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Abstract 

Gaps between treatment guidelines and medical decisions persist despite interventions 

with physicians, which are mostly atheoretical. The purpose of this retrospective cross-

sectional study was to compare atheoretical and theory-based logistic regression models 

of a binary outcome: potentially unsafe prescribing of attention-deficit hyperactivity 

disorder (ADHD) medications to adults. Social cognitive theory and self-determination 

theory provided the framework for the study. Predictors were framed as social cognitive 

theoretical constructs: knowledge (e.g., physician specialty) and environmental influence 

(e.g., interventions). Atheoretical hypotheses were based on legislation mandating 

meaningful use of electronic health records and computerized decision support (CDS). 

Theory-based hypotheses were derived from literature on cognition in medicine and on 

the controlled motivation construct in self-determination theory. Research questions 

addressed associations of CDS and meaningful use with the outcome and fit of competing 

models. The sample included office-based physician visits made by patients aged > 17 

years with ADHD (n = 810) or potentially unsafe medical conditions (n = 9,101), 

recorded in a U.S. database in 2014–2016. Findings for the atheoretical model were 

reduced odds of the outcome with CDS, and nonsignificant improvement in model fit 

using theory. Supporting the self-determination theory-based hypothesis, odds were 

increased with meaningful use. This study adds to research suggesting autonomy as a 

core issue in medicine. Positive social change may result from psychology-based 

strategies to empower physicians through participation in developing clinically relevant 

information systems.  
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Chapter 1: Introduction to the Study 

Evidence-based medicine, broadly defined as the consideration of findings from 

high-quality research in medical decision-making (Sackett & Rosenberg, 1995), has 

produced life-saving improvements in medical treatment protocols (Djulbegovic & 

Guyatt, 2017); is widely supported in concept by physicians and medical associations 

(Chan et al., 2017; Institute of Medicine [IOM], 2011); and is incorporated in the 

curricula of most U.S. medical schools (Blanco, Capello, Dorsch, Perry, & Zanetti, 

2014). However, inconsistencies between evidence-based treatment guidelines and 

decisions made in clinical practice have been documented for more than two decades 

(Cabana et al., 1999; R. Lau et al., 2016). This “evidence to practice gap” has persisted 

despite many initiatives intended to improve the medical decision-making process (Baker 

et al., 2015; Jäger et al., 2016; R. Lau et al., 2016, para. 1). 

To address this gap, health policy analysts advanced the idea that providing 

physicians with automated guidance during their encounters with patients would increase 

adherence to evidence-based practice, thereby improving quality of care and patient 

safety (Bates & Gawande, 2003; Bates et al., 2003; IOM, 2000, 2001). Meaningful use 

provisions of the Health Information Technology for Economic and Clinical Health 

(HITECH) Act of 2009 codified this concept in federal law (Blumenthal & Tavenner, 

2010), providing a system of financial incentives and penalties to encourage use of 

computerized decision support (CDS) and electronic health record (E-HR) technology in 

medical decision-making (U.S. Centers for Disease Control and Prevention [CDC], 
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2019a), including the prescribing of medications (U.S. Centers for Medicare & Medicaid 

Services [CMS], 2012a). 

As intended, HITECH Act implementation was soon followed by expanded use of 

electronic technologies in physician offices nationwide (Hsiao, Hing, & Ashman, 2014). 

However, the few evaluations of meaningful use performed prior to this study indicated 

negligible effects on quality of care for a variety of disease states and samples (Afonso, 

Alfonso, & Morgan, 2017; Grinspan et al., 2017; Jung et al., 2017; Kern, Edwards, 

Kaushal, & HITEC Investigators, 2015; Levine et al., 2017; Samal, Wright, Healey, 

Linder, & Bates, 2014; Unruh et al., 2017). Additionally, the expanded use of CDS and 

E-HRs in medical practice has been associated with new safety problems (Brown et al., 

2017; Carling, Kirkehei, Dalsbø, & Paulsen, 2013; Howe, Adams, Hettinger, & Ratwani, 

2018) and increased occupational dissatisfaction among physicians (Colligan, Sinsky, 

Goeders, Schmidt-Bowman, & Tutty, 2016; Friedberg et al., 2013; Shanafelt et al., 2016). 

These results may have occurred because psychological theory and evidence, 

particularly from human factors study of human-device-environment interaction, were 

not considered in designing CDS or E-HR systems (Ratwani et al., 2016; Savage, 

Fairbanks, & Ratwani, 2017). More broadly, the core strategy underlying the HITECH 

Act, paying physicians to meet externally determined metrics, may be inconsistent with 

psychological theory about the effects of extrinsic financial incentives on human 

motivation (Himmelstein, Ariely, & Woolhandler, 2014; Kao, 2015). Consistent with 

these views, one early proponent of electronic technologies in health care recently noted 

that the exploratory application of behavioral science to CDS began in 2015 or 2016 (Cho 
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& Bates, 2018). Therefore, meaningful use and CDS may be described as atheoretical, 

meaning they were developed without regard to psychological theory (Prestwich, 

Kenworthy, & Conner, 2018). This atheoretical approach is typical of health-system 

interventions on physician behavior (Jäger et al., 2016; R. Lau et al., 2016; L. Liang et 

al., 2017). 

Whether theory-based approaches to changing medical decision-making might 

produce better outcomes than atheoretical approaches is an important but understudied 

question. No comparisons of theory-based and atheoretical interventions to promote 

evidence-based medical practice were identified in the literature review for the current 

study. To address this gap in the literature, I compared two approaches—theory based 

and atheoretical—to predicting a non-evidence-based medical decision that negatively 

affects U.S. population health (see Compton, Han, Blanco, Johnson, & Jones, 2018; Seth, 

Scholl, Rudd, & Bacon, 2018): the prescribing of attention-deficit hyperactivity disorder 

(ADHD) medications to adult patients for whom they may be unsafe (see Fairman, Davis, 

Peckham, & Sclar, 2018). Results may be used to inform health psychology-based 

interventions to improve medical decision-making, including but not limited to those for 

ADHD medications, potentially facilitating positive social change. 

In this chapter, I introduce the need for theory-based approaches, explain the 

safety risks associated with some ADHD-medication prescribing decisions, present 

difficulties in evidence-based practice promotion and potentially unsafe ADHD-

medication prescribing as research problems, and describe the purpose of this study. In 

the remainder of the chapter, I provide an overview of the nature of the study, including 
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quantitative methods and definitions of key variables, and present research questions, 

definitions and assumptions, study scope, and study limitations. 

Background 

Theory-based assessments of physician decision-making are uncommon (R. Lau 

et al., 2016), identified in only two of 178 surveys on barriers to guideline-based medical 

practice in one systematic 10-year review (Willson, Vernooij, & Gagliardi, 2017), and 

totals of six studies of clinical practice behaviors and 29 studies of behavioral intentions 

in a 40-year systematic review of cognitive theory-based research in health care (Godin, 

Bélanger-Gravel, Eccles, & Grimshaw, 2008). In a 10-year scoping review of guideline-

implementation interventions described as theory based, only 42 studies were found, of 

which only 10 included a theoretical basis for design or evaluation (L. Liang et al., 2017). 

Moreover, most guideline-implementation studies that were purportedly theory based did 

not include a map (link) of specific intervention components to any theoretical construct 

(L. Liang et al., 2017), a common problem in studies of physician decision-making (R. 

Lau et al., 2016) and other health behavior-change initiatives (Prestwich et al., 2014; 

Prestwich, Webb, & Conner, 2015). Related to this problem is a lack of theory-based 

health care research on objective behavioral measures (Conner & Norman, 2017; 

Prestwich et al., 2015) or on broad policy interventions with potential population health 

impact (Conner & Norman, 2017; Prestwich et al., 2018). 

These deficits represent inconsistencies between currently available health 

psychology research and American Psychological Association (APA, 2014) guidelines 

for the development of preventive interventions. These guidelines recommend a basis in 
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theory, empirical support, consideration of system-wide factors, and advocacy for 

population-health promotion. Summarizing these needs, theory-based research including 

objective behavioral measures is needed to study health-related behaviors, including non-

evidence-based medical decisions, with potential population health effects (APA, 2014; 

Conner & Norman, 2017; L. Liang et al., 2017). 

One such non-evidence-based medical decision recently identified using an 

objective behavioral measure (Fairman et al., 2018) is ADHD-medication prescribing that 

is potentially unsafe according to evidence-based federal guidelines (U.S. Food and Drug 

Administration [FDA], 2002, 2007a). Specifically, patients with substance use disorder 

(SUD) who receive a stimulant medication may be put at risk of increased misuse 

(Compton et al., 2018; FDA, 2007a; McCabe et al., 2019) or of an overdose that leads to 

emergency care (L. Y. Chen et al., 2016; Fulde & Forster, 2015) or death (Seth et al., 

2018). Additionally, those with cardiovascular disease (CVD) who receive either a 

stimulant or the most commonly used nonstimulant alternative, atomoxetine (Fairman, 

Peckham, & Sclar, 2017), may be put at risk of a cardiac event, such as a myocardial 

infarction (heart attack) or cerebrovascular event (stroke; FDA, 2002, 2007a). However, 

in a national sample of adults who were newly prescribed medications for ADHD, 

Fairman et al. (2018) found that 11–19% of stimulant-treated patients had SUD, and 16% 

of patients aged 55–64 years who were prescribed stimulants or atomoxetine had CVD. 

In accordance with APA (2014) recommendations, a theory-based assessment of this 

prescribing problem, which represents an important population health issue, was needed 
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to address the lack of research on psychology-informed promotion of evidence-based 

prescribing. 

Problem Statement 

Two problems were addressed in this study. Each of the two social problems was 

associated with a research problem. These research problems represented gaps between 

APA (2014) guidance and available published information.  

The first social problem was persistent failure to achieve the goal of promoting 

evidence-based medical practice (Baker et al., 2015; R. Lau et al., 2016). A related 

research problem was the paucity of studies in which researchers applied psychological 

theory to medical decision-making (Godin et al., 2008; Jäger et al., 2016; R. Lau et al., 

2016; L. Liang et al., 2017). By mapping potential predictors of medical decisions, 

including CDS and meaningful use interventions, to theoretical constructs, this research 

comported with APA (2014) recommendations for use of theory and evidence. 

The second social problem was the prescribing of ADHD medications to adults 

for whom they may be unsafe. As a recently identified issue in the literature on evidence-

based medicine (Fairman et al., 2018), potentially unsafe ADHD-medication prescribing 

was also a research problem because known predictors were limited to a few patient 

characteristics, such as age or medical conditions (Compton et al., 2018; Fairman et al., 

2018; McCabe et al., 2019). Increasing rates of diagnosis and medication treatment for 

ADHD among U.S. adults (Fairman et al., 2017; Olfson, Blanco, Wang, & Greenhill, 

2013) have been accompanied by growth in rates of stimulant misuse, overdose, and 

death (Seth et al., 2018; U.S. Substance Abuse and Mental Health Services 



7 

 

Administration, 2013). Through use of a national sample (CDC, 2015a) to study this 

problem, this research comported with APA (2014) recommendations for system-wide 

assessments to promote population health. 

Purpose of Study 

The purpose of this quantitative study was to assess the relative strengths of 

atheoretical and theory-based approaches to promotion of evidence-based medicine by 

comparing alternative logistic regression models of an objective behavioral measure of 

potentially unsafe ADHD-medication prescribing: one model based on the rationales 

underlying two atheoretical interventions (CDS and meaningful use) and the other based 

on theory-derived predictors. To provide U.S. population-level findings, I chose a sample 

that was nationally representative (see CDC, 2015a). To provide theory-based research, I 

mapped hypotheses for predictors of interest, including CDS and meaningful use, to 

theoretical constructs based on qualitative and quantitative evidence about the 

psychology of medical practice, and about cognitive and emotional response to CDS and 

E-HRs (see Holden, 2011; Shanafelt et al., 2016; Slight et al., 2016). Because the term 

atheoretical refers to the way that interventions are developed, not to the way that they 

are studied (Prestwich et al., 2018), both atheoretical interventions and theory-based 

predictors were mapped to theoretical constructs in this research. 

Theoretical Framework 

Prescribing is a cognitive activity in which physicians weigh the benefits against 

the risks of a given medication based on clinical situation, medical knowledge, and 

influences present in the medical practice environment (Djulbegovic & Elqayam, 2017). 
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The interventions examined in this study included CDS, which was intended to improve 

the knowledge available to physicians in the decision-making process (see Bates et al., 

2003), and meaningful use, which was intended to motivate physicians to use electronic 

technology (see Buntin, Jain, & Blumenthal, 2010; Heisey-Grove & Patel, 2014). To 

frame these cognitive and environmental influences in competing statistical models for 

this study, I chose two theories: social cognitive theory (Bandura, 1989), which served as 

the general theoretical framework, and self-determination theory (Deci & Ryan, 2008a), 

which informed hypotheses about incentives in the practice environment, including 

meaningful use. These theories are described briefly here and in more detail in Chapter 2. 

Social Cognitive Theory 

Social cognitive theory depicts decision-making as a function of cognitive 

processes performed by human actors who actively and reciprocally engage with the 

environments in which they operate, basing intentions and behaviors on forethought and 

self-regulation, and influenced by knowledge, social norms, and environmental 

conditions (Bandura, 1989, 2001; Kelder, Hoelscher, & Perry, 2015). In addition to its 

appropriateness to describe prescribing as a cognitive activity influenced by 

environmental factors (Djulbegovic & Elqayam, 2017), the theory facilitates 

understanding of the transmission of occupational norms in medical training. The 

professional values inculcated in medical education, which are reflected in medical 

practice (Colligan et al., 2016), may be described in the theoretical framework as norms 

developed through training and observational learning (Bandura, 1999) that influence 

self-regulated cognition and behaviors in occupational settings (Bandura, 2001). In 
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medicine, these norms include a commitment to meeting patients’ needs (Colligan et al., 

2016; Cooke, Irby, Sullivan, & Ludmerer, 2006) and a personal identity as a biomedical 

expert who is trained for autonomous, complex decision-making (Accreditation Council 

for Graduate Medical Education [ACGME], 2019; Berkhout, Helmich, Teunissen, van 

der Vleutin, & Jaarsma, 2018). Additionally, the theoretical construct of emergent 

interactive agency (Bandura, 1989), referring to mutual human-environmental influence, 

facilitates understanding of physicians’ adaptations to the introduction of CDS and E-HR 

systems in the practice environment, sometimes with responses not intended by system 

developers (Nanji et al., 2014; Slight et al., 2016; Wright et al., 2018). 

Knowledge constructs, including characteristics of the patient, such as diagnoses, 

and of the prescriber, such as specialty, were common to the theory-based and 

atheoretical models. The environmental-influence constructs differed. Theory-based 

hypotheses for the use of CDS in the practice environment were derived from research 

evidence on cognition in medical practice. Hypotheses for the remaining environmental-

influence predictors were derived from self-determination theory (see Deci & Ryan, 

2008a). 

Self-Determination Theory 

Self-determination theory is a framework for understanding the ways in which 

types of motivating factors affect task performance and psychological well-being (Deci & 

Ryan, 2008a). According to the theory, the more autonomous (i.e., internal to self) a 

motivating factor is for a given task, the more an individual will persist with the task, 

execute it well, and derive psychological satisfaction from it. Autonomous motivation 
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results, in varying degrees, either from intrinsic enjoyment of the task, which is fully 

autonomous, or from extrinsic rewards tied to the performance of tasks that a person 

would have valued regardless of reward, which is partially autonomous (Deci & Ryan, 

2008b; Prestwich et al., 2018). In contrast, incentives linked to tasks that an individual 

does not value are more likely to be perceived as external to self, leading to a sense of 

controlled motivation and to diminished task persistence and performance (Deci & Ryan, 

2008a). Environmental incentives mapped to these two constructs of self-determination 

theory, and hypotheses for these incentives, were based on literature describing 

professional values in medicine. These incentives included meaningful use in both the 

atheoretical and theory-based models (see Emani et al., 2017; Shanafelt et al., 2016; 

Weeks, Keeney, Evans, Moore, & Conrad, 2015) and additional incentives, patient-

derived revenue, and nature of professional relationship with the patient (see Colligan et 

al., 2016; Friedberg et al., 2013; Tak, Curlin, & Yoon, 2017) in the theory-based model 

only. 

Nature of Study 

This quantitative study was a retrospective and cross-sectional analysis of a 

sample of U.S. office-based physician visits recorded in the publicly available National 

Ambulatory Medical Care Survey (NAMCS) archival data set (CDC, 2015a, 2019b). The 

NAMCS, which is based on a probability, cluster-randomized, stratified, multistage 

sampling design (CDC, 2015a), is conducted annually by the National Center for Health 

Statistics (NCHS) and represents services provided by U.S. office-based physicians, 

excluding those employed in federal facilities (e.g., Indian Health Service, Department of 
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Veterans Affairs [VA]) or those who do not provide direct patient care (e.g., radiologists, 

pathologists; CDC, 2019b). Weights provided in the data set are used to adjust for the 

sampling design and for nonresponse, producing nationally representative estimates. 

NAMCS data are widely used in research on U.S. health care (CDC, 2019c). During the 

time period for this study, 2014–2016 NAMCS data were collected for a total of 87,207 

visits across all ages and diagnoses (see CDC, 2017, 2018, 2019b). 

NAMCS procedures and variables are discussed in detail in Chapter 3. Data for 

sampled physicians and visits are collected by U.S. Bureau of the Census representatives 

from medical records using an automated, laptop-based tool and standard definitions 

(CDC, 2019b). Data relevant to the current study included patient characteristics (e.g., 

diagnoses, demographics), prescribed medications and therapies, characteristics of the 

office (e.g., CDS use, meaningful use status) and provider (e.g., specialty, revenue 

sources), and nature of physician-patient relationship (e.g., whether physician is the 

primary care provider). 

Outcome (Dependent) Variable 

The study outcome (dependent variable), potentially unsafe prescribing of an 

ADHD medication, was measured as a binomial. Two clinical scenarios were tested. The 

first scenario (A) represented patients diagnosed with ADHD and prescribed any 

treatment: a medication, psychotherapy, or both. The binomial outcome in Scenario A 

was a potentially unsafe medication versus an alternative treatment, including either a 

safer medication or psychotherapy. The second scenario (B) represented patients who 

have a medical condition, either CVD or SUD, that would make some ADHD 
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medications potentially unsafe. The binomial outcome in Scenario B was a potentially 

unsafe prescribed medication versus no potentially unsafe prescription. Only Scenario A 

was restricted to patients with an ADHD diagnosis, for reasons explained in the 

descriptions of study assumptions and definitions derived from federal guidance on 

medication use (see FDA, 2018) and misuse (see Compton et al., 2018). The binomial 

outcomes, described in Chapter 2 and operationalized in Chapter 3, were based on 

treatment guidelines current during the study period (see Bolea-Alamañac et al., 2014; 

Post & Kurlansik, 2012) and on federal prescribing information (see FDA 2002, 2007a). 

Predictor (Independent) Variables 

In both scenarios, predictor (independent) variables were mapped to constructs 

from each of the two theoretical frameworks. Knowledge construct predictors, reflecting 

both expertise and information needed to perform a behavior (see Kelder et al., 2015), 

were included and hypothesized to act in the same way in both the atheoretical and 

theory-based models because they were exogenous (i.e., not affected by the 

environmental variables of interest during the visit; see Pedhazur, 1982). These variables 

included characteristics of the patient, including demographics (see Fairman et al., 2017; 

Grinspan et al., 2017; McCabe et al., 2019; Rigg & Monnat, 2015), medical and 

psychiatric comorbidities (see Q. Chen et al., 2018; D. D. Jeffery, May, Luckey, Balison, 

& Klette, 2014; Mao & Findling, 2014; Rigg & Monnat, 2015), and whether the patient 

had a medical condition associated with a black-box status, which in federal guidance 

indicates the highest risk level for a medication (see FDA, 2012). Physician 
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characteristics included specialty and urban versus rural location (see Leslie et al., 2012; 

Rigg & Monnat, 2015). 

Environmental construct predictors differed in the atheoretical and theory-based 

models. Both models included CDS and meaningful use, with competing hypotheses. 

Additional theory-based predictors were patient-derived revenue and nature of 

professional relationship with the patient. Hypotheses for these predictors are described 

below and in more detail in Chapter 3. 

Hypotheses for Environmental Predictors 

Hypotheses for CDS and meaningful use in the atheoretical model were based on 

the rationales described by their proponents. These included provision of easily 

accessible, evidence-based knowledge (see Bates et al., 2003), incentives to motivate use 

of that knowledge (see Buntin et al., 2010; Heisey-Grove & Patel, 2014), and prevention 

of unsafe prescriptions (see Bates & Gawande, 2003), especially those that are highest 

severity as indicated by black-box warning status (FDA, 2012). Hypothesized 

associations of CDS with prescribing behavior in the theory-based model were based on 

the following: (a) literature on cognitive barriers to evidence-based medical practice (see 

Arts, Voncken, Medlock, Abu-Hanna, & van Weert, 2016; Baatiema et al., 2017; Chan et 

al., 2017; F. Fischer, Lange, Klose, Greiner, & Kraemer, 2016), (b) a comparison of the 

cognitive norms for which physicians are trained (see Berkhout et al., 2018; Cooke et al., 

2006) with the cognitive demands of CDS and E-HRs (see Ratwani et al., 2016; Ratwani, 

Reider, & Singh, 2019; Stead, Searle, Fessler, Smith, & Shortliffe, 2011), and (c) 

evidence about CDS and E-HRs that was available when meaningful use policies were 
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developed (see Linder, Ma, Bates, Middleton, & Stafford, 2007; Romano & Stafford, 

2011). 

Hypothesized associations of environmental incentives with prescribing behavior 

in the theory-based model were based on self-determination theory (see Deci & Ryan, 

2008a). Meaningful use incentives were hypothesized as a controlled motivator 

associated with mandated use of a technology that is not valued (see Emani et al., 2017; 

Shanafelt et al., 2016; Weeks et al., 2015). Patient-derived revenue and nature of 

professional relationship with the patient were hypothesized as autonomous motivators 

associated with the valued outcome of maintaining patient relationships (see Anderson, 

Stowasser, Freeman, & Scott, 2014; Colligan et al., 2016; Friedberg et al., 2013; Sinsky 

et al., 2013; Tak et al., 2017), compared with other sources of revenue, such as salary. 

Key to the study hypotheses in the theory-based model was an understanding of positive 

task performance as the physician is trained to define it: maintaining the therapeutic 

relationship with, and meeting the needs of, the patient (see Cooke et al., 2006). As 

discussed in more detail in Chapter 2, the physician’s definition of positive task 

performance for ADHD-medication prescribing may differ from that of evidence-based 

guidelines or of the FDA. 

Statistical Analyses 

Logistic regression analysis of office visits was chosen as the analytic approach to 

facilitate statistically controlled, quantitative assessments of the theoretical constructs and 

comparisons of the theory-based and atheoretical models using standard measures of 

model quality: whether odds ratios were in the predicted direction (see Warner, 2013); 
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the concordance or “c” statistic, a measure of predictive accuracy (see Austin & 

Steyerberg, 2012); and model fit (see Pampel, 2000). Differences in model fit, comparing 

the atheoretical and theoretical models, were tested for statistical significance using the 

standard χ2 difference test based on change in –2 log-likelihood (–2LL), accounting for 

between-model differences in degrees of freedom (see Pampel, 2000). In accordance with 

NCHS guidance (CDC, 2019b), all analyses were performed using the IBM SPSS 

Complex Samples module (V25.0), which adjusts for the design effect (i.e., homogeneity 

of variance) associated with the multistage sampling process (see Groves et al., 2009). 

Because of the multistage sampling process, assessment of sample size adequacy was 

made based on NCHS guidance for post hoc analyses of statistical reliability (see CDC, 

2019b; Parker et al., 2017), which is described in Chapter 3. 

Definitions 

The following definitions were used in the development of the rationale, methods, 

and research questions for this study: 

ADHD medication: An ADHD medication is a product approved by the FDA to 

treat ADHD. The definition applies regardless of whether the treated patient has been 

diagnosed with ADHD because there is no prohibition in the United States against 

prescribing an approved medication for an unapproved purpose, known as off-label use 

(FDA, 2018). FDA prescribing guidelines do not describe off-label use of ADHD 

medications, such as for cognitive enhancement (Compton et al., 2018), as potentially 

unsafe (Novartis, 2019).  
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Adult: According to the American Psychiatric Association (2013), diagnostic 

criteria for adult ADHD apply to patients who are aged 17 years or older. 

Atheoretical intervention: An intervention on health-related behavior or outcomes 

is considered atheoretical when it is developed “without reference to, or use of, theory” 

(Prestwich et al., 2018, p. 95).  

Behavior-change technique: In health care, a behavior-change technique is a 

method used to attempt to influence the health-related behaviors of individuals or groups, 

sometimes through manipulation of environmental features to change motivating factors 

or other influences on behavior (Prestwich et al., 2018). 

Clinical or computerized decision support system: A clinical or computerized 

decision support (CDS) system is an electronic device or interface that provides 

informational support and guidance to clinicians at the point of care, as they make 

medical decisions or order treatments, including medications (Korb-Savoldelli, Boussadi, 

Durieux, & Sabatier, 2018).  

Computerized prescription order entry: Computerized prescription order entry, 

also known as e-prescribing, is the use of an electronic system or device to generate a 

prescription, which is transmitted to the entity responsible for executing the order, such 

as a pharmacy that dispenses medication (Korb-Savoldelli et al., 2018). 

Evidence-based medicine: Although the concept of evidence-based medicine has 

evolved over an approximately 50-year period (Djulbegovic & Guyatt, 2017), the 

currently accepted definition (Blanco et al., 2014) is “the conscientious, explicit, and 

judicious use of current best evidence in making decisions about the care of individual 
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patients” based on the integration of clinical observation and expertise with high-quality 

research evidence (Sackett, Rosenberg, Gray, Haynes, & Richardson, 1996, p. 71). 

Incentives: Rewards to encourage certain behaviors and discourage alternatives 

are commonly used in behavior-change techniques (Prestwich et al., 2018). In the 

HITECH Act of 2009, which was intended to encourage use of electronic technologies in 

medical decision-making, incentives included payment increases for expanded use of, 

and payment decreases for failure to use, these technologies (Kibbe, 2010). 

Intention-to-treat: In this approach to assessment of the effects of an intervention, 

data are analyzed based on the treatment to which an individual is assigned instead of the 

treatment received (Prestwich et al., 2018). This approach is distinguished from per 

protocol analysis, which is limited to those who receive or complete a course of treatment 

(Ranganathan, Pramesh, & Aggarwal, 2016).  

Intervention mapping: In the development of behavior-change interventions that 

are both theory based and evidence based, an intervention mapping approach links 

constructs from psychological theory to problems, strategies, or interventions, relying on 

available research evidence (Prestwich et al., 2018). 

Medication-relevant CDS: Medication-relevant CDS, as operationalized in this 

study, includes use of computerized prescription order entry and warnings of drug safety 

issues (see CDC, 2019b). 

Misuse: Misuse of a prescribed medication is use other than that directed by a 

physician (Compton et al., 2018). By definition, off-label use as prescribed is not misuse. 
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Patient-derived revenue: As operationalized in this study, this term refers to 

receipt of income based on patient volume, such as from practice ownership, or 

satisfaction, such as from patient satisfaction surveys (CDC, 2019b).  

Potentially unsafe prescribing: This term is used by health care organizations to 

indicate a medication treatment recommendation that has an elevated potential to result in 

harm or death (M. M. Jeffery, 2018; Williamson, 2018). For patients with CVD or SUD 

who are treated with some ADHD medications, potential safety risks occur because of 

neurochemical side effects (Faraone, 2018; Nissen, 2006). 

Theory-based intervention: In contrast to an atheoretical intervention on health 

behavior, which is developed without consideration of psychological theory, a theory-

based intervention relies on one or more psychological theories to identify behavioral 

determinants, target populations, or behavior-change techniques (Prestwich et al., 2018). 

Usability: The usability of a technological device is defined as the degree to 

which people using the device in a particular environment or context are able to achieve 

their goals for use (Ratwani et al., 2016). 

Research Questions 

The first two research questions (RQs) addressed the associations of CDS and 

meaningful use, respectively, with the outcome measure. RQ3 addressed the comparison 

of the theory-based versus atheoretical models overall. 

RQ1: What is the quantitative association of medication-related CDS in the 

practice environment with potentially unsafe prescribing of ADHD medications, 
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measured as a binomial, in a logistic regression model that accounts for knowledge 

construct variables? 

Ho1: (theory-based). Medication-related CDS is not significantly associated with 

potentially unsafe prescribing of ADHD medications. 

Ha1: (atheoretical). Medication-related CDS is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications, particularly for patients who have a 

medical condition with a black-box warning. 

RQ2: What is the quantitative association of meaningful use in the practice 

environment with potentially unsafe prescribing of ADHD medications, measured as a 

binomial, in a logistic regression model that accounts for knowledge construct variables? 

Ho2: (atheoretical). Meaningful use is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications. 

Ha2: (theory-based). Meaningful use is associated with increased odds of 

potentially unsafe prescribing of ADHD medications. 

RQ3: Which model—that based on atheoretical interventions or that based on 

theory-derived predictors—better explains the binomial measure of potentially unsafe 

ADHD-medication prescribing, where better explanation is defined as coefficients in the 

expected direction, predictive accuracy measured with the c-statistic, and model fit 

measured with the –2LL statistic? 

Ho3: The atheoretical model better explains potentially unsafe prescribing of 

ADHD medications. 
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Ha3: The theory-based model better explains potentially unsafe prescribing of 

ADHD medications. 

Assumptions 

A key assumption of this study was that the prescribing of a medication to a 

patient for whom it is potentially unsafe, according to federal guidelines (see FDA, 2002, 

2007a), is suboptimal. This assumption does not indicate that all such prescriptions are 

unsafe, as the term potentially unsafe confers increased but not absolute risk. The 

assumption, which was necessary because not every evidence-based suggestion is 

appropriate for every patient (see Sackett et al., 1996), rests on the increased risk 

associated with some medications and on the availability of safer alternatives (see Bolea-

Alamañac et al., 2014; Post & Kurlansik, 2012). 

A second assumption was that intention-to-treat analysis is appropriate to measure 

the outcomes of CDS as an intervention that represents an expenditure of monetary and 

human resources. Consistent with an intention-to-treat approach, which has been used to 

study the association of CDS with quality of care in physician office visits (see M. J. 

Miller, Burns, Kapusnik-Uner, Carreno, & Matuszewski, 2017), no attempt was made to 

determine whether the CDS guidance was actually delivered to the physician or whether 

the physician read it (see Nanji et al., 2014). Instead, the intervention was defined as the 

presence of a CDS system with a feature intended to warn the physician of drug safety 

issues. This assumption was necessary because it is not feasible to measure every 

interaction between a physician and a medical device. 
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Finally, I assumed that the medical risks associated with ADHD-medication use 

in patients with CVD and SUD occur regardless of whether the patient has ADHD. This 

assumption was reasonable because these risks are caused by neurochemical side effects, 

specifically the transmission of dopamine to a brain region associated with addiction and 

norepinephrine-triggered increases in heart rate and blood pressure (see Faraone, 2018; 

Nissen, 2006), which would logically be expected to occur regardless of the reason for 

medication usage. Moreover, the literature review for this study indicated no increase or 

decrease in ADHD-medication risk associated with off-label prescribing. This 

assumption was necessary because of increased prescribing of ADHD medications to 

adults who do not have a formal diagnosis of ADHD (see Olfson et al., 2014; Safer, 

2016). 

Delimitations and Scope 

The scope of this study was national, representing adults who visited a U.S. 

office-based practice and received direct patient care from a medical doctor or doctor of 

osteopathy (see CDC, 2015a). For Scenario A, the scope included adults diagnosed with 

ADHD. For Scenario B, the scope included adults at risk of potentially unsafe prescribing 

because they had CVD or SUD (see CDC, 2002, 2007a). The scope of the outcome 

(dependent) variable was prescribing decisions made by physicians in those visits, not 

choices made by patients after they left the office (e.g., to overuse medication, give it to a 

third party, or obtain it elsewhere; see Compton et al., 2018). 

The scope of the knowledge-based predictor (independent) variables in this study 

represented information that was known to the physician and included in the medical 
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record. The scope did not represent information not available to the physician during the 

visit, or not recorded for another reason. Moreover, the study outcome represented 

potentially unsafe prescribing, not all types of potentially inappropriate prescribing. No 

attempt was made to determine whether a patient’s symptoms warranted a prescription, 

which is a medical judgment that may rely on unobservable information. Additionally, 

because the potential benefits of E-HRs for patient care are widely accepted despite 

challenges that physicians face in using them (Schiff, Hickman, Volk, Bates, & Wright, 

2016), no attempt was made to address the hypothetical question of whether E-HRs 

represent an improvement over paper record systems. 

Finally, I assessed outcomes associated with interventions and environmental 

features currently present in the medical practice environment, not theory-based 

interventions that were suggested from the literature review but that have not yet been 

designed or implemented. As described in Chapter 5, findings of the literature review, 

coupled with results of the current study, suggested a need for additional theory-based 

assessments of practice-ownership and physician-employment structures, which were not 

directly studied in this research. Because the topic of using psychology-based strategies 

to promote evidence-based practice is relatively unexplored (Godin et al., 2008; R. Lau et 

al., 2016; L. Liang et al., 2017), the comparison of theory-based with atheoretical 

approaches in this study should be considered a first step. 
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Study Limitations 

Internal Validity 

One important potential limitation of this study, similar to that of any quantitative 

research with an objective behavioral outcome measure, was a lack of direct information 

about psychological mediators, such as physician knowledge, cognition, or emotion, that 

a researcher might measure in a qualitative study or in a survey in which physician 

opinion constitutes the outcome. Similarly, results represent intention-to-treat estimated 

associations of interventions with the outcomes. Whether physicians received or read 

CDS-delivered guidance is unknown. Although this approach may have resulted in some 

loss of internal validity in characterizing the reasons for a potentially unsafe prescription, 

the approach enhanced external validity by making it feasible to study nationally 

representative data (see CDC, 2015a). In this respect, the methods of this study improved 

on those of physician surveys that included self-reported measures, which may be 

unreliable or biased (see Conner & Norman, 2017); that had low response rates without 

statistical adjustments for nonresponse (see Leslie et al., 2012; Shanafelt et al., 2016; 

Weeks et al., 2015); or that were based on convenience samples (see Goodman, Surman, 

Scherer, Salinas, & Brown, 2012). 

An additional possibility was confounding by unmeasured factors, such as 

symptom severity, patient demands, or features of the practice office not included in 

study measures (see Warner, 2013). Providers who chose to participate in the meaningful 

use program may have systematically differed from nonparticipants (Grinspan et al., 

2017), particularly on attitudinal factors such as agreement with guidelines (Cloutier et 
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al., 2018; F. Fischer et al., 2016) or with their application to individual patient 

circumstances (Arts et al., 2016). This bias could have affected the associations of CDS 

and meaningful use with the outcome in this study. Although the measures of model 

quality used in this research provided information about the degree to which results were 

affected by this problem, the absence of confounding cannot be guaranteed with this or 

any nonexperimental design (see Warner, 2013). 

An additional potential limitation on internal validity was the possibility of 

misclassification of exposure because of omissions of relevant data from the medical 

record (see Madden, Oakoma, Rusinak, Lu, & Soumerai, 2016). Examples include the 

provision of substance abuse counseling without a recorded diagnosis of SUD and the 

lack of a code for psychotherapy in visits made to mental health professionals. Although 

data transformations and sensitivity analyses were used to address these situations, the 

possibility remains that errors or omissions affected study results. 

Potential limitations also arose because of small sample sizes for subgroups, 

particularly in Scenario A, which included only patients with ADHD. This situation was 

assessed using standard NCHS tests for statistical reliability estimation (see CDC, 2019b; 

Parker et al., 2017). Descriptions of quantitative findings include statistical precision of 

all estimates based on results of these tests. 

External Validity 

One potential limitation on external validity was caused by an NCHS decision to 

allow participants in the 2016 NAMCS to submit E-HRs in lieu of on-site data collection, 

in partial fulfilment of two federal incentive payment systems, including meaningful use 
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(CDC, 2019b). For reasons not fully described by the NCHS, these data, which 

“presented many processing challenges,” were not included in the 2016 data set (CDC, 

2019b, p. 2). Because the technological capabilities or practice patterns of physicians 

who chose E-HR data collection may have systematically differed from those of other 

participants, I performed sensitivity analyses excluding 2016. Although results suggested 

that findings were robust to this issue, the possibility remains that findings do not 

generalize to providers with more sophisticated E-HR systems, or to those who opted 

against on-site data collection for some other reason. Findings also do not generalize to 

surgical visits, which were excluded from this research, or to patients who were sent 

directly from the physician office to emergency care. 

Additionally, it is possible that NAMCS participants systematically differed from 

nonparticipants despite previous research evidence of minimal nonresponse bias in 

physician surveys with low response rates (see McFarlane, Olmsted, Murphy, & Hill, 

2007; Willis, Smith, & Lee, 2013; Ziegenfuss et al., 2012). During the study period, the 

NAMCS participation rate, defined as the percentage of sampled physicians who 

contributed at least one patient record, ranged from 29.5–39.3% (CDC, 2017, 2018, 

2019b). An extensive validation study, conducted by the NCHS and described in Chapter 

3, suggested minimal bias after weighting (Hing, Shimizu, & Talwalkar, 2016). 

Additionally, comparisons of study results with national data, described in Chapter 4, 

suggested good external validity. Nonetheless, the possibility of nonresponse bias cannot 

be completely ruled out. 
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Significance of the Study 

The medical literature has implicated the incorporation of electronic technologies 

into the practice environment as a major or partial contributor to numerous outcomes that 

have the potential for negative impact on the health care system and the health of 

individuals: disengagement from patients (J. Levinson, Price, & Saini, 2017), 

professional burnout (Shanafelt et al., 2016), departure from the practice of medicine 

(Sinsky et al., 2017; Wright & Katz, 2018), and potential or actual medical harms (Howe 

et al., 2018; Schiff et al., 2015; Korb-Savoldelli et al., 2018). These concerns are 

supported by a substantial body of research evidence. The current study investigation of 

whether theory-based interventions on medical decision-making might represent an 

improvement over current approaches has the potential to benefit physicians and the 

health care system. More broadly, positive social change could result from encouraging a 

multidisciplinary approach to the study of medical decision-making and evidence-based 

practice promotion (see Djulbegovic & Guyatt, 2017) by engaging the unique capabilities 

of professionals working in the fields of psychology, health policy, and medicine (see 

Holden, Binkheder, Patel, & Viernes, 2018; Ray et al., 2019). Study findings suggested 

several potential roles for health psychologists in these endeavors, which are described in 

Chapter 5. 

Additionally, the medical decision examined in this research, potentially unsafe 

ADHD-medication prescribing, may be understudied relative to its population-health 

implications. Although psychostimulants other than cocaine caused only 12% of U.S. 

drug-overdose deaths in 2016, the rate of increase from 2015 to 2016 in overdose deaths 
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from these substances (33%) was triple that of prescribed opioids (11%; Seth et al., 

2018). Recognizing these risks, the CDC recently added stimulants to its drug 

surveillance protocols (Kariisa, Scholl, Wilson, Seth, & Hoots, 2019). By providing 

information about predictors of potentially unsafe ADHD-medication prescribing, this 

study may inform efforts to mitigate the problem, thereby benefiting patients treated in 

U.S. medical practice. 

Summary 

In this quantitative study, I compared theory-based with atheoretical approaches 

to explaining a non-evidence-based medical decision with potentially substantial effects 

on population health. The theory-based approach reflected physician training, 

professional norms, and cognitive demands of CDS and E-HRs, as recorded in a large 

body of qualitative and quantitative research. The theory-based approach also reflected an 

assessment of whether physicians value E-HRs and the guidance provided by CDS, an 

important determinant of the effects of meaningful use incentives, according to self-

determination theory. All statistical models accounted for physician specialty and patient 

characteristics that may affect ADHD-medication prescribing decisions. 

In Chapter 2, I describe the study’s theoretical frameworks in more detail and 

assess potential linkages between those frameworks and medical decision-making. The 

remainder of Chapter 2 addresses research relevant to three key constructs of social 

cognitive theory: knowledge, cognition, and environmental influence. The review of 

knowledge covers the specific treatment choices made during an ADHD-medication 

prescribing decision and the limitations on information available during the decision-
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making process. The review of cognition includes a description of medical training and 

professional norms. At the intersection of cognition and the environment are evidence-

based decision-making and barriers to it. Environmental factors reviewed include CDS, 

meaningful use, and other incentives. The chapter concludes with summaries of gaps in 

the literature and of theory-based and atheoretical perspectives on environmental 

influences affecting medical practice. 
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Chapter 2: Literature Review 

Despite widespread support for principles of evidence-based medicine among 

U.S. physicians (Blanco et al., 2014; Chan et al., 2017), treatments prescribed in routine 

practice commonly differ from those recommended in evidence-based guidelines (Baker 

et al., 2015; R. Lau et al., 2016). The widespread adoption of E-HRs in U.S. medical 

practices that resulted from implementation of the HITECH Act (Gabriel & Swain, 

2014), although intended to improve patient health by aligning routine care with research 

evidence (Bates et al., 2003), produced unintended consequences (Brown et al., 2017; 

Colligan et al., 2016; Ratwani et al., 2019; Shanafelt et al., 2016). These outcomes have 

been attributed by some observers to failure to consider psychological theory or evidence, 

particularly from human-factors research (Ratwani et al., 2016; Savage et al., 2017), in 

developing E-HR systems. Similar concerns have been expressed about the psychological 

effects of strategies that pay physicians to perform according to externally determined 

metrics (Himmelstein et al., 2014; Kao, 2015), such as meaningful use incentives. 

As atheoretical behavior-change interventions (Cho & Bates, 2018), CDS and the 

HITECH Act were typical of policies intended to improve medical decision-making 

(Jäger et al., 2016; R. Lau et al., 2016; L. Liang et al., 2017). Whether use of a theoretical 

basis in designing these interventions might represent an improvement over current 

approaches is an understudied question. As a preliminary step in addressing that question, 

this quantitative study was conducted to compare atheoretical and theory-based models of 

potentially unsafe ADHD-medication prescribing (see Fairman et al., 2018). Study results 
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may effect positive social change both for physicians who are affected by interventions 

on their medical decisions and for adults who are prescribed ADHD medications. 

The order of sections in this chapter was based on three core tenets of the study’s 

primary theoretical framework, social cognitive theory: knowledge, cognition, and 

environmental influence (see Bandura, 1989, 1999; Kelder et al., 2015). After explaining 

the literature search strategy, theoretical framework, and evidence regarding the study 

dependent variable (DV, outcome) measure, I discuss knowledge available to physicians 

about ADHD medications and safety issues. Then I consider cognition: how physicians 

are trained to make decisions and the occupational values and norms that influence their 

decision-making. I discuss evidence-based medical practice as an interaction of cognition 

and environment, describing barriers to evidence-based practice and evaluating whether 

the provision of knowledge, the core function of CDS, might reasonably be expected to 

mitigate those barriers. I then discuss two key environmental influences on the medical 

practice environment, CDS and meaningful use provisions, explaining the rationale for 

these policies and describing physician experiences with them. Because study hypotheses 

about CDS were based in part on evidence available at the time the HITECH Act was 

developed, I distinguish early (pre-2012) from postimplementation experiences. The 

chapter concludes with summaries of the literature on CDS and meaningful use, set 

within the current study’s theoretical frameworks, and of gaps in the literature addressed 

by this research. 
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Literature Search Strategy 

As shown in Figure 1, the systematic strategy used to search the literature 

encompassed the following topics and sources: (a) theoretical frameworks 

(PsycARTICLES); (b) medical information about ADHD, ADHD medications, and 

outcomes of CDS and E-HRs (PubMed); (c) physician cognition and decision-making 

(PsycARTICLES, PsycINFO, Academic Search Complete); (d) key policy documents 

and position white papers (Google); and (e) purposive searching for works by key 

opinion leaders (varied sources). 

 

Figure 1. Literature search strategy. ADHD = attention-deficit hyperactivity disorder; 
CDS = computerized decision support; CPOE = computerized prescription order entry; 
E-HR = electronic health record. 

Most searches were limited to 2010 or later. Exceptions included the following: 

(a) searches on the rationales for CDS and meaningful use policies, which covered 

approximately 10 years prior to HITECH Act passage (see U.S. Congressional Budget 
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Office [CBO], 2008); (b) information about adult ADHD and inappropriate use of 

stimulants, which covered primarily the past 3 years because research attention to these 

topics is recent (see Compton et al. 2018; Fields, Johnson, & Hassig, 2017; Kooij et al., 

2019; McCabe et al., 2019); and (c) theoretical texts. Literature regarding features of E-

HR technologies was limited to the United States to reflect state of practice for U.S. 

settings. 

Theoretical Frameworks 

Prescribing is a cognitive activity that is intended to be information based and 

rational but may be context dependent and constrained by environmental influences 

(Djulbegovic & Elqayam, 2017). A theoretical framework for prescribing decisions 

should encompass (a) informational inputs, (b) the way those inputs are processed 

cognitively, and (c) environmental influences on the cognitive process. The theories 

chosen were social cognitive theory and self-determination theory. 

Social Cognitive Theory 

Social cognitive theory is grounded in a core assumption that human action is 

characterized by emergent interactive agency, neither completely independent of, nor 

completely determined by, environmental influence (Bandura, 1989). The framework 

presents individuals as constantly engaging with their environments, both acting on them 

and being acted upon by them, in a process of triadic reciprocal causation that 

encompasses mutual interactions among individual (emotional or cognitive), behavioral, 

and environmental events. Although the theory acknowledges environmental constraints 

that may be “thrust upon people whether they like it or not,” the theory also suggests that 
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humans respond to these constraints with personal agency in an ongoing process of 

adaptation (Bandura, 1999, p. 23). Humans engage in forethought about various courses 

of action; form intentions, which are plans and strategies; act in a way that is expected to 

provide satisfaction; and monitor the outcomes of those actions, adjusting future 

cognition and behavior accordingly (Bandura, 1989; Bandura & Locke, 2003). 

Outcome expectations, knowledge, and the environment. According to social 

cognitive theory, human actions are based on outcome expectations, a theoretical 

construct that refers to the anticipated effects of decisions (Bandura, 1989; Kelder et al., 

2015). These expectations are derived from a cognitive process that accounts for 

knowledge, which includes both the expertise and the information necessary to perform a 

behavior, and environmental influences. In prescribing, relevant knowledge includes 

proficiency in medical practice derived from medical training (Mowery, 2015) and 

information about the patient, such as symptoms, clinical complexity, or other factors that 

affect the potential benefits or risks of the prescription (Anderson et al., 2014; Gupta & 

Cahill, 2016; Pérez de los Cobos, Siñol, Pérez, & Trujols, 2014). Environmental 

influences, which are facilitators and barriers to various actions (Kelder et al., 2015), may 

in the medical practice office include tools that provide information, such as CDS (Cho & 

Bates, 2018); input from other providers or from patients (Donohue et al., 2018; Sirota,  

Round, Samaranayaka, & Kostopoulou, 2017); or financial or nonfinancial rewards for 

specific behaviors (Heisey-Grove & Patel, 2014; Tak et al., 2017). 

Application of social cognitive theory to study topic. As noted in Chapter 1, 

cognitive theories have seldom been applied to the study of medical decision-making 
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(Godin et al., 2008). Nonetheless, as will be shown throughout this chapter, four 

constructs of social cognitive theory are helpful in explaining physician behavioral 

response, this study’s outcome (DV), to E-HR-delivered CDS, the independent variable 

(IV, predictor) in RQ1. The first two constructs are occupational self-regulation 

(Bandura, 2001) and moral agency (Bandura, 1999). These constructs represent the ways 

that human beings regulate their behavior in accordance with occupational norms, 

forming what Bandura (2001) described as a “personal identity” (p. 15) around work. 

Application of these constructs to this study derived from an inconsistency between the 

ways that physicians are trained to think, as a part of their occupational identity, and the 

changes to the practice environment brought about by CDS and E-HRs (see Berkhout et 

al., 2018; Colligan et al., 2016; Friedberg et al., 2013; Shanafelt et al., 2016). 

The third construct is self-efficacy, referring to the degree to which humans 

perceive themselves as capable of executing certain behaviors (Bandura & Locke, 2003). 

Self-efficacy for medical practice is developed in physicians through a rigorous training 

process (Mowery, 2015) that is discussed in the section on medical training. Application 

of this construct to this study derived from an inconsistency between the tasks for which 

physicians are trained to have self-efficacy (see Berkhout et al., 2018) and the cognitive 

demands introduced by CDS and E-HRs (see Ratwani et al., 2016). 

The fourth construct is emergent interactive agency (Bandura, 1989). The 

literature review for this study indicated inconsistencies between the expectations of E-

HR system proponents (see Bates et al., 2003; Blumenthal & Tavenner, 2010) and the 

sometimes unexpected ways in which physicians have responded to these systems (see 
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Nanji et al., 2014; Slight et al., 2016; Wright et al., 2018). In theoretical terms, physicians 

adapted to E-HR-related environmental changes with the human agency described by 

Bandura. 

Potential limitation of theory to explain prescribing. Social cognitive theory 

does not alone indicate whether a given environmental influence is a facilitator or barrier. 

Rather, social cognitive theory provides a structure of constructs to which various 

environmental features may be mapped (i.e., linked) in a theory-based model (see 

Prestwich et al., 2018). A potential limitation of social cognitive theory for a model of 

prescribing decisions, the outcome (DV) in this study, is that it does not address 

competition among the various types of environmental incentives that may influence the 

outcome expectations of physicians. Different incentives—such as financial rewards for 

using CDS (Heisey-Grove & Patel, 2014), satisfied patients (Tak et al., 2017), or revenue 

derived from volume of patient business (Kao, 2015)—could produce different choices. 

Therefore, theory-based hypotheses about prescribing must address not only whether 

incentives affect behavior, but also the expected direction of influence. Self-

determination theory helps resolve this dilemma by pointing to the importance of type of 

motivation in determining the effects of incentives on psychological well-being and task 

performance (Deci & Ryan, 2008a). 

Self-Determination Theory 

Self-determination theory is built on a foundational assumption that human beings 

have universal needs for competence, autonomy, and relatedness with others (Deci & 

Ryan, 2008a). Motivators that meet these needs will improve task persistency, task 
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performance, and psychological health. A key consideration in determining these 

outcomes is whether motivation is autonomous or controlled. 

Autonomous motivation, which improves task performance and psychological 

health, is associated with rewards that are intrinsic, that is, inherent to an activity, such as 

enjoyment of a task (Deci & Ryan, 2008b). In contrast, controlled motivation, which 

damages task performance and psychological health, is associated with rewards that are 

extrinsic, that is, both tangible (e.g., money, grades in school) and contingent on criteria 

determined by others. However, the theory does not suggest a simple motivational 

dichotomy. Instead, subtypes of motivation lie on a continuum from more to less self-

determined, based on the degree to which a reward structure is consistent with an 

individual’s values (Deci & Ryan, 2008b; Prestwich et al., 2018). 

Autonomous motivation may result not only from intrinsic rewards, but also from 

extrinsic reward systems that reflect values with which an individual identifies as a core 

aspect of self, a subtype of autonomous motivation known as integrated motivation, or 

from rewards that reflect a valued outcome, a subtype known as identified motivation 

(Deci & Ryan, 2008b; Prestwich et al., 2018). In work contexts, environmental inputs 

that are viewed as informational, meaning they foster a perception of “choice and 

personal initiative,” increase the sense of self-determination and thereby autonomous 

motivation (Deci & Ryan, 1985; Deci, Connell, & Ryan, 1989, p. 580). In contrast, work-

environment inputs that signify externally determined pressure, such as threats of 

penalties or behavioral surveillance, foster a sense of controlled motivation (Deci & 

Ryan, 2008b). 
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Consistent with the concept of a motivation continuum, occupational or scholastic 

rewards linked to level of task performance, such as exceeding standards achieved by 

peers, may have neutral or positive effects on motivation and performance (Cameron, 

Banko, & Pierce, 2001; Deci, Koestner, & Ryan, 1999). Only rewards that communicate 

“task triviality” produce negative outcomes (Eisenberger, Pierce, & Cameron, 1999, p. 

677). In a study conducted in one corporation, allowing workers opportunities for choice 

and initiative was associated with improved occupational satisfaction if basic working 

conditions (e.g., pay, benefits) were satisfactory (Deci et al., 1989). Despite these 

applications to work settings, no studies in which researchers applied self-determination 

theory to the promotion of evidence-based practice were identified in the current 

literature review, although the theory has been applied to suggest that extrinsically 

determined financial incentives may diminish intrinsic motivation for medical practice 

(Himmelstein et al., 2014; Kao, 2014). 

Considered together, these findings suggest that the more an individual identifies 

with the values and outcomes associated with a reward system, the more that system is 

likely to meet the needs for competence and autonomy. The key question in determining 

type of motivation is not so much whether rewards exist, but the degree to which those 

rewards represent values with which the “true or integrated self” would have identified 

regardless of the reward (Deci & Ryan, 2008b, p. 16). Applying this question to the 

current study topic, the theory suggests that prescribing-behavior response, the study 

outcome (DV), to the extrinsic rewards offered in meaningful use incentives, the study 

predictor (IV) in RQ2, would depend on physician assessments of the value of 
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meaningful use. For physicians to see meaningful use as valuable would require that the 

standards they use to assess their task performance match those implicit in the technology 

promoted by meaningful use. This question is addressed in this chapter with assessments 

of how physicians are trained for decision-making, which is the primary task in the 

medical practice environment, and with evidence about their experiences in performing 

that task using the electronic tools promoted by the HITECH Act. Before turning to those 

topics, I describe literature on the specific task that is this study’s outcome measure 

(DV): the decision of whether to prescribe a potentially unsafe ADHD medication to an 

adult. 

Adult ADHD Symptoms and Treatments 

ADHD is a chronic condition characterized by symptoms that fall into two broad 

domains: (a) inattention (e.g., forgetfulness, carelessness) and (b) hyperactivity or 

impulsivity (e.g., fidgeting, impatience; Kooij et al., 2019). Among those aged 17 years 

or older, a formal diagnosis of ADHD requires at least five symptoms, which may present 

in a combined type across both domains, of which “several” must have been present 

before aged 12 years (American Psychiatric Association, 2013, p. 33). Symptoms should 

impair functioning in more than one setting, such as both home and work, and should not 

be better explained by a different diagnosis, such as a mood disorder or psychosis. 

Although classified in treatment guidelines as neurodevelopmental and 

genetically inheritable, ADHD is associated with few consistent neurobiological 

characteristics or symptoms (Kooij et al., 2019; Mahone & Denckla, 2017). Complicating 

diagnosis, ADHD symptoms often overlap with those of other disorders (Asherson, 
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Buitelaar, Faraone, & Rohde, 2016). For example, ADHD shares with anxiety disorders, 

symptoms of restlessness and mind-wandering; with depression, symptoms of irritability, 

diminished concentration, and lowered self-esteem; and with bipolar disorder, symptoms 

of restlessness, mood lability, and lack of mental focus. One guideline describes ADHD 

as “an umbrella term for a range of different but related pathophysiological entities” 

(Bolea-Alamañac et al., 2014, p. 183) for which no reliable physiological test exists 

(Kooij et al., 2019). In patients with SUD, the diagnostic process is even more 

complicated because symptoms of both disorders, such as poor impulse control, overlap 

(Fatseas, Debrabant, & Auriacombe, 2012; Mao & Findling, 2014) and because patients 

may feign symptoms to obtain stimulants (Clemow & Walker, 2014). 

Treatment Options for Dependent Variable: ADHD Medications and Therapies 

Medications currently approved by the FDA to treat ADHD are summarized in 

Table 1. These options informed the outcome (DV) measure in this study, potentially 

unsafe versus safer treatments. As shown in the table, all ADHD medications work by 

increasing the availability in the brain of one or both of two neurotransmitters, dopamine 

and norepinephrine, that are thought to play key roles in ADHD symptoms (Bolea-

Alamañac et al., 2014). The two types of potentially unsafe prescribing, the outcome 

(DV) in this study, arise from side effects of these neurotransmitters. As explained in 

Chapter 1, these neurotransmitter-related side effects would be expected to occur 

regardless of whether the patient has been diagnosed with ADHD, although only 

anecdotal evidence about off-label use is available (Lakhan & Kirchgessner, 2012). 
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Table 1 
 
Medications Approved for Attention-Deficit Hyperactivity Disorder 

Name  Mechanism of action Treatment considerations 
Amphetamines  • Increases availability of 

dopamine and norepinephrine 
by blocking reuptake and 
decreasing breakdown in 
neuronal synapsesa 

• Increases release of dopamine 
from neuronsa 
 

• Black-box warning for abuse and dependenceb 
• Extended-release formulations may have 

reduced abuse potentialc 
• Should not be used in serious CVDb 

Atomoxetine 
 

• Increases norepinephrine 
availability by blocking 
reuptakec 

• No known abuse potentiald 
• Preferred for those with abuse riskc,d,e  
• May be somewhat less effective than stimulants 

(mixed evidence)c,f 
• Slower onset of action than stimulantsc 
• Should not be used in serious CVDd 

Clonidine as brand 
Kapvayg,h  

• Agonist (stimulating) effect at 
α-2A adrenergic receptorsi 

• No known abuse potentialh  
• Use with caution: hypotension, bradycardia, 

heart block, severe CVD, or kidney failureh 

Guanfacine as 
brand Intunivg,j  

• Agonist (stimulating) effect at 
α-2A adrenergic receptorsg 

• No known abuse potentialj 
• Use with caution: hypotension, bradycardia, 

syncopej 
• No other known cardiovascular considerationsj 

Lisdexamfetaminek  • Increases availability of 
dopamine and norepinephrine 
by blocking reuptake, 
decreasing breakdown in 
neuronal synapses, and 
increasing releasek 
 

• Black-box warning for abuse and dependencek 
• Prodrug formulation thought to make it less 

abusable than other stimulantsc,f 
• Should not be used in serious CVDk 
• Unlike other ADHD medications, has a dual 

indication for binge-eating disorderk 

Methylphenidatel  • Increases availability of 
dopamine and norepinephrine 
by blocking reuptakea 

• Activates α-2 adrenergic 
receptorsa 

• Black-box warning for abuse and dependencel 
• Extended-release formulations may have 

reduced abuse potentialc 
• Should not be used in serious CVDl 

 
Note. ADHD = attention-deficit hyperactivity disorder; CVD = cardiovascular disease; FDA = Food and Drug 
Administration. 
aFaraone (2018). bTeva Pharmaceuticals (2017); FDA (2007a). cBolea-Alamañac et al. (2014). dFDA (2002). ePost and 
Kurlansik (2012). fKooij et al. (2019). gFor clonidine and guanfacine, brand names are shown because these 
formulations are approved for ADHD, and other brands are for hypertension (Jain, Hiremath, Michael, Ryan, & 
McMahon, 1985). hFDA (2010). iBidwell, Dew, and Kollins (2010). jFDA (2013). kFDA (2007b). lNovartis (2019). 
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Types of potentially unsafe prescribing measured in study DV. The first safety 

concern with ADHD medications arises because stimulant-produced increases in 

dopamine availability in the central nervous system take place not only in target brain 

regions, such as the prefrontal cortex, but also in the nucleus accumbens, a brain region 

commonly implicated in addictive behaviors (Faraone, 2018). For this reason, stimulants 

are controlled substances (Clemow & Walker, 2014). All FDA product labels for 

stimulants (FDA, 2007a; Novartis, 2019) contain black-box warnings, so named because 

they appear surrounded by a prominent black rectangle to indicate “serious or life-

threatening risks” (FDA, 2012, p. 1), for SUD. These risks are considered greater for 

immediate- than extended-release formulations (Bolea-Alamañac et al., 2014; Fields et 

al., 2017), although even an extended-release action may be bypassed by parenteral 

abuse, such as crushing or dissolving a tablet to sniff or inject the active ingredient 

(Morton & Stockton, 2000; Novartis, 2019). One stimulant product with reduced abuse 

potential (Kooij et al., 2019) is lisdexamfetamine, which is a prodrug (FDA, 2007b), 

meaning it does not become pharmacologically active until after it is digested and 

metabolized (Advokat, Comaty, & Julien, 2014). 

The second safety concern arises because increases in norepinephrine availability 

resulting from use of either stimulants or atomoxetine increase blood pressure and heart 

rate (Kooij et al., 2019). Although small and clinically unimportant on average, at a 

population level, these changes are potentially clinically significant for patients at 

elevated risk of cardiovascular events, such as those with CVD (E. F. Liang et al., 2018; 

Martinez-Raga, Ferreros, Knecht, Alvaro, & Carabal, 2017), particularly among the 
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estimated 5–15% of treated patients who experience unusually large increases in heart 

rate or blood pressure (Hammerness, Karampahtsis, Babalola, & Alexander, 2015). 

Accordingly, product labels for stimulants warn that because serious cardiovascular 

events, including sudden death, heart attack, and stroke, have been reported in adults 

taking “recommended doses” of these medications, they should be avoided in those with 

“known structural cardiac abnormalities, cardiomyopathy, serious heart rhythm 

abnormalities, coronary artery disease, and other serious heart problems” (Novartis, 2019, 

p. 3). The warning for atomoxetine is similar (FDA, 2002). 

Evidence-based recommendations for patients with risk factors. The 

operationalized outcome (DV) measures in this study, which are described in Chapter 3, 

reflected evidence-based guidelines for treatment options in patients with CVD or SUD. 

These guidelines suggest that for patients with medical conditions that would make one 

ADHD treatment potentially unsafe, similarly effective alternatives are available, 

including safer medications and behavioral therapies. These alternatives are presented 

below for each type of risk. 

SUD. Although the topic of ADHD-medication treatment for patients with SUD is 

somewhat controversial (Carpentier & Levin, 2017; Pérez de los Cobos et al., 2014; 

Faraone, 2018), treatment guidelines available during the study period were consistent 

with FDA prescribing guidance in recommending against use of stimulants in patients at 

risk of medication abuse (FDA, 2007a, 2007b). Three guidelines in effect during or 

immediately after the current study period all recommended atomoxetine for these 

patients (Bolea-Alamañac et al., 2014; Fields et al., 2017; Post & Kurlansik, 2012). One 
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also mentioned the nonstimulants clonidine and guanfacine as treatment options without 

specifically recommending them for patients with SUD (Bolea-Alamañac et al., 2014). 

Evidence on potential use of the stimulant prodrug, lisdexamfetamine, for patients with 

SUD was emerging during the study period (Bolea-Alamañac et al., 2014) and was 

eventually incorporated into one recent European guideline (Kooij et al., 2019) but not 

into FDA (2007b) prescribing information. 

CVD. Guidance about CVD risks was somewhat equivocal during the study 

period. Like FDA-approved product labels (FDA, 2002, 2007a), one guideline published 

during the first year of the current study period (Bolea-Alamañac et al., 2014) 

recommended a thorough history and physical examination, cardiovascular testing if 

initial screenings indicate potential disease, and monitoring during treatment for 

symptoms of cardiac problems. However, guidance from the American Academy of 

Family Physicians did not recommend CVD risk assessment (Post & Kurlansik, 2012). 

Medication options for patients with CVD include guanfacine (Bolea-Alamañac et al., 

2014) and clonidine, but neither should be used in patients with certain serious 

cardiovascular or kidney conditions (FDA, 2010, 2013). 

Either CVD or SUD. An additional treatment option for patients with CVD or 

SUD is cognitive behavioral therapy, such as mindfulness or skills training (Jensen, 

Amdisen, Jørgensen, & Arnfred, 2016; Knouse, Teller, & Brooks, 2017). Although 

behavioral treatments are generally recommended for use with medication, rather than as 

a substitute for it (Bolea-Alamañac et al., 2014; Fields et al., 2017; Post & Kurlansik, 

2012), the authors of one recent guideline noted that for patients who do not “desire or 
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tolerate” medication, behavioral therapy may be optimal (Kooij et al., 2019, p. 25). 

Published results for behavioral strategies are consistent with these recommendations, 

suggesting positive outcomes (Arnold, Hodgkins, Caci, Kahle, & Young, 2015), with 

treatment effect sizes comparable to those of amphetamines (Castells, Blanco-Silvente, & 

Cunill, 2018; Knouse et al., 2017; Lopez et al., 2018). 

ADHD-Medication Knowledge Gaps and Safety Problems 

A few studies have suggested that prescriptions for ADHD medications do not 

consistently comport with evidence-based safety guidelines, perhaps because of gaps in 

knowledge. One survey, conducted with a Web-based convenience sample of physicians, 

suggested a lack of confidence in diagnosing and treating ADHD, with 8% of primary 

care physicians and 27–28% of psychiatrists rating themselves as “extremely confident” 

in these activities (Goodman et al., 2012). In vignette-based knowledge tests, rates of 

recognition of SUD were generally high at 76% of primary care physicians and 82% of 

psychiatrists. However, only 33% of primary care physicians and 44% of psychiatrists 

recognized the need for a cardiovascular assessment or treatment change when a patient 

develops symptoms suggesting CVD. Confidence in managing a patient with CVD was 

generally low, at 5% of primary care physicians and 13% of psychiatrists. Another self-

report survey, based on a national probability sample of psychiatrists with a response rate 

of 40%, measured cardiac assessments prior to stimulant prescribing for pediatric ADHD 

(Leslie et al., 2012). Although nearly all respondents reported obtaining a medical history 

(96%), and most (71%) obtained vital signs, 26% reported no physical examination, by 

themselves or by another physician, prior to writing the prescription. 
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A limitation of both physician surveys was their reliance on self-reported 

behavior. Stronger evidence was provided by two studies of objective behavioral 

measures. Gerhard et al. (2010) examined the association of cardiovascular risk with 

prescribing choice, using a retrospective analysis of a claims (medical and pharmacy 

billing) database, in a large (n = 8,752) sample of commercially insured patients aged 21–

64 years diagnosed with ADHD in 2006 or 2007. The investigators found that stimulant 

prescriptions were filled by 41% of patients with and 53% of those without CVD, 

suggesting some risk awareness. However, this effect was observed only in younger 

adults, not in those aged 46–64 years, and was not observed for atomoxetine. 

Fairman et al. (2018) used the same database but a different design, examining 

prevalence of SUD, CVD, and serious CVD—defined as pacemaker-controlled 

arrhythmia, cardiomegaly, cardiomyopathy, cerebrovascular disease, congestive heart 

failure, myocardial infarction, or a heart valve disorder—in patients aged 18–64 years (n 

= 91,588) newly treated for ADHD with either atomoxetine or a stimulant in 2014–2015. 

These investigators found that in the one year prior to the first prescription, the 

prevalence of SUD in the subgroup of stimulant-treated patients was 11–19%, depending 

on how SUD was defined. Although rates of CVD were generally low for the sample 

overall, only 6% for all CVD and 2% for serious CVD, these rates increased with older 

age, reaching 16% for any CVD and 7% for serious CVD among those aged 55–64 years. 

An important limitation of the studies by Fairman et al. (2018) and by Gerhard et 

al. (2010) is that neither included the growing population of patients prescribed ADHD 

medications without an ADHD diagnosis (Olfson et al., 2013; Safer, 2016). Mitigating 
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this limitation, similar findings were produced by an analysis of National Survey on Drug 

Use and Health (NSDUH) household-interview data for 2015–2016 (Compton et al., 

2018). In the NSDUH, 5% of adult respondents who reported heart disease indicated 

past-year use of prescribed stimulants; and use rates were high among persons with SUD: 

18% among those with alcohol use disorder; 26% and 34% with misuse of prescribed 

opioids and sedatives, respectively; and 33–34% with use of cocaine or heroin. In 

addition to these rates, which indicated any prescribed stimulant use, rates of misuse, 

expressed as a proportion of all prescribed stimulant use, were considerably elevated in 

adults with SUD, ranging from 58–66% among those with use disorders for alcohol, 

prescribed opioids or sedatives, or cannabis. NSDUH findings also suggested that the 

likelihood of obtaining medication from a physician, rather than from a family member or 

friend, increased with degree of misuse (ranging from 7% of those with 1–2 days of past-

month misuse to 25% with > 7 past-month misuse days) and was highest (38%) in those 

with SUD. These findings, together with those of the database studies, suggest that 

patients for whom an ADHD medication is potentially unsafe are nonetheless commonly 

able to obtain that medication from a physician. 

Because physicians are trained to seek and use scientific evidence in making 

medical decisions (Berkhout et al., 2018), a key question in ADHD-medication 

prescribing is the degree to which the consequences of potentially unsafe prescribing are 

reported in the research literature. Like the evidence-based guidelines described 

previously, the research literature contains more definitive information for SUD than for 

CVD. Specifically, public health alerts documented a 3.5-fold increase in the number of 
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U.S. emergency visits made by adults aged 18 years or older for nonmedical use of 

ADHD medications from 2005 to 2010 (U.S. Substance Abuse and Mental Health 

Services Administration, 2013), and a 32% increase in the rate of overdose from 

stimulants excluding cocaine for those aged 24 years or older from 2015 to 2016 (Seth et 

al., 2018). The medical literature also reported challenges in medical management of 

stimulant overdose because no antidote agent exists (Fulde & Forster, 2015; Spiller et al., 

2013). Despite the availability of this knowledge, its salience may have been offset by 

competing risk information. Some researchers have suggested that attention to opioid 

misuse has diverted public health focus away from the also-substantial risks of abusing 

stimulants and sedatives (McCabe et al., 2019). For this reason, awareness of SUD-

associated ADHD-medication risks may have been limited during the study period. 

For CVD-associated ADHD-medication risks, the base of published research 

evidence is even more limited. Based on studies demonstrating no increased population-

level cardiovascular event risk from ADHD-medication treatment of adults (Martinez-

Raga et al., 2017), the medications are generally perceived as safe (Kooij et al., 2019; 

Kratochvil, 2012). However, this population-level base of evidence provides limited 

information about event rates in higher-risk patients (Jackson, 2016; Mick, McManus, & 

Goldberg, 2013). The only study of that question identified in this study’s literature 

review was conducted in a sample of children who developed a new heart rhythm 

disorder during treatment with methylphenidate (Shin, Roughead, Park, & Pratt, 2016). 

Consistent with warnings against use in patients with CVD (Jackson, 2016), a temporal 

association between arrhythmia onset and treatment initiation (incidence rate ratio [IRR] 
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= 1.61 for the first 2 months of use), was particularly pronounced in children with 

congenital CVD (IRR = 3.49). 

Several patterns in use of stimulants by adults—rapidly growing prevalence, age-

associated elevations in cardiovascular risk, and evidence that fatalities had occurred in 

patients with CVD not identified until autopsy—led the Drug Safety and Risk 

Management Advisory Committee of the FDA to recommend black-box warning status 

for cardiovascular event risks on stimulant product labels (Nissen, 2006). However, the 

FDA overrode the recommendation. Other than a black-box warning for cardiovascular 

events in amphetamine overdose (Teva Pharmaceuticals, 2017), these risks are currently 

given only a standard warning, not the more salient black-box caution. Despite this 

decision, a recent draft of proposed FDA (2019) guidance for pharmaceutical 

manufacturers would, if implemented, require studies of cardiac safety during the 

stimulant drug-development process, to include evaluations of heart-rhythm changes and 

dose-response assessments of heart rate and blood pressure. 

Summary: Uncertainty in the Prescribing of ADHD Medications to Adults 

As a disorder that shares symptoms with other prevalent psychiatric conditions, 

ADHD is difficult to diagnose and treat, especially in patients with SUD. Moreover, 

concerns about medication-associated risks, although based in evidence, may not be fully 

understood. Heightening these challenges, use of ADHD medications by adults has 

increased rapidly in the past 20 years (Fairman et al., 2017; Olfson et al., 2013). From the 

perspective of the treating physician, these patterns may represent an important source of 

uncertainty about which evidence-based prescribing guidance is available but not readily 
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synthesized—exactly the circumstance that CDS is intended to address (Bates et al., 

2003). However, the degree to which CDS can improve decision-making may depend on 

its alignment, as an environmental strategy, with the way that physicians are trained to 

think and make decisions. This topic is discussed in the next section. 

Medical Education and Occupational Identity 

Medical education, and the occupational norms and values resulting from it, 

reflect three core themes that have remained consistent since 1910, the date of a pivotal 

curriculum-development document, the Flexner report (Cooke et al., 2006; Schrewe, 

2013). The foremost theme is professional autonomy. In 1915, Flexner noted that the 

primary characteristic of a profession, such as medicine or law, was a “free, resourceful, 

and unhampered intelligence applied to problems and seeking to understand and master 

them” (Flexner, 1915, para. 7). This theme repeats throughout training, which lasts for 7 

to 11 years after college graduation (Mowery, 2015). A core objective of medical-school 

education is the promotion of lifelong, self-regulated patterns of learning that will 

translate across clinical circumstances (Berkhout et al., 2018). The foremost goal 

described by the accrediting body for postgraduate training is that physicians should be 

able to make high-quality decisions about patient care with “autonomy and 

independence” (ACGME, 2019, para. 5). Final training outcomes include a licensing 

examination that assesses capability for “unsupervised” practice (U.S. Medical Licensing 

Examination [MLE], 2019, para. 1) and assessment of entrustable professional activities, 

which are tasks to be performed without direct supervision (ten Cate, 2013). 
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The second and third goals of medical education, biomedical expertise (Schrewe, 

2013) and devotion to patients (Cooke et al., 2006), are linked. In the vision espoused by 

Flexner, expertise, to be acquired in programs characterized by rigorous empiricism 

(Schrewe, 2013), was intended to be applied to the well-being of patients and the public 

(Flexner, 1915). Consistent with this goal, an editorial published in a high-impact 

medical journal to commemorate the Flexner centennial noted that medical education 

should inculcate “a crucial set of professional values and qualities, at the heart of which is 

the willingness to put the needs of the patient first” (Cooke et al., 2006, p. 1341). 

Accordingly, the second accreditation goal is that a demanding training program should 

enable physicians to “take life-saving actions” for patients (ACGME, 2019, para. 6). 

The centrality and persistence of these values suggests that, consistent with 

Bandura’s (2001) concept of personal identity in occupational settings, medical training 

consists of much more than developing biomedical knowledge. It is intended to be a 

process in which physicians develop professionally normative patterns of thought, 

confidence in information seeking and decision-making (Berkhout et al., 2018), and 

devotion to patient care (Cooke et al., 2006) that reflect what Bandura (1999) described 

as moral agency. Additionally, physicians are trained for, and therefore would be 

expected to have self-efficacy for, a self-directed cognitive flexibility that Bandura 

(2001) described as occupational self-regulation. These training outcomes are reflected in 

the ways that physicians make decisions, discussed next. 
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Occupational Identity and Cognition in the Medical Practice Environment 

Information about the occupational identity and cognitive processes that 

physicians use in medical decision-making comes from two bodies of evidence, the first 

on physician occupational satisfaction and the second on predictors of medical decisions, 

including prescribing. As shown in the literature presented in this section, these two 

bodies of evidence are linked because, as social cognitive theory would suggest, humans 

act in ways that they believe will provide them with satisfaction (Bandura & Locke, 

2003). Specific applications of these predictors to the theory-based model are 

summarized at the end of this section. 

The physician-patient relationship and patient preference. Consistent with the 

training emphasis on applying biomedical knowledge to promote the well-being of 

patients (Cooke et al., 2006), physicians characterize good patient relationships as an 

indicator of high-quality care, place value on meeting the needs of individual patients 

(Friedberg et al., 2013), and derive satisfaction from patient relationships (Colligan et al., 

2016; Tak et al., 2017) and from resolving intellectually challenging clinical problems to 

benefit patients (Colligan et al., 2016). Conversely, physicians experience loss and 

dissatisfaction from organizational changes, such as increases in administrative tasks and 

reductions in time allotted for visits, that diminish opportunities for patient care (Colligan 

et al., 2016; Friedberg et al., 2013; Sinsky et al., 2013). Corresponding to these values, 

extensive evidence suggests that patient preferences influence prescribing decisions 

(Becker & Midoun, 2016; Dempsey, Businger, Whaley, Gagne, & Linder, 2014; 

Hawkins et al., 2017; Moloney, 2017; Sirdifield et al., 2013; Wallis, Andrews, & 



52 

 

Henderson, 2017). In several studies, physicians cited patient expectations and concerns 

about loss of patient relationships as key determinants of potentially inappropriate 

prescribing (Anderson et al., 2014; Sirdifield et al., 2013; Wallis et al., 2017). 

The role of the patient-physician relationship in prescribing decisions 

encompasses both clinical and business considerations. Because physicians view 

alleviation of patient suffering as a critically important aspect of their role as clinical 

providers, they may write prescriptions for medication they believe will alleviate physical 

or emotional distress (e.g., insomnia, anxiety, pain), even knowing that the root cause of 

the problem is biologically unclear or represents a difficult life circumstance rather than a 

biomedical issue (Moloney, 2017; Sirdifield et al., 2013). For the same reason, they may 

choose to give patients “the benefit of the doubt” even when misuse is suspected (M. A. 

Fischer et al., 2017, p. 7). At the same time, physicians may acquiesce to clearly 

inappropriate requests because they know that a patient who is denied medication may 

provide a negative rating on a satisfaction survey, potentially reducing physician 

compensation (Zgierska, Miller, & Rabago, 2014), or may choose another physician, who 

will prescribe the requested medication (Moloney, 2017; Sirdifield et al., 2013). 

Professionalism. Related to desires to make decisions that benefit individual 

patients, and consistent with the occupational norms of autonomy and self-directed 

learning, are considerations of professionalism. These include autonomous decision-

making (Friedberg et al., 2013; Wright & Katz, 2018); work content and provision of 

high-quality care consistent with professional expertise (Colligan et al., 2016; Friedberg 

et al., 2013; Shanafelt et al. 2016); and the perception of medicine as a calling (Tak et al., 
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2017). In a mixed-methods study of a geographically diverse sample of U.S. physicians, 

odds of occupational satisfaction were approximately tripled by opportunities to provide 

high-quality care and to initiate quality-improvement efforts (Friedberg et al., 2013). 

Personal experience and cognitive salience. Consistent with a training 

environment that encourages physicians to develop and rely on their own biomedical 

expertise in making decisions (Berkhout et al., 2018; Stead et al., 2011), physicians 

commonly rely on personal experience, including familiarity with histories of individual 

patients, medications, and salient events (Bell, Steinsbekk, & Granas, 2015; Doctor et al., 

2018; Ebbert et al., 2018). For example, in a small-sample (N = 26), single-institution 

study, psychiatrists who were asked about the most important sources of information in 

prescribing decisions commonly gave “more than average” ratings to the patient’s (96%) 

and physician’s (85%) experiences with the medication, although the patient’s diagnosis 

and symptoms were foremost (100%; Rajendran, Sajbel, & Hartman, 2012, p. 274). 

Similarly, Hawkins et al. (2017) found that among primary care physicians in the VA, a 

commonly cited reason for benzodiazepine-opioid coprescription was that the patient was 

already successfully taking the combination without adverse effects. Conversely, adverse 

experience may play a role in the decision not to prescribe a medication. For example, 

knowledge of a patient’s overdose reduced opioid prescribing by 10% in one randomized 

trial (Doctor et al., 2018), and was associated with a 31% increase in prescription drug 

monitoring program enrollment in a survey (Ebbert et al., 2018). 

As these findings suggest, physicians do not consistently use formal guidance in 

making treatment decisions, sometimes comparing informational resources with their 



54 

 

own experience to determine their quality (Cook, Sorensen, Hersh, Berger, & Wilkinson, 

2013). In the survey of psychiatrists, which found that 85% placed high value on their 

own experiences, only 61% and 39%, respectively, gave practice guidelines and FDA 

criteria a “more than average” importance ranking (Rajendran et al., 2012). Physicians 

may also consider perceived social norms in making decisions (Donohue et al., 2018; 

Ponnet, Wouters, Van Hal, Heirman, & Walrave, 2014). 

Medical Decision-Making: Summary and Implications for a Theory-Based Model 

The findings of studies on medical decision-making suggest that, consistent with 

their medical training, physicians place high value on patient needs and preferences. They 

define professionalism as autonomy to perform tasks that reflect the high level of 

expertise and complexity for which they were trained. Rather than relying solely on 

published knowledge in making decisions, they are likely also to consider professional 

norms, their personal experiences, and salient events. 

These findings had several implications for the theory-based model presented and 

operationalized in Chapter 3. First, consistent with an understanding of the clinical and 

business importance of physician-patient relationships, the theory-based model included 

predictors (IVs) for the nature of those relationships and the derivation of revenue from 

patient volume or satisfaction. Second, the understanding that autonomous decision-

making to promote high-quality care is a core professional value, coupled with the 

findings of research on the outcomes of E-HRs presented later in this chapter, informed 

the hypotheses in the theory-based model by highlighting the contrast between 

occupational norms and the new demands placed on the medical practice environment by 
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meaningful use and CDS. Third, the understanding of the role of experience in medical 

decision-making informed the inclusion of a predictor (IV) for new versus continuing use 

of ADHD medication. 

In the next section, I consider response to evidence-based guidelines as an 

interaction between this cognitive decision-making process and the environment in which 

medical decisions are made. I focus on barriers to evidence-based practice. Some, but not 

all, of these barriers were cited as part of the rationale for the introduction of CDS into 

medical practice (Bates et al., 2003; Stead et al., 2011). 

Barriers to Evidence-Based Medical Practice 

As originally conceptualized in the 1970s and 1980s and formally defined for the 

first time in 1991 (Djulbegovic & Guyatt, 2017; Guyatt, 1991), the term evidence-based 

medicine referred to the replacement of conventional wisdom with findings of 

randomized controlled trials (Sackett, 2010) to be used as a starting point in medical 

decision-making (Djulbegovic & Guyatt, 2017). The term was later expanded to clarify 

the roles of clinical judgment (Sackett et al., 1996) and patient preference (Djulbegovic & 

Guyatt, 2017). Ideally, evidence-based medicine is not an automated, thought-free 

conformity to clinical rules; it is meant to reflect a synthesis of high-quality evidence 

with clinical observation and professional assessment (Djulbegovic & Guyatt, 2017; 

Sackett & Rosenberg, 1995). 

One core tenet of evidence-based medicine supported the rationale for the 

HITECH ACT. Specifically, recognition of the need for unbiased evaluations of the 

totality of evidence (Djulbegovic & Guyatt, 2017), gave rise to the Cochrane 
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Collaboration, a framework for systematic review and meta-analysis (Cochrane 

Community, 2019). In turn, awareness of the volume of this base of evidence led to the 

concept of point-of-care information delivery strategies, in which physicians could be 

provided with evidence-based guidance as they were making decisions (Djulbegovic & 

Guyatt, 2017). Such automated support was viewed by key stakeholders as crucial to 

improving health care quality and safety (IOM, 2000, 2001). 

Evidence for and Against Use of CDS in Evidence-Based Decision-Making 

Some commonly described cognitive or environmental barriers to evidence-based 

practice are consistent with the stakeholder view of automated support as essential. These 

include lack of awareness of the guideline or of deviations from it and constraints on time 

or on other resources (Baatiema et al., 2017; Chan et al., 2017; F. Fischer et al., 2016). 

Another commonly reported barrier, patient resistance to guideline-based practice (Arts 

et al., 2016; Dempsey et al., 2014; Matthys et al., 2014), potentially could be mitigated 

with timely algorithms. In the survey of VA providers on benzodiazepine-opioid 

coprescribing, the most commonly cited need was structured guidance that providers 

could use in interacting with patients who refused discontinuation (Hawkins et al., 2017). 

In contrast, other barriers to evidence-based practice may represent reactions to 

the guidance itself. These include disagreement with guideline recommendations (Chan 

et al., 2017; Cloutier et al., 2018; F. Fischer et al., 2016; Matthys et al., 2014) and the 

related concern that recommendations based on population-level evidence may not apply 

to the complex needs of individual patients (Arts et al., 2016). In routine practice, 

physicians see a heterogenous patient population whose characteristics may not be well-
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represented by the homogeneous samples used in randomized controlled trials (Makady 

et al., 2017). Trials of ADHD medications commonly exclude patients with comorbid 

cardiovascular or psychiatric disorders (see Castells et al., 2018; Huss et al., 2014; 

Philipsen et al., 2014). In contrast to these sample characteristics, real-world prevalence 

estimates for psychiatric comorbidities among adults with ADHD are high: 11–35% for 

SUD; 19–53% for depression or dysthymia, and 34–47% for anxiety disorders (Q. Chen 

et al., 2018; Fairman et al., 2018; Katzman, Bilkey, Chokka, Fallu, & Klassen, 2017; 

Kooij et al., 2019; Mao & Findling, 2014). This discrepancy may make it difficult for 

clinicians to apply ADHD-guideline recommendations to treatment decisions. 

Evidence-Based Prescribing: Summary and Implications for a Theory-Based Model 

Evidence-based prescribing may be viewed as the outcome of an interaction 

between the cognitive processes of physicians and environmental influences, such as 

available knowledge and time. Specifically, physicians may engage in non-evidence-

based prescribing because of lack of information, need for assistance in managing patient 

expectations, or lack of awareness that their behaviors depart from evidence-based 

guidelines—problems that could potentially be addressed by CDS-delivered knowledge. 

Less easily addressed by the provision of knowledge are disagreement with guideline 

content or challenges in applying guidelines to individual patients. Physicians who have 

been trained to value high-quality care may be reluctant to accept CDS-delivered 

guidance, and meaningful use incentives to use that guidance, unless these tools appear to 

result in better patient outcomes. 
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For this reason, the question of quality-of-care outcomes associated with E-HR 

technology and with meaningful use, and physicians’ opinions of those outcomes, were 

important in determining the hypotheses in the theory-based model. These questions are 

considered in the next two sections. After a review of the rationales for CDS and 

meaningful use, the chapter turns to experience with E-HRs and CDS before and after 

HITECH Act implementation, then to attitudes of physicians toward meaningful use. 

CDS and Meaningful Use 

The idea of applying electronic technologies to medical decision-making to make 

“the practice of evidence-based medicine a reality” (Bates et al., 2003, p. 523) emerged in 

about the year 2000 (IOM, 2000, 2001). Proponents suggested that the concept was 

analogous to “mass customization” procedures used in other industries, which leverage 

high-technology tools to provide personalized services to a large base of consumers 

(Bates & Gawande, 2003, p. 2526). Several core assumptions undergirded the approach. 

One was that use of electronic technology was essential because of increasing 

complexity in care delivery, such as the need to adjust dosages for kidney impairment or 

customize treatment for genetic variation (Bates & Gawande, 2003; Stead et al., 2011). 

Systems would, proponents suggested, help providers by anticipating and meeting needs 

that “have not been consciously realized,” for certain medical orders (Bates et al., 2003, 

p. 525) and allow physicians to spend more time in patient care, “empowered by … a 

network of brains and computers” (Stead et al., 2011, p. 430). Despite this notion of 

empowerment, arguments for increased use of electronic technologies were also based in 

part on an assumption that forcing functions, which are system features that constrain 
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available treatment choices, would improve patient safety by making unsafe decisions 

impossible (Emanuel et al., 2008). For example, when physicians at one hospital found a 

way to work around an E-HR function intended to reduce non-evidence-based use of 

growth hormone, hospital administrators identified them from system log-ins and 

engaged them in “targeted discussions” about their choices (Bates et al., 2003, p. 526). 

Another assumption was that certification of E-HR systems through a central 

federal office, coupled with assistance provided to physicians by regional technical 

assistance centers, would facilitate interoperability, which is information exchange to 

enable rapid access to a comprehensive health history across all sites of care (Buntin et 

al., 2010). More broadly, the information exchange that would come from widespread 

adoption of E-HRs was viewed as a way to change “the mind-set of the [physician] 

workforce” by increasing its focus on the measurement and management of quality 

(Buntin et al., 2010, p. 1216). 

Evidence About E-HRs and CDS Prior to HITECH Act Implementation 

Advocacy for widespread use of E-HR and CDS in medical decision-making was 

somewhat supported by evidence available at the time. Consistent with the notion that 

physicians could not be expected to keep up with the volume of available research 

evidence without automated assistance, more than 480,000 Medline-indexed articles were 

published in the year 2000 (see U.S. National Library of Medicine, 2019). Moreover, 

many early studies of adoption of CDS or E-HRs documented potential or realized 

improvements in quality, safety, or efficiency (CBO, 2008). Despite these findings, the 

base of evidence about CDS and E-HRs in office-based prescribing was limited, partly 
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because most studies had been conducted in inpatient hospital settings (CBO, 2008). 

Moreover, as of August 2012, no studies of CDS-guided prescribing had examined 

technology-related adverse effects as primary outcomes, and few trials measured these 

risks (Bright et al., 2012; Carling et al., 2013). 

Additionally, reported outcomes were mixed and mostly minimal, especially in 

office-based care (Bright et al., 2012; CBO, 2008). In a systematic review by Garg et al. 

(2005), 11 of 16 studies of CDS-assisted prescribing suggested improvements, but of 

studies that measured patient outcomes, none showed improvements. In other systematic 

reviews, Wolfstadt et al. (2008) found reductions in adverse drug events in five of 10 

studies of CDS; Lainer, Mann, and Sönnichsen (2013) found that unsafe prescribing was 

reduced in three of six randomized trials of CDS published through March 2011; and 

Shojania et al. (2010) found in a meta-analysis of 21 comparisons that computerized 

reminders were associated with a median 3.3 percentage-point improvement in 

prescribing behaviors. In one systematic review and meta-analysis of randomized 

controlled trials published from 1999–2012, which assessed CDS systems linked to 

patient-specific medical data, Moja et al. (2014) found inconsistent effects. Of three 

outpatient studies included in that review, one reported process-of-care improvements but 

a “failed clinical outcome” (Holbrook et al., 2011, p. 1742); one reported no 

improvements in four of six outcomes (McCowan et al., 2001); and one, conducted in a 

specialty clinic, found improvement (Robbins et al., 2012). 

Studies of E-HRs or CDS based on NAMCS data produced similarly mixed 

findings (Linder et al. 2007; Romano & Stafford, 2011; Samal, Linder, Lipsitz, & Hicks, 
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2011). Outcomes, estimated in these studies using multivariate analyses adjusted for 

patient and provider characteristics, included no change in 14 of 17 quality indicators 

(Linder et al., 2007) and no improvement in any of 12 indicators of prescribing quality 

(Romano & Stafford, 2011). One NAMCS study did find a modest but clinically and 

statistically significant improvement in blood pressure control with CDS reminders 

(79%) compared with no reminders (74%; Samal et al., 2011). Together with the smaller-

sample studies, these NAMCS findings suggested that in physician-office settings, CDS 

would be expected to have no significant association with the safety of prescribing 

decisions. This evidence, along with literature on E-HR-related cognitive demands 

presented later in this chapter, informed the hypotheses for RQ1. 

E-HR Cost Estimates as a Foundation for the HITECH Act 

Despite equivocal evidence about effects of E-HRs and CDS on quality of 

medical care, mathematical models published beginning in 2003 suggested the possibility 

of large savings to the health care system from increased use of electronic technologies 

(CBO, 2008), including one estimate of $81 billion annually from improved efficiency, 

safety, and chronic disease management (Hillestad et al., 2005). However, these 

projections of large cost savings were based on questionable evidence, according to a 

CBO (2008) analysis. For example, authors of the $81 billion estimate excluded from 

their calculations all studies with unfavorable results for E-HRs, stating that they “chose 

to interpret” negative findings “as likely being attributable to ineffective or not-yet-

effective implementation” (Hillestad et al., 2005, p. 1105). Reflecting a more 

comprehensive assessment, a meta-analysis of randomized controlled trials of CDS 
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published through January 2011 found “modest evidence” of a “trend toward” lower 

costs in 22 studies conducted in inpatient or outpatient settings and mixed evidence about 

cost-effectiveness in outpatient care (Bright et al., 2012, p. 32). 

Still, the possibility of savings, and the perception that implementation costs were 

a barrier to adoption, led to the idea of paying physicians to use E-HRs in medical 

decision-making (Terry, 2013). One study of 14 small primary care practices suggested 

start-up costs, including equipment and staff time, averaging $44,000 (R. H. Miller, 

West, Brown, Sim, & Ganchoff, 2005). This estimate was the basis for meaningful use 

provisions of the HITECH Act (Terry, 2013), discussed next. 

Meaningful Use Program Overview 

Meaningful use regulations developed under the HITECH Act had their roots in 

the 2004 establishment of the Office of the National Coordinator (ONC) of Health 

Information Technology (CBO, 2008), which certified E-HR systems as required by the 

law and continues to play a key role in the program (Cohen et al., 2018). Overarching 

goals were similar to those previously described for CDS and E-HRs: improvements in 

medical decisions and patient outcomes, increased efficiency, and changing the way that 

physicians think about quality of care (Buntin et al., 2010; Terry, 2013). A phased 

approach (Table 2) was used to minimize provider burden while encouraging progress in 

an escalator concept (Blumenthal & Tavenner, 2010). Each meaningful use phase, known 

as a stage, included menu objectives, from which physician offices could choose, and 

core objectives, which were mandatory except when inapplicable (e.g., physician writes 

fewer than 100 prescriptions annually; Wright, Feblowitz, Samal, McCoy, & Sittig, 
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2014). Menu objectives are not discussed here because they were unrelated to prescribing 

(e.g., public health surveillance; CMS, 2012a). 

Table 2 
 
Key Dates for Meaningful Use Program Rules and Implementation 

Event Date Requirements 
Rule for E-HR certification 
issueda  
 

June 2010 ONC-certified system required to receive payments 

Final Stage 1 rules publishedb  July 2010 • 15 core objectives 
• 5 of 10 menu objectives 
• Report > 1 population health measure using E-HR 

First opportunity to file for 
Stage 1 achievementb,c  
 

April 2011 • Based on 90 or more consecutive days of use 

Stage 2 start dated January 2014 
 

• 17 core objectives 
• 3 of 6 menu objectives  

Final Stage 3 rules and 
modified Stage 2 
requirements publishede  

October 2015 • Modified Stage 2 requirements, retaining core 
objectives 

• Stage 3 optional in 2017, mandatory in 2018 

 
Note. E-HR = electronic health record; ONC = Office of the National Coordinator. 
aBlumenthal and Tavenner (2010). bHalamka (2010). cKibbe (2010). dCMS (2012b). eCMS (2015). 
 

Prescription-related core objectives at stage 1, achieved by 12% of Medicare 

providers as of May 2012 (Wright et al., 2013), included ordering of at least one 

medication electronically for more than 30% of patients; electronically recorded lists of 

diagnoses, medications, and drug allergies for more than 80% of patients; electronic 

transmission of more than 40% of medication orders; and ability to perform drug- 

interaction checks (D. R. Levinson, 2017). In practice, physician offices typically 

exceeded these metrics because once the computer infrastructure for a measure was built, 

it was relatively easy to apply it to more than the minimum number of prescriptions 

(Wright et al., 2014). For example, at stage 1, 63% of physicians ordered more than 70% 
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of prescriptions by computer, 62% transmitted more than 70% of prescriptions 

electronically, and 89% had electronic lists of diagnoses and medication allergies for 

more than 90% of patients (Wright et al., 2014). Stage 2, implemented on the start date 

for the current study, required use of increased E-HR functionality, such as CDS checks 

for drug-drug and drug-allergy interactions (CMS, 2012a, 2012b). 

Financial incentives for meaningful use were substantial, depending on speed of 

implementation: up to $63,750 in Medicaid, with various achievement dates permissible, 

and up to $44,000 in Medicare for providers achieving stage 1 by 2011 or 2012 (see 

Kibbe, 2010). Slower implementation yielded lower payments (e.g., up to $24,000 in 

Medicare for implementation by 2014). Additionally, penalties were imposed for failure 

to engage in meaningful use, including Medicare payment reductions of 1% in 2015 and 

2% in 2016 (Kibbe, 2010; Monica, 2017). 

Together, these findings suggest that physician offices that achieved meaningful 

use experienced substantial changes in the practice environment. Because only 9 months 

elapsed between publication of final program rules (July 2010) and the earliest filing date 

(April 2011), these changes may have been implemented quickly for offices that applied 

early in the program. In the next section, macrolevel outcomes of meaningful use 

implementation are presented, followed by a discussion of linkages between these 

outcomes and physician opinions of the value of meaningful use. 

Physician Experiences With Meaningful Use 

Implementation of the HITECH Act in 2011 was followed by growth, as intended, 

in the extent and sophistication of E-HR use nationwide. Prevalence of E-HR use by U.S. 



65 

 

physicians increased from an estimated 35% in 2007 to 57% in 2011 and 72% in 2012 

(Hsiao & Hing, 2014). Among small practices, use prevalence for key E-HR medication-

related metrics increased from 2007–2010 to 2012–2013: from 29% to 51% for inclusion 

of medication lists, from 25% to 70% for electronic transmission of prescriptions to 

pharmacies, and from 17% to 46% for drug-interaction checks (Rittenhouse et al., 2017). 

By April 2014, 70% of U.S. physicians were using an E-HR to prescribe, and 96% of 

pharmacies were able to accept electronic prescriptions (Gabriel & Swain, 2014). 

Benefits of meaningful use. Early reports identified several benefits of the 

expanded use of electronic technologies brought about by meaningful use achievement. 

These included increased adherence to health care process behaviors included in 

meaningful use metrics (e.g., smoking-cessation interventions; Ancker et al., 2015), 

improved within-facility access to information (Jamoom, Patel, King, & Furukawa, 

2013), easier remote access to patient records (King, Patel, Jamoom, & Furukawa, 2014), 

increased information exchange with other providers and patients (Audet, Squires, & 

Doty, 2014; Jamoom et al., 2013), and perceived benefits of CDS for error prevention 

(King et al., 2014). Most of these early results represented physician opinion (see Audet 

et al., 2014; Jamoom et al., 2013; King et al., 2014), not objectively measured outcomes. 

Effects of meaningful use on quality of care. Studies conducted after HITECH 

Act implementation found few objectively measured improvements in quality associated 

with use of E-HRs (see Harle, Cook, Kinsell, & Harmon, 2014; Harman, Rost, Harle, & 

Cook, 2012; M. J. Miller et al., 2017) or with meaningful use achievement (see Afonso et 

al., 2017; Grinspan et al., 2017; Jung et al., 2017; Kern et al., 2015; Samal et al., 2014; 
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Unruh et al., 2017), although providers that applied for meaningful use may have had 

better care processes prior to implementation (Grinspan et al., 2017). Associations of E-

HR use with care metrics included an increased likelihood of prescribing an opioid for 

chronic pain (Harle et al., 2014), no change or reduced likelihood of treatment for 

depression (Harman et al., 2012), and no significant difference in depression screening 

rates among patients prescribed a medication that could cause depressive symptoms (M. 

J. Miller et al., 2017). Results of the meaningful use studies, all conducted in single states 

or health systems rather than in national samples, included no significant change in eight 

measures of quality (e.g., vaccination, cancer screening) among Medicaid primary care 

providers (Grinspan et al., 2017); improvements in one screening measure, but not in 

other screenings or in hospitalization rates among Medicare providers (Jung et al., 2017); 

no significant change on any of nine quality measures in a large primary care provider 

sample (Kern et al., 2015); and no significant difference in Medicare beneficiary hospital 

readmission rates (Unruh et al., 2017). An exception was a study conducted in one 

academic medical center, which identified improvements in four measures, no change in 

two, and one worsened, after progression from stage 1 to stage 2 (Levine et al., 2017). 

A persistent challenge to improving quality of care with meaningful use is 

override, in which physicians do not accept or even view a CDS recommendation 

(Baysari, Tariq, Day, & Westbrook, 2017). Reported rates of override during prescribing 

with CDS have remained high for 20 years, ranging from 49–96% in studies published 

before 2010 (Isaac et al., 2009; van der Sijs, Aarts, Vulto, & Berg, 2006), from 53–60% 

in studies of one academic medical system published in 2013 and 2014 (Nanji et al., 
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2014; Slight et al., 2013), and from 73–94% in recent studies (Genco et al., 2016; Nanji 

et al., 2018). One large health system reported a 69% override rate for high- or medium-

severity alerts when a customized alerting database was used for outpatient prescribing in 

2014–2015, which increased to 92% when the same health system switched to an 

industry award-winning (K. Murphy, 2019) commercial system (Wright et al., 2018). 

Related to high override rates is the commonly documented problem of excessive 

noise-to-signal ratio (Marcilly, Ammenwerth, Vasseur, Roehrer, & Beuscart-Zéphir, 

2015), referring to the inundation of providers with clinically unimportant or questionable 

warnings (Carli, Fahrni, Bonnabry, & Lovis, 2018; Horsky, Phansalkar, Desai, Bell & 

Middleton, 2013; Zazove et al., 2017). One systematic review of studies with standard 

statistical measures of accuracy applied to CDS warnings found sensitivity (percentage of 

harms detected) ranging from 38–91% and positive predictive values (PPV; percentage of 

warnings that represent true harms) of only 8–14% for drug-dosage interaction and 2–

48% for drug-drug interactions, although PPV was better in more advanced systems at 

17–97% (Carli et al., 2018). Similarly, in one system that required physicians to enter 

into the E-HR their reasons for overrides, retrospective clinical reviews conducted by a 

multidisciplinary team found that 53% of overrides for outpatients (Nanji et al., 2014) 

and 61% of overrides for inpatients (Nanji et al., 2018) were clinically appropriate. 

Systematic evidence of harms. Systematic investigations of technology-related 

harm included a comprehensive quantitative analysis of U.S. data based on computerized 

prescribing errors reported to the U.S. Pharmacopeia MEDMARX system (Schiff et al., 

2015), coupled with naturalistic observation of order entry using 13 different E-HR 
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systems to determine how those errors might have occurred (Slight et al., 2016). 

Investigators found that 79% of erroneous prescriptions reported to MEDMARX could 

be ordered in the E-HR, typically with either no difficulty (28%) or after minor 

adjustments (28%), and often (61%) with no CDS-delivered warning (Schiff et al., 2015). 

Examples included a 1000-fold overdose of thyroid hormone and a potentially dangerous 

disease-antidiabetic medication combination. In a follow-up analysis, Amato et al. (2017) 

studied all prescribing errors at six sites participating in a study of computerized 

prescribing and found that 52% were technology-related, including 7% in which the 

technology facilitated the error and 45% in which the technology failed to prevent the 

error. Commonly reported consequences of technology-related errors include delay or 

duplication of treatment and incorrect medication or dosage (Amato et al., 2017; Howe et 

al., 2018; Korb-Savoldelli et al., 2018; Slight et al., 2016). 

Increases in physician workload. Instead of the improvements in efficiency 

envisioned by proponents of CDS and meaningful use, investigators using time-motion 

analyses found that electronic technologies may increase physician administrative 

workload, from 16% to 28% of work time spent on documentation in one meta-analysis 

(see Baumann, Baker, & Elshaug, 2018). Among these findings were 49% of the in-

office day spent on E-HR tasks and only 27% with patients, plus 1–2 hours after-work 

time on the E-HR in a four-state study of office-based physicians (Sinsky et al., 2016) 

and 52% of total visit-related time devoted to E-HR tasks by family practitioners in Texas 

(Young, Burge, Kumar, Wilson, & Ortiz, 2018). Added workload does not appear to be 

alleviated by increased experience in using the E-HR. Arndt et al. (2017) conducted a 
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time-motion analysis using E-HR event-logging records over a 3-year period beginning 5 

years after full implementation of an award-winning E-HR (K. Murphy, 2019) in one 

large health system and found that physicians spent an average of 5.9 hours per 11.4-hour 

workday on the E-HR, of which 44% was for clerical work and 24% for inbox 

management. 

Cognitive demands of meaningful E-HR use. The cognitive challenges 

encountered by physicians with meaningful use of CDS and E-HRs fall into several 

categories, all related to human-machine-environment interaction. These include 

problems of usability, unanticipated user responses, business practices, and training gaps. 

These challenges are linked to evidence of a lack of basis in psychological theory, 

discussed in this section, and to physician opinions about E-HRs and meaningful use, 

discussed in the next section. 

Usability. Gaps in E-HR usability, defined as human-machine-environment 

interactions that do not produce the intended outcome, have been identified as an 

important source of CDS- and E-HR-related errors (Ratwani et al., 2016; Ratwani et al., 

2018). E-HR system devices and messaging commonly do not conform to human-

computer interface design standards for colors, fonts, placements, and message content 

(Horsky et al., 2013; Savoy, Patel, Flanagan, Weiner, & Russ, 2017; Virginio & Ricarte, 

2015). Using a 26-item instrument validated for measurement of CDS-alert compliance 

with human-factors design principles, Phansalkar et al. (2014) found that among 14 

different systems, performance scores ranged from 31–71%, averaging 53%. Results 

were particularly poor for clarity, underlying logic and prioritization of alerts, and 
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provision of suggested actions. Commonly identified problems include incomplete screen 

layout, such as showing only a partial medication list (Brown et al., 2017); inconsistent 

medication names (Quist et al., 2017; Schiff et al., 2016); “dropdown” and 

“autopopulate” lists that contain both incorrect and correct options; and incorrect CDS 

content, such as wrong medication choice information or failure to identify combination 

products accurately (Brown et al., 2017; Quist et al., 2017; Slight et al., 2016). 

Unanticipated user responses. “Workarounds” developed by staff because of 

functionality problems, or because staff do not know how to use the intended 

functionality, may create safety hazards (Schiff et al., 2016). Examples include ordering 

or discontinuing a medication in a free-text field instead of a drug-order field, preventing 

checks on safety or dosage (Slight et al., 2016) or resulting in duplicate therapy (Yang et 

al., 2018), and manual processes developed because of poor functionality for the clinical 

task, such as inability to order different dosages of the same medication for morning and 

evening administration (Slight et al., 2016). Automation bias, which is over-reliance on 

technology at the expense of cognitive processing of relevant information, has also been 

documented in CDS-assisted medication orders (Lyell et al., 2017; Lyell, Magrabi, & 

Coiera, 2018). 

On-site customization of E-HR features can also compromise system function 

(Ratwani et al., 2018). In a qualitative study by Slight et al. (2016), investigators found at 

one facility a dangerous flaw of which management had been unaware until informed by 

the research team; all E-HR alerts had been inadvertently turned off 6 months previously 

during a system upgrade. At a different site, investigators found that an information 
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systems director had suppressed the E-HR’s ability to identify duplicate medications in 

one screen to reduce system “noise” (Slight et al., 2016, p. 313). 

Business practices. The business practices of E-HR vendors may contribute to 

negative physician experience with systems in several ways. First, proprietary technology 

may hamper health care coordination because different systems do not share information 

(Ratwani et al., 2016; Samal et al., 2016), a problem described in one review as an 

“interprofessional Tower of Babel” (Bernstein, Kogan, & Collins, 2014, p. 229). 

Researchers who studied one integrated behavioral-medical provider network reported a 

complex work-around necessary because one mental health center (MHC) and its 

integrated physician office used different E-HRs: daily medication lists printed by the 

MHC were manually recorded by a medical office physician assistant on paper, which 

was scanned for the medical office E-HR, with updates then manually keyed into the 

MHC’s system (Cifuentes et al., 2015). A related challenge is that contractual 

arrangements may limit the ability of E-HR users and researchers to report usability 

problems in the detail necessary for investigation and correction, such as providing visual 

images of problematic order entry screens (Ratwani et al., 2019). There is no central 

federal repository of information about E-HR-related adverse events, such as that 

currently used to report medical device-related adverse events to the FDA. 

Finally, despite the assumption that meaningful use would facilitate quality-

improvement efforts (Buntin et al., 2010), one mixed-methods study of 1,492 

geographically diverse U.S. practices found limited ability to generate clinically 

meaningful reports because vendors charged high fees for minimal customization (e.g., 
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reporting by date range or by clinician) or required office staff to learn database query 

language (Cohen et al., 2018). Although 82% of participants were using an ONC-

certified system, only 61% could generate clinical quality reports from the E-HR. 

Training gaps. An additional problem inhibiting meaningful use is lack of 

alignment between medical training content and the skills necessary to use CDS in 

making medical decisions (Hersh et al., 2014; Pageler, Friedman, & Longhurst, 2013). 

One detailed assessment of this issue, which resulted in a call for massive medical school 

curricular reform (Stead et al., 2011), was published in April 2011, the month that 

meaningful use filings began (see Wright et al., 2013). This timing highlights the contrast 

between the way that physicians had been trained and the new expectations for medical 

practice quickly placed on them. Unmet training needs are commonly mentioned in 

discussions of E-HR usability challenges (Ratwani et al., 2016). 

Meaningful Use: Summary and Implications for a Theory-Based Model 

The evidence reviewed in this section suggested that although physicians 

recognize the potential value of CDS and E-HRs (Schiff et al., 2016), they experience 

substantial challenges in meaningful use of these technologies in clinical practice. These 

challenges include excessive noise-to-signal ratio and the related problem of overrides, 

usability problems and behavioral responses in the practice environment not anticipated 

by system developers, business practices that impair quality improvement, and gaps 

between medical education content and training needs. 

The field of psychology suggests an explanation for these challenges that may be 

framed within the social cognitive theoretical construct of human-environment 
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interaction (Bandura, 1989), a failure of E-HR system design to account for the ways and 

environmental circumstances in which people interact with technology (Savage et al., 

2017). Holden (2011), a cognitive health psychologist who specializes in human-factors 

analyses of individual-device-environment interactions, has described E-HR system 

failures as the result of simplistic paradigm that fails to address cognition as a mediator 

between computer systems and work output. Consistent with Bandura’s notion of 

interactive agency, although he did not cite it explicitly, Holden suggested that 

unexpected user behaviors, such as “workarounds,” result from a process of adaptation 

that allows physicians to cope both with the complexity inherent in medical practice and 

with new complexities introduced by E-HRs. To the extent that the adaptation described 

by Holden was the result of a medical education process intended to produce autonomous 

and flexible cognition (see Berkhout et al., 2018), it is reasonable to suggest that 

physicians think and behave creatively when exposed to electronic technology because 

they are trained, as an occupational norm, to do so in response to any new environmental 

condition (Bandura, 2001). If so, the expectations of E-HR-system proponents that 

physicians would readily adopt suggestions produced by CDS, and that failure to do so 

would represent “irrational” thinking (Cho & Bates, 2018, p. 114), were contrary to 

psychological theory. 

This theory-based assessment is consistent with the evidence about CDS available 

prior to passage of the HITECH Act in suggesting no significant association of CDS with 

prescribing behavior. In addition to informing the hypothesis for RQ1, the assessment 
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and supporting evidence provided a process measure to explain physician attitudes 

toward meaningful use and technologies mandated by the HITECH Act, discussed next. 

Physician Opinions About Meaningful Use 

Given the problems that physicians encounter in using E-HRs for clinical care, 

negative opinions of them, expressed in peer-reviewed survey reports (Emani et al., 2017; 

Shanafelt et al., 2016; Weeks et al., 2015) and in a growing volume of popular-press 

accounts (Fry & Schulte, 2019; Gawande, 2018; J. Levinson et al., 2017) and white 

papers (Henry, 2018), are not surprising. These reactions are consistent with the issues 

identified in research on outcomes of CDS and E-HRs and comprise two main areas of 

concern. 

Concerns Expressed by Physicians 

The first area of concern is lack of clinical benefit or the introduction of clinical 

harms. In the first physician survey conducted after HITECH Act implementation, 59% 

of respondents said (agreed or strongly agreed) that meaningful use would contribute to 

decline in “the art of medicine”, 50% said that it would improve quality of care, and 30% 

said that it would ensure accurate patient information (Weeks et al., 2015, p. 126). In 

separate surveys conducted, respectively, before and after qualification for meaningful 

use at two academic medical centers, rates of agreement or strong agreement with 

statements about possible quality improvements from meaningful use declined, from 29% 

to 21% on improvement in patient-centeredness, from 39% to 31% on decreases in 

medical errors, and from 27% to 21% on the ability to deliver high-quality care (Emani et 

al., 2014, 2017). 
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The second area of concern is relegation of clerical tasks to physicians instead of 

to administrative support staff who were previously responsible for these functions, 

which one survey respondent described as analogous to “asking the pilot to scrub the 

floor rather than flying the plane” (Emani et al., 2017, p. 1048). Shanafelt et al. (2016) 

noted a strong association between E-HR use, time spent on clerical tasks, and 

occupational dissatisfaction. A related concern is the belief that time spent in the E-HR, 

“checking off boxes” (Emani et al., 2017, p. 1048), detracts from engagement with and 

care for the patient (Colligan et al., 2016; Gawande, 2018). 

These negative opinions may be exacerbated by increasing system sophistication. 

In one survey of primary care physicians, Babbott et al. (2014) found that degree of E-

HR sophistication was positively associated with job stress and negatively associated 

with job satisfaction. Similarly, in the academic medical center survey, opinions about 

meaningful use were less positive among stage 2 than stage 1 providers (Emani et al., 

2017). Perhaps indicating the degree of user frustration with CDS, investigators in one 

large hospital network that is a leader in the study of E-HRs (see Schiff et al., 2016) 

developed a “cranky comments heuristic” after noticing that certain text patterns in 

physician overrides (e.g., multiple sequential exclamation points and words like “dumb” 

and “please stop”) often accurately identified problems in CDS logic (Aaron, McEvoy, 

Ray, Hickman, & Wright, 2019, p. 37). Systematic investigation of these “cranky 

comments” increased predictive accuracy of error identification and produced the 

unexpected finding of malfunctions in at least 26% of the E-HR’s decision rules. 
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Physician Opinions: Summary and Implications for a Theory-Based Model 

Literature reviewed for this study suggested generally poor opinions of 

meaningful use, and of technologies promoted by meaningful use, among physicians. 

This lack of value physicians ascribe to these technologies suggests, according to self-

determination theory, that the meaningful use program represents controlled motivation. 

Supporting this interpretation was a commentary in which a group of physicians, among 

them a former hospital vice president of information technology (J. Levinson et al., 

2017), described the problem with E-HRs as a combination of clinically inappropriate 

design and coercion: “people who take care of patients did not design or choose these 

systems. They were foisted upon us” (para. 6). This theory-based understanding was the 

foundation of the hypothesis for RQ2, which is detailed in Chapter 3. 

Summary 

In this chapter, I considered social cognitive theory as a framework within which 

ongoing reciprocal engagement of humans with their environments can be characterized 

as a continuous process, informed by knowledge, of adaptation to changing circumstance. 

I described the knowledge available to physicians in making ADHD medication 

prescribing decisions, the medical training and values that influence their decision-

making processes, and barriers to evidence-based medical practice. In the final sections 

of the chapter, I considered inconsistencies, suggested by the literature review, between 

the effects of widespread adoption of electronic technologies that were envisioned by 

HITECH Act developers and those indicated by psychological theory and evidence.  
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Proponents of the HITECH Act assumed that implementation of sophisticated 

electronic technology in the medical practice environment would change not only 

prescribing behavior, but also cognitive patterns of medical decision-making. In contrast, 

the theory-based approach suggested that those cognitive patterns are deeply engrained as 

a result of long-standing professional traditions, are the product of limited observational 

learning opportunities for use of electronic technologies in decision-making, and are 

unlikely to change without retraining, if at all. Moreover, literature suggested that 

dysfunction in E-HR systems has produced new challenges to patient safety that threaten 

what physicians are trained to believe is their highest occupational norm, engaging with 

and providing high-quality care to patients, and that the primary problem CDS was 

intended to address, lack of readily available knowledge, is only one of several important 

barriers to compliance with guideline recommendations. Finally, the literature review 

suggested extensive, empirically supported opposition among physicians both to E-HRs 

as currently implemented and, more broadly, to regulatory mandates to use them. 

The review also suggested several gaps in the research literature, which were 

addressed in this study. Foremost, no studies comparing theory-based with atheoretical 

approaches to interventions on physician behavior were identified. Additionally, although 

the theory-based assessments discussed in this chapter appear to explain survey findings 

that most physicians have subjectively unfavorable experiences with and opinions of 

CDS and meaningful use, specific evidence about the associations of these policies with 

objectively measured prescribing behaviors is limited. Studies that used objective 

behavioral measures to assess outcomes of meaningful use were based on single facilities 
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or states, rather than on nationally representative data. Finally, as a relatively new topic 

with important population-health implications, potentially unsafe ADHD-medication 

prescribing is understudied. 

Whether a theory-based approach better explains this prescribing behavior than 

does the atheoretical approach used in HITECH Act development was the core empirical 

question underlying the research questions and hypotheses presented in Chapter 3. Also 

presented in Chapter 3 are an overview of the study design, a detailed description of the 

nationally representative archival data set that was the study data source, and definitions 

of all study variables. The population, sampling frame, sampling methodology, and 

sample inclusion and exclusion criteria are described, as is the statistical methodology for 

comparing the predictive accuracy of the atheoretical and theory-based models. 
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Chapter 3: Research Method 

Suboptimal outcomes associated with widespread implementation of electronic 

technologies in U.S. medical practices, including problems in safety (Brown et al., 2017; 

Schiff et al., 2016) and usability (Ratwani et al., 2016), have been attributed by some 

observers to design flaws (Phansalkar et al., 2014) resulting from inconsistencies between 

system features and psychological theory or evidence about human-machine-environment 

interaction (Ratwani et al., 2016; Savage et al., 2017). Similarly, the strategy of paying 

physicians to perform according to externally determined metrics, which was 

foundational to the HITECH Act of 2009 (see Buntin et al., 2010), has been criticized for 

inconsistency with psychological theories of human motivation (Himmelstein et al., 

2014; Kao, 2015). Evidence of an association between physician occupational 

dissatisfaction and use of E-HRs (Shanafelt et al., 2016), particularly of more 

sophisticated systems (Emani et al., 2017), supports these concerns. 

To address the understudied question of whether theory-based interventions have 

the potential to produce better outcomes than the more typical (L. Liang et al., 2017) 

atheoretical approaches to changing physician behavior, the purpose of this quantitative 

study was to compare two models of potentially unsafe ADHD-medication prescribing 

for adults: one theory based and the other atheoretical. In this chapter, I present 

information about the study’s sampling frame and design; the archival data set that was 

analyzed to answer the research questions; operationalization of all study variables; and 

methods for statistical analyses, including quantitative comparison of the predictive 

accuracy of the theory-based and atheoretical models. 
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Research Design and Rationale 

The study was a retrospective, cross-sectional analysis of visits made by adults to 

U.S. office-based physicians, recorded and publicly available in the archival NAMCS 

data set. This research design addressed several gaps in available theory-based 

information about interventions intended to change physician behavior. Foremost, the 

study provided, for what the literature review suggested is the first time, a quantitative 

comparison of theory-based and atheoretical approaches to the prediction of physician 

prescribing behaviors. Additionally, the study provided U.S. national information about 

the associations of CDS and meaningful use with an objective behavioral measure of 

prescribing, improving on previous assessments based mostly on subjective measures of 

physician opinion (see Emani et al., 2017; King et al., 2014) or on single-facility or 

single-state samples (see Grinspan et al., 2017; Levine et al., 2017). Finally, the study 

provided theory-based information about potentially unsafe prescribing of ADHD 

medications to adults, a relatively new topic in the literature on evidence-based 

prescribing (Fairman et al., 2018). Use of the NAMCS, a nationally representative source 

of data on objectively measured prescribing behaviors, facilitated fulfillment of these 

goals for the research. 

The outcome (DV) for this study was potentially unsafe prescribing of ADHD 

medications to adults, measured as a binomial, based on two clinical scenarios: (a) 

potentially unsafe medication versus a safer treatment among all adults with ADHD who 

were prescribed any treatment (i.e., either an ADHD medication or psychotherapy) and 

(b) potentially unsafe medication versus any other option (i.e., safer medication or no 
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medication) among adults with CVD or SUD for whom an ADHD medication was 

potentially unsafe. These measures were defined using sources presented in Chapter 2, 

including evidence-based guidelines (see Bolea-Alamañac et al., 2014; Post & Kurlansik, 

2012) and federal prescribing information (see FDA, 2002, 2007a). 

The key predictors (IVs) of interest were environmental factors: (a) CDS and 

meaningful use provisions (in both the theory-based and atheoretical models, with 

opposing hypotheses), (b) derivation of physician revenue from patient satisfaction or 

volume (theory-based model only), and (c) nature of experience (professional 

relationship) with the patient and medication (theory-based model only). Additional 

predictor variables, included in both models, were knowledge measures. These included 

clinical and demographic characteristics of the patient and physician specialty. 

Methodology 

Target Population and Sample 

The target population for this research was office visits made by patients aged 17 

years or older to U.S. office-based physicians. This target population was chosen because 

CDS and meaningful use were intended to address decision-making, including 

prescribing, that takes place during physician-patient encounters, including office visits 

(see Blumenthal & Tavenner, 2010) and because diagnostic criteria for ADHD apply to 

persons aged 17 years or older (American Psychiatric Association, 2013). The estimated 

total target population size exceeded 662 million office visits in 2016, reported by the 

CDC in its annual summary of NAMCS results (Rui & Okeyode, 2019). 
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Archival data set sampling process. The NAMCS probability sampling design 

is multistage, stratified, and cluster randomized (CDC, 2019b). Sequential sampling 

stages include (a) random selection of physicians, using national lists provided by the 

American Medical Association (AMA) and American Osteopathic Association (AOA), 

stratified by each of 15 specialties (e.g., general practice, internal medicine, 

cardiovascular disease, psychiatry); (b) random selection of 1 week (of 52) for each 

sampled physician; and (c) simple random sampling of visits within that week (CDC, 

2015a). Sampling weights provided in the data set are calculated by the NCHS as 

multiplicative inverses of sample selection probabilities, with additional adjustments for 

nonresponse based on numerous indicators of physician characteristics obtained from 

AMA and AOA lists and from an initial interview with the physician or office staff (Hing 

et al., 2016; U.S. Department of Commerce, 2016). More detail on these methods is 

provided below in the section on archival data collection, quality, and screening. 

Subsample of archival data set for current study. The study sample included 

all office visits made by patients aged 17 years or older from 2014 to 2016, excluding 

visits made for emergency care or to a surgeon. These respective exclusions were made 

using the NAMCS field ERADMHOS, which indicates that the patient was sent directly 

from the office to an emergency room or hospital, and SPECCAT, which includes a code 

for surgical care specialty. Visits were further subsampled to include only those made by 

patients with an ADHD diagnosis in Scenario A and by patients with CVD or SUD in 

Scenario B. Methods of measurement for diagnoses are described under 

Operationalization of Constructs. 
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Archival data collection procedures. After physicians are sampled from the 

AMA and AOA lists, they are contacted by letter from the NCHS and advised to expect 

additional contact from an NAMCS field worker, a representative of the U.S. Bureau of 

the Census (n.d.). Physicians can access an online informational web page that explains 

the survey’s purpose and importance, as well as the legal authority under which it is 

conducted. After physicians agree to voluntary participation, field workers administer an 

initial induction interview, which is used to gather general information about the 

physician and office setting, including revenue sources, practice ownership, meaningful 

use status, and use of various E-HR and CDS functions (U.S. Department of Commerce, 

2016). 

For each sampled visit, NAMCS field workers use the medical record to abstract 

items according to a standardized protocol that is detailed in an automated, laptop-based 

tool (CDC, 2019b). Visit-related measures include patient demographics (e.g., age, sex, 

race); payment sources for the visit (e.g., private insurance, Medicaid); clinically 

important biometrics and health behaviors (e.g., blood pressure, tobacco use; body mass 

index); up to five listed diagnoses made at the visit; a complete list of prescribed 

medications and treatments, including psychotherapy, with an indicator of whether each 

medication is new or continued from a previous visit; whether the physician seen at the 

visit is the patient’s primary care provider; and number of visits made by the patient to 

the office during the previous 12 months (CDC, 2019b). 

In addition to these visit-related variables, field workers collect indicators of 

numerous clinically important medical conditions regardless of when these were 
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diagnosed, based on a prompt that asks, “Regardless of the diagnoses written above, does 

the patient now have…” (CDC, 2019b, p. 50). For example, a patient with depression 

who sees a physician for an ear infection would have the infection recorded in the visit 

diagnosis list, and depression recorded as a medical condition indicator from the entire 

medical record, regardless of whether depression was diagnosed at the visit. Medical 

condition indicators are considered a “gold standard” against which the accuracy of visit 

diagnoses may be measured (Asao, McEwen, Lee, & Herman, 2015, p. 650). Medical 

condition indicators relevant to the current study included measures of ADHD, CVD, 

SUD, depression, renal (kidney) disease, and diabetes (see CDC, 2019b). 

Archival data quality, cleaning, and screening. Data collection procedures for 

the NAMCS are regularly assessed in ongoing quality-improvement processes (CDC, 

2019b; Rui & Okeyode, 2019). Recent studies and recommendations are summarized in 

Table 3. These evaluations suggest that NAMCS data are reliable and valid. Additionally, 

a comprehensive assessment of sample external validity in 2012 based on numerous 

factors indicated nonsignificant differences between participants and nonparticipants on 

most measures prior to weighting, and minimal (< 1–2 percentage points for all but one 

indicator) potential nonresponse bias on visits after weighting (Hing et al., 2016). A 

caveat to these assessments is that NAMCS methods are reviewed annually and 

sometimes updated with changes that are typically, but not always, minor, so that 

evaluations of data quality performed in one year may not fully represent the effects of 

methods in other years. Details of sampling methods and weight calculations during the 
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study period and of the NCHS analysis of nonresponse bias (Hing et al., 2016) are shown 

in Appendix A. 

Table 3 
 
Recent Quality Assessments of NAMCS Data 

Assessment type 
(source) 

Reason  Methods and results Recommendation 

Accuracy of 
induction interview 
(Halley et al., 2017) 

Policy changes, 
including E-HRs, 
affecting practice 
environment 

Ethnographer-observed induction 
interview 
Most items answered easily 
Minor difficulties in addressing some 
administrative items 
 

Instruction to ask 
administrative staff 
when physician is 
unsure 

Coding quality (Rui 
& Okeyode, 2019) 

Regular validation 
process 

Validation sample of 11.6% of records 
reviewed by external auditor 
Error rates of 0.03–0.8% 
 

No protocol change 

Accuracy of ICD-10 
coding (D. T. Lau, 
Strashny, Phan, 
Blum, & Burke-
Bebee, 2018) 
 

Industry-wide transition 
from ICD-9 to ICD-10 
system 

All visits from final quarter of 2014 
coded using both methods 
Error rate of 5% 

Minor changes to 
instructions for 
coding and record 
abstracting 

Nonresponse bias 
(Hing et al., 2016; 
Appendix A) 

Decline in physician 
participation ratea 

Before weighting, no significant 
differences between participants and 
nonparticipants on the majority of 82 
indicators; modest (typically 1–5 
percentage point) differences on a 
minority of indicators; large (10–13 
percentage point differences only on 
visit volume quartiles 
 
After weighting, minimal (< 1–2 
percentage point) potential bias on all 
indicators except visit volume 
(maximum difference of 8 percentage 
point potential bias for lowest visit 
volume quartile) 

Overall assessment 
of minimal 
nonresponse bias 
after weighting 
 
Could not rule out 
bias on unmeasured 
characteristics 
 

 
Note. E-HR = electronic health record; ICD = International Classification of Diseases. 
aParticipation, defined as consenting and providing data for at least one sampled visit, exceeded 70% prior to 2002 (Hing, Schappert, 
Burt, & Shimizu, 2005) but had declined to 38.4% by 2012 (Hing et al., 2016) and was 29.5–39.3% in 2014–2016 (CDC, 2017, 2018, 
2019b). 

 

Concordant with these assessments of data quality, NAMCS data are used as 

nationally representative in an extensive body of peer-reviewed literature, including 

academic research and public health surveillance reports (CDC, 2019c). NAMCS 
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measures of E-HR use and features demonstrated good convergent validity with those 

obtained from other national samples, including American Board of Family Medicine 

professional certification data collected from 85% of U.S. family practitioners (Xierali et 

al., 2013) and the Health Tracking Physician Survey (Li, 2011). 

Quantitative assessment of sample size adequacy for archival data set. 

Because of the complex sampling design, the NCHS does not recommend a priori power 

calculations to determine the adequacy of NAMCS sample size (CDC, 2019b). Instead, 

the NCHS recommends post hoc assessments of statistical reliability, using software that 

adjusts for the design effect (i.e., homogeneity of variance; see Groves et al., 2009), such 

as the SPSS Complex Samples module (CDC, 2019b). Estimates that do not conform to 

statistical reliability standards are generally not reported by the NCHS or, depending on 

the nature of the problem, are flagged for higher-level review prior to publication (Parker 

et al., 2017). 

The recommended method for determining statistical reliability depends on the 

type of estimate. All estimates other than proportions (i.e., percentages) are considered 

statistically reliable if they meet both of two criteria: (a) the relative standard error (ratio 

of the standard error to the estimate) is < 30% and (b) the estimate is based on > 30 cases 

(CDC, 2019b). For proportions, estimates should meet all of the following criteria: (a) 

design-effect adjusted denominator of > 30 visits; (b) total absolute width of the 95% 

confidence interval (CI), calculated using a method appropriate for complex samples, of 

< 0.30; and (c) relative CI (absolute CI width divided by the estimate) of < 130% (Parker 

et al., 2017). If the absolute CI width is unusually small (< 0.05), the NCHS also 



87 

 

recommends ensuring > 8 degrees of freedom. The SPSS Complex Samples procedure 

for CI estimation is based on the logit-transformation method (IBM SPSS, n.d.), which in 

simulation analyses produced results similar to those of the Clopper-Pearson method 

(Neusy & Mantel, 2016) used by the NCHS (Parker et al., 2017). 

Operationalization of Constructs 

In this section, I describe a priori plans for operationalization of all variables. As 

described later in this chapter, a priori planned statistical analyses included assessments 

of sample size, multicollinearity, and statistical reliability. For a few predictor variables, 

these assessments resulted in post hoc changes to the a priori definitions described here. 

These changes, along with the rationales for each, are explained in Chapter 4. 

Figure 2 summarizes the study’s two statistical models, one theory based (right 

side) and the other atheoretical (left side). The figure depicts the cognitive act of  

 

Figure 2. Summary of statistical models. BBW = black-box warning; CDS = 
computerized decision support. 
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prescribing as an integration and synthesis of information from various sources 

(knowledge construct, top, solid-line rectangles), influenced by environmental factors 

(dotted rectangles), to create outcome expectations (unobserved variable, center) for each 

potential decision (Bandura, 1989; Kelder et al., 2015). Arrows indicate hypothesized 

associations. Because knowledge construct variables were hypothesized to act in the 

same way in both the theory-based and atheoretical models, they were included in both 

models, although not specifically addressed by any study research question. 

Knowledge construct predictors. Table 4 shows definitions of all knowledge 

construct predictors grouped by the categories shown at the top of Figure 2. The overall 

approach to measurement of the variables was similar to that used by Fairman et al. 

(2018), with modifications to reflect NAMCS data formats, particularly the availability of 

medical condition indicators. For clinical risk, summary indices planned a priori included 

a cardiovascular risk score developed for office-based practice to estimate baseline risk of 

a cardiac event in people without CVD (D’Agostino et al., 2008) and the Charlson 

Comorbidity Index, a validated summary measure of chronic disease burden based on 

mathematically weighted combinations of diagnoses (Quan et al., 2011).  

Additional clinical risk measures included whether the patient had a medical 

condition indicating a black-box (highest-severity) warning level; and whether the 

physician was a cardiologist, indicating both expertise for assessment of cardiovascular 

disorders and a need for specialty-level cardiac care. Other relevant clinical measures 

included the psychiatric comorbidities of depression and anxiety (see Mao & Findling, 

2014) and whether the prescriber was a psychiatrist, indicating both expertise for  
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Table 4 
 
Knowledge Construct Independent (Predictor) Variables and Definitions 

Construct type NAMCS variable name or measurement method  
Clinical risk, cardiovasculara 
Age AGE 
BMI BMI 
SBP, treated 
SBP, untreated  

BPSYS, NCMED (indicates new or continued prescription; combine with medication lists in 
    Appendix B to identify antihypertensives) 

Current smoking USETOBAC 
Diabetes DIABTYP0; DIABTYP1; DIABTYP2 (TYP indicates diabetes type) 

 
Clinical risk, Charlson Comorbidity Indexb 
Cancer, nonmetastatic CANCER condition indicator; ICD-9 and ICD-10 codes to measure metastasis (weight = 2) 
Cancer, metastatic CANCER condition indicator; ICD-9 and ICD-10 codes to measure metastasis (weight = 6) 
Connective tissue /rheumatic 
disease 

ICD-9 and ICD-10 codes (weight = 1) 

Dementia ALZHD condition indicator (weight = 1) 
Diabetes requiring medication 
   treatment, uncomplicated  

DIABTYP0; DIABTYP1; DIABTYP2; medication lists in Appendix B to identify 
   antidiabetic medications (weight = 1) 

Diabetes with complications  
   (renal, eye, neurologic) 

ICD-9 and ICD-10 codes (weight = 2) 

HIV HIV condition indicator (weight = 6) 
Liver disease, mild ICD-9 and ICD-10 codes (weight = 1) 
Liver disease, severe ICD-9 and ICD-10 codes (weight = 3) 
Myocardial infarction history ICD-9 and ICD-10 codes (weight = 1) 
Paraplegia ICD-9 and ICD-10 codes (weight = 2) 
Peptic ulcer ICD-9 and ICD-10 codes (weight = 1) 
Peripheral vascular disease ICD-9 and ICD-10 codes (weight = 1) 
Pulmonary disease ASTHMA or COPD condition indicators; ICD-9 and ICD-10 codes for other lung diseases 

(weight = 1) 
Renal disease CKD, CRF, or ESRD (weight = 2) 

 
Clinical risk, other  
“Black box” warning diagnosis  ETOHAB; SUBSTAB 
Cardiologist SPECR physician specialty code; 08 = cardiovascular disease 

 
Other clinical factors  
Depression  DEPRN condition indicator 
Anxiety ICD-9 and ICD-10 codes 
Psychiatrist SPECR physician specialty code; 11 = psychiatry 

 
Demographic characteristics  
Male sex SEX; 1 = female; 2 = male 
Younger age AGE; groups aged 18–25 years; 26–49 years; 50 years or older (McCabe et al., 2019) 
White or Hispanic Race RACERETH; 1 = White non-Hispanic; 2 = Black non-Hispanic; 3 = Hispanic; 4 = other, 

non-Hispanic 
Medicaid insurance PAYTYPER indicates primary expected source of payment for the visit; 1 = private 

insurance; 2 = Medicare; 3 = Medicaid, CHIP, or other state-based program 
Urban location MSA; 1 = metropolitan statistical area; 2 = not a metropolitan statistical area 

 
Note. Variable names shown in all caps indicate NAMCS fields. ICD codes are in Appendix C. Sources for NAMCS variable 
information were CDC (2017, 2018, 2019b). BMI = body mass index; CKD = chronic kidney disease; COPD = chronic obstructive 
pulmonary disease; CRF = chronic renal failure; ESRD = end-stage renal disease; ETOHAB = alcohol abuse; HIV = human 
immunodeficiency virus; ICD = International Classification of Diseases; MSA = metropolitan statistical area; PVD = peripheral 
vascular disease; SBP = systolic blood pressure; SUBSTAB = substance abuse. 
aSummary score indicates likelihood of a cardiac event (D’Agostino et al., 2008). bWeighted results are summed to indicate total 
comorbidity burden (Quan et al., 2011). CEBVD, CHF, and myocardial infarction are typically included in the Charlson comorbidity 
index but were excluded a priori because they were included in the outcome measure. 
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assessment of psychological disorders and increased likelihood of prescribing an ADHD 

medication despite potential risks (see Leslie et al., 2012). Demographic characteristics 

commonly associated with controlled substance prescribing included male sex, younger 

adult age, White or Hispanic race, Medicaid insurance, and urban-area office location 

(see Fairman et al., 2017; McCabe et al., 2019; Rigg & Monnat, 2015). 

Environmental-influence construct predictors. Definitions of environmental 

predictors, categorized by theoretical construct, are shown in Table 5. Except where 

otherwise indicated, all were drawn from the induction interview. To address the findings 

of Halley et al. (2017) that physicians may have difficulty recalling administrative 

arrangements in that interview, the a priori statistical analysis plan included validation of 

meaningful use reports against ONC standards for E-HR functionality (see Patel, 

Jamoom, Hsiao, Furukawa, & Buntin, 2013). Because medication-related CDS is just one 

of many meaningful use criteria (Wright et al., 2014), it was expected a priori that many 

physicians would have used CDS without achieving meaningful use. It was also expected 

that a small number of physicians would have achieved meaningful use without CDS 

because of exemptions from some core measures (e.g., for writing fewer than 100 

prescriptions annually; see Wright et al., 2014). 

Additional classification methods were planned for the two environmental-

construct variables unique to the theory-based models (bottom two sections of Table 5). 

The a priori definition of revenue from patient volume or satisfaction was based on 

meeting any of the following criteria: (a) Compensation was based in part on satisfaction 

surveys (COMPSAT). (b) Compensation was based in part on the practice’s financial  



91 

 

Table 5 
 
Environmental Construct Independent (Predictor) Variables and Definitions 

Variable  Definition 
Meaningful use, both atheoretical and theory-based models 
EMEDREC  Whether the practice has an E-HR: 1 = yes, all electronic; 2 = yes, part paper, part 

electronic; 3 = no 
HHSMU  Whether the practice E-HR meet meaningful use criteria: 1 = yes; 2 = no; code as 

2 if no E-HR 
PRMCARER  Percentage of practice revenue from Medicare (to be used only to assess whether 

physician may have been subject to penalties for failure to achieve meaningful 
use): 1 = < 25%; 2 = 26–50%; 3 = 51–75%; 4 = > 75%  

ECPOE, ECPOER, 
ESCRIP, ESCRIPR 
EDEMOG, EDEMOGR 
EMEDALG, 
EMEDALGR 
EPROLST, EPROLSTR 
EREMIND, EREMINDR 
EWARN, EWARNR 
 

Validation of meaningful use status (core E-HR functioning; all years): electronic 
prescribing and prescription transmission; recording of patient demographics, 
medication allergy lists, and problem lists; CDS for guideline-based care 
reminders and warnings (Patel et al., 2013) 

CDS, both atheoretical and theory-based models 
ECPOE, ECPOER  Whether the office has computerized capability to order prescriptions 

electronically: 1 = yes; 2 = no 
EWARN, EWARNR  Whether the electronic prescribing function warns of drug interactions or 

contraindications: 1 = yes; 2 = no (code as 2 if no electronic prescribing function) 
 

Revenue, theory-based model only 
COMPFIN  Binomial indicator of compensation based on financial performance of practice  
COMPSAT  Binomial indicator of compensation based on satisfaction surveys of this 

physician’s patients 
EMPSTAT  Employment status; 1 = full owner; 2 = part owner; 3 = employee; 4 = contractor  
PHYSCOMP  Best description of physician’s compensation: 1 = fixed salary; 2 = share of 

practice billings or workload; 3 = mixed; 4 = hourly; 5 = other  
PRPATR  Percentage of revenue that comes from patient payments: 1 = < 25%; 2 = 26–50%; 

3 = 51–75%; 4 = > 75%  
REVFFSR  Percentage of revenue that comes from a usual and customary fee-for-service rate: 

1 = < 25%; 2 = 26–50%; 3 = 51–75%; 4 = > 75%  
 

Nature of professional relationship, theory-based model only 
SENBEFORa New or established patient: 1 = established; 2 = new patient 
PRIMCAREa Whether this physician is the patient’s primary care provider: 1 = yes; 2 = no  
PASTVISa Number of visits this patient made to this practice in past 12 months (interval-

scale) 
NCMEDa Whether the ADHD medication is new or continued (i.e., is patient history with 

medication known to the physician) 
 
Note. Variable names shown in all caps indicate NAMCS fields. Sources for NAMCS variable information were CDC 
(2017, 2018, 2019b). ADHD = attention-deficit hyperactivity disorder; CDS = computerized decision support; E-HR = 
electronic health record; NAMCS = National Ambulatory Medical Care Survey.  
aIndicates a variable collected from the medical record rather than the induction interview. 
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performance (COMPFIN) or on share of practice billings (PHYSCOMP). (c) Physician 

was a full owner or part owner of the practice (EMPSTAT). (d) Percentage of revenue 

from either patient payments or fee-for-service payments exceeded 25% (PRPATR and 

REVFFSR). A priori planned categories for the physician-patient relationship were as 

follows: patient is new (i.e., no previous relationship, SENBEFOR = 2; reference group); 

patient is established, but physician is not the primary care provider (SENBEFOR = 1; 

PRIMCARE = 2); physician is the primary care provider (PRIMCARE = 1). Additional 

categorizations based on number of previous visits (PASTVIS), depending on the 

variable’s distribution and available sample size, were also included in the a priori plan. 

Dependent variable (outcome) measures. Figure 3 summarizes the binomial 

dependent variable measures and definitions used in each of the two clinical scenarios. 

 
Figure 3. Scenario subsamples (rectangles, left side) and treatment options. Indicator of 
clonidine or guanfacine safety for most patients means that uses of clonidine are 
potentially unsafe in patients with severe CVD, end-stage renal disease, low blood 
pressure, or slow heart beat (see FDA, 2010). Uses of guanfacine are potentially unsafe in 
patients with low blood pressure or slow heart beat (see FDA, 2013). No instances of 
potentially unsafe use of clonidine or guanfacine were observed in the final study sample. 
See Appendix C for diagnosis codes. ADHD = attention-deficit hyperactivity disorder; 
CVD = cardiovascular disease; SUD = substance use disorder. 
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For both scenarios, lists of safer treatment choices were based on treatment guidelines 

current during the study period, which recommended atomoxetine for patients at risk of 

abuse (see Bolea-Alamañac et al., 2014; Fields et al., 2017; Post & Kurlansik, 2012), and 

on federal prescribing guidance (FDA 2002, 2007a). Thus, although a current European 

guideline recommends extended-release stimulants or lisdexamfetamine as appropriate 

alternatives for patients with SUD (Kooij et al., 2019), they were not defined as such in 

this study. For the psychotherapy option in Scenario A, the a priori plan was to use the 

NAMCS indicators, PSYCHOTH, which indicates whether the physician recommended 

any treatment intended to change the patient’s behaviors or symptoms, and MENTAL, 

which indicates mental health counseling (CDC, 2019b). Table 6 specifies the a priori 

methods for measuring the diagnoses represented in Figure 3. 

Table 6 
 
Measures of Scenario Subsampling and Designation of Potentially Unsafe Prescription 

Diagnosis Role in 
Scenario A  

Role in 
Scenario B 

NAMCS variable name or measurement method 

ADHD Subsampling 
criterion 

None ICD-9 and ICD-10 diagnoses until 2016. Medical condition indicator 
beginning in 2016 
 

CVDa Reflected in 
the outcome 

Subsampling 
criterion 

Medical condition codes: CAD, CEBVD, CHF, or IHD; or  
ICD-9 or ICD-10 codes: angina, arrhythmia, cardiomegaly, 
cardiomyopathy, congenital heart anomaly, hypertensive heart 
disease, history of heart attack, or valvular disorder 
 

SUD Reflected in 
the outcome 

Subsampling 
criterion 

ETOHAB; SUBSTABb  

 
Note. Variable names shown in all caps indicate NAMCS fields. Sources for NAMCS variable information were CDC (2017, 2018, 
2019b). ADHD = attention-deficit hyperactivity disorder; CAD = coronary artery disease; CEBVD = cerebrovascular disease; CHF = 
congestive heart failure; CVD = cardiovascular disease; IHD = ischemic heart disease; NAMCS = National Ambulatory Medical Care 
Survey; SUD = substance use disorder. 
aAdapted from Fairman et al. (2018) to indicate serious CVD, accounting for differences between claims-based and NAMCS coding 
(L. Davis, personal communication, August 5, 2019). bData collectors are advised to code for ETOHAB if the medical record indicates 
“alcoholism, excessive alcohol use, heavy, problem drinking, binge, or chronic drinking/drinker” (CDC, 2019b, p. 144) and for 
SUBSTAB if it indicates “addiction, illicit drug use, or injection/intravenous drug use/user” (p. 146). 
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Statistical Analysis Plan 

The study research questions and hypotheses are summarized below. 

RQ1: What is the quantitative association of medication-related CDS in the 

practice environment with potentially unsafe prescribing of ADHD medications, 

measured as a binomial, in a logistic regression model that accounts for knowledge 

construct variables? 

Ho1: (theory-based). Medication-related CDS is not significantly associated with 

potentially unsafe prescribing of ADHD medications. 

Ha1: (atheoretical). Medication-related CDS is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications, particularly for patients who have a 

medical condition with a black-box warning. 

RQ2: What is the quantitative association of meaningful use in the practice 

environment with potentially unsafe prescribing of ADHD medications, measured as a 

binomial, in a logistic regression model that accounts for knowledge construct variables? 

Ho2: (atheoretical). Meaningful use is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications. 

Ha2: (theory-based). Meaningful use is associated with increased odds of 

potentially unsafe prescribing of ADHD medications. 

RQ3: Which model—that based on atheoretical interventions, or that based on 

theory-derived predictors—better explains the binomial measure of potentially unsafe 

ADHD-medication prescribing, where better explanation is defined as coefficients in the 
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expected direction, predictive accuracy measured with the c-statistic, and model fit 

measured with the –2LL statistic? 

Ho3: The atheoretical model better explains potentially unsafe prescribing of 

ADHD medications. 

Ha3: The theory-based model better explains potentially unsafe prescribing of 

ADHD medications. 

Software and testing procedures. In accordance with NCHS guidance for 

NAMCS data (CDC, 2019b), all analyses were performed using the SPSS Complex 

Samples module (v. 25.0), which adjusts variance estimates and statistical test results for 

the sampling design effect (see Groves et al., 2009). Statistical significance tests were 

based on an a priori alpha value of .05. The first analytic step was to characterize the four 

outcome measure groups (two scenarios, binomial measure of potentially unsafe versus 

safer for each) on all variables shown in Tables 4 and 5, assessing the statistical reliability 

of subgroup estimates. These assessments were used to identify variables for inclusion in 

remaining analyses and to calculate estimates of statistical precision for all results. 

Statistical testing procedures. To answer the study research questions, I 

conducted bivariate and logistic regression analyses using Complex Samples procedures 

for four models—atheoretical and theory-based for each of the two clinical scenarios. 

Bivariate analyses included a description of sample characteristics for each of the two 

scenarios, and calculations of rates of potentially unsafe prescribing for each sample 

subgroup. In the first stage of multivariate modeling, I assessed coefficients for 

multicollinearity using a method recommended by Midi, Sarker, and Rana (2010). 
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Specifically, because multicollinearity diagnostics are not available for logistic regression 

in SPSS, I performed linear regressions of the outcome measures on predictors solely for 

the purpose of obtaining tolerance and variance inflation statistics, which are standard 

collinearity measures (see Warner, 2013). Despite the binary dependent variable, this 

procedure was appropriate because these measures are affected only by relationships 

among independent variables, not by independent-dependent variable relationships (Midi 

et al., 2010). I tested the remaining predictors in logistic regression models for statistical 

reliability based on NCHS standards (see CDC, 2019b). As planned a priori, I assessed 

predictors for inclusion in the final models based both on the results of these tests and on 

theoretical considerations. 

In the final modeled logistic regressions, odds ratios and 95% CIs indicated the 

odds multiplier for each predictor (e.g., meaningful use) relative to its corresponding 

reference category (e.g., no meaningful use; see Warner, 2013). CI spans from < 1 to > 1 

indicated nonsignificant associations. To answer RQ1 and RQ2, respectively, I compared 

the two competing models on coefficients for CDS and meaningful use. 

RQ3 was answered by comparing the predictive accuracy of the atheoretical with 

theory-based models, based on three standard criteria. The first criterion was whether 

coefficients for each of the environmental predictors were in the expected directions (e.g., 

odds ratio > 1 where a positive predictor was hypothesized; see Warner, 2013). The 

second criterion was predictive accuracy based on the concordance (c) statistic, which 

measures the percentage of all possible combinations of paired cases in the data set with 

divergent outcomes (i.e., one visit potentially unsafe, the other safer) in which the 
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prediction and outcome are concordant (i.e., the predicted probability of a potentially 

unsafe prescription is greater for the potentially unsafe case than for the safer case; see 

Austin & Steyerberg, 2012). A c-statistic value of .5 indicates that a model performs no 

better than chance, and a 1 indicates perfect prediction. 

The third criterion was statistical significance of improvement in fit, comparing 

the theory-based with the atheoretical models, using a χ2 test of change in –2LL, with 

degrees of freedom equal to the difference in the number of model predictors (Pampel, 

2000). Because the SPSS Complex Samples logistic regression procedure does not report 

–2LL automatically, I calculated –2LL for each of the two competing models using the 

SPSS Compute function and the standard formula below, applied to each visit case: 

LLi = (Y × ln [P]) + ((1 – Y) × ln [1 – P])); 

then summed across the data set using the Complex Samples frequencies procedure to 

adjust totals for the design effect (see Groves et al., 2009); 

−2𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = −2�𝐿𝐿𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

where Y is the actual outcome, P is the predicted probability of the outcome, and ln 

indicates a natural-log transformation (see Pampel, 2000). 

Threats to Validity 

Internal. As in any study with a nonexperimental design, the foremost threat to 

internal validity was the possibility of influence on the study outcome by unmeasured 

confounding factors (see Warner, 2013), such as symptom severity, patient demands, or 

features of the medical practice environment not captured in the study predictors (IVs). 
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The measures of model accuracy and fit, described previously, informed an assessment of 

this issue by providing an indication of the overall quality of the models. An additional 

potential confounding factor was the imposition of meaningful use penalties (see Monica, 

2017), which could not be measured directly using NAMCS data. A sensitivity analysis 

estimated the potential effect of this factor as the number of visits made to providers who 

had not achieved meaningful use by 2015 and derived at least 51% of revenue from 

Medicare (PRMCARER). The possibility of residual confounding was considered in 

interpretation of the results. 

An additional potential threat to internal validity was the lack of direct 

information about psychological mediators, such as physician cognition or emotion, that 

might have been obtained from a qualitative or survey study of physician experiences 

with or opinions of E-HRs. Mitigating this potential threat, the current study’s hypotheses 

were informed by a large body of qualitative and quantitative evidence about the effects 

of E-HR use in routine practice (see Schiff et al., 2016). Another possibility was 

misclassification of exposure because of omissions of relevant data on psychiatric 

diagnoses (e.g., SUD) or procedures (e.g., psychotherapy) from the medical record (see 

Madden et al., 2016). I assessed these situations with data transformations and sensitivity 

analyses, consistent with APA standards for analyses of archival data (see Applebaum et 

al., 2018), and accounted for these assessments in data interpretation. 

The final threat to internal validity was the possibility that CDS warnings were 

not transmitted successfully to, or viewed by, physicians. A related question is the degree 

to which CDS systems placed a higher priority on black-box patient diagnoses than on 
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other potential safety issues. To validate the use of a black-box warning as indicating a 

greater probability of a high-severity alert in a CDS, I reviewed information provided by 

several proprietary knowledge bases, which are sources used by system developers in 

populating CDS algorithms (see C. M. Cheng, DeLizza, & Kapusnik-Uner, 2013; C. M. 

Cheng, DeLizza, & Kapusnik-Uner, 2014; Fung, Kapusnik-Uner, Cunningham, Higby-

Baker, & Bodenreider, 2017). Searches were conducted manually for three medications, 

amphetamine, atomoxetine, and methylphenidate, using subscriptions available by 

membership in a health sciences university community for three knowledge bases: Facts 

and Comparisons (Wolters Kluwer, 2019a), Lexicomp (Wolters Kluwer, 2019b), and 

Micromedex (IBM Watson, 2019). In the three knowledge bases, black-box warnings 

were displayed prominently, on the drug information landing screen for Facts and 

Comparisons and Lexicomp, and via a designated tab for black-box warnings in 

Micromedex. Additionally, First Databank, another commonly used information source 

(see Fung et al., 2017), reported an initiative to represent black-box content 

comprehensively in CDS one year prior to the current study’s start date (see C. M. Cheng 

et al., 2013). Because of the many different systems and configurations in use in the 

United States (CDC, 2015c), this validation exercise does not prove that all CDS 

warnings for these medications accurately represented black-box information. It does 

indicate that the hypothesized interaction effect for black-box warnings in the atheoretical 

model was reasonable. 

External. Several potential limitations on external validity were noted prior to 

data analysis. One possibility considered was that NAMCS participants and 
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nonparticipants differed in unmeasured ways that affected the generalizability of the data, 

even after application of weights to adjust for sampling design and nonresponse. Previous 

quantitative research suggested against this possibility, including the NCHS finding of 

minimal nonresponse bias measured across numerous physician and visit characteristics 

in 2012 (see Hing et al., 2016; Appendix A) and several studies finding little nonresponse 

bias in physician surveys with low response rates (see McFarlane et al., 2007; Willis et 

al., 2013; Ziegenfuss et al., 2012). Nonetheless, to assess this possibility, study analyses 

included comparisons with other available published data on adult patients diagnosed 

with ADHD, CVD, or SUD (see Compton et al., 2018; Fairman et al., 2017; Kooij et al., 

2019; Xian et al., 2019) or using prescribed ADHD medications (see Compton et al., 

2018; Fairman et al., 2018). A comparison with available national data on E-HR use 

(ONC, 2019) was also performed. 

It is also possible that patients with a formal diagnosis of ADHD, a selection 

criterion for Scenario A, were not representative of all U.S. residents who have ADHD. 

Previous research has found that ADHD diagnosis and treatment vary by demographic 

characteristics, such as race or geographic location, to a degree that is unlikely to be 

explained by neurobiology (Fairman et al., 2017; Gellad et al., 2014). This potential 

threat to external validity was partly addressed by Scenario B, which was not limited to 

patients with an ADHD diagnosis. The sample also lacked external validity for patients 

referred to emergency care, such as for an acute cardiac event, and for surgeons. 

An additional threat to external validity arose from the decision by the NCHS to 

allow physicians to submit patient E-HRs in lieu of on-site data collection in 2016 (CDC, 



101 

 

2019b). Because these data could not be included in the final 2016 data set, and because 

the technological capabilities or practice patterns of physicians who chose E-HR data 

collection may have systematically differed from those of other participants, I performed 

sensitivity analyses on key findings excluding 2016, to assess whether any external 

validity problem caused by this issue affected study results. 

Ethical Procedures 

NAMCS data are collected under provisions of the NCHS Ethics Review Board 

(2018), which reviews all protocols for treatment of human subjects. Data are publicly 

available online without permission or registration required for access. They are 

anonymous and include no identifiable information about patients or physicians. Details 

that might have the potential to identify a person or visit are truncated (e.g., age 92 or 

older; body mass index less than 12 or greater than 64; CDC, 2019b). Thus, ethical 

considerations related to recruitment, participant refusal, data collection, and 

confidentiality were not applicable in this study. The Walden University Institutional 

Review Board (IRB) approved the study on October 29, 2019 (approval number 10-29-

19-0761704). I considered careful interpretation and dissemination of study findings as 

the most important ethical consideration for this project because of the visibility of the 

topics of E-HRs (e.g., Fry & Schulte, 2019) and substance abuse (e.g., Seth et al., 2018). 

Accordingly, data interpretations were conservative, emphasizing limits on statistical 

reliability and considering the current study findings in the context of previous research 

on physicians’ responses to interventions on their behavior. 
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Summary 

This quantitative study comprised retrospective, cross-sectional analyses of a 

nationally representative sample of U.S. office-based physician visits made by adults. 

The study outcomes (DVs) were binary indicators of whether a potentially unsafe 

medication was prescribed, based on objective behavioral measures. Predictors (IVs) 

were grouped into categories of knowledge constructs (e.g., patient characteristics, 

clinical risk, physician specialty) and environmental constructs (i.e. CDS, meaningful 

use, revenue sources, and experience with the patient (i.e., nature of physician-patient 

professional relationship) and medication (i.e., whether new or continued). Standard 

statistical measures from logistic regression analyses, including odds ratios, 95% CIs, and 

measures of predictive accuracy and goodness of fit, were used to compare the relative 

merits of theory-based and atheoretical approaches to explaining the study outcomes. 

In Chapter 4, I present study findings. These include descriptive characteristics of 

the sample and both bivariate and multivariate analyses of the relationships between the 

outcomes and predictors. Also included are assessments of sample generalizability, 

quantitative measures of multicollinearity and reliability, and sensitivity analyses to 

assess the potential effects of threats to external and internal validity on study results. 
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Chapter 4: Results  

The purpose of this quantitative study was to assess the relative strengths of 

atheoretical and theory-based approaches to promotion of evidence-based medicine by 

comparing logistic regression models on standard measures of accuracy and fit. The 

binary outcome (DV) measure was potentially unsafe prescribing of ADHD medications 

for adults seen in office-based physician visits. Key predictor (IV) measures, representing 

environmental constructs in social cognitive theory, included CDS, meaningful use, 

revenue derived from patient volume or satisfaction, and experience with the patient and 

medication. Additional predictors were knowledge-construct variables, including 

expertise (i.e., physician specialty) and information necessary for prescribing (e.g., 

patient characteristics; Kelder et al., 2015). These knowledge-construct predictors were 

considered exogenous to the office visit and were treated as equivalent in the two models. 

Research questions and hypotheses included the following: 

RQ1: What is the quantitative association of medication-related CDS in the 

practice environment with potentially unsafe prescribing of ADHD medications, 

measured as a binomial, in a logistic regression model that accounts for knowledge 

construct variables? 

Ho1: (theory-based). Medication-related CDS is not significantly associated with 

potentially unsafe prescribing of ADHD medications. 

Ha1: (atheoretical). Medication-related CDS is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications, particularly for patients who have a 

medical condition with a black-box warning. 
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RQ2: What is the quantitative association of meaningful use in the practice 

environment with potentially unsafe prescribing of ADHD medications, measured as a 

binomial, in a logistic regression model that accounts for knowledge construct variables? 

Ho2: (atheoretical). Meaningful use is associated with decreased odds of 

potentially unsafe prescribing of ADHD medications. 

Ha2: (theory-based). Meaningful use is associated with increased odds of 

potentially unsafe prescribing of ADHD medications. 

RQ3: Which model—that based on atheoretical interventions, or that based on 

theory-derived predictors—better explains the binomial measure of potentially unsafe 

ADHD-medication prescribing, where better explanation is defined as coefficients in the 

expected direction, predictive accuracy measured with the c-statistic, and model fit 

measured with the –2LL statistic? 

Ho3: The atheoretical model better explains potentially unsafe prescribing of 

ADHD medications. 

Ha3: The theory-based model better explains potentially unsafe prescribing of 

ADHD medications. 

In this chapter, I explain sequential steps in data collection and processing, 

discuss characteristics of patients and physicians included in each of the study’s two 

clinical scenarios, and assess the sample’s external validity by comparing its 

characteristics with those of other large samples. Following a descriptive overview of 

rates of potentially unsafe prescribing, I consider the assumptions and findings of the 

logistic regression analyses and of several sensitivity analyses. The chapter concludes 
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with a summary of answers to the research questions. Throughout the chapter, counts of 

visits are raw and unweighted, percentages and odds ratios (ORs) are weighted as 

nationally representative estimates, and all statistical tests and confidence intervals (CIs) 

are adjusted for the multistage sampling design using the IBM SPSS (V25.0) Complex 

Samples module. 

Data Collection and Processing 

After receiving approval from the Walden University IRB to access the study data 

on the NCHS website, I downloaded all NAMCS records of U.S. office-based physician 

visits made from 2014 to 2016 and combined them into a single analytic file. The file 

contained all study predictors (IVs) and data needed to compute the binary outcome 

(DV), as described in Chapter 3. From that data set of visits (unweighted N = 87,207), I 

excluded visits made by patients younger than 17 years (n = 12,939) or by those sent to 

emergency care (n = 344), and visits made to surgeons (n = 25,640), leaving an 

unweighted total of 48,284 visits. 

Post Hoc Analytic Adjustments 

During initial data processing and prior to creation of the cohorts (i.e., groups of 

visits) for Scenario A and Scenario B, I identified several unexpected practice patterns. 

These, along with the data transformations used to resolve them and rationales for each, 

are summarized in Table 7. In accordance with the recommendations of the APA 

(Applebaum et al., 2018), which represent general reporting standards for quantitative 

research, and of the International Society for Pharmacoeconomics and Outcomes 

Research, which are specific to archival medical data (Berger, Mamdani, Atkins, &  
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Table 7 
 
Data Modifications Made After Accessing Data and Prior to Analyses of Results 

Practice pattern Data modification Rationale 
• Missing data on BMI and 

blood pressure for 47% of 
visits. 

• Unable to calculate the 
planned cardiovascular risk 
score. 
 

Replace risk score with 
interval scale age. 

• Imputation technique not feasible 
because of large number of 
affected records. 

• Age known to be the primary 
predictor of cardiovascular risk.a  
 

• Missing data on meaningful 
use variable for 1,231 of 
48,284 visits. 

• Most were “unknown” in 
induction interview. 
 

Base meaningful use 
indicator, when missing, on 
specific system functions 
(e.g., electronic problem 
lists, electronic reminders).  
 

• In a priori validation assessment, 
96% of physicians who reported 
meeting meaningful use criteria 
had 6 or 7 of required functions, 
and 83% had all 7. 

• Generic, rather than brand, 
forms of Kapvay and Intuniv 
were prescribed. 

Code generics as Kapvay 
and Intuniv for patients with 
ADHD and without 
hypertension. 
 

• Consistent with product labels for 
these medications.b 

• For 230 of 2,270 substance 
abuse visits, counseling was 
provided without an explicit 
diagnosis of SUD. 

Count the provision of 
alcohol abuse counseling or 
substance abuse counseling 
as an indicator of substance 
use disorder. 
 

• Substance abuse counseling is 
recommended for hazardous use, 
even if not dependent.c  

• Many abuses of ADHD 
medications are hazardous but not 
necessarily dependent.d 
 

• For 1,181 visits provided by 
psychiatrists or mental health 
providers, no explicit code for 
psychotherapy or counseling 
was included in the record. 
 

Count a visit with a mental 
health provider or 
psychiatrist as psychological 
counseling, even if not 
explicitly coded as such. 
 

• Excluding these as “no treatment” 
visits from Scenario A could have 
resulted in external validity error 

• 975 included a diagnosis of a 
psychiatric disorder 

• The variable REVFFSR, 
planned for use as an indicator 
of patient revenue, was coded 
for a higher than expected 
number of visits and may have 
represented a payment 
calculation method rather than 
source of payment. 

Remove fee-for-service 
revenue from the definition 
of patient-derived revenue. 
Base only on the other a 
priori indicators: 
compensation type, 
ownership status, patient 
payments, and payment on 
satisfaction measures. 

• No published criteria for patient-
derived revenue were identified in 
the literature review. 

• Of 31,306 visits coded with 
REVFFSR, 9,097 were to 
physicians paid a salary, and 
11,891 to physician employees.  
 

 
Note. Generic names for Kapvay and Intuniv, respectively, are clonidine and guanfacine. ADHD = attention-deficit hyperactivity 
disorder; BMI = body mass index; REVFFSR = percentage of revenue from “usual, customary, and reasonable fee-for-service” (CDC, 
2019b, p. 79); FDA = U.S. Food and Drug Administration. 
aKarmali, Goff, Ning, and Lloyd-Jones (2014). bFDA (2010, 2013). cMoyer and Preventive Services Task Force (2013); B. Shapiro, 
Coffa, and McCance-Katz (2013). dCompton et al. (2016); Weyandt et al. (2016). 
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Johnson, 2009), I planned three sensitivity analyses to assess the effects of these data 

transformations: (a) exclude substance abuse visits in which abuse counseling was 

provided without a specific diagnosis of SUD, (b) exclude visits made to mental health 

professionals without a specific indicator for psychotherapy, and (c) modify the definition 

of patient-derived revenue to reflect only direct financial compensation. These sensitivity 

analyses, along with the analysis of results excluding 2016 that was planned a priori, are 

reported in the Additional Analyses section later in the chapter. 

Formation of Scenario Cohorts 

Of 48,284 sampled visits, 902 included a diagnosis of ADHD. Of these, 810 

qualified for inclusion in the Scenario A cohort by the prescribing of a treatment: 

medication only (n = 300, 35.5%), psychotherapy or counseling only (n = 108, 11.9%), or 

both (n = 402, 52.6%). The Scenario B cohort comprised 9,101 visits made by patients 

with CVD only (n = 6,858, 72.3%), SUD only (n = 1,963, 24.1%), or both CVD and SUD 

(n = 280, 3.6%). Of Scenario B visits, 155 (1.6%) included the prescribing of ADHD 

medication. Of Scenario B cohort visits where medication was prescribed, 88 (54.8%) 

were made by a patient with an ADHD diagnosis. 

Statistical Testing Procedures 

As planned a priori, the statistical testing process included assessments of sample 

size adequacy and multicollinearity, discussed in this section, and logistic regression 

coefficient statistical reliability. These tests were used to measure adherence of analyses 

to NCHS statistical reliability standards (see CDC, 2019b) and to the assumptions of 

logistic regression analysis (see Warner, 2013). 
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Sample size adequacy. Sample size assessments of the four study subgroups (i.e., 

binary indicator of potentially unsafe medication versus safer option for each of two 

scenarios) produced mixed findings. Most estimates in Scenario A (Appendix D) and 

nearly all in Scenario B (Appendix E) met NCHS standards for CI width. However, no 

estimates in Scenario A had a design effect-adjusted denominator of > 30 (see Parker et 

al., 2017). In Scenario B, estimates for the potentially unsafe medication group, but not 

for the safer group, met the denominator standard. 

For two predictors (IVs), the cell (subgroup) sizes in the crosstabulation between 

the independent and dependent variables were so small that the variables had to be 

excluded from multivariate modeling. The first was black-box warning in Scenario A, 

because only nine of 81 potentially unsafe prescriptions were for patients without SUD. 

The second was continued versus new prescription in Scenario B, because nearly all (11 

of 12) safer prescriptions were continued (i.e., only one new). 

Multicollinearity assessments. Multicollinearity must be assessed when using 

multivariate techniques because excessive overlap in variance among independent 

variables makes model coefficients unreliable (Fox, 1991). Using the method described 

by Midi et al. (2010), I performed linear regression analyses to assess multicollinearity 

based on tolerance (i.e., 1 – R2 for each predictor regressed on all other predictors; see 

Warner, 2013) and on variance inflation factor (i.e., reciprocal of tolerance, a measure of 

coefficient instability; see Fox, 1991). Because one variable, age, showed considerable 

multicollinearity with the a priori age-category indicators (aged 26–49 years; aged > 50 

years; Appendix F), I replaced the categorical variables with interval-scale age. 
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Statistics for CDS and meaningful use did not indicate excessive multicollinearity 

(models without interaction terms: tolerance = .360–.414 for Scenario A; tolerance = 

.572–.574 for Scenario B), likely because the requirement for CDS in meaningful use 

may be waived (see Wright et al., 2014). A follow-up analysis (not shown in appendix) 

indicated that of those with meaningful use, 6.3% in Scenario A and 3.1% in Scenario B 

did not have CDS. 

Results 

Sample Description 

Sample characteristics for visits in each clinical scenario are shown in Table 8. 

Several differences between the cohorts were consistent with the selection criteria for 

each. In Scenario A, the plurality (47.8%) of adult patients treated for ADHD were aged 

26–49 years; in Scenario B, most (81.8%) patients with CVD or SUD were aged 50 years 

or older, likely because the most prevalent selection criterion in this group was CVD. 

Mean (standard deviation) ages were 35.8 (14.4) years in Scenario A and 64.3 (17.1) 

years in Scenario B. Consistent with these demographic characteristics, private insurance 

was the dominant source of payment (57.0%) in Scenario A, whereas Medicare was 

predominant (54.2%) in Scenario B. 

Depression and anxiety were more common in Scenario A (35.1% and 28.7%, 

respectively), than in Scenario B (16.3% and 6.1%, respectively). Consistent with these 

differences, psychiatric visits were common (60.6%) in Scenario A, but most Scenario B 

visits (69.5%) were provided by physicians who did not specialize in either cardiology or 

psychiatry. Use of CDS and achievement of meaningful use were more common in  



110 

 

Table 8 
 
Sample Characteristics, U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD Scenario B: patients with CVD or SUD 
 Unweighted 

n 
Weighted %a  95% CI Unweighted n Weighted %a  95% CI 

All patients 810 100.0 NA 9,101 100.0 NA 
Age group (years)b       
  17–25 251 31.0 [26.2, 36.2] 259 3.0 [2.3, 3.8] 
  26–49 401 47.8 [41.6, 54.0] 1,326 15.2 [13.1, 17.6] 
  50 or older 158 21.3 [17.1, 26.1] 7,516 81.8 [79.2, 84.2] 
Sex       
  Female 423 53.4 [48.0, 58.7] 4,192 46.1 [44.2, 48.0] 
  Male 387 46.6 [41.3, 52.0] 4,909 53.9 [52.0, 55.8] 
Race and ethnicity       
  White, non-Hispanic 708 86.3 [82.2, 89.6] 7,503 77.4 [74.5, 80.1] 
  Black, non-Hispanic 34 4.7 [2.8, 7.8] 735 9.4 [8.0, 10.9] 
  Hispanic 43 5.6 [4.0, 8.0] 571 9.3 [7.3, 11.8] 
  Other 25 3.4 [2.0, 5.5] 292 3.9 [3.1, 4.9] 
Primary payment source      
  Private 439 57.0 [47.0, 66.5] 2,670 31.8 [29.5, 34.1] 
  Medicaid 95 13.1 [8.4, 19.9] 663 7.6 [6.2, 9.4] 
  Medicare 46 5.6 [3.5, 9.0] 4,725 54.2 [51.5, 56.9] 
  Other 189 24.2 [15.1, 36.5] 440 6.4 [4.7, 8.7] 
Office location       
  Urban 756 91.9 [80.3, 96.9] 8,120 90.0 [86.8, 92.6] 
  Nonurban 54 8.1 [3.1, 19.7] 981 10.0 [7.4, 13.2] 
Physician specialty       
  Cardiology 3 0.2 [0.1, 1.0] 2,882 25.2 [20.7, 30.2] 
  Psychiatry 493 60.6 [50.8, 69.6] 492 5.3 [4.0, 7.0] 
  Neither of these 314 39.2 [30.2, 49.0] 5,727 69.5 [64.6, 74.0] 
Black-box diagnosis      
  Yes 105 11.4 [8.0, 16.0] 2,243 27.7 [24.3, 31.3] 
  No 705 88.6 [84.0, 92.0] 6,858 72.3 [68.7, 75.7] 
Charlson comorbiditiesc      
  None 767 94.1 [91.1, 96.1] 5,257 56.7 [53.4, 60.0] 
  One 35 4.3 [2.7, 6.9] 1,921 21.1 [19.2, 23.1] 
  Two 6 0.9 [0.3, 2.8] 1,150 12.8 [11.4, 14.3] 
  Three or more 2 0.7 [0.1, 3.6] 773 9.4 [7.0, 12.5] 
Psychiatric comorbidities      
  Depression 307 35.1 [28.8, 41.9] 1,443 16.3 [14.6, 18.1] 
  Anxiety 215 28.7 [22.6, 35.6] 502 6.1 [4.7, 7.9] 
Relationship with patient      
  New 66 9.5 [6.5, 13.5] 1,133 10.7 [9.3, 12.2] 
  Established, not PCP 503 64.8 [57.1, 71.8] 4,610 44.2 [39.7, 48.8] 
  PCP 220 25.7 [19.4, 33.3] 3,147 45.1 [40.8, 49.4] 
Environmental features      
  CDS  469 65.1 [53.3, 75.3] 7,901 89.6 [86.4, 92.1] 
  Meaningful use 474 60.9 [49.2, 71.5] 8,036 87.8 [84.4, 90.6] 
  Patient-derived 
    revenue 

732 92.0 [86.1, 95.6] 7,435 85.7 [82.4, 88.5] 

 
Note. ADHD = attention-deficit hyperactivity disorder; CDS = computerized decision support; CI = confidence interval; CVD = 
cardiovascular disease; NA = not applicable; PCP=primary care provider; SUD = substance use disorder. 
aPercentage of total visits after application of sample weights, accounting for design effect (Groves et al., 2009) using IBM SPSS for 
Complex Samples. Design effect-adjusted denominators < 30 for all estimates; interpret results cautiously. bMean (standard deviation) 
ages (years) were 35.8 (14.4) in Scenario A and 64.3 (17.1) in Scenario B. cBased on weighted combinations of diagnoses, summed to 
indicate total comorbidity burden (Quan et al., 2011).  
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Scenario B (89.6% and 87.8%, respectively) than in Scenario A (65.1% and 60.9%, 

respectively), likely reflecting greater adoption of E-HRs by nonspecialists than by 

specialists (see Patel et al., 2013). 

Assessment of External Validity 

Comparisons of patient and provider-office characteristics in the present sample 

with those of national and other large-sample data suggested generally good external 

validity (Appendix G). A few exceptions were consistent with methodological 

differences between the current study sample and those of previous work. The most 

notable was that the reported rates of prescribed stimulant use among persons with SUD 

were much higher in a household survey by Compton et al. (2018), such as 25.8% of 

those with opioid use disorder, than in the current study of office visits (4.1%). Despite 

this difference, the rate of SUD among adults with ADHD was reported in a review 

article as 11% (Kooij et al., 2019), compared with 11.4% in the present sample of visits 

made by adults receiving treatment for ADHD (i.e., either medication or psychotherapy). 

Also similar were the rates of E-HR use reported by the U.S. ONC (2019) for 2014–2015 

(82.8–86.9%) as a percentage of physicians, compared with this sample’s percentage of 

visits in that time period (89.1%). 

Characteristics of patients with CVD reported in a large registry study (Xian et 

al., 2019) were similar, but not identical, to those of patients with CVD in the present 

national sample, with statistically significant differences on Pearson χ2 test 

(http://vassarstats.net/newcs.html) due partly to large sample size (N = 3,232 in Xian et 

al., 2019; N = 7,138 in the current study). Examples include prevalence rates for diabetes 
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(39.8% versus 31.8%, respectively, χ2[1] = 62.92, p < .001), hypertension (85.2% versus 

74.0%, χ2[1] = 158.3, p < .001), and percentage female (36.2% versus 46.3%, χ2[1] = 

90.55, p < .001). Comparisons to the sample of patients with ADHD reported by Fairman 

et al. (2018) were similar for percentage female (53.3% in the present sample, 51.1% 

reported by Fairman et al., 2018) and percentage with SUD (11.7–18.8% vs. 10.0%, 

respectively), but the age distributions differed somewhat. These differences were not 

tested for statistical significance because of large sample size (N = 91,588) in the study 

by Fairman et al. When interpreting these results, researchers should note that the study 

by Fairman et al. was limited to commercially insured patients. 

Bivariate Measures of Study Outcomes and Knowledge Construct Predictors 

Of visits included in Scenarios A and B, respectively, 81 (weighted 8.3%, 95% CI 

[5.6, 12.1]) and 143 (weighted 1.5%, 95% CI [1.1, 2.0]) included the prescribing of a 

potentially unsafe medication (see Table 9). In Scenario A, significant bivariate 

knowledge-construct predictors of potentially unsafe prescribing included male sex and 

White, non-Hispanic race. In Scenario B, significant bivariate knowledge-construct 

predictors included younger age; male sex; White, non-Hispanic race; private or other 

non-public payment source; psychiatrist specialty; depression; and anxiety. In both 

scenarios, black-box medical condition was a significant positive predictor, although the 

rates for Scenario A are difficult to interpret because of the small cell sizes described 

previously. 

  



113 

 

Table 9 
 
Percentage of Visits Resulting in Potentially Unsafe Prescription for ADHD Medication, 
by Knowledge-Construct Predictors, U.S. Office-Based Physician Visits Made by Adults, 
2014–2016 

 Scenario A: patients with ADHD Scenario B: patients with CVD or SUD 

 Weighted %a   95% CI     P 
valueb 

Weighted %a   95% CI P 
valueb 

All patients 8.3 [5.6, 12.1] NA 1.5 [1.1, 2.0]  
Age group (years)   .182   < .001 
  17–25 6.2d [3.1, 12.3]  8.5 [4.7, 14.9]  
  26–49 10.7 [6.7, 16.6]  4.4 [2.9, 6.5]  
  50 or older 5.8c,d [2.9, 11.5]  0.7 [0.4, 1.1]  
Sex   .039   .040 
  Female 6.0c [3.7, 9.7]  1.1 [0.8, 1.6]  
  Male 10.8 [2.6, 6.7]  1.8 [1.2, 2.7]  
Race and ethnicity   .037   < .001 
  White, non-Hispanic 9.1c [6.1, 13.4]  1.8 [1.3, 2.5]  
  Black, non-Hispanic 5.5c,d [1.7, 16.2]  0.5d [0.2, 1.6]  
  Hispanic 2.5c,d [0.6, 9.7]  0.2d [0.1, 0.7]  
  Other 0.7c,d [0.1, 5.5]  0.5d [0.1, 2.8]  
Primary source of payment  .097   < .001 
  Private 6.6c [4.2, 10.3]  2.2 [1.4, 3.2]  
  Medicaid 6.1c,d [2.6, 13.7]  1.5d [0.7, 2.9]  
  Medicare 5.5c,d [1.7, 16.5]  0.2d [0.1, 0.4]  
  Other 15.3c,d [6.6, 31.5]  8.4c [4.6, 14.8]  
Office location   .740   .503 
  Urban 8.1c [5.4, 12.0]  1.5 [1.1, 2.1]  
  Nonurban 10.3c,d [2.5, 33.6]  1.1d [0.5, 2.6]  
Physician specialty   .261   < .001 
  Cardiology Not calculated; n = 3  0.3c [0.1, 0.7]  
  Psychiatry 8.7c [5.1, 14.6]  13.5 [8.8, 20.3]  
  Neither of these 7.3 [4.3, 12.0]  1.0 [0.7, 1.5]  
Black-box diagnosis   < .001   < .001 
  Yes 67.8d [50.2, 81.5]  4.1 [2.8, 5.8]  
  No 0.6c,d [0.3, 1.2]  0.5 [0.3, 0.9]  
Charlson comorbiditiese   .719   .060 
  None 8.0c [5.3, 12.0]  2.1 [1.5, 2.9]  
  One 14.2c,d [5.2, 33.3]  0.7 [0.4, 1.3]  
  Two Not calculated; n = 6  0.7c [0.1, 3.8]  
  Three or more Not calculated; n = 2  0.7b,c [0.2, 3.0]  
Depression   .732   < .001 
  No 7.9c [4.7, 13.2]  1.1 [0.8, 1.6]  
  Yes 8.9 [5.5, 14.1]  3.4 [2.2, 5.2]  
Anxiety   .099   .004 
  No 9.5c [6.2, 14.2]  1.3c [1.0, 1.8]  
  Yes 5.3c,d [2.7, 10.1]  3.6d [1.8, 7.2]  

 
Note. ADHD = attention-deficit hyperactivity disorder; CI = confidence interval; CVD = cardiovascular disease; SUD = substance use 
disorder. 
aPercentage of total visits after application of sample weights, accounting for design effect (see Groves et al., 2009). bPearson χ2 test, 
adjusted for design effect (see Groves et al., 2009).cIndicates an estimate that failed the design effect-adjusted denominator check. 
dIndicates an estimate that failed checks on absolute or relative confidence interval width. eBased on weighted combinations of 
diagnoses, summed to indicate total comorbidity burden (Quan et al., 2011). 
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Assessment of Assumptions for Logistic Regression Analysis 

Logistic regression analysis facilitates quantitative assessments of the associations 

of predictor variables with binary outcomes (DVs). The study data and model met 

assumptions for the technique, including an outcome with two, mutually exclusive 

categories (i.e., potentially unsafe versus safer) and statistically independent observations 

(see Warner, 2013). An assumption common to all multivariate techniques, that the 

model be correctly specified (see Warner, 2013), is assessed in the presentation of results 

for RQ3. 

Statistical Reliability of Logistic Regression Coefficients 

Predictors chosen for inclusion in the models were based on the literature review 

described in Chapter 2. Initial logistic regression modeling of all predictors revealed that 

most coefficients did not meet NCHS statistical reliability standards of relative standard 

error < 30% and > 30 cases (see CDC, 2019b; Appendix H). Using the a priori 

procedures described in Chapter 3, I made decisions about these coefficients based on 

statistical and theoretical considerations. To balance statistical precision against inclusion 

of all coefficients suggested by the theoretical frameworks, I removed from the equations 

any knowledge-construct factor meeting both of the following criteria: (a) the standard 

error exceeded the absolute value of the coefficient estimate (β), and (b) the estimate was 

based on < 30 cases. For the measures of physician-patient relationship, this change was 

made by replacing the graded measure, encompassing both primary care provider 

relationship and number of previous visits, with a single dummy-variable indicator for 

primary care provider. I maintained the integrity of the process by making only one such 
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decision rule, applying it equally to both models and scenarios, and testing no additional 

decision rules or models. It should be noted that even after this procedure, most 

coefficients did not meet NCHS standards; results should be interpreted cautiously. 

Assessments of Study Research Questions 

Final, full logistic regression analyses for the atheoretical and theory-based 

models are shown in Appendix I and Appendix J, respectively. The tables accompanying 

the analyses of each research question, shown in the next section, are excerpts of relevant 

sections from each of these full models. As planned a priori, both the atheoretical and 

theory-based models included knowledge-construct factors. Both models included 

coefficients for the environmental-construct predictors CDS and meaningful use, with 

competing hypotheses for each. The theory-based model included, in addition, predictors 

for patient-derived revenue, primary care provider relationship with the patient, and 

experience with the medication (i.e., continued versus new). 

Both models were statistically significant overall for both scenarios: atheoretical 

models, Scenario A χ2(9) = 31.03, p < .001, Scenario B χ2(12) = 306.59, p < .001; 

theory-based models, Scenario A χ2(12) = 36.41, p < .001, Scenario B χ2(13) = 305.68, p 

< .001 (Table 10). Knowledge-construct predictors significantly associated with 

potentially unsafe prescribing were similar in the atheoretical and theory-based models 

(Appendix I; Appendix J) and consistent with most bivariate results described previously. 

These included older age in Scenario B and anxiety in both scenarios, which were 

negatively associated with the outcome, and psychiatric care in both scenarios, which was 

positively associated with the outcome.  
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Table 10 
 
Model Statistics, Scenarios A and B, Complex Samples Logistic Regression Analyses of 
U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD, Scenario B: patients with CVD or SUD, 
 
 
 

potentially unsafe prescription versus 
any other treatment (safer medication 
or psychotherapy) 

potentially unsafe prescription versus no 
potentially unsafe prescription 

Atheoretical model   
Unweighted number of visits 669 8,685 
Number of physicians (strata) 301 (101) 1659 (130) 
“c” (concordance) Statistic .572 .870 
Nagelkerke R2 .099 .243 
Model χ2 (critical χ2; df), p  31.03 (16.92; df = 9), p < .001 306.59 (21.03; df = 12), p < .001 
Theory-based model   
Unweighted number of visits 669 8,685 
Number of physicians (strata) 301 (101) 1659 (130) 
“c” (concordance) Statistic .587 .871 
Nagelkerke R2 .116 .243 
Model χ2 (critical χ2; df), p 36.41 (21.03; df = 12), p < .001 305.68 (22.36; df = 13), p < .001 

 
Note. Critical χ2 calculated for α = .05. ADHD = attention-deficit hyperactivity disorder; CVD = cardiovascular disease; df = 
degrees of freedom; LL = log likelihood; SUD = substance use disorder. 
 
Results for RQ1: CDS  

RQ1 addressed the association of CDS with the binary outcome of potentially 

unsafe prescribing. The theory-based hypothesis was that CDS is not significantly 

associated with the study outcome; and the atheoretical hypothesis was that CDS is 

associated with a significant decrease in the outcome, especially for patients with black-

box warning status. As described previously, the black-box variable, and its interaction 

term with CDS, could not be tested in Scenario A because of small cell counts. 

In the atheoretical models, CDS was not significantly associated with the outcome 

in either clinical scenario (Scenario A: OR = 0.538, 95% CI [0.127, 2.284]; Scenario B: 

OR = 0.245, 95% CI [0.053, 1.137]; Table 11). In Scenario B, the interaction term for 

CDS with black-box warning was also nonsignificant (OR = 1.836, 95% CI [0.400, 

8.428]). Results for CDS were similarly nonsignificant in the theory-based model of 
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Scenario A (OR = 0.570, 95% CI [0.128, 2.531]) but indicated a significant decrease in 

odds of the outcome in Scenario B (OR = 0.402, 95% CI [0.180, 0.898]). The 

nonsignificant results should be viewed as inconclusive because the coefficients were not 

statistically reliable. Based on the one significant result observed, findings indicated 

partial support for the atheoretical hypothesis that CDS is associated with decreased odds 

of prescribing potentially unsafe ADHD medications to adults. 

Table 11 
 
Results for CDS, Scenarios A and B, Complex Samples Logistic Regression Analyses of 
U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD, Scenario B: patients with CVD or SUD, 
 
 
 

potentially unsafe prescription versus 
any other treatment (safer medication or 

psychotherapy) 

potentially unsafe prescription versus no 
potentially unsafe prescription 

Predictor Reference 
Group 

β SE OR     95% CI β SE OR 95% CI 

Atheoretical model         
CDS No CDS –0.620 .733 0.538 [0.127, 2.284] –1.406 .782 0.245 [0.053, 1.137] 
BBW × CDS No 

interaction 
Not included in model; removed in 
sample size-adequacy test 

0.608 .777 1.836 [0.400, 8.428] 

Theory-based model   
CDS No CDS –0.563 .756 0.570 [0.128, 2.531] –0.913 .410 0.402 [0.180, 0.898] 

 
Note. Bold text denotes a statistically significant predictor. Excerpted from full atheoretical and theory-based models shown in 
Appendix I and Appendix J, respectively. ADHD = attention-deficit hyperactivity disorder; BBW = black-box warning; CDS = 
computerized decision support; CI = confidence interval; CVD = cardiovascular disease; OR = odds ratio (exponentiated β); SE = 
standard error; SUD = substance use disorder. 

 
Results for RQ2: Meaningful Use 

RQ2 addressed the association of meaningful use achievement with the study 

outcome, with decreased odds hypothesized in the atheoretical models and increased odds 

hypothesized in the theory-based models. In the atheoretical models, the coefficients for 

meaningful use were positive and statistically significant in both Scenario A (OR = 

4.961, 95% CI [1.124, 21.898] and Scenario B (OR = 2.865, 95% CI [1.265, 6.488]; 

Table 12). Results were similar in the theory-based models, although the coefficient in 
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Scenario A was not statistically significant (Scenario A: OR = 4.046, 95% CI [0.823, 

19.884]; Scenario B: OR = 2.922, 95% CI [1.275, 6.698]). Thus, results generally 

supported the theory-based hypothesis, suggesting meaningful use is associated with 

approximately tripled odds of prescribing potentially unsafe ADHD medications to 

adults. 

Table 12 
 
Results for Meaningful Use, Scenarios A and B, Complex Samples Logistic Regression 
Analyses of U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD, Scenario B: patients with CVD or SUD, 
 
 
 

potentially unsafe prescription versus any 
other treatment (safer medication or 
psychotherapy) 

potentially unsafe prescription versus no 
potentially unsafe prescription 

Predictor Reference 
Group 

β SE OR     95% CI β SE OR     95% CI 

Atheoretical model         
Meaningful 
use 

No 
meaningful 
use 

1.602 .753 4.961 [1.124, 21.898] 1.053 .417 2.865 [1.265, 6.488] 

Theory-based model         
Meaningful 
use 

No 
meaningful 
use 

1.398 .807 4.046 [0.823, 19.884] 1.072 .423 2.922 [1.275, 6.698] 

 
Note. Bold text denotes a statistically significant predictor. Excerpted from full atheoretical and theory-based models shown in 
Appendix I and Appendix J, respectively. ADHD = attention-deficit hyperactivity disorder; CI = confidence interval; CVD = 
cardiovascular disease; OR = odds ratio (exponentiated β); SE = standard error; SUD = substance use disorder. 

 
Results for RQ3: Predictive Accuracy and Model Fit 

Changes to several environmental-construct predictors, described previously, 

prevented full testing of either the atheoretical or theory-based models. These changes 

included (a) removal of the term for interaction of CDS with black-box warning in 

Scenario A, (b) removal of the indicator for continued versus new prescription in 

Scenario B, and (c) recoding of the variable for physician-patient relationship to a binary 

indicator of primary care provider status in both scenarios. Assessments of the relative 

merits of the atheoretical and theory-based models included whether coefficients were in 
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the predicted direction; the c (concordance) statistic, which measures predictive accuracy; 

and change in the –2LL statistic, which measures model fit. 

Direction of coefficients. As noted in the discussions of RQ1 and RQ2, results 

for CDS were inconclusive but provided some support for the atheoretical hypothesis, 

and results for meaningful use supported the theory-based hypothesis. Two additional 

coefficients for variables unique to the theory-based models were not statistically 

significant: primary care provider status in both scenarios (Scenario A: OR = 0.873, 95% 

CI [0.287, 2.656]; Scenario B: OR = 1.088, 95% CI [0.475, 2.495]) and experience with 

the medication (i.e., continued versus new prescription) in Scenario A (OR = 0.773, 95% 

CI [0.438, 1.366]; Table 13). The coefficient for patient-derived revenue in Scenario A 

indicated significantly reduced odds of the outcome (OR = 0.390, 95% CI [0.156,  

Table 13 
 
Results for Variables Unique to the Theory-Based Models, Scenarios A and B, Complex 
Samples Logistic Regression Analyses of U.S. Office-Based Physician Visits Made by 
Adults, 2014–2016 

 Scenario A: patients with ADHD, Scenario B: patients with CVD or SUD, 
 
 
 

potentially unsafe prescription versus 
any other treatment (safer medication or 

psychotherapy) 

potentially unsafe prescription versus no 
potentially unsafe prescription 

Predictor Reference 
Group 

β SE OR       95% CI   β SE OR    95% CI 

Patient-
derived 
revenue 
 

No revenue 
on this basis 

–0.941 .465 0.390 [0.156, 0.976] 0.113 .374 1.119 [0.538, 2.330] 

PCP Physician is 
not the PCP 
 

–0.136 .564 0.873 [0.287, 2.656] 0.085 .423 1.088 [0.475, 2.495] 

Continuing 
prescription 

New 
prescription 

–0.257 .289 0.773 [0.438, 1.366] Not included in model; removed in 
sample size adequacy test 

 
Note. Bold text denotes a statistically significant predictor. ADHD = attention-deficit hyperactivity disorder; CI = confidence interval; 
CVD = cardiovascular disease; OR = odds ratio (exponentiated β); PCP = primary care provider; SE = standard error; SUD = 
substance use disorder. 
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0.976]), contrary to the theory-based hypothesis. In Scenario B, the coefficient for 

patient-derived revenue was not significant (OR = 1.119, 95% CI [0.538, 2.330]). 

C (concordance) statistic. The c-statistic is measured on a scale of .5, indicating 

a model that performs no better than random assignment, to 1.0, indicating a model that 

perfectly predicts the outcome (Austin & Steyerberg, 2012). As noted in the description 

of Table 10, both the atheoretical and theory-based models had weak predictive accuracy 

(.572 and .587, respectively) for Scenario A, whereas both models had excellent 

predictive accuracy (.870 and .871, respectively) for Scenario B. These findings indicated 

that the Scenario B model was generally better specified than was the Scenario A model. 

Additionally, these c-statistics indicated only modest improvement for the  

theory-based model in Scenario A, and no improvement in Scenario B, compared with 

the atheoretical model. 

Statistical significance of change in model fit. Results of tests of between-model 

differences in fit are shown in Table 14. For both Scenarios A and B, results indicated 

change in model χ2 less than critical χ2 for the theory-based model compared with the 

atheoretical model, indicating no significant improvement in goodness of fit. 

Summary of results for RQ3. Assessments of coefficient direction produced 

mixed results, mostly in favor of the atheoretical model. Only the results for meaningful 

use were consistent with the theory-based hypotheses. Moreover, the theory-based 

models did not improve predictive accuracy or fit compared with the atheoretical models. 

Nonetheless, findings for RQ3 should be viewed as somewhat inconclusive because  
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Table 14 
 
Atheoretical and Theory-Based Model Fit, Scenarios A and B, Logistic Regression 
Analysis of U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with  
ADHD 

Scenario B: patients with  
CVD or SUD 

 Atheoretical Theory-based Atheoretical Theory-based 
Baseline (no predictor) model –2LL 410.09 410.09 1335.71 1335.71 
Model –2LL 379.07 373.69 1029.11 1030.02 
Model χ2 (change in  –2LL) 31.03 36.41 306.59 305.68 
 
Model χ2 change: atheoretical to theory-based models 

  

  Degrees of freedom (change in 
  number of variables ) 

3 1 

  Model χ2 (change) 5.38 –0.91 
  Critical χ2 (df), α = .05 7.81 (3) 3.84 (1) 

 
Note. ADHD = attention-deficit hyperactivity disorder; CVD = cardiovascular disease; df = degrees of freedom; LL = log likelihood; 
SUD = substance use disorder. 
 
 
neither the atheoretical nor theory-based models could be fully tested, and because of 

modest predictive accuracy in the models of Scenario A. 

Additional Analyses 

Sensitivity analyses, logistic regression models. Sensitivity analyses included 

calculations of model c-statistics, ORs, and 95% CIs for key environmental-construct 

predictors under several conditions: (a) excluding 2016, (b) excluding visits with 

substance abuse counseling but no code for SUD, and (c) modifying the definitions of 

patient-derived revenue (Table 15). A planned sensitivity analysis of visits to mental 

health professionals without a specific indicator for psychotherapy was not performed 

because it affected only six visits in Scenario A, and, by design, it did not affect Scenario 

B, in which neither selection criteria nor outcome were affected by psychotherapy. 

Findings for meaningful use and primary care provider relationship were 

consistent across most models. For CDS, sensitivity analyses were consistent with main 

findings in Scenario A, but four of seven analyses in Scenario B indicated an association 
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Table 15 
 
Sensitivity Analyses on Key Findings, Logistic Regression Models of U.S. Office-Based 
Physician Visits Made by Adults, 2014–2016 

  CDS  
 

Meaningful use  
 

Primary care 
provider 

Patient-derived 
revenue  

C-
statistic 

 n    OR [95% CI]              OR [95% CI]              OR [95% CI]              OR [95% CI]            
Scenario A, atheoretical       
  Original model 669 0.538 

[0.127, 2.284] 
4.961 

[1.124, 21.898] 
NA NA .572 

  Exclude 2016  540 0.379 
[0.053, 2.699] 

5.488 
[0.731, 41.184] 

NA NA .576 

  A priori definition, SUDa 662 0.492 
[0.115, 2.101] 

4.839 
[1.099, 21.320] 

NA NA .569 

Scenario A, theory-based       
  Original model 669 0.570 

[0.128, 2.531] 
4.046 

[0.823, 19.884] 
0.873 

[0.287, 2.656] 
0.390 

[0.156, 0.976] 
.587 

  Exclude 2016 540 0.420 
[0.050, 3.516] 

4.795 
[0.515, 44.607] 

0.651 
[0.248, 1.707] 

0.593 
[0.161, 2.184] 

.587 

  A priori definition, SUDa 662 0.519 
[0.115, 2.347] 

3.893 
[0.779, 19.455] 

0.719 
[0.257, 2.016] 

0.370 
[0.146, 0.936] 

.582 

  Patient revenue, 
    ownership or shareb 

 

 
669 

 
0.501 

[0.116, 2.165] 

 
4.188 

[0.872, 20.117] 

 
0.837 

[0.326, 2.146] 

 
0.410 

[0.194, 0.865] 

 
.587 

Scenario B, atheoretical       
  Original model 8,685 0.245 

[0.053, 1.137] 
2.865 

[1.265, 6.488] 
NA NA .870 

  Exclude 2016  7,429 0.219 
[0.064, 0.751] 

1.805 
[0.732, 4.450] 

NA NA .887 

  A priori definition, SUDa 8,487 0.245 
[0.053, 1.142] 

2.865 
[1.254, 6.544] 

NA NA  

Scenario B, theory-based       
  Original model 8,685 0.402 

[0.180, 0.898] 
2.922 

[1.275, 6.698] 
1.088 

[0.475, 2.495] 
1.119 

[0.538, 2.330] 
.871 

  Exclude 2016 7,429 0.497 
[0.215, 1.150] 

1.782 
[0.708, 4.485] 

1.247 
[0.512, 3.039] 

0.970 
[0.405, 2.324] 

.889 

  A priori definition, SUDa 8,487 0.396 
[0.174, 0.902] 

2.904 
[1.253, 6.729] 

1.124 
[0.480, 2.631] 

1.066 
[0.486, 2.341] 

.875 

  Patient revenue, 
    ownership or shareb 

 
8,685 

0.388 
[0.169, 0.890] 

2.576 
[1.093, 6.073] 

1.157 
[0.507, 2.641] 

0.554 
[0.324, 0.948] 

 
.867 

 
Note. Bold text denotes a statistically significant predictor. CI = confidence interval; OR = odds ratio; SUD = substance use disorder.  
aExcludes visits in which a patient was defined as at risk of a potentially unsafe prescription solely by receiving substance abuse 
counseling, without a diagnosis of substance use disorder in the medical record. bDefine patient-derived revenue only if physician is a 
full or part owner of the practice or describes the primary source of compensation as based on share of billings. 
 
 
of CDS with reduced rates of potentially unsafe prescribing (e.g., Scenario B, 

atheoretical, excluding 2016: OR = 0.219, 95% CI [0.064, 0.751]). Considered together 

with the small sample size in Scenario A and the limited statistical reliability of the CDS 

measure in both scenarios, the most reasonable conclusion from these findings is that 
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CDS may be associated with decreased potentially unsafe prescribing of ADHD 

medication, but results are uncertain. 

Results were sensitive to the definition of patient-derived revenue (Table 15; 

Table 16). The a priori construct for this indicator was revenue derived from either 

patient satisfaction or volume. When the measure was narrowed to reflect a direct 

relationship between patient volume and compensation, defined as practice ownership or 

share of billings, theory-based model fit generally improved, with a significantly better fit 

in the theory-based than the atheoretical model of Scenario B. Additionally, in both 

scenarios, patient-derived revenue using the modified definition was associated with 

significantly decreased odds of the outcome (Scenario A: OR = 0.410, 95% CI [0.194, 

0.865]; Scenario B: OR = 0.554, 95% CI [0.324, 0.948]). Thus, measuring patient-

derived revenue as direct financial compensation may improve model fit, but with an 

effect opposite that of the theory-based hypothesis. 

Table 16 
 
Logistic Regression Model Fit Changes Using an Alternative Definition of Patient-
Derived Revenue, U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with  
ADHD 

Scenario B: patients with  
CVD or SUD 

 Original 
definition 

Ownership or 
billing share 

Original 
definition 

Ownership or 
billing share 

Model χ2 (change in  –2LL) 5.38 7.02 –0.91 7.05 
Change in degrees of freedom 3 3 1 1 
Critical χ2, α = .05 7.81 7.81 3.84 3.84 

 
Note. ADHD = attention-deficit hyperactivity disorder; CVD = cardiovascular disease; LL = log likelihood; SUD = substance use 
disorder. 
 

Follow-up bivariate analysis. Although CDS and meaningful use achievement 

are linked because CDS is one criterion for meaningful use, a small number of sampled 

visits were made to physicians who qualified for meaningful use despite no medication-
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related CDS (Scenario A: n = 37; Scenario B: n = 245). To explore the mutual 

associations of CDS and meaningful use with the outcome, I performed a descriptive 

follow-up analysis of rates of potentially unsafe prescribing, accounting for both 

variables (Table 17). Consistent with logistic regression findings, results suggested 

independent effects of CDS as a negative predictor, and meaningful use as a positive 

predictor, of the study outcome. An exception is that among those with CDS in Scenario 

B, rates were approximately equal for those with and without meaningful use.  

Table 17 
 
Rates of Potentially Unsafe Prescribing of ADHD Medications, by CDS Use and 
Meaningful Use Achievement, U.S. Office-Based Physician Visits Made by Adults, 2014–
2016 

 
 Scenario A Scenario B 
 With CDS 

% [95% CI] 
Without CDS 
% [95% CI] 

With CDS 
% [95% CI] 

Without CDS 
% [95% CI] 

With meaningful use 9.5  
[5.6, 15.4] 

17.5  
[4.2, 50.7] 

1.2  
[0.8, 1.7] 

7.7  
[2.5, 21.1] 

Without meaningful use 5.5  
[1.3, 20.1] 

6.1  
[3.1, 11.5] 

1.3  
[0.5, 3.3] 

3.1  
[1.6, 5.8] 

 
Note. ADHD = attention-deficit hyperactivity disorder; CDS = computerized decision support; CI = confidence interval. 
aPearson χ2 test of between-group difference, comparing CDS versus no CDS, adjusted for complex sampling design (Groves et al., 
2009). 
 

Meaningful use penalties. As planned a priori, I estimated the number of 

sampled visits made to physicians who might have been subject to meaningful use 

penalties. Counts were small: two of 810 in Scenario A, both in the safer treatment group; 

and 104 of 9,101 in Scenario B, 103 safer treatment and one potentially unsafe. The 

interpretability of these findings is limited because no specific indicator of meaningful 

use penalties was recorded in the NAMCS. 
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Summary 

This exploratory and preliminary assessment of the relative merits of atheoretical 

and theory-based models of potentially unsafe prescribing, a binary outcome measure, 

produced mixed findings. Results for RQ1, which assessed the association of CDS with 

the study outcome, were inconclusive in most main analyses; however, sensitivity 

analyses suggested an association of CDS with decreased odds of potentially unsafe 

prescribing, a finding not consistent with the theory-based hypothesis. Analyses of RQ2 

suggested increased odds of the outcome for providers with meaningful use achievement, 

consistent with the theory-based hypothesis. 

RQ3 was whether theory-based models improve predictive accuracy and fit, 

compared with atheoretical models. In addition to the finding for CDS described above, 

findings not consistent with theory-based hypotheses included a nonsignificant 

relationship between the outcome and primary care provider status; a reduced rate of the 

outcome for providers who derive revenue from patients, particularly when measured as 

direct financial compensation; and no significant improvement in fit for theory-based 

compared with atheoretical models except when patient-derived revenue was defined as 

direct financial compensation. Limiting these findings were low rates of statistical 

reliability for most coefficients, modest predictive accuracy for Scenario A, and the 

inability to test either model fully because of changes in several environmental-construct 

predictors made during data quality assessments. 

In Chapter 5, I discuss the interpretation of study findings, overall and focusing 

on implications of the two unexpected results for CDS and for patient-derived revenue. I 
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describe limitations, both those known a priori and those that became evident during data 

analysis. Comparing findings of this study with those of previous work, I describe 

recommendations for future research and practice. I close with discussions of the positive 

social changes that could result from a more interdisciplinary, psychology-informed 

approach to interventions on physician decision-making and of potential contributions 

health psychologists could make to these efforts. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

To promote the well-being of individuals and populations, which is an APA 

(2014) objective for preventive health interventions, efforts to encourage evidence-based 

medical decision-making must cause more benefit than harm to patients and physicians. 

The current study was conducted in response to a possible association between the 

atheoretical foundation of the Health Information Technology for Economic and Clinical 

Health (HITECH Act and its unintended harms (see Ratwani et al., 2019; Schiff et al., 

2015) and to calls in the health psychology literature for research that is based in theory, 

measures behavioral outcomes objectively, and assesses broad policy interventions 

affecting population health (see Conner & Norman, 2017; Prestwich et al., 2015; 

Prestwich et al., 2018). To assess whether a theory-based approach might improve on 

current, mostly atheoretical interventions on medical decisions (see L. Liang et al., 2017), 

I mapped constructs of social cognitive theory and self-determination theory to predictors 

of potentially unsafe prescribing of ADHD medications to adults, and compared two 

logistic regression models of this outcome: one atheoretical based on assumptions of 

HITECH Act proponents, and the other based on psychological theory and evidence. 

In this chapter, I discuss the contributions and limitations of this study, and 

consider implications for theory-based research in health psychology and for positive 

social change. In considering these implications, I adopt contemporary definitions of (a) 

health psychology as an interdisciplinary field that applies psychological knowledge not 

only to individual health, but also to health care and health-related social policy (see 

Marks, Murray, Evans, & Estacio, 2015) and (b) health psychology-informed 
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interventions as multilevel, having expanded beyond the discipline’s initial focus on 

individuals and families to include health care providers, institutions, and communities 

(see Glanz, Rimer, & Viswanath, 2015). In accordance with this expanded view, I 

consider implications of the study findings for knowledge about health-system effects on 

medical decision-making, an environmentally influenced cognitive process (see 

Djulbegovic & Elqayam, 2017). I consider autonomous motivation as a key theoretical 

construct that may connect the findings of the current study with contemporary trends in 

health care delivery, informing future research applications of this study’s theoretical 

constructs to decisions made by physicians. Finally, I suggest the potential for 

contributions by health psychologists, both to research and to physician-focused 

interventions conducted as part of multidisciplinary team collaboration. 

Study Findings and Interpretation 

Findings provided only limited support for theory-based hypotheses. The RQ1 

hypothesis of a nonsignificant association between computerized decision support (CDS) 

and the outcome, framed by social cognitive theory and informed by literature on 

cognitive norms in medical practice, was not supported. Also not supported were the 

RQ3 hypotheses of increased rates of the outcome for those who derive revenue from 

patient volume or satisfaction, and of better predictive accuracy and fit for theory-based 

than for atheoretical models. Countering these findings was support for the self-

determination theory-based RQ2 hypothesis of a positive relationship between 

meaningful use of electronic health records (E-HRs), as required by the HITECH ACT, 

and the outcome. Somewhat limiting the contribution of these results to knowledge about 
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health-system influences on medical decision-making, neither model could be fully tested 

because of the removal or recoding of several environmental-construct predictors, and 

because statistical reliability of the multivariate estimates was suboptimal. In this section, 

I interpret three key findings in the context of the study literature review. 

RQ1: CDS 

Study findings suggested an association between medication-related CDS and 

reduced odds of the study outcome. This finding is consistent with research implicating 

time constraints and lack of awareness of guidelines, respectively, as systemic and 

cognitive barriers to evidence-based practice (see F. Fischer et al., 2016). However, this 

association is inconsistent with the two main conclusions of the literature review. The 

first conclusion was that CDS guidance may conflict with cognition shaped by medical 

training, which emphasizes individual biomedical expertise (see Berkhout et al., 2018; 

Stead et al., 2011) and attention to individual patient needs (see Arts et al., 2016). This 

point is especially important when framed in social cognitive theory, with its emphasis on 

occupational norms as a key determinant of behaviors, values, and personal identity (see 

Bandura, 2001). The second conclusion was that CDS has produced suboptimal results in 

prior research, including high override rates (see Wright et al., 2018), failure to conform 

to standards from human-factors psychology (see Phansalkar et al., 2014), and minimal 

or null effects in most office-based studies (see M. J. Miller et al., 2017; Moja et al., 

2014). In this section, I consider two key points in interpretating this finding: 

heterogeneity in previous research on CDS, and the use of social cognitive theory when 

studying CDS. 
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Heterogeneity in previous research. Many assessments of null effects for CDS 

in previous research were based on review articles and meta-analyses comprising studies 

with heterogeneous samples and outcomes, such as hospital length of stay in inpatients, 

use of antibiotics, mortality, health-related quality of life, and virologic failure in patients 

with human immunodeficiency virus (Bright et al., 2012; Moja et al., 2014). Results of 

the current study may reflect unique characteristics of this sample and prescribing 

problem, a fluctuation typical in research of this type. Such heterogeneity in results for 

various types of medical decisions has been observed in the few cognitive theory-

informed studies of health care decision-making, such as R2 values ranging from 0.1% to 

40% for cognitive theory-based studies of physician behaviors in the systematic review 

by Godin et al. (2008). Although this heterogeneity may reflect methodological 

differences, as suggested by Godin et al., a later study of physicians and nurses in the 

United Kingdom, conducted using a uniform methodology applied to various diabetes 

care behaviors, similarly indicated considerable variation in percentage of variance 

explained by social cognitive theory, ranging from 9% for providing weight counseling to 

50% for foot examinations (Presseau et al., 2014). Therefore, the type of health decision 

being studied, which is a function of the specific clinical scenario faced by the physician, 

may affect the explanatory power of a theoretical construct or intervention. Because 

clinical scenario is generally not modifiable, Presseau et al. (2014) suggested that 

identifying modifiable intervention-related factors, which may affect either intention or 

the gap between intention and behavior, is important in theory-based investigations of 

medical decision-making. 
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In that respect, the consistency of guidance for ADHD medications over the 3-

year study period may provide valuable information in this research. This consistency 

may have contributed to study findings by making the need for a CDS warning in E-HRs, 

or for acceptance of the warning by physicians, particularly clear. Both the American 

family practitioner guidelines current during the study period (Post & Kurlansik, 2012) 

and a later British guideline (Bolea-Alamañac et al., 2014) addressed the possibility of 

stimulant misuse and recommended atomoxetine for patients with substance use disorder 

(SUD). Although the family practitioner guideline did not recommend cardiovascular risk 

assessment, the British guideline did. A U.S. Substance Abuse and Mental Health 

Services Administration (2013) publication prior to the current study period documented 

a 3.5-fold increase in ADHD-medication emergency department visits by adults from 

2005 to 2010, consistent with later published evidence about the risks of stimulant 

overdose (Fulde & Forster, 2015). Finally, FDA safety guidance for ADHD medications, 

used in defining the outcome measure, did not change during the study period. Therefore, 

it is possible, although not investigated in this study, that this consistency influenced the 

credibility of the information for physicians, a factor identified as important in qualitative 

research on their use of informational resources (see Cook et al., 2013). 

Aligning with this possibility, although also not measuring it directly, 

investigators in a failed theory-based intervention to promote the prescribing of thiazides 

(a type of blood pressure medication) attributed their results, in part, to extensive 

exposure to information about thiazides prior to the study (Presseau et al., 2016). Family 

physicians included in that sample reported high baseline rates of intentions to prescribe 
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thiazides, positive beliefs about them, perceptions that others thought they should 

prescribe them, and self-efficacy for prescribing (Presseau et al., 2016). These results 

may be framed within the social cognitive theory suggestion that observational learning 

of a behavior (e.g., prescribing) is more likely when knowledge is delivered by influential 

sources, which can include mass media or information delivered by role models 

(Bandura, 1999; Kelder et al., 2015). Knowledge consistently provided by multiple 

sources, including medical literature and federal guidance about ADHD medications, 

may have represented such influence for the physicians in the current study. Nonetheless, 

whether these psychological mediators directly influenced ADHD prescribing was not 

measured, a point revisited in discussions of study limitations and recommendations for 

future research. 

Effect of using social cognitive theory. Another possible explanation for the 

positive results for CDS may stem from the inclusion of both CDS and meaningful use in 

this study’s conceptual models. This design decision reflected the holistic nature of social 

cognitive theory, which acknowledges different types of environmental influences that 

may either facilitate or prevent desired behaviors, such as opportunities for learning, as 

well as physical barriers, rewards, or punishments (see Kelder et al., 2015). This 

theoretical feature is important because HITECH Act proponents intended CDS and 

meaningful use to affect different constructs: readily available knowledge (i.e., removing 

a cognitive barrier at the individual level; see Bates et al., 2003) for CDS, and motivation 

to use that knowledge (i.e., rewarding desired behavior at the system level; see Buntin et 

al., 2010) for meaningful use. Moreover, CDS and meaningful use represented two 
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distinct, albeit related, policy interventions (Wright et al., 2014). However, no previous 

research identified in this study’s literature review addressed these interventions 

simultaneously. It was feasible to do so in the current study because of the large national 

sample of 301 physicians in Scenario A and 1,659 physicians in Scenario B. 

In contrast, investigators studying one provider office would typically be unable 

to measure CDS and meaningful use simultaneously because a single office-based system 

either does or does not meet meaningful use requirements. Therefore, it is possible that in 

work conducted after the HITECH Act implementation, the effects of the two variables—

decreased odds for CDS and increased odds for meaningful use—counteracted each 

other, resulting in a null overall effect. This explanation is supported by the multivariate 

findings and by the follow-up bivariate analysis of CDS and meaningful use reported in 

Chapter 4, which suggested opposing effects for these two interventions. If so, the current 

study contributes to knowledge about social cognitive theory-based analyses of medical 

decisions by highlighting the possibility of disparate effects for health-system 

environmental influences that are targeted to knowledge, such as CDS, versus motivation, 

such as meaningful use. 

More broadly, the finding may suggest a benefit of the multilevel approach used 

in contemporary definitions of health psychology (see Glanz et al., 2015) and in social 

cognitive theory, which recognizes ongoing mutual interactions of environment and 

individual (see Bandura, 1989). In discussing the value of applying social cognitive 

theory to health-promotion efforts, Bandura (2004) noted that the theory is one of only 

two theoretical approaches to encompass both individual-level factors (e.g., knowledge, 
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self-efficacy) and health-system factors, including social or economic structures, that may 

pose barriers to desired health behaviors. In an earlier article, Bandura (2001) suggested 

that psychology contributes to positive change by “discovering principles about how to 

structure environments” (p. 13). A multilevel perspective on human-environment 

interaction enables researchers to study the effects of health-system interventions on 

individual health-related behaviors and changes in practice that may promote better 

intervention development. 

Social cognitive theory does not alone indicate whether a given type of reward 

will act as a facilitator or barrier to good decision-making. Rather, social cognitive theory 

provides a theoretical framework within which specific environmental effects can be 

analyzed. Self-determination theory was used in the current study to address that gap in 

social cognitive theoretical constructs. Findings for meaningful use, framed within that 

theory, are discussed next. 

RQ2: Meaningful Use 

Results of this study suggested increased odds of potentially unsafe prescribing 

among meaningful use providers. The current study extended the available base of 

evidence on meaningful use, as a macrolevel economic structure that may influence the 

health-related behaviors of individuals (see Bandura, 2004), in two ways. First, rather 

than self-reported behavior or opinion, which may lack validity (see Conner & Norman, 

2017), current study results represent an objectively measured behavior, meeting a 

recently identified need in health psychology (see Prestwich et al., 2018). Second, the use 

of a national sample extended knowledge derived from previous studies of objective 



135 

 

behavioral outcomes that were conducted in single states or health systems (see Grinspan 

et al., 2017; Jung et al., 2017; Kern et al., 2015; Levine et al., 2017; Samal et al., 2014; 

Unruh et al., 2017). This national scope was consistent with the multilevel focus of health 

promotion suggested by Bandura (2004) and with recent calls in the health psychology 

literature for research on population-level influences on health (see Conner & Norman, 

2017). In the next section, I interpret this finding in the context of previous research on 

meaningful use, and consider the finding in light of self-determination theory. 

Previous research on meaningful use. Like state- or institution-level research, 

the current study did not produce favorable findings for the meaningful use program, but 

the findings of minimal or mixed results in previous research contrast with the finding of 

approximately tripled odds of potentially unsafe prescribing in the current study. This 

discrepancy may be attributable to the specific prescribing problem addressed in this 

research. Like studies of CDS, research on meaningful use is heterogenous and has 

covered diverse topics including vaccination, cancer screening, hospitalizations, and 

quality of primary care. Such heterogeneity in studies of medical decisions is typical (see 

Godin et al., 2008; Moja et al., 2014), representing a known challenge in applying single 

theoretical constructs or theories to different health-related behaviors (Presseau et al., 

2014), particularly in health psychology where consideration of broad systemic 

influences on various populations and health outcomes is considered important (APA, 

2014; Bandura, 2004; Marks et al., 2015). 

Findings of two studies comparing offices with and without meaningful use, 

conducted in a large health system with a single E-HR including CDS (Samal et al., 
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2014; Levine et al., 2017), suggest another possible explanation for the present research 

finding of relatively large effects of meaningful use. Both studies, like most other 

previous research, produced mixed outcomes for meaningful use, with better results on a 

few measures and worsened or similar results on others. However, the difference for 

patients with depression was the largest observed in either study; 42% of patients in 

meaningful use offices and 68% of those in offices without meaningful use received 

depression treatment for > 12 weeks (Samal et al., 2014). 

The similarity of that study’s result for depression and the current study’s result 

for ADHD medications may represent a phenomenon described by Cifuentes et al. 

(2015): the challenge of carrying out interprofessional communications among behavioral 

and medical providers, the clinical ideal for patients with ADHD (Kooij et al., 2019), 

using electronic means. For example, one qualitative focus-group study of health 

professionals in an academic medical center, conducted approximately 2 years after 

implementation of an E-HR, indicated several cognitive and work-process challenges 

related to the replacement of face-to-face with electronic communication, such as 

variations in ways that different specialists (e.g., physical therapist versus physician) 

recorded information in E-HR fields and lack of confidence that notes were being 

received or read by others (Bardach, Real, & Bardach, 2017). This explanation is also 

supported by qualitative research, conducted by a social cognitive psychologist who 

specializes in human-factors engineering (i.e., human-computer-environment interaction) 

in health care, documenting new challenges in interprofessional communications after E-

HR implementation (Holden, 2011). Examples included extra time spent typing messages 
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via email instead of having a conversation; perceptions of communications as less 

clinically complete because of the constrained E-HR format; and problematic work-

process changes, such as the actions of one physician who avoided E-HR data entry 

requirements for in-person medical orders by stepping into the hallway and calling nurses 

from his cell phone. Together, these findings suggest that the negative effects of 

meaningful use described by clinicians in surveys (e.g., Emani et al., 2017) may be 

exacerbated in mental health care, such as for ADHD, partly because of the added burden 

E-HRs may pose for interprofessional communications. Implications of this suggestion 

for additional research are discussed later in the chapter. 

Self-determination theory and meaningful use. The finding of higher odds of 

potentially unsafe prescribing for meaningful use providers is consistent with several 

conclusions reached in the synthesis of self-determination theory with findings of the 

literature review. First, self-determination theory indicates an association between 

controlled motivation and poor task performance (Deci & Ryan, 2008a). Second, also 

consistent with self-determination theory, surveys of physicians documented opposition 

to the meaningful use program based on lack of clinical benefit, introduction of clinical 

harms, and diversion from important medical care tasks to clerical work (Emani et al., 

2017; Shanafelt et al., 2016; Weeks et al., 2015), resulting in a perception of being forced 

by meaningful use requirements to use technologies that do not provide value (J. 

Levinson et al., 2017; Weeks et al., 2015). Findings of the current study are also 

consistent with the results of a meta-analysis linking task-contingent tangible rewards 

with decreased intrinsic motivation (Deci et al., 1999) and of a study conducted in a 
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single corporation, which indicated that managerial agreement with self-determination 

principles (e.g., promoting autonomy, considering subordinate perspectives) was 

associated with better employee perceptions of the company and job satisfaction, except 

under adverse economic conditions (Deci et al., 1989). 

Thus, although autonomous motivation was not directly measured in the current 

study, and no research applying self-determination theory to medical decision-making 

was identified in the literature review, results generally support the use of self-

determination theoretical constructs, particularly autonomous motivation, in predicting 

medical decisions. However, these findings contrast with those for patient-derived 

revenue, which was based on the same theory. In the next section, I consider this 

discrepancy. 

Patient-Derived Revenue: Coefficient Evaluation in RQ3 

Several findings for patient-derived revenue were not as hypothesized according 

to self-determination theory. In the main theory-based analysis of Scenario A, revenue 

derived from either patient volume or satisfaction was associated with reduced odds of 

potentially unsafe prescribing of ADHD medications. Additionally, sensitivity analyses 

produced the unexpected finding that narrowing the definition of this predictor to direct 

financial compensation alone, measured as either practice ownership or share of billings, 

was associated with reduced odds of potentially unsafe prescribing in both Scenario A 

and Scenario B. Moreover, use of the narrower definition improved model fit, suggesting 

better explanatory power when basing the patient-derived revenue measure solely on 

direct monetary compensation without considering revenue derived indirectly from bonus 
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payments based on patient satisfaction measures. Such a pattern might seem to suggest a 

purely economic, rather than psychological, phenomenon. 

Interpretation of this seemingly anomalous finding should reflect the theoretical 

rationale of the a priori hypothesis for patient-derived revenue in this study. This 

hypothesis was based on the constructs of integrated and identified motivation, which are 

subtypes of autonomous motivation produced by external rewards for a valued outcome 

(Deci & Ryan, 2008b; Prestwich et al., 2018), and on evidence that physicians value 

patient relationships (Colligan et al., 2016; Tak et al., 2017). The rationale underlying the 

hypothesis was that physicians would attempt to preserve the valued outcome of patient 

relationships by prescribing even if potentially unsafe, a phenomenon described in 

research suggesting fear of lost patient relationships as a determinant of potentially 

inappropriate prescribing (Anderson et al., 2014; Sirdifield et al., 2013; Wallis et al., 

2017). Thus, as external rewards linked to the valued outcome of patient relationships, 

both direct financial compensation from patients and bonus payments based on patient 

satisfaction would be expected to have the same effect, according to this application of 

the theory: increasing autonomous motivation for the valued goal of retaining 

relationships, thereby increasing potentially unsafe prescribing. 

A simpler and more direct application of the theoretical construct of autonomous 

motivation, specifically the assertion that perceived autonomy improves task performance 

(Deci & Ryan, 2008a), would have produced an alternative hypothesis that obtaining 

revenue directly from patient care activities increases a physician’s sense of autonomy, 

thereby improving medical decision-making, the physician’s primary task, and reducing 
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the rate of potentially unsafe prescribing. This alternative hypothesis, which would have 

been supported by study findings, is also consistent with several contemporary trends in 

health care, all linked with the theoretical construct of autonomous motivation. 

Autonomy and quality of care. The first is a desire expressed by physicians for 

greater control over medical practice (J. Shapiro, Astin, Shapiro, Robitshek, & Shapiro, 

2011), particularly on tasks that promote patient well-being, which physicians are trained 

to see as their highest obligation (Cooke et al., 2006). Concern over lost autonomy has 

been reflected in physician commentaries implicating the supplanting of clinical 

judgment with E-HR-delivered guidance as a key cause of frustration, burnout, and 

departures from the practice of medicine (Wright & Katz, 2018). Corroborating the 

importance of control over medical practice for physicians, one mixed-methods analysis 

of a diverse sample of physicians suggested that occupational satisfaction is increased by 

practice ownership and by authority to make business decisions, such as the purchase of 

new medical equipment, that affect quality of care (Friedberg et al., 2013). These 

findings suggest that physicians perceive autonomy as important for the quality of care 

that they provide. Such a perception is unsurprising given the process of medical 

education, described in Chapter 2, which is intended to prepare physicians for lifelong, 

self-direct learning and independent decision-making to promote the well-being of 

patients (ACGME, 2019; Berkhout et al., 2018). 

Innovative delivery arrangements. This desire for autonomy may be responsible 

for the second, relatively recent, phenomenon of direct patient contracting, such as 

“concierge” or retainer-fee arrangements that minimize third-party influence on 
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physician-patient relationships by asking patients to pay for personalized care and 

enhanced access (Doherty & Medical Practice and Quality Committee [MPQC], 2015). 

These arrangements were described in one literature review as a way to combat 

requirements, such as excessive paperwork and restrictions on office visit time, that “are 

undermining traditional medical practices” (Doherty & MPQC, 2015, p. 951). Although 

the prevalence of direct patient contracting arrangements is difficult to estimate, it 

appears to be increasing, prompting a call from the American College of Physicians for 

“independent research” to evaluate both the factors underlying these arrangements and 

their effects on “access to care, especially for vulnerable populations” (Doherty & 

MPQC, 2015, p. 951). 

Physician employment. Both trends and the current study findings should be 

interpreted in the context of a much broader trend: the long-term decline in the rate of 

practice ownership among physicians in the United States, estimated at 72% in 1994 

(Kletke, Emmons, & Gillis, 1996), 53% in 2012, and 46% in 2018 (Kane, 2019). 

Accompanying this trend was an increased rate of employment in practices owned by 

hospitals or health systems (Kane, 2019) to approximately 44% of U.S. physicians in 

2018 (Physicians Advocacy Institute, 2019). Compared with physician-owned practices, 

hospital-owned practices have higher rates of some recommended care processes, such as 

discussing clinical quality data (28% and 44%, respectively) and writing quality reports 

(64% and 79%, respectively; Lindner et al., 2019). Nonetheless, these hospital-owned 

arrangements, intended to improve care coordination, have instead been associated in a 

limited body of research with few or no effects on quality of care (Scott, Orav, Cutler, & 
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Jha, 2017; Short & Ho, 2019) and with increased use of services providing minimal 

clinical benefit (Mafi, Wee, Davis, & Landon, 2017). The current study’s findings on 

meaningful use (i.e., increased odds of potentially unsafe prescribing) and direct financial 

compensation (i.e., decreased odds) are consistent with this previous work and extend 

knowledge by suggesting that the loss of autonomy derived from meaningful use, and the 

increased autonomy derived from direct financial compensation, may predict quality of 

prescribing, a type of medical task not previously assessed in this body of research. 

Application to theory. Viewed as a whole, these findings suggest autonomy as a 

core determinant of intrinsic motivation for medical practice, consistent with self-

determination theory (Deci & Ryan, 2008a) and with concerns expressed in the literature 

about how extrinsic rewards for performance on externally determined metrics affect the 

quality of health care (Himmelstein et al., 2014; Kao, 2015). Broadly, the findings again 

point to the value of multilevel psychological perspectives on health, as described by 

Bandura (2004). Specifically, meaningful use and practice-ownership structures may be 

appropriately framed as system-level influences on physicians and their decisions, 

potentially affecting the health of individual patients (Marks et al., 2015). 

Limitations of the Study 

Before considering the implications of this study, important limitations should be 

acknowledged. These include limitations on internal validity, external validity, and scope. 

Most were anticipated a priori, and some were addressed with sensitivity analyses. 
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Internal Validity 

No direct measurement of mediators. Although study hypotheses were 

developed by linking theoretical constructs to predictors and outcomes, these constructs 

(e.g., outcome expectations, value) were not directly measured. Whether physicians 

received or read CDS-delivered guidance is also unknown. For this reason, study results 

represent intention-to-treat estimated associations of environmental characteristics with 

prescribing behaviors, not direct measures of the psychological experiences underlying 

those behaviors. Mitigating this limitation, study hypotheses were based on a large body 

of qualitative and quantitative evidence about cognitive and emotional response to 

meaningful use, CDS, and E-HRs (e.g., Emani et al., 2017; Slight et al., 2016). 

Unmeasured confounding factors. As in any nonexperimental study, results 

could have been affected by unmeasured confounding factors, such as symptom severity, 

demands for medication from patients or family members, or unmeasured features of the 

medical practice environment. Physicians who achieved meaningful use may have 

systematically differed from other physicians in ways, such as attitudes toward clinical 

guidelines or comfort with technological devices, that could have affected the 

relationships between CDS or meaningful use and the study outcome but could not be 

measured in this study. Potential attitudinal confounding factors include agreement or 

disagreement with guidelines (e.g., Cloutier et al., 2018; F. Fischer et al., 2016) or with 

their application to individual patient circumstances (Arts et al., 2016), or general 

propensity to practice evidence-based medicine. For example, Grinspan et al. (2017) 

found that even after statistical adjustments for several characteristics of patients (sex, 
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age, comorbidities, zip code) and physicians (generalist versus surgeon or medical 

specialist, sex, urban versus rural practice, and practice size), providers who chose 

meaningful use participation had slightly better care practices before meaningful use 

implementation than did nonparticipants. 

Assessments of model quality and fit help to assess the possibility of such 

unmeasured confounding factors because they indicate the extent of residual confounding 

after multivariate adjustment (see Warner, 2013). In this study, logistic regression models 

of Scenario B were better specified and achieved better predictive accuracy than did 

models of Scenario A. Nonetheless, even with the approximately 87–89% predictive 

accuracy measured for Scenario B, and especially with the much lower 57–59% accuracy 

for Scenario A, the possibility of residual confounding remains. 

Misclassification of exposure. Although the quality of coding by NAMCS data 

collectors is excellent (see D. T. Lau et al., 2018; Rui & Okeyode, 2019), the accuracy of 

data extracted from the medical record depends on the content of the record. Two 

challenges may have affected measurements in this study. First, ADHD did not become a 

medical condition indicator in the NAMCS until 2016 (CDC, 2019b). Thus, it may not 

have been recorded as a diagnosis in all visits in which ADHD medication was 

prescribed, even for patients who had ADHD. Second and related, “diagnosing for 

dollars” (Braun & Cox, 2005, p. 425), which is intentionally misdiagnosing mental health 

conditions to maximize reimbursement, and the tendency of patients to seek care from 

behavioral providers unknown to the physician (Madden et al., 2016) may have resulted 

in the omission of relevant psychiatric diagnoses from medical records. This problem 
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may have been the cause of one issue identified early in data processing, the provision of 

substance abuse counseling without a recorded diagnosis of SUD. Mitigating this 

limitation, this issue was identified in only a small proportion (230 of 2,270) substance 

abuse visits. Additionally, sensitivity analyses, which are the recommended approach to 

methodological concerns in analyses of archival medical data (Berger et al., 2009), 

suggested generally robust findings. 

Sample size. A final limitation on internal validity, which was anticipated a priori 

but could not be quantified prior to accessing the NAMCS data, was small design effect-

adjusted sample size, particularly in Scenario A, likely because of the low, albeit 

increasing, prevalence of diagnosed and treated ADHD among U.S. adults (see Fairman 

et al., 2017). Because this problem affected the statistical precision of some bivariate 

estimates and most multivariate estimates, some of which did not meet NCHS statistical 

reliability standards (see CDC, 2019b; Parker et al., 2017), results should be considered 

preliminary. However, typical sample sizes in health psychology research on medical 

decisions are small: 56–80 per intervention subgroup in a theory-based process 

evaluation of the failed thiazide intervention (Presseau et al., 2016); 18 general 

practitioners in a theory-based assessment of antibiotic prescribing in Australia (Sargent, 

McCullough, Del Mar, & Lowe, 2017); 21–34 general practitioners per group in a 

randomized trial of a theory-based intervention on antibiotic prescribing in Sweden 

(Milos et al., 2013); and a total of 374 physicians in four theory-based studies of clinical 

decisions in the meta-analysis by Godin et al. (2008). Therefore, awareness of statistical 
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imprecision should be balanced against the contribution made by the large, national 

sample used in this research. 

External Validity 

Two potential limitations on external validity were anticipated a priori and 

assessed in sensitivity analyses. One was the NCHS decision to allow E-HR submission 

in lieu of onsite data collection in 2016 (CDC, 2019b). Although this decision eventually 

resulted in the exclusion of these records from the NAMCS, sensitivity analyses 

suggested results were robust to this issue. 

A second potential limitation was that NAMCS participants may have differed 

systematically from nonparticipants. Quantitative assessments, both in this study and in 

previous research, suggested against this possibility. First, as reported in Chapter 3, 

comparisons of NAMCS participants and nonparticipants suggested minimal or no 

nonresponse bias on more than 80 indicator categories after application of sample 

weights in a study by Hing et al. (2016). Second, two sets of numeric findings reported in 

Chapter 4, the use of numerous weighting strata (n = 101 in Scenario A and n = 130 in 

Scenario B) and similar characteristics of the current study sample and samples reported 

in previous research, suggested good external validity for target populations including 

patients with ADHD, CVD, or SUD. The E-HR use rate measured in this study was also 

similar to that reported in national samples during the study time period. 

Further supporting confidence in the external validity of this study’s findings is a 

body of research evidence indicating little to no nonresponse bias in surveys of 

physicians, despite low response rates. One was a “reluctant respondent” analysis, a 
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commonly used bias-assessment technique (Goyder, 1987), which indicated that repeated 

efforts to contact nonrespondents to a physician survey on cancer care increased response 

rate without changing results (Willis, Smith, & Lee, 2013). Another study found no 

nonresponse bias on patient characteristics, including several clinical measures of 

diabetes management, in a physician survey with a 36% response rate (Ziegenfuss et al., 

2012), and another showed only male sex and questionnaire length significantly 

associated with nonresponse in a physician survey with a 47% response rate (McFarlane, 

Olmsted, Murphy, & Hill, 2007). 

Countering these quantitative assessments is the possibility of social desirability 

bias (Groves et al., 2009) or topic-salience bias (Goyder, 1987) in the decision to 

participate in the NAMCS. For example, in the process evaluation of the thiazide 

intervention, survey respondents were more likely than nonrespondents to be university-

affiliated (9% versus 2%, respectively, p = .009) and to belong to a professional 

physician organization (44% versus 31%, p = .030). Although those data were not 

weighted on numerous characteristics to adjust for nonresponse bias, as NAMCS data 

are, they suggested that physicians who are more knowledgeable or interested in 

evidence-based medicine may be more likely to respond to survey requests. Such 

attitudinal biases may be more nuanced and difficult to assess than the quantitative 

measures reported by Hing et al. (2016) or in previous studies (see McFarlane et al., 

2007; Willis et al., 2013; Ziegenfuss et al., 2012). Thus, although many factors that 

typically affect survey response (Goyder, 1987) are either similar for all physicians (e.g., 
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socioeconomic status) or adjusted by NAMCS weights (e.g., age group, sex), the 

possibility of nonresponse bias cannot be completely ruled out. 

Study Scope 

The only major discrepancy between the sample characteristics and previously 

reported results was a higher use rate for prescribed stimulants reported by adults with 

SUD in household interviews (see Compton et al., 2018) than recorded in office visits in 

this study. This issue may reflect a constraint on study scope known a priori. Specifically, 

NAMCS records represent only information known to the physician (predictors) and 

decisions made by the physician (outcomes) during a single office visit, not actions taken 

by patients after the visit. Patients choose whether to seek recommended psychotherapy, 

fill prescriptions, take medications, or divert a controlled substance by selling or giving it 

away (Compton et al., 2018; Ford, Thomas, Byng, & McCabe, 2019). For this reason, 

results of this study do not generalize to all sources of potentially unsafe ADHD 

medications, including family and friends, a common source of illicit prescription 

medications for young adults (see McCabe, Teter, Boyd, Wilens, & Schepis, 2018). 

Unknown to the physicians in this study, patients with or without SUD may have diverted 

their prescribed medication to others, although SUD increases the likelihood of obtaining 

medication directly from a physician (see Compton et al., 2018; McCabe et al., 2018). 

Although this scope constraint has little relevance for the current study findings, which 

were limited a priori to medical decisions made during one office visit, it does highlight 

the value of current recommendations to query all young adults, not just those prescribed 
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controlled substances, regarding medication abuse (McCabe et al., 2019). 

Communications of this type could not be assessed in this study. 

Finally, also known a priori, results of this study do not generalize to every form 

of inappropriate prescribing of ADHD medications. Whether the patient’s symptoms 

warranted a prescription, a medical judgment that may rely on information not recorded 

in the medical record, was not measured in this research. Thus, some potentially unsafe 

prescribing may have been medically necessary, and some safer prescribing may have 

been medically unnecessary. This question was beyond the scope of this study. 

Recommendations for Future Research 

The foremost recommendation arising from the current study is a need for more 

theory-based analyses, and perhaps additional comparisons of atheoretical with theory-

based approaches, in research on medical decision-making. Considering the limited body 

of theory-based research on medical decisions published in the 15 years since Bandura 

(2004) called for multilevel analyses of the effects that health-system structures have on 

individuals, a reasonable question for health psychology may be why so little scholarship 

in the field has addressed physicians’ responses to health-system interventions on their 

behavior. Such a body of work would be consistent with the social cognitive theoretical 

construct of emergent interactive agency (Bandura, 1989); with Bandura’s (2001) 

suggestion that psychology should inform the development of environmental structures to 

promote psychosocial health; and with the APA (2014) goal of using psychology to 

advance the well-being of individuals and populations. Nonetheless, as noted in Chapter 

1, theory-based studies of physician decision-making (Godin et al., 2008) or of 
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interventions on the medical decision-making process (L. Liang et al., 2017) are 

uncommon. Further highlighting the issue for health psychology, of 14 theory-based 

studies identified in reviews of guideline-promotion evaluations (see L. Liang et al., 

2017, n = 8) or of physician behaviors (see Godin et al., 2008, n = 6), only two were 

published in health psychology journals; most were published in medical journals. 

This problem has been observed in the field of health psychology as a whole, 

which, despite theories explicitly acknowledging environmental influences on 

psychological phenomena, has generally put most research focus on the behaviors and 

characteristics of individuals (Kelder et al., 2015; Sallis & Owen, 2015). In this section, I 

consider how this gap might be addressed in multilevel analyses of medical decision-

making that acknowledge both environmental and individual influences, informing these 

suggestions with the findings of this study and previous research. The discussions below 

address psychological mediators, heterogeneity of outcomes, and research methods. 

Psychological Mediators 

Findings of the current study suggested the feasibility of mapping theoretical 

constructs to archival data to predict prescribing decisions, with modest accuracy in 

Scenario A and excellent accuracy in Scenario B. Additional theory-based research could 

extend the current study’s preliminary work by supplementing objectively measured 

behavioral data with survey data on psychological mediators (see Warner, 2013). 

Examples could include measures of behavioral intentions (see Presseau et al., 2016) in 

assessing CDS, or of motivation to practice medicine (see Himmelstein et al., 2014) in 

assessing meaningful use. Additionally, if independent associations of CDS and 
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meaningful use with prescribing behavior are confirmed in additional research, preferably 

with larger samples, mediation analysis could help to determine whether these 

interventions act on different psychological phenomena as intended by their developers: 

knowledge and cognition for CDS (see Bates et al., 2003) and motivation for meaningful 

use (see Buntin et al., 2010). 

Such approaches could potentially contribute not only to the study of medical 

decisions, but also to the field of health psychology, where direct measurement of 

theoretical constructs is limited even in theory-based studies (see Prestwich et al., 2014; 

Prestwich et al., 2015). For example, in an analysis of all studies of diet or exercise 

interventions included in two systematic reviews published in health psychology journals 

(Health Psychology Review and Health Psychology), Prestwich et al. (2014) found that 

only 56% reported a basis in any psychological theory. Of the studies identified by their 

authors as theory-based, 10% linked all intervention components to one or more 

theoretical constructs; 45% linked at least one intervention component to theory; and 

49% measured any theoretical constructs in the postintervention period. 

Examination of psychological mediators would likely also have value for 

additional questions and health-system effects, consistent with the vision advanced by 

Bandura (2004). For example, the current study results for patient-derived revenue 

suggest a need for more research into the effects of practice ownership versus 

employment arrangements on physician decision-making and health care quality, perhaps 

along with assessment of direct patient contracting arrangements as suggested by the 

American College of Physicians (see Doherty & MPQC, 2015). Such research could be 
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set in the social cognitive theoretical framework, with ownership arrangements as 

environmental facilitators or barriers (see Kelder et al., 2015) to making evidence-based 

medical decisions or to positive health outcomes for individual patients. In addition to 

psychological mediators described above, such as examining whether autonomous 

motivation mediates the association between practice ownership or direct contracting and 

quality of care (see Scott et al., 2017; Short & Ho, 2019), this work might also measure 

environmental mediators. Because preliminary research links hospital ownership with 

increased time spent on reporting tasks (Lindner et al., 2019), mediators might include E-

HR use and time allowed for office visits. 

Context-specific assessment of mediators. Research of this type could also 

facilitate richer exploration of interactions among different health-system initiatives. For 

example, research could assess whether practice ownership arrangements that enable 

physicians to choose or refuse meaningful use participation change the effect of 

meaningful use on task performance. Adding a direct measure of autonomous motivation 

to such an analysis would help to answer the question of whether the meaningful use 

effect is due to E-HR system features, which have been associated with occupational 

stress (see Babbott et al., 2014), or to autonomy as a core issue. 

Similarly, research on whether locally developed CDS systems have lower rates 

of override than commercial systems do, as suggested in the research by Wright et al. 

(2018) in a single health system, might benefit from direct measurement of psychological 

mediators. Examples include intrinsic (i.e., task-specific) versus extraneous (i.e., device-

related) cognitive load, automation bias (see Lyell et al., 2018), behavioral habituation 
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(see Baysari et al., 2017), or perceived autonomy in the work context (see Deci et al., 

1989). Findings for the first three mediators might suggest attributing override 

differences between locally developed and commercial systems to system features, 

whereas a finding for the fourth mediator might suggest that being forced to switch to a 

system over which physicians have no control negatively affects autonomous motivation 

and, therefore, task performance, independent of system features. 

In addition to providing valuable information for improvement of decision 

support systems, analyses of this type might extend theory by linking specific theoretical 

constructs (e.g., cognitive load, autonomous motivation) to specific types of professional 

task performance outcomes. For example, to follow up on previous research suggesting 

an association between E-HR use and impaired interprofessional communication 

(Bardach et al., 2017; Holden, 2011), a study could address whether E-HRs have a 

greater effect on measures of cognitive load (see Lyell et al., 2018) for mental health care 

tasks, where greater interprofessional collaboration may be needed to address both 

physical and psychosocial needs (see Kooij et al., 2019), than for acute illnesses. 

Heterogeneity of Outcomes 

An additional research area, examination of clinical and theoretical factors 

underlying physician response to CDS-delivered guidance and other interventions on 

their behavior, is suggested by the heterogeneous results obtained for CDS in previous 

work (see Moja et al., 2014), by the somewhat positive results for CDS in the current 

study, and by the mixed outcomes of theory-based interventions (see Godin et al., 2008; 

Milos et al., 2013; Presseau et al., 2016). Previous work has examined the associations of 
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types (e.g., drug-drug interactions, allergies) or severity of CDS messages with overrides 

(Nanji et al., 2014; Wright et al., 2018). To extend this work to E-HRs as a health-system 

intervention, a surveillance process similar to that currently used for medical devices (see 

Ratwani et al., 2019) could provide archival data on system features and outcomes. 

Analyses of these data could be framed in theory-based studies to provide guidance for 

future system development. The nature of these studies would depend on available data, 

but a health psychologist might, in general, supplement quantitative data (e.g., type of 

medication, length of medication list, patient age, diagnosis) with results of previous 

qualitative or quantitative research to identify situations where risk of technology-related 

adverse events is high. Possible examples include circumstances for which few 

opportunities for observational learning occur in medical training (see Stead et al., 2011); 

or lengthy lists of medications or diagnoses, which might increase likelihood of 

automation bias (see Lyell et al., 2018) or difficulties comprehending screen display (see 

Brown et al., 2017). 

Because of evidence described previously that even the same theory-based 

intervention applied to different clinical scenarios may produce disparate results 

(Presseau et al., 2014), analyses of factors underlying the success or failure of E-HRs and 

of theory-based interventions should ideally measure and control for disease state, patient 

characteristics, and task. For example, Presseau et al. (2016) attributed the failure of their 

theory-based intervention on thiazide prescriptions to overwhelming intention to 

prescribe thiazides (5.93 on a 7-point scale) prior to the intervention. In addition to 

controlling for nonmodifiable clinical scenarios, as suggested by Presseau et al. (2014), 
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such research could experimentally manipulate modifiable intervention features, such as 

the content of communications, as in a study of opioid-death notifications by Doctor et al. 

(2018); use of a peer-physician clinical “champion” to accompany an educational 

intervention, as in a study by Liebschutz et al. (2017); or implementation-intention 

training, as in a study by Saddawi-Konefka, Schumacher, Baker, Charnin, and Gollwitzer 

(2016). Additionally, fidelity to the underlying theory should be measured, as some 

purportedly theory-based work has employed techniques inconsistent with theoretical 

constructs (Prestwich et al., 2015). Challenges encountered in translating constructs to 

specific design features, such as when evidence from theory-based research conflicts with 

the needs or perceptions of participants, may help to explain these inconsistencies and 

should, ideally, be addressed during intervention design (see Witteman et al., 2017). 

Research Methodology 

The field of psychology could contribute research expertise to studies of E-HRs in 

several ways, consistent with the objective of assessing the effects of health system-level 

interventions on individual experiences and behavior (see Bandura, 2003; Marks et al., 

2015). Many of these derive from human factors psychology, a subspecialty focused on 

human-machine-environment interaction (Savage et al., 2017). However, because human-

factors research is a diverse field, encompassing not only cognitive psychology but also 

informatics and industrial engineering (Holden, 2011; Lyell & Coiera, 2017; Ratwani et 

al., 2019), the interprofessional distinctions described in this section may be imprecise. 

Validated system-assessment tools. One area where psychology could make an 

important contribution is the continued assessment of E-HR systems using validated 
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tools, such as the Instrument for Evaluating Human-Factors Principles in Medication-

Related Decision Support Alerts (I-Me-DeSA; see Zachariah et al., 2011) or other 

human-factors standards, such as clarity, prioritization of clinical information presented 

on screen, and provision of actionable information (see Phansalkar et al., 2014). Not only 

the devices, but also the processes used to develop them, can be the subject of such 

human-factors assessment. Metrics for accepted design-process standards, which could 

become research questions in a qualitative or quantitative study, include whether users 

(e.g., physicians) were included in the design process, whether interfaces were evaluated 

against accepted graphical-display principles (e.g., for font, color, and layout), and 

whether formal usability testing was required prior to product launch (see Savage et al., 

2017). A recommended process for health care settings is assessment of practice-

environment requirements prior to the initial design phase, using observation, interviews, 

and analyses of task-related cognitive needs (Ray et al., 2019), ideal tasks for health 

psychologists trained in qualitative research techniques. 

Automation-bias assessment. Although originating in fields other than health 

care (e.g., luggage screening and air traffic control; Lyell & Coiera, 2017), automation-

bias assessment has been applied to study the potential hazards of incorrect guidance 

delivered by CDS, which may encourage users to switch from an original, correct 

decision to an incorrect choice recommended by the system (Goddard, Roudsari, & 

Wyatt, 2014; Lyell et al., 2017). For example, Lyell et al. (2017) assessed performance 

on electronic-prescribing tasks in a sample of 120 medical students and found that correct 

CDS guidance reduced errors by 59%, but incorrect guidance increased errors by 87%. A 
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gap in the automation-bias literature is that most studies have used experimental designs 

(see Lyell & Coiera, 2017), suggesting a need for naturalistic fieldwork to provide 

information about the conditions under which this problem is likely to occur (see 

Goddard, Roudari, & Wyatt, 2012). Environmental and psychological mediators that 

should be incorporated into these assessments include trust in the CDS system, 

complexity of verification tasks (i.e., determining whether a warning represents a true 

threat), workload, time constraints, and intrinsic task complexity (see Goddard et al., 

2012), factors that may affect cognitive load (see Lyell & Coiera, 2017). 

Physiological and psychological assessments of cognitive load. Studies 

assessing cognitive load during task performance, using either subjective scales or 

physiologic measures, could provide valuable information about psychological and 

biologic plausibility when assessing associations of E-HR features with medical 

decisions. Scales used in studies of mental workload associated with Web browsing 

(Jimenez-Molina, Retamal, & Lira, 2018) and learning activities (Skulmowski & Rey, 

2017) include the NASA Task Load Index (NASA-TLX), which assesses mental and 

physical demands, effort, performance, and frustration, and cognitive-load surveys 

designed to distinguish intrinsic versus extraneous load types. A disadvantage of scales is 

that they are administered after task completion and do not allow for real-time assessment 

of task-related load, which is better assessed using physiologic techniques (Jiminez-

Molina et al., 2018). These include pupillography (measures of changes in pupil 

diameter), which indicates sympathetic and parasympathetic nervous system responses; 

fixed (focused) versus saccadic (rapid) eye movements; electroencephalography, which 
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provides measures of mental alertness and task difficulty; and skin conductivity. These 

measures can be combined and assessed in multifactorial experiments under various 

conditions. For example, Mazur et al. (2016) assessed the performance of 29 medical 

trainees on three clinical tasks using two different E-HRs, measuring subjective demand 

using NASA-TLX, task demands using time to task completion and number of clicks, 

and cognitive load using pupillary changes and electroencephalography. Results of that 

study suggested that E-HR type and clinical task interact in producing task demand, 

without a significant association between the physiologic measures and task performance. 

Validated opinion scale. A standardized scale of physician opinions about E-

HRs, developed and tested using accepted psychometric procedures (see DeVellis, 2017), 

would likely contribute a great deal to the understanding of how physicians perceive and 

experience electronic technologies. Of the survey studies of physician opinions about 

meaningful use, none included reliability or validity testing of questions about the 

program (Emani et al., 2014; Shanafelt et al., 2016; Weeks et al., 2014), and only one 

included a pilot test, which was conducted only on the principal investigators (Emani et 

al., 2014). Given findings of the current study and previous research suggesting 

autonomy as a core issue, the addition of a validated measure of autonomous motivation 

to such a survey might also provide helpful information about psychological factors 

underlying responses to E-HR implementation (see Emani et al., 2017). 

Theory-informed, system-wide evaluations. Finally, to inform public policy 

consistent with APA (2014) objectives, health psychologists may wish to consider, where 

feasible, more theory-based analyses of the effects of population-level interventions on 
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medical decisions. Studies of individual characteristics alone, common in health 

psychology, do not address the effects of environmental factors (Kelder et al., 2015; 

Sallis & Owen, 2015), such as the health-system structures that Bandura (2004) 

implicated as important influences on individual health. An easily scalable analysis 

would apply the theoretical framework and data set used in this study to other disease 

states and drugs, preferably with a sample size sufficient for study of the interaction 

effects of ownership and health-system interventions described previously in this section. 

Implications 

Positive Social Change 

Potentially unsafe prescribing of ADHD medications affects a small minority of 

adults, estimated in this study at 8.3% in the Scenario A analysis of adults treated for 

ADHD and 1.5% in the Scenario B analysis of adults with either CVD or SUD. Similarly, 

the study by Fairman et al. (2018) identified one-year prevalence rates of 2% for serious 

CVD and 11–19% for SUD among adults newly treated for ADHD with medications. 

Despite these relatively low prevalence rates, the prescribing problem measured in the 

current study has potentially important implications for two targets of health psychology-

informed interventions intended to produce positive change (see Bandura, 2004): 

population health (see APA, 2014) and systemic interventions on medical decisions (see 

Glanz et al., 2015). Each target is discussed below. 

Population health. Several trends and recent research findings suggest growing 

recognition of potentially unsafe prescribing of ADHD medications. These include recent 

FDA (2019) guidance on stimulants, which recommends assessment of heart rate and 
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blood pressure in the drug-development process; a report that from 2006–2016 in the 

United States, the 150% rate of increase in use of prescribed amphetamines far outpaced 

the 8% population growth (Piper et al., 2018); and the expansion of CDC drug 

surveillance efforts to include prescribed and nonprescribed stimulants (Kariisa et al., 

2019). The risks of these trends were underscored by a recently reported 37% rate of 

increase from 2016–2017 in U.S. overdose deaths from psychostimulants with abuse 

potential, excluding cocaine but including prescribed stimulants and a few illicit drugs 

(Kariisa et al., 2019). In that regard, it is concerning that in the current study, having a 

black-box warning was, unexpectedly, positively associated with potentially unsafe 

prescribing despite the availability of atomoxetine and its recommended use for patients 

with SUD (Bolea-Alamañac et al., 2014; Post & Kurlansik, 2012). These findings suggest 

that effective health-system interventions to promote evidence-based practice in ADHD-

medication prescribing may produce positive changes in population health, consistent 

with APA (2014) objectives. 

Systemic interventions on medical decisions. Closely related to population 

health is the narrower concern of how interventions to promote evidence-based medicine 

affect physicians. Physicians commonly attribute occupational dissatisfaction and 

professional burnout to the increased clerical burden and diminished patient-engagement 

opportunities associated with E-HRs (Friedberg et al., 2013; Shanafelt et al., 2016; 

Wright & Katz, 2018). The HITECH Act is certainly not the only source of professional 

dissatisfaction for physicians; other sources include difficult relationships with payers 

(e.g., insurance companies, Medicare, Medicaid), patient nonadherence to medical 
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advice, reductions in time allotted for visits, and managerial decisions perceived to 

diminish quality of care (Colligan et al., 2016; Friedberg et al., 2013). Nonetheless, the 

role of meaningful use as a large systemic intervention should not be overlooked because 

of its potential effects on the health of individual patients. These effects arise from two 

sources: medical errors caused or facilitated by technology (see Amato et al., 2017; 

Brown et al., 2017) and the health consequences that may result when physicians either 

cut back on practice hours or leave medicine altogether because of burnout (see Olson, 

2017; Wright & Katz, 2018). 

For example, in a 2014 survey of U.S. physicians regarding their plans for the 

coming 12 months, 20% reported an intention to reduce work hours and 2% a planned 

career change, and odds of making either change were multiplied by 1.81 (95% CI [1.49, 

2.19]) for physicians evidencing burnout and by 1.44 (95% CI [1.16, 1.80) for those 

dissatisfied with their E-HR (Sinsky et al., 2017). Olson (2017) has suggested that these 

trends represent a “proverbial canary in the coal mine” (p. 1610) by highlighting the way 

that systemic dysfunction can damage the well-being and productivity of individual 

physicians, with unintended consequences that may include a reduction in the already 

tenuous supply of doctors available to care for patients. Recognizing environmental 

influences on health as Bandura (2001) did, Olson and others (see Card, 2018) have 

called for interventions to improve the wellness of health systems, not just the emotional 

resilience of individual physicians who must respond to systemic dysfunction. How 

health psychology might contribute to those efforts is discussed next. 
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Implications for Practice 

If confirmed by additional research, this study’s findings may facilitate the design 

and evaluation of interventions that effectively increase evidence-based decisions with 

fewer unintended consequences than those currently experienced in medicine. These 

interventions, like the problems they are intended to address, represent complex 

interactions of medical practice environment with individual physician behaviors, 

consistent with the social cognitive theoretical framework for this research (see Bandura, 

1989). Four strategies are discussed in this section: physician empowerment, balancing 

clinical relevance and uniformity, physician-patient relationships, and training delivered 

in interdisciplinary team contexts. 

Physician empowerment. To the extent that autonomy is a core issue for 

physicians, greater physician empowerment in efforts to improve evidence-based 

practice, including E-HR system design, might improve not only the systems but also 

physician response to them by increasing perceived autonomy, as self-determination 

theory (see Deci & Ryan, 2008a) and the corporate study by Deci et al. (1989) suggest. A 

small body of evidence supports this strategy. For example, Gawande (2018) described 

the positive results achieved in one health system when a neurosurgical team met 

regularly to modify its commercial E-HR by removing clinically unimportant functions 

and adding useful ones. Although this story was reported only in the popular press, the 

strategy is supported by a summary of the literature on best practices for successful E-HR 

design, which recommended patient care-centered development by an interdisciplinary 

team including human factors psychology specialists, with extensive input and testing by 
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physicians and patients (see Ray et al., 2019), consistent with the human-factors 

standards described previously. The strategy is also supported by the “cranky comments” 

study described in Chapter 2, which showed that physician complaints accurately 

identified dysfunctional CDS features (Aaron et al., 2018). 

Generally, local physician participation in the design of systems to promote 

evidence-based care may be associated with acceptance of these systems and with 

positive outcomes for them (Milos, Westerlund, Midlöv, & Strandberg, 2014; Robbins et 

al., 2012), whereas replacing locally developed systems with large, commercial platforms 

can increase overrides of recommended actions (Wright et al., 2018). The positive 

outcomes of participatory approaches may be attributable, in part, to their implicit 

recognition of the biomedical expertise of physicians, a commonly expressed determinant 

of occupational satisfaction (see Friedberg et al., 2013). This effect is likely attributable 

to the training physicians receive, which shapes their occupational and personal identity 

(see Bandura, 2001) as autonomous, biomedical experts devoted to patient care 

(Berkhout et al., 2018; Cooke et al., 2006). Interventions that implicitly acknowledge this 

aspect of physicians’ identity may be better received than those that remove opportunities 

for engagement with clinically important, biomedically challenging problems (see 

Colligan et al., 2016). 

Balancing clinical relevance and uniformity. Apart from autonomy, but also 

suggesting value in local customization, is a need to address a common complaint about 

E-HRs and CDS: they may report metrics irrelevant to the clinical circumstance or 

patient (see Gawande, 2018; Schiff et al., 2016). This issue may help to explain the 
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relative successes of locally developed systems. Still, balanced against the human factors 

standard of end-user involvement (see Savage et al., 2017) and the widely recognized 

need for customization of E-HR functions to match the specific tasks and culture of a 

unique medical practice environment (see Ray et al., 2019) is the need for uniformity. 

Standardization of systems may promote evidence-based decisions, consistent with the 

original goal of CDS (see Bates et al., 2003), and facilitate the interoperability among 

systems necessary for care coordination (see Samal et al., 2016). 

An emerging solution to this challenge is modular E-HR and CDS applications 

based on common knowledge bases, using software compatible with multiple E-HR 

system platforms (Haug, Narus, Bledsoe, & Huff, 2018; Samal, Amore, Bates, & Wright, 

2017). Using this approach, provided by initiatives like the Substitutable Medical Apps 

Reusable Technologies project, an individual physician can choose individual “apps” 

suitable for the specialty and practice, providing a measure of autonomy over system 

design while ensuring that each app meets uniform standards (see Rosenbloom, Carroll, 

Warner, Matheny, & Denny, 2017). Examples include a pediatric growth chart app that 

began as a browser-based system at one children’s hospital and is currently available on 

two major E-HR platforms (Haug et al., 2018), and a risk assessment tool for chronic 

kidney disease, developed by one hospital using a fully interoperable knowledge base and 

software (Samal et al., 2017). Health psychologists could serve on interdisciplinary teams 

that choose or redesign such apps, providing expertise on cognitive principles and 

facilitating discussions of the local needs that should, ideally, be the primary determinant 

of system configuration (see Ray et al., 2019). 



165 

 

Physician-patient relationships. A focus on physician-patient relationships, a 

commonality between the disciplinary interests of medicine and health psychology, may 

also be helpful. From the medical perspective, interventions that increase time spent in 

patient interaction, such as using medical assistants as E-HR “scribes” to reduce clerical 

burden, have been associated with improved job satisfaction (Sinsky et al., 2013). 

Moreover, the needs and opportunities for shared physician-patient decision-making are 

garnering increased attention in the medical literature (see Elwyn, Frosch, & Kobrin, 

2016). From the health psychologist perspective, interpersonal communication in the 

medical encounter is recognized as an important determinant of high-quality medical 

decision-making (Duggan & Street, 2015). Thus, both disciplines should have an interest 

in studies or initiatives that measure or foster good physician-patient relationships, which 

physicians not only value (see Colligan et al., 2016; Tak et al., 2017), but also view as 

integral to high-quality patient care (see Friedberg et al., 2013). A unique contribution of 

health psychology to this endeavor is its multilevel focus, which enables an 

understanding of the effects of macrolevel trends on microlevel processes and outcomes 

(Bandura, 2004). A health psychologist can interpret physician-patient communication 

and decision-making in the context of broader social influences affecting both parties, 

such as consumerism in medicine (see J. Shapiro et al., 2011) or direct-to-consumer 

advertising of medications and laboratory tests (see Schwartz & Woloshin, 2019). 

Training in an interdisciplinary team context. Although results for CDS were 

generally favorable in this study, the literature review suggested an unmet need for 

training that better reflects cognitive psychological principles by providing specific 
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guidance on use of CDS in expert decision-making, the primary goal of medical 

education (Berkhout et al., 2018). Specifically, the understanding that learning is 

facilitated by hands-on practice in relevant environmental contexts, which was derived 

from cognitive psychology (Cooke et al., 2006), underlies core medical training protocols 

(Berkhout et al., 2018) including clinical rotation experiences during medical school and 

extensive opportunities for supervised decision-making in real-world clinical settings 

throughout training (see Mowery, 2015). However, that context-specific training process 

typically does not account for CDS (Hersh et al., 2014; Pageler et al., 2013). For 

example, recently drafted milestones (competency benchmarks) for family practice 

trainees mention use of health information technology, specifically “documentation 

required for billing and coding,” and suggest that a highest-level trainee may improve E-

HR functionality (Anim et al., 2019, p. 10). However, these standards do not reference 

specific skills needed for a physician to apply CDS appropriately to an individual patient 

(Pageler et al., 2013). Such skills include critical evaluation of the guidance provided, 

ability to formulate questions that can be answered by CDS, use of CDS to identify and 

address limitations in the trainee’s medical knowledge, and balancing E-HR-delivered 

information with the individual patient’s history and physical examination results. 

This gap between the training received by physicians and the environmental 

context in which they operate after graduation, which is highly likely to include CDS 

according to the results of this and previous research (see Hsiao & Hing, 2014), may help 

to explain the frustration that physicians express about using E-HRs for patient care 

activities, particularly when using sophisticated systems (see Emani et al., 2017). If so, 
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specific guidance to physicians on using E-HRs to facilitate, rather than supplant, their 

own clinical judgment may be helpful. Health psychologists, trained in principles of 

cognition and learning, might be ideal choices to design and deliver this education. 

Such interventions could be carried out as part of a comprehensive strategy for 

interdisciplinary care teamwork, with collaboration of human factors psychologists to 

provide guidance on the cognitive effects of human-machine-environment interaction 

(Holden, 2011) and on cognitively appropriate system-development strategies described 

previously in this chapter (see Ray et al., 2019; Savage et al., 2017), informatics 

specialists in analysis of electronic health records to provide evidence-based suggestions 

for clinical priorities, and physicians as medical experts (see Holden et al., 2018). This 

approach would recognize both the inevitability and the value of electronic health data, 

while giving full weight to the biomedical expertise of physicians in making decisions 

about the care of their patients. 

Conclusion 

In October 2019, a qualitative study, described by its authors as the first to use 

cognitive assessment techniques to improve E-HR inbox messaging, was published in 

JAMA Network Open (D. R. Murphy, Giardina, Satterly, Sittig, & Singh, 2019). Nearly 2 

years earlier, a commentary in the New England Journal of Medicine had described an 

urgent need to “restore meaning and sanity for physicians,” implicating E-HRs and 

meaningful use requirements as major contributors to physician burnout and its 

consequences: medical errors, mental health or substance abuse problems, and premature 

retirements (Wright & Katz, 2018, p. 310). That the 2019 study was published a decade 
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after HITECH Act passage illustrates the slow rate of adoption of psychology-informed 

scholarship in the efforts to promote evidence-based decisions. That both studies were 

published in prominent medical journals highlights the import of these issues for 

physicians. 

In interpreting these trends, it is notable that both CDS and the HITECH Act were 

intended to act on psychological phenomena, cognition and motivation, respectively; yet, 

paradoxically, neither was based on any psychological theory. In this research, I explored 

the possibility that using theoretical frameworks in designing and testing health system 

interventions on physician behavior might result in improved medical decisions, with 

fewer unintended consequences. Results, although providing modest support for theory-

based approaches, identified promising areas for future investigations in health 

psychology and highlighted autonomy as a theme that may tie together multiple threads 

of research on medical decision-making, including the current study. For physicians—

and, ultimately, for the patients they treat—the greatest need in promotion of evidence-

based medicine may be for approaches that acknowledge and rely on their expertise, 

supporting them with high-quality analytics and education on using electronic tools in 

health care delivery, while returning to them the measure of control over medical 

decision-making warranted by their training. 
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Appendix A: National Center for Health Statistics Assessments of Nonresponse Bias to 

the 2012 National Ambulatory Medical Care Survey and Current Weighting Method 

Characteristic  Indicators used for nonresponse bias estimate (Hing et al., 2016) 
Age group Less than 50 years, 50 years or older 
Sex Male, female 
Census division (office location) New England, Middle Atlantic, East North Central, West North Central, South 

Atlantic, East South Central, West South Central, Mountain, Pacific 
Metropolitan status (office location) MSA, not MSA 
Type of doctor Medicine, osteopathy 
Specialty General or family practice, internal medicine, pediatrics, general surgery, 

obstetrics and gynecology, orthopedic surgery, cardiovascular diseases, 
dermatology, urology, psychiatry, neurology, ophthalmology, otolaryngology, 
oncology, allergy, pulmonology, other specialties 

Specialty category Primary care, surgical, medical 
Practice type Solo, two physicians, group or HMO, medical school or government, other, 

unclassified 
Annual visit volume quartile 0–25, 26–50, 51–75, 76–100 
State (office location) Connecticut, Massachusetts, other New England, New Jersey, New York, 

Pennsylvania, Illinois, Indiana, Michigan, Ohio, Wisconsin, Iowa, Kansas, 
Minnesota, Missouri, other West North Central, Florida, Georgia, Maryland, 
North Carolina, South Carolina, Virginia, other South Atlantic, Alabama, 
Kentucky, Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, Texas, 
Arizona, Colorado, Utah, other Mountain, California, Oregon, Washington, other 
Pacific 

Analyses before weighting for nonresponse Statistically significant results (Hing et al., 2016)a 

Comparison of physician respondents versus 
nonrespondents to the induction interview 
(based on data provided by the AMA and 
AOA) 

Characteristics (%) of respondents vs. nonrespondents, respectively: 
New England 5.3% vs. 7.5% 
East North Central 14.2% vs. 11.3% 
East South Central 6.2% vs. 5.1% 
General or family practice 18.4% vs. 15.2% 
Pediatrics 12.1% vs. 7.7% 
Orthopedic surgery 4.1% vs. 5.2% 
Cardiovascular disease 3.1% vs. 4.4% 
Oncology 1.6% vs. 2.3% 
Primary care 48.8% vs. 43.6% 
Surgery 19.1% vs. 23.2% 
Solo practitioner 25.1% vs. 21.7% 
Of 39 state comparisons, 13 significantly differed; all by < 1.5 percentage points 
 

Comparison of physicians providing > 1 visit 
versus those providing no visits (based on 
data provided by the AMA and AOA and, for 
the visit quartiles, on physician induction 
interview or statistical estimates of 
physician’s visit volume) 

Characteristics (%) for those providing visit data vs. no visit data, respectively: 
New England 5.3% vs. 6.8% 
East South Central 6.6% vs. 5.2% 
MSA 90.7% vs. 92.4% 
Non-MSA 9.3% vs. 7.6% 
General or family practice 19.7% vs. 15.6% 
Pediatrics 13.0% vs. 8.6% 
Cardiovascular disease 3.0% vs. 4.0% 
Oncology 1.5% vs. 2.1% 
Primary care 50.8% vs. 44.2% 
Surgical 18.7% vs. 22.0% 
Solo practitioner 26.2% vs. 22.2% 
Annual visit volume 
  Quartile 1 32.3% vs. 20.5% 
  Quartile 2 19.8% vs. 28.5% 
  Quartile 3 17.7% vs. 29.2% 
  Quartile 4 30.2% vs. 21.8%  
Of 39 state comparisons, 10 significantly differed; all by < 1.5 percentage points 
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Analyses after weighting for nonresponse Statistically significant results (Hing et al., 2016)a 
Comparison of U.S. in-scope sample physicians 
with induction interview respondent physicians 
(based on data provided by the AMA and AOA) 

Characteristics (%) of in-scope sample vs. respondents, respectively: 
MSA 91.7% vs. 92.7% 
Non-MSA 8.3% vs. 7.3% 
 
Potential bias (absolute value of difference between in-scope sample and 
respondents) 
0 (zero) bias for 62 estimates 
< 1.0 percentage points for 18 estimates 
2 estimates with bias > 1.0 percentage points: 
-Solo practitioner 1.7 percentage points (23.7% vs. 25.4%) 
-Group or HMO 1.3 percentage points (59.4% vs. 58.1%) 
 

Comparison of U.S. in-scope sample physicians 
with physicians providing > 1 visit (based on data 
provided by the AMA and AOA and, for the visit 
quartiles, on physician induction interview or 
statistical estimates of physician’s visit volume) 

Characteristics (%) of in-scope sample vs. those providing > 1 visit, 
respectively: 
Solo practitioner 23.7% vs. 26.7% 
Group or HMO 59.4% vs. 56.6% 
Annual visit volume 
  Quartile 1 25.0% vs. 33.2% 
  Quartile 2 25.2% vs. 20.1% 
  Quartile 3 24.8% vs. 17.9% 
  Quartile 4 25.0% vs. 28.8%  
Of 39 state comparisons, 4 significantly differed; all differences < 1.5 
percentage points 
 
Potential bias (absolute value of difference between in-scope sample and 
respondents) 
0 (zero) bias for 37 estimates 
< 1.0 percentage points for 39 estimates 
> 1.0–< 2.0 percentage points for 4 estimates 
> 2.0 percentage points for 6 estimates: 
-Solo practitioner 3.0 percentage points 
-Group or HMO 2.8 percentage points 
-Annual visit volume (quartile 1: 8.2 percentage points; quartile 2: 5.1 
percentage points; quartile 3: 6.9 percentage points; quartile 4: 3.8 percentage 
points) 

 
Comparison of estimated in-scope sample visits 
with NAMCS sampled visits (based on data 
provided by the AMA and AOA and, for the visit 
quartiles, on physician induction interview or 
statistical estimates of physician’s visit volume) 

Characteristics (%) of visits, comparing estimated in-scope sample with 
NAMCS sample, respectively: 
MSA 91.1% vs. 89.5% 
Non-MSA 8.9% vs. 10.5% 
Oncology 1.8% vs. 1.4% 
Annual visit volume 
  Quartile 1: 9.9% vs. 18.3% 
  Quartile 3: 27.2% vs. 21.3% 
Of 39 state comparisons, 2 significantly differed, both < 0.5 percentage point 
 
Potential bias (absolute value of difference between in-scope sample visits 
and NAMCS sampled visits) 
< 0.5 percentage points for 66 estimates 
> 0.5– < 1.0 percentage points for 8 estimates 
> 1.0– < 2.0 percentage points for 5 estimates 
> 2.0 percentage points for 2 estimates: 
-Annual visit volume (quartile 1: 8.4 percentage points; quartile 3: 5.9 
percentage points) 
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Summary of weight calculation procedures, 2014–2016 (CDC, 2017, 2018, 2019b) 
Step 1: Calculate sample-selection weights based on multiplicative inverses (reciprocals) of sampling probabilities for (a) selecting 
physician from each stratum and (b) selecting a visit from the sampled physician, annualized based on a count of weeks in which 
physician saw patients. Sampling strata were defined as follows: 
2014—Primary versus nonprimary care type, 25 geographic areas (nine Census divisions, 17 most populous states) = up to 50 
strata 
2015—Fourteen physician specialties, 20 geographic areas (four Census regions, 16 most populous states) = up to 280 strata 
2016—Fourteen physician specialties, four Census regions = up to 56 strata 
Because a stratum could contain no visits (e.g., if no visits were made  by sampled adults to a particular specialist in a particular 
state), actual number of strata for the current study sample was unknown until data were accessed. The logistic regression models 
contained 301 physicians and 101 strata in Scenario A, and 1,659 physicians and 130 strata in Scenario B. 
 
Step 2: Adjust for nonresponse, accounting for seasonality, number of weeks practiced during year, and number of visits during a 
typical week of practice. Weights accounted for nonresponse within the following strata: 
2014—Fourteen physician specialties, 25 geographic areas, MSA status = up to 700 strata 
2015—Fourteen physician specialties, 20 geographic areas, MSA status = up to 560 strata 
2016—Three practice types and four regions = up to 12 strata; physicians who submitted E-HRs were treated as nonrespondents 
because their submissions could not be used 
 
Step 3: Apply ratio adjustment to correct for differences in the sampling frame between time of sample selection and time of data 
collection, calculated for each physician specialty group and geographic area.  
 
Step 4: Apply a weight-smoothing adjustment that corrects for outlier weights. Numerator and denominator, respectively, are total 
visit count in each group before and after trimming largest weights, for each physician group as defined in Step 2 above. 
 

 
Note. Only statistically significant results (differences in percentages) are shown in the table. Comparisons on indicators not shown in 
the table were not statistically significant. For factors with multiple categories where χ2 test was performed for the variable overall 
(e.g., Census, specialty), table presents only indicators where response rate significantly differed from national rate. Note that 
significant results for surgical specialties are described but not relevant because visits to surgeons were excluded from the current 
study sample. AMA = American Medical Association; AOA = American Osteopathic Association; E-HR = electronic health record; 
HMO = health maintenance organization; MSA = metropolitan statistical area; NAMCS = National Ambulatory Medical Care Survey; 
CDC = U.S. Centers for Disease Control and Prevention.  
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Appendix B: Antidiabetic and Antihypertensive Drug Names 

 
Antidiabetic Antihypertensive 

Sources Drug Names Sources Drug Names, A to L Drug Names, M to Z 
CDC 
(2017); J. 
W. M. 
Cheng, 
Badreldin, 
Patel, and 
Bhatt 
(2017)  

Acarbose 
Albiglutide 
Alogliptin 
Bromocriptine 
Canagliflozin 
Colesevelam 
Dapagliflozin 
Dulaglutide 
Empagliflozin 
Ertugliflozin  
Exenatide 
Gliclazide 
Glimepiride 
Glipizide 
Glyburide 
Insulin 
Linagliptin 
Liraglutide 
Lixisenatide 
Metformin 
Miglitol 
Nateglinide 
Pioglitazone 
Pramlintide 
Repaglinide 
Rosiglitazone 
Saxagliptin 
Semaglutide 
Sitagliptin 
Tolbutamide 

CDC 
(2017); 
Fairman, 
Romanet, 
Early, 
and 
Goodlet 
(2019) 

Acebutolol 
Aliskiren 
Amiloride 
Amlodipine 
Atenolol 
Azilsartan 
Benazepril 
Betaxolol 
Bisoprolol 
Candesartan 
Captopril 
Carvedilol 
Chlorothiazide 
Chlorthalidone 
Clonidine 
Diltiazem 
Doxazosin 
Enalapril 
Eplerenone 
Eprosartan 
Felodipine 
Fosinopril 
Furosemide 
Guanabenz  
Guanfacine 
Hydralazine 
Hydrochlorothiazide 
Indapamide 
Irbesartan 
Isradipine 
Labetalol 
Lisinopril 
Losartan 

Mecamylamine 
Metolazone 
Metoprolol 
Methylclothiazide 
Methyldopa 
Minoxidil 
(nontopical) 
Moexipril 
Nadolol 
Nebivolol 
Nicardipine 
Nifedipine 
Nisoldipine 
Olmesartan 
Penbutolol 
Perindopril 
Pindolol 
Prazosin  
Propranolol 
Quinapril 
Ramipril 
Reserpine 
Spironolactone 
Telmisartan 
Terazosin 
Timolol 
Torsemide 
Trandolapril 
Treprostinil 
Triamterene 
Valsartan 
Verapamil 
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Appendix C: International Classification of Diseases Drug Codes 

Diagnosis ICD-9 Codes ICD-10 Codes 

Angina 413 Angina pectoris I20 
Anxiety 300 Anxiety, dissociative and somatoform 

disorders  
F40 
F41 
F42 
F44 
F45 

 
Arrhythmias 426 Conduction disorders 

427 Cardiac dysrhythmias 
V45.0 Cardiac device in situ; unspecified, 
pacemaker, automatic implantable defibrillator, or 
other 

I44 
I45 
I48 
I49 

Z95.0 
Z95.81 

 
Attention-deficit 
hyperactivity 
disorder 
 

314 Hyperkinetic syndrome of childhood F90 

Bradycardia (slow 
heartbeat) 

427.89 Other specified cardiac dysrhythmias 
426.0 Atrioventricular block, complete 
426.1 Atrioventricular block other and unspecified 
426.2 Left bundle branch hemiblock 
426.3 Other left bundle branch block 
426.5 Bundle branch block other and unspecified 
 

R00.l 
I44.0 
I44.1 
I44.2 
I44.3 
I44.4 
I44.5 
I44.6 
I44.7 

 
Cancer, metastatic 196 Secondary and unspecified malignant 

neoplasm of lymph nodes 
197 Secondary malignant neoplasm of respiratory 
and digestive systems 
198 Secondary malignant neoplasm of other 
specified sites 
199.0 Disseminated malignant neoplasm without 
specification of site 
199.1 Other malignant neoplasm without 
specification of site 
 

C77 
C78 
C79 
C7B 

Cardiac anomalies 745 Bulbus cordis anomalies and anomalies of 
cardiac septal closure 
746 Other congenital anomalies of heart 
747 Other congenital anomalies of circulatory 
system 

Q20 
Q21 
Q22 
Q23 
Q24 
Q25 
Q26 
Q27 
Q28 

 
Cardiomegaly  429.3 Cardiomegaly  I51.7 
Cardiomyopathy 425 Cardiomyopathy I42 

I43 
(appendix continues) 
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Diagnosis ICD-9 Codes ICD-10 Codes 

Connective 
tissue/rheumatic 
disordera 

517.1 Rheumatic pneumonia 
710.0 Systemic lupus erythematosus 
710.1 Systemic sclerosis 
710.4 Polymyositis 
714.0 Rheumatoid arthritis 
714.1 Felty’s syndrome 
714.2 Other rheumatoid arthritis with visceral 
or systemic involvement 
714.81 Rheumatoid lung 
725 Polymyalgia rheumatica 
 

M05 
M06 
M32 

M33.2 
M34 

M35.3 

Dementia (codes 
used for verification 
of the indicator)a,b 

290 Dementias 
331 Other cerebral degenerations 

F03 
G30 

Diabetes 
complicationsa 

250.4 Diabetes with renal manifestations 
250.5 Diabetes with ophthalmic 
manifestations 
250.6 Diabetes with neurological 
manifestations 

E10.2 
E11.2 
E13.2 
E14.2 
E10.3 
E11.3 
E13.3 
E14.3 
E10.4 
E11.4 
E13.4 
E14.4 

 
HIV (codes used for 
verification of the 
indicator)a 

 

042 Human immunodeficiency virus [HIV] 
disease 

B20 

Hypertensive heart 
disease 

402 Hypertensive heart disease 
404 Hypertensive heart and chronic kidney 
disease 
 

I11 
I13 

Hypotension 458 Hypotension I95 
 

Liver disease, mild 571.2 Alcoholic cirrhosis of liver 
571.4 Chronic hepatitis 
571.5 Cirrhosis of liver without mention of 
alcohol 
571.6 Biliary cirrhosis 
and not severe 

K70.2 
K70.3 
K71.7 
K73 

K74.0 
K74.2 
K74.3 
K74.4 
K74.5 
K74.6 
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 ICD-9 Codes ICD-10 Codes 

Liver disease, 
severe 

572.2 Hepatic encephalopathy 
572.3 Portal hypertension 
572.4 Hepatorenal syndrome 
572.8 Other sequelae of chronic liver disease 
 

K72.1 
K72.9 
K76.6 
K76.7 

Myocardial 
infarction 
(heart attack) 
historya 

410 Acute myocardial infarction 
412 Old myocardial infarction 

I21 
I22 
I23 

I25.2 
 

Paraplegiaa 342 Hemiplegia and hemiparesis 
344.1 Paraplegia 

G04.1 
G81 

G82.2 
 

Peptic ulcera 531 Gastric ulcer 
532 Duodenal ulcer 
533 Peptic ulcer site unspecified 
534 Gastrojejunal ulcer 
 

K25 
K26 
K27 
K28 

Peripheral 
arterial disease 

443.9 Peripheral vascular disease, unspecified 
V43.4 Blood vessel replaced by other means 
 

I73.9 
Z95.8 
Z95.9 

 
Renal disease 
(codes used for 
verification of 
the indicator) 
 

585 Chronic kidney disease (ckd) 
586 Renal failure, unspecified 

N18  
N19 

Pulmonary 
diseasesa  

490 Bronchitis, not specified as acute or chronic 
491 Chronic bronchitis 
492 Emphysema 
493 Asthma 
494 Bronchiectasis 
495 Extrinsic allergic alveolitis 
496 Chronic airway obstruction, not elsewhere 
classified 
500 Coal workers’ pneumoconiosis 
501 Asbestosis 
502 Pneumoconiosis due to other silica or silicates 
503 Pneumoconiosis due to other inorganic dust 
504 Pneumonopathy due to inhalation of other dust 
505 Pneumoconiosis, unspecified 
or condition code for asthma or COPD 

J40 
J41 
J42 
J43 
J44 
J45 
J46 
J47 
J60 
J61 
J62 
J63 
J64 
J65 
J66 
J67 
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 ICD-9 Codes ICD-10 Codes 
Substance use 
disorder (codes  
used for 
verification of 
the indicators) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

291 Alcohol-induced mental disorders 
292 Drug-induced mental disorders 
303.xx Alcohol dependence syndrome 
304.xx Drug dependence 
305.xx Nondependent abuse of drugs 
965.0 Poisoning by opiates and related narcotics 
967 Poisoning by sedatives and hypnotics 
969.1 Poisoning by phenothiazine-based 
tranquilizers 
969.2 Poisoning by butyrophenone-based 
tranquilizers 
969.4 Poisoning by benzodiazepine-based 
tranquilizers 
969.5 Poisoning by other tranquilizers 
969.6 Poisoning by psychodysleptics 
(hallucinogens) 
969.7 Poisoning by tranquilizers, hallucinogens, or 
psychostimulants 
970 Poisoning by central nervous system stimulants 
 

F10 
F11 
F12 
F13 
F14 
F15 
F16 
F18 
F19 
T40 

T42.3x, T42.4x, T42.6x, T42.7x 
T43.6x 

 
 

Substance use 
disorder, 
alcoholic 
effects on liver 

571.0 Alcoholic fatty liver 
571.1 Alcoholic hepatitis 
571.2 Alcoholic cirrhosis 
571.3 Alcoholic liver damage 
 

K70 

Valvular 
disorders, 
aortic 

424.1 Aortic valve disorders 
746.3 Congenital stenosis of aortic valve 

I35 
I06 

 
Valvular 
disorder, mitral 

424.0 Mitral valve disorders 
394 Diseases of mitral valve 
396 Diseases of mitral and aortic valves 

I34 
I05 

Valvular 
disorder, 
pulmonary 
 

424.3 Pulmonary valve disorders I37 
 

Valve disorder, 
tricuspid 

424.2 Tricuspid valve disorders, specified as 
nonrheumatic  
397.0 Diseases of tricuspid valve 
 

I36 
I07 

Valve disorder, 
other 

424.9 Endocarditis, valve unspecified I38 
I39 
I08 

 
Notes. Codes and descriptions were obtained from icd9data.com and icd10data.com. ICD-9 codes (U.S. Department of Health and 
Human Services, 1997) and a map from ICD-9-CM (clinical modification for U.S. health care) to ICD-10-CM (U.S. Department of 
Health and Human Services, 2015) are in the public domain. Although ICD-10-CM code files are publicly available for download 
from the CMS (2018a) website, the ICD-10, which was the basis for ICD-10-CM, is promulgated by the World Health Organization 
(CMS, 2018b). For this reason, the right-hand column does not contain verbatim descriptions of each code. 
aUsed in Charlson Comorbidity Index (Quan et al., 2011). bA dementia indicator was added to the survey in 2014 (CDC, 2018). 
  



235 

 

Appendix D: Assessments of Sample Size Adequacy, Scenario A 

 Potentially unsafe medication Safer medication or psychotherapy 
 n %a 95% CI 

width 
Relative CI 
width (%) 

n %a 95% CI 
width 

Relative CI   
width (%) 

All patients 81 100.0 NA NA 729 100.0 NA NA 
Sex         
  Female 31 39.0 27.0 69.2 392 54.7 11.1 20.3 
  Male 50 61.0 27.0 44.3 337 45.3 11.1 24.5 
Age group (years)         
  17–25 18 23.4 28.4 121.4 233 31.7 10.4 32.8 
  26–49 52 61.6 29.6 48.1 349 46.5 12.8 27.5 
  50 or older 11 15.0b 20.0 133.3 147 21.8 9.3 42.7 
Race and ethnicity         
  White, non-Hispanic 73 94.9 9.4 9.9 635 85.5 8.1 9.5 
  Black, non-Hispanic 4 3.1b 8.1 261.3 30 4.8 5.5 114.6 
  Hispanic 2 1.7b 6.3 370.6 41 6.0 4.3 71.7 
  Other 2 0.3b 2.2 733.3 23 3.6 3.8 105.6 
Primary payment source         
  Private 36 44.0b 36.5 83.0 403 58.2 20.5 35.2 
  Medicaid 12 9.3b 15.7 168.8 83 13.5 12.3 91.1 
  Medicare 4 3.6b 9.9 275.0 42 5.8 6.0 103.4 
  Other 25 43.1b 39.7 92.1 164 22.4 22.8 101.8 
Office location         
  Urban 73 89.9 22.9 25.5 683 92.1 18.2 19.8 
  Nonurban 8 10.1b 22.9 226.7 46 7.9b 18.2 230.4 
Physician specialty         
  Cardiology Not assessed; total number of visits = 3 
  Psychiatry 42 64.1b 32.1 50.1 451 60.3 19.9 33.0 
  Neither of these 38 34.5b 31.7 91.9 276 39.6 20.0 50.5 
Black-box diagnosis         
  Yes 72 93.9 10.6 112.9 33b 4.0 5.4 135.0 
  No 9 6.1b 10.6 173.8 696 96 5.4 5.6 
Charlson comorbidities         
  None 74 91.6 16.6 18.1 693 94.3 5.2 5.5 
  One 6 7.4b 16.3 220.3 29 4.1 4.4 107.3 
  Two Not assessed; total number of visits = 6 
  Three or more Not assessed; total number of visits = 2 
Psychiatric comorbidities        
  Depression, no 50 62.2b 31.5 50.6 453 65.1 13.7 21.0 
  Depression, yes 31 37.8b 31.5 83.3 276 34.9 13.7 39.3 
  Anxiety, no 65 81.7 21.5 26.3 530 70.4 13.8 19.6 
  Anxiety, yes 16 18.3 21.5 117.5 199 29.6 13.8 46.6 
Relationship with patient       
  New 6 6.2b 14.6 235.5 60 9.7 7.5 77.3 
  Established, not PCP 47 72.7 27.2 37.4 456 64.1 15.5 24.2 
  PCP 25 21.1 25.6 121.3 195 26.1 14.8 56.7 
Environmental features         
  CDS, no  24 30.5b 34.2 112.1 298 35.3 23.3 66.0 
  CDS, yes 56 69.5b 34.2 49.2 413 64.7 23.3 36.0 
  Meaningful use, no 25 27.8b 30.7 110.4 311 40.1 23.6 58.9 
  Meaningful use, yes 56 72.2b 30.7 42.5 418 59.9 23.6 39.4 
  Patient revenue, no 11 17.9b 28.2 157.5 67 7.1 9.0 126.8 
  Patient revenue, yes 70 82.1 28.2 34.3 662 92.9 9.0 9.7 
Prescription typec         
  New 15 21.7 22.9 105.5 116 17.5 9.8 56.0 
  Continued 66 78.3 22.9 29.2 505 82.5 9.8 11.9 

 
Notes. CDS = computerized decision support; CI = confidence interval; NA = not applicable; NCHS = National Center for Health 
Statistics; PCP=primary care provider; SE = standard error. 
aPercentages are based on weighted counts, not on the unweighted counts shown in the table. No estimates met the statistical reliability 
standard of design effect-adjusted denominator > 30 (Parker et al., 2017).bEstimate does not meet statistical reliability standard for 
confidence interval width. cLimited to patients prescribed > 1 medication. 
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Appendix E: Assessments of Sample Size Adequacy, Scenario B 

 Potentially unsafe medication Safer medication or psychotherapy 
 n %a 95% CI 

width 
Relative CI 
width (%) 

n %a 95% CI 
width 

Relative CI   
width (%) 

All patients 143 100.0 NA NA 8,958 100.0 NA NA 
Sex         
  Female 58 34.3 21.4 62.4 4,134 46.3 3.8 8.2 
  Male 85 65.7 21.4 32.6 4,824 53.7 3.8 7.1 
Age group (years)         
  17–25 26 16.9 18.3 108.3 233 2.8 1.5 53.6 
  26–49 75 44.9 24.1 53.7 1,251 14.8 4.4 29.7 
  50 or older 42 38.2 25.6 67.0 7,474 82.5 4.9 5.9 
Race and ethnicity         
  White, non-Hispanic 131 93.9 9.3 9.9 7,372 77.2 5.7 7.4 
  Black, non-Hispanic 5 3.4b 8.9 261.8 730 9.5 2.9 30.5 
  Hispanic 4 1.4b 3.5 250.0 567 9.4 4.5 47.9 
  Other 3 1.3b 6.1 469.2 289 3.9 1.9 48.7 
Primary payment source         
  Private 65 47.3 29.4 62.2 2,605 31.5 4.6 14.6 
  Medicaid 15 7.8b 11.3 144.9 648 7.6 3.2 42.1 
  Medicare 17 8.0 10.1 126.3 4,708 54.9 5.3 9.7 
  Other 36 37.0b 32.4 87.6 404 5.9 3.8 64.4 
Office location         
  Urban 133 92.5 14.0 15.1 7,987 90.0 5.9 6.6 
  Nonurban 10 7.5b 14.0 186.7 971 10.0 5.9 59.0 
Physician specialty         
  Cardiology 9 5.0b 9.7 194.0 2,873 25.5 9.6 37.6 
  Psychiatry 57 48.4b 30.6 63.2 435 4.7 2.6 55.3 
  Neither of these 77 46.7 29.7 63.6 5,650 69.9 9.5 13.6 
Black-box diagnosis         
  Yes 113 75.6 26.0 34.4 2,130 27.0 7.0 25.9 
  No 30 24.4 26.0 106.6 6,828 73.0 7.0 9.6 
Charlson comorbidities         
  None 118 79.3 23.5 29.6 5,139 56.4 6.6 11.7 
  One 16 9.6 11.3 117.7 1,905 21.3 3.9 18.3 
  Two 5 6.3b 26.3 417.5 1,145 12.9 3.0 23.3 
  Three or more 4 4.7b 15.6 331.9 769 9.5 5.5 57.9 
Psychiatric comorbidities        
  Depression, no 88 62.8 24.7 39.3 7,570 84.1 3.5 4.2 
  Depression, yes 55 37.2 24.7 66.4 1,388 15.9 3.5 22.0 
  Anxiety, no 120 85.2 17.4 20.4 8,479 94.0 3.2 3.4 
  Anxiety, yes 23 14.8 17.4 117.6 479 6.0 3.2 53.3 
Relationship with patient       
  New 15 5.6b 8.6 153.6 1,118 10.8 2.9 26.9 
  Established, not PCP 80 66.1 25.0 37.8 4,530 43.9 9.2 21.0 
  PCP 43 28.3 24.6 86.9 3,104 45.3 8.7 19.2 
Environmental features         
  CDS, no  37 30.0 30.2 100.7 951 10.1 5.6 55.4 
  CDS, yes 104 70.0 30.2 43.1 7,797 89.9 5.6 6.2 
  Meaningful use, no 33 19.6 20.8 106.1 1,032 12.1 6.2 51.2 
  Meaningful use, yes 110 80.4 20.8 25.9 7,926 87.9 6.2 7.1 
  Patient revenue, no 21 13.0b 21.3 163.8 1,645 14.3 6.1 42.7 
  Patient revenue, yes 122 87.0 21.3 24.5 7,313 85.7 6.1 7.1 

 
Note. Estimates for the variable indicating new versus continuing prescription could not be computed because only 1 visit included the 
prescribing of a medication that was both new and safer. CDS = computerized decision support; CI = confidence interval; NA = not 
applicable; NCHS = National Center for Health Statistics; PCP = primary care provider; SE = standard error. 
aPercentages are based on weighted counts, not on the unweighted counts shown in the table. No estimates in the “safer” column met 
the statistical reliability standard of design effect-adjusted denominator > 30 (Parker et al., 2017). Design effect-adjusted denominator 
for potentially unsafe prescriptions = 41. bEstimate does not meet statistical reliability standard for confidence interval width. 
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Appendix F: Multicollinearity Assessments, Atheoretical and Theory-Based Models 

 Scenario A Scenario B 
 Tolerance Variance  

inflation factor 
Tolerance Variance  

inflation factor 
Atheoretical model     
  Male sex .925 1.081 .968 1.033 
  Age group 26 to 49 years .347 2.882 .179 5.586 
  Age group 50 years or older .131 7.646 .113 8.867 
  White or Hispanic race .969 1.032 .967 1.034 
  Medicaid insurance .905 1.105 .949 1.054 
  Urban MSA .825 1.212 .977 1.024 
  Depression .809 1.236 .863 1.158 
  Anxiety .823 1.215 .865 1.157 
  Cardiology Not included in model; n = 3 .858 1.165 
  Psychiatry .627 1.596 .766 1.306 
  Black-box warning Not included in model; n = 72 of 

81 potentially unsafe prescriptions 
.106 9.391 

  Comorbidity index >1 .922 1.084 .879 1.137 
  Interval-scale age  .173a 5.767 .307b 3.260 
  CDS .419 2.389 .406 2.465 
  CDS × BBW Not included in model .121 8.260 
  Meaningful use .380 2.635 .574 1.741 
 
Theory-based model 

    

  Male sex .912 1.096 .967 1.034 
  Age group 26 to 49 years .347 2.878 .182 5.488 
  Age group 50 years or older .128 7.787 .114 8.745 
  White or Hispanic race .960 1.042 .963 1.039 
  Medicaid insurance .890 1.124 .944 1.059 
  Urban MSA .751 1.332 .954 1.048 
  Depression .804 1.244 .860 1.163 
  Anxiety .823 1.216 .865 1.156 
  Cardiology Not included in model; n = 3 .680 1.471 
  Psychiatry .330 3.029 .716 1.396 
  Black-box warning Not included in model; n = 72 of 

81 potentially unsafe prescriptions 
.598 1.671 

  Comorbidity index > 1 .909 1.100 .875 1.142 
  Interval-scale age  .169c 5.914 .306d 3.270 
  CDS .414 2.416 .572 1.750 
  Meaningful use .360 2.774 .574 1.742 
  Patient-derived revenue .910 1.099 .983 1.017 
  PCP, > 4 visits .599 1.670 .689 1.451 
  PCP, < 3 visits .510 1.961 .736 1.359 
  Continuing prescription .928 1.078 Not included in model; n = 11 of 12 

safer prescriptions 
 
Note. Derived using method recommended by Midi et al. (2010). Tolerance for each predictor is 1 minus R2 for the regression of the 
predictor on all other predictors (Warner, 2013). Variance inflation factor is the reciprocal of  tolerance. BBW = black-box warning; 
CCI = Charlson comorbidity index; CDS = computerized decision support; CVD = cardiovascular disease; MSA = metropolitan 
statistical area; PCP = primary care provider.  
aAfter removal of the categorical age indicators, tolerance improved to .913, with variance inflation factor of 1.096. bAfter removal of 
the categorical age indicators, tolerance improved to .629, with variance inflation factor of 1.589. cAfter removal of the categorical age 
indicators, tolerance improved to .899, with variance inflation factor of 1.112. dAfter removal of the categorical age indicators, 
tolerance improved to .625, with variance inflation factor of 1.600. 
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Appendix G: Assessments of Sample External Validity Using National or Large-Sample 

Benchmarks 

Physicians 
Measure and source Time period and unit 

of analysis 
Benchmark percentage Study sample  % of 

visits 
2014–2015 

Use of E-HR (ONC, 2019) 2014–2015 82.8 in 2014 
86.9 in 2015 

89.1 

Patients with cardiovascular disease 
Demographic and clinical characteristicsa (Xian et 

al., 2019) 
Time period and unit 

of analysis 
Benchmark percentage Study sample  % of 

visits 
2014–2016 

Female 2015, 133 practices 
throughout the 

United States, % of 
patients 

36.2 46.3 
White 87.3 76.8 
Black 10.4 9.8 
Hispanic 6.8 9.3 
Private insurance 56.5 49.0 
Hypertension 85.2 74.0 
Diabetes 39.8 31.8 

Adults with attention-deficit hyperactivity disorder 
Comorbidities (Kooij et al., 2019) Time period and unit 

of analysis 
Benchmark percentage Study sample  % of 

visits 
2014–2016 

Anxiety Review article; time 
period not specified 

34 28.7 
Substance use disorder 11 11.4 

Adult patients with attention-deficit hyperactivity disorder treated with medication 
Demographic and clinical characteristics (Fairman et 

al., 2018) 
Time period and unit 

of analysis 
Benchmark percentage Study sample, % of 

visits  
2014–2016 

Female 2014–2015, privately 
insured enrollees 
aged 18–64 years  
treated for ADHD 
with medicationb  

51.1 53.3 
Age group (years)   
  25–34 25.8 41.6 
  35–44 21.2 19.1 
  45–54 14.0 23.3 
  55–64 5.7 16.0 
Serious CVD 2.0 0.6 
Substance use disorder 11.7–18.8c 10.0 
Diabetes 3.1 1.8 
Hyperlipidemia 11.5 4.8 
Hypertension 11.5 8.3 

Adult U.S. residents with substance use disorder 
Percentage reporting 

stimulant use 
(Compton et al., 2018) 

Time period and unit of 
analysis 

Benchmark percentage Study sample   
% of visits 
2014–2016 

Alcohol use disorder Household surveys, 
U.S. residents aged > 

18 years 

18.3% 4.1 
Cannabis use disorder 29.1% 
Opioid use disorder 25.8% 

 
Note. ADHD = attention-deficit hyperactivity disorder; CVD = cardiovascular disease; E -HR = electronic health record; NAMCS = 
National Ambulatory Medical Care Survey; ONC = Office of the National Coordinator for Health Information Technology. 
aPatient characteristics for sample overall were calculated from the published article as weighted averages of characteristics reported 
separately for patients with cerebrovascular disease only, coronary artery disease only, or both. Statistical test comparisons with present 
sample were not performed for insurance coverage or race because of differences in definitions. Pearson χ2 tests: diabetes χ2[1] = 
62.92, p < .001; hypertension χ2[1] = 158.3, p < .001; percentage female χ2[1] = 90.55, p < .001 bExcluding lisdexamfetamine. 
Statistical significance test comparisons with present sample were not performed because N in the study by Fairman et al. (2018) was 
91,588. cRate shown for the study by Fairman et al. (2018) includes all patients in sample, not just the patients treated with stimulants. 
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Appendix H: Initial Assessments of Statistical Reliability of Logistic Regression 

Coefficients 

 Scenario A: patients with ADHD Scenario B: patients with CVD or SUD 
Cases in model (n) 669a 8,685a 

Predictor Reference 
group 

β SE of 
β 

Number potentially 
unsafe 

β SE of 
β 

Number potentially 
unsafe 

    Dummy  Reference    Dummy Reference 
Male Female 0.487 .305 48 29 0.370 .253 83 54 
Age (years) –0.006 .010 Not applicable –0.040 .009 Not applicable 
White or 
Hispanic 
race 

Black or 
other race 

1.100 .626 72 5 1.022 .532 130 7 

Medicaid Other or no 
   insurance 

–0.539 .587 12 65 –0.627 .365 16 121 

Urban Nonurban –0.722 .707 69 8 –0.075 .439 127 10 
Depression  No 

depression 
0.560 .383 30 47 0.251 .302 54 83 

Anxiety  –1.003 .419 16 61 –0.686 .326 23 114 
Cardiology Neither 

cardiology  
  nor 
psychiatry 

Not included in model; n = 3 –0.765 .567 9 128 
Psychiatry 1.231 .431 41 36 1.904 .364 56 81 

CCI of > 1 CCI = 0 0.041 .614 6 71 –0.011 .398 24 113 
CDS No CDS –0.607 .741 53 24 –1.409 .776 100 37 
BBW No BBW Removed in sample size adequacy test –0.225 .729 107 30 
BBW × 
CDS 

No 
interaction 

Removed in sample size adequacy test 0.605 .770 76 61 

Meaningful 
use 

No 
meaningful 
use 

1.619 .772 52 25 1.053 .418 104 33 
 

Theory–based terms, first 
stage of theory–based 
modeling 

        

PCP, > 4 
visits 

Not PCP 0.040 .607 13 64 –0.436 .518 20 117 

PCP, < 3 
visits 

Not PCP –0.264 .635 12 65 0.488 .453 23 114 

Patient 
revenue 

No patient 
revenue 

–0.968 .454 67 10 0.133 .372 118 19 

Continued 
prescription 

New 
prescription 

–0.258 .287 64 13 Removed in sample size adequacy test 

 
Note. ADHD = attention-deficit hyperactivity disorder; BBW = black-box warning; CCI = Charlson comorbidity index; CDS = 
computerized decision support; CVD = cardiovascular disease; PCP = primary care provider; SE = standard error; SUD = substance 
use disorder. 
aExcludes cases with missing values on any predictor in either the theory-based or atheoretical models. In Scenario A, this exclusion 
criterion includes 108 visits in which no medication was prescribed, because the theory-based model includes a predictor of whether 
the medication was new or continued. 
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Appendix I: Atheoretical Models, Scenarios A and B, Complex Samples Logistic 

Regression Analyses of U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD Scenario B: patients with CVD or SUD 
 Potentially unsafe prescription versus any other 

treatment (safer medication or psychotherapy) 
Potentially unsafe prescription versus no 

potentially unsafe prescription 
Unweighted number of visits 669 8,685 
Number of physicians (strata) 301 (101) 1,659 (130) 
“c” (concordance) Statistic .572 .870 
Nagelkerke R2 .099 .243 
Model χ2 (critical χ2, α = .05; 
df), p  

31.03 (16.92; df = 9), p < .001 306.59 (21.03; df = 12), p < .001 

Predictor Reference 
   group 

β SE OR     95% CI β SE OR     95% CI 

Male Female 0.511 .301 1.667 [0.921, 3.017] 0.371 .253 1.449 [0.882, 2.380] 
Age (years) –0.003 .009 0.997 [0.978, 1.015] –0.040 .009 0.961 [0.945, 0.977] 
White or 
Hispanic 
race 

Black or  
  other race 

1.121 .632 3.068 [0.883, 10.661] 1.028 .534 2.794 [0.981, 7.960] 

Medicaid Any other  
  payment  
  source 

Not included in model; removed in statistical 
reliability assessment 

–0.619 .366 0.539 [0.262, 1.105] 

Urban Nonurban –0.582 .713 0.559 [0.137, 2.277] Not included in model; removed in statistical 
reliability assessment 

Depression  No  
  depression 

0.551 .407 1.735 [0.777, 3.871] 0.250 .299 1.284 [0.714, 2.307] 

Anxiety  –0.960 .413 0.383 [0.169, 0.865] –0.685 .328 0.504 [0.265, 0.959] 
Cardiology Neither  

  cardiology  
  nor  
  psychiatry 

Not included in model; n = 3 –0.768 .564 0.464 [0.153, 1.403] 
Psychiatry 1.214 .424 3.367 [1.459, 7.771] 1.900 .357 6.688 [3.321, 13.468] 

BBW No BBW Not included in model; removed in sample size 
adequacy test 

–0.224 .726 0.800 [0.192, 3.324] 

CDS No CDS –0.620 .733 0.538 [0.127, 2.284] –1.406 .782 0.245 [0.053, 1.137] 
BBW × CDS No  

  interaction 
Not included in model; removed in sample size 
adequacy test 

0.608 .777 1.836 [0.400, 8.428] 

Meaningful 
use 

No  
  meaningful  
  use 

1.602 .753 4.961 [1.124, 21.898] 1.053 .417 2.865 [1.265, 6.488] 

 
Note. Bold text denotes a statistically significant predictor. Sampling-design degrees of freedom were 200 for Scenario A and 1,529 
for Scenario B. ADHD = attention-deficit hyperactivity disorder; BBW = black-box warning; CDS = computerized decision support; 
CI = confidence interval; CVD = cardiovascular disease; df = degrees of freedom; LL = log likelihood; NA=not applicable; OR = 
odds ratio (exponentiated β); SE = standard error; SUD = substance use disorder. 
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Appendix J: Theory-Based Models, Scenarios A and B, Logistic Regression Analyses of 

U.S. Office-Based Physician Visits Made by Adults, 2014–2016 

 Scenario A: patients with ADHD Scenario B: patients with CVD or SUD 
Binary Outcome Potentially unsafe prescription versus another 

treatment (safer medication or 
psychotherapy) 

Potentially unsafe prescription versus no 
potentially unsafe prescription 

Unweighted number of visits 669 8,685 
Number of physicians (strata) 301 (101) 1,659 (130) 
“c” (concordance) Statistic .587 .871 
Nagelkerke R2 .116 .243 
Model χ2 (critical χ2, α = .05; 
df), p 

36.41 (21.03; df = 12), p < .001 305.68 (22.36; df = 13), p < .001 

Predictor Reference  
  group 

β SE OR     95% CI β SE OR     95% CI 

Male Female 0.501 .293 1.650 [0.925, 2.941] 0.361 .264 1.435 [0.855, 2.407] 
Age (years) –0.001 .010 0.999 [0.979, 1.018] –0.040 .009 0.961 [0.945, 0.977] 
White or 
Hispanic race 

Black or  
  other race 

1.163 .647 3.199 [0.893, 11.466] 1.020 .536 2.774 [0.970, 7.937] 

Medicaid Any other  
  payment  
  source 

Not included in model; removed in statistical 
reliability assessment 

–0.599 .375 0.549 [0.263, 1.146] 

Urban Nonurban –0.630 .699 0.533 [0.134, 2.113] Not included in model; removed in statistical 
reliability assessment 

Depression  No  
  depression 

0.596 .393 1.814 [0.837, 3.935] 0.238 .303 1.269 [0.701, 2.299] 

Anxiety No anxiety –0.958 .393 0.384 [0.177, 0.832] –0.684 .323 0.505 [0.268, 0.951] 
Cardiology Neither  

  cardiology  
  nor  
  psychiatry 

Not included in model; n = 3 –0.743 .657 0.476 [0.131, 1.724] 

Psychiatry Neither  
  cardiology  
  nor  
  psychiatry 

1.163 .549 3.200 [1.085, 9.441] 1.936 .415 6.928 [3.069, 15.639] 

BBW No BBW Not included in model; removed in sample 
size adequacy test 

0.287 .452 1.333 [0.549, 3.236] 

CDS No CDS –0.563 .756 0.570 [0.128, 2.531] –0.913 .410 0.402 [0.180, 0.898] 
Meaningful use No  

  meaningful  
  use 

1.398 .807 4.046 [0.823, 19.884] 1.072 .423 2.922 [1.275, 6.698] 

Patient-derived 
revenue 

No revenue  
  on this  
  basis 

–0.941 .465 0.390 [0.156, 0.976] 0.113 .374 1.119 [0.538, 2.330] 

PCP Physician is  
  not the PCP 

–0.136 .564 0.873 [0.287, 2.656] 0.085 .423 1.088 [0.475, 2.495] 

Continuing 
prescription 

New  
  prescription 

–0.257 .289 0.773 [0.438, 1.366] Not included in model; removed in sample 
size adequacy test 

 
Note. Bold text denotes a statistically significant predictor. Sampling-design degrees of freedom were 200 for Scenario A and 1,529 
for Scenario B. ADHD = attention-deficit hyperactivity disorder; BBW = black-box warning; CDS = computerized decision support; 
CI = confidence interval; CVD = cardiovascular disease; df = degrees of freedom; LL = log likelihood; OR = odds ratio 
(exponentiated β); PCP = primary care provider; SE = standard error; SUD = substance use disorder. 
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