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ABSTRACT 

THE EFFECTS OF NICOTINE AND CIGARETTE SMOKING ON CARDIAC 

ELECTROPHYSIOLOGY 

Affan B. Irfan 

November 27, 2019 

Cigarette smoking is a leading cause of preventable disease and premature death 

worldwide. The adverse effects of cigarette smoking, including proarrhythmia, are related 

to the mixture of chemicals, including nicotine (which sustains tobacco addiction). 

However, it remains unclear which individual tobacco smoke constituents and biological 

pathways mediate this increased risk. The purpose of this research was to explore the 

chronic effects of cigarette smoking, as well as compare the acute effects of nicotine and 

cigarette smoking, and the possible role of β-adrenoreceptors, on human cardiac 

electrophysiology. Chapter 1 is a comprehensive literature review of (a) the ex vivo and in 

vivo effects of nicotine and non-nicotine constituents of cigarette smoking on cardiac ion 

channels, (b) the direct and indirect effects of the autonomic nervous system on cardiac 

electrophysiology, and (c) studies of acute and chronic effects of cigarette smoking in 

humans. Chapter 2 consists of two studies in which we used cotinine levels to investigate 

the differences in baseline cardiac electrocardiogram between chronic smokers and non-

smokers, and to define smoking status and its burden. We also explored the relationship 

between urinary catecholamines, cotinine, and electrocardiographic changes. Chapter 3 

features the 2 x 2 factorial experimental study designed to compare
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the acute effects of cigarette smoking and nicotine, with and without a β-blocker 

(propranolol). We found that chronic cigarette smoking was associated with a shortened 

PR segment at baseline, and that dopamine possibly mediates this effect. There was also 

(corrected) QT interval shortening with increased cotinine levels. This experimental study 

revealed that the non-nicotine constituents in cigarette smoking were mainly responsible 

for PR segment shortening, through β-adrenoreceptors. Other evidence revealed that, 

although nicotine in cigarette smoke is primarily responsible for sympathetic activation 

and (corrected) QT interval shortening, it is the non-nicotine constituents that depress the 

ST segment. Collectively, acute and chronic exposure studies indicate that smoking may 

promote cardiac arrhythmia, primarily via β-adrenoreceptors, causing acceleration of 

dromotropy and ischemia (non-nicotine mediated), and ventricular repolarization 

(nicotine-mediated). This research elucidated a major physiological mechanism driving the 

effect of cigarette smoking and nicotine on cardiac electrophysiology. Consequently, these 

findings will inform U.S. Food and Drug Administration of tobacco and nicotine-

containing products’ impact on the human cardiac electrical system, and potentially help 

regulate alternative forms of nicotine delivery and protect public health. 
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CHAPTER I  

INTRODUCTION 

Background and context 

Clinical significance of cigarette smoking, nicotine, and cardiac electrophysiology 

Cigarette smoke 

Cigarette smoking is the leading preventable cause of premature death. It is 

responsible for at least 480,000 premature deaths every year in the United States, with more 

than 41,000 of these deaths from exposure to secondhand smoke [1, 2], out of which one-

third are secondary to cardiovascular disease (CVD) [3]. The mortality of current smokers 

among both sexes is three times that of non-smokers [4, 5]. Diseases attributable to 

smoking accounts for about 60% of smokers' deaths and the benefits of quitting smoking 

are dramatic across all age groups, with substantial gains in life expectancy, as compared 

to those who continue to smoke [5]. Furthermore, elevated CVD mortality has been seen 

even among patients smoking fewer than five cigarettes per day, suggesting a nonlinear 

dose-effect relationship [6]. Apart from the 21 common diseases formally attributed to 

cigarette smoking, there are diseases that have not been formally established as being 

caused by smoking (such as infections, hypertensive heart disease, renal failure, intestinal 

ischemia, and other respiratory diseases), and account for a significant excess in mortality 

[4]. The estimated annual smoking-related economic
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burden in the United States is between $289–332.5 billion in direct medical care and other 

economic costs [1, 7]. Smoking alsoappears to have a multiplicative interaction with other 

major CVD risk factors (elevated serum lipid levels, untreated hypertension, and diabetes) 

[2].  In 2016, 15.5% (37.8 million) of U.S. adults were cigarette smokers. The prevalence 

of cigarette smoking was higher among adults who were male, 25–64 years old, of lower 

socio-economic status, of American Indian/Alaska Native descent or multiracial, and 

suffering from psychological distress [8]. 

Nicotine and addiction 

Addiction to the nicotine in tobacco is the proximate cause of these diseases, 

because it sustains smoking behavior by acting on nicotinic cholinergic receptors in the 

brain to trigger the release of dopamine and other neurotransmitters [9]. Release of 

dopamine, glutamate, and gamma-Aminobutyric acid (GABA) [10] is particularly 

important in the development of nicotine dependence, and the extrahypothalamic 

corticotropin-releasing factor may play a key role in withdrawal [11, 12]. Nicotine 

addiction occurs when smokers rely on smoking to modulate mood and arousal, relieve 

withdrawal symptoms, or both. Therefore, the magnitude of public health harm caused by 

tobacco is inextricably linked to its addictive nature [9]. There is a continuum of risk for 

products that deliver nicotine, ranging from the most harmful combusted products (e.g., 

cigarettes) and electronic nicotine delivery systems (ENDS), to medicinal nicotine 

products. 

Although significant research has been conducted to understand the 

pathophysiology of smoking-associated CVD, new research in this era has slowed in recent 
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years. This lag in research is particularly harmful, as tobacco products have continued to 

evolve, and new products, such as ENDS, are a popular source of nicotine, especially 

among children and young adults [13]. In contrast with cigarettes, however, e-cigarettes 

generate an aerosol by heating a liquid, usually consisting of propylene glycol or vegetable 

glycerin, nicotine, and flavoring agents, without any combustion [14]. Despite almost 

complete lack of knowledge regarding the biological effects of these new tobacco products, 

ENDS have been implied to help conventional cigarette smokers quit or curtail smoking. 

ENDS manufacturers are making claims that these products pose fewer health risks and are 

much safer than smoking conventional cigarettes. This postulation is concerning because 

such health claims are likely to lead to increased ENDS use, and may even lead to an 

increase in nicotine dependence in the population at large. Although e-cigarettes deliver 

lower levels of carcinogens than do conventional cigarettes, they still expose users to high 

levels of ultrafine particles and other toxins, such as volatile organic compounds (VOCs) 

[15], that may substantially increase risks for cardiovascular and noncancerous lung 

disease, which account for more than half of all smoking-related deaths, at rates similar to 

conventional cigarettes [16]. 

The primary concern for nicotine in cigarette smoking is an addiction. Tobacco 

combustion products cause most of the adverse health effects from smoking, but some 

health concerns are related to nicotine. Many of these concerns are related to the ability of 

nicotine to release catecholamines, including hemodynamic effects (increase in heart rate, 

transient increases in blood pressure, vasoconstriction of coronary and other vascular beds), 

adverse effects on lipids, and induction of insulin resistance [17]. Both in vitro and in vivo 
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animal studies suggest that nicotine may inhibit apoptosis, enhance angiogenesis, 

exacerbate atherosclerotic disease [18, 19], and produce endothelial dysfunction [20]. 

Cardiac electrophysiology 

Basic cardiac electrophysiology is fundamental in understanding rhythmic cardiac 

function and electrical conduction, as well as changes in electrical activity associated with 

cardiac disease. The primary clinical tool for assessing cardiac electrical events is the 

electrocardiogram (ECG) [21]. The 12-lead ECG remains the most widely available, 

inexpensive, non-invasive, an indispensable tool for the diagnosis and prompt initiation of 

therapy in patients with acute coronary syndromes. It provides the most accurate means of 

diagnosing intraventricular conduction disturbances and arrhythmias, assessing 

cardiovascular risk and screening individuals in high-risk occupations and, in some cases, 

for participation in sports. As a research tool, it is used in long-term population-based 

surveillance studies and experimental trials of drugs with recognized or potential cardiac 

effects [22]. Therefore, ECG is used in clinical trials, as a valid, reliable, repeatable, 

quantitative method that is inexpensive and unbiased by clinical information. 

Most ECGs used clinically are produced from digital signaling and interpreted by 

software using algorithms to assess cardiac rhythmicity, heart rate, heart rate variability 

(HRV), and intervals between conventional ECG landmarks, especially the PR, QRS, and 

QT intervals. These metrics provide essential insight into the autonomic function (HRV), 

atrioventricular conduction (PR interval and segment), ventricular depolarization (QRS), 

and repolarization (QT and JT). There are several major and minor ECG variables 

associated with cardiovascular mortality; namely P wave (duration, interatrial block, and 
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deep terminal negativity of the P wave in V1), QT and Tpeak-Tend (Tp-Te) intervals, QRS 

duration and fragmentation, bundle branch block, ST segment depression and elevation, T 

waves (inverted, T wave axes), spatial angles between QRS and T vectors, premature 

ventricular contractions, and ECG hypertrophy criteria [23-25]. Apart from these 

traditional ECG markers, there is evidence for several other ECG intervals that have also 

been shown to be associated with total all-cause and cardiovascular-related mortality, such 

as PR interval [26-30], JT interval [31, 32] and Tp-Te [33-35]. 

Given its low cost, ubiquity, and safety, ECG is a useful candidate tool for screening 

and risk stratification of asymptomatic participants [36]. Deaths due to smoking-related 

CVD are generally preceded by a subclinical cardiovascular injury that may be detected 

early in the disease process [37]. To improve risk identification and stratification among 

asymptomatic smokers, and to aid in preventative measures, health professionals need 

more sensitive smoking-related markers of early cardiovascular damage. This research 

focus is particularly imperative in the new era of ENDs, as it remains unclear how ENDS 

might compare to cigarette smoke in severity and temporality of associated adverse 

outcomes.  

Implications for public health practice 

Some tobacco control researchers and advocates emphasize the need for strong 

policies that would protect future and current generations from new products that lead to 

nicotine addiction or serve as a gateway to cigarette smoking [16]. Others emphasize the 

different risks for disease associated with different tobacco and nicotine products, and 

argue that policies must prioritize reducing disease risk even if that means allowing for 
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new products that may have high addiction potential [38]. As part of their framework 

announced in 2017, the Food and Drug Administration (FDA)—based on their recognition 

that nicotine makes tobacco products addictive, but that it does not directly cause smokers’ 

cancer, lung disease, or heart disease—has proposed a regulation strategy designed to limit 

nicotine in cigarettes to a minimal or nonaddictive level [39]. The premise is that the mode 

of nicotine delivery, rather than the drug nicotine itself, is the key to reducing harm at a 

population level. This action has the promise of helping current users quit while preventing 

potential future smokers—youths, in particular—from becoming addicted via escalation 

from experimentation to regular smoking [40]. Modeling estimates that, by appropriate 

nicotine regulation, about 5 million adult smokers could quit within a year, and most youths 

and young adults—could avoid becoming regular smokers [41]. Whether this is the right 

approach is unclear, as through it, the FDA Center for Drug Evaluation Research has 

primarily been conducted on targeting smoking cessation rather than dependence on 

nicotine and alternate tobacco products [42]. As smokers find it difficult to achieve desired 

nicotine levels from low-nicotine cigarettes, they may seek to replace cigarettes with other 

tobacco products that deliver nicotine. The FDA expects that making cigarettes minimally 

addictive or nonaddictive would reduce tobacco-related harm by promoting smoking 

cessation or a complete migration to alternative, uncombusted products, and by reducing 

initiation. Although concrete evidence is lacking, there are concerns that ENDs use may 

renormalize smoking behavior, sustain dual-use, and initiate or maintain nicotine addiction 

[13]. ENDS use also could serve as a gateway to the initiation of smoking by ex-smokers. 

Unregulated e-cigarette use also has the potential to erode gains in smoking cessation and 

smoke-free laws [13]. Furthermore, the health effects of nicotine and e-cigarettes have not 
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been well studied, and the potential harm incurred by long-term use of these devices 

remains completely unknown.  

To complement Center for Tobacco Products (CTP) and CTP-funded scientific 

investigations to determine each product’s risks, benefits, and net public health impact, the 

FDA encourages submission of information from additional rigorous research (e.g., outside 

research institutions, or a manufacturer in an application for FDA marketing authorization 

of a new product [40]). Hence, extensive new research is required to assess the health 

effects of nicotine in order to develop appropriate regulatory policies. 

Effects of cardiac autonomic system and cigarette smoke on cardiac action potential 

Direct effects 

Cardiac autonomic nervous system 

Sympathetic and parasympathetic control: Superimposed on the intrinsic cardiac 

control system are the major extrinsic factors—autonomic efferent postganglionic nerve 

terminals— which affect the secretion of hormones into circulation, and the release of 

chemicals directly onto the cardiomyocyte membrane [43]. The autonomic nervous system 

(ANS) plays a vital role in the genesis of several cardiac arrhythmias, both in the atria and 

in the ventricles. Modulation of the autonomic response is a complex process, in which the 

final effect is the product of interactions among central, peripheral, and intracardiac 

components. Autonomic activation alters not only the heart rate, conduction, and 

hemodynamics, but also the cellular and subcellular properties of individual myocytes.  

The cardiac ANS is divided into extrinsic (fibers that mediate connections between 

the heart and the nervous system) and intrinsic (fibers facilitating function within the 
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pericardial sac) components. The extrinsic cardiac ANS is divided into sympathetic and 

parasympathetic components. The fibers of the sympathetic nervous system (SNS) are 

largely derived from major autonomic ganglia along the cervical and thoracic spinal cord. 

The parasympathetic nervous system (PNS) originates predominantly in the nucleus 

ambiguus of the medulla oblongata and is carried almost entirely within the vagus nerve. 

In addition to the extrinsic cardiac ANS, the heart is also innervated by an exquisitely 

complex intrinsic cardiac ANS, with the vast majority of these ganglia organized into 

ganglionated plexi (GP) on the surface of the atria and ventricles, particularly at the sinus 

node, atrioventricular node and pulmonary vein–left atrium junction [43, 44]. There is a 

group of complex extracardiac and intrinsic cardiac neurons that comprise a local 

distributive network, process (both centripetal and centrifugal) information in cardiac 

control, and imply the presence of local information processing [45]. Furthermore, the 

influences of sympathetic and parasympathetic stimulation exert not only different effects 

on atrial and ventricular myocytes, but also during normal and diseased states [44]. 

Generally speaking, increased cardiac sympathetic efferent neuronal tone increases cardiac 

chronotropy, dromotropy, and inotropy; the reverse holds for the effects exerted by 

medullary (parasympathetic) efferent preganglionic neurons [43]. 

Sympathetic nerve stimulation results in well-defined changes in 

electrophysiological properties at the cellular and tissue levels, including enhanced 

conduction in working myocardium and shortening of the action potential duration and 

refractory periods. Sympathetic control of cardiac electrical activity is mediated by the 

activation of β-adrenergic receptors that regulate the activity of select ion channel proteins 

via cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA), or by 
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direct binding of cAMP to channel subunits. The activation of β-receptors regulates the 

function of many ion channels in the heart, including Na+, K+, and Ca2+ channels [46]. 

Sodium and Calcium channels: β-adrenergic receptors’ regulation of cardiac Na+

channels may occur via several distinct mechanisms. PKA-dependent and -independent (a 

more recent and poorer defined pathway) signaling pathways impact cardiac Na+ channel 

function. The indirect pathway engages canonical signaling, including PKA 

phosphorylation of the Na+ channel α-subunit. PKA-independent regulation (direct 

regulation) involves ion channels, such as NaV1.5, CaV1.2, and KV1.5, which are enriched 

in caveolae and colocalized with Cav3. Caveolae are ready reservoirs of select cell 

membrane proteins; β-adrenergic receptor stimulation opens caveolae through a Gαs-

involved, PKA-independent pathway, and increases membrane density of resident ion 

channels [47]. In addition to caveolin-associated augmentation of surface expression and 

channel phosphorylation, sympathetic activation increases L-type Ca2+ channel activity and 

intracellular Ca2+. Phosphorylation of the NaV1.5 channel results in the alteration of the 

voltage-dependent kinetics and whole-cell INa amplitude [48]. There is limited evidence 

for direct regulation of cardiac Na+ currents by parasympathetic activity, but the reversal 

of the effects of β-adrenergic receptor stimulation by acetylcholine has been described [49], 

likely via pre-synaptic inhibition upon muscarinic receptor activation [50]. β-adrenergic 

receptor stimulation appears to alter the voltage-gated calcium current via a dual 

mechanism, perhaps similar to that demonstrated previously for sodium channels [51]. The 

L-type cardiac calcium channel, CaV1.2a, is phosphorylated by PKA, which increases 

open channel probability, and subsequently the overall cellular calcium current [47]. 
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Potassium channels: Sympathetic activation can directly affect all potassium 

currents, including Ito (responsible for transient outward current and level of the plateau in 

action potential). The delayed rectifier K currents IKur, IKr, and IKs are slowly activating 

outward currents that play major roles in the control of repolarization. β-adrenergic 

stimulation regulates IKr through the activation of PKA (an inhibitory effect) and elevation 

of c-AMP (a stimulatory effect through binding to the cyclic nucleotide binding domain of 

the channel), whereas α-adrenergic stimulation is inhibitory. β-adrenergic stimulation also 

accelerates repolarization by augmenting IKs via PKA-dependent phosphorylation of 

Kv7.1 (also termed KvLQT1, encoded by the Kcnq1 gene) [52-54], and β-blockers prolong 

transmural dispersion of repolarization and action potential duration [55]. However, there 

is a potential inhomogeneity of effects of β-adrenergic stimulation on potassium channels 

across different species, which also vary by stimulus and disease states [50]. Vagal 

stimulation produces the opposite effects. Vagal stimulation releases acetylcholine, which 

then activates a potassium current and an inward-rectifying K+ current (IKAch), following 

stimulation of muscarinic (M2) receptors that hyperpolarizes the membrane potential and 

abbreviates the action potential, slowing the Phase 4 depolarization of pacemaker cells [52, 

56]. In contrast, Liang et al. tested acetylcholine shortened action potential duration in ex 

vivo rat ventricular tissue, and the effect was inhibited by a G-protein-coupled inward 

rectifier potassium (GIRK) channel blocker [57]. Furthermore, the muscarinic stimulation 

can also partially reduce the amplitude of the L-type Ca2+ current by inhibiting adenylate 

cyclase. Therefore, vagal stimulation’s effect on cardiac repolarization is complex and may 

differ by species, phenotype, or stimulus.  
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As illustrated in Figure 1.1, sympathetic dominance in humans produces an 

increase in upstroke velocity, amplitude, and conduction velocity, as well as a decrease in 

the effective refractory period. These effects are mainly due to stimulation of β-adrenergic 

receptors and the resulting augmentation of INa, ICa, IKr, and  IKs. Therefore, acute 

sympathetic neural activation results in the shortening of RR interval, P wave, PR interval, 

PR segment, QRS duration, QT, and Tp-Te. 
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Figure 1.1 Effect of Sympathetic nervous activation on human cardiac electrophysiology 

References Effects of SNS activation ECG intervals 

[58] Short P wave / P-P wave 

[59, 60] Short PR interval 

[61] Short PR segment 

[62, 63] Short QRS duration 

[64-66] Short QT interval 
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Nicotine 

Cardiac autonomic nervous system: Nicotinic acetylcholinergic receptors 

(nAchRs) mediate the neural transmission at the ganglia of both branches of the ANS. 

However, different nicotinic receptors at the ganglia play distinct roles in sympathetic and 

parasympathetic cardiovascular responses (Figure 1.2). Specifically, activation of α4β2 

nAchRs elicits a parasympathetic cardiovascular response, and activation of α7 nAchRs 

elicits a sympathetic cardiovascular response [67, 68]. Neff et al. used the perforated patch-

clamp technique in a visualized rat brain stem slice to identify three potential sites of action 

by which nicotine increases the activity of cardiac vagal neurons: (a) direct activation of 

postsynaptic ligand-gated nicotinic channels in cardiac vagal neurons, (b) different 

presynaptic terminals, and (c) postsynaptic glutamatergic terminals [69]. Moreover, in 

various animal models and species, nicotine has been shown to evoke norepinephrine 

release from both the peripheral postganglionic sympathetic nerve endings and adrenal 

medulla [70, 71]. Another potentially sympathoexcitatory mechanism of nicotine involves 

the inhibition of neuronal nitric oxide synthase, which decreases central nitric oxide 

availability, thereby removing its tonic inhibitory effect on central sympathetic outflow 

[72].  
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Figure 1.2 Schematic diagram to illustrate the different direct sites of action for nicotine on the pathways of the cardiovascular 

autonomic nervous system  

SA – Sinoatrial node. AV – Atrioventricular node. 
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Cardiac sodium and calcium channels: The binding of nicotine to the extracellular 

binding site of the nicotinic acetylcholine receptor leads to a conformational change of the 

central pore, which results in the influx of sodium and calcium ions [73, 74]. In addition to 

the increase in intracellular calcium concentration facilitated by sodium influx through the 

nicotine receptor [73], nicotine also evokes calcium influx by direct activation of voltage-

dependent calcium channels [75-77]. More specifically, the L-type Ca2+ channels—Cav 

1.2 channel, in particular—have been implicated in nicotine addiction, and are controlled 

by the SNS and stimulated by nicotine [78, 79]. Therefore, several studies have consistently 

shown that nicotine can both indirectly (catecholamine-mediated) and directly activate 

voltage-gated sodium and calcium ion channels, depolarize membrane potential, and 

increase cardiac contractility [80-83].  

Cardiac potassium channels: On the other hand, nicotine directly blocks multiple 

types of potassium currents, (A-type K+ currents (Ito current/Kv4.3 channel), delayed 

rectifier K+ currents (IKr/HERG) and inward rectifier K+ currents (Ik1/Kir2.1), 

independent of nicotinic receptor stimulation or catecholamine release [84-86]. However, 

the ex vivo studies on the effects of nicotine on the duration of action potential have been 

inconsistent. Some found that nicotine shortens the action potential duration (particularly 

phase 2) [83], whereas others found that nicotine prolongs it [87]. These discrepancies 

could be related to the time from drug administration [82], drug concentration [80, 88] or 

the concomitant increase in force [89]. The shorter phase 2 could also reflect nicotine 

stimulation of L-type Ca2+ channel, which, together with potassium channels, dictate the 

duration of this phase of the action potential. Similar dose-dependent effects of nicotine 



16 

are seen in the sinoatrial node, where low doses of nicotine reduce [81, 88]—and large 

doses increase [88]—the spontaneous cycle length of sinoatrial node pacemaker cells. 

At physiological doses, nicotine can indirectly (through the sympathetic nervous 

system) and directly (via immediate effects on cardiac ion channels) stimulate sodium and 

calcium channels and block potassium channels. Per the pathways mentioned above, 

nicotine is expected to induce multiple alterations in the surface ECG, including shortening 

of the P wave, PR interval, PR segment, and QRS duration, and prolongation of QT 

corrected (QTc) and Tp-Te. However, very few researchers have attempted to explore the 

effects of nicotine on all ECG intervals in humans.  

Cigarette smoking and its non-nicotine constituents 

Cardiac autonomic nervous system: Cigarette smoke-induced cardiovascular 

effects are at least partly due to stimulation of sympathetic neurotransmission, and can 

theoretically manifest at four different sites of the sympathetic nervous system: the brain, 

pre-ganglionic and post-ganglionic sympathetic nerves, and the adrenal medulla [71]. 

Acute cigarette smoking increases efferent sympathetic nerve activity, primarily via the 

release of the catecholamines norepinephrine, and epinephrine (Table 1.1). This 

catecholamine release increases myocardial work and oxygen consumption through an 

increase in blood pressure, heart rate, and myocardial contractility [19]. However, several 

studies suggest that the primary effect is from direct pharmacologic stimulation of nicotinic 

acetylcholine receptors, as well as the catecholamine release from localized peripheral 

postganglionic sympathetic nerve endings and the adrenal medulla [90, 91]. Despite 

evidence that sympathetic tone is increased during smoking, either by increased release or 
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decreased clearance of catecholamines at neuroeffector junctions via inhibition of 

monoamine oxidase (MOA) [92], Grassi et al. revealed that the central sympathetic activity 

is inhibited, presumably via counteracting baroreceptor reflexes [90].  
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Table 1.1 Summarizes the key studies on the acute effect of smoking on the circulating catecholamines. E – Epinephrine, NE – 

Norepinephrine. Dopa - Dopamine 

Author 
Date 

Journal 
Participants Cigarette Plasma/ 

urine Sampling frequency Catecholamines Result Comment 
/Nicotine 

Cryer 
1976 
NEJM 

10 healthy men 
(24-42 y) 

Two standard non-
filtered cigarettes in 
10 minutes 

Plasma 
-10, 0, 2.5, 5.0, 7.5, 
10, 12.5, 15.0, 17.5, 
20, 25, 30 (mins) 

E, NE 
Max at 10 and 
12.5 min for E 
and NE 

E significantly 
higher even at 
end. 

Siess 
Circulation 
1982 

6 healthy men, 
mean age 30 y 

Two cigarettes of
1.6 mg nicotine each Plasma End of smoking E, NE Increased from 

baseline 

Mundal 
1988 
Am J 
Hypertens 

18 normotensive, 
13 hypertensive 
white men (mean 
age 42 y) 

Two cigarettes, 1.7 
mg nicotine Plasma 

Baseline, after each 
cigarette and after 
60 minutes from 
start of smoking 

E, NE 

E increased after 
second cigarette 
(not after 60 min) 
only among 
hypertensive 
group 

15 ng/ml after 
1st cigarette 
and 23 ng/ml 
after second 
cigarette 

Niedermaier 
1993 
Circulation 

8 healthy, 5 men 
(19 – 44 y) 

Low and medium-
nicotine research 
cigarette (30-45 
mins apart) 

Plasma 

10 mins after each 
smoking period (to 
coincide with max 
catecholamines) 

E, NE No difference 

7 and 16 
ng/ml after 
low and 
medium 
cigarette 

Grassi 
1994 
Circulation 

8 men, 1 woman, 
(21 – 48 y) 

One filtered 
cigarette 1.1 mg 
nicotine (within 5 
mins) 

Plasma End of smoking E, NE Significant 
increase 

After 1st 
cigarette 44 
ng/ml 

Krzysztof 
1998 
Circulation 

14 healthy 
smokers (13 
men). Mean age 
23 y 

Two cigarettes 
containing 1.1 mg 
nicotine (5 mins 
apart). 45 mins later 
smoked third 
cigarette 

Plasma 
Outset of study and 
3 mins after second 
and third cigarette 

NE 

Increased from 
171 (baseline) to 
189 (after 2 
cigarettes) and 
214* (3rd 
cigarette) 

17 ng/ml and 
20 ng/ml of 
nicotine, after 
2nd and 3rd cig. 
Smoked third  
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Gourlay 
1997 
Clin 
Pharmacol 
Ther 

12 healthy male 
smokers, mean 
age 38 y 

6 got nicotine nasal 
spray (1 x 0.5 mg in 
each nostril) and 
other 6 did smoking 
(usual brand) 

Plasma 
0, 2, 4, 6, 8, 10, 15, 
20, 25, 30, 45, and 
60 mins 

E, NE 
Venous E and NE 
remain 
unchanged 

Bragg 
1956 
J Appl Physi 

11 healthy young 
men 

Their choice of 
standard cigarettes 
during 2 / 8 hour (4 
and 10 cigs) 

Urine 8-hour urine 
collection E, NE E increased, NE 

unchanged 

Benowitz 
1993 
JACC 

12 healthy male 
smokers, 31 – 65 
y 

cigarette smoking 
(own choice), 
transdermal nicotine 
(21 mg/d) and 
placebo 

Urine 24 hr Urine 
collected day 5 Dopa, E, NE 

Significantly 
higher with 
smoking 

Benowitz 
1989 
Ann Intern 
Med 

8 healthy male 
smokers 

oral snuff, chewing 
tobacco, and 
cigarettes  

Urine 24-hour urine after 
3- or 4-day blocks Dopa, E, NE 

Significantly 
higher with 
smoking 
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Non-nicotine constituents: 

In addition to nicotine, several other cigarette components have been implicated in 

inducing proarrhythmia, such as VOCs (aldehydes [acrolein, formaldehyde, acetaldehyde, 

crotonaldehyde], benzene, toluene), particulate matter, gases (carbon monoxide), and 

polycyclic aromatic hydrocarbons. It is estimated that about 90% of non-cancer mortality 

from tobacco smoke is due to aldehydes (acrolein, formaldehyde, and acetaldehyde) [93]. 

In animal models, a single exposure to acrolein significantly increased HRV and 

arrhythmia independent of heart rate, possibly through activation of the transient-receptor 

potential ankyrin-1 channel (TRPA1), an irritant receptor channel found in the airways [94, 

95]. Treatment with atenolol reduced this response, whereas atropine enhanced it, 

suggesting parasympathetic dominance and sympathetic modulation [95]. Non-nicotinic 

alkaloids, such as nornicotine or anabasine (which represent 8–12% of total alkaloid 

content in tobacco), also exert an agonistic activity on nicotinic receptors [96]. Acute 

exposure to toluene, the most abundant aromatic compound in mainstream smoke from 

full-flavored cigarettes, enhances heart rate and blood pressure at baseline conditions, 

primarily due to systemic increases in circulating catecholamines [97, 98], and the 

enhanced protein expression of β1 adrenergic receptors [97]. Additionally, intravenous 

acetylaldehyde in anesthetized cats has been found to increase systemic blood pressure and 

heart rate (presumably from release of endogenous catecholamines from cardiac tissue) 

[99]. Formaldehyde has been shown to induce significant bradycardia and negative 

inotropic responses in both in situ preparations of guinea pig and rabbit hearts, and in vitro 

cardiac preparations [100]. Notably, the negative chronotropic effect of formaldehyde in 
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animals seems to be caused mainly by the inhibition of sympathetic nervous activity 

through the central nervous system [100]. 

Several non-nicotine cigarette ingredients have long been recognized as cardio-

toxic and linked with cardiac electrical activity disturbance and arrhythmias, such as 

aromatic compounds [101], carbon monoxide [102], and aldehydes [99]. However, 

literature on their individual drug concentration effects on cardiac ion channels and the 

action potential is scarce.  

Cardiac sodium and calcium channels: Toluene inhibits activated currents through 

ligand and voltage-gated sodium and calcium channels [97, 103-106]. Phenol has been 

shown to exert a dose-dependent negative inotropic effect in an isolated mammalian 

cardiac muscle, possibly via blocking calcium channels [107]. In a patch-clamp 

electrophysiology and confocal imaging experiment with isolated ventricular myocytes, 

carbon monoxide activated nitric oxide synthase. This led to the nitric-oxide-mediated 

nitrosylation of Nav1.5, as well as increased the sustained (late) component of the inward 

Na(+) current, and inhibited peak Nav1.5 current amplitude, ultimately resulting in 

prolonged action potential and associated intracellular Ca(2+) transient [102]. In addition, 

carbon monoxide inhibits native rat cardiomyocyte L-type Ca2+ currents and the 

recombinant α1C subunit of the human cardiac L-type Ca2+ channel [108, 109]. 

Formaldehyde and other aldehydes have previously been shown to cause dramatic 

deceleration of sodium inactivation, depress Ina, and prolong action potential [110-113]. 

On the other hand, acetaldehyde has also been shown to increase the ICa, and thereby 

increase the contractile force [114], Its effects can be potentiated by the additional 

stimulation of α-adrenergic receptors [115]. Several other cigarette constituents have also 
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been found to, at minute quantities, significantly inhibit sodium and calcium channels in 

isolated cardiac cells, such as cyanide [116, 117], lead [118], and cadmium [119]. 

Particulate matter, encountered during cigarette smoking, is also a significant cause of 

cardiovascular morbidity and mortality. Particulate matter has been shown to dysregulate 

prominent Na+ and K+ channel pathway genes [120], and carotid body sensitivity [120].  

Cardiac potassium channels: Aldehydes have been proven to considerably inhibit 

IK1 and Ito in animal atrial and ventricular myocytes [121-123]. In one study, ethanol and 

acetaldehyde inhibited the (Na+ + K+)-activated ATPase activity of plasma membranes 

prepared from a guinea-pig heart in a dose-dependent manner [124]. In addition, several 

volatile agents found in cigarette smoke, commonly used as anesthetics, have been shown 

to inhibit G-protein-coupled inwardly rectifying potassium channels [125]. Benzene 

derivatives inhibit delayed rectifier K+ currents [126], specifically IKr2.1, in a voltage-

independent manner [127]. Carbon monoxide also inhibits inward-rectifying potassium 

(Kir) channels, and prolongs the action potential duration [128, 129]. In their study, Ficker 

et al. demonstrated that, despite there being an increase in cardiac calcium current, there is 

reduced trafficking of cardiac potassium channel (hERG channels) to the cell surface 

among patients treated with arsenic trioxide, resulting in QT prolongation [130]. Another 

study revealed that arsenic trioxide blocks both IKr and IKs at clinically relevant 

concentrations. However, it also activates IK-ATP [131]. Graff et al. discovered that 

exposing rat cardiac myocytes to noncytotoxic concentrations of zinc and vanadium slowed 

the spontaneous beating rate [132]. 

In summary, the studies on the several components of cigarette smoke with known 

or suspected cardiotoxicity consistently show that they depress sodium and potassium 



23 

channels, with some mixed effects on calcium channels, and a range of effects on ECG 

(Figure 1.3). Overall, the constituents appear to result in prolonged action potential 

duration from inhibition of sodium and potassium channels. Apart from formaldehyde, 

most other cigarette non-nicotine constituents have been shown to stimulate the cardiac 

sympathetic nervous system. With >4000 non-nicotine chemicals in cigarette smoke, and 

a complex mixture of effects on the sympathetic and parasympathetic pathways, the non-

nicotine constituents can have a varied effect on surface ECG. Furthermore, most of the 

studies on the effects of non-nicotine constituents of cigarette smoke are derived from ex 

vivo or in vitro animal studies, with concentrations typically higher than those possibly 

encountered during cigarette and nicotine use. For instance, carbon monoxide causes tissue 

hypoxia, and, in addition to nicotine, has been implicated in promoting cardiac arrhythmias 

[133]; however, Benowitz et al. found that when carbon monoxide was administered under 

conditions similar to those of cigarette smoking, it had no significant effect on blood 

pressure, heart rate, plasma catecholamines, platelet aggregation, or C-reactive protein 

[134]. These results suggest that the short-term chronotropic, pro-thrombotic, and pro-

inflammatory effects of smoking are probably due to components of cigarette smoke other 

than carbon monoxide. 
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Figure 1.3 Direct effects of nicotine and non-nicotine constituents on cardiac ion channels and action potential. SNS – Sympathetic 

Nervous Activation 
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Indirect (systemic) effects 

There are several short- and long-term homeostatic mechanisms to ensure adequate 

blood flow, pressure, distribution, and perfusion, and are categorized into three groups: 

neural, humoral, and autoregulatory mechanisms. These mechanisms can also indirectly 

alter cardiac autonomic output and electrophysiology. Table 1.2 summarizes the stimuli, 

receptors, and physiologic effects most pertinent to cigarette smoking and nicotine-related 

changes in human autonomic reflexes. 

Neural reflexes to tobacco exposure: The baroreflex feedback loop is one of the 

most important mechanisms controlling arterial pressure on a beat-to-beat basis. It achieves 

this through arterial baroreceptors located in the carotid sinus and aortic arch. These 

receptors are mechano-sensitive, and the distension of the vessels that occurs at each heart 

beat leads to action potential generation on peripheral nerves that transmit to the central 

nervous system, buffering arterial pressure fluctuations through changes in sympathetic 

and parasympathetic activity. Therefore, when blood pressure rises, the baroreceptor 

afferent tone increases, leading to increased vagal efferent activity and diminished 

sympathetic outflow. These effects will lead to a decrease in cardiac output by decreasing 

heart rate and cardiac contractility.  Additionally, the fall in sympathetic tone to blood 

vessels, as well as increased vagal effect activity (through increased guanylyl cyclase and 

cGMP activity) leads to vasodilation and diminished vascular resistance. There is strong 

evidence that this crucial inhibitory role of the baroreflex arc is blunted in habitual smokers, 

and also impaired during acute exposure to smoking [72, 135, 136]. Grassi et al.’s study 

showed that there is sympathetic activation induced by smoking via increased release or a 

reduced clearance of catecholamines at the neuroeffector junctions. However, the central 
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sympathetic activity is inhibited by smoking, presumably via baroreceptor stimulation 

triggered by a pressor response to smoking [90]. There is also evidence that nicotine 

possibly decreases the baroreceptor sensitivity [137]. Besides nicotine, there are several 

other cigarette components, mainly PM 2.5, that directly alter baroreflex responsiveness in 

smokers [72, 138]. In one study, a one-time exposure to acrolein caused a decrease in the 

sensitivity of baroreflex and increased incidence of arrhythmia in rats [139].  

The peripheral arterial chemoreceptors in the carotid and aortic bodies are 

stimulated by decreased arterial PO2, increased PCO2, and increased H+ concentration. 

Their stimulation causes hyperventilation, as well as increases in sympathetic neural 

activity and the rate and volume of breathing; chronic arterial chemoreflex sensitization in 

smokers could also lead to sustained sympathetic activation. Arterial chemoreceptors are 

activated by hypoxia, and chronic smokers may be at risk to toxic effects of carbon 

monoxide in tobacco smoke. Perez et al. showed that acrolein-exposure-induced 

cardiovascular effects in rats (i.e., an increase in systolic, diastolic and mean arterial blood 

pressure during exposure, and a decrease in cardiac contractility one day after exposure) 

were prevented after a blockade of carotid body signal transduction. This suggests that 

acrolein-induced cardiovascular responses may be mediated by carotid body-triggered 

changes in autonomic tone [140]. However, to date, there is no evidence for augmented 

arterial chemoreceptor sensitivity in habitual smokers. Instead, nicotine does not affect 

chemoreflex sensitivity, as evidenced by unchanged minute ventilation, apnea duration, 

and oxygen saturation after nicotine and placebo in normoxia [141, 142].  

Airways are lined with vagal afferent nerve fibers, including non-myelinated 

afferent C-fibers sensitive to noxious chemicals. A subset of these vagal C-fibers expresses 
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the TRP channels, which sense a variety of mechanical and chemical stimuli, such as 

mechanical stretch, sheer stress, oxidative stress, inflammation, and endogenous and 

exogenous chemicals. When exposed to irritants, TRP channels induce the local release of 

neuropeptides from cells, resulting in a local inflammatory response that reflexively 

increases efferent sympathetic nerve activity. This may cause further airway irritation and 

reflex responses, such as cough and reactive airway dysfunction [50, 143, 144]. However, 

there is little evidence to support whether smoking and its constituents directly activate 

TRP channels to modulate the human cardiac autonomic nervous system. 

There are also respiratory-related changes in heart rate, specifically termed 

respiratory sinus arrhythmia, to help match pulmonary blood flow to lung inflation, and to 

maintain an appropriate diffusion gradient for oxygen in the lungs (heart rate increases 

during inspiration and decreases during the post-inspiration/expiration period) [145]. 

Consequently, different respiratory patterns during or after cigarette smoking may 

differentially affect cardiac autonomic function [146]. Cardiopulmonary receptors are 

found in low-pressure portions of the circulation, such as walls of the atria and pulmonary 

arteries. These mechano-sensitive receptors are activated by the distension of the vessel 

walls, responding to changes in central blood volume. The cardiopulmonary baroreflexes 

normally exert a tonic inhibitory influence on the SNS. However, cigarette smoking and 

nicotine product use in humans does not typically produce challenges that are extreme 

enough to affect these cardiopulmonary receptors or other similar innate reflexes that also 

alter cardiac electrophysiology (such as temperature, hypoxia, acidosis etc). 

Autoregulation: Local, self-regulatory mechanisms, including chemical and 

myogenic controls, allow each region of tissue to adjust its blood flow, and thus its 
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perfusion. Chemosensitive nerve endings are also found throughout the cardiovascular and 

respiratory systems, and are stimulated by several exogenous chemicals and endogenous 

chemicals formed and released in response to conditions such as hypoxia, ischemia, certain 

mechanical demands, inflammation, or toxin exposures. The efferent pathways of the 

reflex involve inhibition of sympathetic outflow to peripheral vessels and increased activity 

in efferent vagal fibers to the heart [50]. The myogenic response is a reflex to the stretching 

of the smooth muscle of the arteriolar walls as changes in blood flow occur through the 

vessel (e.g., vasoconstriction in response to increased intraluminal pressure). Increased 

peripheral vascular resistance, cigarette smoking, and nicotine also have detrimental effects 

on coronary microvascular function (e.g., increases in coronary flow velocity and 

resistance, and decreases in flow reserve) and can cause vascular dysfunction [147-151], 

possibly via β-adrenergic receptor [152].  

Humoral to tobacco exposure: Several studies have suggested that humoral systems 

play a vital role in maintaining cardiac electric activity, and changes in their production or 

action pathways may contribute to various cardiac diseases. Beyond the neurotransmitters 

acetylcholine and norepinephrine, there is a local presence of peptidergic and nitrergic 

neurons along with their associated neurotransmitters, such as neuropeptide-Y, vasostatin, 

galactin, vasoactive intestinal peptide, nitric oxide synthase, and angiotensin-II [153, 154]. 

Neuropeptide-Y, coreleased by prolonged sympathetic activation, reduces acetylcholine 

release from the nearby vagal nerve ending, and it is an excellent example of 

sympathovagal cross-talk. These non-cholinergic, non-adrenergic neurotransmitters often 

exert effects similar to cholinergic or adrenergic agonists or antagonists [153]. The release 

of these neurotransmitters/modulators is often highly dependent on the level of neuronal 



29 

stimulation, and they tend to be slowly diffusing molecules that often function as 

neuromodulators, rather than classical neurotransmitters. 

Smoking has multiple effects on hormone secretion, some of which bear crucial 

clinical implications, and are mainly mediated by nicotine. Most acute data are from 

nicotine administration, whereas chronic data are predominantly from studies on cigarette 

smokers. Smoking affects pituitary, thyroid, adrenal, testicular and ovarian function, 

calcium metabolism, and the action of insulin differently in acute and chronic conditions 

[155, 156].  In particular, the activation of nicotinic acetylcholine receptors in the adrenal 

medulla leads to increased circulating catecholamine levels with corresponding 

cardiovascular and metabolic responses. The renin-angiotensin-aldosterone system 

(RAAS) and adrenal gland is also activated by the hypothalamic-pituitary-adrenal axis 

[155, 156].  

Other mechanisms by which smoking, and nicotine can influence cardiac 

autonomic function are inflammation and oxidative stress. The role of autonomic function 

in regulating oxidative stress is supported by previous evidence that the increase in 

adrenergic drive may result in catecholamine excitotoxicity, increased oxidative stress, and 

free-radical myocardium injury. There are two main phases in cigarette smoke; particulate 

phase and gas phase [157]. The two phases are rich in free radicals, and non-radical 

oxidants. Therefore, acute and chronic exposure to smoking causes increased oxidative 

stress from direct damage by radical species and the inflammatory response, as well as 

through sympathetic neural activation [72, 158-160]. In one study, smoking decreased the 

overall α- and β-adrenergic receptor concentration almost immediately after tobacco smoke 
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exposure in rats—perhaps through receptor desensitization resulting from a release of 

catecholamines—but was rapidly reversible after the termination of the exposure [161].  
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Table 1.2 Potential mechanisms of indirect effects of cigarette smoking on human cardiac electrophysiology 

System Receptors Stimulus Effect on 
SNS 

Effect on 
PNS Studies on the effects of smoking / nicotine 

Baroreflex Carotid artery / 
Aorta  

High Blood 
Pressure 

Decrease Increase Activates the system by increasing blood 
pressure through release of catecholamines 
from end terminals. Smoking also impairs 
the baroreflex system 

Chemoreflex Carotid / aortic 
(peripheral), 
medulla (central) 

Low PaO2, High 
PaCO2/pH 

Increase 
(increase 
pulmonary 
ventilation) 

- Nicotine does not increase chemoreflex 
sensitivity to hypoxia. 

Temperature CNS High Temp Increases - Temperature increases in lungs; decreases in 
skin temp 

Inflammation / 
Oxidative stress 

Lung afferent C 
fibers, vascular, 
myocardial 

Direct / Reactive 
Oxygen Species 

Increase Decrease  Increases inflammation and oxidative stress 
during acute and chronic exposure 

Endocrine hypothalamic–
pituitary axis 

Increase - Chronic: increases thyroid hormones, 
cortisol, possibly testosterone and estradiol. 
Decreases prolactin and growth hormone 
Acute: Increases prolactin, cortisol, growth 
hormone, vasopressin, endorphin, 
neuropeptide Y 

Cardiopulmonary  Ventricles High SNS (low 
vol LV) 

Decrease Increase - 

Pulmonary Pulmonary chemical stimuli, 
inflammation 

? Increase - 

Bainbridge Atria High blood vol Increase Decrease - 
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Literature review of effects of autonomic nervous system 

and smoking on electrocardiogram 

Autonomic nervous system 

Heart rate: The sinoatrial node, also referred to as the pacemaker of the heart, 

coordinates heart contractions. Located in the upper right atria wall, it generates impulses 

that result in cardiac contraction and determines the heart rate. The ANS predominantly 

determines the actual heart rate, but nonautonomic contributions (e.g., hypoxia and 

temperature via chemoreflex and baroreceptors pathways) also affect the intrinsic heart 

rate. The heart rate provides a static index of the net effects of autonomic input to the sinus 

node, but it does not reflect direct information about individual sympathetic or 

parasympathetic input. However, this simple measure has prognostic value, as reflected in 

population-based studies, in which high resting heart rate (net predominance of 

sympathetic influence) is associated with increased all-cause mortality, death from CVD, 

and sudden death [162-164]. The elevated heart rate may not only predict the outcome, but 

may also be an actual causal determinant of CVD through several different mechanisms 

[165].  

Heart rate variability: Efferent sympathetic and vagal activities directed to the sinus 

node are characterized by a synchronous discharge with each cardiac cycle that can be 

modulated by central (vasomotor and respiratory centers) and peripheral (oscillation in 

arterial pressure and respiratory movements) oscillators. These oscillators generate 

rhythmic fluctuations in efferent neural discharge that manifest as short- and long-term 

oscillation in the heart period. Analysis of these rhythms may permit inferences on the state 

and function of (a) the central oscillators, (b) the sympathetic and vagal efferent activity, 
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(c) humoral factors, and (d) the sinus node [166]. The oscillation in the intervals between 

consecutive heartbeats can be measured for indices of HRV, using either time domain 

approaches (based on statistical analysis of R-R intervals) or frequency domain approaches 

(spectral analysis of a sequence of R-R intervals) [166]. Large population studies have 

shown a higher risk of coronary artery disease, death, and cardiac mortality in individuals 

with decreased HRV (in both healthy populations and patients with cardiac disease) [167]. 

P wave: The P wave is the expression of atrial depolarization and intraatrial 

conduction. Electrocardiographic P wave indices consist of the P wave duration, 

morphology, and amplitude, and provide information about the atrial structure and 

function. A prolonged P-wave duration (>120 ms) is considered a marker of atrial 

cardiopathy, which, in chronic cardiac disease, is usually reflective if reduced atrial 

conduction related to architectural changes of atrial walls. P-wave duration is affected by 

autonomic tone. In general, both sympathetic stimulation and parasympathetic blockade 

shorten P-wave duration, whereas sympathetic blockade prolongs it [58]. P-wave terminal 

force in lead V1 (PTFV1) is defined as the value of the amplitude multiplied by the duration 

of the terminal’s negative deflection of the P wave in lead V1 of a standard 12-lead ECG. 

P-wave area (PWA) is the total geometric area under the P wave in the 12-lead ECG. It is 

usually represented by the product of the duration and peak amplitude of the P wave, and 

is measured in microvolt × milliseconds. Both of these P-wave indices, together with P-

wave axis (net direction of electrical forces within the atria), are also markers of atrial 

cardiopathy [168, 169]. Therefore, acute sympathetic activation may shorten P-wave 

duration, whereas chronic sympathetic activation may prolong P-wave duration from long-

term structural atrial remodeling. The P amplitude, which is mostly governed by atrial 
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pressures, may be increased in height (and in depth of PTFV1) in acute and chronic 

sympathetic stimulation.  

PR interval: PR interval is the period of time from the start of the P wave (atrial 

depolarization) until the start of the QRS complex (ventricular depolarization). Therefore, 

the determinants of PR interval are atrial depolarization and the conduction time from the 

sinus node to the atrioventricular node, His bundle, and Purkinje fibers [170].  The duration 

of PR interval is normally between 120 and 200 ms. In most cases, a prolonged PR interval 

(>200 ms) is determined by conduction delay in the atrioventricular node. The ANS’s acute 

effects on PR intervals are well known, considering that autonomic innervation influences 

the conduction through the atrioventricular node junction by modulating the refractory 

period [61, 171]. However, in the chronic state, autonomic-imbalance-induced atrial 

fibrosis may also cause PR interval prolongation by slowing atrial depolarization and 

dromotropy. Both short [26, 27, 29, 30] and prolonged [30, 172-174] PR intervals have 

been associated with adverse clinical outcomes (stroke, atrial fibrillation, and all-cause 

mortality). 

QRS complex: The QRS complex represents the electrical impulse as it spreads 

through the ventricles, and depicts ventricular depolarization. Ventricular depolarization is 

also influenced by autonomic modulation of the heart. In humans, increased sympathetic 

tone by β-adrenergic stimulation shortens overall QRS duration [175], heterogeneity of 

ventricular activation during disease states, and bundle branch blocks (mechanical and 

electrical dyssynchrony) [176]. The QRS complex voltage reflects the viable left 

ventricular mass and can be increased (e.g., athlete’s heart, hypertensive heart disease 

[177]) or decreased (post-myocardial infarction, infiltrative cardiomyopathies, etc. [178]) 
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during different disease states by several mechanisms [179], and both carry critical clinical 

implications [180-182]. The QRS amplitudes can also potentially be affected by the cardiac 

ANS [183-185]. However, stimulation of the left stellate ganglion produces little or no 

change in conduction velocity in the Purkinje  system, or in the pattern of epicardial 

depolarization, suggesting that cardiac sympathetic nerve stimulation does not result in  

significant changes in the sequence of ventricular excitation [61]. 

QT interval: The QT interval is a marker of ventricular depolarization (QRS 

duration) and repolarization (JT interval), and autonomic tone is the primary determinant 

of their duration [65, 186]. Changes in autonomic tone may alter QT intervals both 

indirectly, by modulating basal heart rate, and directly, by affecting ventricular 

repolarization kinetics of myocardial cells through neural and receptor-mediated 

mechanisms [53, 54, 57]. The effect of sympathetic nervous activity on the QT has been 

demonstrated [187-190]; however, in their study, Cappato et al. did not find that 

sympathetic tone influenced QT significantly, but rather that the cholinergic system 

appeared to slow down ventricular refractoriness and QT interval [191]. 

T wave: The T wave is the asymmetrical wave in the ECG that reflects ventricular 

repolarization; it comes after the QRS complex and typically lasts approximately 150 ms. 

The difference between the peak of the T wave and the isoelectric level during the same 

heart cycle is defined as T-wave amplitude (TWA). Several studies have suggested that 

TWA decreases, and even may invert, with sympathetic stimulation; conversely, the 

additional role of the cholinergic system remains unclear [192]. The Tp-Te interval is an 

index of transmural dispersion of repolarization, a marker of ventricular arrhythmia 

vulnerability [193]. An increase in Tp–Te reflects increased sympathetic nerve activity 
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[194], rather than the release of circulating norepinephrine [194]. However, more recently, 

the influence of the ANS on the TWA and Tp-Te interval has fallen under heavy scrutiny, 

and appears to be an unreliable index of myocardial sympathetic activity [195-197]. 

In summary, acute and chronic cardiac autonomic imbalance varies by phenotype 

(normal and diseased states), and influences several ECG parameters differently. 

Role of β-adrenergic receptors 

Physiologic doses of epinephrine alter electrophysiology through β-receptor 

activation, and manifest as an acceleration of atrioventricular nodal conduction and 

shortening of refractoriness in the atrium and ventricle [198]. In contrast, norepinephrine 

slows atrioventricular nodal conduction and lengthens the atrial and ventricular effective 

refractory periods [199]. Therefore, norepinephrine may counteract several of the 

electrophysiological effects of circulating epinephrine during physiologic degrees of stress. 

Furthermore, a-adrenergic stimulation by epinephrine in the presence of propranolol was 

found to prolong atrial and ventricular refractoriness [199].  

Most studies on the effect of β-adrenergic receptors on cardiac electrophysiology 

have been performed with either propranolol, a non-selective β-blocker, or isoproterenol, 

a non-selective β-adrenoreceptor agonist. Propranolol decreases heart rate and prolongs 

atrioventricular nodal conduction [200], and has been shown to have no significant effect 

on intra-ventricular conduction. Shortening of action potential plateau was also not evident 

after treatment with propranolol in normal cat ventricular muscles [89]. In the sinoatrial 

node and left atrial appendage cells of the guinea-pig heart, propranolol antagonized the 

positive chronotropism of nicotine and norepinephrine [88]. Studies conducted on five 
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human volunteers showed that intravenous propranolol followed by smoking significantly 

decreased cardiac output, and significantly increased blood pressure and systemic vascular 

resistance compared to smoking alone [201]. Similar effects were observed in another 

study among 10 participants [202]. Smoking alone increased cardiac output, mean arterial 

blood pressure, and decreased the calculated systemic vascular resistance [201]. The 

cardiac output increases were due to a fall in systemic vascular resistance. The effect is 

exaggerated after propranolol, potentially via the inhibition of β-adrenergic receptors, 

either by preventing the vasodilatory effect of β-2 adrenergic stimulation, or as increased 

availability of α-receptors may result in unopposed pronounced effects of vasoconstriction 

from epinephrine. However, another study was conducted using 80 mg of oral propranolol 

on six volunteers, and there was no significant difference from the placebo in blood 

pressure or forearm hemodynamics, and no prevention of the acute vascular effects of 

cigarette smoking with β-blocker pre-treatment [203]. β-blockers are first line therapy for 

patients with Long QT syndrome (LQTS)—a genetic disorder that can potentially cause 

life-threatening cardiac arrhythmia, is characterized by delayed myocardial repolarization, 

and manifests as QT prolongation [204]. The response to β-blockers and epinephrine 

depends on the genotype [204, 205]. Therefore, the differences in β-adrenergic receptor-

mediated effects on ventricular repolarization are likely related to the stimulus (e.g., 

frequency of cigarette smoking), dose (route) of propranolol use, and the underlying 

genotype. Furthermore, the plasma propranolol steady-state concentration is lower among 

smokers compared to non-smokers, possibly via an increased rate of drug metabolism 

[206].  
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Besides β-adrenergic receptors and muscarinic receptors from the cholinergic 

system, there are several other receptors (α-adrenergic receptors, dopamine receptors, and 

adenosine receptors) found throughout the myocardium, with critical clinical effects on 

ECG (Table 1.3). However, the impacts of smoking and nicotine on the ECG via receptors 

other than β-adrenergic receptors are not well defined.  

Table 1.3 Effects of cardiac receptors on chronotropy, dromotropy and inotropy 

Neurotransmitter Receptors Chronotropy 
(SA node) 

Dromotropy 
(AV node) 

Inotropy 
(Ventricle) 

Norepinephrine 

α1 + + + 

β1 + + + 

β2 + + + 

Dopamine D1, D2, D3, D5 + + ? 

Acetylcholine M2 - - - 

Acute and chronic exposure from smoking 

Chronic exposure to cigarette smoke (nicotine and non-nicotine constituents) 

Due to the injurious and addictive nature of smoking, it is not ethical to perform an 

experimental study to investigate the chronic effects of smoking and nicotine-containing 

products in humans. Therefore, studies can best describe associations of outcomes 

(biomarkers of CVD and risk) from occupational exposures or chronic smoking. 

Occupational exposure to polycyclic aromatic hydrocarbons results in decreased HRV 

[207]. A similar decrease in parasympathetic activity has been observed in workers 

exposed to organic solvents (n-hexane, xylene, and toluene) [208]. Sub-chronic and long-

term exposure to ambient fine particulate matter (PM2.5) at concentrations several orders 

of magnitude lower than those in cigarette smoke has been associated with increased QTc 
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duration in an elderly cohort [209]. Among 34 middle-aged individuals with metabolic 

syndrome, QRS and QTc intervals increased and HRV decreased 2 h after exposure to 

concentrated ambient ultrafine particles [210].  

Table 1.4 A (atrial electrocardiographic indices) and B (ventricular 

electrocardiographic indices) summarizes the major human studies on the chronic effects 

of smoking. Overall, most large studies (sample size of greater than 100 smokers) 

consistently show that PR interval is decreased among chronic smokers compared to non-

smokers. We were not able to find any study that directly investigated the effect of smoking 

on the PR segment. In a prospective study of 60 smokers, Varenicline (partial agonist at 

the α4β2 nicotinic acetylcholine receptor) treatment was associated with a near-significant 

attenuation in PR interval (varenicline: 163.5±18.3 ms, vs. placebo: 168.2±17.9 ms; P 

=.053). However, RR interval, QT interval, and QTd were not significantly altered [211]. 

Two studies showed shorter P duration but increased P amplitude among smokers [212, 

213]. The effects of smoking on QRS duration were the most varied.  Most studies 

consistently showed that there was no significant difference in QT interval between 

smokers and non-smokers. Two studies found that the ST segment was decreased in 

chronic smokers versus non-smokers [214, 215]. Few studies have found that the Tp-Te 

interval, Tpe/QT ratio, and Tpe/QTc ratio were higher among smokers [216, 217], even 

after varenicline administration [218].  

Apart from the Zhang et al. study [219], none of these studies featured a quantitative 

method of smoking burden, such as cotinine, or an adjustment for clinically important 

covariates known to affect the baseline ECG (such as age, gender, body mass index, 

diabetes, coronary artery disease, etc). 
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Table 1.4 Major human studies on the chronic effects of smoking on atrial (A) and ventricular (B) electrocardiographic indices 

The effect mentioned of the ECG parameters is among smokers compared to non-smokers are mentioned. 

A) Atrial electrocardiographic indices

Ref Author, Year Chronic 
Smokers 

Non-
smokers P wave duration PR interval PR segment 

[220] Goldenberg, 2006 98 619 - Shorter - 

[221] Chatterjee, 1989 224 232 - Shorter - 

[212] Sharma, 2017 150 50 Shorter Shorter - 

[222] Baden, 1982 208 291 - Shorter - 

[223] Khan, 2011 75 30 - Shorter - 

[213] Swathi, 2015* 200 200 Shorter No difference - 

[214] Sandhya, 2015 64 63 - No difference - 

[224] Karapinar, 2010 30 30 No difference - - 

[225] Goette, 2007 46 49 No difference - - 

[226] Siddiqui, 2013 30 30 No difference No difference - 

[227] Venkatesh, 2010 50 50 No difference No difference - 
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B) Ventricular electrocardiographic indices

Ref Author, Year Chronic 
Smokers 

Non-
smokers QRS duration cQT / QT interval cJT interval 

[226] Siddiqui, 2013 30 30 Shorter No difference - 

[213] Swathi, 2015* 200 200 Shorter No difference - 

[227] Vanketash, 2010 50 50 Shorter No difference - 

[214] Sandhya, 2015 64 63 Shorter No difference Shorter ST 

[223] Khan, 2011 75 30 No difference - - 

[222] Baden, 1982 291 208 No difference No difference - 

[215] Devi, 2013 44 44 No difference No difference Shorter ST 

[219] Zhang, 2011 3306 2242 - No difference (adjusted 
and used cotinine) - 

[216] İlgenli, 2015 24 23 - No difference - 

[228] Karjalainen, 1997 10,717 - Decreased - 

[229] Ileri, 2011 30 30 - Increased - 

[212] Sharma, 2017 150 50 No difference Increased - 
* There were no statistical analyses performed.
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Acute exposure to smoking (nicotine and non-nicotine constituents) 

Apart from the case reports, the scarce literature on the acute effects of individual 

constituents of cigarette smoking on human in vivo ECG has mainly investigated nicotine 

and carbon monoxide. Acute carbon monoxide intoxication in children impaired 

ventricular repolarization with higher mean heart rate, QT dispersion, QTc dispersion, P 

dispersion, Tp-Te, QTc durations, Tp-Te dispersion, and Tp-Te/QT ratio compared to 

controls [230, 231]. However, it increased heart rate, ST-T wave changes, QTc dispersion, 

and TpTe dispersion in adults [232, 233]. There is also long-term increased risk of acute 

myocardial infarction in carbon monoxide poisoning [234]. Among 16 smokers 

undergoing electrophysiological study, exposure to cigarette smoke produced a statistically 

significant shortening of the sinus cycle length after chemical denervation of the sinus node 

with β-blockers and atropine [235]. In a single case report of mild nicotine toxicity, a young 

smoker presented with a typ1 Brugada pattern, raising the possibility of sodium channel 

blockade [236]. Nicotine has proved to be arrhythmogenic in animals and cell preparations; 

however, despite some case reports linking nicotine to atrial fibrillation in humans, these 

findings have not been confirmed in pharmacological studies of nicotine administered to 

human subjects [133]. 

There are very few human experimental studies that have investigated the acute 

effects of smoking on the ECG. In their analysis of 40 healthy male participants (20 

smokers), Akbarzadeh et al. discovered that heart rate, mean QT, and QTc dispersion 

increased 10 minutes after smoking a single cigarette [237]. In another study, 31 male 

smokers with atypical chest pain were screened with a treadmill exercise test, which 

revealed that the heart rate increased within 10 minutes and returned to baseline after 30 
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minutes. Smoking was also associated with increased ectopic beats in these patients on the 

24-hour Holter monitor [238]. On a signal averaged ECG, there was a minor lengthening 

of the filtered QRS duration among 15 long-term smokers after smoking two cigarettes 

[239].  

To date, the most comprehensive assessment of acute smoking’s impact on 

myocardial conduction was performed among 28 habitual smokers by Soad Bekheit and 

Evan Fletcher in 1976 using His bundle electrograms [240]. The following measurements 

were made from His bundle recordings in the control and “nicotine tracings” (immediately 

after the first puff, sequential atrial pacing at identical rates to the control tracings): intra-

atrial conduction time (P1A), A-V nodal conduction time (AH), His-Purkinje-system 

conduction time (HV), and total intraventricular conduction time (HS). They found that a 

few puffs of a cigarette increase the velocity of conduction and shortens the effective 

refractory period of the A-V node, whereas the conduction velocity in the His-Purkinje 

system is not affected [240]. However, these effects were not studied against those from 

nicotine exposure.  

Acute cigarette smoking increases efferent sympathetic nerve activity, primarily 

via the release of the catecholamines norepinephrine and epinephrine (Table 4). This 

catecholamine release increases myocardial work and oxygen consumption through an 

increase in blood pressure, heart rate, and myocardial contractility [19]. Overall, the vast 

majority of published evidence suggests that acute and chronic active and passive exposure 

to cigarette smoke generates marked disruptions in normal autonomic function 

characterized by increased SNS drive, reduced PNS modulation, and overall HRV. This 

phenomenon is partly attributable to a nicotine-induced up-regulation of catecholamine 
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release, generating potent acute and chronic effects on cardiovascular regulation through 

SNS activation [241]. 

Hypothesis 

Research Hypothesis:  

Nicotine in cigarette smoke alters myocardial conduction through β-adrenergic receptors 

Alternate Hypothesis: 

Non-nicotine constituents in cigarette smoke alter myocardial conduction though β-

adrenergic receptors and non-β-adrenergic pathways 

Central hypothesis: 

Aim 1 Explore the relationship between cigarette smoking and properties of myocardial 

conduction. 

Aim 2 Test the influence of catecholamines in the association between smoking and 

myocardial conduction. 

Aim 3 Acute effects of cigarette smoking and nicotine with and without β-blocker on 

electrocardiogram. 
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Ethical considerations 

The primary therapeutic use of nicotine is in treating nicotine dependence. 

Controlled levels of nicotine are given to patients through gum, dermal patches, lozenges, 

inhalers, or nasal and oral sprays to wean them off their dependence, increasing quitting 

success by 50%–70% [242]. In contrast to recreational nicotine products, which have been 

designed to maximize the likelihood of addiction, nicotine replacement products are 

designed to minimize addictiveness. Hence, physiological studies on the effects of chronic 

use of pure nicotine on humans are accompanied by the concern for potential addiction 

among non-smokers, or the tolerance or modulation of neural plasticity among habitual 

smokers. It is for this reason that there are no robust human physiological studies 

investigating the cause–effect relationship of prolonged exposure to pure nicotine. There 

are some studies on prolonged nicotine replacement therapies in smokers who have quit 

smoking, and in these studies, no adverse effects have been found when nicotine 

medication was administered for months to several years. Given the highly addictive nature 

of nicotine, these studies are more appropriately termed as acute or chronic exposure of 

nicotine in chronic tobacco (nicotine) users.  Therefore, to investigate the chronic effects 

of tobacco use on the electrocardiogram, we analyzed plasma/urine cotinine, a highly 

sensitive and specific marker of chronic nicotine exposure, as well as urinary 

catecholamines, in order to investigate the relationship between the sympathetic nervous 

system, smoking, and the electrocardiogram. Furthermore, to study the acute effects of 

smoking and nicotine with and without a β-blocker, we designed an open-label 2 x 2 

factorial experimental trial. 
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CHAPTER II  

CHRONIC EFFECTS OF CIGARETTE SMOKING ON ELECTROCARDIOGRAM 

Cigarette smoking, ECG and interaction with Atrioventricular nodal blockers  

Aim 1 Explore the relationship between cigarette smoking and properties of myocardial 

conduction 

Participants from NHANES database 

The availability of serum cotinine levels and digital ECG in the Third National 

Health and Nutrition Examination Survey (NHANES-III) provides a unique opportunity to 

examine the association between tobacco exposure and ECG parameters, in a large 

nationally representative human population.  The NHANES is a program of studies 

designed to assess the health and nutritional status of adults and children in the United 

States. The survey is unique in that it combines interviews and physical examinations. The 

survey examines a nationally representative sample of about 5,000 persons each year. 

These persons are located in counties across the country, 15 of which are visited each year. 

The NHANES interview includes demographic, socioeconomic, dietary, and health-related 

questions. The examination component consists of medical, dental, and physiological 

measurements, as well as laboratory tests administered by highly trained medical 

personnel. To produce reliable statistics, NHANES over-samples persons 60 and older, 

African Americans, and Hispanics. All participants visit the physician and all (but the very 

young) have a blood sample taken. Health interviews are conducted in respondents’ homes. 

Health measurements are performed in specially-designed and equipped mobile centers, 

which travel to locations throughout the country [243].
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Complete details about NHANES survey components, survey methodology, and sampling 

procedures are available from the Centers for Disease Control NHANES website [244]. 

Briefly, NHANES data are not obtained using a simple random sample.  Rather, a complex, 

multistage, probability sampling design is used to select participants representative of the 

civilian, non-institutionalized US population. The sample does not include persons residing 

in nursing homes, members of the armed forces, institutionalized persons, or U.S. nationals 

living abroad. A sample weight is assigned to each sample person. It is a measure of the 

number of people in the population represented by that sample person in NHANES, 

reflecting the unequal probability of selection, nonresponse adjustment, and adjustment to 

independent population controls. NHANES is designed to sample larger numbers of certain 

subgroups of particular public health interest. Oversampling is done to increase the 

reliability and precision of estimates of health status indicators for these population 

subgroups. 

Measures 

During the NHANES, individuals are asked questions related to smoking status, 

duration, and smoking-related behaviors.  Smoking status was assessed in the home, by 

trained interviewers using the Computer-Assisted Personal Interviewing System (CAPI). 

Participants responded to whether they currently smoke cigarettes daily, some days, or not 

at all. Participants were categorized as never-smokers (individuals who have smoked 

<100cig/lifetime), former smokers (having smoked >100cig/lifetime but do not currently 

smoke), and current smokers. Current smokers are further classified as daily smokers 
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(smoking cigarettes every day) and nondaily smokers (identifies as a smoker, but does not 

smoke cigarettes every day).  

Cotinine 

Measures such as cigarettes per day are imprecise indicators of tobacco smoke 

exposure because of variability in how smokers smoke their cigarettes. There is 

considerable individual variability in smoke intake, even by people smoking the same 

brand of cigarettes, and the cigarette design and how the cigarette is smoked influence toxic 

exposures. Therefore, the optimal assessment of exposure to tobacco smoke is the analysis 

of biomarkers for quantifying the systemic exposure of smokers to toxic constituents of 

smoke derived from tobacco use [245]. Nicotine measurement is highly specific for 

tobacco use or exposure (in the absence of nicotine medication use), but because of 

nicotine’s short half-life (2 h) the method is not recommended for general use. Nicotine is 

extensively metabolized to a number of metabolites by the liver, of which quantitatively, 

the most important metabolite of nicotine is the lactam derivative, cotinine. In humans, 

about 70–80% of nicotine is converted to cotinine. Cotinine is a highly specific and 

sensitive marker for tobacco use (in the absence nicotine medication use) and has the 

advantages of a fairly long half-life (16 h) [245]. Measuring cotinine in people’s blood is 

the most reliable way to determine exposure to nicotine for a marker for both active 

smoking, and as an index to Environmental Tobacco Smoke (ETS) exposure, or "passive 

smoking".  There is a high correlation among cotinine concentrations measured in plasma, 

saliva, and urine, and measurements in any one of these fluids can be used as a marker of 

nicotine intake. Cotinine concentrations tend to be higher (3–8x) in urine than in serum; 
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however, for studies requiring a quantitative assessment of exposure, plasma or serum is 

regarded as the fluid of choice. Therefore, serum is used for cotinine measurement in 

NHANES [243].  

Serum cotinine is measured by an isotope dilution-high performance liquid 

chromatography / atmospheric pressure chemical ionization tandem mass spectrometry (ID 

HPLC-APCI MS/MS). Briefly, the serum sample is spiked with methyl-D3 cotinine as an 

internal standard, and after an equilibration period, the sample is applied to a basified solid-

phase extraction column. Cotinine is extracted off the column with methylene chloride, the 

organic extract is concentrated, and the residue is injected onto a short, C18 HPLC column. 

The eluant from these injections is monitored by APCI-MS/MS, and the m/z 80 daughter 

ion from the m/z 177 quasi-molecular ion is quantitated, along with additional ions for the 

internal standard, external standard, and for confirmation. Cotinine concentrations are 

derived from the ratio of native to labeled cotinine in the sample, by comparisons to a 

standard curve [243].  

Electrocardiogram: Participants aged ≧ 40 years who attended the medical 

examination received a resting 12-lead ECG with a Marquette MAC 12-unit (Marquette 

Electronics, Inc., USA), and analyzed  using the NOVACODE ECG program, which 

classified the ECGs as per the Minnesota Coding (MC) System. Details of the ECG 

examination have been published previously [244]. Computerized automated analysis of 

the electrocardiographic data was performed with visual inspection of outlier values by a 

trained technician in a central ECG core laboratory (EPICARE Center at the Wake Forest 

School of Medicine, Winston Salem, NC). PR interval and P duration in lead II and global 

QRS duration and QT interval were automatically measured. PR segment was calculated 
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as the difference between PR interval and P duration. QT interval was Heart rate corrected 

using the Framingham formula (QTc), calculated as QT + 154 × (1 −60/HR) [246]. To 

measure the association between cotinine and the ECG intervals (PR interval, P duration, 

PR segment, QRS, QTc and JT) we divided them into three groups; >95th percentile (long), 

5 – 95th percentile (reference) and <5th percentile (short).  For the purpose of this analysis, 

we only included NHANES III participants who had good quality ECG recording and with 

no major ECG abnormalities including electrocardiographic evidence of myocardial 

infarction or ischemia as defined by Minnesota Electrocardiogram Classification, and 

available serum cotinine data, medical history, medication use, and anthropometric 

measurements. 

Covariates definitions: Since several ECG characteristics significantly differ by 

demographics, anthropometric features and cardiovascular risk factors and cardiac 

medications [247-252], we identified clinically important covariates to adjust for their 

effect on ECG parameters. Diabetes was defined as a fasting plasma glucose level of ≥126 

mg/dl, glycosylated hemoglobin A1C values ≥6.5, or a history of glucose-lowering 

medications. Hypertension was defined as systolic blood pressure of ≥130 mm Hg, 

diastolic blood pressure of ≥80 mm Hg, or use of blood pressure-lowering medications. 

Body mass index was computed as the weight in kilogram divided by the square of the 

height in meter, and obesity was defined as a body mass index of >30 kg/m2. Age, gender, 

race/ ethnicity, and smoking status were self-reported. Chronic Obstructive Pulmonary 

Disease (COPD) was defined as patients with a combination of asthma and emphysema. 

Alcohol consumption was assessed by the food frequency questionnaire. Participants 

reported the number of times that they drank beer, wine, and hard liquor in the past month, 
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and we categorized total alcohol consumption into 4 groups (0, 1–4, 5–13, ≥14 

drinks/month). Serum cotinine levels >15 ng/ml were used to categorize the participants as 

smokers, while those ≤15 ng/ml were categorized as non-smokers . 

Statistical analyses 

The ECG sampling weights were used in the analysis to account for the complex 

sampling design [253]. Categorical variables were reported as frequency and population 

percents, whereas continuous variables were recorded as geometric mean ± standard error 

for all demographic tables. Statistical significance in demographic tables was tested using 

survey weighted analysis; for continuous variables, t test or ANOVA, whereas Rao-Scott 

chi-square was used for categorical variables. Survey weighted Multinomial regression 

was used to calculate the odds ratios and 95% confidence intervals for the association 

between serum cotinine levels(> 15 ng/ml) and ECG intervals using the group 5 – 95th 

percentile as reference. A sensitivity analyses was carried out, and the overall results did 

not differ after excluding those participants who had serum cotinine > 15 ng/ml, and 

identified themselves as never-smokers (n=134) or ex-smokers (n=216). Multivariable 

adjusted models were constructed with incremental adjustments as follows: model 1 

adjusted for age, sex and race-ethnicity; and model 2 adjusted for model 1 covariates and 

heart rate, obesity, diabetes, hypertension, dyslipidemia, previous CVD, congestive heart 

failure, COPD and alcohol intake; and model 3 adjusted for model 2 covariates and β-

blockers, calcium channel blockers and anti-arrhythmic drugs. Model 4 was created based 

only on the baseline characteristics associated with the ECG intervals with p<0.10 

(Supplementary 2.1.2-2.1.7). The heart rate was not included in the model for QTc. We 
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also performed fully adjusted survey weighted linear regression between continuous 

cotinine levels and ECG intervals as continuous variables. We conducted subgroup 

analyses stratified by age (cut-off point by median - 59 years) and gender. A 2-sided p 

value of ≤0.05 was considered significant for main effects and for interactions. Data were 

analyzed using the survey procedures in SAS, version 9.4 (SAS Institute, North Carolina). 

Results 

A total of 5,633 study participants (mean age 59±13 years, 53% women, 48% non-

Hispanic white) were included in this analysis. A total of 1,580 (28%) participants were 

identified as smokers (serum cotinine levels > 15 ng/ml).  Smokers were more likely to be 

younger in age, men, with lower prevalence of dyslipidemia and β-blocker use and higher 

prevalence of COPD, higher resting heart rate and higher alcohol intake (Table 2.1.1). The 

5th and 95th percentiles of ECG variables are shown in Supplementary Table 2.1.1. and 

Supplementary Tables 2.1.2-2.1.7 represent the geometric mean and standard error for 

ECG variables, and represent the population percentages for categorical baseline 

characteristics.  
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Table 2.1.1 Baseline Participants Characteristics (Total N=5,653) 

Characteristic 

Smoker 

p-value 
No 

≤ 15 ng/ml 
n=4073, 72% 

Yes 
> 15 ng/ml 

n=1580, 28% 
Age (years)* 56.4 ± 0.44 53.4 ± 0.45 <0.001 

Women  2371 (59.1%) 629 (43.7%) <0.001 

Non-Hispanic White 2122 (82.2%) 738 (80.8%) 0.291 

Smoking status 

<0.001 
Never 2381 (56.1%) 134 (5.8%) 

Current 67 (1.6%) 1230 (78.4%) 

Past 1625 (42.3%) 216 (15.8%) 

Diabetes mellitus  479 (7.5%) 143 (7.0%) 0.630 

Hypertension  1427 (31.8%) 489 (28.8%) 0.167 

Dyslipidemia 1066 (29.3%) 308 (23.1%) 0.004 

Obesity  853 (18.0%) 233 (15.3%) 0.120 

COPD 263 (6.8%) 160 (10.8%) <0.001 

Heart rate (beats/minute) 67.6 ± 0.3 68.9 ± .04 0.012 

Prior cardiovascular disease 172 (3.2%) 67 (3.5%) 0.698 

Congestive Heart Failure 131 (1.8%) 54 (1.7%) 0.872 

Alcohol drinks per month 

0 2415 (50.7%) 762 (45.1%) 

0.003 
1-4 670 (18.0%) 253 (17.2%) 

5-13 440 (13.9%) 200 (13.3%) 

>13 539 (17.4%) 359 (24.4%) 

Β blockers 320 (8.2%) 87 (5.9%) 0.009 

Calcium channel blockers 333 (6.7%) 103 (6.0%) 0.453 

Antiarrhythmic drugs  34 (0.6%) 17 (1.5%) 0.129 
*Except for age (which is represented by geometric mean and standard deviation), all other variables are
represented as frequency and column percentages. 
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PR interval, P wave and PR segment 

In multinomial logistic regression models adjusted for demographics, smoking was 

associated with increased odds of short PR interval and short PR segment (p-value < 0.01) 

(Table 1.2). This association was not attenuated after further adjustment for CVD risk 

factors and AV nodal blockers, and was consistent in subgroups stratified by age and sex 

(Supplementary Table 2.1.8). No significant association was observed with smoking 

status and P wave duration. Follow-up linear regression analyses revealed a significant 

negative association between continuous cotinine levels and PR segment, but not with P 

wave and PR interval. According to model 4, the PR segment shortened by 0.554 ms per 

100 ng/ml increase in cotinine levels (Table 2.1.3). 

QTC interval, JT interval and QRS duration 

In fully adjusted multinomial regression models, serum cotinine was associated 

with short QRS and long JT (p-value <0.01), but not with abnormal QTc (Table 2.1.4). The 

association between smoking status and short QRS duration (<5th percentile) and long JT 

interval (>95th percentile) was consistent in subgroups stratified by age and sex 

(Supplementary Table 2.1.8). However, linear regression showed a significant 

association overall between continuous cotinine levels and QTc, but not with QRS duration 

and JT interval (Table 2.1.5). According to model 4, QTc shortened by -1.345 ms with 

every 100 ng/ml increase in cotinine. 

The effect of smoking status on baseline ECG (results from logistic regression) is 

shown in Figure 2.1.1, and the relationship between cotinine and ECG (results from linear 

regression) is shown in Figure 2.1.2. 
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Table 2.1.2 Association between smoking status and abnormal PR interval and its 

components 

ECG variables groups: Short (<5th percentile), reference (5-95th percentile) and Long 

(>95th percentile). N=5,653 

PR interval P duration PR segment 

Odds ratio 
(95% CI) 

p-
value 

Odds ratio 
(95% CI) 

p-
value 

Odds ratio 
(95% CI) 

p-
value 

Model 1* 

Short 1.63  
(1.07, 2.48) 0.024 1.07  

(0.72, 1.57) 0.746 1.99  
(1.30, 3.05) 0.002

Reference - - - 

Long 0.73  
(0.46, 1.16) 0.186 0.88  

(0.55, 1.40) 0.585 0.93  
(0.64, 1.37) 0.726

Model 2† 

Short 1.57  
(1.02, 2.43) 0.042 1.10  

(0.75, 1.60) 0.639 1.95  
(1.28, 2.98) 0.002

Reference - - - 

Long 0.76 
(0.49, 1.19) 0.231 0.91  

(0.57, 1.48) 0.715 0.96  
(0.65, 1.41) 0.825

Model 3^ 

Short 1.50  
(0.95, 2.36) 0.081 0.98  

(0.67, 1.43) 0.914 2.00  
(1.25, 3.21) 0.004

Reference - - - 

Long 0.73 
(0.47, 1.13) 0.159 0.91  

(0.57, 1.47) 0.706 0.96  
(0.64, 1.43) 0.841

Model 4Δ 

Short 1.58  
(1.01, 2.48) 0.047 1.02  

(0.70, 1.49) 0.908 1.95  
(1.22, 3.10) 0.005

Reference - - - 

Long 0.74  
(0.47, 1.15) 0.175 0.89  

(0.56, 1.41) 0.618 1.00  
(0.68, 1.47) 0.995

*Adjusted for age, sex and race-ethnicity
†Adjusted for variables in model 1 plus heart rate, obesity, diabetes, hypertension, dyslipidemia, previous 
cardiovascular disease, congestive heart failure, chronic obstructive pulmonary disease and alcohol intake 
^Adjusted for variables in model 2 plus β-blockers, calcium channel blockers and anti-arrhythmic drugs 
ΔAdjusted for variables found significantly associated with the ECG intervals: 
• PR interval: age, sex, previous cardiovascular disease, β-blockers, calcium channel blockers, heart rate
• P duration: age, sex, race-ethnicity, congestive heart failure, alcohol intake, β-blockers, calcium
channel blockers, heart rate 
• PR segment: age, sex, alcohol intake, calcium channel blockers, heart rate
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Table 2.1.3 Adjusted survey weighted linear regression between serum cotinine levels 

and PR interval, P duration and PR segment 

N=5,653 

PR interval (ms) P duration (ms) PR segment (ms) 

β-(95% CI) p-
value β-(95% CI) p-

value β-(95% CI) p-
value 

Model 1* -0.832
(-1.549, -0.116) 0.0237 -0.078

(-0.444, 0.288) 0.6709 -0.755
(-1.355, -0.154) 0.0149

Model 2† -0.593
(-1.320, 0.134) 0.1074 -0.036

(-0.415, 0.343) 0.8490 -0.557
(-1.133, 0.019) 0.0579

Model 3^ -0.542
(-1.262, 0.179) 0.1374 0.036 

(-0.362, 0.434) 0.8558 -0.578
(-1.135, -0.021) 0.0424

Model 4Δ -0.603
(-1.301, 0.094) 0.0885 -0.008

(-0.391, 0.374) 0.9648 -0.554
(-1.090, -0.018) 0.043

*Adjusted for age, sex and race-ethnicity
†Adjusted for variables in model 1 plus heart rate, obesity, diabetes, hypertension dyslipidemia, previous 
cardiovascular disease, congestive heart failure, chronic obstructive pulmonary disease and alcohol intake 
^Adjusted for variables in model 2 plus β-blockers, calcium channel blockers and anti-arrhythmic drugs 
ΔAdjusted for variables found significantly associated with the ECG intervals: 
• PR interval: age, sex, previous cardiovascular disease, β-blockers, calcium channel blockers, heart rate
• P duration: age, sex, race-ethnicity, congestive heart failure, alcohol intake, β-blockers, calcium
channel blockers, heart rate 
• PR segment: age, sex, alcohol intake, calcium channel blockers, heart rate
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Table 2.1.4 Association between smoking status and abnormal corrected QT interval and 

its components 

ECG variables groups: Short (<5th percentile), reference (5-95th percentile) and Long 

(>95th percentile). N=5,653 

Corrected QT 
interval (ms) QRS duration (ms) JT interval (ms) 

Odds ratio 
(95% CI) 

p-
value 

Odds ratio 
(95% CI) 

p-
value 

Odds ratio 
(95% CI) 

p-
value 

Model 1* 

Short 1.23
(0.87, 1.74) 0.243 1.46

(1.07, 1.99) 0.017 1.41
(0.99, 2.02) 0.060

Reference - - - 

Long 1.17 
(0.71, 1.92) 0.544 1.04 

(0.69, 1.57) 0.842 1.50 
(0.97, 2.32) 0.071

Model 2† 

Short 1.17 
(0.84, 1.63) 0.364 1.43 

(1.04, 1.98) 0.030 0.84 
(0.55, 1.27) 0.409

Reference - - - 

Long 1.15 
(0.68, 1.95) 0.603 1.05 

(0.71, 1.57) 0.799 1.70 
(1.11, 2.61) 0.015

Model 3^ 

Short 1.01 
(0.71, 1.46) 0.946 1.60 

(1.13, 2.26) 0.008 0.82 
(0.52, 1.27) 0.372

Reference - - - 

Long 1.29 
(0.79, 2.11) 0.301 1.11 

(0.71, 1.73) 0.659 1.64 
(1.04, 2.57) 0.032

Model 4Δ 

Short 1.05 
(0.71, 1.54) 0.813 1.39 

(1.02, 1.88) 0.035 0.82 
(0.53, 1.29) 0.392

Reference - - - 

Long 1.26 
(0.79, 2.01) 0.328 1.09 

(0.73, 1.63) 0.682 1.81 
(1.13, 2.89) 0.013

*Adjusted for age, sex and race-ethnicity
†Adjusted for variables in model 1 plus heart rate (not for QTc), obesity, diabetes, hypertension, 
dyslipidemia, previous cardiovascular disease, congestive heart failure, chronic obstructive pulmonary 
disease and alcohol intake 
^Adjusted for variables in model 2 plus β-blockers, calcium channel blockers and anti-arrhythmic drugs 
ΔAdjusted for variables found significantly associated with the ECG intervals: 
• Corrected QT interval: age, chronic obstructive pulmonary disease, β-blockers, calcium channel
blockers 
• QRS duration:  sex, obese, chronic obstructive pulmonary disease, heart rate
• Uncorrected JT interval: age, sex, dyslipidemia, alcohol intake, heart rate, anti-arrhythmic drugs
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Table 2.1.5 Adjusted survey weighted linear regression between serum cotinine levels 

and corrected QT interval, QRS duration and JT interval 

N=5,653 

Corrected QT QRS duration JT interval 

β-(95% CI) p-
value β-(95% CI) p-

value β-(95% CI) p-
value 

Model 1* -1.448
(-2.375, -0.521) 0.0029 -0.251

(-0.489, -0.013) 0.0391 -1.198
(-2.043, -0.354) 0.0064

Model 2† -1.402
(-2.347, -0.456) 0.0045 -0.184

(-0.414, 0.045) 0.1126 0.130 
(-0.327, 0.587) 0.5701

Model 3^ -1.112
(-2.056, -0.169) 0.0218 -0.194

(-0.433, 0.044) 0.1079 0.189 
(-0.300, 0.679) 0.4414

Model 4Δ -1.345
(-2.269, -0.421) 0.0052 -0.139

(-0.363, 0.086) 0.2205 0.233 
(-0.272, 0.738) 0.3579

*Adjusted for age, sex and race-ethnicity
†Adjusted for variables in model 1 plus heart rate (not for QTc), obesity, diabetes, hypertension 
dyslipidemia, previous cardiovascular disease, congestive heart failure, chronic obstructive pulmonary 
disease and alcohol intake 
^Adjusted for variables in model 2 plus β-blockers, calcium channel blockers and anti-arrhythmic drugs 
ΔAdjusted for variables found significantly associated with the ECG intervals: 
• Corrected QT interval: age, chronic obstructive pulmonary disease, β-blockers, calcium channel
blockers 
• QRS duration:  sex, obese, chronic obstructive pulmonary disease, heart rate
• Uncorrected JT interval: age, sex, dyslipidemia, alcohol intake, heart rate, anti-arrhythmic drugs
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Figure 2.1.1 The effect of smoking status on baseline ECG 
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Figure 2.1.2 Panel A shows the distribution of PR segment (ms) and QTc interval (ms) with cotinine levels 

(N=5,653). Panel B depicts the visual representation of corresponding progressive shortening of PR segment and QTc with increasing 

cotinine levels 
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Discussion 

In a large sample representative of the general US population, we found that higher 

levels of serum cotinine, a measure of tobacco exposure, was associated with extremely 

shortened PR interval, PR segment, QRS duration and extremely prolonged JT interval. 

We also found that, although cotinine-confirmed smoking did not associate with extreme 

changes in QTc, smoking severity as measured by serum cotinine had a significant negative 

linear relationship with QTc in the overall cohort.  

PR interval, P wave and PR segment 

There is a wide variation in the results of prior studies on the effects of tobacco 

exposure and PR interval and its components: PR segment and P duration [227, 254, 255]. 

However, studies with greater sample size consistently show smoking associated with 

shorter PR interval [212, 221, 223, 256-258]. Few studies showed increased P wave 

duration among smokers [222, 259] while other studies did not show any significant 

difference, [225, 227] or found a trend towards decreasing P wave duration with smoking 

[212]. We did not find any significant association between P wave duration and cotinine 

levels, suggesting less overt effects of tobacco exposure on atrial activity and atrial 

conduction. In a smaller cohort we recently revealed an inverse association between 

cotinine and PR interval, with evidence that this relationship was mediated via increased 

circulating dopamine[260]. In the present study, our observations spanned a large 

nationally representative cohort and further corroborate these findings that smoking 

accelerates atrioventricular conduction. 
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These findings are particularly important in light of emerging data on the prognostic 

value of short PR interval to predict atrial fibrillation [27] and cardiovascular mortality [26, 

29, 261]. Therefore, exposure to cigarette smoke (and perhaps nicotine specifically) 

accelerates atrioventricular conduction (as exhibited by short PR interval) and may 

possibly be a mechanism for increased risk of stroke and atrial fibrillation. 

QTc interval, JT interval and QRS duration 

Similar to the results of studies on PR interval and its components, there are mixed 

results on the effects of smoking on QTc and QRS duration [212, 228, 229, 262-265]. We 

were not able to find any study that explored the relationship between JT interval and 

smoking exposure. Only one study has investigated the effect of smoking, measured 

specifically by  cotinine, on JT interval. Like us, Zhang et al [219] used the NHANES III 

database, and among 7795 men and women found that in fully adjusted models QTc  was 

not associated with smoking and cotinine levels. At first this appears to conflict with the 

results of our study, but ancillary analyses  (not shown) revealed that this discrepancy stems 

from their use of quartiles instead of continuous QTc, and their restricting analyses to 

current smokers only. In addition, we also studied the association of cotinine with the 

components of QTc interval, and found that higher cotinine levels are associated with 

abnormally short QRS duration and long JT interval, but without any significant linear 

relationship with either subcomponents. 

The QT interval encompasses the time from the beginning of ventricular 

depolarization (QRS duration) and ventricular repolarization (JT interval) [170]. Prolonged 

QRS duration [182] and JT interval [31, 32] are well known predictors of mortality in the 
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general population, but the clinical implications for short QRS duration are not known.  

Sympathetic neural stimulation and systemic catecholamine release may underlie smoking-

induced acceleration of AV nodal conduction, while also explaining the shortening of QRS 

(ventricular depolarization)[63, 266, 267] and prolongation of JT (ventricular 

repolarization) [194, 268, 269]. Nicotine has been found to directly inhibit IKr and Ito

repolarizing currents [270]. Notably, nicotine also directly stimulates release of 

catecholamines from nerve terminals and the adrenal medulla [71, 271], effects that acutely 

augment IKs current and directly cause phosphorylation of its corresponding potassium 

channel to acutely accelerate repolarization via β-adrenergic receptors [272]. In addition to 

increased sympathetic tone and direct effects on ion channels, nicotine may also cause a 

pro-fibrotic state [273] and endothelial cell injury [274, 275].  Thus, nicotine is a 

particularly plausible culprit of these effects. Nevertheless, particulate matter and 

aldehydes within tobacco smoke may be key constituents and irritant reflexes or ischemia 

may be critical pathways through which smoking disrupts electrophysiologic homeostasis 

[276] 

Limitations 

It has not escaped our attention that a single measurement of serum cotinine may 

not fully reflect chronic smoking intensity. Moreover, because cotinine only reflects 

nicotine exposure, and by an imperfect proxy, smoking intensity, we are unable to assess 

relationships between other cigarette smoke constituents and cardiac electrophysiology. 

Although we have adjusted for several potential confounders, we recognize the possibility 

of residual confounding that is similar to other studies with a cross-sectional design. Also, 
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though the automated measurement of ECG intervals and segments, are routinely reported 

and can easily be calculated by the ECG systems, we did not perform manual 

measurements. Despite these limitations, this is the first study examining the association 

between serum cotinine, an objective measure of tobacco exposure, with PR and QT 

interval and their components. 

Conclusions 

We found in a large racially diverse sample of the US population, that elevated 

serum cotinine levels are independently associated with abnormally short PR interval, short 

PR segment, short QRS duration, and long JT interval. Additionally, increases in cotinine 

were associated with progressive shortening of QTc across all individuals. Collectively, 

our findings indicate that exposure to cigarette smoke increases risk for abnormally fast 

atrioventricular conduction and ventricular depolarization and abnormally long ventricular 

repolarization.  However, smoking induces a progressive prolongation of repolarization 

when also evaluating individuals within normal QTc ranges. These observations enhance 

our understanding of the relationship between smoking and cardiac arrhythmias and 

implicate specific pathophysiological mechanisms by which smoking increases 

cardiovascular morbidity and mortality, including for stroke and sudden cardiac death. 

More research is warranted to examine the specificity and selectivity of these effects and 

to delineate the direct contribution of specific tobacco constituents such as nicotine. 
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Effects of cigarette smoking on electrocardiogram mediated via catecholamines 

Aim 2 Test the influence of catecholamines in the association between smoking and 

myocardial conduction. 

This study was designed to study the effect of nicotine and cigarette smoke 

exposure on PR interval and its components in a cohort of patients with intermediate-to-

high CVD risk and to discern the role of sympatho-adrenal activity in these effects on 

atrioventricular conduction through analyzing urinary metabolites of nicotine and 

catecholamines (dopamine, norepinephrine, and epinephrine). 

Participants from Louisville Healthy Heart Study 

The study was approved by the Institutional Review Board at the University of 

Louisville. Individuals (>18 years of age) with intermediate to high CVD risk were 

recruited from the University of Louisville Hospital and affiliated clinic system between 

October 2009 and March 2011 as described previously [277]. All accessible patients 

visiting the clinics during this time period were pre-screened through a review of medical 

records prior to recruitment in order to exclude individuals that did not meet the enrollment 

criteria. In addition, persons unwilling or unable to provide informed consent or with 

significant and/or severe comorbidities were excluded. Exclusion criteria included: 

significant chronic lung, liver, kidney, hematological, or neoplastic disease, chronic 

neurological or psychiatric illness, chronic infectious disease such as HIV or hepatitis, 

severe coagulopathies, drug/substance abuse, and chronic cachexia. Pregnant women, 

prisoners, and other vulnerable populations were also excluded from the study. Patients 

who met the enrollment criteria and gave written consent were consented and administered 
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a questionnaire to provide demographic information and baseline characteristics. Medical 

records were reviewed for past medical history, vital signs and medication history. To 

reduce selection bias, all consecutive participants who were eligible for this study were 

recruited. For our analyses, only those patients with complete urinary biomarkers and ECG 

with normal sinus rhythm were included (Supplementary Figure 2.2.1).  

Electrocardiogram (ECG) measurement protocol 

Standard 12-lead ECGs with 2.5 seconds of each lead and 10 seconds of rhythm 

strip (lead II) from medical records were used for ECG analyses. The following ECG 

intervals were measured: P wave duration (from beginning to end of P) and PR interval 

from lead II (from beginning of P to beginning of Q) [26], QRS duration from lead V6 

(from beginning of Q to end of S) [278], and QT interval from V5 (from beginning of Q to 

end of T) [279]. The PR segment was calculated as the difference between PR interval and 

P wave duration. QT was also corrected using the Framingham formula [246] (Appendix 

A). All intervals were measured with electronic calipers and adjusted to scale by reported 

automated measures of RR (or heart rate). Two trained analysts (CA and AI) independently 

and manually measured each ECG interval (except RR) from the first 3 sinus beats. HRV 

parameters were derived from digital caliper measurements of all RRs in the rhythm strip. 

When average of any ECG interval for a given patient differed between the two analysts 

by >10%, both investigators re-measured that ECG interval independently. If the parameter 

remained >10% different between analysts, the analysts reviewed the ECG together and 

reached consensus on the appropriate measure. 

Urinary measurements 
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A spot urine sample was collected on the day of study enrollment. Urinary cotinine 

is a well-established metabolite for cigarette smoke exposure [245], and was measured by 

Ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) 

using D3-cotinine as an internal standard [280]. For UPLC-MS/MS analysis of dopamine, 

norepinephrine, epinephrine, and their metabolites (metanephrine, normetanephrine, 

vanillylmandelic acid, 3-methoxytyramine, homovanillic acid), urine samples were thawed 

on ice, vortexed and diluted 1:50 with 0.2% formic acid containing isotopic labeled internal 

standards. 1 µL of the mixture was analyzed on an UPLC-MS/MS instrument (ACQUITY 

UPLC H-Class system and Xevo TQ-S micro triple quadrupole mass spectrometer, all from 

Waters Inc., MA). Separation was performed on an Acquity UPLC HSS PFP (150 mm × 

2.1 mm, 1.8 μm) column (Waters Inc., MA) with a binary gradient comprised of 0.2% 

formic acid (Solvent A) and methanol (Solvent B). Three multiple reaction monitoring 

(MRM) transitions were set up for each sample: one for quantification, one for 

confirmation, and one for labeled internal standard. At least 12 data points were collected 

for each peak. Analytes were quantified using peak area ratio based on 8 point-standard 

curves run before and after the urine samples. The concentration values of analytes were 

normalized to creatinine level which was measured on a COBAS MIRA-plus analyzer 

(Roche, NJ) with Infinity Creatinine Reagent (Thermo Fisher Scientific, MA). 
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Statistical Analysis 

Baseline subject characteristics were summarized by smoking status. Categorical 

characteristics, frequencies and percentages are reported along with Chi-square test p-

values, which were used to compare distributions across study groups. In addition to visual 

inspection of histograms, Shapiro-Wilk tests were conducted for continuous characteristics 

to determine if the characteristics were approximately normally distributed. Mean and 

standard deviation are reported for continuous characteristics with a normal distribution, 

whereas median and interquartile range are reported for continuous characteristics with a 

skewed distribution, and the study groups were compared by the appropriate statistical test 

based on normality. P-values were derived from Student’s t-tests for study group 

comparisons of normally-distributed variables, whereas Mann-Whitney tests were used for 

variables lacking a normal distribution. The urinary metabolites (cotinine, dopamine, 

norepinephrine and epinephrine and their daughter metabolites) were log-transformed 

because their distribution was skewed. We tested the associations between ECG parameters 

and urinary metabolites by linear regression. ECG parameters were dichotomized by their 

median levels into high- and low-value groups. Baseline characteristics associated with 

ECG variables in bivariate analyses (with p<0.01) were used to build fully adjusted models 

using linear regression analyses. Smoking status was determined as reported by the 

participant (active smoker, former smoker or non-smoker) and by urinary cotinine levels 

of 50 ng/ml [245]. Finally, mediation was assessed by the bootstrapping technique and 

macro put forth by Preacher and Hayes [281]. Statistical analyses were performed using 

Statistical Package for Social Sciences (SPSS) software (version 24, SPSS, Inc, Chicago, 

IL, USA). 
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Results 

Baseline characteristics 

A total of 136 participants were in normal sinus rhythm and had ECGs and urinary 

metabolites available. The participants were approximately evenly split by gender (male 

n=72, 53%), about half of all participants were Caucasians (n=77, 57%), and mean age was 

52 years. Participants had a high prevalence of CVD risk factors; with a majority diagnosed 

with hypertension (n=119, 87%) and/or on β-blockers (n=98, 73%) (Table 2.2.1).  Several 

of the participants were diagnosed with diabetes (n=43, 32%) or prior myocardial infarction 

(n=62, 46%), and/or were taking calcium channel blockers (n=32, 24%) or β-blockers 

(n=98, 73%). The relationship of baseline characteristics with dichotomized PR interval, P 

duration, and PR segment are shown in Supplementary Table 2.2.1. Mean age and 

proportion of females were significantly higher among individuals in the upper stratum for 

PR interval, whereas mean BMI, or proportion of participants who were female, 

hypertensive, or taking calcium channel, ACE, or angiotensin receptor inhibitors were 

higher among those with longer P duration. Conversely, only the number of participants 

on diuretics were higher among those with longer PR segment 
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Table 2.2.1 Baseline characteristics 

All patients Current smoker 

N=136 
Yes 

(N=53, 
39%) 

No 
(N=83, 
61%) 

p value 

Age (years)* 52, 10 53, 10 50, 9 0.05 

BMI (kg/m2)* 33, 8 34, 8 31, 7 0.06 

SBP (mm Hg)* 133, 23 132, 22 136, 24 0.15 

DBP (mm Hg)* 81, 13 80, 11 81, 16 0.37 

Heart rate (beats/min)* 73, 15 74, 15 73, 15 0.99 

Male gender 72, 53% 43, 52% 30, 57% 0.58 

Caucasian 77, 57% 46, 55% 31, 59% 0.73 

Hypertension 118, 87% 74, 89% 45, 85% 0.47 

Prior MI 62, 46% 40, 48% 23, 43% 0.58 

Diabetes 43, 32% 28, 34% 15, 28% 0.51 

Stroke 23, 17% 14, 17% 10, 19% 0.77 

Arrhythmia 45, 33% 28, 34% 17, 32% 0.84 

Β blocker 98, 73% 65, 78% 34, 64% 0.07 

CCB 32, 24% 24, 29% 8, 15% 0.06 

ACEI or ARB 89, 66% 54, 65% 35, 66% 0.91 

Statin 84, 62% 55, 66% 30, 57% 0.26 

Aspirin 81, 60% 49, 59% 33, 62% 0.71 

Diuretics 58, 43% 38, 46% 20, 38% 0.35 

Abbreviations: BMI -  Body mass index, SBP- Systolic Blood Pressure, DBP – Diastolic Blood 
Pressure, MI – Myocardial Infarction, CCB – Calcium Channel Blocker, ACEI - Angiotensin-Converting 
Enzyme Inhibitor, ARB - Angiotensin II Receptor Blocker 
For each variable counts and column percentage has been reported except for where indicated * where the 
mean and standard deviation (SD) are reported 
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Smoking status and catecholamine levels 

Overall smoking prevalence was 61% (n=83) by self-report and 46% when defined 

by urinary cotinine >50 ng/ml (Cohen’s κ=0.79, p<0.001 for agreement between these 

measures). Three participants self-reported as never smokers had urinary cotinine levels 

>50 ng/ml and two who self-reported as active smokers had urinary cotinine levels of £50 

ng/ml (Supplementary Table 2.2.2). None of the cohort characteristics were significantly 

different between active smokers and the rest of patients; although trends of higher age, 

BMI, and use of calcium channel and/or β-blockers was observed among smokers. All 

urinary metabolites (cotinine, dopamine, epinephrine and norepinephrine) were higher 

among current smokers vs never-smokers. None of the catecholamines were different 

between current smokers and ex-smokers (p>0.05); however, catecholamines were higher 

in the high-cotinine group relative to the low-cotinine group (Supplementary Table 2.2.3 

A).  

Supplementary Table 2.2.4 shows that cotinine was significantly associated with 

dopamine and norepinephrine, but not with epinephrine. We also explored the possible 

effect of cotinine on catecholamine metabolism by the association of cotinine and the 

daughter metabolites and their ratios. Each catecholamine’s intermediate metabolite, and 

none of the final metabolites, had a significant positive association with cotinine. Among 

the ratio of intermediate/parent metabolites, cotinine associated positively with 3-

methoxytyramine/Dopamine (an index of catechol-o-methyltransferase activity) and 

inversely with vanillyl mandelic acid/normetanephrine and vanillyl mandelic 

acid/metanephrine (both indices of MOA activity). 
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Association of cotinine with P- and PR-parameters 

Smokers did not differ from non-smokers in proportion of participants within strata 

of long or short P duration, PR interval, or PR segment.  Distribution of participants into 

high- or low-PR or P-duration parameters also did not differ by cotinine dichotomization 

(Supplementary Table 2.2.3 B). When analyzed as a continuous variable, cotinine was 

significantly higher among participants with short PR segment compared to those with long 

PR segment (p=0.03). PR interval also showed a similar trend (p=0.06), whereas cotinine 

did not differ between participants with long vs. short P duration (p=0.25) (Table 2.2.2). 

Among all participants, cotinine had a significant negative association with PR interval and 

PR segment (but not with P duration) in linear regressions, even after adjusting for age, 

gender and heart rate (Table 2.2.3). Figure 2.2.1 shows the scatterplot distributions of PR 

interval, P duration, and PR segment across log-transformed urinary cotinine levels 

normalized by creatinine.  Cotinine was not significantly associated with other ECG 

parameters, including QRS duration, QT interval and corrected QT, in unadjusted and 

adjusted models (Supplementary Table 2.2.5). 

Catecholamines and PR interval 

All three catecholamines were significantly elevated among participants with short 

P duration relative to those with long P duration (Table 2.2.2). Dopamine was also elevated 

among those with shorter PR-interval relative to those with longer PR-interval (p=0.01). 

Dopamine showed a trend of being higher among patients with short vs. those with long 

PR-segment. The adjusted linear regression showed all three catecholamines inversely 

associated with PR interval (p<0.05), none of the catecholamines associated with P 
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duration, and only dopamine inversely associated with PR segment (Supplementary 

Table 2.2.6).  
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Table 2.2.2 Comparison of creatinine-normalized urinary biomarkers (median [interquartile range]) among participants dichotomized 

into high and low atrial and atrioventricular conduction parameters 

N=136 

All patients 
PR interval P wave duration PR segment 

≤ 163.32 
ms 

> 163.33 
ms 

p 
value 

≤ 104.73 
ms 

> 104.74 
ms 

p 
value ≤ 55.20 ms > 55.21 ms p 

value 

Cotinine (ng/g) 23.1 
[1.6 - 794.1] 

30.6 
[1.5 - 948.4] 

23.0 
[1.8 - 647.7] 0.45 238.3 

[2.3 - 102.5] 
5.8 

[1.4 - 627.1] 0.08 130.7 
[2.4 - 1070.1] 

9.5 
[1.2 - 591.3] 0.03

Dopamine 
(μg/g) 

165.4 
[127.6 - 
214.1] 

179.8 
[142.3 - 
228.5] 

150.6 
[119.7 - 
189.5] 

0.01 
180.1 

[142.0 - 
234.7] 

111.6 
[180.3 - 
168.8] 

0.01 
168.8 

[140.7 - 
219.8] 

160.5 
[119.7 - 
204.9] 

0.07 

Epinephrine 
(μg/g) 

4.7 
[2.4 - 7.9] 

5.6 
[2.9 - 8.6] 

8.6 
[4.1 - 7.5] 0.23 5.9 

[3.5 - 9.8] 
3.9 

[1.7 - 6.4] 0.01 5.2 
[2.1 - 8.9] 

4.2 
[2.5 - 7.5] 0.75

Norepinephrine 
(μg/g) 

37.2 
[26.0 - 53.3] 

36.7 
[26.9 - 52.6] 

38.0 
[22.9 - 56.4] 0.86 41.2 

[30.7 - 54.5] 
31.9 

[22.1 - 52.3] 0.03 36.4 
[28.0 - 51.7] 

37.5 
[22.7 - 55.6] 0.75
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Table 2.2.3 Estimated effects (β-coefficients) of an increase in cotinine on PR interval, P wave, and P segment, with corresponding P-

values, from unadjusted and adjusted linear regressions.  

Urinary cotinine was log-transformed. N=136 

PR interval P duration PR segment 

b p value b p value b p value 

Unadjusted Cotinine -2.38 0.04 0.33 0.73 -2.70 0.03 

*Adjusted Cotinine -2.67 0.05 0.87 0.32 -2.10 0.04 

* model adjusted for age, body mass index, and gender (PR interval); BMI, SBP, DBP, gender, hypertension, CCB, and ACEI, and ARB (P duration); or BMI, β-
blocker, and diuretics (PR segment). 
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A    B   C 

Figure 2.2.1 Scatterplot and linear relationships of (A) PR interval, (B) P wave and (C) PR segment with log transformed urinary 

cotinine levels 

P values represent unadjusted linear regression.N=136 
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Mediation analyses 

In linear regression analyses cotinine was inversely associated with PR segment 

and PR interval, and dopamine was the only catecholamine significantly associated with 

both PR segment and PR interval (inversely in both cases). We therefore conducted 

mediation analyses to determine whether dopamine mediated the association between 

cotinine and PR segment and also between cotinine and PR interval. Figure 2 shows the 

relationship between cotinine and dopamine (path a); the relationship between dopamine 

and PR interval/segment (path b); and the total effect of cotinine on PR interval/segment 

(path c). The total effect (c) is the sum of direct (c’) and indirect (ab) effects. The direct 

effect is the relationship between cotinine and PR interval/segment while controlling for 

mediators. The indirect effect represents the mediated effect. Mediation analysis showed 

that dopamine completely mediated the association of cotinine with PR interval (c’, 

p=0.46) and PR segment (c’, p=0.09). Specifically, the indirect effect (path a × b) of 

cotinine on PR interval through dopamine had a point estimate of -1.23 and an upper and 

lower 95% CI of -2.90 and -0.26; and the indirect effect (path a × b) of cotinine on PR 

segment through dopamine had a point estimate of -0.52 and an upper and lower 95% CI 

of -1.57 and -0.08 (Figure 2.2.2). 
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Figure 2.2.2 Mediation analyses of cotinine, dopamine, and PR interval and PR segment 

N=136 
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Discussion 

The effects of smoking on atrial and atrioventricular nodal conduction velocity and 

their underlying mechanisms are currently unknown. To address this gap in knowledge, we 

measured PR interval, P wave duration, and PR segment from lead II of a 12-lead EKG, 

urinary catecholamines, and nicotine and its metabolites in a cohort of 136 participants 

with intermediate-high cardiovascular risk. We report three major findings from this study. 

First, cotinine had a significant inverse association with PR interval and PR segment, and 

not with P wave duration in adjusted linear regression models. Second, urinary dopamine 

was inversely associated with PR interval and both its components (PR segment and P 

duration), while epinephrine and norepinephrine did not associate with PR segment. Third, 

mediation analyses indicate that dopamine may primarily account for the association 

between cotinine and shortening of both PR interval and segment. Together, these findings 

suggest smoking may increase cardiovascular morbidity and mortality through nicotine-

associated increases in catecholamine release and downstream modulation of 

atrioventricular conduction. 

Nicotine and PR interval and its components 

Previous work on the chronic effects of smoking on PR interval has produced mixed 

results. Some studies found short PR interval at baseline among chronic smokers vs non-

smokers [212, 221, 257], while others found no difference [254, 282]. Similarly, a few 

studies showed increased P wave duration among smokers [222, 259], while other studies 

did not show any significant difference [225, 227] or found a trend towards decreasing P 

wave duration with smoking [212]. There are several reasons for the wide variation in the 
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results of prior studies; 1) small sample size, 2) insufficient consideration for the role of 

the components of PR interval, and 3) inadequate assessment of nicotine exposure and its 

potential impact. To the best of our knowledge, to date, no previous study investigated the 

effects of nicotine exposure on PR interval and its components in humans. This is 

particularly important in light of recent findings that short PR interval associates with 

increased risk for atrial fibrillation and cardiovascular mortality [26, 29, 261, 283].  Beyond 

overall cardiovascular mortality, smoking also associates with increased risk of atrial 

fibrillation through unknown mechanisms [284]. Thus, by demonstrating that exposure to 

cigarette smoke (and perhaps nicotine specifically) accelerates atrioventricular conduction, 

our findings provide further insight into how smoking may confer cardiovascular risk, 

including risk for atrial fibrillation. 

In the present study, cotinine inversely associated with PR interval and PR segment, 

indicating that increased cigarette smoke exposure accelerates atrioventricular conduction. 

PR interval is mainly influenced by the sum of atrial activity and atrioventricular nodal 

conduction [170]. Atrial pathology usually results in prolonging (rather than shortening) of 

PR interval, whereas shortening of PR interval is likely a result of accelerated 

atrioventricular nodal conduction. Hence, it is plausible from our results that chronic 

nicotine exposure expedites atrioventricular nodal conduction. Moreover, because P wave 

duration was not associated with cotinine, our findings suggest nicotine has limited effects 

on atrial conduction.  Using our linear regression coefficient, we found that each 100 ng/ml 

cotinine is associated with a 12.3-ms decrease in PR interval and 9.7-ms decrease in PR 

segment. 
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Cotinine and catecholamines 

Cigarette smoking and nicotine result in increased central and peripheral sympatho-

adrenal activation. The activation of nicotinic acetylcholine receptors in the adrenal 

medulla leads to increased catecholamine levels [285]. We found urinary dopamine and 

norepinephrine (but not epinephrine) were significantly higher among smokers and those 

with higher cotinine, suggesting smokers have chronically increased sympathetic neuronal 

activity (norepinephrine), but similar adrenal medullary hormone secretion (epinephrine). 

Interestingly, we also found that the intermediate metabolites of all three catecholamines 

significantly associated with cotinine, but not with the final product, and there was a 

negative association between cotinine and the ratio of the final and intermediate metabolite. 

This suggests cigarette smoking is associated with increased synthesis of dopamine and 

norepinephrine and at the same time decreases the catabolism of the intermediate 

metabolites of all three catecholamines. This corroborates the findings of several other 

studies that showed cigarette smoking inhibits the activity of MOA [286, 287]; an enzyme 

primarily responsible for catabolism of the intermediate metabolites of norepinephrine and 

epinephrine to their final metabolites.   

There are several mechanisms through which nicotine can possibly increase 

atrioventricular nodal conduction velocity. Nicotine stimulates sympathetic 

neurotransmission via activation of nicotinic acetylcholine receptors localized on 

peripheral postganglionic sympathetic nerve endings and the adrenal medulla which in turn 

cause catecholamine release [91, 285]. Catecholamines mediate positive chronotropic, 

inotropic, dromotropic, and bathmotropic effects (i.e., increased rate, force conductivity 

and excitability) [288]. Furthermore, evidence from animal models and ex-vivo studies 
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suggests nicotine may also directly cause endothelial cell injury [275], a pro-fibrotic state 

[273], and inhibition of cardiac A type potassium channels [85].  

The mediation analysis is a novel component to our study that reveals, among 

catecholamines, dopamine fully mediates the effect of cotinine and shortening PR 

interval/segment. The positive dromotropic effects of dopamine accelerate atrioventricular 

nodal conduction [289, 290], thereby expected to shorten the PR interval/segment without 

affecting P wave duration, as seen in our study.  

Cotinine was even associated with altered metabolism of the three catecholamines 

(ratio of metabolite/parent). The positive association of cotinine with 3-

methoxytyramine/Dopamine ratio suggests smoking increases dopamine synthesis and/or 

systemic secretion and, in compensation, also increases catechol-O-methyltransferase 

(COMT) activity.  Also, cotinine’s inverse association with Vanillylmandelic 

acid/Normetanephrine and Vanillylmandelic acid/Metanephrine suggest that smoking 

decreases MAO activity, consistent with observations of decreased MAO-B in the 

amygdalae of smokers and the antidepressant effects of nicotine [291, 292]  

Catecholamines and PR interval 

Interestingly, in our study only dopamine and not epinephrine and norepinephrine 

were associated with PR interval and PR segment. As all catecholamines are known to 

exert a dromotropic effect, plausible reasons for our finding include: 1) short and long term 

stress (smoking) disproportionately affect circulating dopamine relative to norepinephrine 

and epinephrine [293], perhaps secondary to nicotine-mediated declines in dopamine 

uptake [294];  2) cigarette smoking and/or nicotine cause an immediate surge in dopamine 
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from neuronal [9], that may cross the blood brain barrier to increase circulating dopamine; 

3) as the precursor of both epinephrine and norepinephrine, dopamine may have less

temporal variability, making it a more stable marker of chronic SNS activation; and 4) at 

low pathophysiological stress levels, dopamine may have higher affinity than epinephrine 

and norepinephrine for β-1- and β-2- adrenergic receptors, which modulate dromotropy in 

the atrioventricular node [295] .  

Other ECG parameters 

We did not observe any association of smoking status or cotinine with QRS, QT or 

cQT and. Previous studies in this area have yielded mixed results, including QT 

prolongation [229, 262, 263], QT shortening [228], or no relationship [219] with smoking. 

Limitations 

While this is the first known investigation of the influence of catecholamines in 

nicotine-mediated alterations in cardiac conduction, the sample size is limited and 

participants were drawn at random from the outpatient clinic setting with intermediate to 

high cardiovascular risk. Thus, we might have missed significant associations between 

cotinine and other parameters (e.g., P-wave duration) due to insufficient statistical power. 

Additionally, ECGs were obtained retrospectively from medical records and not on the day 

of enrollment. The median and interquartile range of number of days from study enrollment 

(urine sample collection) and ECG was 79 [20 – 320] days. We did not collect data on time 

of last cigarette/nicotine exposure and states that may affect catecholamines (stress, noise, 

discomfort, body position, consumption of food, caffeinated beverages and drugs).   
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Nevertheless, we used urinary analytes (cotinine and catecholamines) that are established 

markers for chronic nicotine and sympatho-adrenal activation and are unlikely to exhibit 

large acute variation in the outpatient clinic setting from which this cohort was derived. 

We did not collect 24-hour urine to account for diurnal and intra-individual variation in 

catecholamines [296]; however, summative analysis of 24-h catecholamine production 

may mask elevations due to dilution. Importantly, a HRV parameter (RMSSD: square root 

of the mean of squared differences of successive NN intervals), when dichotomized, tended 

to inversely associate with urinary norepinephrine and dopamine (r= -0.13, p=0.10 for 

both), suggesting concordance between measures of sympathetic activity in both ECG and 

subsequent urine samples. Although most participants were on β-blockers, prevalence did 

not significantly differ by cotinine strata, and PR and P wave durations did not differ by β-

blocker use. This latter point accords with observations that β-blockers do not alter resting 

PR interval whereas they partially attenuate PR and RR interval shortening during exercise-

induced sympatho-excitation [297, 298]. Additionally, we were unable to assess 

associations between other cigarette components or smoking habits (e.g., frequency) and 

cardiac electrophysiology. Other constituents within tobacco smoke (e.g., particulate 

matter and aldehydes) have been shown to alter autonomic balance and may thus plausibly 

alter catecholamine synthesis, secretion, and metabolism. Finally, smoking and nicotine 

can affect myocardial conduction velocity through induction of cardiac remodeling, 

oxidative stress, and/or ion channel dysfunction, which were not assessed in this study and 

may occur independent of sympathetic activation. Nevertheless, sympathetic activation can 

induce all three of these pathogenic processes [299] and may thereby indirectly mediate 

atrioventricular conduction defects. 
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Conclusions 

Collectively, our findings suggest that exposure to cigarette smoke accelerates 

atrioventricular conduction and that dopamine mediates these effects. More research is 

warranted to examine the specificity and selectivity of these effects and to delineate the 

direct contribution of nicotine. These observations identify a pathway by which smoking 

may increase risk for cardiovascular morbidity and mortality. 
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CHAPTER III  

ACUTE EFFECTS OF NICOTINE AND CIGARETTE SMOKING ON 

ELECTROCARDIOGRAM  

Aim 3 Acute effects of cigarette smoking and nicotine with and without β-blocker on 

electrocardiogram. 

Cigarette smoking has acute deleterious effects on the cardiovascular system, 

resulting in increased incidence of coronary artery disease, atrial and ventricular 

arrhythmias and sudden cardiac death among smokers [300, 301]. Despite, a strong dose-

response relationship between cigarette smoking and CVD, it remains unclear which 

tobacco smoke constituents and biological pathways mediate this increased risk. The main 

addictive component in cigarette smoke, nicotine, has been implicated as possibly the 

major mediator of acute cigarette smoke induced ANS dysregulation of the heart via 

increased sympathetic nerve activity and multiple downstream mechanisms [133]. 

Imbalance within the ANS is increasingly recognized as a major culprit of CVD. Indeed, 

both acute and chronic activation of the sympatho-adrenal  system, promotes 

cardiovascular dysfunction and disease, including arrhythmia, hypertension, heart failure, 

myocardial infarction, and ischemic stroke [302, 303]. The rising popularity of ENDS, and 

the enhanced nicotine dose of some ENDS devices relative to conventional smoking [304], 

have created an imperative to determine the cardiovascular effects of nicotine and the role 

of autonomic imbalance within them. 
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The ECG is a widely available, inexpensive, non-invasive, routine method of 

measuring electrical activity of the heart, and can be used to screen high risk populations 

and identify ad predict CVD. Several ECG parameters have also been used clinically to 

assess cardiovascular autonomic dysfunction as a diagnostic and prognostic factor. There 

is now abundant evidence that acute ANS imbalance has profound effects on 

electrophysiology [305, 306]. Further, acute variations in hemodynamics [307] and 

conventional ECG parameters, including dispersion of ECG intervals and amplitudes, may 

result from acute ANS imbalance and, when frequent, carry worse long term prognosis 

[308-310]. Additional parameters have recently been added to the repertoire of ECG 

indices that reliably predict cardiovascular morbidity and mortality (i.e., P wave amplitude, 

PR interval, and JT interval) [26, 30, 283, 311-313].  

Despite known cigarette induced acute ECG changes and powerfully predictive 

value of ECG changes for future CVD events, no prior study has systematically 1) 

evaluated the acute temporality of the acute electrocardiographic effects of smoking, and 

2) compared these with nicotine alone, and 3) explored the potential underlying

mechanisms. To the best of our knowledge, this is the first report on the immediate effects 

of cigarette smoking and nicotine on ECG morphologic endpoints. We therefore conducted 

an open label 2 x 2 factorial experimental trial to study the acute effects of smoking and 

nicotine, with and without β-blocker. 
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Participants and setting of the experimental trial 

Study design 

Participants were recruited via online and flyer advertisements in the public areas 

city of Huntington, WV. The study enrolled healthy adult male and female smokers, aged 

18–65 years, who had smoked at least 10 cigarettes/day for at least one year prior to the 

trial. Eligible participants had to weigh at least 55 kg and have a body mass index (BMI) 

within the range 17.5–30.0 kg/m2. Females who were pregnant or breast feeding, 

vulnerable population (such as patients with mental illness, prisoners etc), and participants 

with any medical illness requiring routine medications were excluded from the trial. 

Participants were screened over the phone call before entering the trial. The study design 

is shown in Supplementary Figure 3.1 A 

Participants 

The study was approved by the Institutional Review Board at Marshall University. 

Each participant signed an informed consent before inclusion in the study. Twenty healthy 

smokers (65% men; 37±13 years of age; body mass index, 28±5 kg/m2) and ten healthy 

non-smokers smokers (70% men; 28±5 years of age; body mass index, 26±3 kg/m2) were 

included in the study. All of the smokers were regular habitual cigarette smokers (22±8 

cigarettes per day for 21±12 years). The baseline characteristics along with details of 

smoking history and cigarette are provided in Supplementary Table 3.1. Except for one 

smoker (who used rescue inhaler occasionally for well controlled mild asthma), no other 

participant had any known medical illness nor routine medication use (including birth 

control pills). All subjects were at least high school graduates. 



89 

Study visits and exposures 

All participants had abstained from food, coffee, and tobacco overnight before each 

study visit. Each smoker completed two-day visits, where on their first day they smoked 

single preferred brand of Combustible Cigarette (Cig) in their usual manner, and second 

day they were administered 4 mg of nicotine from Nicotine mouth Spray device (NicS) 

designed to mimic the acute nicotine delivery of cigarettes. Ten of the twenty smokers were 

randomly invited for two additional visits, where the exposures remained the same (i.e. 

preferred single combustible cigarette smoke on day 3 and 4 mg nicotine spray on day 4), 

but were pre-treated with 80 mg oral propranolol (non-selective b-blocker) for two hours 

prior to the start of the study (BB-Cig and BB-NicS). The oral propranolol was 

administered by physician, and participant’s vitals were closely monitored during the day 

3 and 4. Ten of the twenty smokers also completed a fifth visit to serve as controls, where 

they simulated smoking by inhaling through their unlit cigarette (“Sham”), for the similar 

duration of smoking period on Cig. 

The nicotine mouth spray device (Nicorette oromucosal nicotine spray, 1 mg/spray, 

McNeil AB) consists of a plastic bottle with 13.2 ml of a clear to slightly opalescent liquid 

with a mint flavor. After priming, one depression of the spray nozzle delivers a metered 

dose of 1 mg of nicotine in 0.073 ml of a 10% ethanol-in-water solution. The spray liquid 

also contains very small amounts of levomenthol (0.7 mg/spray dose) and other flavorings 

(less than 0.3 mg/spray dose) [314]. The 4 mg of nicotine was administered by study 

personnel by pressing the nozzle four times in rapid succession, directed straight into the 

participant’s mouth. Participants were advised to avoid respiring during, and swallowing 
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immediately after, administration of the spray. The dose-concentration curve from the oral 

spray (Cmax 9.1 ng/ml and Tmax, 10 minutes, T ½ 2.6 hr) [314], mimics that of smoking 

cigarette with  about 1 mg of nicotine content (Cmax 11.9 ng/ml and Tmax, 8 minutes, T 

½ 2.5 hr) [315]. 

Procedures 

All study visits were separated by washout periods of at least 24 hours, and were 

started between 8 AM and 10:00 AM. After arrival to the research clinic, and obtaining 

informed consent, each participant completed a detailed health and tobacco use 

questionnaire. Height and weight were measured. There was a rest of 5 minutes before each 

blood pressure measurement and ECG recording session. Pre and post exposure blood 

pressure were measured in sitting position using a validated automated monitor, in 

accordance with the guidelines [316]. Pre and post exposure serum and plasma were also 

collected, and stored at −20 °C until analysis (except for on Sham smoking day). A standard 

continuous 12 lead ECG was recorded (Cardio Card, Nasiff Associates, Central Square, 

NY), using as per guidelines [317], for 5 mins indoor while supine (pre-exposure), 20 mins 

outside while seated (during exposure) and 5 mins indoors while supine (post-exposure). 

The exposures were always performed while seated in the same spot; which was outside in 

an open public area, (200 feet away from the research building); which was not a designated 

public smoking place and away from main road traffic area. Supplementary Figure 3.1 B 

and Appendix B show the schematic timeline of the study day protocol. 
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ECG and HRV analyses 

Data from Lead II was extracted and each beat was analyzed using the 

commercially available software LabChart/ECG and HRV Analysis Add-On (version 8.0; 

ADInstruments, Colorado Springs, CO, USA) (Appendix C). The artifacts were identified 

and removed from the analysis using the ECG Beat Classifier; which measures the Activity 

(sample-to-sample voltage differences), isoelectric noise, form factor (shape and time 

course of QRS complex) and RR interval. Supplementary Figure 3.2 depicts a typical 

ECG waveform, with the intervals and amplitudes that were measured automatically by the 

software. The data was further cleaned by excluding variables with > 20% difference from 

the median of 6 surrounding beats. To decrease variance, the ECG waveforms were 

averaged over three-minute time intervals during the 20 minutes exposure, and were 

averaged over 5 minutes during the pre- and post-exposure. For HRV, Time and frequency 

domain analysis were performed, at 5 min intervals and the entire 20 minutes during 

exposure, to record root mean square of successive differences (RMSSD) and standard 

deviation of normal beat intervals (SDNN) and LF/HF (ratio of LF to HF power), using the 

spectral settings as per the international guidelines [166].  

Plasma measurements 

The collected blood samples were immediately centrifuged and the plasma fraction 

were frozen until the end of study for batch analysis. The plasma Nicotine, Cotinine and 

Trans-3'-Hydroxy Cotinine in plasma samples were measured by UPLC-MS/MS using a 

Xevo TQ-S micro quadrupole mass spectrometer with an ESI ionization source, interfaced 
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with Waters Acquity Class-H UPLC equipped with a quaternary pump system (Waters, 

MA). Details about the procedure is given in Appendix D. 

Statistical analyses 

Each participant’s absolute change (Δ) for ECG waveforms (intervals and 

amplitudes), and HRV variables were calculated from the pre-exposure (baseline). The 

QTc was calculated by using Bazett formula (QT Interval / √ (RR interval). The Area Under 

the Curve (AUC) for the ECG parameter changes from baseline during exposure (20 

minutes) were calculated using the trapezoidal rule [318] for each participant and as 

average for all participants per study visit. Time series physiologic data are presented as 

change from baseline to allow consistent comparison to reported effects of cigarette, 

nicotine, with and without propranolol. We analyzed time-series deltas (each participant’s 

change during exposure from their own value at baseline) with linear mixed effects models 

(PROC MIXED) for different exposure effects using SAS 9.3 (SAS Systems; Cary, NC). 

A trendline function was also derived for ECG parameter that had significant change from 

Sham, and utilized LINEST function without ‘forced-intercept’ [319], along with six 

different regression types, to find the best fit curve, while maximizing the R-square and 

minimizing the variance to avoid under- and over-fitting. Spearman correlation was used 

to assess the relationship between the Δ in nicotine and its metabolites with the change in 

ECG parameters and Blood Pressure. The potential mediation of effects on ECG 

morphology by acute changes in autonomic balance (measured by RMSSD) was assessed 

by the bootstrapping technique and a macro put forth by Preacher and Hayes [281]. 
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A paired t-test was used to calculate the difference in blood pressure pre and post 

exposure. All statistics with P < 0.05 were considered significant, and were performed in 

SAS 9.3 and Statistical Package for Social Sciences (SPSS) software (version 24, SPSS, 

Inc, Chicago, IL, USA). We also created a typical one-minute ECG waveforms, from pre 

and during exposure, to represent the ECG changes in a Figure, between different 

exposures, using ecgAuto, v3.3 (Emka Technologies, Paris, France). 

Results 

On Cig, NicS and Sham days, the baseline (pre-exposure) ECG parameters, except 

for QTc and JTc, were similar. Pre-treatment with propranolol, decreased the Heart Rate, 

and increased the RMSSD and SDNN and the ST height. There was no significant 

difference in any baseline ECG parameter between BB-Cig and BB-NicS days 

(Supplementary Figure 3.3).  

The AUC for each exposure and study visit along with Sham is shown in Figure 

3.1, while the raw values are shown in Supplementary Figure 3.4.  

Heart Rate and HRV: Cig and NicS both immediately increased heart rate, which 

peaked at minutes 3 to 6 (+20 beats/minute and +14 beats/minute, respectively). After both 

exposures, the heart rate remained elevated up-to 20 minutes and returned to baseline post 

exposure. However, the AUC of heart rate for Cig was higher than that for NicS (p<0.05). 

Pre-treatment with propranolol had a significant impact on HR, with much lower AUC 

observed with BB-Cig vs Cig alone; while there was a non-significant decrease in AUC 

for BB-NicS vs NicS day. Cig  immediately decreased RMSSD (within first 5 minutes and 

lasting for 10 minutes), while NicS had delayed albeit significant and similar decrease in 
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HRV measurements at 10 minutes. The overall significant decrease (vs Sham) in AUC for 

RMSSD was similar between Cig and NicS (P>0.05). Despite RMSSD increased after 

treatment with propranolol on both days, cigarette smoke decreased the RMSSD ( -50 ms) 

vs  Cig day ( -20 ms) (p<0.05); while the AUC for NicS and BB-NicS was similar. Similar 

patterns were observed with SDNN and LF/HF. 

Atrial indices: The smoking and NicS related changes from baseline in P duration 

were not different from those of Sham. However, cigarette use induced immediate and 

significant shortening of PR interval (-14 ms at 9th minute) and PR segment ( -10 ms at 9th 

minute) (P<0.05 vs Sham), and this effect was abolished with pre-treatment with 

propranolol (P > 0.05 vs. Sham), while NicS had no significant impact on PR segment. 

Both, Cig and NicS significantly and similarly increased the P amplitude at 3-6 minutes of 

exposure compared to Sham (+21 µV and +28 µV, respectively), and interestingly this 

effect remained unaltered by propranolol. The AUC of P amplitude for Cig was small 

because, this effect reversed directionality to become negative (though not significantly) at 

9-12 minutes of exposure (i.e. the above zero baseline AUC was similar between Cig and 

NicS). 

Ventricular indices: Cig caused greater shortening of QTc ( -11 ms) relative to NicS 

( -4 ms), and both Cig and Nic significantly shortened QTc relative to Sham (P < 0.05 vs. 

Sham). On BB days, this effect was abolished and the AUC for BB-Cig and BB-NicS were 

similar to Sham, and higher than that of Cig and NicS, respectively. Cig immediately 

shortened QTc in the first 3 min, with a subsequent plateau effect for the remainder of the 

exposure and returning to baseline in the post-exposure period. Cig and NicS similarly 

deepened Q wave amplitude ( -59 µV and -72 µV, respectively, P < 0.05 vs. BL or Sham), 
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with propranolol blocking that effect. There was no significant effect of Cig or NicS on 

QRS and Tp-Te durations. The ST height gradually decreased after Cig and significantly 

differed from Sham minutes 3-6 ( -27 µV), with maximum effect at 9-12 minutes ( -41 µV) 

and slowly subsiding thereafter (remaining significantly decreased at minute 18-21) to 

baseline levels in the post exposure period. NicS had no such effect, and propranolol 

abolished the Cig-induced ST depression. 

The typical 1-minute average ECG morphology during six exposures are shown in 

Figure 3.2. Figure 3.3 shows the best fitting equation for the trendline of the changes in 

Heart Rate, P amplitude, QTc from Cig and NicS and PR segment and ST height from Cig. 

Supplementary Figure 3.4 show the raw and relative of the important ECG parameters 

on different days among smokes.  

Nicotine and its metabolites: The raw and relative changes in nicotine, cotinine and 

3OH were similar among different visit days of smokers; and higher compared to non-

smokers (Supplementary Figure 3.5; p<0.05 for each biomarker). There was significant 

correlation between change in nicotine levels with that of heart rate, ST-height, PR interval, 

PR segment, Q amplitude, SDNN and RMSSD among smokers (Cig and NicS days) and 

non-smokers (Table 3.1).  
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Table 3.1 Correlation between Area under the Curve of ECG parameters with change in 

Nicotine, Cotinine and 3-hyroycotinine (3-OH) among smokers on Cig-Day and NicS-

Day and Non-smokers 

Δ Nicotine Pre-Cotinine Pre-3HC 

Heart Rate 0.443** 0.165 0.099 

ST height -0.299* -0.246 -0.155 

PR interval -0.303* -0.015 0.077 

PR segment -0.318* 0.081 0.135 

P duration 0.015 -0.021 -0.062 

P amplitude 0.123 0.304* 0.219 

QTc interval -0.140 -0.180 -0.084 

QRS duration 0.191 0.128 -0.039 

Q amplitude -0.364** -0.149 0.004 

SDNN -0.344* -0.126 -0.157 

RMSSD -0.446** -0.147 -0.126 

Systolic Blood Pressure 0.438** 0.162 0.148 

Diastolic Blood Pressure 0.374** 0.003 -0.061 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed).

ANS and other ECG parameters: To test for statistical mediation of the 

electrophysiologic effects of Cig and NicS exposures by ANS imbalance, we also evaluated 

the correlation of RMSSD with the other ECG parameters (Supplementary Table 3.2) 

where only Heart Rate and ST-height correlated with the nicotine levels among smokers 

on Cig-day and non-smokers. Mediation analysis showed that RMSSD completely 

mediated the association of nicotine with ST-height; specifically, the indirect effect (path 
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a x b) of Δ nicotine on ST-height through RMSSD had a point effect estimate (β) of -26.57 

and an upper and lower 95% CI of -82.80 and -0.90. While change in nicotine directly 

affected Heart Rate (c’ path; p=0.036), and this effect was independent of changes in 

RMSSD (Figure 3.4). 

There was no effect of baseline cotinine on the relationship between changes in 

nicotine and that of ECG parameters (Heart Rate, PR segment, ST height and root mean 

squared of successive differences (RMSSD)), among smokers on Cig-Day and NicS-Day 

and Non-smokers (Supplementary Figure 3.6). 

Blood pressure: Both Cig and NicS similarly and significantly increased post-

exposure systolic and diastolic blood pressures relative to Sham and non-smokers 

(Supplementary Figure 3.7). At pre-exposure, blood pressures were similar between Cig, 

NicS and Sham. There was no significant change in blood pressure on the BB days post 

Cig and post NicS. The change in nicotine levels also significantly correlated with the 

changes in blood pressure (Table 3.1), which were not observed on BB days (p>0.05).  
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«: <0.05 vs Sham 

#: <0.05 vs Nicotine 

β: <0.05 vs non- b-blocker 
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«: <0.05 vs Sham 

#: <0.05 vs Nicotine 

β: <0.05 vs non- b-blocker 

Figure 3.1 The Area Under the Curve for the raw changes (Δ) in ECG parameters from 

baseline for each visit day among smokers 

N=20 on Cigarette and NicSpray days. N=10 on sham days 
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Sham exposure 

Cigarette exposure Nicotine Spray exposure 

Figure 3.2 ECG morphology in a typical participant during exposure on different days 

Each ECG individual waveform is a 1-minute average before or during exposure to unlit cigarette (sham), cigarette, or nicotine spray. 
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ST height 

PR segment 

Figure 3.3 The best fitting line to predict changes in Heart Rate, P amplitude, and QTc upon Cigarette and Nicotine exposures, and 

additional lines for PR segment and ST height upon Cigarette exposure

N=20  on Cigarette and  NicSpray  days. N=10 on sham days 
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Figure 3.4 Mediation analyses of changes in Nicotine, root mean squared of successive differences (RMSSD) and Heart Rate and ST-

height among smokers on Cig-Day and NicS-Day and Non-smokers 

Nicotine directly and linearly increases the heart rate, independent of pathway involving RMSSD / β-adrenoreceptors. 
RMSSD/ β-adrenoreceptors significantly and fully mediates the effect of smoking on ST height. 
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Discussion 

We have demonstrated in healthy habitual smokers that either smoking one 

cigarette or self-administering 4 mg oral nicotine acutely alters ECG morphology, with 

some key differences between the effects of the two. Moreover, non-selective β-adrenergic 

blockade inhibited many but not all of these effects. These transient ECG changes provide 

a plausible mechanism underlying smoking-induced cardiovascular events, with important 

clinical implications related to recreational use of nicotine delivery products as well. Table 

3.2 summarizes the major findings of the study. 

Table 3.2 Major findings of the experimental study 

None

Abolished

Attenuated

Effect of β-Blocker 
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Sympathetic activation 

Consistent with previous reports, our study found that smoking a single cigarette 

acutely increased heart rate and blood pressure, and decreased HRV and PR segment [90, 

240, 241, 320] – consistent with increased sympathetic activation. The duration of 

increased heart rate up-to 20 minutes, dissipating after 30 minutes, recapitulates 

observations by Ramakrishnan et al, among 31 male smokers with atypical chest pain and 

24 h Holter monitor [238]. However, we showed for the first time that acute nicotine 

exposure causes these changes, with dose-proportionate effects that were diminished by 

propranolol. Nicotine is a known sympathomimetic that acts on nicotinic receptors to 

increase sympathetic tone and catecholamine release. Thus, it is not surprising that we also 

found a dose-proportionate increase in cardiac sympathetic activity from oral nicotine 

administration. Our observations of nicotine-mediated sympatho-excitation add to recent 

literature on the acute physiological effects of nicotine alone [321-323] or within e-

cigarette aerosols [321] and identify a plausible mechanism by which tobacco product use 

increases sympathetic activity.  Indeed, sympathetic dominance strongly predicts 

cardiovascular morbidity and mortality [303, 324, 325], including for arrhythmia-related 

events [326], and can acutely provoke arrhythmia through numerous pathways [327]. 

Importantly, our observations of acute sympathetic dominance with either nicotine oral 

spray or conventional smoking identify nicotine as a plausible mediator of tobacco product-

induced cardiovascular morbidity and mortality. 
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Atria 

P wave morphology is dependent on mainly four factors 1) intra-atrial conduction 

abnormalities, 2) left atrial hypertension, 3) left atrial distention, and 4) chronicity disease 

[328]. Another novel finding of the study was that cigarette smoking and nicotine spray, 

within minutes, increased P wave amplitude, and propranolol prevented these effects. We 

also found non-significant shortening of P duration with cigarette and nicotine use. Both 

these observations are similar those of Goldberg et al., who noted that isoproterenol-

induced β-adrenergic stimulation significantly shortened the P wave in healthy subjects 

[58]. Sympathetic stimulation increases peripheral vascular resistance, venous return and 

cardiac pressures [329], effects also seen with cigarette smoking [330, 331]. Accordingly, 

the significant increase in P amplitude induced by NicS and Cig, and inhibited by β-

blockade, indicate that nicotine increases atrial pressures through β-adrenergic receptors. 

The acute increase in atrial pressures together with increased dromotropy, may represent 

two distinct pathways with possible synergistic effects of tobacco products induced 

increased atrial arrhythmia and thrombosis and stroke risk [283, 312]. 

Ventricles 

To the best of our knowledge, this study demonstrates for the first time that smoking 

acutely induces ST-depression. Smoking caused a gradually worsening ST-depression that 

peaked at 9-12 minutes, abated by about 30 minutes post-exposure, and vanished with 

propranolol pretreatment. Recently, Ramakrishnan noted gross alterations in ST-T 

morphology with smoking (1-2 mm changes in ST segment or T wave), but only in one 

tenth of men with prior atypical chest pain and with onset at 8-12 minutes after smoking 



107 

[238].   in [238]. The cardio-protective effects of β-blockers among patients with stable 

angina is well described [332]. However, cigarette smoking induced ST-segment 

depression at rest, via β-adrenergic receptors activation complements the propositions of 

others that enhanced sympathetic tone mediates ST-segment depression in general [333-

335]. 

Interestingly, we also found that cigarette smoking caused significant albeit 

minimal shortening of QTc. The relationship between QTc and the ANS is particularly 

complex [299]. However, several studies have shown that acute adrenergic stimulation 

shortens QTc in humans [64, 336], possibly by reducing transmural dispersion of 

repolarization [337]. Chronic smoking is associated with higher potassium levels [338], 

however, acutely it inhibits potassium channels [85] and/or may decrease potassium levels 

via direct sympathetic activation [339]. The effects of potassium levels and/or ion channels 

may be more pronounced in the ventricles than in atria, resulting in hypokalemia related 

ECG changes and ST-segment depression [339]. Unlike the dose-dependent effects of 

nicotine (in either NicS or Cig) on atrial and atrioventricular (AV) electrophysiology, there 

were no significant effects of nicotine on ventricular depolarization and repolarization. We 

speculate this may derive from disproportionate autonomic control of the atria, sinus node, 

and AV node, which have a greater density of cardiac autonomic ganglia than the ventricles 

[340, 341]. Alternatively, because of distinct atrial-specific ion-channel and interceullular 

coupling properties and distribution, atrial myocardium may be more susceptible to 

architectural or structural changes with a substantial impact on cardiac performance, 

arrhythmia occurrence, and stroke risk [342].  
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Strengths and Limitations 

It is well accepted that many of the effects of cigarette smoking, including addiction 

and acute alterations in cardiovascular physiology, stem from the rapid delivery of nicotine. 

However, there are very few studies that have directly compared the effects of nicotine vs 

cigarette, and those studies found no significant effect of nicotine replacement therapy, in 

contrast to cigarette exposure [343], we used a novel oral nicotine spray with 

pharmacokinetic properties for nicotine similar to those of cigarettes [314, 315, 344, 345], 

and also perhaps electronic nicotine delivery systems. We also recorded continuous 

standard 12 lead ECG during exposure, and systematically analyzed the interval and 

amplitudes of each beat with an automated software, to investigate the acute temporal 

relationship of smoking and nicotine exposure on ECG.  

One potential source of variability in this study was the outdoor setting during mid-

exposure ECG monitoring. However, to diminish the influence of outdoor conditions (e.g., 

temperature, humidity, air pollutants etc), most of the study visits were performed on 

consecutive days.  Similarly, we saw no differences in ECG variables between BB and 

non-BB days during the first minute of outdoor recording. To facilitate detection of the 

early acute effects under typical smoking conditions and the delayed acute effects under 

conventional clinical conditions, participants were assessed for ECG changes while seated 

at mid-exposure, but while supine at pre- and post-exposure. We also performed the same 

protocol on 10 healthy non-smokers, where the exposure consisted of periodically inhaling 

through an empty straw for 5 minutes to simulate smoking, and demonstrated that there 

were minor changes related to position. We did not exclude any coronary artery disease 

among the study participants, however, because of our eligibility criteria, participants had 
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no known cardiac medical condition, nor any active symptoms and were healthy. Another 

limitation is that the oral nicotine spray may be pungent and taste unpleasant for some 

participants, which may result in significant changes in heart rate. However, these changes 

are usually transient and less potent than that seen during our study (i.e., increase in heart 

rate of 7.1–13.6% for various taste stimuli, with maximum effect ∼25 s and returned to 

pre-exposure after 80 and 100 seconds [346]. Lastly, since this is a human in vivo 

experimental study, we were unable to differentiate direct vs indirect effects from nicotine 

and cigarette smoking (e.g., heart rate may have increased due to direct effects of nicotine 

and non-nicotine constituents on receptors in the sinoatrial node or central nervous system, 

or instead via reflexes from increased cardiac pressures secondary to increased peripheral 

vascular resistance and systemic pressures). 

Conclusion 

Smoking and nicotine alone acutely induce myriad changes in electrophysiology 

that are known to be pro-arrhythmic. Smoking may acutely promote arrhythmia via 

nicotine-mediated acceleration of heart rate and ventricular repolarization (QTc), with β-

adrenoceptors mediating only the latter. Unlike acute nicotine, cigarette smoke rapidly 

depresses ST segment and shortens PR segment via β-adrenoceptor stimulation, indicating 

smoking transiently induces ischemia and accelerates dromotropy by sympathetic 

activation. Nicotine in cigarette smoke, via β-adrenoceptors, mostly seems responsible for 

transient increase in atrial pressures, which may reflect possible mechanism for tobacco 

induced atrial arrhythmia and stroke risk. 
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CHAPTER IV  

IMPLICATIONS AND CONCLUSIONS 

Clinical Implications 

Cigarette smoking is the most significant modifiable risk factor for cardiovascular 

morbidity and mortality. Although smoking rates in the United States have declined over 

the past five decades to historic lows, efforts to protect public health are far from complete. 

The burden of combustible tobacco use in the United States remains high, especially in 

vulnerable populations. This persistence of cigarette smoking, coupled with the advent and 

dramatic rise in the use of new tobacco products, such as electronic cigarettes, especially 

among adolescents and young adults, are of significant concern [347]. These products may 

benefit by helping some smokers quit or transition to a less harmful product; however, the 

long-term health effects of these products and the net public health effect associated with 

their use remain unclear and widely debated [348]. Evidence is mounting that the use of 

these products may catalyze the transition to the use of other tobacco products or 

recreational drugs, particularly in young adults [349]. The use of certain newly regulated 

tobacco products has skyrocketed, particularly among youths. For example, from 2011 to 

2018, the rate of e-cigarette use among high school students ballooned from 1.5% to 20.8% 

[350], and then up to 27.5% in 2019, according to preliminary results from the Centers for 

Disease Control and Prevention’s annual National Youth Tobacco Survey. 
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Nicotine is addictive and present alongside other chemicals in ENDS. Several 

studies have revealed the existence of toxicants in both the liquid and aerosol of e-

cigarettes. Recent studies suggest that, although adverse experiences such as chest pain, 

palpitations, coronary heart disease, lung injury [351], and increased risk of myocardial 

infarction [352] are associated with e-cigarette use, further investigation is required to 

evaluate whether any causal relationships exist. The FDA has included the discovery of 

biomarkers to assess exposure and harm or toxicity of non-cigarette tobacco products, 

including ENDS, as well the as short- and long-term health effects of tobacco products 

among its research priorities [348]. The series of studies presented in this dissertation 

directly relate to those scientific domains—to help establish sensitive biomarkers to detect 

short-and long-term subclinical cardiovascular injury from tobacco and other nicotine-

related products, and potentially guide regulation of nicotine levels in recreational products 

[347].  

Most investigations into the pharmacokinetics of nicotine from ENDS have yielded 

variable results, perhaps owing to the large variability of study protocols.  Moreover, 

several studies have lacked generalizability, as they incorporated a single standard e-

cigarette and nicotine concentrations with a protocol for vaping at fixed intervals [353]. 

Furthermore, they were unable to investigate the differential impacts of variations in 

experimental parameters, such as battery output voltage or coil resistance, which are known 

to impact delivery of nicotine and production of potentially toxic constituents [354-356]. 

Further complicating the relevance of past ENDS studies, e-cigarette devices have rapidly 

evolved to more effectively deliver nicotine. A recent pharmacokinetic study revealed that 

an ad-lib session with third-generation e-cigarettes is able to achieve the dose and speed of 
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nicotine delivery similar to conventional cigarettes [357]. Another study revealed that 

newer generation e-cigarettes (“mod”-type cigarette) delivered nicotine at levels close to, 

or even exceeding, those of combustible cigarettes (highest average Cmax - 43.6 ng/ml) 

[358].  The parent company of JUUL, the relatively new pod device that has claimed 70%-

80% of the U.S. e-cigarette market [359], noted in their initial patent filing that their device 

achieved 36% higher peak levels of plasma nicotine and higher increases in heart rate with 

more rapid onset than full-flavored cigarettes. This is due in major part to the use of 

nicotine benzoic acid salts, which further enhance nicotine delivery [359]. In our 

experimental trial, the plasma levels were drawn about 45 minutes after the start of 

exposure, and the nicotine levels increased an average of 7.83 ng/ml after cigarette use, 

and 6.98 ng/ml after nicotine spray, which is similar to that achieved by newer e-cigarettes 

[353]. The JUUL brand is one of the newer entries into the market and utilizes prefilled EC 

fluid “pods,” being more similar to the “cig-a-like” products than to the recently available 

tank/box mod styles. Nicotine concentrations (average 60.9 mg/mL) were significantly 

higher in JUUL than those of any EC products previously analyzed by Omaiye et al. [360]. 

Such high nicotine levels are not observed after use of NRTs, with doses recommended to 

reduce withdrawal symptoms and cigarette cravings [344]. Despite the large variability in 

the pharmacokinetic profiles and levels of nicotine due to varying e-cigarette device 

designs, e-liquid concentration, and use behavior, the results of our study provide valuable 

insight into the likely cardiovascular effects and risks of e-cigarettes.  

We conducted three studies that may elucidate the cardiac impacts of nicotine-

containing e-cigarettes. In our cross-sectional observational study, we found that chronic 

nicotine or tobacco exposure leads to dose-dependent shortening of PR segment and QTc, 
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and that an extremely high burden of exposure (measured by the nicotine metabolite, 

cotinine) leads to QRS shortening and JT prolongation. Although our analyses suggested a 

role for nicotine in these effects, the design of this study made it impossible to delineate 

between effects from exposure to cigarette smoke and exposure to nicotine. In our follow-

up acute exposure study, we found evidence that nicotine mediates increased sympathetic 

activity (as measured by decreased HRV), shortened JTc, and increased P amplitude. 

Taking these findings into consideration—and extending to the possible nicotine-related 

effects from ENDS on cardiac electrophysiology—we suggest that e-cigarettes both 

acutely and chronically increase sympathetic activity, as noted in recent observations [321, 

361]. Other studies have also found that conventional smoking chronically increases 

sympathetic modulation of the heart [72, 241]. Moreover, our results suggest that nicotine 

in e-cigarettes may both acutely and chronically shorten ventricular repolarization while 

also acutely increasing atrial pressures (indicated by P amplitude).  Notably, a few studies 

also observed an increased P amplitude among smokers at baseline [212, 213, 362, 363], 

similar to our findings in which cotinine (proxy for tobacco use) was associated with P 

amplitude (particularly in deep terminal negativity of the P wave in V1 [DTNPV1]) in the 

chronic state [364]. However, the mechanisms for abnormal P wave indices during acute 

and chronic exposure may differ while also carrying different prognostic value. As acute 

increases in P amplitude may reflect increased cardiac filling pressure, chronic elevations 

in P amplitude may reflect atrial hypertrophy/distention.  

Such baseline pathophysiological changes in human cardiac electrophysiology 

have clinically important implications. Increases in sympathetic activity [303], atrial 

cardiopathy [365, 366], and shortened rate of ventricular repolarization [367-369] have 
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been associated with increased risk for adverse outcomes, such as all-cause mortality, 

arrhythmia, and stroke. In this regard, a strategy formed by the FDA to limit nicotine levels 

in ENDS might help reduce some of the long-term harmful cardiovascular effects. Our 

study featuring oral nicotine spray indicated that the nicotine levels should be lower than 

those currently found in newer generation e-cigarettes (e.g., JUUL and other pod devices). 

However, more studies are required to establish whether the nicotine levels are directly 

related to increased risk for short- or long-term adverse cardiovascular events.  

Conclusion 

The acute and chronic proarrhythmic effects of smoking and their underlying 

mechanisms are currently unknown. To address this gap in the knowledge, we assessed the 

effects of chronic cigarette exposure on ECG, using serum cotinine (as a sensitive and 

specific marker of tobacco use) from the NHANES database, and urinary cotinine from 

cardiovascular patients from an outpatient clinic. From the NHANES database, higher 

serum cotinine levels were associated with considerably shortened PR intervals, PR 

segments, and QRS duration, and considerably prolonged JT intervals. We also found a 

negative linear relationship between cotinine and QTc, as well as between cotinine and PR 

segment. A similar effect on atrial electrocardiographic indices (shortened PR interval and 

PR segment) was also observed among the CVD patients. Interestingly, our statistical 

mediation analyses indicated that dopamine fully mediated the association between 

cotinine and the shortening of both PR intervals and segments. Collectively, the results 

from the chronic exposure studies suggest that habitual smoking accelerates 

atrioventricular conduction (possibly though dopamine) and ventricular depolarization, but 
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appears to exert a more complex effect on repolarization. Overall habitual smoking 

modestly accelerates ventricular repolarization, and simultaneously increases the risk for 

severe slowing of ventricular repolarization in a subset of patients.  

An experimental trial to investigate β-adrenergic receptors’ role in the acute effects 

of smoking versus nicotine spray on ECG was also performed.  Nicotine, both with and 

without a β-blocker, increases the sympathetic nervous activity to a similar extent as 

observed with cigarette smoking in the presence of a β-blocker. Nicotine increases the heart 

rate through receptors independent of the β-adrenergic receptors, suggesting its acute and 

direct action on cardiomyocytes is independent of increased central sympathetic activation. 

Cigarette smoking had a higher effect on heart rate; however, after treatment with a β-

blocker, the heart rate increase was similar to that from nicotine (with or without a β-

blocker). This suggests that the non-nicotine constituents of cigarette smoke that increase 

heart rate act through β-adrenergic receptors. Cigarette smoking and nicotine comparably 

increase P-wave amplitude without affecting P duration (which was also unaffected in 

chronic exposure studies), and β-blockade did not alter this effect. This increase in P 

amplitude may derive from increased peripheral vascular resistance with both exposures, 

which increases cardiac filling pressures and cardiac output. Cigarette smoking, but not 

nicotine, also shortened the PR segment and decreased the height of the ST segment, with 

both being rescued by β-blockade. This suggests that non-nicotine constituents increase 

dromotropy and ischemia through β-adrenergic receptors. Furthermore, the relationship 

between cotinine and the PR segment found in the chronic exposure studies likely derived 

from cotinine reflecting exposure to tobacco smoke, including non-nicotine constituents.  

Indeed, the tar and nicotine levels in cigarettes correspond with one another, just as 
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exposures to each would be expected to correspond. Consistent with our observations of 

the link between chronic smoking and QTc shortening, ventricular repolarization time was 

more acutely shortened with cigarette smoking compared to nicotine, and was abolished 

by the β-blockade. It is plausible that nicotine acutely accelerates repolarization via 

adrenergic-related mechanisms (e.g., β-adrenergic induced phosphorylation of Kv7.1), 

whereas chronic smoking, itself, impedes repolarization via myocardial injury (e.g., 

fibrosis). Alternatively, chronic smoking may impede repolarization by desensitizing 

adrenergic pathways that would otherwise modulate the heart-rate-dependent shortening 

of repolarization with sympathetic activation in healthy individuals. 

The central illustration combines the findings of all three studies to demonstrate the 

role of nicotine and non-nicotine constituents of cigarette smoke, and the pathways 

involved in their effects on cardiac electrophysiology (Figure 4.1). 
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Figure 4.1 Central illustration summarizing the impacts of nicotine and non-nicotine 

constituents of cigarette smoke on cardiac electrophysiology, and the pathways likely 

involved 

Key summary points 

• Of the acute effects of cigarette smoking on ECG, nicotine is partly responsible for

increased sympathetic activity and shortening of ventricular repolarization, but not

for increased dromotropy and ischemia.

• Habitual smoking is associated with increased dromotropy (possibly via

dopamine), faster ventricular depolarization, and inverse J-shaped effects on

ventricular repolarization.
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• Such acute and chronic effects on ECG from cigarette smoking and nicotine may

promote cardiac arrhythmias or reflect a diseased state and an at-risk population.

• Future research is needed to (a) delineate the receptors used by nicotine to cause

sympathetic activation, (b) identify the non-nicotine constituents in cigarette smoke

that transiently increase dromotropy and myocardial ischemia, and (c) elucidate the

mechanisms involved in nicotine and non-nicotine constituents of cigarette-smoke-

induced complex effects on ventricular repolarization (shortening in most patients,

and prolonging in a small subset of patients).
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Supplementary Table 2.1.1 The 5th and 95th percentiles of PR interval, P duration, PR 

segment, corrected QT interval (QTc), QRS durations and uncorrected JT interval 

5th percentile 95th 
percentile 

PR interval (ms) 126 209 

P duration (ms) 92 134 

PR segment (ms) 22 90 

QTc interval (ms) 359 458 

QRS duration (ms) 80 112 

JT interval (ms) 264 361 
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Supplementary Table 2.1.2 Patient characteristics by PR interval short (<5th percentile), 

reference (5-95th percentile) and long (>95th percentile) groups 

 Characteristic 
PR interval 

p-value 
Short Reference Long 

Age (years) 53.3± 1.0 55.3± 0.4 63.4± 1.3 <0.001 

Women  177 (66.9%) 2698 (54.4%) 125 (48.1%) 0.025 

Non-Hispanic White 136 (84.0%) 2557 (81.6%) 167 (83.8%) 0.467 

Smoking status 

0.051 
Never 114 (41.5%) 2273 (42.0%) 128 (46.2%) 

Current 83 (29.6%) 1172 (23.0%) 42 (12.9%) 

Past 72 (29.0%) 1665 (35.0%) 104 (40.9%) 

Diabetes mellitus  21 (7.2%) 568 (7.3%) 33 (7.2%) 0.986 

Hypertension  73 (21.1%) 1714 (31.0%) 129 (42.7%) <0.001 

Dyslipidemia 63 (23.9%) 1234 (27.7%) 77 (30.5%) 0.399 

Obesity  38 (12.1%) 999 (17.7%) 49 (14.3%) 0.110 

COPD 27 (10.4%) 377 (7.8%) 19 (7.9%) 0.590 

Heart rate (beats/minute) 68.9± 0.9 68.1± 0.3 63.4± 1.3 <0.001 

Prior cardiovascular disease 5 (2.5%) 202 (3.0%) 32 (10.6%) <0.001 

Congestive Heart Failure 5 (1.0%) 159 (1.6%) 21 (5.9%) 0.023 

Alcohol drinks per month 

0 151 (48.0%) 2869 (49.1%) 157 (52.8%) 

0.690 
1-4 44 (18.5%) 826 (17.6%) 53 (19.5%) 

5-13 33 (12.0%) 579 (13.8%) 28 (14.7%) 

>13 40 (21.5%) 824 (19.6%) 34 (12.9%) 

b-blockers 7 (2.4%) 358 (7.4%) 42 (15.8%) <0.001 

Calcium channel blockers 15 (4.6%) 369 (6.0%) 52 (18.5%) <0.001 

Antiarrhythmic drugs  2 (1.6%) 45 (0.8%) 4 (1.4%) 0.591 

Cotinine > 15 ng/ml 93 (36.9%) 1422 (27.6%) 65 (19.9%) 0.026 
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Supplementary Table 2.1.3 Patient characteristics by P duration short (<5th percentile), 

reference (5-95th percentile) and long (>95th percentile) groups 

Characteristic 
P duration 

p-value 
Short Reference Long 

Age (years) 52.5±0.9 55.5±0.4 61.8±1.2 <0.001 

Women 187 (67.1%) 2714 (54.5%) 99 (43.0%) <0.001 

Non-Hispanic White 173 (85.9%) 2547 (81.5%) 140 (82.3%) 0.257 

Smoking status 

0.684 
Never 127 (43.2%) 2275 (42.1%) 113 (41.1%) 

Current 67 (22.2%) 1187 (23.2%) 43 (17.9%) 

Past 83 (34.6%) 1663 (34.7%) 95 (41.0%) 

Diabetes mellitus 23 (5.2%) 568 (7.5%) 31 (7.2%) 0.460 

Hypertension 68 (20.7%) 1732 (31.1%) 116 (45.0%) <0.001 

Dyslipidemia 60 (21.6%) 1255 (27.9%) 59 (29.4%) 0.127 

Obesity 38 (11.5%) 995 (17.5%) 53 (20.9%) 0.057 

COPD 22 (6.6%) 384 (8.1%) 17 (5.4%) 0.346 

Heart rate (beats/minute) 66.2±0.6 68.2±0.3 66.1±1.1 0.009 

Prior cardiovascular disease 6 (2.0%) 209 (3.3%) 24 (5.7%) 0.114 

Congestive Heart Failure 3 (0.2%) 162 (1.8%) 20 (3.9%) 0.021 

Alcohol drinks per month 

0 169 (54.3%) 2867 (48.7%) 141 (52.5%) 

0.156 
1-4 49 (21.4%) 838 (17.7%) 36 (12.4%) 

5-13 26 (10.0%) 586 (14.0%) 28 (11.7%) 

>13 33 (14.2%) 820 (19.5%) 45 (23.4%) 

b-blockers 8 (2.6%) 361 (7.5%) 38 (16.2%) <0.001 

Calcium channel blockers 12 (3.6%) 388 (6.4%) 36 (14.8%) <0.001 

Antiarrhythmic drugs 3 (1.5%) 43 (0.8%) 5 (1.9%) 0.445 

Cotinine > 15 ng/ml 79 (28.6%) 1436 (27.9%) 65 (24.2%) 0.718 
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Supplementary Table 2.1.4 Patient characteristics by PR segment short (<5th percentile), 

reference (5-95th percentile) and long (>95th percentile) groups 

Characteristic 
PR segment 

p-value 
Short Reference Long 

Age (years) 55.6±1.0 55.3± 0.4 60.2±1.4 0.003 

Women  143 (60.8%) 2730 (54.7%) 127 (51.2%) 0.365 

Non-Hispanic White 120 (82.2%) 2575 (81.7%) 165 (84.3%) 0.626 

Smoking status 

0.010 
Never 99 (30.9%) 2299 (42.8%) 117 (40.8%) 

Current 94 (35.6%) 1149 (22.5%) 54 (19.1%) 

Past 79 (33.5%) 1664 (34.7%) 98 (40.1%) 

Diabetes mellitus  27 (8.5%) 563 (7.3%) 32 (6.5%) 0.770 

Hypertension  87 (29.2%) 1704 (30.6%) 125 (40.5%) 0.079 

Dyslipidemia 64 (30.3%) 1241 (27.4%) 69 (28.9%) 0.744 

Obesity  49 (12.1%) 989 (17.7%) 48 (14.2%) 0.139 

COPD 19 (8.2%) 384 (7.8%) 20 (9.2%) 0.823 

Heart rate (beats/minute) 70.5± 0.8 68.1± 0.3 63.6± 0.9 <0.001 

Prior cardiovascular disease 6 (1.9%) 209 (3.1%) 24 (7.4%) 0.022 

Congestive Heart Failure 6 (0.9%) 160 (1.7%) 19 (4.2%) 0.050 

Alcohol drinks per month 

0 140 (39.3%) 2883 (49.7%) 154 (48.7%) 

0.690 
1-4 39 (20.3%) 835 (17.6%) 49 (19.4%) 

5-13 38 (15.6%) 574 (13.6%) 28 (13.5%) 

>13 53 (24.7%) 809 (19.2%) 36 (18.4%) 

b-blockers 15 (3.6%) 350 (7.3%) 42 (15.8%) 0.003 

Calcium channel blockers 14 (4.2%) 375 (6.2%) 47 (15.5%) 0.002 

Antiarrhythmic drugs  2 (0.8%) 47 (0.9%) 2 (0.8%) 0.999 

Cotinine > 15 ng/ml 105 (41.2%) 1399 (27.3%) 76 (24.5%) 0.009 
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Supplementary Table 2.1.5 Patient characteristics by corrected QT short (<5th 

percentile), reference (5-95th percentile) and long (>95th percentile) groups 

 Characteristic 
Corrected QT 

p-value 
Short Reference Long 

Age (years) 55.2±1.0 55.4± 0.4 59.5± 1.0 <0.001 

Women  109 (49.9%) 2725 (54.8%) 166 (58.5%) 0.506 

Non-Hispanic White 125 (80.6%) 2578 (81.8%) 157 (83.3%) 0.722 

Smoking status 

0.443 
Never 104 (39.9%) 2273 (42.0%) 138 (46.7%) 

Current 67 (28.0%) 1178 (22.9%) 52 (18.6%) 

Past 91 (32.1%) 1658 (35.1%) 92 (34.7%) 

Diabetes mellitus  45 (11.3%) 549 (7.1%) 28 (9.0%) 0.226 

Hypertension  102 (31.7%) 1687 (30.5%) 127 (39.2%) 0.131 

Dyslipidemia 67 (28.9%) 1244 (27.7%) 63 (23.6%) 0.473 

Obesity  50 (20.1%) 991 (17.3%) 45 (14.0%) 0.443 

COPD 35 (16.0%) 372 (7.5%) 16 (9.5%) 0.080 

Heart rate (beats/minute) 89.2± 1.0 67.9± 0.2 52.9± 0.6 <0.001 

Prior cardiovascular disease 15 (3.1%) 206 (3.2%) 18 (5.6%) 0.236 

Congestive Heart Failure 15 (3.1%) 152 (1.6%) 18 (3.1%) 0.209 

Alcohol drinks per month 

0 164 (60.8%) 2842 (48.7%) 171 (47.6%) 

0.238 
1-4 36 (17.0%) 841 (18.0%) 46 (14.8%) 

5-13 24 (8.3%) 586 (13.6%) 30 (19.1%) 

>13 37 (13.9%) 828 (19.7%) 33 (18.6%) 

b-blockers 5 (2.7%) 341 (7.1%) 61 (19.2%) <0.001 

Calcium channel blockers 21 (7.5%) 371 (6.1%) 44 (13.2%) 0.005 

Antiarrhythmic drugs  3 (1.0%) 43 (0.8%) 5 (1.5%) 0.627 

Cotinine > 15 ng/ml 85 (32.4%) 1415 (27.5%) 80 (28.4%) 0.531 
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Supplementary Table 2.1.6 Patient characteristics by QRS duration short (<5th 

percentile), reference (5-95th percentile) and long (>95th percentile) groups 

 Characteristic 
QRS duration 

p-value 
Short Reference Long 

Age (years) 56.8± 0.9 55.6± 0.4 53.6± 0.8 0.003 

Women  204 (80.3%) 2726 (55.1%) 70 (22.7%) <0.001 

Non-Hispanic White 144 (78.1%) 2599 (81.8%) 117 (86.1%) 0.223 

Smoking status 

0.197 
Never 128 (44.5%) 2285 (42.1%) 102 (41.3%) 

Current 65 (28.4%) 1163 (22.5%) 69 (25.3%) 

Past 72 (27.0%) 1680 (35.4%) 89 (33.4%) 

Diabetes mellitus  46 (11.5%) 548 (7.1%) 28 (7.3%) 0.205 

Hypertension  91 (34.1%) 1730 (30.9%) 95 (29.9%) 0.704 

Dyslipidemia 72 (30.7%) 1248 (27.5%) 54 (26.4%) 0.684 

Obesity  44 (12.2%) 987 (17.6%) 55 (15.9%) 0.188 

COPD 29 (10.6%) 372 (7.5%) 22 (13.6%) 0.293 

Heart rate (beats/minute) 69.7± 0.9 68.0± 0.2 65.3± 1.1 0.003 

Prior cardiovascular disease 8 (2.1%) 220 (3.3%) 11 (3.7%) 0.566 

Congestive Heart Failure 14 (1.3%) 161 (1.8%) 10 (2.1%) 0.618 

Alcohol drinks per month 

0 176 (61.2%) 2876 (48.9%) 125 (41.2%) 

0.032 
1-4 37 (14.6%) 841 (17.9%) 45 (18.3%) 

5-13 25 (10.2%) 583 (14.0%) 32 (11.0%) 

>13 27 (14.0%) 814 (19.1%) 57 (29.5%) 

b-blockers 12 (4.6%) 376 (7.6%) 19 (8.9%) 0.301 

Calcium channel blockers 20 (5.6%) 396 (6.5%) 20 (7.9%) 0.584 

Antiarrhythmic drugs  1 (0.1%) 45 (0.8%) 5 (2.2%) 0.137 

Cotinine > 15 ng/ml 79 (31.2%) 1416 (27.3%) 85 (33.0%) 0.213 
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Supplementary Table 2.1.7 Patient characteristics by (uncorrected) JT interval short 

(<5th percentile), reference (5-95th percentile) and long (>95th percentile) groups 

 Characteristic 
JT interval 

p-value 
Short Reference Long 

Age (years) 54.5± 1.0 55.3± 0.4 62.0± 0.6 <0.001 

Women  90 (34.5%) 2745 (55.5%) 165 (65.2%) <0.001 

Non-Hispanic White 145 (82.0%) 2554 (81.7%) 161 (83.5%) 0.777 

Smoking status 

0.059 
Never 106 (35.4%) 2267 (42.3%) 142 (46.5%) 

Current 91 (32.4%) 1159 (22.5%) 47 (19.2%) 

Past 107 (32.2%) 1653 (35.1%) 81 (34.3%) 

Diabetes mellitus  52 (11.6%) 540 (6.9%) 30 (10.3%) 0.166 

Hypertension  118 (34.2%) 1679 (30.3%) 119 (40.5%) 0.049 

Dyslipidemia 74 (27.4%) 1242 (27.7%) 58 (26.0%) 0.913 

Obesity  64 (22.6%) 980 (17.1%) 42 (14.6%) 0.246 

COPD 32 (12.2%) 379 (7.7%) 12 (6.2%) 0.118 

Heart rate (beats/minute) 88.0± 0.9 67.5± 0.2 52.5± 0.6 <0.001 

Prior cardiovascular disease 16 (2.8%) 206 (3.1%) 17 (6.6%) 0.107 

Congestive Heart Failure 17 (2.1%) 151 (1.6%) 17 (3.4%) 0.230 

Alcohol drinks per month 

0 174 (57.1%) 2841 (48.6%) 162 (51.8%) 

0.440 
1-4 43 (16.3%) 832 (17.8%) 48 (18.8%) 

5-13 37 (9.9%) 582 (14.1%) 21 (10.3%) 

>13 49 (16.7%) 812 (19.5%) 37 (19.1%) 

Β blockers 7 (2.6%) 344 (7.1%) 56 (21.3%) <0.001 

Calcium channel blockers 20 (5.4%) 373 (6.2%) 43 (14.1%) 0.003 

Antiarrhythmic drugs  4 (1.0%) 44 (0.9%) 3 (0.6%) 0.883 

Cotinine > 15 ng/ml 110 (37.3%) 1391 (27.1%) 79 (31.0%) 0.039 
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Supplementary Table 2.1.8 Association between serum cotinine levels (dichotomous) 

and abnormal PR segment, QRS duration and JT interval vs the reference group among 

subgroups by age and sex 

 Subgroups 

PR segment 
<5th percentile vs reference 

QRS duration 
<5th percentile vs reference 

JT interval 
>95th percentile vs 

reference 
Odds ratio 
(95% CI) 

Interaction 
p-value 

Odds ratio 
(95% CI) 

Interaction 
p-value 

Odds ratio 
(95% CI) 

Interaction 
p-value 

Age < 59 
years 

1.92 
(1.08, 3.42) 

0.5661 

1.82 
(1.05, 3.15) 

0.3070 

1.69 
(0.80, 3.58) 

0.4007 
≥ 59 
years 

2.17 
(1.14, 4.13) 

1.22 
(0.76, 1.95) 

1.18 
(0.64, 2.19) 

Sex 
Male 2.26 

(1.13, 4.50) 
0.7550 

0.76 
(0.29, 1.96) 

0.0589 

1.49 
(0.72, 3.11) 

0.5171 
Female 1.82 

(1.03, 3.20) 
2.03 

(1.37, 3.00) 
1.74 

(0.92, 3.31) 
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Supplementary Figure 2.2.1 Flowchart of selection of participants for study analysis 

164 ECGs available in 
Louisville Healthy 

Heart Study

153
ECGs read

136 
patients included in study

Excluded=16;
Urinary nicotine and catecholamines 

levels not available

Excluded=12
4 Atrial fibrillation, 3 
Atrial flutter, 4 Paced
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Appendix A 

ECG Measurement protocol for LHHS database 

Exclude ECGs with Atrial fibrillation, Atrial flutter, paced rhythm. 

The caliper measurements will be performed using electronic calipers and recorded up to 

2 decimal points. Only waveforms in sinus rhythm will be included and measurements will 

be performed only on segments those are completely captured in that lead (ie complete 

QRS can be visualized in V6 and not QRS starting from V3 and transitioning into V6). 

Each segment will be measured and recorded in three consecutive waveforms. 

Incompletely recorded beats, premature atrial and ventricular beats will be excluded and 

the next complete sinus waveform in sequential order will be measured.  

P wave duration 

P wave duration will be measured in lead II. Measurement will be conducted from the onset 

of the P wave, defined as the initial deflection from the isoelectric baseline of the TP 

segment, to the offset of the P wave, defined as the return of the P wave to the isoelectric 

baseline of the PR interval.  
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P wave amplitude 

P wave amplitude will be measured in lead II. Measurement from the onset of the P wave 

to its highest amplitude. Use previous T-P segment as baseline (end of T-wave to beginning 

of P-wave). 
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PR wave duration 

PR duration will be measured in lead II. The PR interval was measured from the onset of 

the P wave to the onset of the QRS complex, defined as the initial deflection from the 

baseline of the PR interval.  
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QT interval 

The QT interval was measured in lead V5, and determined as the onset of the QRS complex 

to the end of the T wave; defined as the return of the T wave to the isoelectric baseline of 

the TP segment.  
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QRS duration 

QRS duration was measured in lead V6, and determined as the onset of the QRS complex 

to the return of the complex to the isoelectric baseline of the ST segment. If in doubt 

regarding the isoelectric segment, use previous T-P segment as baseline (end of T-wave to 

beginning of P-wave).  
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In cases when it is hard to identify the end of QRS because ST segment is sloped and/or 

QRS is wide and complex then tangent line method as below can be used: when the tracing 

becomes more horizontal than vertical. 

When in doubt or when two J points are visualized then the earlier J point should be used 

to measure QRS duration. 
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T wave amplitude 

T wave amplitude will be measured in lead V5. Measurement from the onset of the T wave 

to its highest amplitude. In case of predominant negative T wave where the highest 

deflection is below the baseline then add a comment on the side and measure the amplitude 

from baseline to most lowest amplitude. 
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T peak – T end 

T wave amplitude will be measured in lead V5. Measurement will be conducted peak of 

T-wave to the offset of the T wave, defined as the return of the T wave to the isoelectric 

baseline (TP segment as described above). 
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In cases when it is hard to identify the end of T then tangent line method as below can be 

used.  

R-R intervals 

Use the lead which has the longest continuous ECG recording, which is usually at the 

bottom of the ECG sheet. Use preferably Lead II if available otherwise use V1. Measure 

the duration between all R-R intervals. If R is not present then use any identical points on 

consecutive EKG waveforms such as the Q-Q or P-P duration. Do not measure R-R 

between sinus and a premature atrial or ventricular beat (defined as beat occurring 20% 

earlier to previous interval) and measure the subsequent waveforms. 
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References for ECG Measurement protocol 

Prineas RJ, Crow RS Zhang ZM. The Minnesota Code Manual of Electrocardiographic 

Findings. 2nd Edition, London: Springer, 2010. 

Jacob Melgaard et al. Automatic J-point Location in Subjects with Electrocardiographic 

Early Repolarization Computing in Cardiology 2014; 41:585-588 

Considerations about the polemic J point location 

http://bscw.rediris.es/pub/bscw.cgi/d5046031/CONSIDERACIONES%20ACERCA%20

DE%20LA%20LOCALIZACI%C3%93N%20POL%C3%89MICA%20DEL%20

PUNTO%20J.pdf 

Burke GM et al. J Electrocardiol. 2014 May-Jun;47(3):288-93. doi: 

10.1016/j.jelectrocard.2014.01.004. Epub 2014 Jan 6. Assessment of 

reproducibility--automated and digital caliper ECG measurement in the 

Framingham Heart Study.  

Tarek MohamedAbdelrahman The Egyptian Journal of Critical Care Medicine Volume 2, 

Issue 1, April 2014, Pages 19-27. Prognostic value of T peak-to-end interval for 

risk stratification after acute myocardial infarction 

Erikssen G et al. Ann Noninvasive Electrocardiol. 2012 Apr;17(2):85-94. doi: 

10.1111/j.1542-474X.2012.00493.x. The terminal part of the QT interval (T peak 

to T end): a predictor of mortality after acute myocardial infarction. 
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Supplementary Table 2.2.1 Baseline characteristics by high and low PR interval, P wave duration and PR segment 

PR interval P-wave duration PR segment 
≤ 163.32 

ms 
> 163.33+ 

ms p value ≤ 104.73
ms 

> 104.74 
ms p value ≤ 55.20

ms 
> 55.21 

ms p value 

Age (years)* 49, 11 55, 8 0.01 51, 11 54, 8 0.11 51, 10 53, 9 0.18 
BMI (kg/m2)* 31, 7 34, 9 0.07 31, 7 35, 8 0.01 32, 7 34, 9 0.10 
SBP (mm Hg)* 133, 21 134, 25 0.95 129, 21 138, 25 0.07 135, 22 132, 24 0.13 
DBP (mm Hg)* 80, 10 81, 15 0.52 78, 12 84, 14 0.05 82, 11 79, 15 0.16 
Heart rate (beats/min)* 75, 17 71, 13 0.27 73, 16 73, 13 0.53 75, 16 72, 14 0.28 
Male gender 27, 42% 45, 63% 0.01 31, 44% 41, 64% 0.02 33, 52% 39, 55% 0.70 
Caucasian 37, 58% 40, 56% 0.86 44, 62% 33, 52% 0.22 39, 61% 38, 54% 0.39 
Hypertension 54, 84% 64, 90% 0.31 57, 80% 61, 95% 0.01 55, 86% 63, 89% 0.63 
Prior MI 26, 41% 36, 51% 0.24 31, 44% 31, 48% 0.58 32, 50% 30, 42% 0.37 
Diabetes 18, 28% 25, 35% 0.38 20, 28% 23, 36% 0.33 17, 27% 26, 37% 0.21 
Stroke 13, 20% 10, 14% 0.34 15, 21% 8, 13% 0.18 10, 16% 13, 18% 0.68 
Arrhythmia 22, 34% 23, 32% 0.81 25, 35% 20, 31% 0.63 20, 31% 25, 35% 0.63 
Β blocker 43, 67% 55, 78% 0.18 51, 72% 47, 73% 0.83 42, 66% 56, 79% 0.09 
CCB 13, 20% 19, 27% 0.38 10, 14% 22, 34% 0.01 13, 20% 19, 27% 0.38 
ACEI or ARB 38, 59% 51, 72% 0.13 39, 55% 50, 78% 0.01 44, 69% 45, 63% 0.51 
Statin 41, 64% 43, 61% 0.68 45, 63% 39, 61% 0.77 41, 64% 43, 61% 0.68 
Aspirin 35, 55% 46, 65% 0.23 43, 61% 38, 59% 0.89 34, 53% 47, 66% 0.12 
Diuretics 24, 38% 34, 48% 0.22 26, 37% 32, 50% 0.12 21, 33% 37, 52% 0.02 

Abbreviations: BMI - Body mass index, SBP- Systolic Blood Pressure, DBP – Diastolic Blood Pressure, MI – Myocardial Infarction, CCB – Calcium Channel 
Blocker, ACE - Angiotensin-Converting Enzyme Inhibitor, ARB - Angiotensin II Receptor Blocker.   
For each variable counts and column percentage has been reported except for where indicated * where the mean and standard deviation (SD) are reported 
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Supplementary Table 2.2.2 Distribution of urinary cotinine levels by self-reported active smoking status among all participants 

Smoking status 
Cotinine 

≤ 50 ng/ml 
(N=73, 54%) 

> 50 ng/ml 
(N=63, 46%) 

Current smoker (53, 39%) 2, 3% 51, 81% 

Former smoker (47, 35%) 38, 52% 9, 14% 

Never smoker (36, 26%) 33, 45 % 3, 5% 
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Supplementary Table 2.2.3 Comparison among participants stratified by self-reported smoking status or by cotinine level of (A) 

urinary cotinine and catecholamines (median [interquartile range], creatinine-normalized), and (B) high and low PR interval, P wave 

duration and PR segment 

(A) 

Cotinine 
(ng/g) 

Dopamine 
(μg/g) 

Epinephrine 
(μg/g) 

Norepinephrine 
(μg/g) 

p 
value 

p 
value 

p 
value 

p 
value 

Smoking 
status 

Active 
smoker 

827.1 
[527.3 - 1445.3] <0.001 176.0 

[146.5 - 225.8] 0.24 5.7 
[3.3 - 10.8] 0.31 42.5 

[30.7 - 60.3] 0.07

Former-
smoker* 

3.7 
[1.3 - 18.9] - 167.1 

[135.6 - 204.9] - 4.2 
[2.6 - 8.5] - 36.2 

[26.4 - 51.4] - 

Never 
smoker 

1.6 
[0.9 - 4.0] <0.001 139.7 

[114.3 - 169.7] 0.001 3.7 
[1.5 - 6.5] 0.03 32.4 

[19.0 - 49.2] 0.02

Cotinine 
≤ 50 ng/ml 1.8 

[1.0 - 4.2] <0.001 

160.0 
[ 112.4 - 189.1] 0.003

4.1 
[2.1 - 6.9] 0.08 

33.4 
[22.7 - 50.6] 0.02

> 50 ng/ml 827.1 
[522.8 - 1596.0] 

175.8 
[142.0 - 227.9] 

5.9 
[3.1 - 9.2] 

42.5 
[30.4 - 56.4] 
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(B) 

PR interval P wave duration PR segment 

≤ 163.32 ms > 163.33 ms p 
value ≤ 104.73 ms 104.74 ms p 

value ≤ 55.20 ms 55.21 ms p 
value 

Smoking 
status 

Current 
smoker 25, 39% 28, 39% 

0.76 

34, 48% 19, 30% 

0.08 

26, 40% 27, 38% 

0.58 Former 
smoker 24, 38% 23, 32% 20, 28% 27, 42% 24, 38% 23, 32% 

Never 
smoker 15, 23% 20, 28% 17, 24% 18, 28% 14, 22% 21, 30% 

Cotinine 
≤ 50 ng/ml 34, 53% 38, 54% 

0.96 
34, 48% 38, 59% 

0.18 
32, 50% 40, 56% 

0.49 
> 50 ng/ml 30, 47% 33, 46% 37, 52% 26, 41% 32, 50% 31, 44% 
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Supplementary Table 2.2.4 Association between creatinine-normalized log transformed cotinine and parent catecholamines, their 

intermediate and final metabolites, and their metabolism, denoted by the ratios of intermediate: parent and final: intermediate 

metabolites 

Parent Intermediate Intermediate / Parent Final Final / Intermediate 

b p value b p value b p value b p value b p value 

Cotinine 

DA 0.25 <0.01 0.36 <0.01 0.19 0.03 -0.01 0.95 -0.37 <0.01 

NE 0.22 0.01 019 0.03 -0.06 0.47 -0.14 0.11 -0.28 <0.01 

EP 0.11 0.19 0.37 <0.01 0.10 0.27 -0.14 0.11 -0.37 <0.01 

   Parent Intermediate Final 

DA: Dopamine 3-methoxytyramine Homovanillic acid 

NE: Norepinephrine Normetanephrine Vanillylmandelic acid 

EP: Epinephrine Metanephrine  Vanillylmandelic acid 
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Supplementary Table 2.2.5 Associations of QRS duration, QT interval and corrected QT with urinary cotinine in unadjusted and 

adjusted linear regressions 

Urinary cotinine was normalized by urine creatinine and log-transformed 

QRS QT Corrected QT 

b p value b p value b p value 

Unadjusted Cotinine 0.32 0.80 4.71 0.11 3.48 0.14 

*Adjusted Cotinine -0.34 0.78 3.33 0.78 0.11 0.13 

* models adjusted for diastolic blood pressure and prior myocardial infarction (QRS); age, heart rate, systolic blood pressure, and calcium channel blocker (QT);
age (QTc) 
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Supplementary Table 2.2.6 Association between catecholamine and atrial or atrioventricular conduction determined by unadjusted 

and adjusted linear regressions 

Catecholamines were creatinine-normalized and log-transformed 

PR interval P wave PR segment 

b p value b p value b p value 

Unadjusted 

Dopamine -17.13 <0.01 -8.45 <0.01 -8.68 0.04 

Epinephrine -5.47 0.02 -2.8 0.04 -2.66 0.16 

Norepinephrine -7.31 0.11 -4.79 0.08 -2.52 0.49 

*Adjusted

Dopamine -12.3 0.02 -3.56 0.28 -8.51 0.04 

Epinephrine -6.62 <0.01 -2.73 0.06 -2.53 0.19 

Norepinephrine -10.16 0.02 -3.39 0.18 -2.69 0.46 

* models adjust for age and gender (PR interval); body mass index, gender, hypertension, calcium channel blocker, ACE-inhibitor or angiotensin II receptor
blocker (P duration); and diuretics (PR segment) 
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Supplementary Table 3.1 Baseline characteristics 

Smoker ID Age Gender Race Body Mass 
Index 

b-Blocker 
protocol 

Sham- 
protocol 

Pack-
Years Cigarette brand Nicotine 

content (mg) 
1 26 Male White 31 Yes Yes 9 L&M 0.8 
2 28 Male Black 29 Yes - 36 L&M 0.9 
3 23 Female Black 29 Yes Yes 5 L&M 0.9 
4 32 Male Black 23 - Yes 29 Newport 0.8 
5 31 Male White 37 - - 15 Marlboro 1.1 
6 39 Female White 25 - - 22 Pall Mall 0.9 
7 23 Male White 24 Yes Yes 7 L&M 0.9 
8 22 Male Black 22 - - 6 L&M  0.8 
9 25 Male White 24 - - 7 Camel 0.8 
10 25 Female White 30 - - 11 USA Gold Reds 0.8 
11 52 Male White 25 Yes - 22 High Card  0.8 
12 42 Female White 29 Yes Yes 60 High Card 0.8 
13 53 Female White 34 Yes - 42 Pall Mall 1.1 
14 43 Male White 30 Yes - 18 American Spirit 0.6 
15 49 Female Other 21 Yes - 35 High Card 0.8 
16 62 Male Black 28 Yes Yes 20 Newport  0.8 
17 61 Male White 21 - Yes 48 Kool  0.6 
18 39 Male White 26 - Yes 25 Marlboro 1.0 
19 43 Female White 32 - Yes 29 Camel 1.0 
20 28 Male Other 34 - Yes 14 Pall Mall 0.9 
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Supplementary Table 3.2 Correlation between Area under the Curve of root mean squared of successive differences (RMSSD) and 

rest of ECG waveform parameters 

Cigarette-Days and 
Non-smokers 

N=29 

Cigarette-Days,  
Nicotine Days  

and Non-smokers 
N=49 

Heart Rate -0.459** -0.436** 

ST height 0.430* 0.225 

PR interval -0.004 0.184 

PR segment 0.164 0.026 

P duration -0.109 0.190 

P amplitude 0.076 0.174 

QTc interval 0.192 -0.002 

QRS duration -0.384 -0.217 

Q amplitude 0.462 0.213 
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A)
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(B) 

Supplementary Figure 3.1 A) Flow chart to show the study design and enrollment B) Schematic Figure to illustrate the study visit 

procedures on different days 
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Supplementary Figure 3.2 ECG morphological variables measured from Lead II 
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«: <0.05 vs Sham
#: <0.05 vs Nicotine
β: <0.05 vs non-Beta-blocker 
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«: <0.05 vs Sham
#: <0.05 vs Nicotine
β: <0.05 vs non-Beta-blocker 

Supplementary Figure 3.3 The Area Under the Curve for the baseline ECG parameters 

for each visit day among smokers 
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Supplementary Figure 3.4 The raw values of several ECG parameters in pre-post and during exposure days among smokers 
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Δ Δ%

Supplementary Figure 3.5 The raw (Δ) and relative (Δ%) changes with standard errors of nicotine, Cotinine and 3-hyroycotinine (3-

OH) levels from baseline per study visit 

Difference between pre and post exposure:

Nicotine 
Cotinine 
3HC (3-hyoxycotinine) 

 Cig  NicS  BB-Cig  BB-NicS     Non-Smoker 
 Cig  NicS        BB-Cig       BB-NicS     Non-Smoker 
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Supplementary Figure 3.6 The relationship between Area Under the Curves (AUC) of ECG parameters (Heart Rate, PR segment, ST 

height and root mean squared of successive differences (RMSSD)), with changes in Nicotine and Baseline Cotinine levels 

X axis - Δ Nicotine  (ng/ml) 
Y axis – AUC of Δ ECG parameter 
Z axis – Relative size of bubble indicates baseline cotinine level 
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(A) 

Supplementary Figure 3.7 The changes in Blood Pressure post cigarette and Nicotine 

Spray use (A) and their correlation with change in nicotine levels (B) 

There is no significant difference in pre-exposure and post exposure Blood pressure 

between Cig and NicS days (p>0.05).  

(B) 

20 smokers (Cig-day 
and NicS-day) and 

9 non-smokers 

β-Blocker Cigarette and 
β-Blocker Nicotine days 

N=20 

Systolic Blood Pressure 0.438 
P = 0.001 

0.180 
P = 0.447 

Diastolic Blood Pressure 0.374 
P =0.008 

-0.160 
P =0.500 

«: <0.05 vs Pre-exposure
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Appendix B 

Visit:  Day 1 □ or Day 2 □

Subject ID:______________    DOB: ___________ Outside Temp:_______ Humidity: ________ 
Date:__ __/__ __/ __ __  Time of arrival: _____:_____  
Consent / abstained from food / beverages (Except water) for 8 hours and from nicotine/Cig for 8 
hours? Y/N 
Date and time for last Cigarette/E-cig or other nicotine product use: Date:__ __/__ __ / __ __ 
Time:_____:_____  Height _____________Weight_____________  

Record START time for each event 

Rest 5 mins 
(consent) 

BP and HR 
(sitting) 

Rest 5 mins 
(reclining) 

ECG 
12 sec and 
5 mins 

IV blood draw Walk outside 
and rest 5 
mins 
(sitting) 
Start ECG 
after rest 

Smoke/ 
Nicotine/ Straw 
outside 
(sitting) 

Record 20 
mins ECG 
outside 
including the 
exposure time 
(sitting) 

Walk 
inside 

1. 
Time:___:___ 

SBP______ 
DBP______ 
HR______ 

2. 
Time:___:___ 

3. 
Time:___:___ 

Plasma 
C:___:___ 
S:___:___ 

Serum 
C:___:___ 
S:___:___ 

4. 
Time:___:___ 

5. 
Start 
Time:___:___ 

Stop 
Time:___:___ 

□Cigarette
□Nicotine
□Straw

6. 
Time:___:___ 

7. 
Time:__
_:___ 

Rest 5 mins 
(reclining) 

ECG 
12 sec and 
5 mins 

Rest 5 mins 
(questionnaire) 

BP and HR 
(sitting) 

IV blood draw Time of 
departure 

2. 
Time:___:___ 

2. 
Time:___:___ 

SBP______ 
DBP______ 
HR______ 

3. 
Time:___:___ 

Plasma 
C:___:___ 
S:___:___ 

Serum 
C:___:___ 
S:___:___ 

7. 
Time:___:___ 

Recorded by:______________________________________________ Date:__ __/__ __/ __ __ 
PI Signature:_______________________________________________ Date:__ __/__ __/ __ __ 
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Visit:  Day 3 □ or Day 4 □
Subject ID:______________    DOB: ___________  Outside Temp:_______ Humidity: 
________ 
Date:__ __/__ __/ __ __  Time of arrival: _____:_____   
Consent / abstained from food / beverages (Except water) for 8 hours and from nicotine/Cig for 8 
hours? Y/N 
Date and time for last Cigarette/E-cig or other nicotine product use: Date:__ __/__ __ / __ __ 
Time:_____:_____  Height _____________Weight_____________   
100 mg propranolol ______:_______ 

BP and HR every 15 mins for 2 hours 

Rest 5 mins 
(consent) 

BP and HR 
(sitting) 

Rest 5 mins 
(reclining) 

ECG 
12 sec and 
5 mins 

IV blood draw Walk outside 
and rest 5 
mins 
(sitting) 
Start ECG 
after rest 

Smoke/ 
Nicotine/ Straw 
outside 
(sitting) 

Record 20 
mins ECG 
outside 
including the 
exposure time 
(sitting) 

Walk 
inside 

1. 
Time:___:___ 

SBP______ 
DBP______ 
HR______ 

2. 
Time:___:___ 

3. 
Time:___:___ 

Plasma 
C:___:___ 
S:___:___ 

Serum 
C:___:___ 
S:___:___ 

4. 
Time:___:___ 

5. 
Start 
Time:___:___ 

Stop 
Time:___:___ 

□Cigarette
□Nicotine
□Straw

6. 
Time:___:___ 

7. 
Time:__
_:___ 

Rest 5 mins 
(reclining) 

ECG 
12 sec and 
5 mins 

Rest 5 mins 
(questionnaire) 

BP and HR 
(sitting) 

IV blood draw Time of 
departure 

2. 
Time:___:___ 

2. 
Time:___:___ 
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3. 
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7. 
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PI Signature:________________________________________________Date:__ __/__ __/ __ __ 
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Appendix C 

Protocol on how to use LabChart for ECG measurements 

1. Open file

2. Uncheck the “Times in first Column”

3. Set the default sampling rate to 500 Hz

4. Click OK

5. Autoscale all channels

6. Analyze the entire ECG and search and record any arrhythmia, blocks, ectopic beats

(PACs, PVCs) Quantify ectopic beats and time relative to exposure. Confirm QRS

complex is within 80 ms.

7. Click ECG settings
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8. Click ECG Beat Classifier View

Select 
Channel 

Change to 
time and 

select 60 s 

Select 
Framingham 

Other 
settings 
kept as 
default 
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Exclude the outlier beats by mapping the case-specific distribution of activity over the 

isoelectric noise (in millivolts) and the distribution of the form factor over the RR interval 

(in seconds). 

Click on the marked point and view the beat to decide whether to exclude or not. If 

excluded then go to the next outlier closer to the data and decide about its inclusion. Keep 

repeating it until you find a beat which is normal and should be included. Perform this at 

each four quadrants and using both; Form Factor and Activity.  

9. Scroll the entire ECG recording and ensure that all selected beats should be included

in the analysis

10. Click ECG Table View
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Appendix D 

Nicotine and metabolites determination in human plasma 

2.1. Chemicals and reagents 

(−)-Nicotine (NIC), (-)-Cotinine (COT), and LC-MS Ultra grade ammonium formate were 

purchased from Sigma-Aldrich (St. Louis, MO). Trans-3'-Hydroxy Cotinine (3HC), and 

trans-3'-Hydroxy Cotinine-d3 (3HC-d3) were purchased from Toronto Research Chemicals, 

(Toronto, Canada). (±)-Nicotine-d3 (NIC-d3) and (±)-Cotinine-d3 (COT-d3), were 

purchased from CDN Isotopes (Pointe-Claire, Quebec, Canada). UHPLC-MS grade water, 

UHPLC-MS grade acetonitrile, and LC-MS grade formic acid were purchased from 

Thermo Fisher Scientific Inc. (Waltham MA). 

2.2. UPLC-MS/MS analysis 

NIC, COT, and 3HC in human plasma samples were measured by UPLC-MS/MS using a 

Xevo TQ-S micro quadrupole mass spectrometer with an ESI ionization source, interfaced 

with Waters Acquity Class-H UPLC equipped with a quaternary pump system (Waters, 

MA). 

After the sample was thawed on ice, 20 μl of plasma was mixed with 480 μl of 75% 

acetonitrile with isotopic labeled internal standard (COT-d3, NIC-d3, and 3HC-d3) in a 1.7 

ml microcentrifuge tube. After incubation on ice for 30 min, the mixture was centrifuged 

at 4°C for 30 min, and 2 μl of the supernatant was applied on the UPLC-MS/MS instrument. 

The separation was performed on an Acquity UPLC BEH HILIC (50 mm × 2.1 mm, 1.7 

μm) column (Waters, MA) with a binary gradient comprised of 95% water 5% ACN 10mM 

ammonium formate pH 3 (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) at 

a flow rate 0.4 ml/min. The gradient started at 96.5% for 1.2 min, ramped down to 30% 
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solvent B over a 3 min period. Then the gradient ramped down to 0% B in 0.1 min, held at 

0% B for 0.3 min, return to 96.5% B in 0.1 min, and held for 5.3 min until next injection. 

Chromatography was performed at 40 °C. The total chromatographic run time was 10 min. 

The mass spectrometry detector worked in positive ion mode. Optimized cone voltage and 

collision energy were used for each of the individual analytes. For each analyte, three 

multiple reaction monitoring (MRM) transitions were set up: one for quantification, one 

for confirmation, and one for labeled internal standard. Transitions for NIC are 163 > 130 

for quantification, 163 > 117 for confirmation, and 166 > 130 for internal standard (NIC-

d3). Transitions for COT are 177 > 80 for quantification, 177 > 98 for confirmation, and 

180 > 80 for internal standard (COT-d3). Transitions for 3HC are 193 > 80 for 

quantification, 193 > 134 for confirmation, and 196 > 80 for internal standard (3HC-d3). 

These MRMs were scheduled around the retention time of the analytes. No less than 15 

data points were collected for each peak. 

TargetLynx quantification application manager software (Waters, MA) was used for peak 

integration, calibration, and quantification. Analytes in plasma samples were quantified 

using peak area ratio based on a 7 point-standard curves which were run before and after 

the plasma samples. 
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