 

2.1 Introduction to Fluorescence 

Fluorescence spectroscopy is a useful tool to probe chemical compositions of 

substances. Electrons present in the matter absorb electromagnetic radiation at varying 

energy, depending on overall chemical structure. Fluorescence is generally referred to as 

the ability to absorb electromagnetic radiation and re-emit light in photons with less 

energy. Absorption of photons by the substance’s electrons causes them to be excited, 

taking them from the ground state to a higher energy level. The energy then goes through 

internal conversions based on the chemical composition of the molecule, and when 

relaxing back to the ground state emits a new, lower energy photon as visible light 

(Atkins and De Paula 1989).  Fluorescence instrumentation has been developed to take 

advantage of this property. A sample, liquid or solid, is illuminated with an excitation 

source, and the subsequent fluorescence is collected, often at a 90° angle.  The 

fluorescent light is refracted through a monochromator or prism to separate the light into 

individual wavelengths and is measured from that point.
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Various instrumentation has been developed to take advantage of fluorescence. Simple 

fluorescence imaging (Dobrucki and Kubitscheck 2017), adding fluorescent tags (Sahoo 

2012), utilizing polarization with fluorescence (Lakowicz 2006),  multifocal  plane 

fluorescence microscopy (Prabhat et al. 2004), and even testing the effect of 

photobleaching as it related to fluorescence are all useful techniques that incorporate 

fluorescence spectroscopy (Axelrod et al. 1976).  Detected fluorescence signals can give 

insight into chemical composition, or changes in composition, depending on the 

wavelength, shape, and even ratio of fluorescent signals. In particular, ultra-violet laser-

induced fluorescence has become a commonplace technique in the detection of 

bioaerosols (Huffman and Santarpia 2017). 

2.2 Bioaerosol Fluorescence and Instrumentation 

Biological particles contain a mixture of molecular components that can be probed to 

differentiate them from abiological material. Some of these molecules possess intrinsic 

fluorescence (autofluorescence) properties that can be exploited to spectroscopically 

detect and characterize PBAP (Pöhlker et al. 2012). As a result, UV-LIF technologies 

have been developed for widely different applications in a number of industries and 

research fields (Kiselev et al. 2011; Kaye et al. 2005; S Hill et al. 1999; Hairston et al. 

1997). The growing number of commercially available UV-LIF bioaerosol sensors 

traditionally require high upfront purchase cost (ca. $100k or more) and relatively skilled 

operators to interpret complex environmental data (Huffman and Santarpia 2017; Sodeau 

and O’Connor 2016; Crawford et al. 2015; Robinson et al. 2013). These technologies 

typically offer excellent time resolution (seconds to minutes), however they frequently 
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also suffer from comparatively weak ability to discriminate between particle types due to 

poor spectral resolution. The majority of commercial UV-LIF instruments are limited to 

either one or two wavelengths of excitation and integrate emission intensity into 1-3 total 

channels, which allows only a limited set of fluorophores to be probed and limits quality 

of discrimination between particle types. For example, the wideband integrated 

bioaerosol sensor (WIBS; Droplet Measurement Technologies) utilizes two excitation 

sources (280 nm and 370 nm), chosen to excite commonly occurring biofluorophores 

such as tyrosine and NADH, respectively (Pöhlker et al. 2012; Kaye et al. 2005) 

Many other fluorophores present in both biological and abiological material can emit 

fluorescence in overlapping wavebands, thus, resulting analytical selectivity and 

discrimination between particle types can be poor due to limited number of channels of 

both excitation and emission (Savage et al. 2017). Recently, a new generation of UV-LIF 

instruments have become commercially available to interrogate bioaerosols at higher 

spectral resolution. Instruments like the BioScout (Environics, Ltd.) (Saari et al. 2014), 

Rapid-E (Plair) (Kiselev et al. 2013), Multiparameter Bioaerosol Spectrometer or MBS 

(University of Hertfordshire) (Ruske et al. 2017), and the Spectral Intensity Bioaerosol 

Sensor or SIBS (Droplet Measurement Technologies) deliver fluorescence spectra 

recorded with 8-32 channels of resolution (Könemann et al. 2019b; Huffman and 

Santarpia 2017). These instruments generally cost as much or more, however, than earlier 

generation instruments with lower spectral resolution and require even more expertise to 

interpret spectra. 
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To differentiate between particulate analytes of interest and interfering species often 

requires the top end of UV-LIF instrumentation or innovative computing analysis 

strategies (Robinson et al. 2013; S Hill et al. 1999). For example, one UV-LIF 

instrument, the Single-Particle Fluorescence Spectrometer, developed in part by the 

Army Research Laboratory provides high spectral resolution for each of several 

excitation wavelengths, though the cost and complexity of the instrument would prevent 

widespread commercialization or consumer application (Pan et al. 2007; S Hill et al. 

1999). In addition to instruments that have been developed to utilize laser excitation 

sources at wavelengths similar to those chosen for the WIBS (i.e. ~280 nm or ~360 nm), 

many recent instruments have employed use of the 405 nm diode laser, which was made 

inexpensive by its application to Blu-RayTM video technologies. Availability of relatively 

inexpensive UV light emitting diode (LED) technology is also becoming increasingly 

important for PBAP detection, as will be discussed with respect to the instrument 

introduced here (Zhang et al. 2013). 

There is growing interest to monitor several classes of PBAP, such as pathogenic or 

allergenic fungal spores and pollen, in home and occupational health settings (Fröhlich-

Nowoisky et al. 2016; Douwes et al. 2003). Significant effort in recent years has been 

focused on the development of automatic techniques for pollen counting, some of these 

utilizing UV-LIF technologies. These techniques are very expensive and have yet to find 

wide-scale application (D. O’Connor et al. 2014a; Kiselev et al. 2013; Pan et al. 2011; 

Kawashima et al. 2007; Rodriguez-Damian et al. 2006; Chen et al. 2006; Aronne et al. 

2001). For these reasons we have developed a simple technique to characterize individual 
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particles, approximately micron-sized or greater, by their fluorescence spectra, achieved 

at much lower instrument purchase cost and with much improved spectral resolution and 

ability to discriminate between particle types than widely available UV-LIF aerosol 

sensors.  

Among the purposes of developing this instrument are to complement current 

instruments by improving spectral discrimination of particles at a significantly reduced 

cost and complexity in order to enable wider-scale application for research and 

monitoring. The instrument was also designed as a tool for the investigation of particles 

and for education about fluorescence spectra by citizen scientists or schools of various 

levels. Described here is an instrument that simultaneously provides fluorescence or 

scattering spectra of many individual particles collected onto a substrate.  

2.3 Instrumental Design 

The inception and initial work on the developed fluorescence instrument is described 

in Huffman et al. 2016. The instrument described in this thesis is functionally similar to a 

classical spectroscope, though innovative in its usage on micron-sized particles. 

Fluorescent light is projected through simple microscope optics, which is then dispersed 

through a transmission grating to split the light into individual components. Fluorescent 

signals can then be observed visually through the eyepiece that focuses the dispersed 

light. Normal spectroscopes utilize a light entrance slit, while this instrument examines 

small particles that act as point sources in place of a slit. Astronomical spectral studies 

have used slitless spectroscopy since the late 1800s, where Edward Pickering constructed 

a new method to image several stars in a single image by including a prism before the 
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photographic plate (Bunch and Hellemans 2004). Slitless spectroscopy is still used to 

analyze sparsely populated star fields and gain emission spectra information (Sachkov et 

al. 2014; Kümmel et al. 2009; Stanghellini et al. 2002). Micron-sized particles can be 

viewed similarly to very large, distant objects like stars. These astronomical applications 

were the inspiration of the instrument presented in this thesis.  

There are other applications that utilize a similar framework, though this is the first 

instance of this technique being applied to atmospheric aerosol particle analysis (Xiong et 

al. 2013; Cheng et al. 2010; Lakowicz 2006). Since aerosol particles do not 

autoluminesce and so an external excitation source must be applied. Optical spectroscopy 

that results in the emission or scattering of visible light can be used in this instrument. An 

example of elastic versus inelastic scattering comparisons is shown in the diagram for 

Figure 2.1, where particles deposited onto a substrate, such as a glass slide, are analyzed 

via a tungsten lamp or fluorescence excitation source and observed visually. These 

resultant streaks appear visually similar to emission signals from astronomical objects 

previously described.  

The instrument utilizes a dissected microscope to magnify the emission signals. The 

particles are deposited onto a glass slide, and this slide is placed into a microscope X-Y 

positioner for easy translation of particles. The particles are illuminated by a simple 

tungsten lamp (General Electric, Miniature Lamp 210, B6, 6.5 V), four independent 

excitation sources (450 nm laser, ThorLabs CPS450, Newton NJ, 405 nm laser, Power 

Technology Incorporated 9-0407-A560-0-0, Little Rock AR; 350 nm LED, QPhotonics, 

UVCLEAN350-5; 280 nm LED, QPhotonics UVTOP280, Ann Arbor MI), or a Helium-
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Neon laser at 632.8 nm (Meredith Instruments HNS-LL-1, Peoria AZ). The light, either 

refracted or emission from fluorescence, is magnified through a simple student 

microscope optical setup (Model 656/98, SWIFT Microscopy, Carlsbad, CA). The light 

is then dispersed using a transmission grating (300 grooves mm-1; ThorLabs, Inc., GT25-

03) located on the pivoting point of an optical rail. At the end of the optical rail, two CCD 

cameras have been used as inexpensive detectors: A color camera (Canon Powershot 

A2300 HD, Canon Inc., Tokyo JP), and a monochrome camera (Lumenera Infinity 2-1R, 

Lumenera Corporation, Ontario CN). This typically results, at 10x magnification, in an 

approximate area of 1.0 mm wide by 1.0 mm high being the size of a typical sample 

window. In the cases of fluorescence emission, the excitation source is blocked out using 

a requisite long-pass filter from Edmund Optics (No filter for 280 nm; 435 nm filter for 

the 350/405 nm excitations; and the 470 nm filter for the 450 nm excitation from the 

Edmund Optics #832916-10 filter kit). 

 
Figure 2.1. Current iteration of the desktop instrument described in chapter 2 as 

well as the updates from chapter 3. Details in chapter 2 related directly to the 405 

nm source, red laser, and the original color camera sensor. 
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2.4 Instrumental Operation 

Spectral collection is performed in many distinct steps. The sample of particles, 

present on a glass slide, is illuminated by an excitation source. Light is scattered, 

elastically (not absorbed) or inelastically (absorbed and re-emitted) as a function of the 

chemical components within the particles. Elastic scattering is highly dependent on the 

contact angle and structure of what is being illuminated, while fluorescence is emitted 

isotropically. Some of this light is directed towards the objective lens, which is collected 

and magnified in the microscope optics. For inelastic scattering, the excitation source is 

filtered out through a long-pass optical filter. All light is dispersed through the 

transmission grating, which then is collected with a digital camera. For elastic scattering, 

this can be seen in Figure 2.2 (Figure reproduced from Huffman et al., 2016) for an 

ambient collection of particles (top row) and ground quartz particles (bottom). Images 

were taken with a Canon Powershot A2300. The first column in Figure 2.2 represents a 

simple micrograph taken with the camera at the 0th angle with respect to the grating 

position, with no grating in place. The second column in the Figure shows the elastic 

scattering of a tungsten bulb from the particles, taken at 8° with respect to the grating, 

allowing for the elastic light to be dispersed into the individual components of light. The 

last column of the Figure represents the camera being in the same position, but a 405 nm 

excitation source illuminating the particles instead of a white light source, and the 

excitation source filtered out. The difference in columns two and three show differences 

in particle number between fluorescence and non-fluorescent particle types. In this 

example, ~2% (6 of 200-250 fluorescent) of the total number of quartz particles are 
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fluorescent, likely due to contamination from handling these samples in a relatively dirty 

lab space. In contrast, ~7% (7 of 49 fluorescent) of the ambient outdoor sample are 

fluorescent particles. 

.  

Figure 2.2 Differences in scattering and fluorescence images for two samples. The 

top row (a-c) represent an ambient sample collected via ambient deposition and 

the bottom row (d-f) represent ground quartz particles introduced via mechanical 

deposition.  Column 1 (a,d) shows a simple micrograph from the instrument, 

column 2 (b,e) shows the elastic scattering using a tungsten light, and column 3 

(c,f) shows the corresponding fluorescence of these particles with the 405 nm laser 

diode (Figure reproduced from Huffman et al., 2016) 

For samples that represent pure bioparticle standards, the ratio of fluorescent to elastic 

particles is closer to 100% fluorescence. Figure 2.3 shows the process behind spectral 

collection, which is conceptually similar to Figure 2.2. Figure 2.3a is a dark field image 

of paper mulberry pollen particles (B. papyrifera; 12–13 µm; Thermo Fisher Scientific). 
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Figure 2.3b shows the same set of particles illuminated with both the 632.8 HeNe laser 

and the 405 nm excitation laser, without the excitation being blocked. This type of image 

is the primary calibration image used in our analyses and is used in the two-point 

calibration described in the next section. Figure 2.3c shows the same particles illuminated 

by the white-light tungsten bulb, elastic scattering.  Figure 2.3d is fluorescence emission 

after illumination by the 405 nm laser, with the 405 nm spot filtered out with the 435 nm 

blocking filter.  

 

Figure 2.3 Progression of spectral collection of paper mulberry pollen particles 

collected on a slide under 100x magnification. (a) A microscopy image with 

illumination from the HeNe Red laser. (b) Illumination with the 405 nm and 

HeNe laser. (c) white light tungsten bulb scattering. (d) fluorescence using the 

405 nm excitation. (Figure reproduced from Huffman et al., 2016) 
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Particles are analyzed using the same camera every time, though it is worth noting that 

digital cameras include settings that allow for variable capture options like gain or 

exposure time. This is a useful tool, considering fluorescence scales with many factors 

including size, quantum yield, or fluorophore concentration, because it enables capture of 

spectra for a wide range of particles. When collecting fluorescence spectra, care is taken 

to get a reasonable image that is above the limit of quantitation (LOQ), but also below the 

saturation limit of the detector itself. 

2.5 Analysis of Collected Spectra 

The spectral signals collected by the instrument need processing prior to 

interpretation. The open source image analysis software, ImageJ, is utilized to pull the 

raw numerical information out of each spectral image. The images are imported into the 

program, and a “region of interest” (ROI) is drawn encompassing the entirety of the 

spectral signal in length, and high enough to cover the height of the particle. A profile is 

taken from the ROI of the particle, averaging the mean grey value in the Y dimension of 

the ROI, and reporting this along the X value of the ROI.  

Figure 2.4b represents the image utilized for calibrating these spectral signals. Though 

there is a dispersion swath of fluorescence seen here, the important features of this image 

are the red and blue laser scattering points present, which appear as larger, washed out 

dots on each end of the swaths.  These dots represent the 632.8 and 403.5 nm laser 

scattering and can subsequently be translated from pixels to nanometers utilizing a simple 

ratio calculation. This needs to be done on a particle by particle basis, as the inexpensive 

optical components may lead to differences in that ratio due to chromatic aberration 
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changes across the lens. As such, the calibration images are collected for every single 

image, and the calibration multiplier from the following equation is utilized to calibrate: 

Eq 2.1. M = 
(Red Laser λ – Blue Laser λ)

(Red Laser Pixel Center – Blue Laser Pixel Center)
 

For each spectrum, the blue laser pixel center is subtracted from the overall X axis, 

moving that point to zero. The X axis is then multiplied by the “M” multiplier in the 

above equation, which changes for each individual particle, and will also change 

depending on the image magnification or optical rail angle of the camera.  The true 

wavelength value of the blue laser, 403.5, is then added to the X axis of the spectra. The 

resulting spectral output can be seen in Figure 2.5, showing three output spectra from the 

above paper mulberry particles shown. 

 

Figure 2.4. Resultant normalized spectra from three paper 

mulberry pollen particles from the above Figure 2.6d, taken 

by a color CCD camera (Figured reproduced from Huffman 

et al., 2016) 
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2.6 Sample Collection Process 

As previously mentioned, the particles analyzed by this instrument are first deposited 

onto an optical slide. Deposition is achieved differently for various types of particles.  

The overall goal of any time of deposition is two-fold: (1) producing a monodispersed 

layer and (2) producing layers that are dispersed enough to measured multiple particles 

simultaneous, though not such high density that spectral signals overlap. Simple solid 

phase particles that were standards were introduced onto the optical slide via mechanical 

deposition. Polystyrene Latex Spheres (PSLs), small uniform plastic spheres, were used 

widely in the development and characterization of the instrument.  

Larger PSL sizes (>8.0 μm) were also deposited with this method, though these were 

often present in a liquid phase requiring dilution, depending on the solution density, and 

then dropped onto the slide.  These were desiccated over the course of 12 hours to ensure 

full evaporation. However, this method frequently resulted in lines of dried PSLs along 

the edge of the evaporation line, leading to large areas of unusable sample. Smaller PSLs 

(<8.0 μm) utilized an in-house aerosolization mechanism, in which the PSLs were diluted 

and introduced into aspirators. These were then pushed through the system in diluted 

samples and pulled into an in-house developed 3D printed impactor to sample using 

optical slides. Smaller pollen samples were deposited with this method, though even 

appreciably low sampling times led to very saturated samples, making spectral 

collections difficult. 
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2.7 Conclusion 

Many bioaerosol analysis tools have been developed or commercialized, though tend 

to be extremely expensive. Described in this chapter was the initial iteration of the 

instrument and the primary method of operation involving both elastic and inelastic 

scattering of deposited particles onto a substrate. Using scattering differences, quick 

information about fluorescent particle composition of atmospheric samples can be gained 

by examining the differences in these scattering profiles. It is critical to examine the 

various parameters of the instrument, and work towards a miniaturized, inexpensive 

platform that can analyze and classify many pollen particles simultaneously.   
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Chapter Three: Benchtop Model – Improvements on Design and Analysis 

The information present in this chapter has been previously published. The 

information for the first three Figures was adapted by from Huffman et al. 2016, and the 

information for the subsequent Figures in the chapter has been discussed separately and 

published by Swanson and Huffman in 2019. 

3.1 Introduction 

Building on the general design presented in the previous chapter, application and 

characterization of the single-particle fluorescence spectrometer is shown here. In this 

chapter, the implications of a monochrome camera and three new excitation sources are 

introduced. A variety of instrumental parameters that can affect spectral signals are 

accounted for to ensure reproducible spectra. These calibration techniques were 

developed using polystyrene latex spheres, or small uniform plastic beads. An image 

analysis interpolation technique was also developed to account for differences due to 

inexpensive or inconsistent optical and excitation defects. These developments push the 

instrumentation towards a platform capable of detecting and classifying between particle 

types.
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3.2 Design Improvements 

3.2.1 Monochrome Camera 

The images shown until in Chapter 2 were taken with a simple point-and-shoot Canon 

Powershot A2300 HD, which comes with several drawbacks. The first issue with these 

inexpensive color cameras is the Bayer filter over the CCD, which distorts the raw light 

signal detected by the sensor. This distortion can be seen in Figure 2.8, for example, 

which seems to show two peaks for each emission spectra. This is due to the three-color 

pixel filter, blue, green, and red, used to produce color from the total light intensity. The 

peak sensitivities of light filtered through then correspond to the peaks of these pixel 

filters. Inexpensive color cameras also frequently possess infrared filters, which cut off 

spectral signals shortly into the red. Even raw scattering of a blackbody radiator, such as 

a tungsten bulb, will look fragmented and have multiple peaks. Figure 3.1 this effect, in 

which the scattering spectra of a salt (NaCl) particle for the color (red trace) and 

monochrome (black trace) are shown. Each camera, without added optical filter, should 

exhibit the same response curve.  For reference, a blackbody radiatior (3000 K) was 

calculated and multiplied by the response of the reported CCD sensitivity for the 

Lumenera 2-1R camera. Seen in Figure 5, it is obvious that the color camera scattering 

curve is not matching up with the theoretical blackbody curve, and it appears that there 

are three curve features. This is introduced by the Bayer filter prior to the CCD. 

Similarly, the spectra appear to end pre-maturely after roughly 660 nm, which is a 

problem introduced by the infrared filter placed in front of the filter as well. 
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Figure 3.1. Comparison on the scattering of light from a tungsten bulb on an NaCl 

particle for the color camera (red), the monochrome camera (black), and for the 

calculated blackbody radiator curve at 3000 K multiplied by the sensitivity of the 

CCD in the Lumenera camera. The blackbody and monochrome curve were 

normalized to 1.0, though the red curve was normalized arbitrarily to fit in the shape 

of the blackbody curve. 

Fluroescence singals show these pixel biases as well, displayed in Figure 3.2, which 

fluorescence signals from an individual, identical Kentucky Bluegrass pollen particle are 

compared between cameras. Figures 3.2a and 3.2b show the viewable area differences 

between each type of camera, and the particle of interest is highlighted in the light green 

box. The resultant signals for each sensor are shown for the color (red) and monochrome 

(black) cameras in Figure 3.2c against a reference spectrum from a fluorescence 

microplate reader (Infinite M1000 Pro, Tecan, Mannerdorf, Switzerland) on a black 96-

well plate (Fisher Scientific, 07-200-329). The important difference to mention here is 
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that the microplate reader cannot detect the fluorescence on a single-particle basis, so 

there are discrepancies between the plate reader and either of the camera images. All of 

the signals were normalized similar to the previous figure. The curves represented here 

for the monochrome camera signal and the bulk signal are very similar in the main 

fluorescence curve, when normalized. This changes when looking at secondary peaks, 

because of variability within individual particles being measured (Pöhlker et al. 2013; 

Boyain-Goitia et al. 2003). The main structure of the reference curve, however, is clearly 

conserved. The color camera signal, in contrast, looks extremely different.  There appears 

to be two separate curves, in different maximum positions than either of the other 

detectors, an extra shoulder on the blue end of the spectra, and the chlorophyll a signal 

from 675 nm is completely absent due to the infrared filter. 

It is important to note that the disadvantages of the color cameras, i.e. the need to 

calibrate for the color pixel filter as well as the missing 675 nm peak is problematic, even 

considering the overall cost of instrumentation. It may be possible that a platform 

utilizing a color camera can adequately detect and classify ambient pollen particles, 

though introducing more variables into the overall aim of the system to produce a proof-

of-concept was not desirable. Still, the color images themselves are much more 

interesting to look at, and much easier to orient oneself to quickly. 
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Figure 3.2. Emission signals from a single Kentucky bluegrass (Poa pratensis) taken 

from a color and monochrome camera, excited by a 405 nm diode laser with a 420 

nm long-pass blocking filter. The micrograph dispersion images are shown for the 

color camera in (a), for the monochrome camera in (b), and then the spectral signals 

are shown in (c) with a reference spectrum from a fluorescence bulk sample of the 

same particle type. 

3.2.2 Multiple Excitation Sources 

The original proof-of-concept design implemented fluorescence excitation using a 405 

nm laser diode (50 mW; Power Technology, Little Rock, AR). Since that introduction, 

three additional excitation sources have been added to the instrument. Two UV-LEDs, 

280 nm (0.33 mW, with ball lens; QPhotonics, Ann Arbor, MI) and 350 nm (5.0 mW, 
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with flat window and focusing lens tube; QPhotonics), were introduced to the system as 

well as a 450 nm laser diode (4.5 mW; Thorlabs). The excitation sources were chosen to 

maximize the breadth of information accessible from individual particles by probing at 

wavelengths near the excitation maxima for a range of key biofluorophores broadly 

present in many species of pollen and other PBAP (Fröhlich-Nowoisky et al. 2016; 

Després et al. 2012). Using all four excitation sources in concert, each particle can be 

viewed as a total of four emission spectra. This ensemble provides information similar to 

an excitation emission matrix (EEM) but simplified to the most important excitation 

wavelengths. A total of two optical filters are employed to block the transmission of 

elastically scattered light. A 430 nm long-pass filter is used with the 350 nm and 405 nm 

sources, and a 465 nm long-pass filter is used with the 450 nm source (Edmund Optics, 

Barrington, NJ). Due to the narrow wavelength distribution emitted from the lasers (405 

nm and 450 nm) the filter cut-off can be relatively close to the source wavelength. In 

contrast, the filter applied after the 370 nm LED requires filter cut-off at much longer 

wavelength due to the broad range of wavelengths emitted. No optical filter is required 

after the 280 nm LED source, because the lower wavelength range of detection is limited 

by the silicon camera CCD (charge-coupled device) whose detection sensitivity drops to 

zero at ca. 400 nm(SONY n.d.). In an attempt to keep the instrument producible at low 

cost, standard glass optics are used throughout the optical path, as well as a standard 

silicone CCD camera. These optical components inherently limit the range of emission 

spectra detection to ca. 400 - 800 nm. White light scattering spectra are also acquired 

using an incandescent tungsten filament, with a peak wavelength corresponding to that of 
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a blackbody radiator at ca. 3000 K (Huffman et al. 2016). The white light beam is 

directed at the microscope stage using a fiber optic light guide (42-347 Edmund Optics; 

Barrington NJ) 36 inches in length, which was added to reduce the bulkiness of the light 

source in close vicinity of the microscope stage. Approximately 58% of the light from the 

original source is projected in a wide cone from the light pipe to illuminate the particles. 

All optical components are mounted on an optical breadboard placed inside a plywood 

box, painted black on the interior surface to reduce reflection, with a hinged lid to access 

the instrument. 

As briefly summarized above, images of individual particles can be acquired without 

filters (Figure 3.1a), showing illumination from both the excitation and HeNe calibration 

source. Once the filter has been flipped into place, a second image is collected that 

translates individual particles into streaks with long-axis relative to emission wavelength 

and short-axis approximately equal to the particle diameter (Figure 3.3b). It is important 

that many particles be viewable within a single image and under illumination by one 

excitation source at a time. This allows the simultaneous collection of many emission 

spectra in a single image at comparatively low-cost, in contrast to confocal fluorescence 

microscopy, for example. The process described here thus allows the relatively rapid 

observation of differences between individual particles utilizing a combination of 

scattering and fluorescence spectra and also enables differentiation between fluorescent 

from non-fluorescent particles at a glance.  
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Figure 3.3. Spectrally-dispersed micrographs of a group of many PSL 

particles, shown (a) without blocking filter (wavelength calibration image) 

and (b) with blocking filter (fluorescence only). Emission spectra of three 

specific PSL particles highlighted on micrographs (c), plotted with 

uncorrected emission intensity. Particle size: Yellow-Green (10.0 µm), Blue 

(2.0 µm), Non-fluorescent (10.0 µm). 

To highlight the ability of the instrument to rapidly differentiate between particle types 

by investigating spectra, Figure 3.3(c) shows fluorescence spectra extracted from the 

image in Figure 3.3(b) and acquired from three different types of polystyrene latex 

spheres (PSL) particles. To produce spectra, boxes are drawn tightly around individual 

streaks [i.e. Figure 3.3(b)], and detected light intensity is averaged across the y-dimension 

of the box to achieve a spectrum as a function of location on the CCD. Spectra are then 

calibrated into wavelength using a twopoint calibration (i.e. Figure 3.3a), as discussed in 

more detail by Huffman et al. (Huffman et al. 2016). It should be noted that images with 

a high density of particles can lead to overlapping spectral streaks, which can complicate 

interpretation of spectra, and so particle collection should be optimized accordingly. 

Particles deposited close to the edge of the viewable area can also produce spectral 

streaks that extend beyond the detectable region, reducing the ability to record those 

spectra. Two PSLs that contain fluorescent dyes excitable at the 405 nm wavelength were 
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used here. The third particle type used for spectral contrast is labeled non-fluorescent by 

the manufacturer (07310; Polysciences; Warrington PA), though the name is somewhat 

of a misnomer, because the polystyrene polymer can fluoresce at low quantum yield due 

to repeating monomer units containing a conjugated aromatic ring (Könemann et al. 

2017; Savage et al. 2017). It is important to note that each of the three particle examples 

have different particle sizes (see Figure 3.3 caption) as well as different fluorescence 

properties. Based on these differences, the emission spectra for each type of particle are 

different both in emission intensity and wavelength of peak emission. The ability of the 

instrument to distinguish these spectral differences is essential to identify and 

differentiate PBAP of different types. 

3.2.3 Range of observable fluorophores 

The combination of full-spectra measurements from multiple excitation sources 

enables a wide range of fluorescence data to be acquired. Six types of PSLs, each 

commercially doped with different fluorophores, were measured using each excitation 

source (Figure 3.4). Chosen PSLs varied in dye type as well as particle size. Spectral 

intensity was normalized to unity for each individual spectrum due to differences in 

absolute intensity from fluorophore composition and particle size. Normalization was 

performed here in order to qualitatively highlight the approximate wavelength range of 

measurable emission spectra by this technique, while acquisition of absolute spectral 

intensity is discussed in a following section.  
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Figure 3.4. Fluorescence emission spectra of PSLs shown for four excitation 

wavelengths: 280 nm (a), 370 nm (b), 405 nm (c), and 450 nm (d). Spectra 

normalized to maximum peak intensity of unity. Each spectrum shown as an 

average of 17 particles, with vertical error bars representing the relative standard 

deviation of the intensity. 

Figure 3.4 shows that the positions of spectral peaks are highly consistent across 

excitation wavelengths where a given fluorophore is active. The relatively small 

wavelength uncertainty of ca. ±2.5 nm for emission spectra collected from individual 

particles at a given excitation wavelength and ca. ±0-7% in relative standard deviation of 

intensity (thickness of traces) shows that highly reproducible spectral properties can be 

achieved by the simple technique. Figure 3.4 also shows reproducibility (i.e. ± 3.5 nm) of 

peak location across excitation wavelengths, showing that the fluorescent emission 

wavelength is essentially independent of excitation wavelength (i.e. Kasha’s Rule). 
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It is important to note that even though absolute intensity is not represented in Figure 

3.2, the technique is able to reproducibly detect relatively low levels of fluorescent 

emission. For example, the Red fluorophore is reported by the manufacturer to be 

fluorescent only at longer excitation wavelengths, marginally fluorescent at 450 nm, and 

completely non-fluorescent at λEx < 450 nm (Technical Support Spectra Documents, 

Bangs Labs; Fishers IN). In contrast to manufacturer literature, Figure 3.2 shows 

reproducibly detectable spectra of the Red PSLs using both the 450 nm and 405 nm 

excitation sources. In some cases (i.e. Blue PSL under 450 nm excitation), only a partial 

emission spectrum is present, because emitted photons with wavelength below the cut-off 

are blocked by the optical filter. 

3.2.4 Particle Sizing Methods 

Ability to measure particle size is also an important factor in the identification and 

differentiation of biological particles, due to the characteristic nature of particle size 

within a biological species. Particle size measurements were done in two distinct phases: 

The 2018 phase and the 2019 phase. The sizing performed in the 2018 publication for 

Optics Express was a rudimentary method utilizing a single parameter and measurements 

from polystyrene latex spheres. Later measurements utilized a more complex ellipse 

measurement.  Both are described in this section. 

To measure the sizing properties of the instrument initially, six samples of Yellow-

Green (YG) PSLs (Polysciences, Warrington, PA), ranging in size from 0.75 to 25 μm, 

were analyzed. Three different methods were utilized for particle sizing: (1) by directly 

measuring the number of pixels across a single axis of a given particle; (2) by measuring 
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the height of the streak of dispersed light using white light excitation; and (3) by 

measuring the height of the streak of dispersed light using fluorescence dispersion from 

405 nm excitation. The bounds of an individual particle or streak were defined as the 

point at which the observed light intensity dropped to 50% of its peak height (h50), in 

order to avoid sizing problems introduced by CCD saturation as particle size increased. 

The results of this analysis are summarized in Figure 3.5 and suggest that each sizing 

method can independently estimate the size of an individual particle in absolute units. For 

convenience, all sizing measurements discussed after this point were measured using the 

third method (fluorescence streak).  

 

Figure 3.5. The h50 width of white light reflection (red), fluorescence 

dispersion width (blue), and raw, undispersed particle measurements 

(green). Markers represent average of 10 measurements with standard 

deviation shown as error bar. Where error bar is not visible, bar height is 

smaller than marker size. Lines show linear fit of all data, with line 

equations and R2 displayed with corresponding color. 

The particle sizing method as previously described utilized the width of the 

fluorescence swath measured by the sensor (Figs. 3.6a, b) as a proxy for particle diameter 
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(Swanson and Huffman 2018). The profile across the swath of light is extracted (red 

curve, Fig. 3.6b), and a Gaussian distribution is fit to the profile (black curve, Fig. 3.6b). 

The full width at half the maximum peak height (FWHM) is then taken as particle size. 

This method provides accurate sizing for spherical, homogeneous particles such as 

polystyrene spheres used for sizing calibration, as was shown previously (Swanson and 

Huffman 2018). The FWHM method can lead to sizing errors for particles with non-

spherical morphology or inhomogeneous mixing of fluorophores, however. The swath of 

light diffraction through the grating is approximately the same height in the vertical 

dimension as the particle, but only with respect to the orientation of the particle on the 

stage. Oblong particles (i.e. aspect ratios higher than 1:1) can have any orientation, and so 

monodisperse particle of oblong shape exhibit a wide distribution of particle sizes. 

Additionally, particles that exhibit inhomogeneous composition or that contain areas with 

weak fluorescence (i.e. pollen grains with air pockets or lower fluorophore density) can 

show variations in fluorescence profile across the CCD image (e.g. bimodal distribution 

in Fig. 3.6b). Thus, the profile quality can vary also as a function of material 

composition, and calculated size will not be accurate. 

To reduce sizing uncertainties from the effects mentioned above, an updated 

technique was developed to directly measure and record particle size and shape using the 

image of the particle. Raw calibration images are collected using simultaneous 

illumination by red and blue lasers, with the grating in place to disperse red and blue 

scattering points from one another. Particles are detected in calibration images 

automatically using Igor Pro analysis software (Wavemetrics; Lake Oswego, Oregon), 
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searching the image at locations matching the diffraction angle from the red laser. A 

numerical threshold (T1), generally between 25- and 100-pixel intensity units, is applied 

to the images to convert light intensity values to binary. The T1 value is assessed for 1-2 

particles per experiment by visually comparing with the original calibration image to 

ensure the size of the binary mask qualitatively matches the tested particle. The number 

of counted pixels within each particle ellipse are counted, and particles below a chosen 

threshold (T2) corresponding to approximately 10 μm in diameter are filtered out to limit 

detection of small particles and scattering artefacts. For each detected particle, the major 

and minor diameters are recorded using properties of the measured ellipses (Fig. 3.6c).  

 

Figure 3.6. Particle sizing methods. (a) Example of fluorescence swath image used 

in previous method to measure particle size. Vertical red lines represent region in 

which light intensity was averaged in horizontal dimension. (b) Transect of light 

intensity from (a) and Gaussian fit. FWHM represents particle size measurement 

(26.5 µm). (c) Blue ellipse shows scattering image of an individual particle under 

red laser illumination. Particle size from (c): major and minor axes (38 and 36 µm) 

and Y and X dimensions (35 and 34 µm). Full images for (a) and (c) shown in 

Appendix Figure A3. 

A new baseline subtraction is performed using a simple line curve subtraction utilizing 

Igor’s curve fitting functionality. Curves are fit prior to increases in spectral signal on 



45 

 

either end (ex: 470 nm for the 450 nm excitation, corresponding with the optical filters, 

or 570 nm for the 280 nm excitation, corresponding with passing second order effects and 

increasing noise).  

3.3 Factors Affecting Spectral Calibration 

Normalized fluorescence spectra (e.g. Figure 3.4) can provide qualitative information 

about the presence of certain fluorophores. However, it is critical to be able to 

differentiate between particle types by accurately measuring absolute fluorescence 

intensity as a function of emitted wavelength and resolving small differences in intensity. 

Broadly, factors that influence the detected fluorescence intensity will be introduced 

below and can be organized into three general areas: (1) Effects of particle size, (2) 

Effects of camera settings, and (3) Effects of instrument optics. Several of these groups of 

factors contain a variety of individual effects that each scale with a different variable and 

that modulate the detected signal. Each of these factors will be isolated and investigated 

individually. Once measured, influence from each can be conceptually combined a single 

calibration that adjusts the intensity detected from each particle as a function of all 

available parameters. To test the effects of each set of individual parameters, the 

integrated fluorescence intensity of YG PSLs was measured by the instrument. These 

tests were performed with excitation wavelength blocking in place, but without inclusion 

of the grating. This allowed all fluorescent light reaching the detector from each particle 

to appear as a single dot representing each particle. For each experiment, Yellow-Green 

PSLs ranging in size from 1.5-4.0 µm were deposited onto a glass slide via impaction 

from the aerosol phase. This deposition method resulted in a consistent layer of PSL 
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particles with sufficient particle number density within the viewing area. A single 

excitation source (405 nm) was used for each measurement in this section, and it is 

expected that these results will apply to each excitation source. 

3.3.1 Effects of Particle Size 

The intensity of fluorescence emission is strongly affected by particle size. For 

example, a particle with a larger number of fluorophore molecules or with higher 

fluorescent quantum yield may appear more intense than a smaller particle with fewer or 

weaker fluorophores. To be able to adequately characterize bioparticles that can naturally 

exhibit relatively wide distributions of properties within a given species, it is important to 

independently measure particle size and fluorescence intensity normalized per unit 

surface area of the particle. To measure this specific relationship within the instrument, 

five sizes of YG PSLs (1 – 25 µm) were illuminated by the excitation laser using a 

constant camera exposure time (0.87 seconds), camera gain (0.26, default value), and 

particle positioning within the viewing area. Figure 3.7a shows the average emission 

intensity as a function of PSL physical diameter. It is noteworthy that the observed 

intensity varies linearly with particle size. This observation is in contrast to the 

relationship that has been shown previously for real-time UV-LIF instruments for which 

the total intensity of measured fluorescence scales approximately with the 2nd to 3rd 

power of particle size (Hill et al. 2015; Sivaprakasam et al. 2011). In the collected image 

[e.g. Figure 3.7b], the X-dimension represents wavelength, the Y-dimension represents 

the width of the corresponding particle in the orientation observed (assuming no 

agglomeration), and the total intensity of fluorescent light is recorded for each pixel. The 
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streaks of light are then averaged in the Y-dimension to produce fluorescence emission 

spectra as emission intensity vs wavelength. Since the spectra are averaged over an 

integration window in the Y-dimension, the cumulative influence of emission in this 

dimension is also averaged away. Particle width is directly correlated to both the X- and 

Y-dimensions appearing within a single image. This X-dimensionality also directly 

correlates to the perceived intensity of an individual spectral streak, leaving the raw 

intensity of the particle singly dimensional. It should be noted that particles may either 

saturate the fluorescence detector if large, brightly fluorescing particles are analyzed or 

may be below detection thresholds if small, weakly fluorescing particles are observed. 

These limitations can be mitigated by tuning the detector gain to optimize the collection 

of spectra from particles of interest. 

3.3.2 Effects of Camera Detection Settings 

Camera exposure time and gain are the two variables that can be controlled with the 

Lumenera camera software. Both variables impact the intensity of collected light, and 

thus need to be controlled for. To examine the relationship between intensity and each 

variable, 2.0 µm YG PSLs were observed. The 2.0 µm PSLs were utilized to avoid issues 

with CCD saturation. While holding the camera gain constant (0.26), the fluorescence 

intensity from a single PSL particle was measured as a function of varying exposure time 

[Figure 3.7b]. Separately, while holding the camera exposure time constant (6.28 

seconds), intensity was measured as a function of varying gain [Figure 3.7c]. Both sets of 

measurements show a linear relationship over a range of values that do not promote 

detector saturation.
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Figure 3.7. Comparison of parameters that influence measured emission 

intensity: particle size (a), camera exposure time (b), and camera gain (c). 

Lines show linear fits of measured values. 

3.3.3 Effects of Instrumental Optics 

After controlling for effects caused directly by the particles and within the camera 

software, a more complex set of variables collapse into a broad set of effects related to 

instrument optics, which cannot easily be separated or independently investigated. These 

effects can be organized into three groups: (i) the profile of the illumination beam, (ii) 

perturbations in collection optics (lenses, grating), and (iii) perturbations on the CCD 

surface. 

Each individual excitation source presents a unique beam profile as a function of 

differences in overall source power, distance from the stage, angle of beam incidence, as 

well as beam shape and consistency. Differences in illumination power density influence 

the consistency of excitation energy impinging on a given particle. Laser beam profiles 

are generally much narrower than LED beams, which also have lenses placed in front of 

the source for focusing. Without correcting for illumination power-related differences in 

emission intensity, differences in emission spectra between two excitation sources are 

dominated by illumination strength rather than fluorescent properties of the particles 

themselves. To roughly estimate the illumination power density at the microscope stage, 

50

40

30

20

10

0

2.52.01.51.00.50.0

 Gain

30

20

10

0

  
In

te
n

s
it
y
 (

x
 1

0
3
)

2520151050

 Size (µm)

25

20

15

10

5

0

1.00.80.60.40.20.0

Exposure Time (sec)

(a) (b) (c)



49 

 

a fluorescent card (VRC1; Thorlabs) was placed in the plane of the microscope stage. 

The area of illumination was traced with a pencil, and a total surface area was 

approximated (to i.e. ± 5%). The total source output power was estimated (order of 

magnitude) for each source as the manufacturer-reported power as listed in Section 2.2. 

The power density was estimated for each source as the reported power divided by the 

calculated surface area: 0.004 mW cm−2 (280 nm), 0.5 mW cm−2 (350 nm), 4 mW cm−2 

(405 nm), and 0.3 mW cm−2 (450 nm). These values are meant to be a first approximation 

of power density enabling a rough correction factor to allow comparison of emission 

intensities determined primarily by particle fluorescence properties. For example, the 

power density of the illumination beams is unlikely to be consistent as a function of 

location, with intensity generally decreasing radially outward, and imperfections in lenses 

will also manifest as beam perturbations. 

Defects in optical components also affect the observed intensity of light collected at 

the camera and are expected to be more pronounced using inexpensive components, as in 

the present case. For example, it was observed that differences in particle position on the 

viewing area cause differences in focus due to a positive spherical aberration, and so it is 

impossible to maximize focus and resolution for all points on the emission spectrum 

(Smith 1922). The lenses also exhibit certain hot spot regions where additional light is 

focused. Several of these defocusing issues can be corrected with achromatic lenses, but 

these are more expensive than the components presently used and violate the goals of 

utilizing inexpensive optical components that could allow eventual wide scale production 

of an inexpensive device. 
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Standard camera CCDs are often practically limited to detection of photons with 

wavelength longer than 400 nm, as is the case for the camera used here. CCD detection 

can also be limited by dark noise. Cooling of the CCD chip could significantly decrease 

noise and increase both signal-to-noise ratio and sensitivity. A non-cooled CCD camera 

was chosen in this case to investigate whether spectral results would be reliable using the 

presently applied quality of components. Inexpensive CCDs can also have decreased 

detection efficiency across the spatial extent of the chip. For example, the camera 

employed here exhibits a clearly noticeable ring of weaker detection around the edges of 

the chip, with more extreme effects on the edges of the long-axis. 

As mentioned, the three classes of optical effects manifest in a specific pattern of 

observed emission or scatter intensity as a function of placement on the particle stage. 

Instead of rigorously calibrating for each effect, a method was developed to empirically 

account for all three individual factors simultaneously. Images of a single batch of 2.0 

µm YG PSLs were collected by illuminating particles with the 405 nm source and using a 

constant camera gain (0.26) and exposure time (0.0083 sec). The transmission grating 

was not utilized in this case in order to increase the density of particles observable by 

removing the dispersed spectral streaks. After acquiring a single image, the substrate was 

moved, and another image was acquired. Individual images were overlaid, and the 

collection process was repeated eight times until the sum total number of particles 

analyzed was 806. Particle position and average emission intensity of each individual 

particle was calculated, as shown in Figure 3.8a. Darker red colors toward the center of 

the viewing area indicate brighter emission intensity, and green colors on the edges show 
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weaker measured emission. Because all the particles are identical in size and fluorescent 

properties the only differences in observed fluorescence emission are due to the 

combination of the three classes of instrumental optical effects discussed above. From a 

basic perspective, the particles on the left side and at the edges of the viewing area appear 

to emit more weakly as a combined function of weaker excitation power, perturbations 

from optical components, and limitations in detection efficiency at the edges of the CCD. 

To adjust for these combined effects, a map of observed emission intensity was 

calculated as a function of location in the viewing area (Figure 3.8b) using a Voronoi 

interpolation function applied to the composite image (Figure 3.8a). The Voronoi 

interpolation weights the space between a single point and its neighbors using a 

tessellated partitioning of the pixel plane and then interpolates the space between each 

individual point based on the weighted factors (Sibson 1981). The resulting surface 

represents the detectable emission intensity that would be expected for particles at each 

location in the viewable area.  
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Figure 3.8. Calibration for intensity effects based on the spatial location of 

particles in the CCD viewing area (1392 x 1040 pixels). Eight non-dispersed 

images using 2.0 µm YG PSLs combined into a composite image of 806 particles 

(a). Image plot showing interpolation of values using composite image (b), 

including the location of test particles on the map (white triangles). The pre- and 

post-calibration values of the test set are shown in (c) and (d) respectively and are 

both normalized to the average intensity of surface map shown in in 5b. 

Normalized emission intensity of each test particle pre-calibration has an average 

of 1.052 ± 0.186, with a post-calibration average 1.011 ± 0.031 (d). Color scales 

represent raw intensity for (a) and (b), and normalized intensity for (c) and (d). 

The quality of the intensity calibration was tested by interrogating a new image with 

39 particles, which are shown overlaid onto the map with triangular markers (Figure 

3.8b). The emission intensity values observed across the initial image presented a relative 

range of 19% (represented as relative standard deviation, RSD). To correct for optical 

effects discussed above, the observed intensity of each particle was divided by the 

interpolated values from the map, thus normalizing the emission of each particle to 

approximately unity. In this way, individual particles whose normalized intensity is 1.0 
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imply that the combined optical effects have been corrected for. After this normalization 

the average emission intensity was 1.011 with a RSD of 3.1%, representing a 6-fold 

improvement in the relative precision of the measurement, as shown in Figures 3.8c and 

3.8d. Particles within 10 pixels of the edge (or 0.7- 1.0% of the surface area) were not 

included in this analysis, because of perturbations at the extreme edge of the CCD 

detector. By performing this normalization we established a method to significantly 

reduce the influence of optical effects introduced by inexpensive components.  

3.3.4 Noise Filtering 

Spectra utilized for clustering trials discussed in thesis chapters 4 and 5 were filtered 

to remove noise in the tails of the spectra, with intensity values less than approximately 

0.1 arbitrary units. This noise filtration restricts the emission spectral range to 440 – 620 

nm following 350 nm excitation, 440 – 650 nm following 405 nm excitation, and 450 – 

670 nm following 450 nm excitation. Emission spectra following 280 nm excitation were 

not affected (range 400 – 560 nm).  

3.4 Conclusion 

This chapter demonstrates improvements to the instrumentation by using a more 

sensitive camera sensor and the introduction of more excitation sources to widen the 

breadth of accessible information. The camera introduced here is a monochrome camera 

that lacks additional optical filters and thus allows for more robust control of spectral 

collection via exposure time and gain settings. The addition of three new excitation 

sources quadruples the data obtained through the instrumentation, leading to fluorescence 

collections of bioparticles similar to a chopped-up excitation-emission matrix, what we 
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call a “pseudo EEM.” These advancements allow for a multitide of imfornation to be 

obtained for an individual particle, allowing for comparisons within and between particle 

types.
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Chapter 4: Clustering Strategies for the Classification of Pollen 

The information present in this chapter was previously published in Swanson and 

Huffman, 2018 for section 4.4.2. All other clustering data was published in Swanson and 

Huffman, 2019, currently in review. 

4.1 Introduction to Classification Strategies 

Individual measurement observations from different sources will likely contain 

degrees of varying response signals depending on composition, size, or other properties 

inherent to what is being observed. Investigation of differing types of signals can be 

performed using various clustering and classification algorithms. Generally, a clustering 

algorithm takes input data for these observations, and attempts to group them based on 

relative similarity. This may be done a variety of methods, including connective-based 

(Murtagh and Contreras 2017), centroid-based (Taillard 2003), distribution-based 

(Xiaowei Xu et al. 1998), and density-based clustering techniques (Daszykowski and 

Walczak 2010). Each of these methods utilize different algorithmic framework, such as 

grouping observations by single-observation variable connectivity or by examining 

guassian distributions of observations, though are ultimately based on grouping similar 

observations into clusters. A simplified diagram of an extremely ideal scenario of this 

concept is shown in Figure 4.1. Assessing the efficacy of these techniques is also well 

studied, and similarly as complicated as the clustering itself, and can be done in two
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 common ways: internal (based on information intrinsic to the data) or external (based on 

knowledge about the data prior to assessment) (Rendón et al. 2011).  

 

Figure 4.1. A simplified cartoon diagram of a two-variable clustering scenario for 

a set of observations. Each cluster is highlighted via a circle, with different colored 

symbols representing each type of observation. This represents an extremely ideal 

clustering scenario. 

Clustering algorithms can also be separated into supervised or unsupervised 

techniques, where unsupervised refers to a technique that doesn’t label data a priori. 

Supervised analysis involves the creation of a training data set to compare against new 

observations (Mohri et al. 2013). Unsupervised methods can be treated similar to 

supervised methods, since inputting known data will still provide an unbiased clustering 

result as if the data was unlabeled (i.e. observation identity wasn’t known prior to 

clustering). Generally, these techniques can be extremely insightful when used in 

conjunction. Supervised algorithms, however, can present problems when not specifically 
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examining trends in known data. Limits arise when predicting new types of observations 

to models that do not contain these types of observations. This is because these models 

absolutely will predict this new type to the model, though simple response outputs (e.g. a 

model made of “A, B, C,” observation types will still predict type “G,” without it being a 

part of the model). Therefore, care needs to be taken in making assumptions about the 

results from these models. 

4.2 Classification Strategies Applied to Bioaerosol Analysis 

A variety of multivariate analysis algorithms have been applied to the differentiation 

of spectral data from UV-LIF and other bioaerosol sensors (Huang et al. 2011; Pinnick et 

al. 2004). Algorithms can be divided into supervised or unsupervised classification 

techniques, where supervised techniques require prior input of data to train clusters, 

whereas this is not required for unsupervised techniques (Mohri et al. 2013). 

Unsupervised methods can thus be attractive to analyze particles from ambient 

observations, because no prior input is needed and so properties of test data do not bias 

results. For example, k-means clustering (unsupervised) was first applied to atmospheric 

aerosol data at least as early as 2004 (Erdmann et al. 2005), and has also been applied 

more recently, including with respect to particulate matter investigated using aerosol 

time-of-flight mass spectrometry and sun photometry (Elangasinghe et al. 2014; Rebotier 

and Prather 2007; Knobelspiesse et al. 2004). Unsupervised hierarchical agglomerative 

clustering (HAC) has also been frequently applied to study UV-LIF bioaerosol data, e.g. 

applied to WIBS data (Forde et al. 2019; Savage and Huffman 2018; Crawford et al. 

2015; Robinson et al. 2013), and to fluorescence spectra from instrumentation that 
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acquires LIF spectra at higher resolution than the WIBS (Könemann et al. 2019a; Zhu et 

al. 2015; Pan et al. 2003). Supervised clustering techniques can be effective analysis 

tools, especially when data is labeled (i.e. the identity of an observation is known). 

Ensemble methods, a subset of supervised methods that combine multiple learning 

algorithms in succession, can generally provide higher classification accuracy than 

unsupervised methods (Rokach 2010). The random forest (RF) classification technique is 

an ensemble algorithm that has previously been shown effective in differentiating 

bioaerosols (Ruske et al. 2017). The RF technique utilizes many parallel decision trees, 

each of which performs classifications via a series of decision nodes, by random 

bootstrap sampling of input variables. Tree decisions are then averaged to match an 

observation to the best matching input cluster. The RF technique has been shown to 

produce results with intermediate-quality separation accuracy (>74% for laboratory 

generated aerosols), but without requiring high computing power (Ruske et al. 2017). 

Gradient boosting (GB), another ensemble method, similarly creates small decision trees, 

with the exception that all variables are initially weighted equally and examined 

(Friedman 2011). The developed trees are then analyzed for variables that lead to 

misclassifications, and variables are re-weighted in order to circumvent misclassifications 

(Friedman 2011).  

Within the last few years, the development of small and relatively inexpensive 

instrumentation for pollen detection has become more popular. In most of these cases, the 

physical principles of detection are based on light-scattering, pattern recognition, or 

holography, using advanced analysis computing to differentiate pollen types using field-
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portable instrumentation. One such prototype sensor generates diffraction holograms 

associated with individual particles, and deep learning techniques are then utilized to 

process and subsequently classify, or label, the measured particles from the hologram 

(Lee et al. 2011). The sensor was shown to successfully separate a laboratory-generated 

mixture that included three species of pollen (Bermuda grass, oak, and ragweed), two 

fungal spore types, and common dust, with a classification accuracy of 94% (Wu et al. 

2018). Another recently available commercial sensor is the Pollen Sense™ (Pollen Sense, 

Salt Lake City, Utah), which is a portable and relatively low cost (~$6,000) sensor that 

utilizes a combination of visual microscopy and image analysis techniques to identify 

pollen types as well as other large particles (http://pollensense.com). 

Building upon a long history of pollen research using UV-LIF techniques and adding 

the goal of small sensor deployment, we previously developed an inexpensive mobile-

platform-oriesensor with intended application toward pollen and fungal spore 

classification (Swanson and Huffman 2018; Huffman et al. 2016). Previously published 

work utilized only a small fraction of the acquired spectral data for analysis and so 

particle differentiation capabilities were limited. To more fully investigate the accuracy 

of the sensor with respect to pollen detection, in this study we first present improvements 

made to the sensor and to the image-processing procedure in order to utilize higher 

quality fluorescence spectra. Using this updated process, data was collected from 25-30 

particles for each of eight different pollen species. Four clustering techniques (k-means, 

HAC, GB, and RF) were compared with respect to their ability to differentiate individual 

pollen grains from different species. RF and GB algorithms classified pollen with the 
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highest accuracy with respect to the input data, and the algorithm parameters were further 

refined to optimize pollen separation. The clustering applications discussed here utilizing 

spectral data from this instrument show how optimizing the clustering process can 

improve particle differentiation with respect to the specific sensor and also have broad 

application to a growing number of techniques that utilize pollen data collected from 

other UV-LIF instruments. 

4.3 Pollen Data Collection for Data Presented in Chapter Four 

For Section 4.4, fluorescent emission spectra were acquired from four species of 

pollen grains: a) Ambrosia trifida (Giant Ragweed; weed; ~33 µm) b) Alnus glutinosa 

(Black Adler; tree; ~40 µm), c) Zea mays (Maize; grain; ~133 µm), d) and Boussonetia 

papyrifera (Paper Mulberry; tree; ~21 µm). All pollen was purchased in dried form from 

Bonapol (České Budějovice, Czech Republic). These four types of pollen were chosen to 

represent different classes of anemophilous pollen-producing plants and because it was 

expected that they would exhibit spectral differences, based on a previous study by 

Pöhlker et al.(Pöhlker et al. 2013). Additionally, Paper Mulberry and Giant Ragweed 

pollen were chosen due to their allergenic relevance. Maize and Black Alder were chosen 

to provide breadth in botanical taxonomy (i.e. grain and tree pollen, respectively).  

Eight pollen species were chosen to represent a wide variation of plant species for 

investigation. Pollen were purchased from Allergon AB (Ängelholm, Sweden): Poa 

pratensis (Kentucky bluegrass; 011608102); from Sigma-Aldrich (Munich, Germany): 

Artemisia tridentata (big sagebrush; P9520); from Polysciences (Warrington, PA, USA): 

Broussonetia papyrifera, (paper mulberry; 07670); and from Bonapol (České Budějovice, 
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Czech Republic): Ambrosia trifida (giant ragweed; 294-01-1-10), Betula pendula (silver 

birch; 134-04-1-13), Pinus strobus (eastern white pine; 225-02-1-15), Solidago 

Canadensis (Canadian goldenrod; 262-05-1-12) and Taraxacum officinale (common 

dandelion; 241-01-1-07). All pollen samples were deposited onto a pre-cleaned 

microscope slide by shaking a small amount of pollen out of a plastic bag or by impacting 

using an aerosol collector and pump.  

4.4 Application of Truncated Data; Supervised k-means 

4.4.1 Truncated Clustering Method 

To aid in the quantitative differentiation between particle types, the k-means clustering 

algorithm was utilized (MacQueen 1967). For this clustering trial, the full range of 

emission spectra was not utilized in order to simplify the process as a proof-of-concept. 

Particles were represented individually in the algorithm as nine input parameters: particle 

size as well as the wavelength and intensity of emission spectral maxima from each of the 

four excitation sources. k-means clustering was performed on the open source software 

RStudio (RStudio Team 2016), utilizing an internally available statistical package. Data 

values were scaled prior to clustering using the automatic function within RStudio to 

weight each factor equally. The k-means algorithm used these nine values to develop a 

cluster representative of each pollen species. 

4.4.2 Truncated Clustering Results 

Ten individual particles were analyzed for each species at each of the four excitation 

wavelengths. For this exercise, camera gain (0.26) was held constant, and exposure times 

for each excitation were conserved across all images for a single species to ensure visible, 
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but unsaturated, spectral streaks. Spectra were acquired individually by placing the 

particle at the center of the viewable area, and each individual emission spectrum was 

normalized by dividing by the average illumination power density mapped at the location 

of the particle and by the measured values for exposure time and individual particle size. 

Figure 4.2 shows the results of these 160 spectra. There are clear differences between 

individual particles within a species (individual panel), as expected between individual 

biological entities and due to differences in viability state, aging, or growth conditions. 

The differences between species types, however, are much greater than intra-species 

variability.  

 

Figure 4.2. Emission spectra collected from four species of pollen: (a) Alnus 

glutinosa, (b) Ambrosia trifida, (c) Broussonetia papyrifera, and (d) Zea mays. 

Emission spectra colored by excitation wavelength and scaled relative to axis with 

matching color. Spectra are normalized according to details discussed in text. Ten 

particles of each species are shown. Spectral baselines increase at long wavelength 

for 280 nm excitation due to light noise caused by experimental set-up. 

To quantitatively test the quality of separation between pollen species types, results 

from all 40 individual particles were analyzed using a supervised k-means clustering 
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algorithm. As a first attempt, emission spectral data were summarized as the peak 

location (wavelength) and intensity for each of the four excitation wavelengths. These 

eight values, as well as particle size, for each of the forty particles were input into the 

clustering algorithm. Despite the simplified inputs from single particle data, the algorithm 

separated the forty particles into four clusters, organized with 100% correctness. To 

illustrate the efficacy of the clustering itself, Figure 4.3 shows a three-dimensional 

section of the cluster data, arbitrarily representing three of the nine output dimensions 

(parameters). Individual particles are colored by cluster (or species type) and black 

markers represent averages of each member of a given cluster. By this representation, 

using only three of the nine dimensions the clear separation between pollen types and 

cluster centers is visible. 

 

Figure 4.3. Four-cluster solution produced using K-means algorithm and represented 

in three dimensions showing separation ability of clustering process. Axes represent: 

wavelength (X-axis) and normalized intensity (Y-axis) of maximum emission peak 

following 405 nm excitation, and particle size (Z-axis). Colored dots represent 

individual particles from: cluster 1, Alnus Glutinosa (blue); cluster 2, Ambrosia 

Trifida, (green); cluster 3, Broussonetia Papyrifera (orange); and cluster 4, Zea Mays 

(pink). Black dots show center of each cluster. 



64 

 

These initial clustering results show the ability of the technique to reproducibly 

differentiate between classes of pollen despite limitations e.g. inability to detect emission 

spectra at λEm < 400 nm. In the future, clustering will be performed using full emission 

spectra collected for each particle. This will significantly increase the dimensionality of 

data used for the clustering algorithm and will be powerful in scenarios in which particle 

emission spectra exhibit multiple peaks or other distinct features. It is anticipated that 

clustering will be at least as able to differentiate between particle types, and we anticipate 

that species even more closely related will be differentiable. The results presented here are 

intended as a proof-of-concept for differentiation of particle types. 

4.5. Pollen Classification Strategy Comparisons 

There are many these tools available for clustering data, though four were chosen for 

this study: k-means, HAC, random forest, and gradient boosting. Two of these methods, 

k-means and HAC, are operated as unsupervised clustering algorithms. Unsupervised 

algorithms are beneficial in bioaerosol classification because ambient data collections 

will not be labeled (Robinson et al. 2013). However, unsupervised methods may be 

significantly harder to interpret for a similar reason, as well as due to the large variability 

in atmospheric particles (Hernandez et al. 2016; Crawford et al. 2015; Pinnick et al. 

2013). Many supervised clustering techniques have various tools to predict new, 

unlabeled data on previously developed training sets (Rokach 2010). Both random forests 

and gradient boosting have this implemented, and have shown promising results in 

bioaerosol categorization (Ruske et al. 2017). This study contains labeled pollen data, and 

as such examines the efficacy of these various clustering tools against data obtained 
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through the sensor. An individual particle is represented in each algorithm as a series of 

1063 variables: The major and minor size axes, the aspect ratio, and the emission curves 

for each excitation from 400-700 nm, except for the 280 excitation which is cut off at 560 

nm. For these three trail comparisons, the particle emission spectra were scaled by the z-

score method, though the other three parameters were not, as the size variables are 

grossly outnumbered by emission variables at a ratio of ~353:1. 

4.5.1 k-means clustering 

The k-means clustering algorithm utilizes an iterative process of randomly choosing 

data observations (k) as cluster centroids (Hartigan and Wong 2006). The observations 

are then partitioned based on the cluster centroid into a Voronoi partition, and new 

centroids are calculated based on these groupings. The algorithm continues this process 

until it converges to a local optimum and the centroid values no longer change. The k-

means clustering algorithm was previously explored briefly using data from the sensor 

(Swanson and Huffman 2018), using 4 pollen species and reduced input data (height and 

position of emission spectral peak maximum). This process showed the ability to separate 

broadly between pollen species with wide taxonomic differences as a proof-of-concept, 

however the use of simplified data does not facilitate differentiation of pollen based on 

subtle features in the emission spectra.  

Cluster analysis using the k-means algorithm was performed here as a semi-

unsupervised process, in contrast to the method applied previously (Swanson and 

Huffman 2018), where the technique was applied in an unsupervised manner. This means 

the cluster centroids were not pre-defined here, and only cluster number (k=8) was 
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prescribed to the algorithm. The k-means algorithm was also previously shown to 

produce relatively high misclassification of ambient bioparticles detected by a WIBS due 

to the limited nature of the unsupervised method used within this algorithm (Ruske et al. 

2017), but exhibited relatively high accuracy using data obtained from the sensor 

discussed here (Swanson and Huffman 2018). When allowed to iterate until optimal 

clusters are created, the k-means algorithm produces clusters with similar group size 

(Percy and Everitt 2006). This does not present problems for the data presented here, but 

may introduce errors when unknown numbers of pollen species are involved, e.g. in  

ambient samples (Geburek et al. 2012). The k-means clustering algorithm is available as 

a built-in statistical package for R (RStudio, Inc, Boston, MA). 

4.5.2 Hierarchical Agglomerative Clustering 

The hierarchical agglomerative clustering algorithm initially uses the number of 

clusters matched to the number of measured particles, and groups data by Euclidian 

similarity until a single cluster remains. The user is then required to choose the 

appropriate number of clusters based either on a priori knowledge of the number of 

particle types or by using HAC-specific tools such as the Calinski-Harabasz Index that 

examines inter- and intra-class distance ratios (Liu et al. 2010). Allowing the algorithm to 

determine the optimal cluster number can be powerful, because previously unknown 

properties can be revealed (Robinson et al. 2013). HAC analysis has been applied to 

single-particle LIF data with relative success (Pan et al. 2012; Pinnick et al. 2004). 

Labeled and unlabeled data can both be examined by these unsupervised techniques by 

removing data labels to treat all data as unknown. The HAC output can be visualized 
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using a dendrogram, which shows distances between observations in a representative tree 

diagram and which will report particle grouping from the top down. The dendrogram can 

be chopped at the desired number of clusters (e.g. n=8) for the final classification 

solution. Several linkage methods exist for the HAC algorithm, including single, average, 

weighted, complete, and Ward’s (Crawford et al. 2015). The ward.D2 method was used 

in this study, similar to a previous study in which pre-labeled data was clustered utilizing 

HAC (Savage and Huffman 2018). HAC is available in the fastcluster package, an open 

source tool for R. 

4.5.3 Random Forest Algorithm 

Random forest classification is a supervised ensemble algorithm that utilizes decision 

trees to group observations based on bootstrap sampling of the data (Breiman 2001). 

Decision trees classify observations by making individual node decisions to separate 

observations but can suffer overfitting by developing a model that memorizes the data. In 

some cases an individual decision tree may produce  accurate results for the training data, 

but inaccurate results for the subsequent data being tested (Dietterich 1995). RF 

classification algorithms use many conditional decision trees that are developed in 

parallel, utilizing random variations of the variable inputs (Hothorn et al. 2004; Breiman 

2001). The RF method allows for development of both over-fitted and representative 

trees. Using a large number of trees for analysis allows many of the trees to be developed 

simultaneously, the majority of which should represent the data accurately. Changes in 

decision tree population (forest) can affect classifications and utilizing the optimal 
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number of variables compared at each decision node implies inherent trade-offs between 

developing trees that examine the variables properly and that memorize the data. 

Random forests have been employed for bioaerosol analysis and showed similar 

performance to other supervised techniques such as GB and neural networks, but with 

lower computational burden (Ruske et al. 2017). Random forests have also been used e.g. 

for genetic mapping, which requires use of a large number of variables from the sample 

data (Bureau et al. 2003). RF classification was performed here using the open-source 

‘party’ package within R. The cforest tool (conditional RF algorithm available in the 

‘party’ package) uses unbiased processes in the decision making. Unlike the base 

implementation of random forest within R, cforest trees are initially developed, then 

conditional inference trees are fitted to the originally developed bootstrap trees, and the 

averaged observation weights from the trees are reported rather than simple average 

values from the bootstrap trees (Hothorn et al. 2015). These two differences result in 

predictive models that are more accurate, but more computationally expensive. For initial 

testing, the number of trees used here was held at 500, and the number of variables was 

left at the package default of five. 

An individual tree for the RF model can be plotted in order to visualize the decision-

making process within the algorithm. This was shown for the entire data set in Figure 4.4 

as an example, in which the 243rd tree is represented from a 500-tree forest. This tree 

classified the 204 particles through separations at nine distinct decision nodes. For the 

first decision node, the tree displays the most important variable of 50 chosen randomly 

from 1063 input variables: emission intensity at 473 nm following excitation at 280 nm. 
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Particles with emission intensity >18.8 at this wavelength were classified into cluster 8, 

ascribed as T. officinale. This delineation was effective, because no other species 

contained particles with emission intensity > 18.8. For example, see relative differences 

in pollen species with respect to emission spectra following excitation at 280 nm (Fig. 

4.5). Each subsequent branch of the tree shown in Figure 4.4 separates observations 

based on other variables until final clusters are formed.  

 

Figure 4.4. Single conditional tree (#243) from a 500-tree RF classification of entire 

pollen data set. Tree shows the decisions involved in classification of all 8 species. 

Highest impact variable listed in light grey, output nodes in dark grey. Main pollen 

species node stated in output node, with misclassified species listed in parenthesis. 
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The RF algorithm, as initially operated, provided higher classification accuracy than 

the two unsupervised algorithms, however improvements can be made by manipulating 

input parameters that affect development of the model. Increasing in the number of trees 

from 1 to 2000 provides higher accuracy, but the relative improvement diminishes as the 

model converges to optimal accuracy at ~500 trees (Appendix Fig. A4). Variable number 

examined per node can also be changed from a default value (‘mtry’ = 5). Increasing 

variables examined per node can ultimately allow development of identical (over-trained) 

trees, thus limiting the advantage a RF has over other techniques. To avoid this issue, 

mtry was left at 5. A 500-tree forest was used for the initial testing, and a forest of 1000 

trees was used for Sections 4.5 and following. 

4.5.4 Gradient Boosting Classification 

Gradient boosting is a supervised ensemble classifier algorithm that uses smaller, 

weaker decision trees than the RF technique (Friedman 2001). The term “weaker trees” 

implies that they are developed with a single decision node to separate a fraction of the 

data per each weak tree. These weaker trees are used in an iterative fashion, as opposed to 

being developed simultaneously as in RF, where the overall model is re-trained to reduce 

mean squared error over the series of weak decision trees. Instead of randomly selecting 

variables, all variables are weighted equally and each iteration re-weights variables based 

on an exponential loss function. Variables are re-weighted based on misclassification 

performance in each decision tree, and the algorithm iterates repeatedly over a given 

number of trees. The algorithm process allows for a number of sequential decision trees 
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to be made into a model that can accurately separate sections of data for each individual 

decision tree.  

GB algorithms have shown relatively high accuracy with respect to sorting bioaerosol 

classes, though at higher computational cost than the RF algorithm (Ruske et al. 2017). 

Overfitting the data can occur frequently, so cross-validation can be performed 

automatically within the model through data sub-sampling (Friedman 2011). Sub-

sampling allows the data to be split into k number of groups, which are then used to take 

k-1 groups to develop a training mode used to test on the remaining group (James et al. 

2013). The test-set error from sub-sampling is used to determine optimal tree iteration, 

which is the ideal position in the model to predict new data. GB was performed using a 

multinomial distribution; cross-validation folds of 10, and 500 trees, and is available from 

the ‘gbm’ package for R. 

When improving the classification accuracy for GB, the risk of overfitting is present, 

though this can be mitigated with tools from the gbm package. Cross-validation can be 

used to develop an exponential loss curve that analyzes the difference in error associated 

with the training and testing sets (Appendix Fig. A5). Other gbm parameters were 

investigated, including shrinkage, interaction.depth, and n.minobsinnode. The effects 

each of these played on the data set were minimal, and default parameters led to accurate 

predictions. A model with 10-fold cross-validation was used in all circumstances, and the 

ideal iteration was used to predict data for Section 4.5. 
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4.5.5 Particle Misclassifications and Total Error 

Classification results are shown in confusion matrices (e.g. Table 4.1), which visually 

describe the accuracy of classifications with respect to input category and output cluster. 

Particle misclassifications are described in terms of precision (false-positive) and recall 

(false-negative). Precision describes the ratio of particles incorrectly classified to a cluster 

(vertical misclassifications), to the number of particles correctly classified to the cluster. 

Recall describes the ratio of particles incorrectly classified from a cluster (horizontal 

misclassifications), to the number of correctly classified particles.  A value of 0.0 for 

precision or recall variables describes misclassification, whereas a value of 1.0 describes 

correct classification. The precision and recall variables are used to calculate the mean F 

value for a species, e.g. averaged over a calculated cluster using the following equation 

(Buckland and Gey 1994): 

𝐹 =  
(2 𝑥 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑥 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
. 

The F value thus allows representation of the misclassification vector of a 

cluster as a single variable and relates cluster accuracy. Results for the ensemble 

algorithms (RF and GB) were cross-validated using with a four-fold validation 

method, meaning 75% of the observations were utilized to develop a training set, 

and the remaining 25% were utilized to test it. This was to ensure there was no 

overfitting, as well as to test the accuracy of each classification model. Data was 

also selected in randomized order to add additional complexity to this validation. 
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4.5.6 Variable Importance 

Ensemble algorithms offer two specific sub-routines that were used to analyze 

spectral data. The ‘predict’ (cforest random forest) and ‘gbm.predict’ (gbm gradient 

boosting) functions allow for both testing of training data, as well as predicting where 

new observations will be assigned. The new predictions can provide responses (particle 

assignment) or probabilities (percentage of similarity of an observation to any cluster) for 

an individual observation. The ‘variable importance’ function utilizes information from 

decision trees present in the algorithm to report the variables integral in correct 

classifications. Importance for a variable is reported as mean decreased Gini1 (MDG), 

describing how the available data would be further misclassified by removing that single 

variable (Han et al. 2017; Strobl et al. 2007). MDG values and size variables were 

examined individually for each curve.  

4.5.7 Reduction of Number of Optical Sources 

Computational experiments were performed in which combinations of input variables 

(e.g. emission spectra associated with individual excitation sources) were removed in 

order to examine their relative importance for pollen differentiation. This test is 

analogous to physically operating the sensor without certain optical sources and helps 

indicate which sources are the least important to overall pollen classification and thus 

candidates for physical removal from the instrument. Sixteen individual trials were 

developed, all tested on an identical randomized data set. Reduction in data collection 

represents a tradeoff between increased observational collection and lowering the overall 

                                                           
1Term introduced by statistician Corrado Gini. 
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cost and time requirements in the analysis. These trials involved a cross-validation set 

similar to Section 4.5.3, which used 75% of the data to develop the training model and 

25% of the data to test the model accuracy. 

4.6 Classification Results and Discussion 

4.6.1 Size and Spectral Characteristics of Pollen 

Particle size and spectral information from 20 – 31 individual particles were collected 

for each of the 8 pollen species studied. By analyzing data averaged for individual 

species, patterns appear that aid discrimination and grouping (Fig. 4.5 and Appendix Fig. 

A7). Emission spectra from the 280, 405, and 450 nm excitation sources each exhibit a 

single, broad peak with a tail sloping to longer wavelengths, corresponding to 

fluorophore modes I, V, and VI, respectively. Emission spectra following excitation at 

405 nm are weaker than for those following excitation at 450 nm for all species except T. 

officinale (Fig. 3H). This is explained by the fact that the 405 nm excitation crossed at a 

minimum between fluorophore excitation spectra peaking at ~350 nm and ~450 nm 

(Appendix Fig. A6). As a result, emission spectra following 405 nm excitation are 

dominated by the tail of the emission peak at 450 nm (III) rather than the tail of the 

emission peak at 520 nm (V). For spectra from these three sources, differences are 

apparent between species primarily due to the height rather than relative shape of 

emission peaks. Emission spectra from the 405 nm source can be broadly grouped 

according to peaks with high intensity (T. officinale), medium intensity (A. tridentata, P. 

pratensis, and S. canadensis), and low intensity (four remaining species). Emission 

spectra from the 350 nm excitation source, in contrast, show a broad peak at 460 - 540 
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nm representing two unresolved peaks. The first peak at ~470 nm (II) corresponds e.g. to 

phenolic compounds and the second at ~520 nm (IV) corresponds e.g. to carotenoids 

(Pöhlker et al. 2013). Previous studies have shown the relative intensity of mode II to be 

higher than mode IV for most pollen species. Spectra shown here exhibit lower intensity 

values for mode II, however, likely influenced by the optical filter used (435 nm long-

pass filter; GG-435; Edmund Optics; Barrington, NJ) to filter the spectrally broad output 

from the 350 nm LED. The filter removes approximately 15% of light at 450 nm2, and so 

the relative peak height of mode II is reduced and the shape of spectra following 350 nm 

excitation are qualitatively altered. Emission spectra following excitation by the 280 nm 

source shows the largest variations in peak height between species, spanning mean values 

between 3.8 and 30.6 (arbitrary intensity units), probing mode I related primarily to 

phenolic compounds. EEMs of pollen and collected from bulk biofluorophores suggest 

that the 280 nm source should promote fluorescence from proteins and aromatic amino 

acids (Pöhlker et al. 2012, 2013), peaking approximately at emission wavelength 350 nm. 

This mode is not visible with the present set-up of the instrument, because the efficiency 

of the silicon CCD used here for detection drops to near zero as wavelength drops below 

~400 nm. Emission spectra from the 450 nm source exhibit variability, but within a 

narrower range than for other sources, and the location of peak maxima are nearly 

identical across all species.  

Mean pollen size varied from 20 to 50 μm. Fluorescence intensity emitted from 

individual particles has long been shown to increase strongly as a function of particle size  

                                                           
2 https://www.edmundoptics.com/document/download/352852 
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(e.g. Savage et al. 2017; Sivaprakasam et al. 2011; Hill et al. 2001). Differences in 

composition between pollen species also play important roles in observed fluorescence 

intensity, however. For example, P. strobus (Fig. 4.4e) exhibited large mean particle size 

(52 μm), but weak fluorescence intensity for 280, 405, and 450 nm excitation sources. 

The mean aspect ratio values of pollen species varied from 1.0 (A. trifida) to 1.6 (A. 

tridentata), with most species presenting mean values between 1.1 and 1.3.
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Figure 4.5. Measured properties of all pollen species analyzed. Major particle size axis 

(Dmaj; black) and aspect ratio (AR; yellow) shown where box limits represent 25th and 75th 

percentiles, whiskers represent 10th and 90th percentiles, and center line represents median 

value. Remaining columns show emission curves following excitation at 280, 350, 405, 

and 450 nm. Center line of each spectrum represents mean value, grey region represents 

standard deviation of measurements. Emission intensity is conserved within a given 

column to aid comparison. 
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4.6.2 Comparison of Clustering Techniques 

Average classification accuracy (F) for the four algorithms studied ranged from 0.13 

to 1.00. The two supervised techniques (RF; F 0.96 and GB; F 1.00) significantly 

outperformed the two unsupervised techniques (k-means; F 0.78 and HAC; F 0.13), as 

summarized in Table 4.1. The GB algorithm classified the data to an average F of 1.00 

but can also over-fit the data by developing trees that perfectly fit the training data. As a 

result, the F value can overestimate the true accuracy of the GB model. The RF algorithm 

correctly labeled particles with F of 0.98, corresponding to 2% error or 5 particles 

misclassified out of 204. The RF algorithm is not susceptible to over-fitting with default 

parameters, however, and so the F value more reliably represents assignment accuracy. In 

this case one particle from each of three pollen species was misclassified, and two 

additional P. pratensis particles were misclassified to the A. tridentata cluster. The 

spectra from these two species are relatively similar (Figures 4.4a and 4.4f), and so 

misclassification here is reasonable.  

The average accuracy of the k-means algorithm was mediocre, with an F value of 

0.76, and the HAC algorithm showed very poor accuracy with an F value of 0.13. This 

suggests that Euclidian distance between data points (HAC) may not sufficiently separate 

data in this case. The unsupervised methods consider all variables simultaneously by 

combining variables, in contrast to supervised methods that randomly sample subsets of 

the input data. The unsupervised process may result in variables that carry added weight 

if overlapped between species. Observations with large differences (e.g. a weakly 

fluorescent particle from one species and a highly fluorescent particle from another) may 
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skew initially developed cluster centroids, making further groupings less accurate by 

increasing misclassification. Given that the RF and GB algorithms (even as operated 

without comparing observations to a training set) significantly out-performed the 

unsupervised algorithms, and because they can be further tuned to improve classification, 

only these two algorithms were utilized for further investigation here. 

 

Table 4.1. Clustering accuracy (F) comparison utilizing (a) k-means, (b) hierarchical 

agglomerative clustering, (c) random forest, and (d) gradient boosting classification 

algorithms using the entire pollen data set (204 particles). On the left of the dotted 

lines is a confusion matrix, in which correctly classified particles are highlighted in 

orange and misclassified particles in grey. On the right side, FP (false positive) 

represents the number of particles misclassified for that cluster in the vertical 

dimension, FN (false negative) represents the number misclassified in the horizontal 

dimension, and F represents the harmonic mean of these misclassifications for the 

cluster. 

4.6.3 Detailed Comparison of RF and GB 

Though the RF and GB algorithms performed well, the developed models may be 

over-trained. Prediction of new, labeled data (e.g. subsets of the data) to the model can 

thus be important to assess model performance. For both RF and GB, a series of five 
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cross-validation trials were performed with the data sets, where 75% of the randomized 

data was used to create a training set and the remaining 25% was used as a test set. For 

most of the trials, RF and GB algorithms performed with similar overall accuracy. 

Averaged over the five trials, F was 94.8 ± 4.6 for GB and 93.6 ± 3.3 for RF (Fig. 4.6). 

GB shows higher F than RF during training, but the mean results are similar following 

testing. These results imply that GB can over-fit the training data despite built-in cross-

validation and that RF training sets are more representative classification scenarios. 

Given the similar results between RF and GB, the similarities between training and 

testing accuracies exhibited by RF, and the lower computational expense (17x faster), 

further investigation was limited to the RF algorithm.  
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Figure 4.6. Accuracy of GB and RF algorithms summarized after five randomized trials 

using the 8-species data set. Average accuracy shown as triangle marker. Vertical line 

shows standard deviation (0.05 for GB, 0.03 for RF). Colored markers show results from 

individual trials. Identical randomized sets and numerical seeds were used for all trials. 

4.7 Random Forest Variable Importance 

The relative importance of each portion of each spectrum (770 individual variables 

accumulated over four emission spectra analyzed at 1 nm resolution) can be determined 

from the developed RF model as MDG plotted as a function of input variable. Figure 4.7 

thus indicates how each emission curve feature can influence the RF algorithm results. 
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This analysis suggests that the relative importance of the emission spectrum following 

280 nm excitation closely follows the pattern of the spectrum itself (Fig. 4.7a). The same 

is true for the spectrum following 450 nm excitation (Fig. 4.7d), but with overall lower 

MDG value. The shape of the variable importance curves for the remaining two spectra 

(Figs. 4.7b and 4.7c) present flatter relationships, in some cases with increasing MDG at 

tails of the spectrum. The shapes of these curves may imply RF model development 

misled by noise unfiltered by this method, but also suggests that minor features of the 

spectra may be important for classification, even if not clearly visible in emission spectra 

averaged from many individual particles. Variable importance measured before data was 

noise-filtered (as discussed in Section 2.1) is shown in supplemental Appendix Figures 

A8 and A9. Particle size variables were input as three independent variables (major and 

minor axes and aspect ratio of particle size). The MDG values summed for these three 

size variables (input as 3 of 773 variables after noise filtration) totaled only 1% of the 

total model MDG for the RF model, whereas integrated values for emission curves 

correspond to 31%, 46%, 18%, and 4% for 280, 350, 405, and 450 nm excitation sources, 

respectively. 
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Figure 4.7. Comparison of variable importance for emission spectral following each 

excitation wavelength for the RF algorithm. Black traces show MDG value. Colored 

traces show average fluorescence spectra for Ambrosia trifida (N=30) shown here as an 

example.   

Pollen analyses are frequently conducted using particle size and shape analysis, even 

without any additional information such as spectra (e.g. Weber 2010; Bragg 1969; Jones 

and Newell 1948). We postulated that developing a model that relies only 1% on physical 

dimensions of the particles would weaken the classification power of the technique. To 

counteract the under-representation of particle size within the model, each of the three 

particle size variables was weighted more heavily in order to increase their influence on 

the model. By inputting each of three size variables as 33 identical columns of data, the 
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total fraction of input size variables was increased to 99 / 869 = 11.4%. The weighting 

factor was chosen arbitrarily so the observed MDG values of the major and minor 

diameter variables were on the same order of magnitude as the MDG values for emission 

spectra (e.g. Fig. 4.8). Weighting particle size increased F by a factor of 2.4. Further 

testing could be conducted on how best to optimize the weighting, but the value utilized 

was sufficient for the RF model to utilize a mix of particle size and fluorescence 

information for classification. In this sense, the effect of the scale of weighting used here 

is less important than its relative effect of arbitrarily increasing particle size importance.  

Figure 4.8. Variable importance (MDG) represented as a fraction of total importance. 

Wavelength of excitation (λEx) represents sum of emission variables associated with each 

optical source. Bars sum to 100%.  Particle size aspect ratio removed for visual clarity 

(showed 0% importance).  
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The increased importance of particle size after weighting is shown in Supplemental 

Figure B9. Using the weighted particle size inputs, Figure 4.8 shows that emission 

spectra following 280 nm excitation exhibit the highest total importance (32% of total 

MDG), emission spectra following 450 nm excitation are the least important (3%), and 

the other two emission spectra and particle axes parameters each represent relatively 

similar influence (15-22%). It is important to note that the values shown in Figure 4.8 are 

integrated over full curves in Figure 4.7 and thus show identical overall trends. 

4.8. Instrument Simplification 

In order to further investigate the relative importance of each of the excitation sources, 

the mean model accuracy (F) was calculated after removing different combinations of 

input variables, each associated with a given excitation source. The purpose of this 

analysis was to investigate the relative loss of sensor functionality if developed with 

fewer optical excitation sources, thus producing a less expensive and simpler instrument. 

All combinations of sources were analyzed (16 in total), corresponding to the use of all 

four sources and the removal of one, two, or three sources. For each of these cases, 

particle size variables were not input to the model to compare the changes in model 

accuracy as it applies to spectral data. The results of the analysis are shown for the test set 

in Figure 4.9 (training set in Appendix Fig. A10). To simplify discussion, nomenclature 

here is used such that the 280, 350, 405, and 450 nm sources are labeled as source A, B, 

C, and D, respectively. For the case using all four excitation sources (case ABCD), the 

relative accuracy of the model (0.93 training, 0.92 test) was higher than in all cases where 

at least one source was removed. The test set accuracy for each of four cases where a 
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single source was remove ranged from 0.84 (BCD) to 0.92 (ABC), for the six cases 

involving two excitation sources from 0.68 (CD) to 0.82 (BC), and for the four cases 

involving only one source from 0.41 (D) to 0.70 (B). Interestingly, case B showed higher 

accuracy in both training and trial sets than case BD, implying that the additional input 

data from the 450 nm source may be confusing model development. 

 

Figure 4.9. Accuracy of the RF algorithm following fifteen combinations of input 

variables. Excitation sources represented here as (A) 280 nm, (B) 350 nm, (C), 

405 nm, and (D) 450 nm. All trials consist of a subset of 25% of the particle 

spectral data predicted to training models from 75% of the data. 

The highest accuracy results from the test set were provided when using all four 

optical sources (F 0.92), which is not surprising. The comparable accuracy of the ABC 

(450 nm source removed; F 0.92) and ACD (350 nm source removed; F 0.91) cases 

suggests here, however, that the relative additional value of either the 350 nm or 450 nm 

source is marginal toward pollen differentiation. By further simplifying the instrument to 

use only two sources, the accuracy diminishes somewhat, but all combinations of the 280 

nm source (A) plus another source provide relative equal accuracy (0.79 – 0.82). 

Interestingly, the BC case (350 and 405 nm sources) provided nearly identical accuracy 

(0.82) to the cases involving the 280 nm source, whereas the remaining two cases (BD 
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and CD) were substantially lower in accuracy. In cases utilizing only one optical source, 

the relative accuracy diminished still further, but cases involving the 280, 350, and 405 

nm sources were nearly identical, whereas the 450 nm source provided clearly the lowest 

accuracy results.  

The relatively poor performance of the 450 nm source, observed in analyses associated 

with Figures 4.7-4.9 is striking, especially given the ubiquity of emission mode VI in 

most previously analyzed pollen species (Appendix Figure A6). We originally considered 

that a reason for the lack of importance to this source was influenced by relatively 

consistent concentrations of fluorophores (e.g. carotenoid compounds) comprising this 

mode. Figure 4.5 suggests this is not the case, however, with mean peak emission 

intensity following 450 nm excitation varying from 2 to 15 arbitrary intensity units. As 

discussed, the 405 nm source promotes fluorescence from the tails of emission spectra 

from both the ~350 nm (mode III; phenolics) and ~405 nm (mode V; carotenoids) 

sources, and thus are expected to be comprised of emission from both sets of 

fluorophores. The peak height of emission spectra following 405 nm excitation are lower 

than spectra following 450 nm excitation for seven of the eight pollen species analyzed 

here, consistent with the spectra that would be expected if the 405 nm spectra were 

dominated by mode V (peak emission 520 nm) over mode III (peak emission 450 nm). 

The relatively low importance of the 450 nm source compared to either the 350 nm or 

405 nm sources, however, suggests that the 405 nm excitation gains enough information 

from mode III to reduce the relative additional value of the 450 nm source. 
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4.7.2 Discussion and Conclusions 

Pollen monitoring and forecasting is relatively expensive and time-consuming due to 

its manual nature. This leads to poor spatial coverage of measurements sites, further 

leading to models with relatively poor spatial accuracy. We previously presented the 

development of a single-particle fluorescence spectrometer designed primarily toward 

inexpensive, portable, and autonomous differentiation of allergenic pollen. The analysis 

discussed here shows the application of four styles of computational classification to 

most accurately differentiate between properties of individual particles from eight species 

of commercially-acquired pollen. We conclude that the GB and RF models provide 

nearly identical, high accuracy with respect to the pollen species interrogated and that the 

RF model better optimized cost-benefit with respect to separation accuracy and 

computational cost. 

Fluorescence spectra of pollen and other biological aerosol particle types are relatively 

broad by physical nature and show relatively similar spectral properties between species, 

thus it has long been suggested that single-particle differentiation between species would 

be impossible or challenged by high uncertainty (Huffman et al. 2019; SC Hill et al. 

1999). The results here, however, show high levels of separation accuracy using particle 

size and well-resolved emission spectra acquired from four excitation sources. In these 

cases, relatively subtle differences in emission intensity associated with many different 

chemical compounds present in the pollen are likely why separation can be so effective 

here. This stands in analogy to other methods that separates e.g. species of bacteria based 

on differences in relative proportion of individual lipid molecule concentrations (e.g. 
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Madonna et al. 2001). For this reason, separation is improved by the acquisition of 

relatively high-resolution spectra and is thus improved over single-particle techniques 

that acquire fluorescence emission data in only 1-3 emission channels or with fewer 

excitation sources.  

The analysis of input variables shown here suggests that the 280 nm excitation source 

is individually the most important of excitation sources utilized (Figs. 4.8 and 4.9), but 

that its importance is somewhat diminished when comparing results after removing 

individual sources from the analysis. It is clear that developing an instrument with all 

four excitation sources can provide high classification accuracy. Altering the design to 

utilize three or less source may be an attractive solution, however, to reduce cost and 

complexity. Of the six two-source cases, three cases (AB, AC, BC) performed 

approximately equally well. Two of those utilized the 280 nm source, which is not 

surprising given its overall importance (Fig. 4.8). More surprising was that two of these 

three cases utilized the 405 nm source, which performed with lower overall integrated 

importance (Fig. 4.8). In cases where only a single optical source was utilized, the 280, 

350, and 405 nm sources performed with similar mean accuracy. From a practical 

perspective, it is advantageous to choose sources that minimize cost and maximize 

longevity (e.g. robust, high cumulative operation time) and that provide enough output 

power density that promote emission spectra sufficiently intense to allow shorter image 

integration times. In this context, the 280 nm source is comparatively expensive and 

provides the weakest output power (0.33 mW compared to 4.5 – 50 mW for other 

sources). The weak output power leads to longer exposure times (~3 minutes) for images 
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of particle sets compared to the other three sources (3-50 seconds). For these reasons, a 

combination of the 350 nm and 405 nm sources (BC) may be ideal for a small detection 

platform, because demonstrated mean accuracy is high, and both cost and practical 

convenience are advantageous. In comparison, the addition of the 450 nm source to the 

350 and 405 nm sources (BCD) adds only a 2% improvement on the classification, which 

may not result in sufficient accuracy gain relative to the additional material cost. 

The results shown are important not only toward the future development and 

application of the instrument discussed specifically here, but more broadly to emerging 

classes of instrumentation that acquire complex data (spectral or otherwise) with many 

variables toward the purpose of single-bioparticle differentiation. In particular, the 

analysis of the importance of individual input parameters within a spectrum, integrated 

groups of variables, and the relative differences in model accuracy after removing 

instrument components can provide context for development and testing of emerging 

particle spectrometers.  

The primary goal of the single-particle fluorescence spectrometer discussed here is 

toward the detection of allergenic pollen species in approximately real-time, so as to 

contribute to the areas of missing data and to improve spatial accuracy in pollen 

forecasting models. In this context, the scientific application of the measurement does not 

require species-level identification of all airborne pollen, but rather the differentiation of 

the species of highly allergenic pollen that dominate the public health response. Thus, to 

lower detection and analysis requirements, collection of lower resolution spectra may be 

sufficient for adequate prediction. Future analysis will thus investigate the trade-offs by 
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either collecting spectra at lower resolution or by parameterizing spectra into fewer input 

variables (e.g. as averaged intensity in the eight fluorophore modes discussed here). For 

now, however, the computational requirements of the RF model are sufficiently low that 

it is not expected to be a limiting factor in the particle analysis, and preliminary work 

suggests that the subtle nuances in the high-resolution spectra as collected contribute 

positively to accurate pollen differentiation
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Chapter 5: Pollen Classification with a Recently Developed Fluorescence 

Spectrometer 

The information presented in this chapter is in preparation for submission for peer 

review. 

5.1 Introduction 

Pollination mechanisms can be separated into two groups: abiotic, pollination based 

on environmental factors, and biotic, pollination based on pollinator symbioticism. The 

majority of gymnosperms, grasses, sedges, and rushes are all anemophilous, or wind-

pollinated species, as well as some other trees such as oak, walnut, or chestnut 

(Ackerman 2000). In order to be transported through the atmosphere, these types of 

pollen tend to be smaller and  less, or non-, sticky compared with pollinator-transported 

pollen (Ackerman 2000). Anemophilous plants, such as those from the genus Pinus, have 

been seen to produce 100,000 pollen grains per individual anther (Molina et al. 1996). 

Similarly, tree types with longer anthers have been seen to produce larger numbers of 

pollen grains (Molina et al. 1996). Anemophilous pollen contributes to the majority of 

those particles measured in the atmosphere, up to 98% of the pollen sum measured 

(Kasprzyk 2004; Mullins and Emberlin 1997), though large concentrations of 

entomophilous pollen have been previously seen in atmospheric samples in conjunction 

with high wind speeds (Dua and Shivpuri 1962). 
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Previous single-particle studies on the fluorescence of pollen have also shown 

variation in individual grains of the same species (O’Connor et al. 2014b; O’Connor et al. 

2011), let alone between species. Single-particle data gives a much more reliable view of 

the distribution within species, as well as between, due to the statistical variation between 

individual particles. Bulk sampling can give good information about the differences 

between species, as well as any differences seen by regional or local variations in soil 

quality, weather, and other factors which may be directly related to pollen viability at the 

time of measurement (Nyomora et al. 2019; Khatun and Flowers 2007). Certain pollen 

types, such as grass pollens, have also shown to contain chlorophyll a that is 

fluorescently available to instrumentation (D. O’Connor et al. 2014b). 

5.2 Methods 

5.2.1 Sample Collection and Treatment 

A total of 34 species of pollen were collected between May 2018 and May 2019 from 

plants growing at either the Denver Botanic Gardens or the University of Denver 

arboretum campus (Table 5.1). Samples were chosen to select a range of plant types, 

allergenicity levels, and pollination mechanisms. In some cases, plants were chosen as 

examples of those indigenous to the region. Two different sampling methods were 

utilized, depending on the pollination mechanism of plant. Anemophilous pollen samples 

were collected by gently shaking the flower onto a glass slide. Entomophilous pollen 

samples were collected either by shaking the flower onto a glass slide or by transferring 

pollen grains from the stamen of the flower using a small needle and immediately 

transferring pollen grains to a slide. 
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Sample slides were inserted into plastic slide holders for transport and storage. In 

most cases, multiple slides were collected for a single species, and different species were 

always stored separately. Sample holders were closed and stored in a refrigerator (~4 oC) 

within 1-3 hours of collection. Imaging and spectral analysis was performed within a 

maximum of five days after collection. Between 20 and 30 particles were analyzed for 

each individual species. During imaging analysis, pollen grains were qualitatively 

assessed to ensure that the morphology and size of the pollen approximately matched 

images in a pollen database that contained scanning electron microscope and optical 

micrograph images (Weber and Ulrich 2017).  

 

Table 5.1. The 34 species collected over the 2018-2019 pollination season. Common 

name, plant type per USDA classification, allergenicity level: low (0) to severe (3), 

pollination mechanism type, and the particle number collected and subsequently 

analyzed for each individual species.



95 

 

5.2.2 Pollen Species Categorization 

To test the ability of the instrument and analysis technique to separate pollen, species 

were chosen in part to represent a variety of physical and biological properties. 

Categorization of species was considered with respect to four separate methods of 

organization: (i) plant type, (ii) allergenicity level, (iii) pollination mechanism, and (iv) 

month of sample collection. Each plant type was categorized into one of five groups 

according to the USDA definition (USDA 2016): forb (flower herbs), graminoid 

(grasses), shrubs, subshrubs, or trees.. Allergenicity level was categorized into one of 

four groups (0, none; 1, mild; 2, average; 3, severe) as defined by IMS Health 

(http://www.pollenlibrary.com). Pollination mechanism was defined as either 

anemophilous or entomophilous. All category determinations are listed for each species 

in Table 5.1. Month of sample collection was further organized into four longer sampling 

periods to account for the fact that pollination can extend beyond an individual month for 

a given species. Sampling period were grouped as: P1 (April, May, June), P2 (May, June, 

July), P3 (June, July, August), and P4 (July, August, September). In this way, samples 

collected in a given month are present in multiple sampling periods, as a sort of rolling 

average, to examine the quality of pollen separation in each of these cases. 

5.3 Pollen Classification Results 

5.3.1 Overview of Pollen Data 

A total of 34 species of pollen were analyzed, representing diversity of collection 

month, plant type, allergenicity level, and pollination mechanism. The species collected 

also exhibited a wide range of particle size (24 – 86 μm), size aspect ratio (1.02 – 2.30), 
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and spectral characteristics. Results from eight species were chosen to highlight the range 

of observed properties and model prediction qualities, e.g. the species that were most 

accurately (Figs 5.1a-d; top four rows) and least accurately (Figs 5.1e-h) tablsubscripts 

for these represent their positioning in the overall 34 species data set, which is shown in 

Appendix Figures B3-7. 

 

Figure 5.1. A selection of various pollen collected throughout the 2018-2019 seasons. 

Species are labeled here as A-H, with their subscripts listing their position in the full 34 

species data set. Box and whisker plots for the major size axis (black) and aspect ratio 

(yellow) are shown in the left column of the plot. This is followed by the average emission 

curves for the 280, 350, 405, and 450 nm excitation sources, from left to right. Grey bounds 

are drawn around each curve, representative of the deviation in those species’ sets. Each 

emission column has the intensity conserved to make visual comparisons easier.
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Each excitation wavelength probes a different set of fluorophore modes present in the 

pollen species. The emission modes following 405 and 450 nm excitation exhibit similar 

signals all species shown here per source. Generally, there is a single mode present near 

500 nm following excitation source 405, (V); and one near 520 nm following 450 nm 

excitation, (VI), corresponding to the fluorescence e.g. carotenoids. There are small 

variations in maximum peak positioning (e.g. E. speciosus; species cM and E. canadensis; 

species gK emission mode following 405 nm excitation being shifted near 520 nm than 

500 nm), though the main differences between individual species is the peak intensity of 

the fluorophore modes seen. One case, E. speciosus (species cM), shows an additional 

shoulder mode after 405 nm excitation, at 475 nm emission (similar to the 350 nm 

excitation), corresponding to emission mode (III) e.g. phenolic compounds. This may be 

due to the 405 nm source probing a minimum between two major fluorophore groups 

previously reported as observed previously (Pöhlker et al. 2013), consisting of e.g. 

phenolic and carotenoid signals, and these varying concentrations are shifting where the 

main peak is detected. This effect is seen where these fluorophore concentrations are seen 

varying in emission from the 350 nm source as well (E canadensis; species gK has higher 

mode (II) peak; H. annus; species P has higher mode (IV) peak), where the single 405 nm 

source emission peak position can be seen varying in a similar way. The modes from 450 

nm, in contrast, only show mode (VI) for e.g. carotenoids, with varying intensities. These 

two excitation modes were shown to previously be less important in the RF model 

development (Swanson and Huffman 2019), which is shown through the lack of 
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variability in the emission modes for these two sources. Notably, though previous studies 

have noted that certain pollen species may exhibit, such as grass pollen (O’Connor et al. 

2011), no grass pollen species in this data set contained any chlorophyll a that was 

available to probe by this instrument. This leaves out emission modes (VII) and (VIII) 

completely. 

Emission signals from the 350 and 280 nm sources show wide variability when 

compared to the previous two sources. Emission from the 280 nm source largely shows 

an emission mode (I) around 430-460 nm, corresponding to e.g. phenolic structures, with 

varying intensity and shoulder features. The features from this emission mode tends to 

revolve around the positioning of the peak itself (430 to 460 nm), rather than several 

different peaks. Still, there is a mode not previously described explicitly in previous 

studies, likely from e.g. carotenoids, near 520 nm in E. speciosus; species cM, which 

shows up as a clearly distinct second peak in the 280 nm emission spectra. S. gigantea; 

species eZ, and T. montana; species dE, appear to show a longer shoulder in that area as 

well, which is not seen in the other six species. Emission from the 350 nm source shows 

the highest variability across all sources. Two key modes, which correspond to varying 

degrees of e.g. phenolics (II) and e.g. carotenoids (IV) present in an individual pollen 

grain, are commonly seen. In some species, this results in one large peak area with a 

shoulder (B. pendula, R. deliciosus, T. montana, S. gigantea, R. aurem) while others have 

shoulders or peaks that are clearly distinct from the main peak (E. speciosus, E. 

canadensis, M. fistulosa). The emission from the 350 nm source exhibiting the highest 

qualitative variability is consistent with previous data showing RF models are developed 
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heavily off of this excitation source, as well as off the 280 nm source (Swanson and 

Huffman 2019). 

A range of sizes and aspect ratios are seen in this data set, as well. These differences 

are visually present in Fig. 5.1 and Appendix Fig. B3-7. Many of these differences 

include species with extremely narrow size distributions (i.e. A. frigida; species D, G. 

sarothrae; species O, S. gigantae; species Z). Species of the same genus (Artemisia; 

species D-F, Pinus; species S-U, and Solidago; species Y and Z) have remarkably similar 

size characteristics, and generally similar aspect ratio characteristics as well. In these 

cases, different spectral characteristics between the individual species seem to be the 

driver in classifications to each species, as opposed to size and morphology. In 

comparisons between different genus, such as Betula (AG) and Ribes (W), where size 

characteristics don’t overlap at all, though there is some overlap in spectral similarities, 

ensuring size is able to drive these separations is important. Considering no 

misclassifications between these two groups, it helps justify the previous implementing of 

artificial size weighting for this model development (Swanson and Huffman 2019). 

5.3.2 Differentiation of Entire Data Set 

The first classification scenario performed was the species level classification of the 

entire, 34-species data set. The results of this classification scenario are shown in Figure 

5.2, which shows the ratio of correctly and incorrectly classified particles for each 

individual species, and the mean of the entire classification set (F value 0.89). The 

confusion matrix associated with this classification can be seen in Table 5.2. The direct 

misclassifications for each individual species can be seen in Table 5.2. Half of the species 
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were classified to an F value of 0.90 or greater, and only a few species (M. fistulosa, 

0.77; R. aurem, 0.81; E. canadensis, 0.81) showed high levels of misclassification, 

though none reported low F values than 0.77. E. canadensis is misclassified to four total 

species, though three of the six misclassified particles were classified as V. baldwinii. 

Interestingly, M. fistulosa was misclassified evenly to E. vivipara and R. aurem, the latter 

being one of the more misclassified species. The major diameter characteristics for M. 

fistulosa match extremely closely to both species, while the spectral characteristics are 

similar to R. aurem and are also similar to E. vivipara (though less so with the emission 

from the 280 nm source), and the aspect ratio is extremely similar to E. vivipara. R. 

aurem was also similarly misclassified twice to E. vivipara, likely for similar reasons. 

Two other interesting examples are P. ponderosa, which has misclassifications of a single 

particle each to the other two Pinus species present. This type of intra-genus 

misclassification also happened for Solidago, in which they exchange a total of three 

misclassified particles. These examples indicate that there may be some appreciable 

crossover between individual species of the same genus, though larger sample sizes may 

be needed to confirm this. 
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Figure 5.2. The accuracy and misclassification for each individual species for the 

collections from the Denver Botanic Gardens and University of Denver. The blue bar refers 

to correct classifications, while the red bar refers to misclassifications, adding up to 1. A 

total of 933 particles were classified here, with the overall data set being classified at 89% 

accuracy. 

For higher accuracy trials, E. speciosus is shown in Figure 5.1 as being qualitatively 

extremely different than the others, as evidenced by the fluorescent modes (II), (IV), and 

(III), as well as the shoulder for (V) present in this species, corresponding to the phenolic 

and carotenoid peaks. This indicates that the spectral and size differences in these 34 



102 

 

species, despite there being some cases of large distributions in spectral intensity and 

positioning, can lead to a classification accuracy of 0.89.  

 

Table 5.2. Confusion matrix of the entire, 34-species data set classified to the species 

level. On the left side of the dashed red line is the matrix itself, with correct 

classifications coded in orange, and misclassifications coded in grey. To the right of the 

red dashed line is the ratio of false positives (FP), false negatives (FN), and the overall 

misclassification vector (F) 

Though separation at the species level can be important, many of these species were 

collected in different months of the year, a result of them having different pollination 

seasons. Many species pollinating in early March and April, usually tree species, will not 

be pollinating simultaneously with ragweed or other pollinating subshrubs like blue 

sagebrush. So, though successful, species-level separation of all pollen types is not of 

high importance. Moving forward, the goal is to identify and classify specific, important 

species that are common allergens for a certain area or time period. In this case, the focus 

was solely on pollen frequently found in the Colorado front range area.
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5.3.3 Analysis Separation by Collection Period and Plant Metadata 

Overview 

Species collected at the Denver Botanic Gardens were largely constrained by both 

the availability of individual species, as well as the timeframe of possibly collection. 

Utilizing the sampling windows described previously, the pollen species being analyzed 

can be restricted to a series of classifications where there is reasonable expectation that 

the species being compared may be pollinating contemporaneously. Not only can this be 

done at the species level, but the pollen can be classified based on metadata associated 

with those species. As an example, all of the particles from April to June were listed in 

window P1. In addition to the seasonal window, the type of plant and allergenicity level 

of the plant can also be utilized to narrow these scenarios, which can be seen in Figure 

5.3. 
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Figure 5.3. Accuracy (F) associated with each sampling window, with the 

fractional amount of correctly classified particles in blue, and the 

incorrectly classified particles listed in red. These are separated by USDA-

listed type, allergenicity level (0-3) and the species level. The entire trial’s 

average error is shown here, not individual types or species. 

Classification by Species 

In comparison with the entire 34-species data set, the species level comparisons 

were also performed in the four sampling windows, which is shown in Figure 5.3a. Each 
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sampling window at the species level were extremely similar in F value to the overall 34-

species scenario, all four being within 0.3 of the full set. The lowest accuracy sets were 

windows P1 and P3, with F values of 0.90, which was comprised of 12 species and 309 

individual particles. The highest accuracy scenario was window P4, with an F value of 

0.92, which contained 19 species and 537 total particles. Comparisons of where the 

species were misclassified can be seen in Appendix Table B2 for one of the lowest 

accuracy windows (P3) and Appendix Table B3 for the highest accuracy set (P4). Despite 

P4 containing more species in total, 19, the number of misclassifications more than 1 

particle to or from the same species was lower than P3, which had 12 species. For 

window P3, there were several species that seemed to be particularly problematic. 

Species C, G, and J in particular, all had 5 or 6 particles misclassified to their respective 

clusters, which contributed to 44% of the misclassified particles in total. The differences 

in accuracy between P3 and P4 can easily be seen when examining the species level F 

values, of which 6 of 12 and 4 of 19 were under 0.90, respectively. 

Classification by Plant Type 

The sampling scenarios that are classified by plant type can be seen in Figure 5.3b. 

In contrast to the species level, all four showed higher accuracy than the total full 

scenario, showing F values at 0.1-1.0 higher. Of note is window P4, which was classified 

at an F value 0.98. A comparison of the lowest accuracy trial (P1) and the highest 

accuracy trial (P4) can be seen in Appendix Tables B4 and B5, respectively. Though the 

species count for this were comparable between both windows, 17 for P1 and 19 for P4, 

the first window contained three more plant type categories than the latter. These 
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differences likely contributed heavily to the larger accuracy difference in the plant type 

trials, which were the highest, since the plant types for this window P4 are varied the 

least, having two types (forb and graminoid) present. This contrasts with one of the lower 

accuracy trials, window P1, which have five total plant types (forb, graminoid, shrub, 

subshrub, tree). Interestingly, in the P1 trials the graminoids and forbs had some 

crossover misclassifications between one another, accounting for 16% of the 

misclassifications in this sampling window, corresponding to 1.6% of the total error. The 

P4 window here only showed 2.0% total error, which does not seem inconsistent with 

P1’s misclassifications between these two classes, despite being comprised of mostly 

different species. Still, the possibility remains that if more plant type classes were added, 

some of these particles would be misclassified differently, as the threshold for assigning 

is based on similarity. 

Classification by Allergenicity 

The accuracy of grouping the pollen species by allergenicity (0-3) is marginally 

better as well, with an F value of 0.92-0.94. Window P4 showed the highest accuracy for 

these trials, like the species and plant type level. Similarly, window P1 showed the lowest 

accuracy, at an F value of 0.92. The confusion matrix comparisons of these can be seen 

for P1 in Appendix Table B6 and P4 in Appendix Table B7. Window P1 shows many 

particles being misclassified to the allergenicity level of “none” from both the “mild” and 

“moderate” groups, which accounts for the majority of misclassifications (91%) for this 

set. In fact, more “mild” particles were incorrectly classified to the “none” category than 

were present as correct classifications, or misclassifications to “moderate,” leading to the 
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false-negative rate of 0.32 and total F value for “mild” of 0.49. It is worth noting that the 

number of particles for this class only reached 28, and thus a small number of 

misclassified particles will lead to high error. There was also no particle classified as 

“severe” allergens in this window. Contrary to this, window P4 does not see any clusters 

with such drastic effects and the total number of misclassified particles never leads to a 

FP or FN vector value below 0.94, indicating high accuracy across all classes.  

Overview of Reduced Sampling Windows 

These improvements in accuracy can be utilized to improve the data classification 

for these pollen particles collected over the course of the year. It is important to note that 

even marginal improvements in accuracy are good. Coupled with higher accuracy, 

reducing the number of classes analyzed simultaneously will subsequently lower the 

computational burden needed for analysis. Considering the goal of this technique is an 

inexpensive, portable, autonomous platform, it is important that complex processes are 

limited to keep costs low. For all data classes, grouping by allergenicity boasted the 

largest accuracy increase out of any data grouping on average. This is important, as the 

prospect of being able to report numbers or atmospheric concentrations of moderate to 

severely allergenic pollen to the public. Still, sampling window P4 in the plant type 

grouping showed the highest accuracy of any trial. 

5.4. Pollen Importance Models for Instrument Simplification 

How the RF algorithm treats the data can be indirectly viewed through the usage of 

variable importance as well as source reduction. The importance for the entire 34-species 

set can be seen in Appendic Figure C8, which shows the relative importance for six 
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blocks of data (two size; four spectral).  This shows that the 280 and 350 nm sources are 

of extreme importance in the models, accounting for 56% of the developed RF model. 

The two sizing parameters, major and minor diameter, account for 23% of the total 

importance. This is interesting since these two single data points are more influential than 

the combination of two whole spectral sources (405 and 450 nm; 19%). These importance 

difference indicate that the size parameters themselves may contain more differential 

information among pollen species than the two longer wavelength sources. This is 

consistent with previously published information on importance values of these RF 

models with commercial species (Swanson and Huffman 2019), though the 450 nm 

source appears to be nearly twice as important (4% to 7%), and the 405 nm source loses 

some importance (17% to 12%). These differences could be due to differences or 

similarities introduced by increasing the number of species analyzed from 8 to 34. 

To examine the effect individual sources may have in the overall classifications, a 

series of source reduction trials are shown in Figure 5.4. For this, 75% of the data was 

utilized as a training set, and 25% of the data was treated as unknowns to be predicted. 

Size parameters were left out of the trials, and sources were systematically removed. This 

is analogous to a previous study with commercial pollen and far less species (Swanson 

and Huffman 2019). By comparison, this showed much less accuracy in unknown 

predictions, which generally corresponds to the reduction in accuracy among testing sets 

as well. Generally, a larger combination of the four sources showed a higher prediction 

accuracy, with the combination of four sources having the highest F value (0.65). The 

three combinations of three sources had F values from 0.60-0.63, with the combination of 
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BCD (350, 405, and 450 nm) showing the lowest accuracy. The two-source combinations 

were more varied, with F values between 0.45 (CD) and 0.58 (AB). This makes sense, as 

the AB combination showed the highest importance in the previous section, while the CD 

combination had a combined importance less than the size itself.  Curiously, CD had less 

accuracy than A by itself, and had an F value of only 0.01 higher than B, showing that 

the combination of 405/450 nm sources may be giving information comparable to both 

single 280 and 350 nm sources. This is important considering this involves the 

development of an inexpensive, portable pollen detection platform. The potential removal 

of one or two of these sources can help make this platform viable. 

 

Figure 5.4. Source reduction trials with the entire pollen collection set. Sizing parameters 

were fully removed, and spectral excitation information was used. Each letter corresponds 

to an individual source (A – 280; B – 350; C – 405; D – 450). A combination of letters 

corresponds to multiple sources present in the trial. 

5.5 Selected Species Comparisons 

5.5.1 Commercial vs. Fresh; Species Comparisons 

Two species were tested as crossover species between fresh and commercially 

purchased types: Taraxacum officinale and Betula pendula.  This is shown for T. 
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officinale in Figure 5.5, which compares commercially purchased pollen from Bonapol 

(Czech Republic) and freshly collected pollen from the University of Denver campus 

(Denver, USA). Very clear qualitative differences are seen in these spectral averages. 

Counterintuitively, three of the four emission curves are higher for the commercially 

purchased pollen. Each of these three curves exhibit single large peaks, representing 

fluorophore modes I, V, and VI, while the 350 nm source produces an emission curve 

equally between fluorophore modes II and IV. All four excitations for the fresh sample 

show emission modes at 520 nm, corresponding to IV, V, and VI, as well as an additional 

mode that shows up from 280 nm excitation. All three fluorophore modes associated with 

450 nm emission (280, 350, 405 nm excitation) are present in the fresh sample as well. 

Oddly, the fresh and commercial samples both show roughly the same response of 

fluorophore mode II, despite drastically different responses otherwise. The difference in 

collection mechanisms between the two types may be responsible here, as the 

commercial pollen was reported to have been defatted to remove pollenkitt on the surface 

of the pollen. Since carotenoid and lipid structures are present in the exine and pollenkitt, 

the fresh samples having modes IV, V, and VI seems reasonable. Differences could also 

have been induced by long storage times (1-1.5 years for the commercial sets), as well as 

any possible degradation in fresh pollen after removal from the stamen. T. officinale is an 

entemophilous pollen type and is unlikely to be seen in atmospheric samples. 

Anemophilous pollen is also less likely to contain pollenkitt, or at the least contain far 

less pollenkitt on the surface (Hesse 1984). 
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Figure 5.5. Spectral average differences between commercially purchased 

(left; N=29) and freshly collected (right; N=17) Taraxacum officinale pollen 

particles. The excitation/emission axes are colorized and conserved, per 

excitation, across each of the two types.  

Figure 5.6 shows the differences in silver birch, B. pendulam, pollen commercially 

purchased from Allergon AB (Ängelholm, Sweden) and freshly collected from the Denver 

Botanic Gardens (Denver, USA). There are clear differences in the relative emission 

intensities of some of the B. pendula curves, but the fluorophore responses between each 

type seem conserved. It is important to note that this commercial set is reported by Allergon 

AB as not being defatted. Each of the two sets are dominated by fluorophore modes I, IV, 

V, and VI, in varying amounts. Other than relative intensity differences, however, there 

appears to be little difference between the fluorophore variation. In contrast to the previous 

set, B. pendula is an anemophilous species, and was explicitly reported as not defatted by 

the distributor. 
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Figure 5.6. Spectral average differences between commercially purchased 

(left; N=24) and freshly collected (right; N=29) Betula pendula pollen 

particles. The excitation/emission axes are colorized and conserved, per 

excitation, across each of the two types.  

The differences in these two sets exemplify that there are differences in both 

commercial and freshly collected sets. The degree to which these differences are affected 

by defatting, regional or local variation, or otherwise, is difficult to separate out. With 

these two samples, there is indication that, in some cases, defatting processes from 

commercial pollen development can affect the fluorescent properties to a larger degree 

than other differences due to region or soil quality.  

5.5.2 Pollen Viability in Storage 

Many previous pollen measurement studies were performed with commercially 

purchased pollen, and much this pollen was stored over a period in refrigerated 

conditions. Considering pollen morphology and viability can change very quickly 

(Schoper et al. 2010; Huang et al. 2004; Báez et al. 2002), even in refrigerated pollen 

samples, it is possible that other properties such as fluorescence may be affected as well. 



113 

 

Similarly, for the pollen inspected in chapter 4’s clustering trials, the pollen was stored 

refrigerated for 1.5+ years. One species was collected in large amounts during the botanic 

gardens collections due to the prolific amounts of pollen it produced: Pinus ponderosa. It 

was not possible to examine identical particles in each sample, though particles from the 

same sample were analyzed in three time periods. This is shown in Figure 5.7, where the 

first analysis took place day after collection, the second was five months after collection, 

and third was seven months after the collection date. Clear differences are seen in the 

emission characteristics of each, though the seventh month behaves particularly strange 

in this regard. It is worth noting that each excitation sees a large increase in month 5, and 

subsequently lowers again in month 7, though it is not currently known why this is the 

case aside from the low sample size. Despite the small sample size, this may indicate the 

importance of taking sample measurements as quickly as possible after collection to get a 

representative sample, though a more comprehensive analysis of this will need to be done 

to understand the full impact of storage time. 
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Figure 5.7. Spectral average differences for Pinus ponderosa over the 

course of seven months of refrigerated storage. The average for each set of 

monthly measurements are shown for each individual excitation on its own 

axis, with the maximum peak plotted for each emission type. 

5.5.3 Collections across the Growing Season 

Some plants also pollinate for a lengthy amount of time during the year. Very few 

species do this, so the options for this type of analysis were limited. Red-seeded 

dandelion pollen, T. erythrospermum, tends to have an extended pollination season, 

showing up from the early spring through the summer in Denver. Pollen for this species 

was collected in April, May, July, and September and subsequently analyzed on the 

sensor. These collections all took place on the south side of the University of Denver 

campus, and were analyzed within one to two days of collection and stored in refrigerated 

conditions. The max peak emission intensity for each set of collection averages are 

shown in figure 5.8 for each collection. Changes were noticed throughout the collection 
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season, though the relatively large distributions on the emission intensities indicate that 

these particles can vary quite extensively. In particular, the 280 nm emission in July and 

September are particularly large, as well as the 450 emission for April and September, 

and the 405 emission for September. Aside from the final emission peak from 280 nm 

excitation in September, the emission peaks along each month were consistent. 

 

Figure 5.8. Emission peak max intensity of Taraxacum erythrospermum for 

each individual excitation-emission pair over four separate collections on 

differing months.  

5.6 Ambient Data Predictions 

The developed RF can be used as a framework to predict the similarity of collected 

ambient particles. Ambient particles were collected from the Denver Botanic Gardens on 

the same day of collection as both B. pendula and P. tremuloides in early 2019. Ambient 

collections were taken as described previously, with a pump and impactor, onto optical 
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slides and analyzed by the sensor. A preliminary number of 9 particles were examined in 

this sample to show a proof-of-concept for prediction of new particles to the developed 

RF model. This is shown in Figure 5.9, which has three individual particle micrographs, 

along with their size and spectral information. Figure 5.9a shows one of the standards 

collected directly from a B. pendula tree, and shows the scattering image and measured 

parameters for this particle. Figure 5.9b represents a particle that was classified as a 

Carex pollen particle, which the standards for were collected on May 21st, 2018. Figure 

5.9c represents a pollen particle classified into the B. pendula cluster from collection 

earlier that day.  

 

Figure 5.9. Several particles collected on the same day shown as their calibration 

scattering image, the size and aspect ratio for this particle (with the averages for 

Betula pendula listed as lines), and the emission spectra for all four excitations. 

(Top row) A standard Betula pendula particle collected directly from a tree at the 

Botanic gardens. (Middle row) One ambient particle that was classified as a Carex 

particle, and (Bottom row) a second ambient particle that was classified as a 

Betula pendula particle.  

Comparisons of Figure 5.9a to 5.9c exemplify the similarities in these two types of 

particles, despite the bottom being collected from several hundred feet away from any B. 
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pendula trees. It isn’t possible to determine, without outside confirmation, that these 

particles are from the same species. Still, the ambient particle shown here has identical 

size to the B. pendula average, and the spectral characteristics exhibited this particle to 

the species average is very similar. As such, classification of “B. pendula-like particle” 

may be a more apt label. Similarly, the middle row was classified as a Carex-like particle, 

which could be pollinating during this specific time, and exhibits a similar size/shape and 

spectral characteristics to previously measured Carex particles. The other 7 particles 

chosen for analysis on this slide were all classified as B. pendula-like particles as well.  

5.7. Conclusion 

Many previous UV-LIF sampling campaigns that have examined bioaerosols, such as 

pollen, have utilized commercially purchased or lab-grown samples. This has helped get 

some idea of how different bioaerosols may look using the suite of UV-LIF 

instrumentation, though it is hard to compare these measurements to real-world samples. 

Some studies have looked at the differences in freshly-collected pollen (Hernandez et al. 

2016; O’Connor et al. 2011), though this has been a relatively recent effort with respect 

to UV-LIF instrumentation. In this chapter, we examined collections of fresh pollen made 

at the Denver Botanic Gardens and University of Denver campus over the course of the 

2018 and early 2019 growing seasons. Species-level comparisons were made with two 

types of pollen, and the fluorescence emission characteristics showed that commercial 

pollen may not make the best comparisons with ambient sampling of pollen. Many 

anemophilous pollen types were collected, including pollen from nine grasses. 

Interestingly, this freshly collected grass pollen did not show signs of chlorophyll a 
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fluorescence, which had previously been observed in several grass pollen samples from 

other studies (D. O’Connor et al. 2014a). Collections across multiple months were made 

for certain species to analyze fluorescence emission changes, as well as the effect that 

refrigeration storage has on the same parameters. 

In total, 34 species were collected and analyzed via the random forest classification 

techniques developed in chapter 4. These techniques were used to develop a classification 

model for the entire pollination season, as well as seasonal subsets to account for 

potential pollination overlap of multiple species. This set was classified at the species 

level, the plant type as listed by the USDA, as well as the level of allergenicity for these 

pollen types. These developed seasonal models were then used to predict ambiently 

collected pollen particles at the Denver Botanic Gardens, and subsequently predict eight 

individual pollen grains to a species that was known to be pollinating hundreds of feet 

away at the time. 

The data presented in this chapter gives the framework for predicting ambiently 

collected pollen to random forest models developed from pollen standards. Separatory 

power for this has been shown to be very strong, showing classification accuracy to be 

over 90% in some cases. Classification by certain groupings, such as USDA plant type, 

has been shown to increase this accuracy to as high as 98%. Classification of individual 

particles collected ambiently from hundreds of feet away has been shown to be possible. 

Still, larger numbers of pollen types, both number per species and differing species, 

will need to be collected and analyzed on this system. To do this, advancements in the 

sampling techniques are needed. A real-time or semi-real-time system with a rolling tape 
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and pump for sampling will need to be developed and implemented to sample large 

numbers of pollen particles for creating a catalogue to develop the random forest model 

with. Automated analysis techniques will also need to be developed for both image 

analysis and subsequent random forest classification and model prediction. This chapter, 

and those prior, describe the physical sensor and computational framework for the ability 

to classify and report pollen particle concentrations in the atmosphere.
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Chapter 6: Conclusions 

6.1 Summary of Conclusions 

This thesis presents the development of a newsingle-particle fluorescence 

spectrometer for bioaerosol analysis, applied here to pollen, as well as various statistical 

and computational techniques to classify the data coming out of the instrument. The 

instrument operates similar to a slitless spectrometer, with the addition of excitation 

sources, a transmission grating, and a CCD camera detector to obtain fluorescence 

spectra of super-micron particles in a relatively inexpensive way. Many particles can be 

excited and detected simultaneously, allowing for multiple spectra to be obtained in an 

individual sample. This ultimately will allow for both a quick diagnostic (fluorescence or 

not) for particles, as well as in-depth probing of fluorophore response to an excitation 

source. 

Development and characterization of the instrument happened iteritvely and 

simultaneously. Over the course of several years, new components were added (three 

excitation modes and an improved CCD camera) to improve detection and analysis 

capabilities. These improvements expanded the potential of applying fluorescence 

analysis from only carotenoid compounds and chloyphyll to add the ability to detect 

fluorophores from proteins and other phenolic structures as well. The new optical sources 

allow the instrument to probe similar information as a desktop fluorometer, though at a 
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drastically reduced cost. This includes a range of excitation from 280-450 nm, with a 

reliable emission detection range of 400-700 nm. A size measurement scheme to measure 

the raw shape of the particles at their fluorescent angle was also implemented. The ability 

to normalize fluorescence by optical defects and excitation power density was also 

developed to ensure fair comparison between particles. 

Clustering and classification techniques were tested with the data obtained through the 

instrument as well, resulting in the implementation of random forest classification. Four 

techniques in total (k-means; hierarchical agglomerative clustering; gradient boosting 

classification; random forest classification) were all tested against a data set of 

commercial pollen, with the latter two performing the best. Four-fold cross validation 

tests were performed using the two classification techniques, to nearly identical results. 

For computation efficiency, random forest was continued with further. Steps were taken 

to improve the data utilization, such as artificially weighting the size parameters, as well 

as to examine how important each source was in the overall developed training model. 

This was coupled with examining how reducing the number of sources changed the 

model accuracy, showing that the 280 and 350 nm sources were of particularly high 

important in the models, as well as the size. 

Collection of fresh pollen samples was performed over the course of a year at the 

Denver Botanic Gardens and on the University of Denver campus. This resulted in the 

collection of 34 species and analysis of 932 total pollen particles. Classification of these 

particles at the species level showed 90% accuracy, and subsequent classification at 

different levels (allergenicity, plant type, etc) as well as limiting by possible overlapping 
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of pollination times (i.e. plants that pollinate in a given month are unlikelyto also 

pollinate during the same month as plants that pollinate several months later) showed 

marginal increases (4-8%) in classification. Initial classifications of ambiently collected 

species were also tested, and able to classify as a type of particle that was known to be 

pollinating across the Botanic Gardens on the same day. 

6.2 State of Instrumental Application to Pollen Analysis 

This thesis has shown the development of both the single-particle fluorescence 

instrument as well as the techniques being used to analyze data from the instrument. As 

such, is an inexpensive (e.g. <$6000) pollen detection system that is able to classify 

pollen to the species level with high accuracy, and with a collection set of 34 species that 

accuracy was 90%. Classification by allergenicity and reducing the overlap of unlikely 

co-pollinating species increases the accuracy by a few percentage points. The random 

forest classifications were performed with a relatively low sample number per species 

(~25/species) all from a very similar location (Denver area, mostly the Botanic Gardens), 

and mostly from single plants or plants in the same area even within the Botanic Gardens. 

It is possible that different environments and growing conditions may affect spectral 

characteristics in a myriad of ways. However, one cross-species example between 

commercially grown in Europe and freshly collected in the United States, Silver Birch, 

was shown to have extremely similar fluorescence characteristics. This bodes well for 

potential intraspecies differences in fluorescence for pollen in different areas and 

environments. 
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Compared to traditional techniques, this instrument has the potential to eliminate the 

need for a technician, or palynologist for traditional methods, as the process from 

collection to analysis can be automated in some way. Most of the individual components, 

aside from collection itself, have been individually automated in some way. For example, 

image analysis has been taken from individual analysis and manual calibration to a fully 

automated process through the Igor programming language that outputs finalized spectra 

for several sets of images simultaneously. Similarly, the ability to operate the 

fluorescence collection has been partially automated. Assuming a collection system that 

allows for semi-continuous sampling, it may be possible to sample fluorescence 

properties of aerosol particles in 5-10-minute batches, drastically increasing resolution 

from traditional techniques which sample over the course of a week. Since all of the 

spectral statistics are done via algorithmic classification, not visual comparison, the 

process of classifying newly collected particles to groups can be done quickly and 

reliably during a subsequent sample collection. 

The instrument can accurately detect fluorescence from pollen and classify it to high 

(>90%) accuracy by allergenicity, plant-type, and even to the species level. While there 

are commercially available instruments to sample atmospheric pollen such as the KH-

3000-1, though the price (frequently >$100k) will prevent widespread usage. Though this 

instrument will never be able to detect particles at the same overall scale of particle 

numbers per instrument, not being a real-time method, the analysis of several particle 

simultaneously as well as the ability to deploy many more instruments per cost (~15X). 

Considering the high level of separation achieved with classification by allergenicity 
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(>92%), deploying many of these instruments around a single city may enable close to 

real-time reporting of allergenic pollen concentrations in the air.  

There are smaller, commercial platforms that allow for pollen detection, though they 

rely on visual microscopy techniques similar to traditional classification methods. The 

PollenSense instrument identifies pollen based on images/morphology, as does the 

instrument developed by Wu et al. that has not been commercialized yet (Wu et al. 2018). 

Instruments that differentiate pollen species based on morphology alone are not generally 

capable of detecting subtle differences in pollen groups that may have very similar 

morphology, such as some grass pollens (Mander et al. 2014). The instrument was used 

to differente between several pollen of a single species (especially those in the Pinus 

genus, a tree pollen, for example), though it remains to be seen if there are significant 

differences in other types (grass, forb, ect).  If the collection of fluorescence information 

can further improve classification beyond what is capable by visual microscopy, then this 

technique could be an important complementary tool to supplement existing detection 

techniques. 

6.3 Current Limitations and Future Steps 

In its current state, the instrument is a desktop-affixed instrument that needs a 

technician to operate. Many of the processes including the post-spectral collection 

analysis, calibration, and classification analysis have been individually automated, though 

these steps have not been bridged together completely. The spectral collection itself can 

be fully automated, though not in the present configuration. One of the most time-

consuming sections of the overall analysis is finding individual particles in sparse 
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samples, or finding particles that are representative of the sample, and properly getting it 

into the CCD viewable area. Currently, these images are positioned by the instrument 

operator. Since particle locations on the sample slide may be variable, resulting in areas 

of more, or less, pollen density, a method to steadily roll across the slide surface and 

systematically image it will need to be developed. The stage could be attached to a small 

motor that consistently moves slide over after a set of images are taken, allowing for 

some overlap (i.e. it moves the slide only far enough that 80% of the scene is now new, 

with 20% from the last set) to compensate for particles on the edge of the viewing area. 

Associated with finding particle locations is figuring out how fluorescent a particle, or 

particle type, is. Many similar sized pollen particles have shown extremely variable 

fluorescence signals that may require different exposure times to collect adequate spectra 

(i.e. spectra that isn’t too dark or saturated). Some progress has been made to alleviate 

this, with image recognition python code to automatically detect thresholds associated 

with particles in the image, though this is still a preliminary process. In the future, 

operating the instrument in two modes, low and high exposure, may allow for the 

detection of multiple types of particles in a single sample. Dual-exposure operation is 

likely key, since atmospheric samples will contain more diversity than pollen alone, and 

the ability to differentiate between background contaminants like dust, spores, or pollen 

will be extremely important. 

No collection mechanism exists on the platform currently. Since it is attached to a 

breadboard, the instrument could be transported outdoors, though the absence of a 

collection mechanism integrated into the system (i.e. without the need for human 
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interaction) makes this a pointless effort. All particles either need to be collected from the 

source plant, collected via deposition from atmospheric particles onto the slide (i.e. 

leaving it outside for a period of time) or by tapping a sample onto the slide, or collected 

with an impactor onto a slide to be put into the system later. Future collection may 

involve scrapping the optical slides in favor of a nonfluorescent rolling tape, similar to 

the resourse effective bioidentification system from Battelle (Doughty and Hill 2017), 

that allows for continuous, semi-real-time measurements. To do this, sampling time and 

flow rate will need to be optimized for the larger sized pollen particles. Collection also 

needs to currently be monitored carefully, as both deposition and impaction can result in 

samples that are either too sparse or too dense. Samples that are too dense (i.e. streaks 

overlap) cannot currently be used, as no method to separate them has been implemented. 

To combat this, multi-peak fitting or positive matrix factorization will need to be 

implemented to deconvolute spectral signals from overlapping particles. 

Though the RF classification showed high classification accuracy, and a preliminary 

attempt to classifying ambiently collected particles was successful, this technique 

requires a library of particles to be utilized to develop the RF model. Needing a library of 

standard particles presents a number of problems. The first problem is that a large library 

of pollen is needed for a model to be effective in classifying ambiently collected pollen. 

Pollen fluorescence emission can vary significantly between individual species, as well as 

within a single species, indicating that both the types of pollen and number of pollens per 

species needs to be increased in these models. Since the models discussed here only 

encompass 34 pollen species in total, any predictions of ambient particles can be reported 
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by similarity, not by actual identity. Without co-location of traditional pollen sampling 

techniques, there is no way to properly test the efficacy of these classification techniques. 

6.4 Overall Analysis of Pollen Detection 

The instrument and application presented here provide a path forward for pollen 

detection and classification for relatively inexpensive cost. Preliminary work shows that 

the collections of pollen analyzed can be accurately separated (>90%) using random 

forest classification. Narrowing these classifications to pollen by type or allergenicity can 

increase accuracy even further. High classification accuracy for the pollen types shown 

here have better accuracy than traditional methods (Mander et al. 2014), and the focus on 

pollen that may be found in the front range lend credence to the technique’s ability to 

classify pollen in an individual area. Collections and classification of ambient pollen was 

also assigned by the model as a species known to be pollinating on the same day at a 

distance away. If multiple instrument units are deployed simultaneously as a small-scale 

network, it may bridge the gap both spatially (in between current sites) and temporally 

(since current sites do not report directly) towards improved allergen forecasting. 

UV-LIF detection of pollen has been a useful tool to supplement traditional 

techniques, though there have been many challenges since most of the commercial 

instrumentation has been applied mainly to smaller biological aerosols (Savage and 

Huffman 2018; Hernandez et al. 2016; O’Connor et al. 2011; Hill et al. 1999), making it 

hard to analyze pollen effectively. Newer technologies like the Pollen-Sensed, and other 

image-recognition instrumentation (Wu et al. 2018), and our instrument that have focused 

on pollen detection and classification have begun to bridge the gaps that commercial UV-
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LIF rarely could. Considering these recent advancements, allergy monitoring, and 

prediction is poised to experience a boom where the data input can be reported in semi-

real time (on the order of hours), in contrast to the current approach. For this to happen, 

research groups and commercial entities will have to collaborate on the creation of 

databases for these types of instruments, as local and regional differences in pollinating 

species will be important for accurate reporting. 

This thesis discusses the instrumentation and its application to pollen alone. Both the 

instrument itself, as well as the subsequent techniques for classification, in principle can 

be applied to other bioaerosols or fluorescent particle types. For the instrument itself, 

both the sampling and collection techniques can be modified to focus on smaller particle 

types like fungal spores. Filtering out larger particles from the sampling process and 

increasing the magnification of the optics, or increasing the exposure time of the camera, 

will allow fungal spores, which typically range from 1-10 am, to be analyzed instead of 

the relatively larger pollen particles. The classification techniques described here can be 

applied to any instrumentation and have been applied to WIBS and SIBS data prior but 

are not described here. Pairing this instrument with real-time commercial instrumentation 

like the WIBS may give insight into nuances between these types of techniques outside of 

the obvious spectral- and time-resolution differences. 

Though the instrument presented here is able to acquire highly-resolved fluorescence 

spectral signals at a fairly low cost, there are several steps that need to take place prior to 

usage in pollen reporting. The first step is to integrate a collection mechanism that 

enables semi-continuous sampling of pollen. Once that is incorporated, it will be 
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important to connect the system to a Raspberry Pi, or other inexpensive computational 

platform, and work towards automation of the system so collection, detection, analysis, 

and classification can be performed autonomously. These goals are achievable from an 

engineering and computational standpoint and will require input of time and effort.  

The largest unknown is that of the detection and classification system for ambient 

particle collections, and development of models that are able to encompasse enough 

unknowns to be viable in reporting pollen forecasts. As a part of the work discussd here, 

34 species of pollen were collected directly from trees in the Denver Bonatic Gardens and 

are treated here as ‘plant standards’. There was discrimination while searching for 

particles on these slides, as to which to include, in order to limit interferences that may 

present a more realistic scenario. However, limiting these variables was done to provide a 

proof of concept that the technique could be useful at all. In the future, much larger 

models will need to be developed with many species of pollinating plants and will also 

need to include types of particles that may be interferences. Particles that are predicted by 

the RF models can be reported by their identity (i.e. “this particle is B. pendula”) or by 

their percentage similarity to each model’s cluster. This similarity percentage can be used 

to develop thresholding strategies for predictions. For example, particles that are reported 

as a certain species, but only seem loosely related based on their percentage of similarity, 

may help throw out predictions that are likely erroneous in some way. These types of 

strategies will be the crux of the overall technique’s application. 

If the technique presented here is able to detect and classify pollen to the species level, 

it will represent a drastic increase in the ability to report current pollen levels to the 
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public. If it is able to only detect allergenicity of the pollen collected, this advancement is 

still very important. Seasonal pollen allergies account for a significant percentage of daily 

health issues in the world and having a more accurate model of pollen allergens in the 

atmosphere, both spatially and temporally, will help the public more effectively prepare 

in their day to day life. The inexpensive nature of this technique may allow widespread 

coverage of pollen allergen reporting than previously possible.
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Figure A1: Schematic of instrumental design and operation. 
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Figure A2: Camera viewing area with approximately 50 visible particle signals, 

represented as dispersed swaths of ~400 to 700 nm fluorescent light (left to right for each 

swath)  
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Figure A3: Particle sizing Figure, associated with Figure 1 in the main text (where 

images in (a) and (c) were chopped for visual clarity). 



152 

 

 

Figure A4: Analysis of the Random Forest model accuracy as the number of trees are 

increased in the analysis. The triangle represents the average of 5 trials, and the bars 

represent the deviation.  
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Figure A5: Exponential loss plot for GB model. Black trace indicates the reduction of 

error as subsequent trees are developed. Green trace represents reduction in error after k 

folds of the cross-validation test sets. Blue dotted line indicates minima on green trace. 

 

The blue dotted line represents the last iteration in the model that does not over-fit data. 

As the model moves past this iteration (tree 98), the data becomes more likely to over-fit, 

preventing new observations from being accurately predicted. Past the 98th tree, the test 

loss curve (green) begins to diverge upwards, away from the training curve (black), 

visually representing overfitting. 
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Figure A6: Previous work on pollen excitation and emission variables, with the excitation 

waves from this instrument shown as horizontal colored lines. Adapted from Pöhlker et 

al., 2013. 

Citation: Pöhlker, C., Huffman, J.A., and Pöschl, U. (2013). Autofluorescence of 

atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmos. 

Meas. Tech., 6(12):3369–3392. 
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Figure A7: Particle size and spectral characteristics of the eight pollen species 

examined. Analogous to Figure 3 in main text, but with black vertical lines added to 

represent fluorophores emission modes as defined in Section 3.1. 
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Figure A8: Model importance values (black), before spectra are reduced, plotted against 

the reference spectra (color) shown in Figure 5. Areas with appreciably high importance 

corresponding to noise are boxed in red. Emission data was reduced roughly outside the 

red boxed areas to where the importance curve trends high and the spectral curves lower.  
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Figure A9: Importance changes after spectral reduction and size weighting in the gradient 

boosting system. 
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Figure A10: Accuracy of the RF algorithm following fifteen combinations of input 

variables. Excitation sources represented here as (A) 280 nm, (B) 350 nm, (C), 405 nm, 

and (D) 450 nm. All trials consist of a subset of 25% of the particle spectral data 

predicted to training models from 75% of the data. The final column represents no 

emission data, but only sizing (S) variables. 
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Appendix B: Chapter 5 Supplement 

Supplementary information for Benjamin E. Swanson, Samir Rezgui, and J. Alex 

Huffman. “Pollen Classification Using a Newly Developed Fluorescence Spectrometer.” 

For submission to Aerobiologia (in Prep). 
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Benjamin E. Swanson and J. Alex Huffman 

University of Denver, Department of Chemistry and Biochemistry, Denver CO 80210, 

USA 

Correspondence to: J. Alex Huffman (alex.huffman@du.edu) and Benjamin E. Swanson 

(Benjamin.swanson@du.edu)
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Table B1. Confusion matrix results from RF classification of the sampling 

window P3 by Species. 
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Table B2. Confusion matrix results from RF classification of the sampling 

window P4 by Species. 
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Table B3. Confusion matrix results from RF classification of the sampling 

window P1 by Plant Type. 
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Table B4. Confusion matrix results from RF classification of the sampling 

window P4 by Plant Type. 
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Table B5. Confusion matrix results from RF classification of the sampling 

window P1 by Allergenicity level 



165 

 

 

Table B6. Confusion matrix results from RF classification of the sampling 

window P4 by Allergenicity level 
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Appendix Figure B1: Technical diagram of the instrument, reproduced from 

Swanson and Huffman, 2019. 
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Appendix Figure B2: Comparison of pollen excitation emission modes for a typical EEM 

and the information available from the instrument used in this manuscript (Adapted from 

Pohlker et al., 2013) 
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Appendix Figure B3:  Species 1-8 from 2018 in the 34-species data set, with details 

identical to Figure 1. 
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Appendix Figure B4:  Species 9-16 from 2018 in the 34-species data set, with details 

identical to Figure 1. 
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Appendix Figure B5:  Species 17-24 from 2018 in the 34-species data set, with details 

identical to Figure 1. 
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Appendix Figure B6:  Species 25-32 from 2018 in the 34-species data set, with details 

identical to Figure 1. 
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Appendix Figure B7:  Species 31 and 32 from 2019 in the 34-species data set, with 

details identical to Figure 1. 
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Appendix Figure B8. The importance values for the sizing parameters (major and minor 

axis) as well as the integrated importance for the spectral emission intensity. Aspect ratio 

accounted for 2% of the total model but was left out for visual clarity similar to the 

Figure from Swanson and Huffman, 2019. 
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Appendix C: Towards a Compact and Automated System 

C.1 Introduction 

The ultimate goal of this thesis work is to lead toward the development of a smaller, 

inexpensive, automated pollen classification platform. The original inception and concept 

for this instrument was developed for usage of a common smartphone by Dr. Donald 

Huffman. Smartphone technology has become absolutely ubiquitous throughout the 

modern world. Much of this development has involved the implementation of extremely 

powerful camera sensors build into these smartphones. The original prototype is shown in 

Figure C.1a, showing the size dimensions (13.3 x 13.3 x 7.4 cm; 58 g) of the platform in 

reference to an iPhone 5S. Inside the box is a miniaturized version of the spectrometer 

described in chapter 2. A 420 nm long-pass filter present immediately under the 

smartphone, with a 400 nm blazed grating immediately below that. The last section of the 

optical components is a 10x objective lens just above the optical slide. A 650 nm red 

laser diode, 405 nm blue laser diode, and a small white light are present inside the box, as 

well as two AA batteries for the power source. Images are taken using the smartphone’s 

camera application, and an example of an image from Poa pratensis particles can be seen 

in Figure C1b. The spectral signals from these images are seen in Figure C.1c. 

Considering a large number of people have smartphones with potentially powerful 

cameras, there is a twofold advantage here: 1) the sensor may not need inclusion in the 

package and 2) citizen science applications are expanded. 
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Figure C.1. The smartphone inception and initial analysis. (a) the smartphone 

spectrometer box developed by Dr. Donald Huffman with an iPhone 5S, (b) 

images produced by the spectrometer box and the iPhone 5S camera and (c) 

the spectra produced for three commercial Poa prantensis pollen particles 

(Reproduced from Huffman, Swanson, Huffman, 2016) 

C.2 A New Sensor Using Raspberry Pi 

 There are obvious advantages to utilizing existing market frameworks, i.e. 

smartphone prevalence, in the development of instrumentation. That being said, much 

advancement in inexpensive computational platforms has been made in recent years. 

Raspberry Pi and Arduino are two examples of this, being extremely small computational 

platforms that have a modular interface. Development of this type of single-particle 

fluorescence spectrometer with a Raspberry Pi results in a loss of the citizen-science 
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aspect of the instrumentation, but development on the collection and analysis side of the 

platform opens up widely. 

Here, a new platform is described that is not as small or inexpensive as the 

miniaturized smartphone version above but allows for a much more versatile range of 

data collection in a way that doesn’t involve massive human input. Similar to the larger 

desktop version described in the main text, this instrument utilizes four excitation sources 

(280 nm LED; 405 nm Laser Diode; 450 nm Laser Diode; 532 nm Laser Diode). A 

similar grating and system of long-pass filters are also utilized to produce similar images, 

as well as a 10x magnification objective lens. The sensor here is a 5-megapixel arducam, 

with has a PiNoIR camera (colora camera; no infrared filter) and is operated directly off 

of a Raspberry Pi 2 system.  

The overall system here was built in approximately the volume of one cubic foot and 

operates extremely similarly to the desktop version (no sample collection, analysis of 

images performed later). This can be seen in Figure C.2 showing the current setup of the 

instrumentation. Conceptually, there is no difference between this miniaturized version 

and the larger desktop research instrument in what it produces. Particles are collected on 

a slide prior to analysis, and then manually introduced into the system. 
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Figure C.2. Image of the current iteration of the miniaturized/automated 

spectrometer utilizing the Raspberry Pi framework. All laser sources are 

pictured on the left edge, and the 280 nm LED is pictured close to the objective 

lens. The Arducam can be see non the top, followed by a transmission grating, 

an automated filter wheel, and then some blank distance to the 10x 

magnification objective lens. 
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Appendix D: Computational Code 

E.1 Open-Source R Software 

The text in this appendix section represent code written within R Software, an open 

source statistical language platform for the R computing language. The code listed here 

can be pasted into R Studio and perform the clustering and classification described in the 

main thesis chapters. 

Clustering code is printed on the following pages: 

Notes regarding R Studio: 

- Individual packages must be installed via install.package(“[package name]”) 

prior to use. 

- Individual packages must be called on via library([package name]) when the 

workspaces are opened. 

- Hashtags (##) denote sections of code commented out. 

 

D.1.1 Comment Relavent packages for the following code ensemble 

library(readr) 

library(dplyr) 
library(tidyr) 

library(randomForest) 
library(cluster) 

library(factoextra) 

library(party) 
library(caret) 

 

D.1.2 Description of code: The code provided here is for uploading and 

prepping/scaling data, when applicable. 

## Loading CSV data for analysis ## 
ExampleSet <- read_csv(  

  "FileLocation/YourFileName.csv" 

) 
ExampleSet<-ExampleSet[!(is.na(ExampleSet$type)), ] ## Getting rid of Na data from original set 

summary(ExampleSet) ## Summary of data 

 
## Preparing the data for a temp file, ensuring all non-variables are listed as factors.  

Temp<-0                               ## Clearing previous temp data file 

Temp<-select(ExampleSet, -PartNum, -Season, -type, -allergenicity)   
Temp<-as.data.frame(Temp)   ## data needs to be in DATA FRAME, not MATRIX! 

Temp$type = as.character(Temp$Variety) 

Temp$type = factor(Temp$Variety) 
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## Scaling data (when needed) for all but size 

scaled<-0 

scaled<-scale(select(Temp,-1,-2,-3,-4)) ## To scale size, use -1 only ## 

scaled<-as.data.frame(scaled) 

Temp[,5:1068]<-scaled ## re-apply  scaled data to Temp file 

D.1.3 Description of code: The code provided here is for both the supervised and 

unsupervised k-means clustering methods. 

## Set a pre-defined seed to perform clustering identically each time 

set.seed(1256236) 
 

## Use this section for supervised k-means; pre-calculated cluster centers 

MeanLoc<-0 
MeanLoc<-Temp%>%group_by(Variety)%>%summarise_all(mean) 

MeanLoc<-data.frame(MeanLoc) 

 

ClusterData<-0 

ClusterData<-select(Temp, -Variety) 

 

## Supervised 

clust<-kmeans(ClusterData, select(MeanLoc, -Variety))   ##Perform Kmeans on (Data, select(Supervised Clusters, -Text factors)) 

clust$cluster          ## Show each particle's corresponding cluster. 

clust$size             ## Show size of each cluster 

clust$centers          ## Show center of each cluster 

 

## Unsupervised 

clust<-kmeans(ClusterData, centers=8, iter.max = 10)   ##Perform Kmeans on (Data, select(Supervised Clusters, -Text factors)) 

clust$cluster          ## Show each particle's corresponding cluster. 

clust$size             ## Show size of each cluster 

clust$centers          ## Show center of each cluster 

 

## Check the optimal cluster number  

ClusterTemp<-select(Temp, -Variety) 

fviz_nbclust(ClusterTemp, cluster::pam, method = "silhouette") 

 

## Make a confusion matrix of the data 

ClusterTable<- table(clust$cluster, Temp$Variety)                           ##### Confusion Matrix 

print(ClusterTable) 

 

## White CSV files for cluster center reports and the confusion matrix 

write.csv(clust$cluster, 'ClusterCenters.csv') 

write.csv(ClusterTable, 'ClusterTable.csv') 

 

## Plot cluster centers 

clusplot(Temp, clust$cluster, main='2D representation of the Cluster solution', 

         color=TRUE, shade=TRUE, 

         labels=2, lines=0) 

## Print cluster data 

print(ClusterData[,1205]) 

D.1.4 Description of code: The code provided here is for the unsupervised HAC 

clustering utilizing Ward’s linkage. 

library(fpc) ## load fast cluster package 

 

set.seed(123456) 

 

## Run HAC clustering with ward.D2 linkage. 

dat.clust<-hclust(dist(Temp[,2:1068]), method = 'ward.D2') 

plot(dat.clust)  ## plot dendrogram for clustering 
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plot(dat.clust, cex = 0.6, hang = -1) 

 

ClusterCut<-cutree(dat.clust, 8)  ## Cut at the desired number of clusters 

 

ClusterTable<-table(ClusterCut, Temp$Variety) ## make confusion matrix for comparison 

 

print(ClusterTable) 

print(ClusterCut) 

 

write.csv(ClusterTable, "ClusterTable.csv") 

 

ClusterCut<-as.data.frame(ClusterCut) 

print(dat.clust$order) 

 

##Dendogram 

require(graphics) 

plot(dat.clust) 

 

D.1.5 Description of code: The code provided here is for supervised gradient 

boostingclassification. 

library(gbm) 

library(caret) 
library(doParallel) 

 

## for segmenting commercial pollen train:test sets ## 

train <- Temp[1:134,] #### 66/33 

test <- Temp[135:204,] 

 

train <- Temp[1:153,] #### 75/25 

test <- Temp[154:204,] 

 

## Gradient boosting by species ##  

mod_gb <- gbm(Variety~., 

              data = train, 

              distribution = "multinomial", 

              interaction.depth = 1, 

              cv.folds = 0, 

              shrinkage = .001, 

              n.minobsinnode = 10, 

              n.trees = 500) 

 

## make the ideal tree iteration a variable 

best.gbm.predict<-gbm.perf(mod_gb, method = "cv") 

 

## show statistics on the models 

print(mod_gb) 

t <- pretty.gbm.tree(mod_gb, i=25) 

 

## Show the exponential loss curve  

print(mod_gb$train.error) 

sqrt(min(mod_gb$cv.error)) 

gbm.perf(mod_gb, method = "cv") 

rowMax<-apply(Predictions, 1, max) 

rowMax<-as.data.frame(rowMax) 

 

## predict new data to the gradient boosting model based on the ideal iteration 

Predictions <- predict.gbm(object = mod_gb, 

                           newdata = test, 

                           n.trees = best.gbm.predict, 
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                           type = "response") 

 

## Prep data for confusion matrix 

result <- cbind(train[,1], Predictions) 

p.Predictions <- apply(Predictions, 1, which.max) 

p.Predictions<-as.data.frame(p.Predictions) 

result <- cbind(train[,1], p.Predictions) 

write.csv(result, "GradientBoostResult.csv") 

 

## Confusion matrix and print 

ClusterTable<-table(result) 

print(ClusterTable) 

 

## Develop and save CSV version of variable importance file 

print(mod_gb) 

sqrt(min(mod_gb$cv.error)) 

gbm.perf(mod_gb, method = "cv") 

summary(mod_gb) 

VariableImp<-summary(mod_gb) 

write.csv(VariableImp, "ImportanceFile.csv") 

D.1.6 Description of code: The code provided here is for supervised random forest 

classification. 

## For raw data 

train <- Temp 

test <- Temp 

 

## for 75/25 train test 

train <- Temp[1:153,] 

test <- Temp[154:204,] 

 

## Clear any previous model 

output.cforest<-0 

 

 

## Develop new random forest model based on training data 

## 1000 tree forest with 5 variables examined at any one time 

output.cforest<-cforest(Variety ~ ., 

                        data = train, 

                        controls=cforest_unbiased(ntree=1000,mtry=5)) 

 

## Find variable importance within model 

variables<-varimp(output.cforest) 

print(variables) 

write.csv(variables, "ImportanceFile.csv") 

 

####### Shows the Error for Training Set ####### 

predictions<-predict(output.cforest, newdata = train, type = "response", OOB = TRUE) 

predictions<-as.data.frame(predictions) 

varieties<-train$Variety  #### edit this for diff types! (“train$’type’”) 

varieties<-as.data.frame(varieties) 

ClusterTable<-cbind(varieties,predictions) 

ClusterTable<-as.data.frame(ClusterTable) 

write.csv(ClusterTable, "TrainingSet.csv") 

print(ClusterTable) 

ClusterTable<-table(ClusterTable) 

 

## Create confusion matrix for training set 

result <- cbind(train[,1], predictions) 
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print(result) 

p.train<-(train) 

p.Predictions <- apply(predictions, 1, which.max) 

p.Predictions<-as.data.frame(p.Predictions) 

result <- cbind(train[,1], p.Predictions) 

ClusterTable<-table(result) 

write.csv(Result, "ClusterResults.csv") 

print(ClusterTable) 

write.csv(ClusterTable, "ConfusionMatrix.csv") 

 

####### Predict a test, or new data set, to the model ####### 

predictions<-0 

predictions<-predict(output.cforest, newdata = test, type = "response", OOB = TRUE) 

predictions<-as.data.frame(predictions) 

varieties<-test$Variety 

varieties<-as.data.frame(varieties) 

ClusterTable<-cbind(varieties,predictions) 

ClusterTable<-as.data.frame(ClusterTable) 

write.csv(ClusterTable, "TestSet.csv") 

print(ClusterTable) 



183 

 

D.2 Igor Pro Software Tools 

 

D.2.1 Description of Functions: Code intended to make waves compliant for the 

baseline subtraction code. 

 

 
Function SmoothWaves() 

 Variable n 
 String NameStrY, NewSizeWave, NameStrX, NewSizeWaveX 

 Wave BluePts 

 
 For (n=1;n<=DimSize(BluePts,0);n+=1) 

  NameStrY = "p" + num2str(n) + "y450_final"  // Create a string out of p[n]yCalib, n being 
the particle number 

  Duplicate/O $NameStrY, $NameStrY+"_smth" ;DelayUpdate 

  Smooth 100, $NameStrY+"_smth" 

   

  NameStrY = "p" + num2str(n) + "y405_final" 

  Duplicate/O $NameStrY, $NameStrY+"_smth" ;DelayUpdate 
  Smooth 500, $NameStrY+"_smth" 

   

  NameStrY = "p" + num2str(n) + "y350_final" 
  Duplicate/O $NameStrY, $NameStrY+"_smth" ;DelayUpdate 

  Smooth 500, $NameStrY+"_smth" 

  
  NameStrY = "p" + num2str(n) + "y280_final"  

  Duplicate/O $NameStrY, $NameStrY+"_smth" ;DelayUpdate 

  Smooth 100, $NameStrY+"_smth" 
 EndFor 

End 

 
Function DisplaySmth() 

 Variable n 

 String NameStrY, NewSizeWave, NameStrX, NewSizeWaveX 

 Wave BluePts 

  

Display 
  

For (n=1;n<=DimSize(BluePts,0);n+=1)  

  NameStrY = "p" + num2str(n) + "y280_final_smth" 
  AppendToGraph $NameStrY 

 EndFor 

  
 Display 

 

 For (n=1;n<=DimSize(BluePts,0);n+=1)  
  NameStrY = "p" + num2str(n) + "y350_final_smth" 

  AppendToGraph $NameStrY 

 EndFor 
  

 Display 

 
 For (n=1;n<=DimSize(BluePts,0);n+=1)  

  NameStrY = "p" + num2str(n) + "y405_final_smth" 

  AppendToGraph $NameStrY 
 EndFor 

  

 Display 
 

 For (n=1;n<=DimSize(BluePts,0);n+=1)  

  NameStrY = "p" + num2str(n) + "y450_final_smth" 
  AppendToGraph $NameStrY 
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 EndFor 

End 

 

 
 

Function PasteFinal() 

 Variable n 
 String NameStrY 

 Wave Bluepts 

  
 Edit 

 

 For (n=1; n<=DimSize(BluePts,0);n+=1) 
  NameStrY = "p" + num2str(n) + "y280_final_smth_sub" 

  AppendToTable $NameStrY 

 Endfor 
 edit 

 For (n=1; n<=DimSize(BluePts,0);n+=1) 

  NameStrY = "p" + num2str(n) + "y350_final_smth_sub" 

  AppendToTable $NameStrY 

 Endfor 

 edit 
 For (n=1; n<=DimSize(BluePts,0);n+=1) 

  NameStrY = "p" + num2str(n) + "y405_final_smth_sub" 

  AppendToTable $NameStrY 
 Endfor 

 edit 
 For (n=1; n<=DimSize(BluePts,0);n+=1) 

  NameStrY = "p" + num2str(n) + "y450_final_smth_sub" 

  AppendToTable $NameStrY 
 Endfor 

 

End 

 

D.2.3 Description of Functions: Code to import .tiff files for each individual 

emission wave and calibration waves, to fully calibrate all emission spectra based off 

those calibration images, and to fully measure the size of the particles and calibrate 

size and source power density. 

 
//****************************************************************************** 

// FULL FUNCTION TO CALIBRATION 

//****************************************************************************** 

 

 

Function CropAnalysis(pathName, nameWaveAfterFileName, displayImages) // ("", 1, 0) 

 // IMPORT TIFFS FROM SUBFOLDER 

  String pathName 

 Variable nameWaveAfterFileName, displayImages 

  

 if (strlen(pathName) == 0 )         

     // see if there's a given path/folder.  Quotations ("") returns  

  NewPath/O/M="Choose a folder containing TIFFs" LoadInexedTIFFPath   // Prompt 

diag box asking for folder input 

  If (V_Flag != 0)  

   Return -1 

  EndIf 

  pathName = "LoadInexedTIFFPath"       

    // Make PathName the folder selected 

 EndIf 

  

 Variable Count 
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 Count = 1 

  

 String fileName, list, fileLoc 

 Variable index 

 Wave FileSort 

  

 Make/O/N=1000 Exposure280   // Make a wave for exposure time for 280 

 Make/O/N=1000 Exposure350   // 350 

 Make/O/N=1000 Exposure405    // 405 

 Make/O/N=1000 Exposure450   // 450 

  

 Exposure280 = NaN     // Make them all NaN 

 Exposure350 = NaN 

 Exposure405 = NaN 

 Exposure450 = NaN 

  

 index = -1 

  

 fileLoc = IndexedFile($pathName, -1, ".tif") 

 fileLoc = SortList(FileLoc, ";", 16) 

 wave FileSort = $fileLoc 

  

 Variable n 

 n = 0 

  

 do 

  fileName = StringFromList(n, FileLoc, ";")  // find ".tif" files in the specified folder 

  if (strlen(fileName) == 0)       // If a ".tif" 

image exists, keep going, if not, break the loop 

   break         

 // break the loop 

  endif 

   

  ImageLoad/P=$pathName/T=TIFF/N=image fileName // Load the image into igor, specifically Tiffs 

   

  if (V_Flag > 0) 

   string name = StringFromList(0, S_waveNames) //  

   wave w = $name 

    

   if (nameWaveAfterFileName) 

    string desiredName = S_fileName     

   // desiredName is equal to the full image name + ".tif" 

    String FileNameStr = S_fileName     

   // FileNameSt = file name + ".tif" 

    desiredName = ParseFilepath(3, S_filename, ":", 0, 0)   

 // Parse the file's name and put it into S_Filename 

       

      String NoTiff     

    

      NoTiff = RemoveEnding(S_Filename, ".tif")   

 // Remove the ".tif" ending on each loaded image    

           

      String expr= "%s %e"     

    // Make expr a string EXPRESSION equal to "%s %e" // %s stores all text to the next 

white space, %e catches the number exp behind it 

      String LaserExSt 

      Variable ExpTime 

       

      sscanf NoTiff, Expr, LaserExSt, ExpTime   

 // Separate the string NoTiff by Expr (%s %e) and split it into LaserExSt string and ExpTime string 
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      String ExcValue280 = num2str(count+1) + "y280" 

 // Make strings for each wave type per particle 

      String Excvalue350 = num2str(count+1) + "y350" 

      String Excvalue405 = num2str(count+1) + "y405" 

      String Excvalue450 = num2str(count+1) + "y450" 

      String ExcValueCalib = num2Str(count+1) + "yCalib"  

     

       

      If (Stringmatch(LaserExSt, ExcValue280))   

 // Add the exposure time number to each exposure time wave. 

       Exposure280[Count] = ExpTime 

      ElseIf (Stringmatch(LaserExSt, ExcValue350)) 

       Exposure350[Count] = ExpTime 

      ElseIf (Stringmatch(LaserExSt, ExcValue405)) 

       Exposure405[Count] = ExpTime 

      Elseif (Stringmatch(LaserExSt, ExcValue450)) 

       Exposure450[Count] = ExpTime  

       Count +=1 

      ElseIf (StringMatch(LaserExSt, ExcValueCalib)) 

      EndIf   

       

      //String expr="([[:alnum:]]+) ([[:digit:]]+)" 

      //String LaserExSt, ExpTime, GainValue, Tiff 

      //SplitString/E=expr NoTiff, LaserExSt, ExpTime  

    

      if (Exists(LaserExSt) != 0)    

    // If the desired name exists, this wave gets an identical name with n1, n2, n... starting 

from 0 

       LaserExSt = UniqueName(LaserExSt, 1, 0) 

      EndIf 

       

      Rename w, $LaserExSt 

            

     

    EndIf 

    

   if (displayImages) 

    NewImage w 

   endif 

  endif 

  n += 1  

   

 while (1) 

   

  Variable NaNdel 

  NaNdel = 1 

 

  For (NaNdel = 1 ; NaNdel <= numpnts(Exposure280) ; NaNdel+= 1)    // Go from 

1 to the length of exposure280 

  If (numtype(Exposure280[NaNdel-1]) == 2)       

 // Check for NaNs 

   Deletepoints NaNdel-1,1,Exposure280      

  // Delete NaNs 

    NaNdel-=1 

  Endif 

 Endfor 

  

 NaNdel = 1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(Exposure350) ; NaNdel+= 1) 

  If (numtype(Exposure350[NaNdel-1]) == 2) 
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   Deletepoints NaNdel-1,1,Exposure350 

    NaNdel-=1 

  Endif 

 Endfor 

  

 NaNdel = 1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(Exposure405) ; NaNdel+= 1) 

  If (numtype(Exposure405[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,Exposure405 

    NaNdel-=1 

  Endif 

 Endfor 

  

 NaNdel = 1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(Exposure450) ; NaNdel+= 1) 

  If (numtype(Exposure450[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,Exposure450 

    NaNdel-=1 

  Endif 

 Endfor 

  

  // Calibrating Factors fix 

  Exposure280 *=1000    // Change seconds to milliseconds 

  Exposure350 *=1000 

  Exposure405 *=1000 

  Exposure450 *=1000 

   

  Make/O/N=4 PowerDensity 

  PowerDensity[0] = 0.004  // PD factor correction for 280 

  PowerDensity[1] = 0.5   // PD factor correction for 350 

  PowerDensity[2] = 4.5   // PD factor correction for 405 

  PowerDensity[3] = 0.3   // PD factor correction for 450 

   

  Variable rn, t, r, y, j, b, o, h 

 String wCalib, Calib, w450, w405, w350, w280, yCalib, y450, y405, y350, y280, pXRef, CurrentRef 

 

 b = 0 

 j = 1 

 o = 1  

 n = 1 

  

 For (o=1; o <= (count+1) ; o +=1) // Analyze profile and rename all spectral swath crops to waves with 

p(n)yXXX and p(n)xXXX individual waves 

  

  yCalib = Num2Str(o)+"yCalib" 

  y450 = Num2Str(o)+"y450" 

  y405 = Num2Str(o)+"y405" 

  y350 = Num2Str(o)+"y350" 

  y280 = Num2Str(o)+"y280" 

  

  J = WaveExists($yCalib) 

   

  If (j == 1) 

  

  Wave iCalib = $yCalib 

  Wave i450 = $y450 

  Wave i405 = $y405 

  Wave i350 = $y350 

  Wave i280 = $y280 
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   If  (j == 1) 

     h= DimSize(iCalib,0)    

      

     Make/O /N=(h) XRef      

 // Make XRef wave equal to r (XRef is X dimension for spectra) 

     t = 1 

   Endif 

 

       Variable Refn 

        

       For (Refn=1;(Refn-1)<DimSize($yCalib, 0);Refn+=1) 

  // Start at 1 and make the xRef value in pixels 

        XRef[Refn-1]=t   

      

         t+=1 

       Endfor 

     

     CurrentRef = "p"+Num2Str(o)+"xRef" 

     Make/O /N=(h) $CurrentRef = xRef 

   

     wCalib = "p"+Num2Str(o)+"yCalib" 

     w450 = "p"+Num2Str(o)+"y450" 

     w405 = "p"+Num2Str(o)+"y405" 

     w350 = "p"+Num2Str(o)+"y350" 

     w280 = "p"+Num2Str(o)+"y280" 

   

     MatrixOP/O AveragesWave = sumRows(iCalib)/numCols(iCalib) 

     Make/O/N=(DimSize($CurrentRef,0)) $wCalib = AveragesWave 

      

     MatrixOP/O AveragesWave = sumRows(i450)/numCols(i450) 

     Make/O/N=(DimSize($CurrentRef,0)) $w450 = AveragesWave 

 

     MatrixOP/O AveragesWave = sumRows(i405)/numCols(i405) 

     Make/O/N=(DimSize($CurrentRef,0)) $w405 = AveragesWave 

  

     MatrixOP/O AveragesWave = sumRows(i350)/numCols(i350) 

     Make/O/N=(DimSize($CurrentRef,0)) $w350 = AveragesWave 

 

     MatrixOP/O AveragesWave = sumRows(i280)/numCols(i280) 

     Make/O/N=(DimSize($CurrentRef,0)) $w280 = AveragesWave 

    

     b += 1    

   EndIf 

 EndFor 

 

 Make/o/n=1000 SizeWave 

 SizeWave = NaN 

 

 Wave Fit_CurveFitting 

 String SizeMeas405 

 Variable l 

 n = 1 

 j = 1 

  

 Variable Check 

 Check = 1 

  

 Variable CountingUp, DelPts 

      Wave MajMom, MinMom, AngMom, AspectRatio, YSize, Degrees, XSize 
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 CountingUp = 1 

       Make/O/N=50 MajMom, MinMom, AngMom, AspectRatio, YSize, Degrees, XSize, BlueCalib, RedCalib 

             

       Degrees = NaN 

       MajMom = NaN 

       MinMom = NaN 

       AngMom = NaN 

       AspectRatio = NaN 

 YSize = NaN 

 XSIze = NaN 

 BlueCalib = NaN 

 RedCalib = NaN 

        

      do 

             String Measured, BinMeas 

          Measured = num2str(CountingUp) + "yCalib" 

 

           Wave w0=$Measured 

             if(WaveExists(w0)==0) 

                 break 

             endif 

                    

 ////////////////////////////////////////////////////////////// 

        ImageThreshold/Q/T=25/I w0      // EDIT THIS TO CHANGE 

THRESHOLD // 

        Wave M_ImageThresh                                             ///////////////////////////////////////////////////////////// 

        Duplicate/O M_ImageThresh, RedPointWave 

         

        print "THIS RIGHT HERE" + num2str(CountingUp) 

          

        ImageThreshold/Q/T=25/I w0 

        Duplicate/O M_ImageThresh, BluePointWave 

          

        Redimension/N=(-1,-1) RedPointWave 

        Redimension/N=(-1,-1) BluePointWave 

            

        

        Duplicate/O/R=(400,600)(0,104) RedPointWave, ParticleMeasure // (X)(Y) points 

        Duplicate/O/R=(400,600)(0,104) RedPointWave, RedMeasure 

        Duplicate/O/R=(0,200)(0,104) BluePointWave, BlueMeasure 

         

        ImageAnalyzeParticles /E/W/Q/M=3/A=100 stats, BlueMeasure 

         Wave M_Moments 

         BlueCalib[CountingUp-1] = M_Moments[0] 

        ImageAnalyzeParticles /E/W/Q/M=3/A=100 stats, RedMeasure 

         RedCalib[CountingUp-1] = M_Moments[0]+400 

        ImageAnalyzeParticles /E/W/Q/M=3/A=100 stats, ParticleMeasure 

         

            MajMom[CountingUp-1] = M_Moments[2]*2 

            MinMom[CountingUp-1] = M_Moments[3]*2 

           

            If (M_Moments[4]>pi) 

              M_Moments[4] = M_Moments[4]/pi 

              AngMom[CountingUp-1] = M_Moments[4] 

         

             Else 

              AngMom[CountingUp-1] = M_Moments[4] 

   

            EndIf 
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           AspectRatio[CountingUp-1] = MajMom[CountingUp-1]/MinMom[CountingUp-1] 

          

          Print CountingUp 

      

          Wave W_YMax, W_YMin, W_XMax, W_XMin 

          YSize[CountingUp-1] = W_YMax[0]-W_YMin[0] 

          XSize[CountingUp-1] = W_XMax[0]-W_XMin[0] 

         

  Degrees[CountingUp-1] = AngMom[CountingUp-1]*(180/pi) 

  

        CountingUp +=1 

 while(1) 

    

   DelPts = 1 

     

    For (DelPts = 1 ; DelPts <= numpnts(MajMom) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(MajMom[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,MajMom      

  // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

    

   For (DelPts = 1 ; DelPts <= numpnts(BlueCalib) ; DelPts+= 1)    // Go from 1 to the length of 

exposure280 

  If (numtype(BlueCalib[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,BlueCalib      

  // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

    

   For (DelPts = 1 ; DelPts <= numpnts(RedCalib) ; DelPts+= 1)    // Go from 1 to the length of 

exposure280 

  If (numtype(RedCalib[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,RedCalib      

  // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

    

    For (DelPts = 1 ; DelPts <= numpnts(MinMom) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(MinMom[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,MinMom      

  // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

  

 For (DelPts = 1 ; DelPts <= numpnts(AngMom) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(AngMom[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,AngMom      

  // Delete NaNs 
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    DelPts-=1 

  Endif 

 Endfor 

  

 For (DelPts = 1 ; DelPts <= numpnts(AspectRatio) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(AspectRatio[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,AspectRatio      

  // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

  

 For (DelPts = 1 ; DelPts <= numpnts(YSize) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(YSize[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,YSize       

 // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

  

 For (DelPts = 1 ; DelPts <= numpnts(XSize) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(XSize[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,XSize       

 // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

  

 For (DelPts = 1 ; DelPts <= numpnts(Degrees) ; DelPts+= 1)    // Go from 1 to the 

length of exposure280 

  If (numtype(Degrees[DelPts-1]) == 2)       

 // Check for NaNs 

   DeletePoints DelPts-1,1,Degrees       

 // Delete NaNs 

    DelPts-=1 

  Endif 

 Endfor 

  

 For (n=1;n<=(count+1); n+=1) 

   

  Make/O/N=2 DestWave 

  Variable Mid 

   

  Sizemeas405 = num2str(n)+"y405" 

  Wave MeasuredWave = $SizeMeas405 

  String pSize, pSizeRef, SizeMeas2 

   

  pSize = num2str(n)+"pSize"   

    

  MatrixOP/O sizingwave = sumCols(MeasuredWave)/numRows(MeasuredWave) 

  Make/O/N=(DimSize($Sizemeas405,1)) $pSize = SizingWave 

   

  Wave CurveFitting = $pSize 

   

  CurveFit/NTHR=0 gauss CurveFitting /D 
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  String SizeMeas = "fit_" + pSize 

  Wave Subtractor = $SizeMeas     

  Wavestats Subtractor      // Measure the Guassians' 

characteristics  

  

  CurveFitting -= V_Min 

   

  CurveFit/NTHR=0 gauss CurveFitting /D 

  SizeMeas2 = "fit_" + pSize 

  Wave Subtractor = $SizeMeas2     

  Wavestats Subtractor   

  

  Mid = V_max/2  

  FindLevels/D=destWave $SizeMeas, Mid 

   

  SizeWave[n-1] = (DestWave[1]-DestWave[0]) 

   

  Check =+1 

  

 EndFor 

  

 NanDel = 1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(SizeWave) ; NaNdel+= 1) 

  If (numtype(SizeWave[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,SizeWave 

    NaNdel-=1 

  Endif 

 Endfor 

 

 String NameStr, p, Fit, Calibrate 

   

 j = 1 

 Make /O /N=1000 BluePts 

 BluePts = NaN 

 Make /O /N=1000 RedPts 

 RedPts = NaN 

  

 n = 1 

 For (n = 1; n<=Count ; n += 1)     // Still need to try to recognize if the wave 

exists. 

  

  NameStr = "p" + num2str(n) + "yCalib"  // Create a string out of p[n]yCalib, n being the particle 

number 

  Wave Calibrating = $NameStr    // Make the NameStr into a reference and 

make the Wave Calibrating that string 

 

  j = WaveExists(Calibrating) 

  

   

  if (j ==1) 

   CurveFit/NTHR=0 gauss  Calibrating[0,200] /D // Measure the Gaussian around the blue calib point 

   Calibrate = "fit_" + NameStr 

   Wave CalibWave = $Calibrate 

   Wavestats CalibWave      // Measure the 

Guassians' characteristics  

   BluePts[n-1] = V_MaxLoc     // Add the Max 

Location Calib point to the BluePts wave  

   

   CurveFit/NTHR=0 gauss  Calibrating[400,650]  /D // Measure the Gaussian around the red calib 

point 
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   Calib = "fit_" + NameStr 

   Wave CalibWave = $Calib 

   Wavestats CalibWave 

   RedPts[n-1] = V_MaxLoc 

  EndIf 

 EndFor 

  

 NaNdel =1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(Bluepts) ; NaNdel+= 1) 

  If (numtype(Bluepts[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,Bluepts 

    NaNdel-=1 

  Endif 

 Endfor 

 

 NaNdel =1 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(Redpts) ; NaNdel+= 1) 

  If (numtype(Redpts[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,Redpts 

    NaNdel-=1 

  Endif 

 Endfor 

    

   // For deleting NaN poits.  Not needed here now. 

   //******************************************************* 

   // For (n = 1 ; n <= numpnts(BluePts) ; n+= 1) 

   //  If (numtype(BluePts[n-1]) == 2) 

   //   Deletepoints n-1,1,BluePts 

   //   n-=1 

   //  Endif 

   // Endfor 

   //  

   // For (n = 1 ; n <= numpnts(RedPts) ; n+= 1) 

   //  If (numtype(Redpts[n-1]) == 2) 

   //   Deletepoints n-1,1,RedPts 

   //   n-=1 

   //  Endif 

   // Endfor  

   //******************************************************* 

 Variable c, e     // n, c, r 

 Wave BluePts, RedPts 

 String NameStr450, NameStr405, NameStr350, NameStr280 

 .8-403.457 

  

 y = 0 

 For (y = 0; y <= DimSize(BluePts,0); y += 1)     

   

   NameStr450 = "p" + num2str(y) + "xREF" 

    

   Wave CalibRef = $NameStr450 

    

   e = (RedCalib[y]-BlueCalib[y]) 

    

   CalibRef -=BlueCalib[y] 

    

   CalibRef *= (c/e) 

   

   CalibRef +=403.457 
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 EndFor 

 

  

 String NameStrX, NameStrY, NewSizeWaveX, NewSizeF 

 Wave BluePts, YSize, XSize, FSize 

 

 ////////////////////////////////////////////////// 

 // Copy command for new sizing // 

 ////////////////////////////////////////////////// 

 String NewSizeWave, NameStrXSize, NameStrFSize 

  

 For (n = 1; n <= DimSize(BluePts, 0); n += 1) 

  

  NameStrY = "p" + num2str(n) + "y450" 

  NewSizeWave = "p" + num2str(n) + "y450_New" 

  NameStrXSize = "p" + num2str(n) + "y450_NewX" 

  NameStrFSize = "p" + num2str(n) + "y450_NewF" 

  

  Duplicate/O $NameStrY, $NewSizeWave 

  Duplicate/O $NameStrY, $NameStrXSize 

  Duplicate/O $NameStrY, $NameStrFSize 

 

 EndFor 

  

 For (n = 1; n <= DimSize(BluePts, 0); n += 1) 

  

  NameStrY = "p" + num2str(n) + "y405" 

  NewSizeWave = "p" + num2str(n) + "y405_New" 

   

  NameStrXSize = "p" + num2str(n) + "y405_NewX" 

  NameStrFSize = "p" + num2str(n) + "y405_NewF" 

  

  Duplicate/O $NameStrY, $NewSizeWave 

  Duplicate/O $NameStrY, $NameStrXSize 

  Duplicate/O $NameStrY, $NameStrFSize 

 

 EndFor 

  

 For (n = 1; n <= DimSize(BluePts, 0); n += 1) 

  

  NameStrY = "p" + num2str(n) + "y350" 

  NewSizeWave = "p" + num2str(n) + "y350_New" 

   

  NameStrXSize = "p" + num2str(n) + "y350_NewX" 

  NameStrFSize = "p" + num2str(n) + "y350_NewF" 

  

  Duplicate/O $NameStrY, $NewSizeWave 

  Duplicate/O $NameStrY, $NameStrXSize 

  Duplicate/O $NameStrY, $NameStrFSize 

 

 EndFor 

  

 For (n = 1; n <= DimSize(BluePts, 0); n += 1) 

  

  NameStrY = "p" + num2str(n) + "y280" 

  NewSizeWave = "p" + num2str(n) + "y280_New" 

  NameStrXSize = "p" + num2str(n) + "y280_NewX" 

  NameStrFSize = "p" + num2str(n) + "y280_NewF" 

  

  Duplicate/O $NameStrY, $NewSizeWave 

  Duplicate/O $NameStrY, $NameStrXSize 
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  Duplicate/O $NameStrY, $NameStrFSize 

 

 EndFor 

  

 String PeakSW, PeakY, PeakX, PeakXRef, PeakF 

 Wave Bluepts, AngMom 

  

 Make/O/N=(DimSize(AngMom, 0)) PeaksSW, PeaksY, PeaksX, PeaksF 

  

 PeaksSW = NaN 

 PeaksY = NaN 

 PeaksX = NaN 

 PeaksF = NaN 

 Variable up 

 Up = 0 

  

 Wave Degrees, YSize, XSize, FSize 

 

  Up = 0 

   

  Make/O FactorSplitY, FactorSplitX, FSize 

  

  FactorSplitY = NaN 

  FactorSplitX = NaN 

  FSize = NaN 

   

 For (up = 0; up<DimSize(Degrees, 0); up +=1) 

  If (Degrees[Up]<90) 

   FactorSplitY[up] = Degrees[up]/90 

   FactorSplitX[up]  = 1-FactorsplitY[up]  

  ElseIf (Degrees[Up]>90) 

   FactorSplitX[up] = Degrees[up]/180 

   FactorSplitY[up]  = 1-FactorsplitX[up] 

  EndIf 

   

  FSize[up] = ((FactorSplitY[up]*YSize[up]))+((FactorSplitX[up]*XSize[up])) 

 EndFor 

  

 

 For (NaNdel = 1 ; NaNdel <= numpnts(FactorSplitX) ; NaNdel+= 1) 

  If (numtype(FactorSplitX[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,FactorSplitX 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(FactorSplitY) ; NaNdel+= 1) 

  If (numtype(FactorSplitY[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,FactorSplitY 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(FSize) ; NaNdel+= 1) 

  If (numtype(FSize[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,FSize 

    NaNdel-=1 

  Endif 

 Endfor 

  

 //////////////////////////////////////////////// 
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 // Display & Calibration Section // 

 //////////////////////////////////////////////// 

  

 Display 

 j = 1 

 n = 1 

 For (n = 1; n <=DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists. 

   

   NameStrY = "p" + num2str(n) + "y450"  // Create a string out of p[n]yCalib, n being 

the particle number 

   NewSizeWave = "p" + num2str(n) + "y450_New" 

   Wave DisplayNew = $NewSizeWave 

   NewSizeWaveX = "p" + num2str(n) + "y450_NewX" 

   NameStrX = "p" + num2str(n) + "xRef" 

   Wave DisplayY = $NameStrY  

   Wave DisplayX = $NameStrX 

   Wave DIsplaynewx = $NewSizeWaveX 

    

   NewSizeF = "p" + num2str(n) + "y450_NewF" 

   Wave DisplayNewF = $NewSizeF 

    

   j = (waveexists($NameStrY)) 

       

   if (j != 1) 

    Break 

   EndIf 

    

   //Quick baseline subtraction 

   Wavestats DisplayY 

   DisplayY -=V_min 

   DisplayY /=PowerDensity[3] 

   DisplayY *=100000 

    

   DisplayY /= SizeWave[n-1] 

   DisplayY /= Exposure450[n-1] 

    

   Wavestats DisplayNew 

   DisplayNew -=V_min 

   DisplayNew /=PowerDensity[3] 

   DisplayNew *=100000 

    

   DisplayNew /= YSize[n-1] 

   DisplayNew /= Exposure450[n-1]  

    

   Wavestats DisplayNewX 

   DisplayNewx -=V_min 

   DisplayNewx /=PowerDensity[3] 

   DisplayNewx *=100000 

    

   DisplayNewx /= XSize[n-1] 

   DisplayNewx /= Exposure450[n-1] 

    

   Wavestats DisplayNewF 

   DisplayNewF -=V_min 

   DisplayNewF /=PowerDensity[3] 

   DisplayNewF *=100000 

    

   DisplayNewF /= FSize[n-1] 

   DisplayNewF /= Exposure450[n-1] 

   



197 

 

   AppendToGraph DisplayY vs DisplayX 

 EndFor 

  

 Display 

 n = 1 

 For (n = 1; n <=DimSize(BluePts,0); n += 1)      // Still need to try to 

recognize if the wave exists. 

   

   NameStrY = "p" + num2str(n) + "y405"  // Create a string out of p[n]yCalib, n being 

the particle number 

   NewSizeWave = "p" + num2str(n) + "y405_New" 

   Wave DisplayNew = $NewSizeWave 

   NewSizeWaveX = "p" + num2str(n) + "y405_NewX" 

   NameStrX = "p" + num2str(n) + "xRef" 

   Wave DisplayY = $NameStrY  

   Wave DisplayX = $NameStrX 

   Wave DIsplaynewx = $NewSizeWaveX 

    

   NewSizeF = "p" + num2str(n) + "y405_NewF" 

   Wave DisplayNewF = $NewSizeF 

    

   //Quick baseline subtraction 

   Wavestats DisplayY 

   DisplayY -=V_min 

   DisplayY /=PowerDensity[2] 

   DisplayY *=100000 

    

   DisplayY /= SizeWave[n-1] 

   DisplayY /= Exposure405[n-1] 

 

   Wavestats DisplayNew 

    

   DisplayNew -=V_min 

   DisplayNew /=PowerDensity[2] 

   DisplayNew *=100000 

    

   DisplayNew /= YSize[n-1] 

   DisplayNew /= Exposure405[n-1]  

    

   Wavestats DisplayNewX 

    

   DisplayNewX -=V_min 

   DisplayNewX /=PowerDensity[2] 

   DisplayNewX *=100000 

    

   DisplayNewX /= XSize[n-1] 

   DisplayNewX /= Exposure405[n-1] 

    

   Wavestats displaynewF 

    

   DisplayNewF -=V_min 

   DisplayNewF /=PowerDensity[2] 

   DisplayNewF *=100000 

    

   DisplayNewF /= FSize[n-1] 

   DisplayNewF /= Exposure405[n-1] 

   

   AppendToGraph DisplayY vs DisplayX 

 EndFor 

  

 Display 
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 n = 1 

 For (n = 1; n <=DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists. 

   

   NameStrY = "p" + num2str(n) + "y350"  // Create a string out of p[n]yCalib, n being 

the particle number 

   NewSizeWave = "p" + num2str(n) + "y350_New" 

   Wave DisplayNew = $NewSizeWave 

   NewSizeWaveX = "p" + num2str(n) + "y350_NewX" 

   NameStrX = "p" + num2str(n) + "xRef" 

   Wave DisplayY = $NameStrY  

   Wave DisplayX = $NameStrX 

   Wave DIsplaynewx = $NewSizeWaveX 

    

   NewSizeF = "p" + num2str(n) + "y350_NewF" 

   Wave DisplayNewF = $NewSizeF 

    

   //Quick baseline subtraction 

   Wavestats DisplayY 

   DisplayY -=V_min 

   DisplayY /=PowerDensity[1] 

   DisplayY *=100000 

    

   DisplayY /= SizeWave[n-1] 

   DisplayY /= Exposure350[n-1] 

    

   Wavestats DisplayNew 

   DisplayNew -=V_min 

   DisplayNew /=PowerDensity[1] 

   DisplayNew *=100000 

    

   DisplayNew /= YSize[n-1] 

   DisplayNew /= Exposure350[n-1]  

    

   Wavestats DisplayNewX 

   DisplayNewX -=V_min 

   DisplayNewX /=PowerDensity[1] 

   DisplayNewX *=100000 

    

   DisplayNewX /= XSize[n-1] 

   DisplayNewX /= Exposure350[n-1] 

    

   Wavestats DisplayNewF 

   DisplayNewF -=V_min 

   DisplayNewF /=PowerDensity[1] 

   DisplayNewF *=100000 

    

   DisplayNewF /= FSize[n-1] 

   DisplayNewF /= Exposure350[n-1] 

   

   AppendToGraph DisplayY vs DisplayX 

 EndFor 

  

 Display 

  

 n = 1 

 For(n = 1; n <= DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists. 
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   NameStrY = "p" + num2str(n) + "y280"  // Create a string out of p[n]yCalib, n being 

the particle number 

   NewSizeWave = "p" + num2str(n) + "y280_New" 

   Wave DisplayNew = $NewSizeWave 

   NewSizeWaveX = "p" + num2str(n) + "y280_NewX" 

   NameStrX = "p" + num2str(n) + "xRef" 

   Wave DisplayY = $NameStrY  

   Wave DisplayX = $NameStrX 

   Wave DIsplaynewx = $NewSizeWaveX 

    

   NewSizeF = "p" + num2str(n) + "y280_NewF" 

   Wave DisplayNewF = $NewSizeF 

    

   //Quick baseline subtraction 

   Wavestats DisplayY 

   DisplayY -=V_min 

   DisplayY /=PowerDensity[0] 

   DisplayY *=100000 

    

   DisplayY /= SizeWave[n-1] 

   DisplayY /= Exposure280[n-1] 

    

   Wavestats DisplayNew 

   DisplayNew -=V_min 

   DisplayNew /=PowerDensity[0] 

   DisplayNew *=100000 

    

   DisplayNew /= YSize[n-1] 

   DisplayNew /= Exposure280[n-1]  

    

   Wavestats DisplayNewX 

   DisplayNewX -=V_min 

   DisplayNewX /=PowerDensity[0] 

   DisplayNewX *=100000 

    

   DisplayNewX /= XSize[n-1] 

   DisplayNewX /= Exposure280[n-1] 

    

   Wavestats DisplayNewF 

   DisplayNewF -=V_min 

   DisplayNewF /=PowerDensity[0] 

   DisplayNewF *=100000 

    

   DisplayNewF /= FSize[n-1] 

   DisplayNewF /= Exposure280[n-1] 

    

   AppendToGraph DisplayY vs DisplayX 

 EndFor 

 

 

 For (n=1; n<=DimSize(AngMom, 0); n+=1) 

   

   

  PeakSW = "p" + num2str(n) + "y450" 

  PeakXRef = "p" + num2str(n) + "xRef" 

  PeakY = "p" + num2str(n) + "y450_New" 

  PeakX = "p" + num2str(n) + "y450_NewX" 

  PeakF = "p" + num2str(n) + "y450_NewF" 

   

  If (Waveexists($PeakSw)==0) 

   Break 
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  EndIf 

   

  Wavestats/Q $PeakSW 

  PeaksSW[n-1] = V_Max 

  

  Wavestats/Q $PeakY 

  PeaksY[n-1] = V_Max 

   

  Wavestats/Q $PeakX 

  PeaksX[n-1] = V_Max 

   

  Wavestats/Q $PeakF 

  PeaksF[n-1] = V_max 

   

  Wave Degrees 

   

  Make/O FactorSplitY, FactorSplitX 

  

  FactorSplitY = NaN 

  FactorSplitX = NaN 

    

  If (Degrees[Up]<90) 

   FactorSplitY = Degrees/90 

   FactorSplitX  = 1-FactorsplitY  

  ElseIf (Degrees[Up]>90) 

   FactorSplitY = 90/Degrees 

   FactorSplitX  = 1-FactorsplitY  

  EndIf 

  up += 1 

 EndFor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(FactorSplitX) ; NaNdel+= 1) 

  If (numtype(FactorSplitX[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,FactorSplitX 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(FactorSplitY) ; NaNdel+= 1) 

  If (numtype(FactorSplitY[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,FactorSplitY 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(PeaksSW) ; NaNdel+= 1) 

  If (numtype(PeaksSW[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,PeaksSW 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(PeaksY) ; NaNdel+= 1) 

  If (numtype(PeaksY[NaNdel-1]) == 2) 

   Deletepoints NaNdel-1,1,PeaksY 

    NaNdel-=1 

  Endif 

 Endfor 

  

 For (NaNdel = 1 ; NaNdel <= numpnts(PeaksX) ; NaNdel+= 1) 

  If (numtype(PeaksX[NaNdel-1]) == 2) 
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   Deletepoints NaNdel-1,1,PeaksX 

    NaNdel-=1 

  Endif 

 Endfor 

  

 Edit 

  

 AppendToTable Majmom, Minmom, AspectRatio 

End 

 

Function AverageSpectra() 

 Make/O/n=301 Avg450, Avg405, Avg350, Avg280 

  

 Wave MajMom 

 Variable N 

 N=1 

  

 For(n=1;  n<=numpnts(MajMom); N+=1) 

  

   

  String PeakChange = "p" + num2str(n) + "y450_Final" 

  Wave PeakChange1 = $PeakChange 

  Avg450 +=PeakChange1 

   

  PeakChange = "p" + num2str(n) + "y405_Final" 

  Wave PeakChange1 = $PeakChange 

  Avg405 +=PeakChange1 

   

  PeakChange = "p" + num2str(n) + "y350_Final" 

  Wave PeakChange1 = $PeakChange 

  Avg350 +=PeakChange1 

   

  PeakChange = "p" + num2str(n) + "y280_Final" 

  Wave PeakChange1 = $PeakChange 

  Avg280 +=PeakChange1 

   

 EndFor 

  

 Avg450 /=Numpnts(Majmom) 

  

End 

 

D.2.4 Description of Functions: Code to regrid all emission wavelengths onto 1-nm 

increments from 400-700 nm. 
 
Function RegridF() 

 

Make/O/N=701 Ywv_ref  

Make/O/N=701 Xwv_ref 

Make/O/N=301 RegriddedX 

Make/O/N=301 RegriddedY  

Wave Ywave_regrid, BluePts 

 

RegriddedY = NaN 

 

Xwv_ref = 0 

 

 

String NameStrY, NameStrX, RegridStr, RegridY 
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Variable n, h, y 

 

n = 0 

h = 200 

 

 For (n = 0; n < DimSize(Xwv_ref, 0); n +=1) 

  Xwv_ref[n] = h 

  h+=1 

 EndFor 

  

h = 400 

  

 For (n = 0; n < DimSize(RegriddedX, 0); n +=1) 

  RegriddedX[n] = h 

  h+=1 

 EndFor 

 

 

n =1 

 

Ywv_ref = 1 

 

 For (n = 1; n <=DimSize(BluePts,0); n += 1)  

  NameStrY = "p" + num2str(n) + "y450_NewF" 

  NameStrX = "p" + num2str(n) + "xRef" 

  

  RegridStr = NameStrY + "_regrid" 

  regrid_param2($NameStrX, $NameStrY, xwv_ref, ywv_ref) 

  duplicate/o ywave_regrid $RegridStr 

   

  For (y=0;y<301;y+=1) 

   RegriddedY[y] = ywave_regrid[y+200] 

  EndFor 

   

  RegridY = "p" + Num2Str(n) + "y450_Final" 

  Duplicate/o RegriddedY $RegridY 

 

  NameStrY = "p" + num2str(n) + "y405_NewF" 

  NameStrX = "p" + num2str(n) + "xRef" 

   

  RegridStr = NameStrY + "_regrid" 

  

    

  regrid_param2($NameStrX, $NameStrY, xwv_ref, ywv_ref) 

  duplicate/o ywave_regrid $RegridStr 

   

  For (y=0;y<301;y+=1) 

   RegriddedY[y] = ywave_regrid[y+200] 

  EndFor  

   

   

  RegridY = "p" + Num2Str(n) + "y405_Final" 

   

  Duplicate/o RegriddedY $RegridY 

  

  NameStrY = "p" + num2str(n) + "y350_NewF" 

  NameStrX = "p" + num2str(n) + "xRef" 

   

  RegridStr = NameStrY + "_regrid" 
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  regrid_param2($NameStrX, $NameStrY, xwv_ref, ywv_ref) 

  duplicate/o ywave_regrid $RegridStr 

   

  For (y=00;y<301;y+=1) 

   RegriddedY[y] = ywave_regrid[y+200] 

  EndFor 

   

  RegridY = "p" + Num2Str(n) + "y350_Final" 

   

  Duplicate/o RegriddedY $RegridY 

   

  NameStrY = "p" + num2str(n) + "y280_NewF" 

  NameStrX = "p" + num2str(n) + "xRef" 

   

  RegridStr = NameStrY + "_regrid" 

   

  regrid_param2($NameStrX, $NameStrY, xwv_ref, ywv_ref)  

    

  duplicate/o ywave_regrid $RegridStr 

   

  For (y=0;y<301;y+=1) 

   RegriddedY[y] = ywave_regrid[y+200] 

  EndFor 

   

  RegridY = "p" + Num2Str(n) + "y280_Final" 

   

  Duplicate/o RegriddedY $RegridY 

   

 EndFor 

    // Append the intensity values for each excitation (400-700 nm) 

 Edit 

  

 n = 1 

 For(n = 1; n <= DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists.  

   NameStrY = "p" + num2str(n) + "y450_Final"  // Create a string out of 

p[n]yCalib, n being the particle number 

   AppendToTable $NameStrY 

 EndFor 

  

 Edit 

  

 n = 1 

 For(n = 1; n <= DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists.  

   NameStrY = "p" + num2str(n) + "y405_Final"  // Create a string out of 

p[n]yCalib, n being the particle number 

   AppendToTable $NameStrY 

 EndFor 

  

 Edit 

  

 n = 1 

 For(n = 1; n <= DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists.  

   NameStrY = "p" + num2str(n) + "y350_Final"  // Create a string out of 

p[n]yCalib, n being the particle number 

   AppendToTable $NameStrY 

 EndFor 

  

 Edit 
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 n = 1 

 For(n = 1; n <= DimSize(BluePts,0); n += 1)     // Still need to try to recognize if 

the wave exists.  

   NameStrY = "p" + num2str(n) + "y280_Final"  // Create a string out of 

p[n]yCalib, n being the particle number 

   AppendToTable $NameStrY 

 EndFor 

End 

 

Function MeasureRegrids() 

 Variable n 

 Wave bluepts  

 Make/O SizeMeasurement_Final, SizeMeasurements 

 SizeMeasurement_Final = NaN 

  

 Display 

  

 For (n=1 ;n<=DimSize(BluePts, 0) ;n +=1) 

  

  String SizeWaves = "p" + Num2Str(n) +  "y350_Final" 

   

  Wavestats/Q $SizeWaves 

  SizeMeasurement_Final[n-1] = V_Max 

  AppendToGraph $SizeWaves 

 EndFor 

 

 For (N = 1 ; N <= numpnts(SizeMeasurement_Final) ; N+= 1) 

  If (numtype(SizeMeasurement_Final[N-1]) == 2) 

   Deletepoints N-1,1,SizeMeasurement_Final 

    N-=1 

  Endif 

 Endfor  

End 

 

D.2.5 Description of Functions: Plotting for the spectral averages and subsequent 

deviation of all emission curves for multiple species on a singular graph, as well as 

the calculations and plotting of box plot parameters for sizing and aspect ratio per 

species. 

 
////////////////// Plot the emission curves as well as deviation for each species /////////////////// 

Function TestWindows() 

  
 Display 

 // De-comment above to create new test graph! // 

  
 Wave textWave0 

 Variable fracVar, windowVar, n, j, YAxisUpVar, YAxisDownVar, AStorageVar, AxisVar 

 String WaveCheckStr, AvgYStr, AvgXStr, YAxisStr, XAxisStr, StDevY, StDevU, StDevL 
  

 AStorageVar = 0 

 

 fracVar = numpnts(textWave0) 

 print fracVar 
  

 windowVar = 100/fracVar 

 print windowVar 
  

 //////////////////////////////////////////////////////////// 450 
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 j = 1 

  

 For(n=1;j==1;n+=1) 

  
  AvgYStr = "y" + num2str(n) + "d" 

  AvgXStr = "yXd" 

     
  StDevY = "y" + num2str(n) + "d_s" 

  String StDevY2 = "y" + num2str(n) + "d_s_COPY" 

   
  StDevU = "y" + num2str(n) + "d+sU" 

  StDevL = "y" + num2str(n) + "d+sL" 

   
  Make/O/N=301 $StDevU 

  Make/O/N=301 $StDevL 

   
  Wave UpperSD = $StDevU 

  Wave LowerSD = $StDevL 

     

  Duplicate/O $StDevY $StDevY2 

   

  String AvgYStr2 = "y" + num2str(n) + "d_COPY" 
   

  Duplicate/O $AvgYStr $AvgYStr2 

   
  Wave AverageWv = $AvgYStr2 

  Wave StDevWv = $StDevY2 
   

  UpperSD = AverageWv + StDevWv 

  LowerSD = AverageWv - StDevWv 
   

  YAxisStr = "y" + num2str(n) + "d" 

  XAxisStr = "y" + num2str(n) + "dx" 
   

  YAxisUpVar = (windowVar*n)/100 

  YAxisDownVar = ((windowVar*n)-10)/100 
   

  Wavestats $AvgYStr 

      
  If(V_Max > AStorageVar) 

   AStorageVar = V_Max   

  EndIf 
  

  AppendToGraph/L=$YAxisStr/B=$XAxisStr $AvgYStr vs $AvgXStr 

  ModifyGraph axisEnab($YAxisStr)={YAxisDownVar,YAxisUpVar},axisEnab($XAxisStr)={0.25,0.35} 
  ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={0,$YAxisStr} 

  

  WaveCheckStr = "y" + num2str(n+1) + "d" 
  j = WaveExists($WaveCheckStr)  

   

  ModifyGraph nticks($XAxisStr)=0 
  ModifyGraph lsize($AvgYStr )=2,rgb($AvgYStr )=(65535,0,52428) 

   

  ModifyGraph manTick($AvgYStr)={0,14,0,0},manMinor($AvgYStr)={0,0} 
 Endfor 

   

 j=1 
  

 AxisVar = AStorageVar/3   

  
 For(n=1;j==1; n+=1) 

   

  YAxisStr = "y" + num2str(n) + "d" 
   

  SetAxis $YAxisStr 0,AStorageVar  
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  ModifyGraph manTick($XAxisStr)={0,AxisVar,0,0},manMinor($XAxisStr)={0,0} 

  
  WaveCheckStr = "y" + num2str(n+1) + "d" 

  j = WaveExists($WaveCheckStr)  

  ModifyGraph freePos($YAxisStr)={400,$XAxisStr} 
 EndFor 

   

 //////////////////////////////////////////////////////////// 405 
  

 AStorageVar = 0 

 j = 1 
  

 For(n=1;j==1;n+=1) 

  
  AvgYStr = "y" + num2str(n) + "c" 

  AvgXStr = "yXc" 

   

  YAxisStr = "y" + num2str(n) + "c" 

  XAxisStr = "y" + num2str(n) + "acx" 

   
  YAxisUpVar = (windowVar*n)/100 

  YAxisDownVar = ((windowVar*n)-10)/100 

   
  Wavestats $AvgYStr 

      
  If(V_Max > AStorageVar) 

   AStorageVar = V_Max   

  EndIf 
  

  AppendToGraph/L=$YAxisStr/B=$XAxisStr $AvgYStr vs $AvgXStr 

  ModifyGraph 
axisEnab($YAxisStr)={YAxisDownVar,YAxisUpVar},axisEnab($XAxisStr)={0.42,0.57};DelayUpdate 

  ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={0,$YAxisStr} 

  
  WaveCheckStr = "y" + num2str(n+1) + "c" 

  j = WaveExists($WaveCheckStr)  

   
  ModifyGraph nticks($XAxisStr)=0 

  ModifyGraph lsize($AvgYStr)=2,rgb($AvgYStr)=(26411,1,52428) 

   
  ModifyGraph manTick($AvgYStr)={0,0.4,0,1},manMinor($AvgYStr)={0,0} 

 Endfor 

  
 j=1 

  

 AxisVar = AStorageVar/3   
  

 For(n=1;j==1; n+=1) 

   
  YAxisStr = "y" + num2str(n) + "c" 

   

  SetAxis $YAxisStr 0,AStorageVar  
      

  ModifyGraph manTick($XAxisStr)={0,AxisVar,0,0},manMinor($XAxisStr)={0,0} 

  
  WaveCheckStr = "y" + num2str(n+1) + "c" 

  j = WaveExists($WaveCheckStr)  

  ModifyGraph freePos($YAxisStr)={400,$XAxisStr} 
 EndFor 

  

 //////////////////////////////////////////////////////////// 350 
 AStorageVar = 0 

 j = 1 
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 For(n=1;j==1;n+=1) 

  

  AvgYStr = "y" + num2str(n) + "a" 
  AvgXStr = "yXa" 

   

  YAxisStr = "y" + num2str(n) + "a" 
  XAxisStr = "y" + num2str(n) + "aax" 

   

  YAxisUpVar = (windowVar*n)/100 
  YAxisDownVar = ((windowVar*n)-10)/100 

   

  Wavestats $AvgYStr 
      

  If(V_Max > AStorageVar) 

   AStorageVar = V_Max   
  EndIf 

  

  AppendToGraph/L=$YAxisStr/B=$XAxisStr $AvgYStr vs $AvgXStr 

  ModifyGraph 

axisEnab($YAxisStr)={YAxisDownVar,YAxisUpVar},axisEnab($XAxisStr)={0.82,.97};DelayUpdate 

  ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={0,$YAxisStr} 
  

  WaveCheckStr = "y" + num2str(n+1) + "a" 

  j = WaveExists($WaveCheckStr)  
   

  ModifyGraph nticks($XAxisStr)=0 
  ModifyGraph lsize($AvgYStr)=2,rgb($AvgYStr)=(1,52428,26586) 

  SetAxis $XAxisStr 400,700 

   
  ModifyGraph manTick($AvgYStr)={0,7,0,0},manMinor($AvgYStr)={0,0} 

 Endfor 

  
 j=1 

  

 AxisVar = AStorageVar/3   
  

 For(n=1;j==1; n+=1) 

   
  YAxisStr = "y" + num2str(n) + "a" 

   

  SetAxis $YAxisStr 0,AStorageVar  
     

  ModifyGraph manTick($XAxisStr)={0,AxisVar,0,0},manMinor($XAxisStr)={0,0} 

  
  WaveCheckStr = "y" + num2str(n+1) + "a" 

  j = WaveExists($WaveCheckStr)  

  ModifyGraph freePos($YAxisStr)={400,$XAxisStr} 
 EndFor 

  

 //////////////////////////////////////////////////////////// 280 
 AStorageVar = 0 

 j = 1 

  
 For(n=1;j==1;n+=1) 

  

  AvgYStr = "y" + num2str(n) + "b" 
  AvgXStr = "yXb" 

   

  YAxisStr = "y" + num2str(n) + "b" 
  XAxisStr = "y" + num2str(n) + "abx" 

   

  YAxisUpVar = (windowVar*n)/100 
  YAxisDownVar = ((windowVar*n)-10)/100 
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  Wavestats $AvgYStr 

      

  If(V_Max > AStorageVar) 

   AStorageVar = V_Max   
  EndIf 

  

  AppendToGraph/L=$YAxisStr/B=$XAxisStr $AvgYStr vs $AvgXStr 
  ModifyGraph 

axisEnab($YAxisStr)={YAxisDownVar,YAxisUpVar},axisEnab($XAxisStr)={.62,0.77};DelayUpdate 

  ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={0,$YAxisStr} 
  

  WaveCheckStr = "y" + num2str(n+1) + "b" 

  j = WaveExists($WaveCheckStr)  
   

  ModifyGraph nticks($XAxisStr)=0 

  ModifyGraph lsize($AvgYStr)=2,rgb($AvgYStr)=(0,0,65535) 
   

  ModifyGraph manTick($AvgYStr)={0,6,0,0},manMinor($AvgYStr)={0,0} 

 Endfor 

  

 j=1 

  
 AxisVar = AStorageVar/3  

  

 For(n=1;j==1; n+=1) 
   

  YAxisStr = "y" + num2str(n) + "b" 
   

  SetAxis $YAxisStr 0,AStorageVar  

   
  ModifyGraph manTick($XAxisStr)={0,AxisVar,0,0},manMinor($XAxisStr)={0,0} 

  

  WaveCheckStr = "y" + num2str(n+1) + "b" 
  j = WaveExists($WaveCheckStr)  

  ModifyGraph freePos($YAxisStr)={400,$XAxisStr} 

 EndFor 
  

  ModifyGraph fSize=16 

   
End 

 

////////////////// Calculate and plot box-plots for size and aspect ratio (per species) /////////////////// 
 

Function NewBoxPlots() 

 
 Variable j, n, V_Q25, V_Q75, V_Median, V_IQR, Step, lowerInnerFence, LowerOuterFence, upperinnerfence, 

upperouterfence 

 String xStr, WaveExistsStr, typeStr, NewMedianStr 
 Wave P_F1_50, P_F1_25, P_F1_75, P_F1_10, P_F1_90 

  

  
 n = 1 

 

 WaveExistsStr = "s" + Num2Str(n) + "maj" 
  

 Make/O/T ListWv 

 
 For(n=1;WaveExists($WaveExistsStr)== 1; n+=1) 

  

  Sort/R $WaveExistsStr, $WaveExistsStr 
   

  WaveExistsStr = "s" + Num2Str(n) + "maj" 

   
  ListWv[n-1] = WaveExistsStr 
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 EndFor 

  

 For (n = 0 ; n <= numpnts(ListWv) ; n+= 1) 
  If (strlen(ListWv[n]) == 0) 

   Deletepoints n,1,ListWv 

   n-=1 
  Endif 

 Endfor 

  
 Print ListWv[0] 

  

 String ListStr = ListWv[0] 
  

 For(n = 1 ; n < numpnts(ListWv) ; n+= 1) 

   
  ListStr += ";" + ListWv[n] 

   

 EndFor 

  

 Print ListStr 

 
 Make/O/N=(n) MediansWv 

 Make/O/N=(n) Q_25 

 Make/O/N=(n) Q_75 
 Make/O/N=(n) Q_10 

 Make/O/N=(n) Q_90 
 Make/O/N=(n) StepWv 

  

 Q_25 = NaN 
 

  

 n = 1 
 WaveExistsStr = "s" + Num2Str(n) + "maj" 

  

// fWavePercentile(StringFromList(0,ListStr, ";"), "10;25;50;75;90", "P_F1",0,1,1.5) 
 Make/O/N=(numpnts(ListWv)) IQR  

  

 For(n=1;n<=Numpnts(ListWv); n+=1) 
   

  String OutlierUStr 

  String OutlierDStr 
   

  Make/O $OutlierUStr 

  Make/O $OutlierDStr 
   

  WaveExistsStr = "s" + Num2Str(n) + "maj" 

 // StatsQuantiles/BOX $WaveExistsStr 
  

  fWavePercentile(StringFromList(n-1,ListStr, ";"), "10;25;50;75;90", "P_F1",0,0,0) 

   
  MediansWv[n-1] = P_F1_50 

  Q_25[n-1] = P_F1_25 

  Q_75[n-1] = P_F1_75 
  

  IQR[n-1] = Q_75[n-1]-Q_25[n-1] 

  StepWv[n-1] = IQR*1.5 
  Q_10[n-1] = P_F1_10 

  Q_90[n-1] = P_F1_90 

 EndFor 
  

 Variable p = 0 

  
 Make/O OutlierWv 

 OutlierWv = 0 
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 Make/O/T OutlierStrWv 

 OutlierStrWv = "Fix Needed" 

  

 For(n=1;n<=Numpnts(ListWv); n+=1) 
  WaveExistsStr = "s" + Num2Str(n) + "maj" 

    

  For(j=1; j<=Numpnts($WaveExistsStr);j+=1) 
   

   Wave TestWv = $WaveExistsStr 

   
   If(TestWv[j-1]>(Q_75[n-1]+StepWv[n-1]) ) 

  // If(TestWv[j-1]>5 ) 

    print 1 
    String OutlierStr = WaveExistsStr + "_OL" 

     

    OutlierWv[p] +=TestWv[j-1] 
    wave OutlierWV = $OutlierStr 

     

    OutlierStrWv[p] = WaveExistsStr 

    p+=1 

   ElseIf(TestWv[j-1]<(Q_25[n-1]-StepWv[n-1])) 

    OutlierStr = WaveExistsStr + "_OL" 
     

    OutlierWv[p] +=TestWv[j-1] 

    wave OutlierWV = $OutlierStr 
     

    OutlierStrWv[p] = WaveExistsStr 
    p+=1 

   Else 

     
   EndIf 

      

  EndFor 
  

 EndFor 

  
 For (n = 0 ; n <= numpnts(OutlierWV) ; n+= 1) 

  If (OutlierWV[n] == 0) 

   Deletepoints n,1,OutlierWV 
   n-=1 

  Endif 

 Endfor 
  

 For (n = 0 ; n <= numpnts(OutlierStrWv) ; n+= 1) 

  If (StringMatch("Fix Needed", OutlierStrWv[n])) 
   Deletepoints n,1,OutlierStrWv 

   n-=1 

  Endif 
 Endfor 

 

 For (n = 0 ; n <= numpnts(MediansWv) ; n+= 1) 
  If (MediansWv[n] == 0) 

   Deletepoints n,1,MediansWv 

   Deletepoints n,1,ListWv 
   DeletePoints n,1,StepWv 

   Deletepoints n,1,Q_90 

   Deletepoints n,1,Q_75 
   Deletepoints n,1,Q_25 

   Deletepoints n,1,Q_10 

   n-=1 
  Endif 

 Endfor 

 
 Make/O/N=(numpnts(Q_90)) Q_25P 

 Make/O/N=(numpnts(Q_90)) Q_75P 
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 Q_75P = (Q_75-MediansWv) 

 Q_25P = (MediansWv-Q_25) 

  
 Make/O/N=(numpnts(Q_90)) Q_10P 

 Make/O/N=(numpnts(Q_90)) Q_90P 

  
 Q_90P = (Q_90-Q_75) 

 Q_10P = (Q_25-Q_10) 

 
 String SingleStr, SingleStr2 

 Variable y 

  
 For(n=0;n<=Numpnts(MediansWv);n+=1) 

   

  SingleStr = "s" + num2str(n+1) + "_10" 
  Wave RefWv = $SingleStr 

  RefWv = Q_10[n] 

   

  SingleStr = "s" + num2str(n+1) + "_25" 

  Wave RefWv = $SingleStr 

  RefWv = Q_25[n] 
  

  SingleStr = "s" + num2str(n+1) + "_50" 

  Wave RefWv = $SingleStr 
  RefWv = MediansWv[n] 

   
  SingleStr = "s" + num2str(n+1) + "_75" 

  Wave RefWv = $SingleStr 

  RefWv = Q_75[n] 
 

  SingleStr = "s" + num2str(n+1) + "_90" 

  Wave RefWv = $SingleStr 
  RefWv = Q_90[n] 

    

  SingleStr2 = "s" + num2str(n+1) + "_75P" 
  Make/O/N=1 $SingleStr2 

  Wave RefWv = $SingleStr2 

  RefWv = Q_75P[n] 
   

  SingleStr2 = "s" + num2str(n+1) + "_25P" 

  Make/O/N=1 $SingleStr2 
  Wave RefWv = $SingleStr2 

  RefWv = Q_25P[n] 

   
  SingleStr2 = "s" + num2str(n+1) + "_10P" 

  Make/O/N=1 $SingleStr2 

  Wave RefWv = $SingleStr2 
  RefWv = Q_10P[n] 

   

  SingleStr2 = "s" + num2str(n+1) + "_90P" 
  Make/O/N=1 $SingleStr2 

  Wave RefWv = $SingleStr2 

  RefWv = Q_90P[n] 
   

  SingleStr = "s" + num2str(n+1) + "maj" 

  String OutliersStr = "s" + num2str(n+1) + "_OL" 
   

  Make/O/N=(numpnts(OutlierWv)) RefOlWv 

  wave RefOlWv = $OutliersStr 
   

  Redimension/N=(numpnts(OutlierWv)) RefOlWv  

   
   For(y=1;y<=numpnts(OutlierWv);y+=1) 

    If(stringmatch(SingleStr, OutlierStrWv[y-1])==1) 
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     RefOlWv[y-1]=OutlierWv[y-1] 

    EndIf 

   EndFor 

    
 EndFor 

 

 ///////////////////////////////////////////////////// 
 //******** Inter Code Split ************// 

 // Append To Graph Now            // 

 //******** Inter Code Split ************// 
 ///////////////////////////////////////////////////// 

  

 // NEED TO MAKE THIS A LOOP AND REPLACE SizeY AXIS LABEL 
 Make/O/N=1 PositioningWv 

 PositioningWv = 1 

  
 Make/O/N=1 PositioningWv2 

 PositioningWv2 = 2 

   

 Variable fracVar, windowVar, YAxisUpVar, YAxisDownVar 

  

 fracVar = numpnts(ListWv) 
  

 windowVar = 100/fracVar 

 Wave textWave0 
  

For(n=0; n<=numpnts(ListWv); n+=1)   
   

 YAxisUpVar = (windowVar*(n+1))/100 

 YAxisDownVar = ((windowVar*(n+1))-10)/100  
  

 String S10PStr = "s" + num2str(n+1) + "_10p" 

 String S25Str = "s" + num2str(n+1) + "_25P" 
 String S50Str = "s" + num2str(n+1) + "_50" 

 String S75Str = "s" + num2str(n+1) + "_75P" 

 String S90PStr = "s" + num2str(n+1) + "_90p" 
 String SOLStr = "s" + num2str(n+1) + "_OL" 

 String S90Str = "s" + num2str(n+1) + "_90" 

 String S10Str = "s" + num2str(n+1) + "_10" 
     

 String XAxisStr = "s" + num2str(n+1) + "x" 

 String YAxisStr = "s" + num2str(n+1) + "y" 
     

     

 AppendToGraph/L=$YAxisStr/B=$XAxisStr $S50Str vs PositioningWv    // Position for median 
  

 SetAxis $XAxisStr 0,3 

 SetAxis $YAxisStr 20,120 
 ModifyGraph mode=2;DelayUpdate 

 ErrorBars $S50Str X,const=0.3        // Median 

line 
  

 

 String S50_Copy = "s" + num2str(n+1) + "_50#1" 
  

 ErrorBars/L=0 $S50_Copy BOX,const=0.3,wave=($S75Str,$S25Str) 

  
 //~~~ 

  

 Wave RefWv = $SOLStr 
  

 If(RefWv ==0) 

  AppendToGraph/L=$YAxisStr/B=$XAxisStr RefWv vs PositioningWv 
 EndIf 
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 ModifyGraph axisEnab($YAxisStr)={YAxisDownVar,YAxisUpVar},axisEnab($XAxisStr)={0.07,0.13} 

 ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={0,$YAxisStr} 

 ModifyGraph freePos($YAxisStr)={20,$YAxisStr} 

  
 ModifyGraph mode($SOLStr)=3,marker($SOLStr)=8,msize($SOLStr)=2 

 

 AppendToGraph/L=$YAxisStr/B=$XAxisStr $S50Str vs PositioningWv   // Position for box 
 ErrorBars/L=0 $S50_Copy BOX,const=0.3,wave=($s75str,$s25str) // Make that box 

 

 AppendToGraph/L=$YAxisStr/B=$XAxisStr $s90str vs PositioningWv   // 90th percentile line 
 ErrorBars/T=0 $s90Str XY,const=0.3,wave=(,$s90Pstr)  // 90th whisker 

  

 AppendToGraph/L=$YAxisStr/B=$XAxisStr $s10str vs PositioningWv  //10th line 
 ErrorBars/T=0 $s10Str XY,const=0.3,wave=($s10Pstr,)  // 10th whisker 

  

 ModifyGraph freePos($YAxisStr)={0,$XAxisStr},freePos($XAxisStr)={20,$YAxisStr} 
 ModifyGraph nticks($XAxisStr)=2,userticks($XAxisStr)={MediansWv,textWave0}  

  

 ErrorBars/T=0 $S50Str X,const=0.3 

  

 ModifyGraph rgb($S50Str)=(0,0,0),rgb($S50_Copy)=(0,0,0),rgb(s1_50#2)=(0,0,0); 

 ModifyGraph rgb($S90Str)=(0,0,0),rgb($S10Str)=(0,0,0) 
  

 String RemoveLast = "s" + num2str(n) + "_50#2" 

 RemoveFromGraph $RemoveLast 
  

 ModifyGraph manTick($YAxisStr)={20,50,0,0},manMinor($YAxisStr)={0,0} 
 ModifyGraph manTick($YAxisStr)={20,50,0,0},manMinor($YAxisStr)={5,0} 

EndFor 

 

D.2.6 Description of Functions: Time-resolution code for plotting and analysis of 

Cyprus and AQABA data sets after the Random Forest classification. 

 
Function plotTRData() 
 Wave ParticleTime, Type, AmbDust, RiboB, ChloroB, TrypB, BacB, NADB, TypeNum 

 Variable B,E, n, Q, m, nandel 

 
 Make/O/n=300000 AmbDust, RiboB, ChloroB, TrypB, BacB, NADB 

  

 AmbDust = 0 
 RiboB = 0 

 ChloroB = 0 

 TrypB = 0 
 BacB = 0 

 NADB = 0 

 Q=0 
 B=ParticleTime[Q] 

 E=B+300 //////////////////////// Change this number (in seconds) to change time resolution 300 = 5 mins ////////////////////// 

  
 n=0 

 m=0 
  

 Make/O/D/N=300000 WaveTime 

 WaveTime = 0 

 WaveTime[m] = ParticleTime[m] 

 

 For(n=0; n<=numpnts(ParticleTime); n+=1) 
  E=B+300 

 

  if(ParticleTime[n]<=E) 
   if(TypeNum[n]==1) 

    AmbDust[m]+=1 

   Elseif(TypeNum[n]==2) 
    NADB[m]+=1 
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   Elseif(TypeNum[n]==3) 

    RiboB[m]+=1 

   ElseIf(TypeNum[n]==4) 

    ChloroB[m]+=1 
   ElseIf(TypeNum[n]==5) 

    TrypB[m]+=1 

   ElseIf(TypeNum[n]==6) 
    BacB[m]+=1 

   Endif 

  Else  
   B+=300 

   m+=1 

   WaveTime[m] = B 
   print "Five Min" 

  EndIf 

  print n 
 EndFor 

End 
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