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ABSTRACT 

 

THE IDENTIFICATION OF LONG NON-CODING RNA ZFAS1 THROUGH AN 

EXPLORATORY RNA-SEQUENCING ANALYSIS AND ITS ASSOCIATION WITH 

EPITHELIAL-TO-MESENCHYMAL TRANSITION IN COLON 

ADENOCARCINOMA 

Stephen J. O’Brien 

November 7th 2019 

Colorectal adenocarcinoma is the fourth most common cancer diagnosed worldwide and 

is a significant cause of morbidity and mortality. This dissertation performed an 

exploratory RNA-sequencing analysis comparing gene expression between colon 

adenocarcinoma tissue and paired normal colon epithelium. After identification of a 

number of lncRNAs that were increased in expression in colon adenocarcinoma 

compared to normal colon epithelium, we aimed to validate the expression and 

investigate their function in vitro. Specifically, we focused on the lncRNA ZFAS1 and its 

association with epithelial-to-mesenchymal transition. 

These studies found the following: 

1. Seven candidate lncRNAs were identified from the exploratory RNA-sequencing 

analysis to be significantly increased in expression in colon adenocarcinoma, three of 
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which ZFAS1, GAS5, and PVT1 were found to be significantly increased in colon 

adenocarcinoma compared to paired normal colon epithelium as examined by laser 

capture microdissection. 

2. Both ZFAS1 and GAS5 are significantly increased in cytoplasm of cell lines compared 

to the nucleus, whereas PVT1 was more represented in the nucleus. As such there was 

significant knockdown of both ZFAS1 and GAS5 following transfection with siRNA. 

3. Knockdown of ZFAS1 leads to decreased proliferation and migration in colon 

adenocarcinoma cell lines. In contrast, knockdown of GAS5 did not lead to a change in 

proliferation. We focused our subsequent investigation on ZFAS1. 

4. ZFAS1 has a reciprocal relationship with miR-200b and miR-200c expression in vitro 

but not with three of the other experimentally verified miRNAs that bind ZFAS1. We 

also validated the functional effect of miR-200b and miR-200c mimics on decreasing cell 

migration. 

5. ZFAS1 knockdown is associated with the functional changes on cellular phenotype 

through decreasing ZEB1 expression through miR-200 signaling, causing a subsequent 

increase in the expression of the epithelial marker, E-cadherin, and a decrease in the 

expression of the mesenchymal marker, vimentin. 

These findings demonstrate an association between ZFAS1 and miR-200/ZEB1/E-

cadherin, vimentin signaling in EMT signaling in colon adenocarcinoma. In contrast to 

typical EMT signaling, ZFAS1 knockdown also leads to decreased cell proliferation 

suggesting its potential value as a therapeutic agent. 
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CHAPTER I 

 

INTRODUCTION- COLON AND RECTAL CANCER 

 

a)  Epidemiology and diagnosis of colorectal cancer in the United States 

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer in the 

United States and is the third leading cause of cancer related deaths.1 In 2018, there were 

approximately 140,000 new cases of colon and rectal cancer in in the United States, and 

approximately 50,000 deaths from colon and rectal cancer combined. A majority of 

patients present with advanced stage (lymph node disease or distant organ metastasis), in 

whom the risk of recurrence is high and the overall prognosis is poor (Figure 1).1,2 The 

relative 5-year survival for stage I CRC, however, is 92%. The 5-year survival for stage 

IIA and Stage IIB are 87% and 63%. The 5-year survival for stage IIIA, Stage IIIB, and 

stage IIIC are 89%, 69%, and 53%, respectively. The 5-year survival for stage IV disease 

is 11%. Although screening for colon and rectal cancer has been shown to improve 

survival, many patients are still diagnosed with advanced stage disease at initial 

presentation (Figure 2).3 

In the United States, cancer staging is guided by the American Joint Committee 

on Cancer (AJCC)4 TNM staging. TNM refers to Tumor, Node, and Metastasis staging. 



 

2 
 

This indicates the degree of invasion into the bowel wall, the presence of lymph node 

involvement, and the presence of distant metastasis, respectively. Previously, the Duke’s 

classification system had been long used for colorectal cancer staging, which was 

subsequently modified to the Astler-Coller staging system.5,6 These staging systems align 

with that of the contemporary TNM system (Table 1). Accurate staging is essential for 

assessing patient prognosis and deciding on the most appropriate treatment regimen.  

 

b)  Molecular pathophysiology of colorectal cancer 

The underlying etiology of CRC is complex and heterogeneous, but here are three 

major types of colorectal cancer; sporadic, inherited, and familial. Furthermore, there are 

three major pathways of pathogenesis that underlie the development of colorectal 

adenocarcinoma, but overlap exists between these pathways in patients. They include 

chromosomal instability (CIN), microsatellite instability (MSI), and the CpG island 

methylator phenotype (CIMP). 

The CIN pathway is commonly known as the adenoma-carcinoma sequence. 7,8 

This pathway consists of a number of progressive “genetic hits” in normal colon 

epithelium, to produce an adenomatous polyp, and which eventually leads to an invasive 

adenocarcinoma. Classical mutations in this pathway consist of mutations in genes and 

signaling pathways such as APC, KRAS, TP53, TGF-β and PIK3CA.7 This adenoma-

carcinoma sequence is supported by a number of clinical studies that demonstrate a
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Figure 1. Temporal changes in 5-year overall survival for colon and rectal adenocarcinoma stratified by disease stage in the United 

States 1975- 2012 

 

 

 

 

 

 

 

 

 

 

 

 

Although there have been improvements in overall survival for colon and rectal adenocarcinoma over the different time periods, the 

survival for patients with regional or distant disease at diagnosis remains poor.  

Modified from: Siegel RL, Miller KD, Fedewa SA et. al. Colorectal cancer statistics, 2017. 2017;67:3 177-193 and Siegel RL, Miller 

KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019;69(1):7-34. 
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Figure 2. Distribution of colorectal cancer cases by stage in the United States 2009- 2015. 

 

 

 

 

Modified from: Sheets SSF. Colon and Rectum Cancer. Cancer Statistics: Statistical Summaries National Cancer Institute. 2015. 

Available from: https://seer.cancer.gov/statfacts/html/colorect.html [Accessed 4th September 2019].
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Table 1) AJCC 8th edition staging for colorectal cancer and alignment with Duke’s 

staging and Astler-Coller staging4,9 

Stage 
Primary 

Tumor 

(T) 

Regional 

Lymph 

Nodes 

(N) 

Distant 

Metastas

es (M) 

Dukes’ 

Stage 

Astler- 

Coller 

Classification 

0 Tis N0 M0 - - 

1 T1 

T2 

N0 

N0 

M0 

M0 

A 

A 

A 

B1 

IIA 

IIB 

IIC 

T3 

T4a 

T4b 

N0 

N0 

N0 

M0 

M0 

M0 

B 

B 

B 

B2 

B2 

B3 

IIIA 

 

IIIB 

 

 

IIIC 

T1-T2 

T1 

T3-T4a 

T2-T3 

T1-T2 

T4a 

T3-T4a 

T4b 

N1/N1c 

N2a 

N1/N1c 

N2a 

N2b 

N2a 

N2b 

N1-N2 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

C 

C 

C 

C 

C 

C 

C 

C 

C1 

C1 

C2 

C1/C2 

C1 

C2 

C2 

C3 

IVA 

IVB 

IVC 

Any T 

Any T 

Any T 

Any N 

Any N 

Any N 

M1a 

M1b 

M1c 

D 

D 

D 

D 

D 

D 

Tis: Carcinoma in situ, T1: Invasion into submucosa, T2: Invasion into muscularis 

propria, T3: Invasion through muscularis propria, T4a: tumor invades through the visceral 

peritoneum, T4b: Tumor invades or is adherent to adjacent organs. N0: No lymph nodes 

metastasis, N1a one lymph node positive, N1b two-three lymph nodes positive, N1c: tumor 

deposits in subserosa, mesentery, N2a four to six lymph nodes positive, N2b: >7 lymph nodes 

positive. M1a: metastasis to one site of disease, M1b: metastasis to >2 sites, M1c: Metastasis to 

peritoneal surface alone or with another organ metastasis 
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progression of adenomas to invasive adenocarcinoma.10,11 In addition, recent gene editing 

based studies support this hypothesis which introduce progressive mutations through 

CRISPR-mediated gene editing to produce an invasive adenocarcinoma from normal 

intestinal organoids.12 In this study, only organoids derived from adenomatous tissue, and 

not from normal colon epithelium, could lead to the development of macro-metastasis in 

an in vivo model, which suggests that other signaling factors beyond that of mutations in 

classically associated genes are a major driver for metastasis. 

Microsatellite instability is involved in the pathogenesis of 15-20% of colorectal 

cancer.13 This pathway consists of mutations in the genes that are responsible for 

repairing base mismatches in cellular DNA. 14,15 In all cells, mistakes can occur in DNA 

replications which leads to the occurrences of mismatches between DNA base pairs. In 

cells with a normal mismatch repair system, this can be repaired to eliminate the 

mismatch, but in cells with a defective system, this repair does not occur and can lead to 

the progressive accumulation of mutations in genes. Most commonly, this occurs, 

through genes such as MLH1, MSH2, MSH6, or PMS2. The most commonly observed 

phenomenon amongst these genes is that of epigenetic silencing of MLH1 through 

promoter hypermethylation.16 Hereditary Non-Polyposis Colorectal Cancer, also known 

as Lynch syndrome, is a familial form of colorectal cancer, that occurs through an 

autosomal dominant germline mutation in one of the previously mentioned mismatch 

repair genes. 

Epigenetic modification of cells can occur through the methylation of CpG base 

residues. A CpG residue is the occurrence of a cytosine base adjacent to a guanosine base 

in DNA. In the promoter regions of genes, CpG residues can cluster into areas called 
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CpG islands which, when methylated, can lead to silencing of the gene.17 In the case of a 

tumor suppressor gene, this can promote carcinogenesis, even in the absence of a 

mutation within the gene sequence. The sessile serrated polyp pathway is thought to 

account for 20% of sporadic colorectal cancers. It shares a similar multi-hit pathogenesis 

as the CIN pathway, but is distinct in that KRAS and BRAF mutations are common, with 

the addition of the CpG island methylator phenotype to produce a microsatellite 

instability.18,19  

Although there are a distinct signaling pathways, as outlined above, an individual 

patient may have some elements of different pathways leading to colorectal cancer 

(Figure 3). Furthermore, there appears to be an association between the anatomical 

location and the spectrum of mutations of colorectal cancers. Right- sided colon 

adenocarcinoma tumors are more likely to be highly microsatellite instable tumors, 

whereas left-sided colon adenocarcinomas are more likely to be chromosomal instable 

tumors.20  BRAF mutations more commonly occur in colon adenocarcinomas, and rectal 

adenocarcinomas typically have APC and TP53 mutations.21 This adds to the complexity 

of treating patients with colorectal cancer. 



 

 
 

8
 

Figure 3. Schematic representation of several overlapping pathways involved in the development of colorectal cancer 

 

Red circles represent mechanisms based on tumor suppressor and mutator pathways. Blue circles represent mechanisms based on the 

precursor lesion (CIN and Serrated polyp pathways). Yellow circles represent currently poorly characterized pathways. 

MYH- mutY DNA glycosylase, TSA- Traditional serrated adenoma 

Snover DC. Hum Pathol. 2011;42(1):1-10
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c)  Contemporary treatment of colorectal cancer and current challenges 

Treatment for colorectal cancer is guided by the National Comprehensive Cancer 

Network in the United States.22 Surgical resection of the tumor is the principle treatment 

for colorectal cancer, which may be supported by other therapies including chemotherapy 

and radiotherapy depending on the tumor location and stage. In the case of advanced 

adenomas or early stage tumors, these may be amenable to local excision with 

endoscopy, or through transanal excision in certain cases.23  

Treatment strategies for advanced stage (Stage III or Stage IV) colon and rectal 

cancer are different in the case of neoadjuvant and adjuvant chemotherapy and 

radiotherapy. In the case of colon adenocarcinoma, adjuvant postoperative chemotherapy 

is recommended for advanced stage tumors or localized tumors with certain high-risk 

features (poor differentiation, lymphovascular invasion, perineural invasion, bowel 

obstruction, <12 lymph nodes examined, localized perforation, or close/positive 

margins). In the case of rectal adenocarcinoma, preoperative chemoradiotherapy is 

indicated for tumors beyond a T1-T2, N0 stage.9 Additionally, postoperative 

chemoradiotherapy may be indicated for high-risk cancers. For both colon and rectal 

adenocarcinoma, the chemotherapeutic agents that are used include 5-flurouracil, 

capecitabine, oxaliplatin, and irinotecan. However, advances in the understanding of 

tumor biology has led to the use of small molecule therapies which target specific 

signaling pathways involved in epidermal growth factor signaling (e.g. cituximab), 

vascular endothelial growth factor signaling (e.g. bevacizumab), or immune cell 

recognition of cancer cells (e.g. Nivolumab). 
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Surgical treatment for colorectal metastases can be carefully decided in a 

multidisciplinary fashion, as in the case of colorectal liver metastases24,25 or in colorectal 

lung metastases.26 As an adjunct to surgical resection, microwave coagulation therapy or 

radiofrequency ablation therapy can be considered. As metastatic disease is the principle 

disease-specific cause of death from colorectal cancer, it is important to study the process 

of how tumors transition from locally proliferative in the colon, to developing an ability 

to become metastatic. A critical aspect of this process is epithelial-to-mesenchymal 

transition, and improved understanding of this process may assist in the development of 

more effective therapies for colorectal cancer.  
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CHAPTER II 

 

EPITHELIAL-MESENCHYMAL TRANSITION IN CANCER 

 

a)  Introduction- Role in Normal Embryological Development and Cancer 

Epithelial-Mesenchymal Transition (EMT) is a cellular mechanism that has long 

been recognized as a central feature of normal cellular development.27 A number of 

important components of embryological development are reliant on EMT such as that of 

gastrulation, neural crest formation, and heart morphogenesis.28 Over the past 20 years, 

there has been significant research into the process of cancer metastasis and EMT has 

also been recognized to have a major role in its development.29  

 

b)  Role of EMT in Cancer 

EMT is the process whereby cells lose their morphological and functional 

epithelial features and gain a mesenchymal phenotype, through differential gene 

overexpression and repression 30,31. At a macroscopic level, this is the process whereby 

locally proliferative cancer growing in the bowel mucosa, gains the ability to invade from 
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the mucosa towards the bowel serosa, to the draining lymph nodes (Figure 4). At a 

cellular level, EMT is a complex process whereby epithelial-like cells lose cell polarity, 

cell-to-cell adhesion, and gain a migratory and invasive phenotype (Figure 5).32 This 

process consists of a series of molecular changes that are essential to occur to facilitate 

cancer metastasis.29,33 

There is clinical evidence to support that intra-tumoral differences exist in the 

expression of epithelial and mesenchymal markers.34 At the deep border of tumors in the 

wall of the colon there is relatively reduced expression of epithelial markers such as  E-

cadherin, occludins, and claudins,  and an increase in markers such a vimentin, N-

cadherin, and fibronectin.34,35 This indicates that cells which are at the deep border, or 

invasive front of a tumor have a more mesenchymal phenotype. Interestingly, EMT is 

reversed when cancer seeds, and develops at a metastatic site. Colorectal liver metastasis 

has been shown to recover epithelial marker expression and lose vimentin expression.36 

This reversion process is called mesenchymal-epithelial transition (MET) in cancer.  

There are a number of critical mediators of both EMT and MET in cancer, which affect 

these processes at both genetic and epigenetic levels. 

 

c)  Regulators of the EMT process through genetic and epigenetic processes 

Genetic regulation can occur through transcription factor regulation via factors 

such as Snail Family Transcriptional Repressor 1 (SNAI1), snail family transcriptional 
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Figure 4. Illustration of the macroscopic events of EMT that contribute to the change from a locally proliferative cancer to an invasive 

and metastatic cancer. 

 

As cancer cells grow locally, there is a switch to a mesenchymal phenotype and the deep border, which invades through the basement 

membrane to metastasize to the lymph nodes and in distant organs. At the new metastatic site, the cancer cells revert to an epithelial 

phenotype to proliferate. 

 

 

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009;119:1420-8.
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Figure 5. Illustration of the cellular events that contribute to the process of EMT to 

promote a metastatic cancer. 

 

There are a number of cellular changes that occur to change locally proliferative 

epithelial cells to more mesenchymal cells, which have the ability to migrate and invade 

through tissue.  

 

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal 

transition and implications for cancer. Nature Reviews Molecular Cell Biology. 

2019;20:69-84. 
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repressor 2 (SLUG), Zinc finger E-box-binding homeobox -(ZEB)1, and ZEB2.37,38 

These factors can directly induce the transcription of epithelial adhesion and cellular 

polarity genes and repress that of mesenchymal cytoskeletal and metalloproteinase genes.   

Epigenetic regulation of EMT can occur through different processes involved in 

methylation and acetylation.39,40 Methylation at CpG islands of the promoter region of 

genes involved in EMT repression has previously been demonstrated.41 Treatment with a 

demethylating agent has been shown to induce an epithelial-like phenotype in vitro in 

both naïve and chemoresistant cell lines.36,42  

 The field of non-coding RNA represents an expansive avenue of research for 

EMT, as both microRNA (miRNA) and long non-coding RNA (lncRNA) are significant 

mediators of this process.40,43 MicroRNAs (miRNAs) are a major regulator of cell 

function through specific interaction with RNAs to inhibit protein translation or to induce 

RNA degradation. miRNAs are small, naturally occurring, non-protein coding RNA 

molecules that are approximately 20 nucleotides in length. miRNAs are transcribed in the 

nucleus as large RNA precursors called primary microRNAs.44 They are processed in the 

nucleus and shuttled to the cytoplasm by the enzymes Drosha, exportin 5, DICER and 

argonaute 2. This produces mature double stranded microRNA.45,46 As miRNAs are 

normally occurring molecules, they perform several normal functions related to cell 

growth, development, and differentiation, but dysregulated expression of these 

microRNAs may contribute to tumorigenesis.47 Furthermore, altered expression of 

microRNAs in tumor tissue or serum may have a role in the diagnosis of patients with 

CRC.48,49 We have previously reported a panel of miRNA that were predictive of 

colorectal neoplasia in a large cohort of patients.50 
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The miR-200 family is one of the most well defined mediators of EMT, first 

reported by 2 separate research groups in 2008.30,31 The miR-200 family is a group of 5 

miRNA, that consists of 2 clusters determined by; functional grouping and by genomic 

location. miR-200a, miR-200b, and miR-429 are located on chromosome 1p36.33, and 

miR-200c and miR-141 are located on chromosome 12p13.31. In contrast, miR-200b, 

miR-200c, and miR-429 share the same seed sequence, whereas miR-200a and miR-141 

share the same seed sequence for functionality. The seed sequence is the part of the 

miRNA that confers specificity to a target mRNA sequence. There is a double-negative 

feedback loop between the miR-200 family and ZEB1/ZEB2 expression (Figure 6).31 The 

miR-200 family acts to decrease the expression of ZEB1 and ZEB2 through post-

transcriptional repression to mediate EMT. In addition, ZEB1 and ZEB2 act on the 

promoter region of the miR-200 family to transcriptionally repress miR-200 family 

expression. Decreased expression of the miR-200 family leads to a mesenchymal 

phenotype to promote EMT.30 TGF-β is a major regulator of EMT, through induction of 

ZEB1 and SNAI1 expression, which is also targeted by the miR-200 family to repress 

EMT.30,51 However, the miR-200 family has also been shown to induce proliferation 

through different signaling pathways such as through a miR-200/RECK/SKP2, CDKN1B 

axis and a miR-200/RASSF2/KRAS/ERK1,2 axis.52,53  

Multiple clinical studies have demonstrated that tumoral tissue expression of the 

miR-200 family is associated with worse clinical outcomes, such as reduced recurrence-

free survival54 and overall survival.55 However, there are conflicting individual results 

with respect to tissue and serum levels of the miRNA-200 family and these clinical 

outcomes.40   



 

17 
 

 lncRNAs are a recently described class of molecules that have a role in both 

normal cellular function and in tumorigenesis. They are another class of non-protein 

coding molecules that are defined as being greater than 200 bases in length.56 Similar to 

messenger RNA, they are transcribed by RNA polymerase II, but lncRNAs can mediate 

their action through a number of different mechanisms. 56,57 Specifically, they have been 

described to have been associated with EMT in a number of different cancers and as 

lncRNAs have a spectrum of mechanisms of action, they have the potential to be major 

regulators of EMT and are the focus of this dissertation. 
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Figure 6. Representation of the reciprocal interaction between the miR-200 family and 

ZEB1, ZEB2 in EMT. 

 

There is a bidirectional repression between the miR-200 family and the transcription 

factors ZEB1 and ZEB2. Both of these factors, in addition to SNAIL1 and SLUG act to 

repress E-cadherin, and induce the expression of Vimentin. 

 

 

 

O'Brien SJ, Carter JV, Burton JF, Oxford BG, Schmidt MN, Hallion JC, et al. The role of 

the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a 

systematic review. International journal of cancer. 2018;142:2501-11. 
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CHAPTER III 

 

LONG NON-CODING RNA AND ROLE IN COLORECTAL CANCER 

 

a) Introduction and history of non-coding RNA 

In the 1970s, evidence began to emerge to support the hypothesis that a large 

proportion of the human genome does not code for protein and was termed junk DNA. 

However, investigators began to note that although such DNA does not code for a 

protein, that does not mean it does not have a cellular function in some other capacity.58 

With the advent of sequencing technology, it is now understood that a large proportion of 

the genome is transcribed and warrants investigation to ascertain the function of such 

RNAs. There are a large number of non-coding RNAs currently described such as; 

ribosomal (r)RNAs, ribozymes, transfer (t)RNAs, small nuclear (sn)RNAs, small 

nucleolar (sno)RNAs, and telomere-associated RNAs (TERC, TERRA) microRNAs 

(miRNAs), endogenous small interfering (endo-si)RNAs, and Piwi-associated 

(pi)RNAs.59 
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More recently, long-noncoding RNAs (lncRNA) have been a topical area of 

investigation, as they have been shown to have a role in a variety of aspects of normal 

cellular function and in disease.60 Some lncRNAs were described prior to the era of RNA 

sequencing such as XIST (X-inactive specific transcript).61 XIST was initially described 

as having the function of inactivating and transcriptionally silencing one of the X 

chromosomes in females. However, it has also been noted that XIST has a major function 

beyond this, in other areas of disease.59,62 

b) Mechanisms of action of long non-coding RNA 

Long non-coding RNA can be classified by their genomic location or by their 

molecular function.59 By location, lncRNAs can be classified as; sense, antisense, 

intronic, intergenic, or bidirectional in nature (Figure 7).57 By their molecular function, 

lncRNA have diverse mechanisms of action (Figure 8)56 which include: 

1) Competitive endogenous RNA function - the lncRNA acts as a functional 

decoy or “sponge” for other molecules, which prevents these molecules from 

executing their function, such as in the case of lncRNA-miRNA sponging; 

 2) Enhancer function- the lncRNA can act as an enhancer or transcription 

factor-like molecule in cells to promote gene expression;  

3) Scaffold function- the lncRNA can act to bring proteins spatially close to each 

other to aid in ribonuclear protein formation;  

4) Guide function- the lncRNA can recruit proteins to a nuclear site such as 

recruiting proteins to assist in chromatin remodeling. 
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Figure 7. Description of lncRNAs by their genomic locations. 

 

 

 

 

 

 

 

 

 

 

Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing 

heart and vasculature. Non-coding RNA Research. 2018;3:118-30. 
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Figure 8. Description of lncRNAs by their molecular function 

 

 

a) Signal mechanism- lncRNA can act to recruit other molecules to an area in the genome 

to perform an action. b) Decoy/competitive endogenous RNA mechanism- lncRNA can 

act to bind to another molecule which can prevent the target molecule from performing 

its action, c) Guide mechanism- lncRNA can bind other molecules and guide them to a 

location to perform their function, d) Scaffold mechanism- lncRNA can bind a number of 

molecules to bring them close together to perform their function, as in the case of 

transcriptional activators, e) Enhancer mechanism- lncRNA can modulate the interaction 

between enhancers or promoter regions of genes in chromosomal looping. 

Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, et al. Long 

noncoding RNAs in cardiac development and ageing. Nature reviews Cardiology. 

2015;12:415-25. 
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c)  Role of lncRNA in colorectal cancer 

lncRNAs have been shown to have a major role in colorectal cancer pathogenesis 

in the literature. In particular, lncRNAs have been shown to mediate an effect on EMT 

and have a potential role as a biomarker. A review of the literature identified that 

lncRNAs act on a number of different signaling cascades; ZEB1,2/ E-cadherin, Vimentin, 

Wnt/β-catenin signaling, chromatin remodeling and epigenetic modulation, JAK-STAT3 

signaling, mTOR signaling, MAPK/ERK signaling, and TGF-β signaling among others 

(Figure 9). 

 

ZEB1,2/ E-cadherin, Vimentin signaling 

The ZEB1, 2/E-cadherin, Vimentin axis is a well characterized signaling pathway, 

critical to the process of EMT, and a number of different lncRNAs have been shown to 

affect this pathway. As previously mentioned, the miR-200 family is a major regulator of 

EMT by targeting ZEB1 and ZEB2. A number of the included studies identified lncRNAs 

which target the miR-200 family: XIST, N-BLR, and H19, the expression of which are 

increased in colon cancer and which are associated with adverse clinical outcomes.63-68 In 

addition, N-BLR mediates chemoresistance in vitro, highlighting the potential role of 

lncRNA in treatment-resistant colon cancer.65  
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Figure 9. Role of lncRNAs in EMT in colorectal cancer 

 

The lncRNAs and their target molecules are organized by signaling pathways via different colors. The lncRNAs are highlighted                   

indicating a transcriptional factor regulation mechanism, highlighted                 for a lncRNA/miRNA molecular decoy mechanism, and 

highlighted                    for a scaffold mechanism.  



 

25 
 

Although the miR-200 family is most commonly known to be associated with this 

pathway, a number of other studies demonstrate a direct binding with other miRNAs in a 

competitive endogenous RNA mechanism. Both SNHG6 and SPRY4-IT1 target miR-

10169-71, HCP5 targets miR-139,72 while all three subsequently target ZEB1 and directly 

mediate EMT. This demonstrates the complexity of manipulating lncRNA in vitro as the 

effect on other lncRNA within a pathway has been poorly studied. Similar to these 

studies, UICLM targets miR-215, which in turn targets ZEB2 in the signaling cascade.73 

Interestingly, B3GALT5-AS1 is a lncRNA which targets the transcription factors ZEB1 

and SNAIL through a competitive endogenous RNA mechanism by binding miR-203.74 

However, unlike the previously mentioned lncRNA, B3GALT5-AS1 is decreased in 

colorectal cancer compared to normal colorectal epithelium. SLUG is another major 

regulator of EMT, which activates SNAIL. The lncRNA SNHG15 inhibits the 

degradation of SLUG by preventing its ubiquination.75 TWIST1 is another well-

characterized molecule that regulates EMT. CHRF is an lncRNA that targets TWIST1 by 

targeting miR-489.76 These studies demonstrate the different levels at which the ZEB1, 

2/E-cadherin, Vimentin axis can be manipulated in vitro. As seen with these studies, 

lncRNAs can have a spectrum of different mechanisms and targets, and therefore, in-

depth analysis of their function on different pathways is essential. 

 

Wnt/β-catenin signaling 

The Wnt/β-catenin signaling pathway is another critical mediator of EMT that can 

be regulated by lncRNAs. PlncRNA-1 targets β-catenin through a competitive 

endogenous RNA mechanism with miR-204 to mediate EMT.77 In contrast, H19 and 
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TUG1 target β-catenin indirectly by targeting molecules that interact with β-catenin.66,78-

80 H19 targets PGRN and TUG1 targets KIAA1199, through miR-29b binding and miR-

600 binding respectively. As previously mentioned, H19 also mediates an effect in the 

ZEB1, 2/ E-cadherin, Vimentin signaling pathway, suggesting that lncRNAs can act on 

multiple signaling pathways through a competitive endogenous RNA mechanism.  

In contrast, CYTOR activates the Wnt/β-catenin signaling pathway by blocking 

casein kinase 1-mediated β-catenin phosphorylation.81 Many of the previous studies 

demonstrate lncRNAs that bind miRNA in order to mediate their effect, however the 

activity of CYTOR is distinct from this mechanism. Similarly, SLC04A1-AS1 stabilizes 

β-catenin by preventing β-catenin phosphorylation by glycogen synthase kinase-3, which 

leads to a mesenchymal phenotype.82 Both lncTCF7 and CTD903 have been shown to 

mediate EMT through Wnt/β-catenin signaling, but further work is required to delineate 

the exact mechanism of action.83,84 

 

Chromatin Remodeling and epigenetic modulation 

In recent years, epigenetic modification of gene expression through chromatin 

remodeling via histone acetylation and methylation has been shown to be a major 

mediator of EMT. XIST, MALAT1, and HOXD-AS1 mediate EMT, in part, through 

regulation of EZH2.85-88 EZH2 is the enzymatic component of the polycomb repressive 

complex 2, which is critical in histone methylation. All three of these lncRNAs mediate 

this effect through a competitive endogenous RNA mechanism, by binding different 

miRNAs, and are associated with adverse clinical outcomes.63,86,87 Interestingly, 
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MALAT1 is increased in expression in chemoresistant cell lines compared to parental 

cells, and is associated with reduced recurrence-free survival.87 Modulation of MALAT1 

may then be a target for patients with poor chemotherapy response. Similarly, HIF1A-

AS2 directly binds miR-129, which in turn regulates DNA methylation through 

DNMT3A, mediating EMT. DNMT3A is an enzyme that transfers methyl groups to CpG 

islands leading to gene repression.89 

In contrast to these mechanisms, both TUG1 and SATB2-AS1 regulate EMT 

through histone acetylation.78,90 The signaling mechanism for SATB2-AS1 is complex, 

whereby SATB2-AS1 acts through a scaffold mechanism to recruit p300 and to acetylate 

H3K27 and H3K9 at the promoter region of SATB2. This leads to the subsequent 

recruitment of HDAC1 to the promoter of SNAIL by SATB2, thereby silencing SNAIL 

and inhibiting epithelial-mesenchymal transition. The mechanism through which TUG1 

mediates its effect requires further investigation as it is has not been fully explored.78  

 

JAK-STAT3 signaling  

Both BC200 and lncRNA AB073614 act through a transcriptional factor 

mechanism to reduce STAT3 phosphorylation in the JAK/STAT signaling cascade.91,92 

This leads to the subsequent modulation of matrix metalloproteinases and induces EMT.  
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mTOR signaling 

The mTOR pathway is a complex signaling family involved in EMT. Both 

ZFAS1 and UCA1 induce EMT through a competitive endogenous RNA mechanism but 

target different molecules in the pathway.93,94 Through binding with miR-150, ZFAS1 

targets VEGFA and subsequently Akt in the mTOR signaling pathway. Few studies 

examine upstream regulators of lncRNA and interestingly, the authors demonstrate an 

upstream regulator of ZFAS1 through the SP1 transcription factor.93  UCA1 directly 

binds miR-143, which targets mTOR to induce EMT. In addition, Jahangiri et al. 

demonstrated the complexity of the tumor microenvironment and its effect on lncRNA 

expression by co-culturing the cells with cancer-associated fibroblast-conditioned 

media.94 This suggests that lncRNA expression can be changed through exogenous 

agents. 

 

MAPK/ERK signaling 

As previously mentioned, H19 acts through a competitive endogenous RNA 

mechanism in both Wnt/β-catenin signaling and in ZEB1, 2/ E-cadherin, and Vimentin 

signaling. In addition, H19 also directly binds miR-194, which targets FoxM1.95 FoxM1 

is a downstream target in the MAPK/ERK signaling pathway. This suggests that H19 

mediates EMT, in part, through a number of different signaling pathways by targeting 

different miRNAs. This may suggest its potential use as a therapeutic target. SNHG7 also 

affects the MAPK/ERK signaling pathway through a similar mechanism by targeting 
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GALNT1 through binding miR-216b in a competitive endogenous RNA mechanism.96 

GALNT1 is also a downstream molecule in the MAPK/ERK signaling pathway.97  

Three other lncRNAs identified in the search were hypothesized to mediate their 

effect on EMT through MAPK/ERK signaling. Both BANCR and NNT-AS1 have 

increased expression in colon cancer, whereas SLC25A25-AS1 is decreased in 

expression.98-100 

 

TGF-β signaling 

The TGF-β signaling superfamily is a complex mediator of EMT. Both PVT1 and 

LINC001133 mediate EMT through TGF-β signaling.101,102 Takahasi et al. used a 

bioinformatics approach to identify pathways enriched by PVT1 knockdown.101 

LINC001133 has a complex role in TGF-β signaling in that it directly binds SRSF-6, an 

alternative splicing factor, to mediate EMT. However, SRSF-6 was found to mediate 

EMT, independent of LINC001133 expression. 

 

Other signaling pathways: 

A number of other studies describe lncRNAs that target different signaling 

pathways in order to mediate EMT.  

As previously mentioned XIST mediates signaling through the ZEB1, 2/E-

cadherin, Vimentin pathway and through chromatin remodeling. However, it also targets 

Neuropilin 2 signaling through a competitive endogenous RNA mechanism with miR-
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486.103 This study is limited in that it does not explore downstream targets of NRP2 

marking it as a potential area of future research as NRP2 is involved in a number of 

signaling pathways.104 The study does, however, demonstrate how modulating a single 

lncRNA may have multiple effects on different signaling pathways, which suggests that 

in-depth investigation of a lncRNA is justified to identify its full role. 

CRCMSL also functions through a competitive endogenous RNA -like 

mechanism, but it binds HMGB2 in the cellular cytoplasm and prevents its shuttling to 

the nucleus. In turn, this prevents the interaction between HMGB2 and OCT4 in the 

nucleus, promoting a mesenchymal phenotype.105 This is a different mechanism to the 

other included studies that demonstrate that lncRNAs bind miRNAs, and shows the 

complexity in studying lncRNAs.  

Both lncRNA-ATB and LINC00959 mediate an effect on EMT through caspase 

signaling, but lncRNA-ATB is increased in colon cancer, whereas LINC00959 is 

decreased in colon cancer compared to normal tissue.106 83 Further work is needed to 

identify the exact method through which both of these lncRNAs mediate their effects in 

EMT, since caspase signaling is typically associated with apoptosis. FOXD2-AS1 is able 

to mediate EMT through NOTCH signaling, but the exact mechanism requires further 

investigation.107 As previously mentioned, CYTOR can mediate EMT through 

transcriptional regulation of casein kinase 1 in the Wnt/β-catenin signaling pathway, but 

it also acts through a scaffold mechanism by mediating the interaction between NCL and 

Sam86 in the NF-κB signaling pathway.108 Unlike CYTOR, CPS1-IT1 is decreased in 

colon cancer but also acts through a transcriptional factor mechanism.109 CPS1-IT1 

induces HIF1-α signaling to mediate EMT, but as those authors note, the hypoxia 
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induction model they use likely affects a number of pathways. Since the tumor 

microenvironment is a hypoxic environment, this CPS1-IT1 may represent a significant 

mediator of EMT.110 Many investigators focus on a single mechanism of action of a 

lncRNA, but they may have multiple concurrent mechanisms acting on different 

signaling cascades, which highlights the complexity of studying lncRNAs in vitro. 

These studies highlight a large number of lncRNAs that are differentially expressed 

between colon adenocarcinoma and normal colon epithelium that have a role in colorectal 

cancer carcinogenesis, and specifically in the regulation of EMT. A significant number of 

the above studies examine lncRNAs in the context of a competitive endogenous RNA 

mechanism. As lncRNA have a major role in EMT, this dissertation aims to identify 

differentially expressed lncRNAs between colon adenocarcinoma and normal colon 

epithelium that target the EMT signaling pathway. 
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CHAPTER IV 

 

ANALYSIS OF AN RNA-SEQUENCING DATABASE TO IDENTIFY 

DIFFERENTIALLY EXPRESSED LONG NON-CODING RNAS 

 

a)  Introduction: 

As a significant proportion of the human genome is not translated into protein, 

there are a large number of potential targets for investigation. In particular, for some 

lncRNAs, expression can differ between different cancer types. There is therefore, a need 

to characterize the lncRNA expression profile for a specific cancer subtype.111 Some 

investigators have shown that lncRNAs can have paradoxical effects in different cancers, 

which further underscores the reason for investigation in a particular cancer subtype.111  

  The identification of differentially expressed lncRNA between colon 

adenocarcinoma and normal colon epithelium is important, as this may demonstrate 

lncRNAs that may be important in colon cancer carcinogenesis. 

 The competitive endogenous RNA hypothesis was initially proposed in 2011 by 

Salmena et al.112 It was proposed that RNAs could indirectly regulate the expression of 

other RNAs, through binding of miRNAs. For example, consider the case where 

“miRNA X” binds both “RNA Y” and “RNA Z”. If there is increased expression of 



 

33 
 

“RNA Y”, in a pathological case such as in cancer, there is relatively less “miRNA X” 

available to bind “RNA Z”, therefore allowing its expression. This is particularly true in 

the case of lncRNAs, which have a well-defined function of acting in a competitive 

endogenous RNA mechanism, or miRNA sponge mechanism. 

The aim of this portion of my work was to identify a number of lncRNAs that are 

differentially expressed between colon adenocarcinoma and normal colon epithelium 

using an RNA-sequencing data set. We hypothesized that these lncRNAs would have an 

interaction with target miRNAs that in turn could be identified using a bioinformatics 

tool.  

 

b) Results:  

1) The Cancer Genome Atlas 

The Cancer Genome Atlas is a program from the National Institutes of Health in 

the United States. The aim of this program was to collect patient clinical and sequencing 

data. At present the program has approximately 10,000 patients enrolled, with over 50 

cancer types represented. The colorectal adenocarcinoma program was initially published 

in 2012 with approximately 300 patients.113 Since then, the program has expanded to 

approximately 700 patients. Although this program included both colon and rectal 

adenocarcinoma patients from NIH accredited cancer centers, none of the rectal 

adenocarcinoma patients received neoadjuvant chemoradiotherapy, which is a common 

clinical practice per the National Comprehensive Cancer Network Guidelines.9 These 

patients were therefore excluded from further analysis.  
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2) RNA sequencing data download and processing 

An application was made to the National Institute of Health Data Access 

Committee to obtain access to the raw sequencing data for the colon adenocarcinoma 

program. Patients with colon adenocarcinoma were identified from the Genomic Data 

Commons portal (https://portal.gdc.cancer.gov/).  The raw sequencing data set was 

downloaded on February 21st 2018 to the University of Louisville computer cluster, 

where it was encrypted until further use. 

Dr. Theodore Kalbflesich performed the data download and aligned the raw 

sequencing data to the most up-to-date human genome, using the ENSEMBL gene 

identifying codes (https://useast.ensembl.org/index.html).  

 

3)  Clinical data set download 

The associated clinical data set was downloaded using FirebrowseR 

(https://github.com/mariodeng/FirebrowseR). This data set was cross-verified using 

cBioPortal for Cancer (https://www.cbioportal.org/).114,115 Patient demographics 

included; age at diagnosis, gender, race, and body mass index (BMI). Cancer specific 

details included; American Joint Commission on Cancer stage116, microsatellite 

instability status, lymphatic invasion, venous invasion, and preoperative serum 

carcinoembryonic antigen. None of the patients received neoadjuvant chemotherapy or 

radiotherapy 
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4)  Differential Gene Expression between paired colon adenocarcinoma and normal 

colon epithelium 

 Using the clinical data as a means of identifying appropriate patients for 

comparison, we identified 40 patients with colon adenocarcinoma who also had an RNA-

sequencing data file for adjacent normal colon epithelium. The baseline demographic 

data of these 40 patients are described in Table 2. Dr. Sudhir Srivastava performed a 

differential gene expression comparison between the paired colon adenocarcinoma and 

normal colon epithelium data. There was a distinct differential clustering of the colon 

adenocarcinoma samples compared to the normal colon epithelium samples, as 

demonstrated by a multidimensional scaling plot (Figure 10).  

The pipeline for identifying a number of differentially expressed lncRNAs is 

described in Figure 11. Some 33,514 transcripts were identified from a comparative 

analysis of all transcripts, of which 9,853 were non-coding. Using the cut-offs of a log 

fold change of greater than 1.5 or less than 1.5, and a false discovery rate of 0.05, we 

identified 348 differentially expressed non-coding RNAs. Of these non-coding RNAs, 

120 were increased in expression in cancer compared to normal epithelium, and 228 were 

decreased in expression.  
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5) Validation of differentially expressed non-coding RNAs in the colon adenocarcinoma 

cohort 

The expression values of 70 of the most differentially expressed lncRNAs, along 

with 10 housekeeper genes, were confirmed using all of the available colon 

adenocarcinoma patients from The Cancer Genome Atlas. A similar differential gene 

expression analysis was performed by Dr. Sudhir Srivastava to confirm that these genes 

remained significantly differentially expressed when the sample size was increased. 

 

6) Selection of candidate molecules- manually curated for criteria 

From these two comparative analyses, a number of selection criteria were used to 

identify candidate lncRNAs for further investigation. All of the lncRNAs were confirmed 

to be increased in expression in colon adenocarcinoma compared to normal colon 

epithelium. In addition, because a large number of non-coding RNAs may not have an in 

vitro effect, we sought to investigate lncRNAs which have been described to have a 

cellular function in the literature, through a PubMed and EMBASE search.  

Each lncRNA was entered to the bioinformatics prediction program DIANA-

lncBASE v2.0.117 This is a bioinformatics tool that allows for the identification of both 

predicted and experimentally validated lncRNA-miRNA direct binding interactions. The 

ENSEMBL gene ID of each lncRNA was entered into the program and the 

experimentally validated target miRNAs were generated for each lncRNA.  
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Table 2. Demographics and tumor details of colon adenocarcinoma patients with both a 

colon adenocarcinoma sample and normal adjacent colon epithelium sample 

Variable 
N=40 

N (%) 

Age at diagnosis (median, IQR) 74 (64-81) 

Gender 

Male 

Female 

 

20 (50) 

20 (50) 

Race 

Caucasian 

African American 

Data not available 

 

22 (55) 

4 (10) 

14 (35) 

Height (cm)(median, IQR) 169 (161-180) 

Weight (kg) (median, IQR) 74 (63-95) 

Body Mass Index (kg/m
2

) (median, IQR) 
26.2 (23.3-32.1) 

Pre-operative CEA (ng/mL)  (median, IQR) 4.3 (1.6-18.4) 

Tumor location                                

  Cecum 

Ascending colon 

Hepatic flexure 

Transverse colon 

Splenic flexure 

Descending colon 

Sigmoid colon 

 

7(18) 

11(29) 

3(8) 

1(3) 

2(5) 

1(3) 

13(34) 

Tumor Stage                                    

  Stage 1 

Stage 2 

Stage 3 

Stage 4 

 

4(10) 

22(54) 

7(18) 

7(18) 

Microsatellite Status 

Microsatellite Stable 

Microsatellite Instable- Low 

Microsatellite Instable- High 

Data not available 

 

24 (60) 

6 (15) 

8 (20) 

2 (5) 

Lymphatic Invasion                                

 Yes 

No 

Data not available 

 

13(32) 

23(58) 

4(10) 

Venous Invasion                                      

 Yes 

No 

Data not available 

 

7(18) 

29(72) 

4(10) 
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Figure 10. Multidimensional Scaling plot demonstrating differential clustering of colon adenocarcinoma samples compared to normal 

colon epithelium samples. 
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Figure 11. Schematic of candidate lncRNAs identified from exploratory differential gene expression analysis between colon 

adenocarcinoma and paired normal adjacent colon epithelium. 
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Finally, the expression of these lncRNAs was verified to be present in colon 

adenocarcinoma cell lines by using the Cancer Cell Line Encyclopedia.118 This resource 

from the Broad Institute and the Massachusetts Institute of Technology, has RNA-

sequencing data on over 1000 cell lines and allows investigators to ensure that a given 

cell line expressed a certain RNA. This allowed us to select three colon adenocarcinoma 

cell lines with robust expression of the lncRNAs. This selection process yielded seven 

candidate lncRNAs for further investigation (Table 3).  

Following our initial comparative analysis, six of the seven lncRNAs had 

persistently increased expression in colon adenocarcinoma compared to normal colon 

epithelium. FAM83H-AS1 expression data was not available on Firebrowse. The Cancer 

Cell Line Encyclopedia was used to compare the expression of each of the lncRNAs in 

each cell line. ZFAS1 and GAS5 had the most consistent and robust expression across 

our three cell lines, SW480 (Stage II/ Duke’s B colon adenocarcinoma), HT29 (Stage III/ 

Duke’s C colon adenocarcinoma), and Caco2 (Stage unknown/ Duke’s stage unknown), 

but there was heterogeneity of expression among the others. H19, PVT1, and GAS5 were 

the most commonly investigated lncRNAs, yielding the highest number of papers 

investigating the lncRNA from our literature search. There were 20 miRNA confirmed 

targets of PVT1, 33 miRNA targets for UCA1, 28 miRNA targets for H19, 5 miRNA 

targets of FER1L4, 18 miRNA targets for GAS5, and 5 miRNA targets for ZFAS1. There 

were no confirmed miRNA targets for the lncRNA FAM83H-AS1. The interactions for 

each of these lncRNAs are shown in figure 12a-f. 
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Table 3. Characteristics of each of the seven lncRNAs across the different criteria used to identify candidate molecules for further investigation in 

vitro. 

lncRNA 

TGCA Analysis 

Colon 

adenocarcinoma 

vs. paired 

Normal 

Epithelium 

n=40 

(log fold 

change) 

False 

Discovery 

Rate 

(adjusted 

p-value) 

FirebrowseR 

Colon 

adenocarcinoma 

(N=458) vs. 

Normal 

Epithelium 

(n=41) 

(Log Fold 

Change) 

Cancer Cell line 

Encyclopedia 

Expression log2 (FPKM) Number 

of Papers 

(PubMed) 

 

Number 

of 

Papers 

specific 

lncRNA-

miRNA  

Number of 

Papers 

Reporter 

assay 

confirmed 

lncRNA-

miRNA 

interaction 

DIANA 

lncBASE 

(Experimental 

validation)  SW480 

(Stage 

II) 

HT29 

(Stage 

III) 

CACO2 

(Stage 

N/A) 

FAM83H-

AS1 
2.42 1.37E-41 Not available -0.09 4.12 3.42 10 0 0 48 

PVT1 2.37 2.99E-41 7.70 1.68 3.49 0.87 1129 41 20 21 

UCA1 2.30 3.54E-10 7.54 1.35 1.50 5.61 198 53 33 2 

H19 2.05 1.11E-7 4.14 -1.81 -0.79 2.45 2467 198 28 172 

FER1L4 2.89 1.89E-14 6.15 -3.56 4.95 -1.78 122 4 5 5 

GAS5 1.14 4.02E-14 2.29 6.96 6.71 6.34 233 39 18 199 

ZFAS1 1.51 6.87E-24 3.20 8.12 6.85 8.06 50 10 5 162 

FPKM- Fragments Per Kilobase of transcript per Million mapped reads, N/A- Not available 
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Figure 12. Confirmed miRNA that target each of the 7 selected lncRNA, identified 

through both bioinformatics prediction and literature reporting positive lncRNA-miRNA 

direct binding, a) PVT1 Targets, b) UCA1 targets, c) H19 targets, d) FER1L4 targets, e) 

GAS5 targets, f) ZFAS1 targets. 

 

 

 

Modified from DIANA lncBASE  v2.  Paraskevopoulou MD, Vlachos IS, Karagkouni D, 

Georgakilas G, Kanellos I, Vergoulis T, et al. DIANA-LncBase v2: indexing microRNA 

targets on non-coding transcripts. Nucleic acids research. 2016;44:D231-D8.
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d) Discussion 

This chapter describes a path to discover a number of differentially expressed 

RNAs and lncRNAs from an RNA-sequencing data set. By comparing patients with both 

a colon adenocarcinoma and a normal adjacent colon epithelium RNA-sequencing data 

file, we identified a large number of differentially expressed RNAs. After confirmation of 

differential expression in the entire cohort of patients with colon adenocarcinoma 

(N=441), we selected seven lncRNAs for further investigation on the basis of a number 

of criteria. 

By integrating The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia, 

it allows investigators to select differentially expressed RNA in clinical samples and to 

select appropriate cell lines for investigation on the basis of their target lncRNA and other 

RNA expression. Historically non-coding RNAs were thought to not have a function, but 

through different bioinformatics approaches they are now recognized to have a major 

function in normal cellular signaling and in cancer signaling.119  

We have identified a number of experimentally verified miRNA targets for each 

lncRNA with the exception of FAM83H-AS1. These interactions are from both high-

throughput sequencing interactions and with luciferase reporter assay-based techniques. 

Interestingly, the miR-200 family appears to target ZFAS1, H19, and PVT1, which is a 

major regulator of epithelial-mesenchymal transition in cancer.40 In addition, both GAS5 

and PVT1 directly target miR-203 which is another regulator of epithelial-mesenchymal 

transition in cancer.120  
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 A number of investigators combine colon adenocarcinoma and rectal 

adenocarcinoma together when using The Cancer Genome Atlas, but there are significant 

molecular and clinical differences between these two types of large bowel cancer.  Right- 

sided colon adenocarcinomas are more likely to be high microsatellite instable tumors, 

whereas left-sided colon adenocarcinomas are more likely to be chromosomal instable 

tumors. 20  BRAF mutations more commonly occur in colon adenocarcinomas, and rectal 

adenocarcinomas typically have APC and TP53 mutations. 21 Clinically, rectal cancer has 

a tendency towards pulmonary metastases, whereas colon cancer tends to develop liver 

metastases. 121,122 Typical adjuvant chemotherapy strategies for colon cancer include 

fluorouracil-based therapies.22,123 Finally, as previously mentioned, none of the patients 

in the rectal adenocarcinoma cohort received preoperative neoadjuvant 

chemoradiotherapy, a current standard of care for locally advanced cancers.113 We 

therefore restricted our use of The Cancer Genome Atlas to patients with colon 

adenocarcinoma.  

In the previous chapter, we described a large number of lncRNAs that are 

differentially expressed in colon adenocarcinoma compared to normal colon epithelium 

and that have a role in EMT from the literature. Using a methodical approach to identify 

highly differentially expressed lncRNAs between colon adenocarcinoma and normal 

colon epithelium, we selected seven lncRNAs with experimentally validated miRNA 

targets for further investigation. 
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CHAPTER V 

 

HYPOTHESIS, SPECIFIC AIMS, AND EXPERIMENTAL PLAN 

 

a)  Key Objective 

To identify differentially expressed lncRNAs in colon adenocarcinoma compared 

to normal adjacent colon epithelium from an exploratory RNA-sequencing analysis, and 

to validate their expression in clinical samples.  To furthermore characterize the 

mechanism of action and phenotypic function of selected lncRNAs in colon 

adenocarcinoma cell lines.  

 

b)  Hypothesis 

We hypothesize that ZFAS1, a lncRNA identified from an exploratory 

comparative RNA-sequencing analysis, can modulate the behavior of three colon cancer 

cell lines in vitro.   

The interrogation of RNA-sequencing data sets allows a transcriptome-wide 

analysis of RNAs between colon adenocarcinoma samples and normal colon epithelium. 

Using these data, differentially expressed lncRNAs can be identified for investigation in 
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colon adenocarcinoma cell lines. ZFAS1 is a well-characterized lncRNA that has been 

shown to promote tumor progression in different cancers. However, its role in colorectal 

cancer has not been fully elucidated specifically regarding its mechanism or effect on 

colon cancer cell line phenotype.  

 

c)  Specific Aims 

1) To validate the expression of differentially expressed lncRNAs identified from 

a RNA-seq comparison between paired colon adenocarcinoma and normal adjacent colon 

epithelium, in clinical samples from the University of Louisville tissue biorepository. 

2) To investigate the effect of lncRNA ZFAS1 knockdown on target miRNA 

expression as well as the effect of transfection with miRNA mimics on lncRNA 

expression. 

3) To demonstrate the effect of lncRNA knockdown on colon cancer cell line 

phenotype, specifically focusing on ZFAS1 and the signaling pathway through which it 

mediates EMT.   

 

d)  Experimental Plan 

The overall goal of this project is to identify differentially expressed lncRNAs in 

an RNA-seq database, and then to investigate how the selected lncRNAs modulate colon 

cancer cell line behavior in vitro. We will in turn validate the results of the RNA-

sequencing data set in patient samples from the University of Louisville tissue 
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biorepository. The effect of lncRNA knockdown on target miRNAs will be examined 

with a specific focus on ZFAS1. To further define this, miRNA mimics will be 

transfected to investigate for a reciprocal change in lncRNA expression. This will direct 

further investigation into a target signaling pathway and into the role of the lncRNA on 

cellular phenotype. The role of ZFAS1 on the EMT signaling cascade, the ZEB1/ E-

cadherin, Vimentin signaling pathway will be examined in detail as shown in Figure 13. 

Each of these specific elements will be addressed in the remaining chapters. 
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Figure 13. Hypothesis overview- The lncRNA ZFAS1 which was identified to be differentially expressed from the exploratory RNA-

seq analysis, will have an association with tumor progression via miR-200/ZEB1/E-Cadherin, vimentin signaling 
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CHAPTER VI 

 

MATERIAL AND METHODS 

 

a.  Ethics Statement: 

The experiments in this study were approved by the institutional review board at 

the University of Louisville. (IRB: 97.0361) 

 

b. The Cancer Genome Atlas: 

 

1. RNA-sequencing data 

The Cancer Genome Atlas is a program from the National Institutes of Health, 

which contains clinical and sequencing data for over 10,000 patients from 68 different 

primary sites. There are different tiers of access to the data. An application to obtain 

access to the restricted tier of raw sequencing data was made to the National Center for 

Biotechnology Information, which contains the original sequencing data files. This 

application was made and approved through 

https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login. The sequence data for patients 



 

55 
 

with colon adenocarcinoma were downloaded to the University of Louisville computer 

cluster and stored with an encryption to the standard of the National Institutes of Health. 

 

2.  RNA-sequencing data alignment and statistical analysis 

The data for all patients was aligned by Dr. Theodore Kalbfleisch using STAR 

(Spliced Transcripts alignment to a Reference). This analyzed data was annotated to the 

known ENSEMBL identifier codes (https://www.ensembl.org/index.html). For an initial 

comparative analysis, all patients with both a colon adenocarcinoma RNA-seq data file 

and a normal adjacent colon epithelium RNA-seq data file were selected. A comparative 

analysis of these patients was conducted by Sudhir Srivastava, using a binomial 

regression model, to provide a fold change and adjusted p-value (false discovery rate) for 

each gene.  

The normalized gene expression for ZFAS1, its target microRNAs, and target 

messenger RNAs were downloaded using cBioPortal for Cancer Genomics 

(https://www.cbioportal.org/).115,124 The expression format of ZFAS1 and its target 

mRNAs was in the format of RSEM (Reads Per Kilobase Per Million Mapped Reads).125 

The format of the miRNA data is in RPM (Reads Per Million miRNA Precursor Reads). 

These are standard formats for comparison on cBioPortal. 
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3.  Clinical data set 

The clinical data set for the colon adenocarcinoma patients from The Cancer 

Genome Atlas was downloaded using FirebrowseR 

(https://github.com/mariodeng/FirebrowseR) and using R Studio (Rstudio Inc, Boston 

MA). The validity of the clinical data was verified by downloading the clinical data from 

cBioPortal for Cancer Genomics (https://www.cbioportal.org/).  

 

c. Human Samples: 

  1. Human Whole Tissue RNA Extraction 

Prior to and during the process of RNA extraction, RNase Zap (Ambion, USA) 

was used on workspace surfaces and tools to prevent tissue RNA degradation.  The 

Qiagen miRNeasy® extraction kit (Qiagen, Hilden, Germany) and protocol were used for 

extraction. Six tubes from the kit were labeled with a sample identifier: four 1.5 mL 

tubes, one Qiashredder column (Qiagen, Hilden, Germany), and one micro filter column. 

A container of ice was used to maintain low temperatures while working with fresh 

tissue. Plastic petri dishes were cleaned with 70% ethanol and sprayed with RNase Zap 

before use. A scale was used to measure the mass of the tissue cut. 

The tissue of interest was taken from the freezer, placed on ice, then cut and its 

mass recorded. Once all the tissue was cut, it was minced with a sterile scalpel into a gel 

consistency. The desired tissue mass was between 15-30 mg. The minced tissue was then 

placed into a tube with 700 μL of QIAzol lysis reagent (QIAGEN, miRNeasy kit, Hilden, 

Germany) and incubated for 5 minutes at room temperature. The homogenate was added 
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to the shredder column and centrifuged for 2 minutes at 17,000 x g. The shredder was 

removed from the collection tube and placed in a 1.5mL tube containing 140 μL of 

chloroform. The tube was vortexed for 15 seconds before being centrifuged at 12,000 x g 

for 15 minutes. The top layer of the aqueous solution was extracted, without disturbing 

the interface between the top and bottom layers. A volume of 100% ethanol was mixed 

with this extracted layer, equaling one and a half times the volume of the extracted layer. 

700 μL of the sample was pipetted into a QIAgen filter column and centrifuged at 

8,000 x g for 15 seconds, after which the effluent was discarded. The filter column then 

underwent a series of washes using propriety solutions within the kit beginning with 700 

μL of RWT solution followed by 500 μL of RPE solution. Both washes occurred at 8,000 

x g for 15 seconds, with the effluent being discarded.  Another 500 μL of RPE solution 

was added and centrifuged at 8,000 x g for 2 minutes. The filter column was then 

transferred into a new 1.5 mL collection tube, and 30 μL of RNase-free water (QIAGEN 

miRNeasy kit, Hilden, Germany) was pipetted directly onto the filter. The tube was then 

centrifuged for 1 minute at 8,000 x g to elute the miRNA.  Samples were stored at -80C. 

 

2. Human Whole Tissue Protein Extraction 

Frozen whole colon adenocarcinoma tissue and matched normal adjacent tissue 

samples were obtained from the University of Louisville Surgical Biorepository. Normal 

adjacent tissue was excised 10 cm away from the tumor site. Macrodissection of the 

tissue produced 20 to 50 mg pieces -which were used for protein extraction using 

hematoxylin and eosin stained slides as a guide. Tissue was homogenized on ice using a 
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Tissue Tearor (Biospec Products, Inc., Bartlesville, OK) in 300 μL of 

radioimmunoprecipitation assay (RIPA) buffer (Sigma Aldrich, St. Louis, MO) 

supplemented with 0.1% protease inhibitor and 0.1% phosphatase inhibitor (Thermo 

Fisher Scientific, Waltham, MA). Tissue samples were sonicated with a Sonifier 250 

(Branson Ultrasonics, Danbury, CT) and transferred into 1.5 mL microcentrifuge tubes. 

The tubes were then centrifuged at 11,000g for 10 minutes. Pelleted debris was discarded, 

and the supernatant extracted and stored at -80°C until needed. Total protein 

concentrations were quantified using a bicinchoninic acid (BCA) protein quantification 

assay (Thermo Fisher Scientific, Waltham, MA). Samples were measured in duplicate. 

BCA assay plates were read on a SPECTRAmax PLUS spectrophotometer (Molecular 

Devices, San Jose, CA) at 540 nm.  

 

d.  Laser Capture Microdissection: 

1. Human Tissue Acquisition and Sectioning  

Fresh frozen samples of malignant colon adenocarcinoma and normal adjacent 

colon epithelium from 24 patients were obtained from the University of Louisville 

Surgical Biorepository. The normal tissue sample was taken 10cm from the tumor site.  

Tissue sections from these samples were cut at 7µm thickness and mounted on negatively 

charged slides from the Histogene™ LCM Frozen Section Staining Kit (Thermo Fisher 

Scientific, Waltham, MA) by the University of Louisville, Department of Pathology.  

One slide per tissue sample was stained using hematoxylin and eosin for reference. Other 

tissue sections were frozen and stored at -20C until staining.  



 

59 
 

 

2. Staining of Fresh Tissue Sections 

The protocol from Applied Biosystems Arcturus Staining Kit (Thermo Fisher 

Scientific, Bedford, MA) was followed. One slide at a time was stained and dehydrated 

for each Laser Capture Microdissection session. The protocol was implemented using 

seven plastic Coplin tubes, prefilled with dehydrating solutions: 25 mL 75% ethanol 

(tube #1 & 4), 25 mL distilled water (tubes #2 & 3), 25 mL 95% ethanol (tube #5), 25 mL 

100% ethanol (tube #6), 25 mL xylene (tube #7). Each slide was dipped into tubes 1-2 

sequentially for 30 seconds, then placed flat on an RNase free surface and stained with 

Histogene™ staining solution for 20 seconds. The stain was drained from the slide using 

a Kimwipe (VWR, Radnor, PA) and then placed into tubes 3-6 sequentially for 30 

seconds each and into tube 7 for 5 minutes. The slide was then placed horizontally on an 

RNase free surface and air dried for 5 minutes. 

 

3.. Laser Capture Microdissection 

Immediately following slide staining, normal epithelium or tumor tissue was 

identified by light microscopy at 4x and 10x magnification using the H&E slide as a 

reference. Tissue of interest from the stained slide was then laser captured at 10x 

magnification onto CapSure Macro LCM Caps (Thermo Fisher Scientific, Waltham, 

MA) using the ArcturusXT™ Laser Capture Microdissection System. After laser capture, 

caps were placed onto a microcentrifuge tube, containing 50μL of extraction buffer from 

the PicoPure™ RNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA) and 
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inverted so that the buffer came into contact with the tissue on the cap. The tubes were 

then incubated at 42C for 30 minutes. After incubation the tubes were centrifuged at 800 

x g for 2 minutes and stored at -80C. 

 

4. RNA extraction 

Isolation of total RNA was performed using the Arcturus PicoPure™ RNA 

Isolation Kit (Thermo Fisher Scientific, Baltics UAB) and protocol. Microcentrifuge 

tubes with cell extract from the LCM were thawed. 70% ethanol was added to each 

centrifuge tube so that the cell extract to 70% ethanol ratio was 1:1. RNA purification 

columns were pre-conditioned with 250 μL conditioning buffer, incubated for 5 minutes 

at room temperature, and centrifuged in the provided collections tubes at 16,000 x g for 1 

minute. After conditioning, 100 μL cell extract and ethanol mix were pipetted into the 

RNA purification column. The columns were centrifuged for 2 minutes at 100 x g, and 

then at 16,000 x g for 30 seconds. Effluent was removed from the collection tube. The 

tube then underwent a series of washes using 100 μL of wash buffer 1, followed by 100 

μL of wash buffer 2. Both washes were centrifuged for 1 minute at 8,000 x g. Effluent 

was discarded between each spin. The purification column was transferred to a new 0.5 

mL microcentrifuge tube, and 20 μL elution buffer was pipetted directly onto the 

membrane of the column. The tube was incubated 1 minute at room temperature and 

centrifuged 1 minute at 1,000 x g, followed by 1-minute centrifugation at 16,000 x g to 

elute the RNA. Samples were stored at -80C until further use. 
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e.  Cell lines: 

The Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle) is a 

Broad Institute (Boston, MA) database that contains RNA-seq expression data from 

common cancer cell lines. This facilitates selection of cell lines expressing RNAs of 

interest. After consulting this database, the HT-29 (ATCC® HTB-38™; Stage III), SW-

480 (ATCC® CCL-228™; Stage II), and Caco2 (ATCC® HTB-37™; Stage unknown) 

colon adenocarcinoma cell lines were purchased from the American Type Culture 

Collection (Manassas, VA). The morphology of each cell line as examined by light 

microscopy is shown in Figure 14-16. Gene mutations and the consensus molecular 

subtype of each cell line are described in Table 4.126 

i. HT-29 (ATCC® HTB-38™)  

 The HT-29 cell line is derived from a 44-year-old woman with a stage III (Duke’s 

C) colon adenocarcinoma. As per the guidelines from American Type Culture Collection 

(ATCC), these cells were grown in McCoy’s 5A medium, supplemented with 10% fetal 

bovine serum (FBS), 1% penicillin, streptomycin, amphotericin B, and 1% L-glutamine. 

HT-29 cells have a more epithelial phenotype and are more locally proliferative than 

invasive. 

ii. SW-480 (ATCC® CCL-228™)  

The SW-480 cell line is derived from a 50-year-old man with a stage II (Duke’s 

B) colon adenocarcinoma. The SW-480 cell line was maintained in RPMI-1640 medium, 

supplemented with 10% FBS, 1% penicillin, streptomycin, amphotericin B, and 1% L-
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glutamine, as per ATCC guidelines. SW-480 cells have a mesenchymal phenotype and 

have a more invasive phenotype rather than a locally proliferative phenotype. 

iii. Caco2 (ATCC® HTB-37™) 

The Caco-2 cell line cells were grown in Eagle's Minimum Essential Medium 

(EMEM), supplemented with 10% FBS, 1% penicillin, streptomycin, amphotericin B, 

and 1% L-glutamine, as per ATCC recommendations. Caco-2 cells have a mesenchymal 

phenotype, and have a more invasive phenotype with slow proliferation. 

All cell lines were cultured in 75cm3 or 125cm3 cell culture flasks (Corning Inc., 

Corning, NY) and incubated at 37°C and 5% CO2. Cell lines were authenticated using 

Short Tandem Repeat profiling (ATCC Cell Line Authentication service, Manassas VA). 

This was performed every 6 months. 
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Figure 14. Morphology of the HT-29 cell line (Stage III) as examined with light 

microscopy at low and high density viewing. 

 

At low confluency, the HT-29 cells grow individually and appear rounded. At 

higher confluency, the cells grow in aggregated patches to assume a sheet-like 

appearance. 

 

 

HT-29 ATCC® HTB-38™ details are available at 

https://www.atcc.org/products/all/HTB-38.aspx#generalinformation 
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Figure 15. Morphology of the SW-480 cell line (Stage II) as examined with light 

microscopy at low and high-density viewing. 

 

At low cell density the SW-480 cell line grows in singular rounded cells, but at a 

higher confluency, the SW480 cells take on a more polygonal shape. The cells may also 

take on a tethered appearance at higher confluency. 

 

 

SW-480 (ATCC® CCL-228™) details are available at: 

https://www.atcc.org/products/all/CCL-228.aspx#characteristics 
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Figure 16. Morphology of the Caco-2 cell line (Unknown Stage) as examined with light 

microscopy at low and high density viewing. 

 

At low cell density the Caco-2 cells have a heterogeneous appearance in that the 

cells grow as single cells or in clumps, but also can have variation in individual cell size.  

At a higher confluency, the Caco-2 cells grow with a sheet-like appearance and can 

demonstrate differences in individual cell size. 

 

 

 

Caco2 (ATCC® HTB-37™) details are available at: 

https://www.atcc.org/products/all/HTB-37.aspx#characteristics 
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Table 4. Gene mutations and molecular characteristics of the 3 cell lines used for 

in vitro studies.126 

Cell line 

Gene Mutations Molecular Characteristics 

TP53 KRAS BRAF PIK3CA PTEN 

Microsatellite 

Instability 

CIMP CMS 

HT-29 

(Stage III) 

p.R273H wt 

p.V600E; 

p.T119Sc 

wt wt MSS CIMP+ 3 

SW-480 

(Stage II) 

p.R273H; 

p.P309S 

p.G12V wt wt wt MSS CIMP- 4 

Caco-2 (Stage 

unknown) 
p.E204X wt wt wt wt MSS CIMP- 4 

TP53- Tumor Protein 53 gene, KRAS- Kirstin Rat Sarcoma gene, BRAF- B 

rapidly accelerated fibrosarcoma gene, PIK3CA- Phosphatidylinositol 3-kinase gene, 

PTEN- Phosphatase and tensin homolog gene, CIMP- CpG island methylator phenotype, 

CMS- Consensus molecular subtype, wt- wild type, MSS- microsatellite stability stable. 
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f.  Small interfering RNA (siRNA) 

Five small interfering RNAs (siRNA) were purchased from DharmaconTM 

(Horizon Inspired Cell Solutions, Lafayette, CO). The LincodeTM siRNAs were as 

follows: Human GAS5 Control (Reference: D-001310-10-05), Non-targeting siRNA 

(Reference: D-001320-10-05), Human PVT1 (Reference: R-029357-00-0005), Human 

ZNFX1-AS1 (Reference: RU-034485-00-0005), and Human GAS5 (Reference: R-

188293-00-0005). Each siRNA was delivered as a dry pellet. A 5X siRNA buffer 

[DharmaconTM (Horizon Inspired Cell Solutions, Lafayette, CO)] was diluted to a 1X 

concentration with RNase free water. This 1X siRNA buffer was then used to resuspend 

siRNA pellets to 5 μM solutions as recommended by the manufacturer. Once 

resuspended, solutions were placed on an orbital shaker for 30 minutes at room 

temperature and then centrifuged. The concentration of each solution was confirmed to 

be 5 μM using a NanoDrop® 2000 spectrophotometer (ThermoFisher ScientificTM, 

Waltham, MA, USA). Resuspended siRNAs were aliquoted per the manufacturer’s 

recommended amounts and stored at -20°C. 

HT-29, SW-480, and Caco2 cells were seeded in 6-well plates at 1.66 x 105 cells 

per well and allowed to grow to confluence for 24 hours in Antibiotic/Antimycotic (A/A) 

free media. Following manufacturer’s instructions for transfection, 5 μM siRNA was 

diluted with serum-free media, and further combined with a DharmaFECT reagent (x mL 

DharmaFECT solution and x mL serum-free media). After removing the original media, 

the combined transfection reagents were added to each respective well of the 6-well plate 

and diluted with A/A free media. Transfection was subsequently performed for 24-hours 

at 37oC in 5% CO2, after which the solution in each well was removed and replaced with 
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2 mL of A/A free media. Cells were then further incubated for downstream experiments 

at variable time points depending on the experiment.  

 

g.  RNA extraction 

i. Protein and RNA Isolation SystemTM (PARIS) Kit (Life Technologies®, Carlsbad 

CA). 

Cells from culture were placed in a 15mL conical tube, and pelleted at a speed of 

113 x g or 7 minutes using an Eppendorf Centrifuge 5804 R (Eppendorf AG, Hamburg, 

Germany).  The supernatant was removed, and the cells resuspended in 1 mL cold 

Phosphate Buffer Saline (PBS). The resuspension was transferred to a 1.5 mL 

microcentrifuge tube, and pelleted at 500 x g for 1 minute using an AccuSpin Micro 17 

microcentrifuge (Fisher Scientific, Hampton, NH).  

The Protein and RNA Isolation System (PARIS) kit (Life Technologies®, 

Carlsbad CA) was used to separate the nuclear fraction of RNA from the cytoplasmic 

fraction. Samples of cells were resuspended with 300 μL ice-cold Cell Fractionation 

Buffer. The pellet was gently resuspended by carefully pipetting up and down 3-4 times 

to prevent contamination of the cytoplasmic fraction with nuclear components. Once the 

mixture was homogenized, cells were incubated on ice for 5-10 minutes.  After 

incubation, the cells were centrifuged at 500 x g for 5 minutes at 4°C in order to separate 

the mixture into nuclear (pellet) and cytoplasmic (supernatant) fractions. The supernatant 

was carefully collected, placed into a new microcentrifuge tube, and stored on ice until 

further use. The pellet was then washed with ice-cold Fractionation Buffer and 
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centrifuged at 500 x g for 1 minute at 4°C in order to ensure that there was little 

contamination between the fractions. Next, the supernatant was removed and discarded. 

The nuclear pellet was resuspended in 300 uL ice-cold Cell Disruption Buffer by 

vigorously pipetting to ensure lysis and homogenization. The nuclear fraction was then 

placed on ice until further use.   

To begin RNA Isolation, 300 μL 2X Lysis/Binding Solution was added to the 

total, nuclear and cytoplasmic fractions. Next, an equal amount of 100% ACS grade 

ethanol was added to each fraction. The samples were then pipetted into the supplied 

filter cartridges/collection tubes, and centrifuged at 15,000 x g for 1 minute. The effluent 

was discarded, and then 700 μL Wash Solution 1 added to each sample. The tubes were 

then centrifuged at 15,000 x g for 1 minute. The effluent was discarded, and 500 μL 

Wash Solution 2/3 was added. The sample was once again centrifuged at the same 

parameters as previously. This previous step is then repeated, with another 500 μL Wash 

Solution 2/3 being added to the tubes. Next, the filter cartridges were added to new tubes, 

and 30 μL Elution Solution heated to 95°C was added to each tube. Samples were then 

centrifuged at 15,000 x g for 30 seconds. Another 30 uL Elution Solution was applied to 

the filter, and samples centrifuged at 15,000 x g for 30 seconds. The filter cartridges were 

discarded, and the concentration and purity of the isolated RNA obtained using 

NanoDrop® 2000 spectrophotometry. Samples were stored at -80°C until further use.  
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ii. Qiagen miRNeasy Mini Kit (Qiagen, Hilden, Germany) 

The media from one well in a 6-well plate was removed without disrupting the 

layer of cells. The cells were lysed using 700 μL Qiazol Lysis Reagent (Qiagen, Hilden, 

Germany). The solution was then stored at -80oC for further RNA processing. Total RNA 

extraction was performed using the miRNeasy Mini Kit (Qiagen, Hilden, Germany). Six 

hundred μL Chloroform (Sigma Aldrich) was added to the lysis solution, vortexed, and 

centrifuged at 12,000 x g for 15 minutes. The top, clear aqueous phase was transferred to 

a new tube and washed with 100% ethanol, followed by centrifugation at 8,000 x g for 15 

seconds. A series of washes was then completed following the manufacturer’s protocol, 

discarding the effluent after each successive wash. Total RNA was then eluted with 30 

μL nuclease-free H2O and centrifuged at 8,000 x g for 1 minute. Total RNA 

concentration and purity were assessed using Nanodrop® 2000 spectrophotometry 

(Thermo Fisher Scientific, Waltham, MA). Total RNA was considered pure and usable if 

the sample had a 260/280 ratio of 1.8-2.2. Samples were stored at -80oC until further use.  

 

h.  Reverse Transcriptase and Quantitative Real-time Polymerase Chain 

Reaction (RT qRT-PCR) 

i. Superscript™ IV VILO™ mRNA RT qRT-PCR  

For mRNA or lncRNA single assay quantification, the extracted template RNA 

was converted to cDNA using a Superscript™ IV VILO™ Master Mix with ezDNase 

enzymes (Life Technologies, Carlsbad, CA). The reverse transcription (RT) total reaction 

volume for each sample was 20μL, consisting of the following components: 
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Component Volume per 20 𝝁L reaction (𝝁L) 

Superscript™ IV VILO™ Master Mix 4.0 

Template RNA  1.0 

Nuclease Free H2O  15.0 

Total 20.0 

 

After the master mix was made, it was gently mixed with the template RNA of 

each sample in a 96-well reaction plate. The reaction plate was promptly sealed, 

vortexed, and centrifuged prior to running RT on a pre-set thermal cycler program. Upon 

completion, the cDNA was used either used immediately to perform qRT-PCR or stored 

until further use at 4oC.  

Nucleic acid quantification for RNA targets was performed using a Step-One Plus 

qRT-PCR system (Life Technologies, Carlsbad, CA). Each reaction was performed in 

duplicate at a 10μL qRT-PCR reaction volume. A master mix solution for qRT-PCR for 

each lncRNA was made as follows: 

 

Component Volume per 10 𝝁L reaction (𝝁L) 

20x TaqMan Gene expression assay 0.5 

TaqMan Fast Advanced Master Mix 5.0 

Nuclease Free H2O  3.5 

Total 9.0 

 

The following 20x TaqMan Gene Expression Assay primers were selected for 

use:  
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ZFAS1 (Hs01379985 M1)  H19 (HS00399294_g1) 

GAS5 (Hs03464472_m1)  ZEB1 (Hs01566408_m1) 

PVT1 (HS00413039_m1)  ZEB2 (Hs00207691_m1) 

FAM83H-AS1 (HS01064424_S1) CDH1 (Hs01023895_m1) 

FER1L4 (Hs00957065_g1)  Vimentin (Hs00958111_m1) 

UCA1 (Hs01909129_s1)  GAPDH (Hs02786624_g1) 

The master mix was vortexed and centrifuged to bring the solution to the bottom 

of the tube. 9 μL of each qPCR master mix was loaded into each well of a 96-well 

reaction plate, followed by 1 μL cDNA. The plate was sealed, vortexed, and centrifuged 

to bring the contents to the bottom of each well and to eliminate air bubbles. The reaction 

plate was run on a pre-set thermal cycler program using a Step-One plus qRT-PCR 

machine to determine the quantity of each of the lncRNAs in the tested samples.  

The  -ΔΔCt method was used to determine fold changes.127 The expression of 

each examined lncRNA was normalized to GAPDH, using a Ct threshold of 0.1, in order 

to calculate ∆Ct values for analysis using the comparative ∆Ct method. Analysis was 

completed for expression of each lncRNA for each CRC cell line in comparison to that of 

the non-target control lncRNA in the same CRC cell line.  

 

ii. miRNA RT qRT-PCR 

After RNA extraction, reverse transcription (RT) was performed in order to 
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measure the expression of select miRNAs. The RNA was converted to cDNA using the 

TaqMan® miRNA Reverse Transcription Kit, along with specific TaqMan® miRNA 

primers (Life Technologies, Carlsbad, CA). The specific miRNA primers consisted of the 

following: miR-200b (002251), miR-200c (002300), miR-27a (000408), miR-484 

(001821,) and miR-150 (000473). Small nuclear RNA, U6 (001973), was used as a 

housekeeper. Once cDNA was created, qRT-PCR was performed, and TaqMan® probes 

specific for each miRNA were used in order to measure their expression.  

The total reaction volume for each RT reaction was 15μL, and consisted of 7μL 

master mix, 3μL TaqMan® miRNA primer, and 5μL RNA at a concentration of 2ng/μL. 

The master mix consisted of the following:  

 

Component 

Volume per 10 𝝁L reaction (𝝁L) 

100mM dNTPs (with dTTP) 0.15 

MultiScribe™ Reverse Transcriptase, 50U/μL 1.00 

10X Reverse Transcription Buffer 1.50 

RNase Inhibitor, 20U/μL 0.19 

Nuclease-free water 4.16 

TaqMan® miRNA primer (5X) 3.00 

Total 10.00 

 

 After a master mix was created for each individual miRNA, the contents were 

vortexed and centrifuged. The tubes were then placed on ice until further use. RT was 

performed using Applied Biosystems® MicroAmp© Optical 96-Well Reaction Plate (Life 

Technologies, Carlsbad, CA). 10 μL master mix was pipetted into each well, along with 

5μL RNA. The plate was then sealed, vortexed and centrifuged. Once complete, the plate 

was then placed into an Eppendorf Mastercyler® nexus (Eppendorf, Hamburg, Germany), 
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and run at the following conditions: 16° C for 30 minutes, 42° C for 30 minutes, and 85° 

C for 5 minutes. After RT was completed, the cDNA was either stored at -20° C until 

further use or immediately used to perform qRT-PCR.  

 cDNA was quantified using Step-One Plus qRT-PCR machines (Life 

Technologies, Carlsbad, CA). Each qRT-PCR reaction was performed in duplicate, with 

a final well volume of 10μL. Similar to RT, a master mix was created for each specific 

miRNA, and contained the following:   

 

Component Volume per 10 𝝁L reaction (𝝁L) 

TaqMan® MicroRNA Assay (20X) 0.50 

TaqMan® Universal Master Mix II, no UNG 5.00 

Nuclease-free water 3.17 

Product from RT reaction (Minimum 1:15 Dilution) 1.33 

Total 10.00 

 

   

After all the components were added, the master mix was vortexed and 

centrifuged. The contents were then added to an Applied Biosystems® MicroAmp© Fast 

96-Well Reaction Plate (0.1mL) (Life Technologies, Carlsbad, CA), with each well 

receiving 8.67μL master mix followed by 1.33μL cDNA. After loading the plate, it was 

sealed, vortexed and centrifuged. The plate was then inserted into a Step-One Plus qRT-

PCR machine, and run at the following conditions for 40 cycles: 50° C for 2 minutes, 95° 

C for 10 minutes, and 60° C for 1 minute. 
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The expression of each miRNA was normalized to U6, using a Ct threshold of 1.0 

to calculate ΔCt values. Analysis was performed to determine the expression for each 

miRNA in all three transfected CRC cell lines, and compared to their expression as seen 

in untransfected samples. 

 

i.  Protein Extraction and Quantitation 

 i. Protein extraction 

A solution that consists of 1000 μL of radioimmunoprecipitation assay (RIPA) 

buffer (Sigma Aldrich, St. Louis, MO) supplemented with 2 μL protease/phosphatase 

inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA) was prepared. The media 

from each well in a 6-well plate was removed with a pipette without disturbing the cell 

layer. Cells were then lysed and harvested by removing the transfection media and adding 

150μL RIPA buffer mix to the six-well plate. A cell scraper was then utilized to collect 

the cell lysate. Samples were labeled with the date and experimental conditions. The 

samples were frozen and stored at -20°C until processing. 

Total protein was processed by sonication with a Sonifier 250 (Branson 

Ultrasonics, Danbury, CT). Each sample was sonicated 3 times with 3 pulses per 

sonication. The sonicator was cleaned between each sample with a kimwipe and 70% 

alcohol. Samples were transferred into 1.5 mL microcentrifuge tubes. The tubes were 

then centrifuged at 10,000g for 10 minutes. Pelleted debris was discarded, and the 

supernatant extracted and stored at -20°C until quantitated.  
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ii. Protein quantitation 

Total protein concentrations were quantified in a 96-well plate using a 

bicinchoninic acid (BCA) protein quantification assay (Thermo Fisher Scientific, 

Waltham, MA).  Each sample concentration was measured in duplicate at a 1:20 dilution 

with double-distilled water. For each protein sample, 38 μL water was pipetted into a 

well and 2 μL protein sample was pipetted into the well. This solution was mixed 

thoroughly and 20 μL was pipetted into the well in the row directly adjacent and to the 

right (E.g. well a3 -> well a4).  

The protein standards were made in the 96-well plate though serial dilution down 

the plate (E.g. row A -> H). This serial dilution was performed in duplicate. Forty μL 

BCA standard was pipetted into well A1 and A2. Twenty μL of double-distilled water 

was pipetted into each well in rows B to row H into both columns 1 and 2. Twenty μL 

was sequentially transferred from row A to row G with thorough mixing with each 

transfer. Row H contained only 20 μL of distilled water. Equal amounts of Pierce BCA 

Protein Assay Reagent A and B (ThermoFisher Scientific, Rockford, IL) were made into 

a solution. One hundred sixty μL of this solution was added to each well in the 96-well 

plate. The plate was covered and incubated at 37°C for 30 minutes.  

BCA assay plates were read on a SPECTRAmax PLUS spectrophotometer 

(Molecular Devices, San Jose, CA) at 540 nm. The protein concentrations were then used 

to calculate precise amounts of sample and RIPA buffer to be added to protein samples 

used for gel electrophoresis.   
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j.  Western Blotting 

Prior to electrophoresis, protein samples were prepared and denatured with 4X 

BoltTM LDS Sample Buffer (Life Technologies) and 2-mercaptoethanol, using a ratio of 1 

μL per 100 μL 4X Bolt. Each sample was brought to a total volume of 60 μL with RIPA 

buffer. Samples were then heated for 10 minutes at 90 C.  

Each denatured protein sample was loaded onto a BoltTM 4-12% Bis-Tris Plus gel 

(Invitrogen, Life Technologies, Carlsbad, CA) with BoltTM MES SDS Running Buffer 

(Novex, Carlsbad, CA). Each gel was run at 180V for 40 minutes. A dry transfer protocol 

on a nitrocellulose membrane was employed using iBlot Gel Transfer Stacks (Invitrogen, 

Kiryat Shmona, Israel) with an iBlot transfer system (Invitrogen, Life Technologies, 

Carlsbad, CA)  

The transfer step was set for 7 or 9 minutes depending on the protein target of 

interest. Once completed, cuts were made to the membrane to separate beta actin and 

proteins of interest. Membranes were blocked in 5% dry milk in TBST (Tris buffered 

saline Tween-20 buffer; Thermo Fisher Scientific) for 1 hour prior to being incubated 

with primary antibody for 18 hours at room temperature.  

The membranes were incubated with antibodies against E Cadherin 24E10 

(1:1000; Cell Signaling, Danvers, MA), Vimentin D21H3 XP (1:1000; Cell signaling, 

Danvers, MA), and ZEB1 sc-515797 (1:100; Santa Cruz) in 5% dry bovine serum 

albumin in TBST, and Beta actin 8H10D10 (1:5000; Cell Signaling or 1: 50,000; Cell 

Signaling) in 5% milk in TBST. Beta actin was used as a cytoplasmic and total protein 

internal control.    
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The membranes were washed with TBST 3 times following primary antibody 

incubation. Secondary HRP-conjugated anti-rabbit antibody 7074S (1:5000; Cell 

Signaling) was suspended in 5% milk. Secondary HRP-conjugated anti-mouse antibody 

7076 (1:5000; Cell Signaling) was also suspended in 5% milk. For E-cadherin and 

Vimentin detection, the anti-rabbit secondary antibody was used. For beta-actin and 

ZEB1, the anti-mouse secondary antibody was used. The blot membranes were incubated 

in the secondary antibody for 1 hour at room temperature. The membranes were washed 

in TBST again prior to imaging. The membrane was incubated in equal proportions of 

Enhanced Chemiluminescence (ECL) Reagents A and B (Bio-Rad, Hercules, CA) for 5 

minutes to detect target proteins. Immunoblots were developed and imaged using a 

ChemiDoc MP imager (Bio-Rad).  

 

k.  Functional Assays 

i. Scratch Assay 

Cells were plated at 2x106 cells per well in a 6-well plate. This concentration was 

selected to allow the cells to grow to confluence in 24 hours. The cells were maintained 

in 10% FBS supplemented media. Using a sterile 200μl pipette tip, a single vertical and 

horizontal scratch was made. The media was replaced after the scratch was made and at 

24-hour time intervals. A representative photo was taken at the time of the initial scratch, 

as well as every 24 hours up to 120 hours or until complete scratch closure. Photos were 

taken using a Nikon Eclipse TS100 microscope at 4x magnification. The average distance 

between the wound edges was calculated for each time point. These average distances 
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were used to calculate the percentage closure of the wound compared to the 0-hour time 

point. Experiments were completed with at least 3 replicates. 

 

ii. Transwell Migration 

After splitting, cells were resuspended in serum-free media (SW480: RPMI-1640 

media; HT-29: McCoy’s 5a media; Caco2: EMEM media). The cellular suspension was 

pipetted into a polycarbonate membrane insert (COSTAR Transwell Permeable Supports, 

8.0μm pore polycarbonate membrane), which was brought up to a final volume of 500 μL 

with serum-free media. SW480 cells were seeded at 2 x 105 cells/well, while HT-29 and 

Caco2 cells were seeded at 5 x 105 cells/ well. 750 μL complete media (supplemented 

with 10% fetal bovine serum) was placed in each well of a 24-well plate to serve as a 

chemoattractant. Once the chemoattractant was added, the inserts were placed into their 

respective wells. The plate was then incubated at 37°C for 24 hours. After incubation, the 

media within the insert was removed.  Non -migratory cells were removed with a cotton 

swab. Each transwell insert was stained with a Modified Giemsa staining kit (Diff-Quik 

staining kit, Electron Microscopy Sciences, Hatfield, PA). The inserts were transferred 

through 3 staining solutions, remaining in each solution for 4 minutes. Excess dye in the 

upper chamber was removed with a cotton swab. Six pictures were taken of each insert at 

10x magnification, and the migratory cells in each of these fields counted and averaged. 

Values were reported as medians (with interquartile range). Manual cell counts were 

cross-verified with a semi-automatic cell counting software, CELL COUNTER.128 
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iii. Proliferation 

 Cells utilized for proliferation were grown and monitored until the time of use. 

Prior to plating, cells were split and their concentration determined. HT-29, SW-480, and 

Caco2 cells were each plated at a concentration of 100,000 cells per well in 2% FBS 

supplemented media.  Cells were plated on a 12-well plate in triplicate. Cells were 

counted at the following time points: 24, 48, 72, 96 and 120 hours. At each time point, 

media was removed and 250 μL trypsin added to the designated wells at the given time 

point. Plates were then incubated for 5 minutes. After incubation, 750 μL media was 

added, and the contents of each well were thoroughly mixed. Two 10 μL samples from 

each well were then pipetted into a dual chamber cell slide (Bio-Rad Laboratories, 

Hercules, CA) and inserted into an automatic cell counter (TC20TM Bio-Rad 

Laboratories, Hercules, CA) to obtain daily cell counts. Cell counts from each replicate 

for the given time points were averaged. The average cell counts from the non-target cells 

were then compared to those of the siRNA-transfected cells. 

 Twenty μL samples from each well were pipetted into a microtube, and 20 μL of Trypan 

blue was added. This solution was mixed thoroughly with a pipette. Ten μL of the mixed 

solution was added to each of the chambers of the dual chamber cell slide (Bio-Rad 

Laboratories, Hercules, CA) and inserted into an automatic cell counter (TC20TM Bio-

Rad Laboratories, Hercules, CA) to obtain the percentage of viable cells. 

 

l.  Statistical Analysis: 

All statistical analysis was performed using SPSS v25.0 (IBM Corp, Armonk 

NY). Continuous data is reported as the median value with the inter-quartile range. 
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Categorical data is reported as the frequency and percentage. For comparisons between, 

continuous data, the independent samples t-test or Mann-Whitney U test were used, 

where appropriate.  For comparisons between categorical data, the Chi-squared test, or 

the Fischer’s exact test was used, where appropriate. All statistical tests were two-tailed 

and a statistical test was considered significant with a p-value of <0.05. 
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CHAPTER VII 

 

VALIDATION OF lncRNA EXPRESSION IN HUMAN SAMPLES AND IN 

COLON ADENOCARCINOMA CELL LINES 

 

a)  Introduction 

 

As described in the previous chapters, seven lncRNAs were identified to be 

significantly increased in colon adenocarcinoma samples compared to adjacent normal 

tissue and were selected for further study. There are, however, some issues with using 

data from The Cancer Genome Atlas. The tissue that is used for RNA-seq is from a 

macro-dissected tumor sample. Therefore it includes not only cancer cells, but also the 

stroma, with its content representing the tumor microenvironment.113 Previous studies 

have shown that the tumor microenvironment can skew data analysis by “contaminating” 

the actual tumor expression of target molecules such a miRNA.34 In addition, cells from 

within the tumor microenvironment may express or secrete lncRNAs in order to induce 

an effect on cancer cells.94 In this case, whole tissue dissection may lead to the false 

conclusion that the lncRNA is expressed from the cancer cells instead of from cells 

within the tumor microenvironment.   
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There is therefore a need to verify tissue expression in both clinical samples and in 

cell lines for in vitro mechanistic and functional analysis. We hypothesized that the 

selected lncRNAs would have an increased expression in colon adenocarcinoma 

compared to normal colon epithelium. In addition, we aimed to characterize each of the 

lncRNA, which were found to be significantly increased in the clinical samples, in terms 

of their cellular location in our colon cancer cell lines, as this may help to delineate their 

mechanism of action. For lncRNAs that are principally located in the cytoplasm, this may 

suggest that the lncRNA has its effect through a competitive endogenous RNA 

mechanism. 

 

b) Results 

1. Expression of the seven identified lncRNAs in human samples 

Patient details from the University of Louisville biorepository are shown in table 5. 

Using laser capture Microdissection (LCM), cells were obtained from colon 

adenocarcinoma samples along with paired normal colon epithelium from the same 

patient. We then determined the difference in expression of the 7 selected lncRNA’s 

between the two tissues. All normal colon epithelium samples were taken 10cm from the 

colon carcinoma. 

Three of the seven lncRNAs, PVT1, GAS5, and ZFAS1 were significantly 

upregulated in colon adenocarcinoma samples compared to the paired normal colon 

epithelium (Fold regulation= 2.75, p=0.003, Fold regulation= 1.70, p=0.021, and Fold 

regulation=3.06, p<0.001) (Figure 17 and 18). In contrast, FAM83H-AS1 and UCA1  
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Table 5. Clinical details of patients from the University of Louisville Biorepository 

 

Variable 
N=23 

N(%) 

Age at diagnosis(years) (median, Interquartile Range) 70 (61-77) 

Gender 

Male 

Female 

 

16 (70) 

7 (30) 

Race 

Caucasian 

African-American 

 

17(74) 

6(26) 

AJCC Tumor Stage 

Stage I 

Stage II 

Stage III 

Stage IV 

 

7(30) 

6(26) 

5(22) 

5(22) 

AJCC- American Joint Committee on Cancer 
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Figure 17. Differential expression of the 7 identified lncRNAs between colon 

adenocarcinoma compared to paired normal colon epithelium in laser capture 

microdissection samples.  

 

 

 

PVT1, GAS5, and ZFAS1 (green) were significantly increased in colon 

adenocarcinoma compared to normal colon epithelium. FAM83H-AS1 and UCA1 (red) 

were significantly decreased in colon adenocarcinoma compared to normal colon 

epithelium. 
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Figure 18. Individual differences in lncRNA expression between normal colon 

epithelium and colon adenocarcinoma for each of the samples that underwent laser 

capture microdissection.; a) FAM83H-AS1, b) PVT1, c) UCA1, d) H19, e) FER1L4, f) 

GAS5, g) ZFAS1. 

 

 

 

 

There was significantly decreased expression of FAM83H-AS1 in colon 

adenocarcinoma cells compared to that of normal colon epithelium.  
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There was significantly increased expression of PVT1 in colon adenocarcinoma 

cells compared to that of normal colon epithelium.  
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There was significantly decreased expression of UCA1 in colon adenocarcinoma 

cells compared to that of normal colon epithelium.  
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There was no difference in the expression of H19 in colon adenocarcinoma cells 

compared to that of normal colon epithelium.  
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There was no difference in the expression of FER1L4 in colon adenocarcinoma 

cells compared to that of normal colon epithelium. 
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There was significantly increased expression of GAS5 in colon adenocarcinoma 

cells compared to that of normal colon epithelium.  
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There was significantly increased expression of ZFAS1 in colon adenocarcinoma 

cells compared to that of normal colon epithelium. 

 

 

 



 

93 
 

were significantly downregulated in the colon adenocarcinoma samples compared to 

normal colon epithelium (Fold regulation= -3.68, p<0.001 and fold regulation= -4.85, 

p<0.001). 

 

2. Verification of cell line lncRNA expression and baseline lncRNA 

expression in 3 colon adenocarcinoma cell lines 

 The Cancer Cell Line Encyclopedia is a public bioinformatics repository from the 

Broad Institute that has RNA-sequencing data on cancer cell lines.118 We employed this 

database to examine for expression of the selected lncRNAs in each of the three cell lines 

(Table 6). This database was also used to verify the given cell lines as an appropriate 

model for studying the in vitro function of the specific lncRNAs. The three cell lines used 

were: HT29 (Stage III), SW480 (Stage II), and Caco2 (Stage Unknown). Both GAS5 and 

ZFAS1 had considerable expression in all 3 of the cell lines, as compared to the other 

lncRNAs.  

By utilizing the RNA-sequencing data from The Cancer Genome Atlas, we sought 

to examine the expression of lncRNAs which were confirmed to be significantly 

increased in colon cancer compared to normal colon epithelium, and that were 

significantly represented in our cell line models. We therefore proceeded with the 

examination of PVT1, GAS5, and ZFAS1 in all three cell lines. 
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3. Cellular localization of lncRNAs in the 3 colon adenocarcinoma cell lines 

To further characterize the 3 selected lncRNAs, we examined their subcellular 

location in each of the cell lines. The Protein And RNA Isolation System (PARIS) kit 

was used for this purpose. This kit facilitates the separation of the nuclear compartment 

from the cytoplasmic compartment, which allows for the examination of RNA and/or 

expression in each respective compartment. 



 

 
 

9
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Table 6. RNA-seq expression of the 7 lncRNA in each of the three cell lines.  

Cell line 

FAM83H-AS1 

Log2(FPKM) 

PVT1 

Log2(FPKM) 

UCA1 

Log2(FPKM) 

H19 

Log2(FPKM) 

FER1L4 

Log2(FPKM) 

GAS5 

Log2(FPKM) 

ZFAS1 

Log2(FPKM) 

HT29 

Stage III 
- 0.08953 2.686195 1.35313 - 1.81046 - 3.55516 6.962189 8.12454 

SW480 

Stage II 
4.119231 3.494942 1.50359 - 0.7996 4.946835 6.707078 6.850634 

Caco2 

Stage 

Unknown 

3.426141 0.871515 5.606888 2.45024 - 1.78887 6.341947 8.056874 
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ZFAS1 was significantly increased in the cytoplasmic fraction compared to the 

nuclear fraction of all 3 cell lines (HT29: 76% vs. 24%, p=0.02, SW480: 84% vs. 16%, 

p=0.03, Caco2 77% vs. 23%, p=0.005) (Figure 19). Similarly, GAS5 was also 

significantly increased in the cytoplasmic fraction compared to the nuclear fraction in all 

3 cell lines (HT29: 79% vs. 21%, p=0.02, SW480: 84% vs. 16%, p=0.003, Caco2 77% 

vs. 23%, p=0.008) (Figure 20). In contrast, PVT1 was more expressed in the nuclear 

fraction compared to the cytoplasmic fraction (HT29: 87% vs. 13%, p=0.005, SW480: 

80% vs. 20%, p=0.1, Caco2 64% vs. 36%, p=0.004) (Figure 21). 

 

4. Efficiency and fold regulation of lncRNA knockdown in 3 colon  

adenocarcinoma cell lines  

The expression of the three lncRNAs was examined in each of the 3 cell lines 

following transfection with either ZFAS1 siRNA, PVT1 siRNA, GAS5 siRNA, or with 

non-targeting siRNA. In the HT29 cell line, there was efficient knockdown of both 

ZFAS1 and GAS5, but not PVT1 compared to cells transfected with non-target siRNA 

(Figure 22a-c). Accordingly, there was a significant decrease in expression of ZFAS1 and 

GAS5 compared to non-target siRNA (Fold regulation=  -2.95, p<0.001, Fold regulation= 

-4.75, p=0.002 respectively.) (Figure 22d) 

Similarly, in the SW480 cell line there was efficient knockdown of both ZFAS1 

and GAS5, but not PVT1 compared to cells transfected with non-target siRNA (Figure 

23a-c).  As expected, there was a significant decrease in expression of ZFAS1 and GAS5  
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Figure 19. Subcellular distribution of ZFAS1 in each of the three colon adenocarcinoma 

cell lines. In each of the three cell lines, ZFAS1 was significantly increased in the 

cytoplasm (highlighted in blue) compared to that of the nucleus (highlighted in orange) 

(HT29: p=0.02, SW480, p=0.03, Caco2, p=0.005). 
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Figure 20. Subcellular distribution of GAS5 in each of the three colon adenocarcinoma 

cell lines. In each of the three cell lines, GAS5 was significantly increased in the nucleus 

(highlighted in orange) compared to that of the cytoplasm (highlighted in blue) (HT29: 

p=0.005, SW480, p=0.1, Caco2, p=0.004). 
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Figure 21. Subcellular distribution of PVT1 in each of the three colon adenocarcinoma 

cell lines. In each of the three cell lines, PVT1 was significantly increased in the 

cytoplasm (highlighted in blue) compared to that of the nucleus (highlighted in orange) 

(HT29: p=0.02, SW480, p=0.003, Caco2, p=0.008). 
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Figure 22. Efficiency of knockdown of ZFAS1, PVT1, and GAS5 compared to 

non-targeting siRNA in the HT29 cell line. There is significant knockdown of ZFAS1 (a) 

and GAS5 (c) but not PVT1 (b). There is significant decreased in fold regulation of 

ZFAS1 and GAS5 compared to non-target siRNA (d) 
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compared to non-target siRNA (Fold regulation= -9.96, p<0.001, Fold regulation= -9.79, 

p<0.001 respectively.) (Figure 23d). 

Finally, in the Caco2 cell line there was efficient knockdown of both ZFAS1 and 

GAS5, but not PVT1 compared to cells transfected with non-target siRNA (Figure 24a-

c).  There was a significant decrease in expression of ZFAS1 and GAS5 compared to 

non-target siRNA (Fold regulation= -5.28, p<0.001, Fold regulation= -7.18, p=0.01 

respectively) (Figure 24d). 
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Figure 23. Efficiency of knockdown of ZFAS1, PVT1, and GAS5 compared to 

non-targeting siRNA in the SW480 cell line. There is significant knockdown of ZFAS1 

(a) and GAS5 (c) but not PVT1 (b). There is significant decreased in fold regulation of 

ZFAS1 and GAS5 compared to non-target siRNA (d) 
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Figure 24. Efficiency of knockdown of ZFAS1, PVT1, and GAS5 compared to 

non-targeting siRNA in the CACO2 cell line. There is significant knockdown of ZFAS1 

(a) and GAS5 (c) but not PVT1 (b). There is significant decreased in fold regulation of 

ZFAS1 and GAS5 compared to non-target siRNA (d) 
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C) Discussion 

Utilizing the TCGA database, we have identified that 7 lncRNAs showed 

increased expression in colon adenocarcinoma compared to normal colon epithelium. We 

aimed to verify the expression of each of the selected lncRNAs in clinical samples that 

underwent laser capture microdissection. Three of the lncRNAs were increased in 

expression compared to the paired normal colon epithelium sample, which importantly 

matched the direction of expression identified from The Cancer Genome Atlas. In 

contrast, two of the lncRNAs were significantly decreased in the colon adenocarcinoma 

sample compared to that of the paired normal colon epithelium. Furthermore, all 3 cell 

lines had robust expression of ZFAS1, GAS5, and PVT1, which were chosen for further 

investigation. Upon examining the subcellular location of each of these 3 lncRNAs, 

ZFAS1 and GAS5 were located mainly in the cytoplasm compared to PVT1, which was 

located mainly in the nucleus. When the efficiency of knockdown with a siRNA against 

each of the three lncRNAs was examined, robust knockdown was only observed with 

ZFAS1 and GAS5. 

It is important to characterize and validate the expression of molecules from high-

throughput sequencing databases with institutional clinical samples. As previously 

mentioned, molecules can have differential expression depending on the intra-tumoral 

location (e.g. surface of the colon vs. the invasive border of the tumor), or the cell from 

which the RNA is expressed (e.g. immune cell in the microenvironment vs. colon 

adenocarcinoma cell). Interestingly, UCA1 was significantly decreased in our 

institutional samples which support Jahaingiri et al. who hypothesize that UCA1 is 

expressed by cancer associated fibroblasts as opposed to colon adenocarcinoma cells.94 
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In addition, the cellular localization of lncRNAs helps to define their function. 

RNA interference typically occurs in the cytoplasm of a cell, as the RISC complex and 

the other machinery for this function occurs in the cytoplasm. microRNAs and small 

interfering RNAs both mediate their function in an RNA interference-based mechanism, 

to either repress the translation of a mRNA or to degrade the transcript in the cytoplasm. 

Therefore, one would suspect that a lncRNA located in the cytoplasm would be more 

likely to perform its principal function in the cytoplasm, such as that of a competitive 

endogenous RNA function. This hypothesis is supported by the results of the knockdown 

experiments, as PVT1, which is a nuclear located lncRNA does not have significant 

knockdown with transfection of siRNA. This is in contrast to that of both ZFAS1 and 

GAS5, which are located in the cytoplasm and have robust knockdown with siRNA. The 

further examination of PVT1 would require an alternative method to investigate its 

function in vitro, such as the use of CRISPR-based technology.  

As both GAS5 and ZFAS1 were significantly increased in expression in colon 

adenocarcinoma, compared to normal colon epithelium, and there was reproducible 

knockdown of both GAS5 and ZFAS1 with siRNA transfection, we selected ZFAS1 and 

GAS5 for further investigation in an in vitro cell line model. 
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CHAPTER VIII 

 

EFFECT OF lncRNA ZFAS1 AND GAS5 KNOCKDOWN ON COLON CANCER CELL LINE 

PHENOTYPE 

 

a) Introduction 

 

The lncRNAs from previous chapters selected for further in vitro investigation were 

GAS5 and ZFAS1. Both lncRNAs were increased in colon cancer compared to normal colon 

epithelium and were located in the cytoplasmic cellular compartment. This suggested that both 

lncRNAs had a competitive endogenous RNA mechanism. Therefore, as a means of delineating a 

preferred candidate, we aimed to characterize the function of these lncRNAs in terms of their 

effect on colon cancer phenotype.  

As previously mentioned, both lncRNAs were predicted to mediate an effect on cellular 

proliferation and migration. We hypothesized that at least one of these lncRNAs would mediate a 

larger effect on cellular proliferation, and that from these data, a single candidate lncRNA could 

be identified to investigate cellular migration. Although lncRNAs may be predicted to have an 

effect on cellular function, a large number of these molecules do not mediate an effect on cellular 

function. Therefore, the purpose of these experiments was to verify and validate the effect of 

lncRNA knockdown on cellular function, with lncRNAs that were identified to be increased in 

expression in colon adenocarcinoma compared to normal colon epithelium.  
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b) Results 

1) Knockdown of ZFAS1, but not GAS5, leads to reduced cell proliferation in colon cancer cell 

lines 

Colon cancer cell lines, HT29 (Stage III) SW480 (Stage II), and Caco2 (Stage Unknown), were 

transfected with ZFAS1 siRNA, GAS5 siRNA, or non-targeting siRNA to examine for 

differences in cellular proliferation. The cell viability of each transfected well was checked for 

cell viability and were >90-95% for all transfections. Cell viability demonstrated that all cells had 

Cells were transfected for 48 hours in 6-well plates, and then plated in 12-well plates to examine 

cellular proliferation. Cells counts were examined every 24 hours for five consecutive days.  

In both the HT-29 and the SW-480 cell lines, ZFAS1 knockdown led to reduced cellular 

proliferation compared to cells transfected with non-target siRNA (Figure 25a, 26a). In contrast, 

there was no difference in the cellular proliferation of the Caco2 cell line between cells 

transfected with ZFAS1 siRNA compared to non- target siRNA (Figure 27a).  

In all three cell lines, there was no difference in cellular proliferation of cells transfect with GAS5 

siRNA compared to non-target siRNA (Figure 25b, 26b, 27b).  

Therefore, we chose to focus the remainder of the in vitro experiments on the effect of ZFAS1 on 

cellular phenotype. 

 

2)  Knockdown of ZFAS1 leads to reduced migration of colon cancer cells 

All 3 colon cancer cell lines, HT29 (Stage III), SW480 (Stage II), and Caco2 (Stage Unknown), 

were transfected with either ZFAS1 siRNA or non-target siRNA. Following transfection and 

plating for scratch analysis, photographs of the scratch were taken every 24 hours up to scratch 

closure or to 120 hours after the scratch was made.  
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Figure 25. Proliferation of the HT-29 cell line following transfection with a) ZFAS1 siRNA and 

b) GAS5 siRNA, compared to transfection with non-target siRNA.  

 

There is decreased proliferation of the SW-480 cell line with transfection of ZFAS1 siRNA 

compared to non-target siRNA at 96 hours (*P=0.02) and 120 hours (*P=0.02). There is also a 

significant decrease in the doubling time of the cells transfected with ZFAS1 siRNA compared to 

non-target siRNA (P=0.04). There was no difference in the proliferation of cells transfected with 

GAS5 siRNA compared to non-target siRNA 

* 

* 

*P=0.02 
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Figure 26. Proliferation of the SW-480 cell line following transfection with a) ZFAS1 siRNA and 

b) GAS5 siRNA, compared to transfection with non-target siRNA. 

 

There is decreased proliferation of the SW-480 cell line with transfection of ZFAS1 siRNA 

compared to non-target siRNA at 72 hours (*P=0.03), 96 hours (*P=0.03), and 120 hours 

(**P=0.02). There is also a significant decrease in the doubling time of the cells transfected with 

ZFAS1 siRNA compared to non-target siRNA (P=0.01). There was no difference in the 

proliferation of cells transfected with GAS5 siRNA compared to non-target siRNA (All P>0.05) 

 

* 

* 

** 

* P=0.03 

**P=0.02 
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Figure 27. Proliferation of the Caco2 cell line following transfection with a) ZFAS1 siRNA and 

b) GAS5 siRNA, compared to transfection with non-target siRNA. 

 

There was no difference in the proliferation of Caco2 cells transfected with ZFAS1 siRNA or 

GAS5 siRNA compared to non-target siRNA (all P>0.05) 
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As expected, ZFAS1 knockdown lead to decreased scratch closure in the HT29 cell line at 120 

hours (Figure 25a). In addition, ZFAS1 knockdown lead to decreased scratch closure in the 

SW480 and Caco2 cell line at 48 hours (Figure 25b, c).  

 

3) Knockdown of ZFAS1 leads to decreased transwell migration of colon cancer cells. 

The 3 colon cancer cell lines, HT29 (Stage III), SW480 (Stage II), and Caco2 (Stage Unknown), 

were transfected with either ZFAS1 siRNA or non-target siRNA. After 24 hours’ incubation in a 

transwell insert, each insert was examined for migrated cells. There was decreased migration of 

each of the cell lines transfected with ZFAS1 siRNA compared to non-target siRNA (Figure 26). 
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Figure 28. Functional cell migration as measured by the scratch assay of the a) HT-29 cell line, b) 

SW480 cell line, and the c) Caco2 cell line with transfection of ZFAS1 siRNA compared to 

transfection with non-target siRNA. In all 3 cell lines there was slower scratch closure of cells 

transfected with ZFAS1 siRNA compared to non-target siRNA. 
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Figure 29. Transwell migration of the a) HT-29 cell line, b) SW480 cell line, and the c) Caco2 

cell line with transfection of ZFAS1 siRNA compared to transfection with non-target siRNA. In 

all 3 cell lines there was decreased migration of cells transfected with ZFAS1 siRNA compared to 

non-target siRNA. 
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c) Discussion 

These data demonstrate that ZFAS1 knockdown in colon cancer cell lines leads to a less 

aggressive phenotype than that of cells transfected with non-target siRNA. In two different 

functional experiments, ZFAS1 knockdown led to decreased cells growth and reduced cell 

migration. These results indicate that ZFAS1 may have a role as a mediator of cellular function in 

vitro. 

Interestingly, there was no difference in Caco-2 cell line proliferation. This is likely due 

to the fact that the doubling time of the Caco-2 cell line is quite slow at 62 hours. We were 

therefore unable to detect a difference in these slow growing cells over the time course of the 

experiment.126 In contrast, knockdown of ZFAS1 in the other two cell lines, HT-29 and SW-480, 

led to reduced cellular proliferation. 

There was more marked transwell migration of the SW480 cell line compared to the 

Caco-2 and HT-29 cell lines. This is an expected observation, as the SW480 cell line has a 

mesenchymal phenotype and has a Consensus Molecular Subytpe 4 classification.126 In contrast, 

the HT29 cell line is characterized by a more rapid proliferation than the SW-480 cell line. This 

too is an expected result, as the HT-29 cell line has an epithelial phenotype and has a Consensus 

Molecular Subtype 3 classification. 

Knockdown of GAS5 did not lead to a change in proliferation compared to non-target 

siRNA. GAS5 is typically described to have a tumor suppressor function. This may in part 

explain why knockdown did not lead to increased cell growth.129 Although GAS5 expression is 

significantly increased in colon cancer in The Cancer Genome Atlas database and this was 

validated in our institutional samples, another study on colorectal cancer found GAS5 to be 

reduced in expression compared to normal tissue.130  
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The results of these experiments indicate that ZFAS1 is a good target for further 

mechanistic studies to delineate how it mediates its effect on tumor progression.  
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CHAPTER IX 

 

ZFAS1 HAS A RECIPROCAL RELATIONSHIP WITH MIR-200B AND MIR-200C 

 

a)  Introduction 

 

 In our previous experiments, we demonstrated that knockdown of ZFAS1 leads to 

a decrease in cell proliferation and cell migration as measured by the proliferation assay 

and transwell migration and scratch assays respectively.  Furthermore, we demonstrated 

that ZFAS1 is predominantly located in the cytoplasm, which suggests that it carries out 

its principal mechanism there. These data suggest that ZFAS1 plays a role in the 

epithelial-mesenchymal transition of cancer cells. Additionally, ZFAS1 has recently been 

identified to have a complex role in tumor signaling in different cancers.111  

We propose that by manipulating ZFAS1 expression in our three colon cancer cell 

lines, that we will affect the expression of target miRNAs. These target miRNAs have 

been identified by using a bioinformatics predication tool, and have also been 

experimentally verified in the literature through positive luciferase reporter assays or 

RNA pulldown assays. Utilizing siRNA that target against ZFAS1, we hypothesize that 

we will see a reciprocal increase in expression of the target miRNAs. As further evidence 
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to support this, we hypothesize that use of identified miRNA mimics will lead to a 

reciprocal decrease in ZFAS1 expression. The rationale for these experiments is to verify 

the interaction between ZFAS1 and the experimentally verified miRNA targets to help 

describe the signaling pathway with which ZFAS1 is associated. 

 

b) Results 

 lncRNA: miRNA Bioinformatics Prediction  

  LncBase (http://carolina.imis.athena-

innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental) is a 

bioinformatics tool containing algorithmically predicted and experimentally verified 

miRNA targets for lncRNAs.131 This program functions by entering ENSEMBL ID codes 

for a given lncRNA or entering the miRBase ID code for a miRNA. This experimentally 

verified tool was employed to identify targets for ZFAS1. The original citing literature 

was identified. Five miRNA targets were identified from the LncBase program (Figure 

27) that have an experimentally confirmed direct binding to ZFAS1. (Table 7) 
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Figure 30. Binding sites of ZFAS1 and selected miRNA from the LncBase server. 

 

 

 

 

 

ZFAS1 binds to each of the miRNA at different sites along the transcript length.  
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Table 7- Literature reported microRNA interactions for the lncRNA ZFAS1 

lncRNA miRNA Literature citation 

Method of experimental 

verification 

ZFAS1 

miR-200b Liu G. et al132 

Zhang F et al133 

RNA immunoprecipitation 

RNA pulldown assay 

miR-200c Liu G. et al132 RNA immunoprecipitation 

miR-150 Xia B. et al134 

Li T. et al135 

Wu T. et al136 

Chen X et al.137 

Luciferase reporter assay 

RNA pulldown assay 

RNA pulldown assay 

RNA pulldown assay 

miR-484 Xie S et al.138 RNA immunoprecipitation 

miR-27a Ye Y et al.139 RNA pulldown assay, 

Luciferase reporter assay 
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miRNA expression following ZFAS1 siRNA transfection 

miRNA expression was analyzed over three time points; 24, 48, and 72 hours. ZFAS1 

knockdown was verified using qRT-PCR. In the HT29 cell line, miR-200b was 

significantly increased at 24 (Fold change= 3.34, p=0.011) and 48 hours (Fold 

change=2.28, p=0.012) after transfection with ZFAS1 siRNA. miR-200c was also 

significantly increased in expression at 24 hours (Fold change= 2.19, p=0.038) after 

transfection with ZFAS1 siRNA. miR-27a was significantly increased in expression after 

48 hours (Fold change =6.70, p=0.020). There was no difference in the other miRNA at 

the time points examined (Figure 28). In the SW480 cell line, miR-200b was increased at 

24 hours (Fold change=6.69, p=0.005) and at 48 hours (Fold change= 1.88, p=0.022) 

after transfection with ZFAS1 siRNA. In addition, miR-200c was increased at 24 hours 

(Fold change= 6.53, p=0.010) and 48 hours (Fold change=1.80, p=0.025) after 

transfection. Similar to the HT29 cell line, there was no difference in the other miRNA 

examined at the time points. (Figure 29)  

ZFAS1 expression following miR-200b and miR-200c mimic transfection 

ZFAS1 expression was measured over the same three time points; 24, 48, and 72 hours 

after transfection of miR-200b and miR-200c mimics. In the HT29 cell line, transfection 

with miR-200b mimics and miR-200c mimics resulted in decreased ZFAS1 expression at 

48 hours after transfection (Fold change= -2.49, p=0.005 and Fold change= -3.60, 

p=0.002 respectively) (Figure 30). Similarly, transfection with miR-200b mimics and 

miR-200c mimics in the SW480 cell line resulted in decreased ZFAS1 expression at 48 

hours after transfection (Fold change= -2.24, p=0.03 and fold change= -2.21, p=0.007 

respectively) (Figure 31). 
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Figure 31. Expression of selected miRNA in the HT29 cell line following ZFAS1 siRNA 

transfection at; a) 24 hours after transfection and b) 48 hours after transfection. 
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Figure 32. Expression of selected miRNA in the SW480 cell line following ZFAS1 

siRNA transfection at a) 24 hours after transfection and b) 48 hours after transfection. 
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Figure 33. Expression of ZFAS1 in the HT29 cell line following; a) miR-200b mimic 

transfection, and b) miR-200c mimic transfection. 
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Figure 34. Expression of ZFAS1 in the SW480 cell line following; a) miR-200b mimic 

transfection, and b) miR-200c mimic transfection. 
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Transfection with miR-200b and miR-200c mimics produces the same phenotype as cells 

transfected with ZFAS1 siRNA 

As a proof of concept to demonstrate the relationship between miR-200b, miR-

200c, and ZFAS1, we performed a scratch assay and transwell migration assay 

comparing cells transfected with miR-200b and miR-200c mimics compared to negative 

control.  

As expected, cells transfected with both miR-200b and miR-200c mimics had 

slower scratch closure compared to non-target siRNA, in the HT29 cell line (p<0.001, 

and p=0.004 respectively) (Figure 32). There was also decreased transwell migration of 

cells transfected with miR-200b and miR-200c mimics compared to non-target siRNA 

(both p=0.031) (Figure 33). 

In the SW480 cell line, there was also a slower scratch closure in cells transfected 

with mi-200b and miR-200c mimics compared to negative control (p=0.002 and p<0.001 

respectively) (Figure 34). Similarly, there was decreased transwell migration of cells 

transfected with miR-200b and miR-200c mimics compared to negative control (p=0.009 

and p=0.004 respectively) (Figure 35) 
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Figure 35. There was decreased scratch closure of HT29 cells transfected with miR-200b 

and miR-200c mimics compared to negative control. 
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Figure 36. There was decreased transwell migration of HT29 cells transfected with miR-

200b and miR-200c mimics compared to negative control. 
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Figure 37. There was decreased scratch closure of SW480 cells transfected with miR-

200b and miR-200c mimics compared to negative control. 
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Figure 38. There was decreased migration of SW480 cells transfected with miR-200b and 

miR-200c mimics compared to negative control 
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c) Discussion 

The results of these experiments support the hypothesis that ZFAS1 directly binds to 

miR-200b and to miR-200c. ZFAS1 knockdown with siRNA leads to increased 

expression of the two miR-200 family members at two time points, and transfection with 

miR-200b and miR-200c mimics leads to decreased ZFAS1 expression. Interestingly, 

changes in the other miRNA targets were not consistently observed following ZFAS1 

knockdown. 

The changes in RNA expression occur at 24-48 hours after transfection when using 

siRNA and miRNA mimics to regulate gene expression. This is the timeframe in which 

changes of RNA expression are expected to occur when transfecting with these 

molecules. 

The miR-200 family is a well-described mediator of EMT and as a proof of concept, the 

functional experiments for migration demonstrated that miR-200b and miR-200c both 

lead to decreased migration. As previously mentioned, ZFAS1 knockdown also leads to 

decreased cell migration, and when considering that ZFAS1 has a reciprocal relationship 

with miR-200b and miR-200c, this suggests that they may share a common signaling 

pathway through which this effect is mediated. 

Consequently, this relationship was chosen for further study. These results support the 

competitive endogenous RNA hypothesis, in that ZFAS1 can act as a “molecular sponge” 

for target miRNA, and that ZFAS1 could be a target for regulating cell function.  
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CHAPTER X 

 

EFFECT OF ZFAS1 EXPRESSION ON THE ZEB1/E-CADHERIN, VIMENTIN TARGET 

SIGNALING PATHWAY 

 

a)  Introduction 

 

In the previous chapter, we demonstrated that ZFAS1 has a reciprocal relationship both 

miR-200b and miR-200c. When these results are considered in relation to the phenotypic results 

of decreased migration with ZFAS1 knockdown, these effects may be regulated through miR-

200/ZEB1/E-Cadherin, vimentin signaling.  

The miR-200 family is a well described major regulator of epithelial-mesenchymal 

transition (EMT).40 This is a critical factor involved in cancer metastasis. Loss of miR-200 family 

expression is observed at the invasive borders of colorectal cancer pathology specimens34  and is 

associated with adverse clinical outcomes.40 The miR-200 family does have a dichotomous role 

of also increasing cancer proliferation through different signaling pathways.53,140  

The signaling pathway through which ZFAS1 is associated with the miR-200 family has 

not, however, been completely defined. We hypothesized that ZFAS1 knockdown would lead to 

decreased expression of ZEB1. Furthermore, to validate the phenotypic results observed, we 

hypothesized that ZFAS1 knockdown would lead to an increase in an epithelial marker, E-



 

134 
 

Cadherin, and a decrease in a mesenchymal marker, Vimentin. The rationale for these 

experiments is to validate an associated signaling pathway through which ZFAS1 and miR-200b 

and miR-200c have an effect. 

 

 

b) Results 

 

ZFAS1 knockdown leads to decreased ZEB1 RNA and protein expression 

After successful transfection of the HT-29 cell line with ZFAS1 siRNA and non-target 

siRNA there was significant decrease in ZEB1 mRNA expression compared to non-target siRNA 

(Fold regulation= -2.68, p=0.031) (Figure 39). As also expected, transfection with miR-200b and 

miR-200c mimics leads to decreased ZEB1 mRNA compared to non-target siRNA (Fold 

regulation= -3.19, p=0.03, and fold regulation= -1.82 p=0.04). (Figure 39)  

As a further proof of concept, there was a significant decrease in ZEB1 protein 

expression as examined by western blots in cells transfected with ZFAS1 siRNA compared to 

non-target siRNA (Figure 40). 

Similarly, in the SW-480 cell line, there was a significant decrease in ZEB1 mRNA 

expression after transfection with ZFAS1 siRNA compared to cells transfected with non-target 

siRNA (Figure 3). Transfection with miR-200b and miR-200c mimics also lead to decreased 

ZEB1 gene expression compared to non-target siRNA (Figure 41).  

When ZEB1 protein expression was examined with western blotting there was a 

significant decrease in expression in cells transfect with ZFAS1 siRNA compared to non-target 

siRNA (Figure 42). 
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ZFAS1 knockdown leads to decreased Vimentin protein expression 

To further support the functional data described in an earlier chapter, indicating that 

ZFAS1 is associated with EMT, we examined for differences between cells transfected with 

ZFAS1 siRNA compared to non-target siRNA. In the HT-29 cell line there was a significant 

decrease in vimentin with ZFAS1 knockdown compared to non-target siRNA. (Figure 43a) 

Similarly, in the SW480 cell line, there was a significant decrease in vimentin with ZFAS1 

knockdown compared to non-target siRNA (Figure 43b). 

ZFAS1 knockdown leads to increased E-Cadherin expression 

 As expected, HT29 cells transfected with ZFAS1 siRNA had significantly increased E-

cadherin expression compared to cells transfected with non-target siRNA. (Figure 44a) There was 

a significant increase in E-cadherin expression in the SW480 cells transfected with ZFAS1 

siRNA compared to non-target siRNA (Figure 44b). 
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Figure 39.  ZEB1 gene expression in the HT-29 cell line following transfection with ZFAS1 

siRNA, miR-200b mimics, and miR-200c mimics compared to non-target siRNA. There is 

significant decrease in ZEB1 expression in all 3 conditions compared to non-target siRNA. 
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Figure 40. ZEB1 protein expression in the HT29 cell line in cells transfected with ZFAS1 siRNA 

or non-target siRNA. There is significantly decreased ZEB1 expression following transfection 

with ZFAS1 siRNA compared to non-target siRNA. 
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Figure 41. ZEB1 gene expression in the SW480 cell line following transfection with ZFAS1 

siRNA, miR-200b mimics, and miR-200c mimics compared to cells transfected with non-target 

siRNA. There is significant decrease in ZEB1 expression in all 3 conditions compared to non-

target siRNA. 
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Figure 42. ZEB1 protein expression in the HT29 cell line in cells transfected with ZFAS1 siRNA 

or non-target siRNA. There is significantly decreased ZEB1 expression following transfection 

with ZFAS1 siRNA compared to non-target siRNA. 
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Figure 43. Vimentin expression in the HT29 and SW480 cell lines transfected with ZFAS1 

siRNA or with non-target siRNA. There is decreased vimentin expression in both cell lines 

transfected with ZFAS1 siRNA compared to non-target siRNA. 
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Figure 44. E-Cadherin expression in the HT29 and SW480 cell lines transfected with ZFAS1 

siRNA or with non-target siRNA. There is increased E-cadherin expression in both cell lines 

transfected with ZFAS1 siRNA compared to non-target siRNA. 
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c) Discussion 

 

The results of these experiments indicate that ZFAS1 is associated with an effect on 

ZEB1 RNA and protein expression, which is a direct target of miR-200b and miR-200c. 

Furthermore, ZFAS1 regulates E-Cadherin and vimentin expression, which are both important 

proteins in EMT. When these results are considered in the context of the previous experiments 

indicating that ZFAS1 has a direct interaction with the miR-200 family, and that ZFAS1 

knockdown leads to decreased migration, we concluded that ZFAS1 knockdown was associated 

with EMT through the ZEB1/E-Cadherin, Vimentin signaling cascade.  

From RNA-sequencing data in the Cancer Cell Line Encyclopedia, there is relatively low 

expression of ZEB1 in both the HT29 and SW480 cell line, which is reflected in the western blot 

data shown in this chapter. For ZEB1 expression, a larger protein load (100ng) was used to 

facilitate band detection in both cell lines.  

There is robust E-Cadherin expression and relatively lower vimentin in the HT29 cell line 

when examining the western blotting data. The HT29 cell line is an epithelial-like cell line126, 

which is reflected in its Consensus molecular subtype 3 classification, and in its RNA-sequencing 

profile as assessed by the Cancer Cell Line Encyclopedia.118 In contrast, there is more robust 

vimentin expression and relatively lower E-Cadherin expression in the SW480 cell line when 

examining the western blotting data. This, again, is reflected in its mesenchymal Consensus 

Molecular Subtype 4 classification126, and its RNA-sequencing profile as assessed by the Cancer 

Cell Line Encyclopedia.118 

Typically, EMT is associated with decreased migration and increased proliferation, and 

many of the studies that investigate the miR-200 family as a regulator of EMT recapitulate these 

results.40 However, as previously mentioned, some studies have indicated that it may also lead to 

increased proliferation through alternative signaling pathways.52,53 The presented data suggest 
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that ZFAS1 knockdown was associated with a signaling pattern consistent with EMT in that there 

is changes in ZEB1, E-Cadherin, and Vimentin expression. A recent study investigating ZFAS1 

also demonstrated that it regulated migration and proliferation through another signaling cascade, 

miR-150-5p/VEGFA.137 

In the context of the previous chapters, ZFAS1 knockdown is consistent with both the 

functional effects of EMT signaling and with the major EMT signaling cascade miR-

200/ZEB1/E-cadherin, Vimentin. 
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CHAPTER XI 

 

DISCUSSION AND CONCLUDING REMARKS 

 

We hypothesized that the use of an RNA-sequencing data set to compare the entire 

transcriptome of colon adenocarcinoma tissue to paired normal colon epithelium tissue would 

allow us to investigate specifically differentially expressed lncRNAs. As a number of studies 

have shown that lncRNAs can have different roles in different cancers, it is important to 

investigate their specific role in colon adenocarcinoma. This improves the understanding of 

cellular signaling, and allows for the identification of potential therapeutic targets.  

Here, we identify that lncRNA ZFAS1 is increased in colon adenocarcinoma compared to 

normal colon epithelium, and that ZFAS1 is principally located in the cytoplasm compared to the 

nucleus of 3 colon adenocarcinoma cell lines. To further characterize ZFAS1, we performed a 

number of different functional experiments, which demonstrated that ZFAS1 knockdown leads to 

reduced cellular proliferation and migration. From a mechanism perspective, ZFAS1 was 

predicted to have a direct binding relationship with miR-200b and miR-200c. As expected, 

ZFAS1 had a reciprocal relationship with both miR-200b and miR-200c.  Finally, ZFAS1 was 

able to regulate ZEB1 expression, and was able to regulate the epithelial marker E-Cadherin and 

the mesenchymal marker, Vimentin. The results of these experiments indicate that ZFAS1 is a 

regulator of the EMT process. A summary of the results of these experiments is shown in Figure 

45.
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Figure 45. Summary of dissertation findings. The lncRNA ZFAS1 which was identified to be differentially expressed from the 

exploratory RNA-seq analysis, is associated with tumor progression and changes in miR-200/ZEB1/E-Cadherin, vimentin signaling 
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There are variable results with the examination of ZFAS1 in the literature.111 ZFAS1 has 

previously been shown to have a tumor suppressive function in breast cancer by decreasing both 

cell proliferation and migration.141,142 Examination of ZFAS1 in hepatocellular carcinoma has 

shown that it can have both a tumor suppressive and oncogenic function through different 

mechanisms. It can act as a tumor suppressor by regulating the methylation of miR-9 in 

hepatocellular carcinoma143, but can also promote cancer metastasis through binding of miR-

150.135 However, the majority of studies demonstrate that ZFAS1 has an oncogenic function, in 

that many of the studies indicate that ZFAS1 can regulate both proliferation and migration.134,144.  

Recently, Chen et al. reported that ZFAS1 could regulate proliferation, migration, and invasion in 

colorectal cancer.137 They showed that ZFAS1 could mediate this through indirect regulation of 

VEGFA through direct binding with miR-150. The results of our experiments support the 

functional data reported by Chen et al, in that ZFAS1 knockdown leads to decreased proliferation 

and migration.  

Nevertheless, we report a novel signaling association between ZFAS1 and miR-200b and 

miR-200c. Interestingly, we also investigated the interaction with miR-150, but we did not find a 

reciprocal change in expression, although Chen et al. reported that miR-150 had a direct binding 

interaction with ZFAS1 in the HCT116 cell line. The HCT116 cell line is also microsatellite 

instable and has lower expression of ZFAS1 than any of the three cell lines that we selected for 

investigation.118,145 The HCT116 cell line may have a different transcript expression profile 

compared to our three cell lines, which may account for this lack of a difference, however this 

does remain unclear and requires further investigation.  

Nevertheless, both sets of data support the concept that lncRNAs can have multiple 

mechanisms of action, through different signaling cascades. This attribute has been described as 

both a positive and negative aspect of their potential utility.146,147 On one hand, the multiple 

mechanisms of action could reduce cancer aggressiveness through a number of different signaling 
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pathways which has clear major benefits. However, as previously noted, lncRNAs have been 

shown to have differential functions in different cancers, and often the exact mechanism through 

which they mediate their effect can be difficult to discern. Therefore, considerable study of a 

single lncRNA would be required prior to a potential clinical use.  Overall, non-coding RNAs are 

being investigated as a small molecule therapeutic strategy for different diseases. There are a 

number of clinical trials exploring the use of microRNA and siRNA technology as a therapeutic 

strategy.148 For example, miR-122 is a critical molecule in the survival of the hepatitis C virus in 

the liver. As such, a novel small molecule targeting miR-122 has been shown to be effective in 

reducing hepatitis C virus RNA levels in a phase 2 clinical trial.149 Similarly, a specific siRNA 

directed against procollagen alpha delivered in lipid nanoparticles has shown to be effective in 

resolving liver fibrosis in a murine model suggesting its potential therapeutic use.150 . Another 

siRNA targeting the respiratory syncytial virus has been shown to reduce the risk of bronchiolitis 

obliterans in patients post lung transplant.151   In the future lncRNAs and other non-coding RNAs 

may have a major role in the therapeutic management of different diseases. 

Many studies demonstrate that lncRNAs can be regulated by miRNA through the 

competitive endogenous RNA mechanism, but few have demonstrated alternative regulators. SP1 

transcription factor, SP1, has been shown to transcriptionally increase  ZFAS1 in a number of 

different cancer types.111 Interestingly, the transcription factors that regulate protein coding genes 

are the same as those for non-protein coding genes.152 This suggests there is a further layer of 

complexity in studying the relationship between lncRNAs and other protein coding genes with 

modulation of specific transcription factors. 

There are a number of challenges in studying lncRNAs, as they can have a diverse array of 

mechanisms of action. However, their cellular location is an important indicator of their 

mechanism of action. After selection of 3 lncRNAs for further investigation, only two (GAS5 and 

ZFAS1) were significantly represented in the cytoplasm of the cell, which is in contrast to that of 
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PVT1 which was significantly expressed in the nucleus. This does suggest that both GAS5 and 

ZFAS1 have a cytoplasmic mechanism of action, namely a competitive endogenous RNA 

function, such as acting as a miRNA sponge. Although PVT1 is predicted to have miRNA targets, 

it is more likely that its principal function is that of a nuclear mechanism of action, through DNA 

repair and rearrangements and interacting with the proto-oncogene MYC, which is supported by 

studies in the literature153,154 In addition, there is a challenge when examining lncRNAs, as siRNA 

technology has minimal effect on lncRNAs located in the nucleus as the cellular machinery to 

perform RNA interference is located in the cytoplasm, and siRNA has relatively poor function 

against nuclear located lncRNAs.155,156  

 There are some areas of needed further investigation that are highlighted by the results of 

these experiments. TGF-β is a major inducing agent of EMT51, and recent studies have 

demonstrated that it can be secreted by macrophages and other immune cells in the tumor 

microenvironment.157 The role of lncRNAs involved in promoting a less aggressive, epithelial 

phenotype, could be investigated in the context of cytokines secreted in the tumor 

microenvironment. This could be achieved through the use of transwell chambers, or by treating 

colon adenocarcinoma cell lines with cultured macrophage secretions, as performed by Jahangiri 

et al.94 Although our study demonstrates the role of ZFAS1 in signaling through regulation of 

miR-200b and miR-200c, ZFAS1 has been shown to interact with a number of other miRNAs.  

This indicates that there is significant investigation required to fully delineate the function of 

ZFAS1 and other lncRNAs prior to their clinical use.  

 Although we selected lncRNAs that are increased in expression in colon cancer compared 

to normal colon epithelium, there are a large number of lncRNAs that are downregulated in 

expression. Due to their large size, stable transfection is challenging, but some investigators have 

suggested the use of CRISPR-activation technology to stably increase the expression of a 

lncRNA in vitro.158,159 There are 5 members of the miR-200 family and we have restricted our 
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study to two of these, miR-200b and miR-200c as they have been experimentally verified to 

interact with ZFAS1. Although miR200b, miR-200c, and miR-429 are part of the same functional 

cluster, we did not examine the role of miR-429 as it appears not to be an experimentally 

validated target of ZFAS1. Further studies could investigate the role of other members of the 

miR-200 family in relation to ZFAS1. As previously mentioned many target molecules can be 

regulated by multiple lncRNAs, but when this is considered in the context that lncRNAs can 

regulate multiple different molecules, it will become important to study lncRNAs in signaling 

networks. For example, both SPRY4-IT1 and SNHG6 both target miR-101 to regulate ZEB1 to 

mediate EMT, but they have not been investigated together in the context of modulating one of 

them.69,70  

There are a number of limitations to this work. Although ZFAS1 knockdown is 

associated with both functional changes and reciprocal changes in the miR-200/ZEB1/E-cadherin, 

Vimentin signaling pathway, we have not definitively shown that that ZFAS1 is a regulator of 

this signaling cascade. Further experiments, such as a dual knockdown of both ZFAS1, and miR-

200b or miR-200c, are required to investigate the role of ZFAS1 as a regulator of this signaling 

pathway. As previously mentioned, lncRNAs can mediate an effect on a number of different 

signaling pathways and we focused on a single signaling pathway to help delineate the 

mechanism of action of ZFAS1. Therefore, further work is required to investigate the other 

pathways through which ZFAS1 may be mediating an effect on colorectal carcinogenesis. While 

the transcription factor SP1 is a known upstream regulator of ZFAS1, other reasons for the 

increased expression of ZFAS1, such as copy number amplification were not explored.  

In conclusion, we identified a group of lncRNAs that were significantly increased in 

expression in colon adenocarcinoma compared to normal colon epithelium in an RNA-

sequencing data set. We verified that a lncRNA ZFAS1 can regulate EMT through a reciprocal 

interaction with both miR-200b and miR-200c. Knockdown of ZFAS1 can lead to a less 
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aggressive phenotype in colon cancer cell lines, reduction in the mesenchymal marker, Vimentin, 

and an increase in the epithelial- marker, E-cadherin. This indicates that ZFAS is a major 

regulator of the aggressiveness of cancer and could be a target for therapeutic intervention in the 

future.  
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APPENDIX: ABBREVIATIONS 

 

 

EMT Epithelial-Mesenchymal Transition 

lncRNA long non-coding RNA 

miRNA microRNA 

mRNA messengerRNA 

CRC colorectal cancer  

miR microRNA 

ZEB1,2 Zinc Finger E-Box Binding Homeobox 1,2 

E-cadherin Epithelial cadherin 

XIST X-Inactive Specific Transcript 

H19 Imprinted Maternally Expressed Transcript 

MET Mesenchymal-epithelial transition 

UICLM Upregulated In Colorectal cancer and Liver Metastasis 

N-BLR primate specific non-coding transcript 

XIAP X-linked Inhibitor of Apoptosis Protein 

SPRY4-IT1 Sprouty RTK signaling antagonist 4-Itronic Transcript 1 

Wnt Wingless/Integrated 

β -catenin Beta-catenin 

PlncRNA-1 “CBR3”-Carbonyl Reductase 3 

TUG1 Taurine Upregulated 1 

MMP9 Matrix Metalloproteinase-9 

PGRN Progranulin 

KIAA119                    Cell Migration Inducing Hyaluronidase 1 
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UCA1                         Urothelial Cancer Associated 1 

mTOR                        mammalian Target of Rapamycin  

TWIST1 Twist related protein 1 

CHRF Cardiac Hypertrophy Related Factor 

GALNT1 Polypeptide N-acetylgalactosaminyltransferase 1 

SNHG7 Small Nucleolar RNA Host Gene 7 

MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1 

EZH2 Enhancer of Zeste Homolog 2  

HOXD-AS1 “HAGLR” HOXD Antisense Growth-Associated Long Non- 

 Coding RNA 

AEG-1 Astrocyte Elevated Gene 1 

HIF1A-AS2 Hypoxia Inducible Factor 1 Alpha-Antisense RNA 2 

DNMT3A DNA Methyltransferase 3 Alpha  

HDAC Histone Deacetylase 

siRNA small interfering RNA 

CYTOR Cytoskeleton Regulator RNA 

CTD903 “DUXAP9” Double Homeobox A Pseudogene 9  

lncTCF7 long non-coding Transcription Factor 7 

PVT1 Pvt oncogene  

TGF- β Tumor Growth Factor Beta 

LINC001133 Long Intergenic Non-Coding RNA 001133 

SRSF-6 Serine/arginine Rich Splicing Factor 6 

JAK-STAT3 Janus Kinase Signal Transducer and Activator of Transcription 3 

BC200 Brain Cytoplasmic 200  

lncRNA AB073614 lncRNA AB073614 

CPS1-IT1 Carbamoyl-Phosphate Synthase 1 Intronic Transcript 1 

LC-1 Light Chain 1 

MAPK Mitogen Activated Protein Kinase 

ERK Extracellular signal-Related Kinases 
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BACNR  BRAF-Activated Non-Protein Coding RNA 

MEK Mitogen activated protein kinase kinase 

NNT-AS1 NAD(P) Transhydrogenase Antisense RNA 1 

SLC25A25-AS1 Solute Carrier Family 25 Member 25 

SLUG “SNAI2” Snail Family Transcription Repressor 2 

SNAIL “SNAI1” Snail Family Transcription Repressor 1  

SNGH15 Small Nucleolar RNA Host Gene 15 

lncRNA-ATB lncRNA Activated by TGF-β 

LINC00959 Long Intergenic Non-Coding RNA 00959  

FOXD2-AS1 Forkhead Box D2 Antisense RNA 1 

HOTAIR HOX Transcript Antisense RNA 

HOXA-AS2 Homeobox A cluster Antisense RNA 2 

ZFAS1 ZNFX1 Antisense RNA 1 
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