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ABSTRACT 

OXYGEN DEFICIENT PEROVSKITES: 

EFFECT OF VACANCY ORDER ON ELECTRICAL CONDUCTIVITY, 

MAGNETISM AND ELECTROLYTIC ACTIVITY. 

Ram Krishna Hona 

November 20, 2019 

The present thesis deals with the synthesis and study of the physico-chemical properties of 

perovskite based oxide materials. Several novel oxygen deficient perovskites (ODP) have 

been synthesized by conventional solid state synthesis method.  The novel compounds are 

CaSrFe2O6-δ, CaSrFeCoO6-δ, Ca2Fe1.5Ga0.5O5, CaSrFeGaO5 and BaSrFe2O5. Their 

magnetic, charge transport and electrocatalytic properties have been studied. Structural 

effect on electrical conductivity, magnetic and electrocatalytic properties have been studied 

in some series of ODPs. 

CaSrFe2O6-δ, CaSrFeCoO6-δ, Ca2Fe1.5Ga0.5O5 and CaSrFeGaO5 have brownmillerite type 

orthorhombic structures with layered structure having alternate tetrahedral and octahedral 

layers which are connected to one another by corner sharing. These are vacancy ordered 

compounds. BaSrFe2O5 is vacancy disordered compound with cubic structure. Most of the 

studied materials exhibited G-type long range antiferromagnetic arrangement of magnetic 

moments. 
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During the study of charge transport property, compounds with structural order in a 

particular series show relatively less conductivity at room temperature and semiconductive 

nature and transition to metallic conductivity during temperature dependent conductivity 

measurement. Vacancy disordered compounds show relatively higher conductivity at room 

temperature and show mixed (semiconductive and metallic) conductivity during 

temperature dependent conductivity measurement. 

The study of electrocatalytic properties revealed the relation with the conductivity and the 

structural order. The electrocatalytic activity toward oxygen evolution reaction is highly 

efficient if the material is highly conductive or highly ordered.    
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction to solid states chemistry 

I. Solid state chemistry 

Solid-state chemistry, also known as material chemistry, is the study of the synthesis, 

structure, chemical, and physical properties and the application of solid materials 

particularly non-molecular solids. In general, the chemistry, structure and properties of the 

solid materials are interrelated. Thus, for a specific solid state chemistry, the study should 

be aimed at getting detailed knowledge of the three factors such as how the chemistry 

affects in the structure of a material and then how the structure affects the physical 

properties. One example of study of solid state chemistry is study of structure-property 

relation in perovskite oxide materials. Richard J. D. Tilley has well collected the works of 

structure-property relation in perovskite oxides.1 They have been intensively studied for 

their dielectric, piezoelectric, and ferroelectric nature. Now the range of property-study has 

been extended to magnetic ordering, multiferroic properties, electronic conductivity, 

superconductivity, thermal and optical properties.1 Perovskite oxides have wide range of 

structures from cubic SrTiO3 to cation and anion deficient phases to hexagonal perovskites 

related to SrMnO3.
1 The chemical and physical properties of any members of these 

structural forms can be tuned to wide ranges by simply substituting A or B site cations. 

Next good example of structure-property relation can be found in a literature2 which states 

the correlation between anti-ferromagnetic Neel temperature and structural destruction in 



2 

the series of rare earth ortho-ferrites (LnFeO3, Ln= La-Lu). The t value is below 1 for all 

LnFeO3 leading to perovskite superstructure due to tilting of octahedra. The crystal 

structure will experience increasing tilt of the octahedra due to the decreasing effect of A 

cation radius down the lanthanide series. The interaction between B cations coupled with 

intervening oxygen ions results Antiferromagnetism.3 The effect of super-exchange leads 

to antiparallel alignment of the spins. The Neel temperature will become lower as the 

distortion increases causing more tilt. Thus, the Neel temperature can be correlated with 

the tilt of the octahedra. Thus, structural-property in solid state material can be revealed. 

So, a solid state chemist requires to have knowledge of structural – property relation to 

design a material of desired structure, property and application. 

II. Synthesis of solid state materials

As is clear from the title “solid state chemistry”,  generally no solution but hihg temperature 

(heat) is used to propare a desired material. However, in some cases such as in 

coprecipatipitaiton and solgel method,  solutions are used in the pre-stage of the synthesis 

and  in subsequent steps, high heat is used to decompose the precurser compounds after 

drying. For perovskite oxides, convensional solid state method can normally be employed. 

In this process, the precurser compounds are mixed in stoichiometric proportions and 

mixed thoroughly. Since the solid state precursers require complete decomposition to form 

a completely new compound, multiple and high heating is required. In this case, the 

reaction takes place by ion diffusion at high temperature which is very slow process. 

Generally, peroskite oxides are synthesized from nitrates or carbonates. So, two stages of 

heating namely, calcination (low tempetature) and sintering (high temperature) are 

acomplished to get a material of pure phase. This technique is commonly used to 
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investigate the chemistry induced structural changes and thermal stability of the strucutres. 

The detailed procedure for this method can be obtained in this thesis based articles. 

III. Characterization methods of solid-state mateerials

i. Structure and phase purity identification

Once a sample is synthesized, its phase identification is first job to go ahead with other 

characterization procedures.  A phase is a crystalline solid with a regular 3-dimensional 

arrangement of the atoms. Powder X-ray diffraction method is employed as a fast phase 

identification technique in solid state chemistry. The measured diffraction peak positions 

and intensities are like a fingerprint for a particular phase. The spacing of powder 

diffraction lines are dependent on the unit cell parameters for a crystalline compound. 

Phase purity is checked by comparison of the measured pattern with the entries in reference 

databases using a search-match algorithm. This is also known as qualitative phase analysis. 

The peak indexing is simplified by the computer programming during the comparison with 

the structure of another known compound. The powder pattern of a phase is confirmed by 

refinement process using certain computer programs such as Rietveld refinement using 

GSAS with EXPIGUI interface, Full prof fitting and Topaz fitting programs, where a 

known phase model is used for XRD data fitting. 

The diffraction data may also be collected using  neutrons. Neutron diffraction is a result 

of interaction of neutrons with nuclei and therefore scatters strongly with light atoms as 

well as hevy atoms and can easily differentiate between isotopes. X-rays intereact with 

electron clouds and therefore scatter strongly from heavier elements with larger electron 

clouds. So, If a compound with elements of nearly similar atomic mass or with light 

elements is to be identified with exact composition and atomic positions, then neutron 
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diffraction is suggesed. For example, we used neutron diffraction for Ca2Fe1.5Ga0.5O5 

compound to find the atomic position of Fe and Ga elements in the crystal structure which 

X-ray diffraction could not explain. 

ii. Magnetic measurement

Most materials have no permanent magnetic moment but a moment is induced in the 

presence of a field. The response is called magnetic susceptibility (χ). Usually magnetic 

susceptibility is  measured to find the degree of material magnetization in an applied 

magnetic field. Mathematically, it is the ratio of magnetization M (magnetic moment per 

unit volume) to the applied magnetizing field intensity H. 

χ =  
M

H
( 1 ) 

Magnetic susceptibility, χ, is a function of temperature, T. So, it is commonly measured 

over a range of temperature. Magnetic field is also applied during susceptibility 

measurement. Generally, two measurements are performed for χ versus T: (a) Zero Field 

Cooled (ZFC) measurement where sample is first cooled in the absence of a field and then 

susceptibility is measured in the applied field as temperature rises. (b) Field Cooled (FC) 

measurement where sample is first cooled in the presence of a field and then susceptibility 

is measured in the same field as temperature rises.  The data obtained from these two 

measurements, χ versus T  may overlap or diverge from each other. The divergence shows 

the formation of magnetic domains induced by the applied field. the χ versus T plot appears 

as a smooth curve at low temperature region for a paramagnet. Any deviation from this 

behavior is an indication for the presence of a magnetically ordered state and the 
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temperature at which the deviation occurs is the magnetic transition temperature. 

Measurement of magnetization of a material as a function of the applied filed, H, at 

constant temperature is also common. The magnetization is recorded during H rising and 

falling, both times.  the M versus H graph is linear for a paramagnet, (as long as the 

saturation at high field and low T is not reached) and the data collected during both times, 

H value rising and falling will overlap. However, if there is any uncompensated magnetic 

moment in the system, divergence is observed for the data obtained for increase and 

decrease of H. 

iii. Other techniques

Other techniues for characterization include scanning electron microscopy for micro 

structure analysis, X-ray Photoelectron Spectroscopy for oxidation state analysis, 

iodometric titration for oxygen content calculation. 

iv. Physico-chemical property measurement

Temperature dependent oxygen absorption and desorption behavior of the materials is 

measured by thermogravimetric analysis using Ar gas.  DC measurement and impedance 

spectroscopy study are performed for temperature dependent conductivity behavior 

analysis and conductivity mechanismin of a material, respectively.  CV measurement is 

performed for oxygen evolution reaction. 

IV. Basics of diffraction

i. Bragg’s law

X-rays are electromagnetic waves with a much shorter wavelength than visible light, 

typically on the order of 1Å (1𝗑10-10 m). When a beam of X-rays fall on a single particle, 

it scatters the incident beam uniformly in all directions. These scattered beams can add 
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together in a few directions to reinforce each other resulting a diffraction. The regular 

arrangement of atomic particles in a crystal system is responsible for the diffraction of the 

beams.  X-ray diffractions were used in the identification of our material’s crystal 

structures. 

Crystals are regular arrays of atoms. These arrays form imaginary planes in the crystal 

system  called crystal lattice. Lattice planes are crystallographic planes, characterized by 

the index triplet hkl, the so-called Miller indices.  Parallel planes have the same indices and 

are equally spaced, separated by the distance dhkl,( figure 1.1.1). There can be a number of 

sets of planes running in different directions in a crystal system, and they are named 

according to their orientation relative to the axes of the unit cell, the smallest repeated unit 

in the crystal system. For example, a set of planes, in an ideal cubic crystal system, running 

parallel  to bc plane intercepts a axis but do not intercept b and c axes and can be expressed 

by Miller indices, hkl as (1,0,0) planes. These planes are responsible for the constructive 

interference. 
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Figure 1.1.1. Lattice planes formed by regular arrays of atoms in a crystal 

According to Bragg’s law, when the waves are scattered from lattice planes separated by 

the interplanar distance d, the scattered waves interfere constructively and they remain in 

phase when the difference between the path lengths of the two waves is equal to 

an integer multiple of the wavelength. The path difference between two waves undergoing 

interference is given by 2dsin θ, where θ is the scattering angle (as shown in figure 1.1.2). 

Mathematically, it can be expressed as 

nλ = 2d sinθ ( 2 ) 

When the diffraction meets the above condition, a constructive interference between the 

diffracted beams becomes possible to generate a diffraction. The diffraction data are 

commonly expressed as a function of 2θ where the diffraction peak at smallest 2θ 

corresponds to the largest d spacing. 

https://en.wikipedia.org/wiki/Interference_(wave_propagation)
https://en.wikipedia.org/wiki/Integer
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Figure 1.1.2. Bragg’s law in diffraction 

ii. Reciprocal lattices

To understand the reciprocal lattice, let us consider a unit cell of a cubic crystal (figure 

1.1.3). Let us consider an arbitrary  point A from which a normal 𝐴𝐵⃗⃗⃗⃗  ⃗  (𝑣𝑒𝑐𝑡𝑜𝑟) is drawn

to a plane “bc”. The distance of 𝐴𝐵⃗⃗⃗⃗  ⃗ should be reciprocal of dhkl (distance between two bc

planes) i.e. 𝐴𝐵⃗⃗⃗⃗  ⃗ =
1

𝑑ℎ𝑘𝑙
. Every line drawn normal to all planes in all directions must have the 

distance equal to 
1

𝑑ℎ𝑘𝑙
 . The planes can also be characterized by a vector (σhkl) perpendicular 

to the normal vector 𝐴𝐵.⃗⃗⃗⃗⃗⃗⃗⃗  Now, the lengths of the perpendicular vectors ( 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗  ) are reciprocal

to the interplanar spacings. The end points of these vectors (blue arrows in figure) also 

produce a periodic lattice that is known as the reciprocal lattice of the original direct lattice. 
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Figure 1.1.3. Reciprocal lattice point 

If we consider a set of parallel planes hkl with the interplanar distance dhkl and if we take 

one (σhkl) with length 1/dhkl from a set of vectors normal  to the planes' family,  then, 

σhkl represents the whole family of hkl planes having an interplanar spacing given by dhkl . 

iii. Ewald’s sphere

The Ewald’s sphere is the most useful tool to understand the occurrence of diffraction 

spots. It helps to visualize the properties of Bragg’s law, nλ = 2d sinθ. It is an imaginary 

sphere of radius 1/λ surrounding a crystal ( shown in figure 1.1.4).  If we consider a real 

crystal in the center of the sphere, the origin of the reciprocal lattice lies in the 

transmitted beam at the edge of the Ewald sphere. Diffraction maxima (reflections, 

diffraction spots) occur only when the Bragg equation is satisfied and the Bragg’s 

condition, nλ = 2d sinθ is satisfied by the diffraction only when a reciprocal lattice point 

lies exactly on the Ewald sphere. 
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Figure 1.1.4. Ewald’s sphere forming diffraction 

1.2.  Introduction to oxygen-deficient perovskites 

Perovskites are a class of materials with similar structure and  a myriad of exciting 

properties like superconductivity, magnetoresistance, catalysis and many more. They are 

easy to synthesize and are considered as the future of solar cells because  their attractive 

structure makes them perfect for enabling low-cost, efficient photovoltaics. Since they have 

characteristics of mixed ionic and electronic conductivity, they can be applied as electrodes 

for fuel cells and hence they are also considered as future energy materials. They are 

predicted to play a role in next-gen electric vehicle batteries, sensors, lasers and much 

more. 

I. Perovskite oxides 

Oxide groups containing two or more different cations are called complex or mixed 

oxides. Many types of crystal structures are known for the oxides. One of them is 

perovskite structure. Perovskite oxides have the crystal structure similar to CaTiO3 and it 
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is expressed in general chemical formula ABO3 where A is generally alkaline earth metal 

or rare earth metal cations and B is transition metal or main p block metal cations 

(specifically group 13 metals). The ideal cubic-symmetry of perovskite structure has the 

B cation in 6-fold coordination surrounded by six oxide anions forming an octahedron. The 

A cation is surrounded by 8 octahedra with 12-fold cuboctahedral coordination. The size 

of A cations is bigger than B cations. The ideal structure of perovskite, which is illustrated 

in Fig. 1.1, is a cubic lattice. 

Figure 1.2.1. Crystal structure of perovskite oxide. (a) Crystallographic unit cell and 

corner-sharing BO6 octahedra (cyan) are highlighted. The large white spheres are the A 

atoms. (b) View along the unit cell axis. Because of the cubic symmetry, the three axes are 

identical. (c) Coordination geometry around the A atom, which is 12-coordinated. 

These ABO3 oxides are regarded as purely ionic crystals where the following relationship 

between the radii of the A, B, and O2− ions holds true for a cell axis ( a ) in the ideal cubic 

structure,1 

𝑎 =  √2(𝑟𝐴 + 𝑟𝑂) = 2 (𝑟𝐵 + 𝑟𝑂) ( 3 )   

https://en.wikipedia.org/wiki/Cation
https://en.wikipedia.org/wiki/Cuboctahedron
https://link.springer.com/chapter/10.1007/978-3-319-48933-9_59#Fig1


12 

Although few compounds have this ideal cubic structure, many oxides have slightly 

distorted variants with lower symmetry (e. g., hexagonal or orthorhombic). There are 

various types of distortions in the perovskite structure that are strongly related to their 

properties. Tolerance factor (t) can be applied in order to understand the deviations from 

the ideal cubic structure. tolerance factor (t) can be found out from the following 

equation.1 

t = 
(𝑟𝐴+𝑟𝑂)

√2(𝑟𝐵+𝑟𝑂)
( 4 )

In perovskite-type compounds, the value of t lies between approximately 0.80 and 1.10 

and the ideal cubic structure has the value of t  close to 1. It has been found that the oxides 

with the lower  t values (0.85) crystallize in the distorted variant of cubic form such as 

orthorhombic or rhombohedral while greater than 1 gives hexagonal or tetragonal 

structure including units of face sharing BO6 octahedra.  Thus, the crystal structure can 

be transformed by substituting  A or B cation by  another cation of different ionic radius 

which alters the Tolerance factor. 

II. Oxygen deficient perovskites

Oxygen deficient perovskite (ODP) oxides are a class of compounds having less oxygens 

than in perovskite oxides and it is represented by general formula ABO3-x or A2B2O6-

δwhere x or δ represent oxygen deficiency. Figure 1.2.2 demonstrates a structure of ODP. 

If A and B have different cations (where A and A’ are alkaline earth metal ions and B and 

B’ are transition metal ions) like in CaSrFeMnO5, the formula can be expressed as 

AA’BB’O6-δ. In oxygen deficient perovskites, the oxygen vacancy (also called as defect) 

can transform the coordination geometry around B cation from octahedra to tetrahedra4 or 
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square pyramidal4 geometry. There are many ways of vacancy ordering/disordering which 

make oxygen deficient perovskites possible to have structural flexibility5-6. If tetrahedral 

geometries are formed, BO4 tetrahedra can share corners with other BO4 tetrahedra or BO6 

octahedra. This corner sharing tetrahedra can arrange in a regular pattern forming a long 

chain. This chain may form layer alternating with the layer of BO6 octahedra. These 

alternating layers are demonstrated in figure 1.2.2. A number of different space group 

symmetries arise due to difference in the ordering of the tetrahedral chains within the unit 

cell.7 The space group is determined by the relative orientation of the tetrahedral chains. 

There are two possible orientations, which are arbitrarily called right-handed and left-

handed. If all tetrahedral chains have the same orientation, the space group Ibm2 is 

obtained. If the tetrahedral chains have the same orientation within each layer but are 

oriented opposite to the chains in the next tetrahedral layer, the resulting space group is 

Pnma. The random orientation of tetrahedral chains leads to the space group Icmm. A less 

common space group is Pbcm, where each tetrahedral chain is oriented opposite to all of 

its nearest neighbors within the same layer and in the neighboring layers. These space 

groups belong to brownmillerite structures. 
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Figure 1.2.2. Crystal structure of CaSrFeCoO
6-δ

 (a) crystal structure showing unit cell with

alternating (Fe/Co)O6 octahedra (cyan) and (Fe/Co)O4 tetra (pink) layers. The large white 

spheres are Sr atoms, the green spheres inside octahedra and tetrahedra are Fe and Co atoms 

and small red spheres are oxygen atoms. (b) A view along b axis to show the orientation of 

tetra next to each other in each layer. All atoms are removed for clarity.  (c) shows the 

coordination geometry around the Sr atoms. Note that the Sr is 8-coordinated. 

III. Physical properties and their possible applications.

The oxygen deficient perovskites contain BO6 octahedra, BO4 tetrahedra and/or BO5 

square pyramids. In such a case, the B cation can have multiple oxidation states like Fe3+ 

and Fe4+ which lead to charge transport.4 Sometimes these structures are distorted due to 

some kind of structural strains leading to the creation of structure induced small polarons.8-

9 This also makes the materials conductive. 

 B cations in perovskite oxides are transition metals. Transition metal complexes with 

unpaired d-electrons in transition metal are magnetic. The spin of a single electron is +(1/2) 

or –(1/2). when two electrons are paired with each other, the magnetic moments are counter 

balanced due to opposite spins but when the electron is unpaired, it creates a weak magnetic 
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field. More unpaired electrons increase the paramagnetic effects. When a transition metal 

is in coordination complex, its electron configuration changes due to the repulsive forces 

between electrons in the ligands and electrons in the metal. Depending on the strength of 

the ligand, the compound may be paramagnetic or diamagnetic. 

In recent years, oxygen deficient perovskites have been studied for the application in 

energy production and storage such as oxygen evolution reaction, hydrogen evolution 

reaction and battery materials. 

IV. Roll of A- and B-site cations

When A-site or B-site cation is substituted in a material, it may result in the transformation 

of crystal structure in the material due to the radii variation.  This structural transformation 

can affect properties of these materials. When B-site cation is substituted, the crystal 

structure changes due to the change in the B-site ionic radius or the charge on the cation. 

Sr2Fe2O5 has been reported to have a vacancy-ordered structure containing FeO6 octahedra 

and FeO4 tetrahedra10. when one of the Fe atoms (which is B-site cation) is substituted with 

Mn, the resulting compound, Sr2FeMnO5, contains vacancies distributed randomly, 

without any type of ordering.11 Similarly, tetragonal compound, Sr2Fe2O6-δ with magnetic 

moments in spin-density wave state, transforms to cubic Pm-3m structure of Sr2FeMnO6-δ 

when one of the Fe atoms is replaced by Mn. The resulting material, Sr2FeMnO6-δ, has 

inhomogeneous magnetic ground state, where the majority of the sample contains 

fluctuating spins.11 Even minor changes to the B-site cations can sometimes lead to major 

changes, as highlighted by the difference between Sr2Fe1.9Cr0.1O6-δ, cubic Pm-3m, and 

Sr2Fe1.9Co0.1O6-δ , orthorhombic Cmmm.12 Again this leads to significant variation of 

magnetic properties in these two materials.12 
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The material properties can also be affected by changes in the A-site cation. An example 

is the difference between the two compounds Ca2Fe2O5 and Sr2Fe2O5.
13-14 While both of 

these materials have ordered structures, where Fe atoms have both octahedral and 

tetrahedral geometry, the change in the A-site cation leads to different space groups. 

Ca2Fe2O5 crystallizes in the primitive space group Pnma,15 whereas Sr2Fe2O5 has a body-

centered space group Icmm.10 A similar effect is observed for Ca2GaMnO5 and 

Sr2GaMnO5, where the change in the A site cation results in changes in the space group.16 

V. Electrical conductivity of oxygen deficient perovskites 

Many ODPs are mixed oxygen ion and electron conducting materials. Electronic transport 

in ODPs takes place through holes.13, 17 It is also called as polaron mechanism. For this 

mechanism, materials should have elements with multiple oxidation states at B-site.18-19 

For example, Sr2Fe2O6-δ, a well-known ODP, has the oxidation states of Fe3+ and Fe4+.20In 

such materials, the electrons hop through M-O-M bond system. In the case of Sr2Fe2O6-δ, 

the electrons hop through Fe3+-O-Fe4+ where the Fe3+ converts to Fe4+ and vice versa after 

electron hopping. The speed of electron hopping is fast and hence it looks like the positive 

charge is moving during the electron hopping. So, it is considered as positive charge (also 

called hole) movement or P-type conductivity and it is called polaron mechanism. The 

schematic representation of polaron mechanism is shown in figure 1.2.3. The electronic 

transport in ODPs is governed by various factors. If the hole concentration (polarons) is 

higher in a material, the electronic transport and electrical conductivity is higher.13, 17  It 

has been shown that changes in the electrical conductivity correlate with changes in the 

bond lengths and angles.21-22 The shorter the M-O bond length and the larger the M-O-M 

bond angle, the better is the orbital overlap and the electronic transport and the conductivity 
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becomes better. Thus, the electrical conductivity of ODP does not depend on only one 

factor. The conductivity is p-type in metallic ODPs and the polaron mechanism is 

temperature activated.23-24 

 

 

Figure 1.2.3. Representation of electron hopping through Fe3+-O-Fe4+ bond system 

 

 

VI. Magnetism in perovskite oxides 

Magnetic moment of a system shows the strength and the direction of its magnetism. 

Magnetism results due to uneven interaction of the magnetic dipole moments. An electron 

has an electron magnetic dipole moment generated by spinning electric charge. There are 

many different magnetic behaviors such as paramagnetism, diamagnetism, and 

ferromagnetism. In perovskite oxides with B cations having unpaired d-electrons such as 

Fe3+, Mn3+, Co3+, magnetic ordering can take place. However, in most of the cases 

antiferromagnetism and ferromagnetism take place due to super- and double- exchange, 

respectively.1 The energy of the antiferromagnetic system is lower due to the antiparallel 

alignment of the spins. This system is established by coupling the unpaired d- electrons of 

two B cations by p-electrons of an intervening oxygen between them as shown in figure  
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below. The presence of vacancy can affect in the magnetism of perovskite oxides.1 

Figure 1.2.4. Super exchange by coupling two metals with unpaired d-electrons with an 

oxygen anion. 

There are different possible anti-ferromagnetic ordering schemes in perovskite oxides such 

as A-, C- and G-type. A-type AFM has the atoms with  opposite moments in adjacent 

layers. C -type AFM has neighboring atoms in the layers with opposite spins and G – type 

AFM has all neighboring B ions with opposite spins. The different schemes are shown 

below in figure 1.2.5. 

Figure 1.2.5. Three different ordering schemes in antiferromagnetic perovskite oxides 
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VII. Oxygen evolution reaction

Oxygen evolution reaction deals with electrolysis of water. Water electrolysis is the process 

of electrically splitting water into oxygen and hydrogen. The reaction can be expressed as 

2H2O → 2H2 + O2 

Here, H2 is evolved at cathode and O2 is evolved at anode. The reaction is associate with 

1.23 V of potential in all media at standard condition.25 The efficiency of electrolyzer 

system is limited by the kinetic overpotential losses associated with the oxygen evolution 

reaction (OER) at the anode in both acidic and basic medium. 

Overpotential is the potential difference between the potentials achieving a specific current 

density and 1.23 V. Usually it is measured in mV, as an example if a catalyst achieves E 

=1.53 V, then it bears an overpotential of 300 mV. Different electrocatalysts have been 

studied to reduce the overpotential for the oxygen evolution reaction. Recently, ODPs have 

attracted attention toward this research. Different mechanisms have been proposed for the 

OER in alkaline media for ODPs.26-27 The commonly accepted mechanism in alkaline 

solution involves four steps, where there is a single electron transfer in each step. In the 

first step, the reaction initiates by the adsorption of OH- on the active site of the catalyst, 

i.e., metal site, M. In the second step, a hydroxide from the electrolyte abstracts a proton

from M-OH to form M-O and water. In the third step, M-O combines with a hydroxide to 

form a peroxide. Finally, in the fourth step, the peroxide intermediate reacts with OH-
 

 to 

give an oxygen and water and regenerate the catalyst. 

1. M + OH-  → M–OH + e-

2. M–OH + OH- → M–O + H2O + e- 
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3. M–O + OH- → M–OOH + e-

4. M–OOH + OH- → M + H2O + O2 + e- 
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CHAPTER 2 

TRANSFORMATION OF STRUCTURE, ELECTRICAL CONDUCTIVITY AND 

MAGNETISM IN AA’Fe2O6-δ, A=Sr, Ca and A’= Sr1 

INTRODUCTION 

The applications of oxygen-deficient perovskites in areas such as solid oxide fuel cells 

(SOFCs), superconductors, magnetoresistants, and gas diffusion membranes indicate the 

importance of this family of materials.28-31 The general formula for oxygen-deficient 

perovskites can be represented as ABO3-x or AA’BB’O6-δ, where the B/B’ cations (which 

can be the same or different) have octahedral, tetrahedral, or square-pyramidal coordination 

geometries. The A/A’ cations (which again can be the same or different) occupy the free 

spaces in between the above polyhedra. The vacant sites, that are created due to oxygen 

deficiency, can have a random distribution in the crystal structure. In such cases, the 

average structure retains the perovskite-type atomic arrangement, but with partial site-

occupancy (as opposed to full occupancy) on oxygen positions.32 An alternative scenario 

involves an ordered arrangement of vacant sites. There can be different types of vacancy-

ordering depending on various parameters, including the degree of oxygen deficiency. For 

1 The work described in this chapter was published in Inorganic Chemistry ( 2017, vol. 

56, p. 9716-9724) 
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example, materials with large concentration of defects, i.e., δ ≈ 1, usually form structures 

where the oxide deficiency appears in alternating layers, where corner-sharing B’O4 

tetrahedra are formed. This leads to a structure that contains layers of BO6 octahedra 

separated by B’O4 tetrahedra. This is called brownmillerite-type structure.6, 33-34 Another 

type of ordering involves the formation of square pyramidal geometry around the B-site 

cations.35 In materials with smaller degree of oxygen deficiency, other schemes of vacancy-

ordering are observed, involving the formation of both square-pyramidal and octahedral 

coordination geometries.36  

Understanding various parameters that determine the crystal structure of oxygen-deficient 

perovskites is important, as there is a direct correlation between their structure and 

functional properties. The manipulation of cations on the B-site is known to affect the 

structure of oxygen-deficient perovskites. For example, despite structural similarities 

between Ca2FeAlO5 and Ca2FeGaO5, they have different space groups, Ibm2 (Ima2) for 

the former and Pcmn (Pnma) for the latter.37 Both materials feature the brownmillerite-

type structure, described above, containing octahedral and tetrahedral layers. The corner-

sharing tetrahedra form chains that run parallel to the octahedral layers, and have two 

possible orientations, called right handed (R) and left handed (L). In Ca2FeAlO5, all 

tetrahedral chains have the same orientation (either R or L), leading to space group Ibm2 

(Ima2). In Ca2FeGaO5 however, the R and L orientations appear alternately from one 

tetrahedral layer to the next, resulting in space group Pcmn (Pnma).37   

The effect of the A-site cation on the crystal structure is also important. For example, 

Sr2GaMnO5 has a body-centered structure described by Ima2 or Imcm space group, 38 

whereas Ca2GaMnO5 has a primitive structure with space group Pnma.38 However, both of 
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these materials have a similar structure-type, containing octahedra and tetrahedra, but with 

different space group symmetries. 

In this article, we study materials with formula, AA’Fe2O6-δ, where A=Sr, Ca and A’= Sr. 

The Sr-containing phase, Sr2Fe2O6-δ, is known to have various oxygen contents. The fully 

oxidized material, Sr2Fe2O6, can only be obtained if the initial air-synthesis is followed by 

heating under 30 MPa of pure oxygen.36 Products with different degrees of oxygen 

deficiencies can be synthesized if samples are heated under different gas atmospheres.36 

However, the direct synthesis in air at 1250 C, without any additional gas treatment, leads 

to a product with formula Sr2Fe2O5.75, where δ ≈ 0.25. 36 Regarding the Ca-containing 

analogue, CaSrFe2O6-δ, little information is known. The formation of an orthorhombic 

structure with similar composition through liquid nitrogen quenching and vacuum 

treatment has been reported.39 However, the magnetic structure and electrical transport 

properties of this material are not known. Here, we show that CaSrFe2O6-δ can be 

synthesized under the same conditions as the Sr2-ananlogue. We have performed neutron 

diffraction experiments to examine the crystal structure and explore the long-range 

magnetic order in the CaSr-material. We have also conducted extensive charge transport 

studies on both Sr2 and CaSr compounds. These studies have revealed the sharp contrast 

between these two materials and demonstrated the dramatic transformation of magnetism 

and electrical conductivity in AA’Fe2O6-δ as a function of A-site cation. 

EXPERIMENTAL 

Both materials were synthesized under the same synthesis conditions. Stoichiometric 

proportions of the precursors, SrCO3 (Sigma Aldrich, 99.9%), CaCO3(Alfa Aesar, 

99.95%), and Fe2O3 (Alfa Aesar, 99.998%) were used for solid-state syntheses. The 
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mixtures of precursor powders were ground using agate mortar and pestle, pressed into 

pellets and heated in air at 1000OC for 24 hours. The pellets were then ground and refired 

in air at 1250 °C for 24 hours. In all cases, the furnace heating and cooling rates were set 

at 100 °C/h. 

The phase purity and structure of polycrystalline samples were examined by powder X-ray 

diffraction at room temperature using a Bruker D8 Discover diffractometer with 

CuKα radiation and a PANalytical Empyrean diffractometer with CuKα1 radiation 

(λ = 1.54056 Å). The Rietveld refinements were carried out using GSAS software40 and 

EXPGUI interface.41 The morphological analyses were performed using a high resolution 

field-emission scanning electron microscope (SEM). The electrical properties of the 

polycrystalline samples were investigated using electrochemical impedance spectroscopy 

(EIS). AC impedance measurements were performed in the frequency range 0.1 Hz – 1 

MHz using a computer-controlled frequency response analyzer. Similarly, 2-probe DC 

measurements were carried out by measuring the output current by applying constant 

voltage of 1 mV. X-ray photoelectron spectroscopy data were obtained using Mg Kα 

radiation (1253.6 eV) at room temperature. Thermogravimetric analysis was done from 25 

to 800 °C in air. Magnetic susceptibility data were obtained by applying magnetic field of 

1000 Oe in the temperature range 2 K to 400 K. Neutron diffraction experiments were 

performed on POWGEN diffractometer at Oak Ridge National Laboratory, with center 

wavelength of 1.333 Å, covering the d-spacing range 0.4142 – 6.1363 Å.  
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RESULTS AND DISCUSSION 

Crystal structure 

The crystal structure is transformed as a result of replacing one of the Sr atoms with Ca on 

the A-site. The Sr2-compound is known to have a tetragonal crystal structure36 consisting 

of corner sharing FeO6 octahedra and FeO5 square-pyramids. Figures 2.1 and 2.2 show the 

Rietveld refinement profile and crystal structure of this material. The refined structural 

parameters are listed in Table 2.1. The FeO5 square-pyramids form dimers that are 

separated by FeO6 octahedra. There is no connectivity between different dimers in the 

structure. The octahedral and square-pyramidal Fe sites alternate within each layer. As seen 

in Figure 2.2c and Table 2.1, there are two distinct crystallographic positions where A-site 

cations (Sr2+) reside. These two sites have coordination numbers 11 and 12.  

The substitution of one Ca for Sr leads to a dramatic change in the crystal structure. Our 

neutron and X-ray diffraction experiments show that the CaSr-compound has an 

orthorhombic structure, consisting of alternating layers of octahedra and tetrahedra, as 

shown in Figure 2.3.  The FeO6 octahedra share corners with other octahedra within the 

same layer, and with the tetrahedra in the layers above and below. The tetrahedral layer 

actually consists of chains of FeO4 tetrahedra that run parallel to the octahedral layers. The 

A-site cations in this material have coordination number 8 (Figure 2.3c). This is the so-

called brownmillerite-type structure. Materials with this structure-type usually have 

orthorhombic Ibm2, Pnma, Pbcm or Icmm space groups depending on the relative 

orientation of tetrahedral chains (Figure 2.3b).33-34 As mentioned before, the tetrahedral 



26 

Figure 2.1. Rietveld refinement profile for powder X-ray diffraction data of Sr2Fe2O6-δ in 

I4/mmm space group. Stars represent experimental data, red solid is the model, vertical tick 

marks show Bragg peak positions, and the blue line represents the difference plot.         

Figure 2.2. Crystal structure of Sr2Fe2O6-δ. (a) and (b) show the alternating FeO6 octahedra 

(purple) and FeO5 square pyramids (green), viewed along the a and c axes, respectively. 

The large grey spheres are Sr atoms. (c) shows the coordination geometry around the Sr 

atoms. Note the presence of both 11 and 12-coordinated Sr atoms. 

chains have two possible orientations, right handed (R) and left handed (L). The space 

group Ibm2 is obtained when all tetrahedral chains have the same orientation. However, if 

the R and L orientations appear alternately from one tetrahedral layer to the next, the space 

group Pnma is obtained. The Pbcm space group is less common,33-34,42 where the 
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orientation of each tetrahedral chain is opposite to all nearest neighbors within the same 

layer and in the neighboring layers above and below. Finally, the space group Icmm is a 

result of random orientation of tetrahedral chains in the structure. For our CaSr-material, 

the Pbcm space group was readily ruled out, because it requires the formation of a large 

unit cell with distinct supercell peaks.33-34,42 These peaks are absent in neutron and X-ray 

diffraction data. The Pnma structure can be identified by the presence of 131 and 151 

peaks, which are also absent in our data, ruling out this space group. The Icmm and Ibm2 

models were then examined by Rietveld refinements, leading to a poor fit for Icmm, but an 

excellent fit for Ibm2 space group (Figure 2.4). The refined structural parameters are listed 

in Table 2.2.  

 

 

Table 2.1. Refined structural parameters of Sr2Fe2O6-δ. 

 

Space group: I4/mmm   

a = 10.9343(6) Å b = 10.9343 Å c = 7.6988(4) Å Rp = 0.0216 wRp = 0.0312 

Element x y z Occupancy Uiso Multiplicity 

Sr1 0.2601(5) 0 0 1 0.015(2) 8 

Sr2 0.2478(4) 0 0.5 1 0.014(2) 8 

Fe1 0 0 0.25 1 0.024(7) 4 

Fe2 0.25 0.25 0.25 1 0.007(4) 8 

Fe3 0.5 0 0.25 1 0.033(7) 4 

O1 0 0 0.5 1 0.017(1) 2 

O2 0.123(2) 0.123(2) 0.225(2) 1 0.017(1) 16 

O3 0.253(2) 0.253(2) 0.5 1 0.017(1) 8 

O4 0.126(2) 0.626(2) 0.25 1 0.017(1) 16 

O5 0.5 0 0 1 0.017(1) 4 
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Figure 2.3. Crystal structure of CaSrFe2O6-δ. (a) The octahedral FeO6 (purple) and 

tetrahedral FeO4 (green) layers. Grey spheres represent Sr. (b) View from top to highlight 

the chain formation in the tetrahedral layer. The Sr atoms are omitted for clarity.  (c) 

Coordination geometry of Sr atoms. Note that Sr is 8-coordinated.  

Figure 2.4. Rietveld refinement profile for powder X-ray diffraction data of CaSrFe2O6-δ, 

space group Ibm2. Black stars, red line, vertical tick marks and lower blue line represent 

the experimental data, structural model, Bragg peak positions and difference plot, 

respectively.  
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Table 2.2. Refined structural parameters of CaSrFe2O6-δ. 

    Space group:  Ibm2 

    a = 

5.6314(3) Å 

b = 

15.1807(8) Å 

c = 

5.4695(3) Å 

Rp = 

0.0174 

wRp = 

0.0237 

Elements x y z Occupancy Uiso Multiplicity 

Ca1 0.5127(4) 0.1108(1) 0.009(4) 0.5 0.013(1) 8 

Sr1 0.5127(4) 0.1108(1) 0.009(4) 0.5 0.013(1) 8 

Fe1 0.0763(6) 0.25 -0.003(6) 1 0.010(2) 4 

Fe2 0 0 0 1 0.020(2) 4 

O1 0.227(3) 0.0067(5) 0.295(5) 1 0.015(3) 8 

O2 

-

0.0820(1) 0.1485(4) 0.002(8) 1 0.015(3) 8 

O3 0.382(3) 0.25 0.891(6) 1 0.015(3) 4 

The morphology and crystallite sizes of both Sr2 and CaSr materials were also examined 

using scanning electron microscopy. Figure 2.5 shows the surfaces of sintered pellets for 

both materials. The crystallite size decreases as a result of replacing one Sr with Ca. In 

addition, the crystallites seem to be packed more densely and have more contact with each 

other in the CaSr-material. 

Figure 2.5. Scanning electron microscopy images of (a) Sr2Fe2O6-δ and (b) CaSrFe2O6-δ. 
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Some comments on the oxygen contents of these compounds are in order. Note that for 

both compounds, Fe2O3 was used as starting material and the synthesis conditions were 

identical. If iron retains its +3 oxidation state, the oxygen stoichiometry in AA’Fe2O6-δ 

formula should be 5, resulting in δ = 1. We have performed X-ray photoelectron 

spectroscopy experiments on the CaSr-compound, to determine the oxidation state of Fe.  

As shown in Figure 2.6, the satellite peak at ~8 eV higher than the Fe 2p3/2 peak is a 

signature of Fe3+.43-44Therefore, the oxygen content of the CaSr-compound should be very 

close to 5. This is consistent with the crystal structure of the CaSr-compound, and the 

formation of brownmillerite-type structure, which has oxygen stoichiometry of 5. This 

behavior, namely the retention of +3 oxidation state in perovskite-based oxides synthesized 

at high temperature, has been observed before.32 This is in sharp contrast to the Sr2-

compound, where the tetragonal structure implies the oxygen stoichiometry of 5.75, i.e., δ 

= 0.25, which has also been confirmed by thermogravimetric analyses.36 This indicates that 

a considerable amount of iron in the Sr2-compound has been oxidized during the synthesis. 

Note that both Sr2 and CaSr materials are synthesized under the same condition. Therefore, 

the difference in the B-site cation oxidation state as a result of variation in the ionic radius 

of the A-site cation is remarkable. 
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Figure 2.6. X-ray photoelectron spectroscopy data for CaSrFe2O6-δ. 

The transformation of the crystal structure upon changing the A-site, from Sr2 to CaSr, is 

clearly related to the average cation size. Note that Ca and Sr share the same 

crystallographic site. This structural change may be explained in terms of the relationship 

between ionic radii and the coordination geometry of the A-site cations in the two structure 

types. When only Sr2+ cation is present, the tetragonal structure is stabilized, where this 

large cation is accommodated in 11 and 12-coordinated A-sites. However, when the 

average ionic radius on the A-site is decreased (due to the presence of Ca2+), the 

orthorhombic structure, featuring 8-coordinated A-sites, is preferred. At the other extreme, 

namely in a material with only Ca on A/A’ sites, the structure remains ordered, as observed 

in Ca2Fe2O5, which also features the brownmillerite-type structure but a different space 

group.45  
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Figure 2.7. Powder X-ray diffraction data for the series of materials with varying Ca/Sr 

ratios. 

To investigate this structural transformation further, we set out to determine the A-site ionic 

radius that prompts this structural change. We synthesized a series of compounds, listed in 

Figure 2.7, where the Sr/Ca ratio was varied systematically. These experiments showed 

that transformation from tetragonal structure (with octahedral and square pyramidal 

geometry) to orthorhombic structure (with octahedral and tetrahedral geometry) takes place 

at Sr/Ca ratio of 1.4/0.6. Using this ratio, the average cation size on the A-site can be 

calculated. As mentioned before, the A-site cations in the tetragonal phase have 

coordination numbers (CN) 11 and 12. Ionic radii for CN=12 have been tabulated46 for 

Sr2+, 1.44 Å, and Ca2+, 1.34 Å. Using these radii, one can calculate the average ionic radius 

required for the structural transformation to be ~1.41 Å. 

10 20 30 40 50 60 70 80

Sr2Fe
2

O
5

2 (degree)

Sr
1.5

Ca
0.5

Fe
2

O
5

Sr
1.4

Ca
0.6

Fe
2

O
5

Sr
1.3

Ca
0.7

Fe
2

O
5

Sr
1.2

Ca
0.8

Fe
2

O
5

Sr
1.1

Ca
0.9

Fe
2

O
5

SrCaFe
2

O
5



33 

Magnetic structure 

The change in the A-site cation and subsequent alteration of the crystal structure leads to 

significant changes in the magnetic order. The Sr2 compound is known to have an 

incommensurate magnetic structure with propagation vector k= (0.687, 0, 0.326), where 

magnetic moments are in “spin-density wave” state.47 The magnetic moment value has 

been found to be 2.54(4) μB at 11 K. All magnetic moments are tilted by –35.3 degrees 

with respect to the c axis. The moments are aligned within planes perpendicular to the body 

diagonal of the unit cell, i.e., [111] direction. The magnetic transition temperature is 75 

K.47  

We have shown that the magnetic structure is transformed upon replacing CaSr for Sr2 on 

the A-site. We studied the magnetic structure of the CaSr-compound using neutron 

diffraction. Figure 2.8 shows the Rietveld refinement profile for simultaneous refinement 

of crystal and magnetic structures of CaSr-material. Neutron experiments at 10 K indicated 

that the CaSr-compound is antiferromagnetically ordered, as evident from strong magnetic 

reflections. In materials with this type of crystal structure, the relative intensities of the two 

main magnetic peaks is indicative of the orientation of magnetic moments.42 If this ratio is 

close to 1, the magnetic moments are oriented along the longest unit cell axis. However, if 

the intensity ratio is close to 3, the magnetic moments are aligned along the shortest axis. 

In our neutron diffraction data, these peaks appear at d ≈ 4.43 Å and 4.51 Å (Figure 2.8) 

with relative intensity close to 3, indicating that the magnetic moment orientation should 

be parallel to the shortest axis. Magnetic structure refinements with neutron diffraction data 

showed that magnetic moments are indeed parallel to the shortest axis, c. These 
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Figure 2.8. Refinement of the crystal and magnetic structures using neutron diffraction data 

for CaSrFe2O6-δ. The upper and lower tick marks represent the peak positions for crystal 

and magnetic structures, respectively. 

refinements also revealed that each magnetic moment is aligned anti-parallel to all of its 

nearest neighbors, forming the so-called G-type antiferromagnetic structure, as shown in 

Figure 2.9. The magnetic unit cell has the same size as the crystallographic unit cell. The 

magnitude of magnetic moments of the octahedral and tetrahedral Fe atoms were also 

determined. The magnetic moment values at 10 K are 4.6 (2) μB and 3.9(2) μB, for 

octahedral and tetrahedral sites, respectively. In addition, we performed neutron diffraction 

experiments at 300 K. These experiments indicated that the G-type antiferromagnetic order 

in the CaSr-material persists even at room temperature. The magnetic moments are still 

oriented along the c-axis and the magnitudes of moments at 300 K are 4.0(2) μB and 3.5(2) 

μB for the octahedral and tetrahedral sites, respectively. 
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Figure 2.9. The G-type antiferromagnetic order in CaSrFe2O6-δ. Note that magnetic 

moments on each Fe site are aligned opposite to all nearest neighbors. The moments are 

oriented along the c-axis.  

Note the sharp contrast between the CaSr-compound, featuring antiferromagnetic order 

even at room temperature, and the Sr2-material, where the spin-density wave state occurs 

below 75 K. We also performed magnetic susceptibility measurements on the CaSr-

material in the temperature range 2 – 400 K, as shown in Figure 2.10. A broad feature and 

divergence between zero-field-cooled and field-cooled data were observed at about 52 K. 

This behavior has been observed before for antiferromagnetic materials at temperatures far 

below their Neel temperature,33 and corresponds to short-range magnetic domains or 

possible magnetic side product.33 However, the absence of any sharp transition combined 

with the neutron diffraction results that show long-range magnetic order at 300 K, indicate 

that the Neel temperature for this material should be higher than 400 K. 
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Figure 2.10.  Magnetic Susceptibility data for CaSrFe2O6-δ. 

Electrical properties 

The change in the crystal structure has a pronounced effect on electrical transport 

properties. The electrical conductivity measurements determine the resistance, R, of each 

material, and the resistivity, ρ, is calculated from ρ = RA/L, where L and A are the length 

and cross sectional area of cylindrical samples, respectively. Conductivity, σ, is then 

calculated from the inverse of resistivity. The total conductivities of Sr2Fe2O6-δ and 

CaSrFe2O6-δ were obtained using both DC and AC methods. In each case both DC and AC 

techniques led to very similar total conductivity values, as shown in Table 2.3. Note that 

various parameters contribute to the total conductivity, including electrode reactions, bulk 

and grain-boundary resistances, ionic and/or electron transport phenomena.

In perovskite-based oxides, heterovalent atoms having more than one stable oxidation state 
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(e.g., Fe3+/Fe4+) are needed on the B-site for electronic conductivity. The metal (M) 3d and 

oxygen 2p orbitals overlap and electron hopping occurs through M–O–M pathways. 

Table 2.3. Room temperature conductivity and activation energies. 

Total conductivity, σ (Scm-1) Activation energy (Ea) in eV 

AC DC 

Sr2Fe2O6-δ 7.698 x 10-1 8.540 x 10-1 0.118 

CaSrFe2O6-δ 1.201 x 10-1 1.616 x 10-1 0.653 for 298 – 673 K (25 – 400 °C) 

0.201 for 673 – 1073 K 

(400 – 800 °C) 

The M–O bond distance and M–O–M angle determine the degree of overlap. Shorter bonds 

and larger angles are associated with greater orbital overlap and higher conductivity.48 Due 

to the presence of corner-sharing octahedra and tetrahedra in the CaSr compound, the 

average Fe–O–Fe bond angle (138.8º) in this material is smaller than that for the Sr2-

compound (177.2º). Therefore, smaller degree of orbital overlap is expected in the CaSr-

compound. The corner-sharing of octahedra and tetrahedra leads to distortions in the 

coordination geometry of Fe atoms, resulting in a wide range of Fe–O bond lengths in the 

CaSr-material, from 1.780(7) Å to 2.302(7) Å. However, the Fe–O bond lengths in the Sr2-

compound are close to each other and range from 1.92(3) Å to 1.97(3) Å.   

As observed in Table 2.3, at room temperature, there is nearly one order of magnitude 

difference between the total conductivity of the Sr2-material and that of the CaSr-

compound, indicating the significant effect of crystal structure on the electrical transport 

properties. 
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To operate any device that works based on conductive oxides over a wide temperature 

range, knowledge of the charge transport properties as a function of temperature is 

required. Therefore, variable-temperature DC conductivity studies were performed for 

both materials at the temperature range of 298 K– 1073 K (25 oC – 800 oC). From these 

experiments the activation energies were obtained, as shown in Table 2.3. The conductivity 

trends during heating and cooling cycles and the Arrhenius plots for both materials are 

shown in Figure 2.11. The plot in Figure 2.11b was used for fitting with the Arrhenius 

equation for thermally activated conductivity,49-51 which helped to find the activation 

energy of total conductivity. 

σT = σ◦e
−Ea

KT ( 5 ) 

where σ◦ is a pre-exponential factor and a characteristic of a material, and Ea, K and T are 

the activation energy for the conductivity, Boltzmann constant and absolute temperature, 

respectively. The activation energy for the total conductivity (Ea) can be calculated from 

slope of the line of best fit in log σT vs 1000/T plot. As shown in Table 2.3, Ea value for 

the total conductivity of Sr2Fe2O6-δ is 0.118 eV. For CaSrFe2O6-δ two Ea values are 

obtained, 0.653 eV for 25 – 400 °C (298 – 673 K) and 0.201 eV for 400 – 800 °C (673 – 

1073 K). 

There is a sharp contrast between the CaSr and Sr2 compounds with regards to their 

conductivity trends as a function of temperature. The Sr2 compound shows metallic 

properties,52 while the CaSr-material is a semiconductor. As mentioned above, the average 

Fe–O–Fe bond angle in the Sr2-compound is greater than that in the CaSr-material. Several 

authors have discussed the correlation between increase in bond angles and the broadening 
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of valence and conduction bands in perovskites, leading to changes in properties from 

insulator or semiconductor to metallic systems.48, 53-54 The broadening of bands and overlap 

between the metal 3d and oxygen 2p bands closes the band gap completely, leading to the 

formation of hybrid M–O–M bands, and metallic properties. The charge transfer occurs 

through these hybrid bands.48, 53-54 

As observed in Figure 2.11, Sr2Fe2O6-δ displays a trend where conductivity decreases 

gradually with respect to temperature in the entire range from 298 K to 1073 K, indicative  

 

 

Figure 2.11.  (a) Total conductivity of Sr2Fe2O6-δ and CaSrFe2O6-δ as a function of 

temperature. For Sr2Fe2O6-δ, the heating and cooling data (red and green) overlap. For 

CaSrFe2O6-δ hysteresis is observed between heating (black squares) and cooling data (blue 

circles).  (b) Arrhenius plot of the total conductivity for Sr2Fe2O6-δ (red stars) and 

CaSrFe2O6-δ (black circles). 

 

of metallic properties. The decrease in conductivity as a function of temperature in a 

metallic system is a result of increase in the frequency of collisions between charge carriers 

and phonons.53  
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On the contrary, the conductivity of CaSrFe2O6-δ increases gradually with the rise in 

temperature, a behavior typical of a semiconductor. The conductivity then decreases after 

~673 K. In materials that feature the same structure type as CaSr-compound, i.e., 

alternating layers of octahedra and tetrahedra, increase in electrical conductivity as a 

function of temperature is usually observed.55   

The conductivity mechanism is through the formation of polarons. The different bond 

lengths of corner-sharing tetrahedra and octahedra in this structure-type introduce 

structural distortions, resulting in lattice polarizations which favor polaronic charge 

transport mechanism56-57. The dependence of conductivity on oxygen partial pressure has 

been observed in these materials indicating the p-type semiconductivity.55 Also, the 

dominance of electronic conductivity above room temperature in high oxygen partial 

pressure, e.g., O2 partial pressure in air, has been shown for perovskite-type systems. In 

these cases, the main charge carriers are electron holes, leading to p-type 

semiconductivity.57-61 The extrinsic holes are formed through the absorption of oxygen 

molecules on the surface of the sample, facilitated by the presence of oxygen vacancies. 

The process can be described using the following idealized equations57, 59: 

   ½ O2 → O2– + 2h• ( 6 ) 

In ferrites, the variable valence of iron is essential for charge compensation and electronic 

conductivity. 

Fe3+ + h• → Fe4+ ( 7 ) 

The formation of Fe4+ ions allows the polaronic electronic conductivity to occur through 

Fe3+—O2−—Fe4+ pathway.57, 61-62  



41 

The increase in conductivity as a function of temperature50, 55, 57 is explained in terms of 

temperature-activated hole formation and increased polaron mobility.50 Another feature 

observed in Figure 2.11 is a change in the electrical conductivity trend for the CaSr-

compound above ~673 K. This behavior has been observed in similar materials before.55, 

57, 63-64 Some researchers have observed greater loss of oxygen in thermogravimetric 

analysis (TGA) above a certain temperature close to the temperature of the conductivity 

transition.63-64 They have assigned the decrease in conductivity above a particular 

temperature to the loss of oxygen and disruption of the Fe3+—O2−—Fe4+ conduction 

pathways.63-64 Our TGA data (Figure 2.12) show a feature between 370 – 440 °C (643 – 

713 K), where the weight loss is interrupted by a plateau and a slight weight-gain, before 

the descending trend in weight continues above 440 °C. The feature in TGA data matches 

the temperature where the change in conductivity trend occurs. The weight loss is 

somewhat accelerated above 440 °C, as seen from the slope of the TGA plot. (Figure 2.12) 

Overall, the total weight loss for the material is less than 1%.  

Figure 2.12.  Thermogravimetric analysis data for CaSrFe2O6-δ in air 
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It is worth noting that the release of oxygen results in more oxygen vacancies, which 

enhances the oxide ion conductivity. The decrease in total conductivity is observed because 

the increase in ionic conductivity is less significant than the decrease in electronic 

conductivity.64   

We also examined the possibility of any structural phase change at high temperature, which 

could contribute to the decrease in conductivity above ~673 K. We heated a sample of 

CaSr-compound to 1073 K (800 °C), followed by quenching into liquid nitrogen to trap 

the potential high temperature phases. The XRD data indicated that the crystal structure 

had remained intact and no structural changes had occurred. 

Some researchers have noted that the discontinuity in conductivity trend sometimes occurs 

close to the Neel temperature.57 Some authors have even used electrical conductivity to 

determine the Neel temperature.65 We note that our CaSr-material is antiferromagnetically 

ordered at room temperature. A comparison between the refined magnetic moments, 4.6 

(2) μB and 3.9 (2) μB, at 10 K and the corresponding values at 300 K, 4.0 (2) μB and 3.5 (2) 

μB, indicates that the magnetic moments magnitude remains considerably high at room 

temperature. Also, the magnetic susceptibility data indicate that the Neel temperature 

should be higher than 400 K.  

Another interesting feature of the electrical conductivity of CaSr-compound is the 

pronounced hysteresis in the conductivity data obtained during heating and cooling cycles 

below ~673 K. The conductivity values during cooling are greater than those obtained 

during heating. The observation of this feature confirms the contribution of oxide ion 

conductivity to total conductivity of this material, making it a mixed electronic-ionic 

conductor, as described before for some mixed conductors.62, 66 The oxygen 
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absorption/desorption phenomena, which are slower than electron diffusion, are 

responsible for the observation of these hystereses.62, 66 This also indicates that oxygen loss 

has a positive impact on overall conductivity and cannot be responsible for the change in 

conductivity trend above 673 K. The temperature-activated mobility of polarons seems to 

reach a maximum, where no further increase in mobility occurs with increasing 

temperature. The collisions between charge carriers lead to decrease in conductivity as 

temperature increases further, similar to the behavior observed in metallic systems. 

CONCLUSION 

The alteration of electrical properties and magnetism of oxygen-deficient perovskites 

AA’Fe2O6-δ, A=Sr, Ca; A’= Sr, as a result of changing the crystal structure, due to the effect 

of the A-site cation, has been demonstrated. It has been shown that the incommensurate 

magnetic structure of the Sr2 compound, featuring magnetic moments in spin-density wave 

state which are perpendicular to the body diagonal of the unit cell, can be transformed into 

a long-range G-type antiferromagnetic system upon changing the A-site cations into CaSr. 

This occurs as a consequence of a structural alteration. The structure with alternating FeO5

square-pyramidal dimers and FeO6 octahedra is converted into a structure featuring 

alternating layers of tetrahedra and octahedra. The electrical properties are also 

transformed by changes in the A-site cation, where a metallic system is converted into a 

semiconductor featuring mixed ionic-electronic conductivity, as evident form charge 

transport studies in the temperature range 298 K– 1073 K. 
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CHAPTER 3 

UNRAVELING THE ROLE OF STRUCTURAL ORDER IN TRANSFORMATION OF 
ELECTRICAL CONDUCTIVITY IN Ca2FeCoO6-δ, CaSrFeCoO6-δ AND Sr2FeCoO6-δ

2

INTRODUCTION 

Oxygen deficient perovskite oxides possess unique properties that make them ideal 

candidates for  application in devices such as gas diffusion membranes1, ceramic 

membranes for oxygen separation2, sensors3, solid oxide fuel cells (SOFCs)4, 

superconductors and colossal magnetoresistants.5  

The oxygen deficient perovskite oxides are represented by general formula ABO3-x or 

A2B2O6-δ. The A and B sites can contain more than one type of cation. Oxygen-deficient 

perovskites can have a variety of structures depending on several factors including the 

extent of anion deficiency and vacancy order/disorder. While disordered vacancies in 

oxygen-deficient perovskites are common, there are a number of ways for the vacancies, 

created due to oxygen deficiency, to order. This leads to great diversity and variation in 

structure and properties of this family of compounds6-7. The vacancies result in different 

coordination geometries such as tetrahedral or square pyramidal.8-10 One of the structure-

2 The work described in this chapter was published in Inorganic Chemistry ( 2017, vol. 

56, p. 14494-14505) 
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types containing tetrahedral geometry comprises corner-sharing tetrahedra which form 

chains that run almost perpendicular to the longest unit cell axis (Figure 3.1). The 

tetrahedra in these chains also share apexes with octahedral layers above and below them. 

Therefore, the overall structure appears as a combination of octahedral and tetrahedral 

layers as shown in Figure 3.1. This is called the brownmillerite-type structure. In situations 

like this, where there is more than one unique crystallographic site for the A or B cations, 

the general formula can be expressed as AA’BB’O6-δ. The variation in the type of cations 

on A or B sites, affects the structure and properties of these materials.  For example, 

Sr2Fe2O5 has a vacancy-ordered structure containing FeO6 octahedra and FeO4 tetrahedra.11  

Replacing one of the Fe atoms for Mn leads to a change in crystal structure. The resulting 

material, Sr2FeMnO5, contains vacancies that are distributed randomly, without any type 

of ordering.12 Another example is the difference between Ca2FeAlO5 and Ca2FeGaO5.
13 

These two materials have the same structure-type, but the change in the B-site cation results 

in a change in the space group. The Al-containing compound crystalizes in Ibm2 space 

group, while the Ga-containing material has space group Pcmn.13  

The material properties can also be affected by changes in the A-site cation.  An example 

is the differences between the two compounds Ca2Fe2O5 and Sr2Fe2O5.
14-15 While both of 

these materials have ordered structures, where Fe atoms have both octahedral and 

tetrahedral geometry, the change in the A-site cation leads to different space groups. 

Ca2Fe2O5 crystallizes in the primitive space group Pnma16, whereas Sr2Fe2O5 has a body-

center space group Icmm11. A similar effect is observed for Ca2GaMnO5 and Sr2GaMnO5, 

where the change in the A-site cation results in changes in the space group.17  
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Figure 3.1. Crystal structure of CaSrFeCoO6-δ. (a) The crystallographic unit cell.  The 

alternating (Fe/Co)O6 octahedra (cyan) and (Fe/Co)O4 tetra (pink) are highlighted. The 

large grey spheres are the A-site cations, Ca2+/ Sr2+. (b) A view along the b axis (longest 

axis) to show the uniform orientation of tetrahedral chains. The A-site cations are omitted 

for clarity.  (c) The coordination geometry around the A-site cation. There are 8 oxygens 

that are close enough to the A-site cation to be in its coordination sphere. 

In the above examples, the change in the A-site cation only affects the crystal symmetry, 

and the overall structure-type remains the same. In this article, we show significant changes 

in structure and electrical properties due to the variation in the A-site cation. We 

demonstrate that changes to the structural order have major consequences with regard to 

the electrical charge transport in three oxygen-deficient perovskites, Ca2FeCoO6-δ, 

CaSrFeCoO6-δ and Sr2FeCoO6-δ. 

EXPERIMENTAL 

All three materials, Ca2FeCoO6-δ, CaSrFCoO6-δ and Sr2FeCoO6-δ, were synthesized under 

the same condition. The precursor compounds CaCO3(Alfa Aesar, 99.95%), Fe2O3 (Alfa 

Aesar, 99.998%), Co3O4 (Alfa Aesar, 99.7%) and SrCO3 (Aldrich, 99.9%) were used in 

stoichiometric proportions for solid state syntheses. The precursor powders were mixed 

and ground together using agate mortar and pestle, pressed into a pellet and heated in air 
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at 1000°C for 24 hours. Then the sample was reground and refired in air at 1200°C for 

24hours followed by slow cooling. In all cases, the heating and cooling rates were 100°C/h. 

The phase purity and structure of the polycrystalline samples were studied by powder X-

ray diffraction at room temperature using CuKα1 radiation (λ = 1.54056 Å), and step-size 

0.008°. The GSAS software18 and EXPEGUI interface19 were used for Rietveld 

refinements. The sample morphologies were examined using a high-resolution field-

emission scanning electron microscope (SEM). X-ray photoelectron spectroscopy was 

performed at room temperature using Al Kα radiation (1486.7 eV). The electrical 

properties were investigated by DC and AC conductivity measurements on pressed pellets 

that had been sintered at 1200 °C. The densities of sintered pellets were ~50%, ~27% and 

~76% of the theoretical densities for Ca2FeCoO6-δ, CaSrFCoO6-δ and Sr2FeCoO6-δ, 

respectively. The relative densities are consistent with SEM results, as described in the next 

section. Electrochemical impedance spectroscopy (EIS) was performed in the frequency 

range 0.1 Hz–1MHz using a computer-controlled frequency response analyzer at room 

temperature. The 2-probe DC measurements were performed in the temperature range 298 

to 1073 K (25 – 800 °C) by applying a constant voltage, 10 mV, and collecting the output 

current. Variable temperature electrical conductivity measurements were carried out during 

both heating and cooling cycles. The rate of heating and cooling for conductivity 

measurements was 3 oC min-1. Iodometric titrations were performed by dissolving about 

50 mg of sample and excess KI (~2 g) in 100mL of 1M HCl. 5 mL of the solution was then 

pipetted out, and the iodine that had been generated in the solution was titrated using 

0.025M Na2S2O3. Near the end point of the titration, 10 drops of starch solution were added 

to act as indicator. All steps were performed under argon atmosphere. Neutron diffraction 
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experiments with center wavelength of 1.333 Å were performed on powder samples (~4 g) 

in vanadium sample holders at 300 K on POWGEN diffractometer at Oak Ridge National 

Laboratory. 

RESULTS AND DISCUSSION 

Crystal structure 

We have determined the crystal structure of CaSrFCoO6-δ and demonstrated the sharp 

contrast between this material and Ca2FeCoO6-δ 
20 and Sr2FeCoO6-δ.

21 

Researchers studying CO2 absorption21 have previously identified a phase with a 

composition similar to CaSrFCoO6-δ. However, they could only determine the cell 

dimensions, and no other structural information is available for this material. We examined 

the structure of this material through a series of Rietveld refinement analyses using 

monochromatic X-ray and time-of-flight neutron diffraction. The data indicate that this 

material has an orthorhombic structure featuring tetrahedral chains that are sandwiched 

between octahedral layers. As shown in Figure 3.1, the tetrahedral chains run parallel to 

the octahedral layers. Each tetrahedron in the chain shares corners with the octahedral 

layers above and below. This material is the brownmillerite-type structure that was 

described above. 

Materials with this structure-type usually crystalize in space groups Pnma, Ibm2, Icmm or 

Pbcm.22-23 The space group is determined by relative orientation of tetrahedral chains. 

There are two possible orientations, which are arbitrarily called right-handed and left-

handed. If all tetrahedral chains have the same orientation, the space group Ibm2 is 

obtained. If the tetrahedral chains have the same orientation within each layer but are 

oriented opposite to the chains in the next tetrahedral layer, the resulting space group will 
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be Pnma. The random orientation of tetrahedral chains leads to space group Icmm. A less 

common space group is Pbcm,20 where each tetrahedral chain is oriented opposite to all of 

its nearest neighbors within the same layer and in the neighboring layers. Materials that 

crystalize in space group Pbcm have a large unit cell, that has twice the volume of the unit 

cell for other space groups mentioned above. The large unit cell is represented by supercell 

reflections in powder diffraction data, making this type of structure easily identifiable. The 

absence of Pbcm supercell reflections in the powder X-ray diffraction data of CaSrFCoO6-

δ rules out this space group. The other primitive space group, Pnma, is identified by the 

presence of 131 and 151 peaks in the powder diffraction data, which are absent in the body-

centered systems. The 131 peak is especially prominent when present. The absence of these 

peaks in the PXRD data of CaSrFCoO6-δ indicates that this material does not have a 

primitive unit cell and crystallizes in one of the body-centered space groups, Icmm or Ibm2. 

Multiple Rietveld refinements with these two space groups were performed using high-

resolution Kα1 XRD datasets on different CaSrFCoO6-δ samples to ensure the 

reproducibility of the results. With Icmm space group, the atomic parameters could only be 

refined individually, while simultaneous refinement of all atomic parameters led to the 

divergence of the Rietveld refinements. This was observed consistently for multiple 

samples and 
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Figure 3.2. Rietveld refinement profile for powder X-ray diffraction data of CaSrFeCoO6-

δ. Crosses represent experimental data, solid red line is the Ibm2 model, vertical tick marks 

show Bragg peak positions, and the lower line represents the difference plot. 

refinement trials. The Ibm2 space group, however, always led to an excellent fit. All profile 

parameters, background, unit cell dimensions, atomic positions, and thermal displacement 

factors were refined simultaneously, giving an excellent fit to Ibm2 space group. The 

Rietveld refinement profile is shown in Figure 3.2 and the refined atomic parameters are 

listed in Table 3.1.  Given the inherent limitation of laboratory X-ray diffraction with 

regard to differentiating elements with similar atomic numbers, such as Fe and Co, neutron 

diffraction experiments were undertaken to study the distribution of Fe and Co on different 

positions in this material. Given the large difference between the neutron scattering lengths 

of Fe, 9.45, and Co, 2.49, these two nuclei are readily distinguishable by neutrons. The 

neutron diffraction results and Rietveld refinement profile are shown in Table 3.2 and 

Figure 3.3, respectively. Initially two models were tested where Fe and Co were placed 

exclusively on tetrahedral and octahedral sites, and vice versa. However, the refined 

thermal displacement factors on tetrahedral and octahedral sites became unusually large on 
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one site and negative on the other. Therefore, the site occupancies on these two sites were 

refined, leading to an excellent fit and atomic parameters that are shown in Table 3.2. As 

observed here, Fe and Co are distributed nearly evenly over the octahedral and tetrahedral 

sites. 

Figure 3.3. Neutron diffraction Rietveld refinement profile for CaSrFeCoO6-δ. Magnetic 

reflections have been omitted. Crosses represent experimental data, solid red line is the 

Ibm2 model, vertical tick marks show Bragg peak positions, and the lower line represents 

the difference plot. 
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Table 3.1. Refined structural parameters of CaSrFeCoO6-δ using powder X-ray diffraction. 

    Space group:  Ibm2 

a = 5.5576(2) Å, b =   15.1658(5) Å, c = 5.4141(2) Å, Rp = 0.0164, wRp = 0.0220 

Elements x y z Occupancy UISO Multiplicity 

Ca1 0.5103(6) 0.1116(2) -0.004(6) 0.5 0.024(1) 8 

Sr1 0.5103(6) 0.1116(2) -0.004(6) 0.5 0.024(1) 8 

Fe1 0.0776(9) 0.25 -0.011(7) 1 0.030(3) 4 

Co1 0 0 0 1 0.031(2) 4 

O1 0.25(1) 0.0008(8) 0.268(7) 1 0.042(3) 8 

O2 -0.075(2) 0.1544(6) -0.005(1) 1 0.042(3) 8 

O3 0.372(4) 0.25 0.85(1) 1 0.042(3) 4 

Therefore, both tetrahedral and octahedral layers contain almost equal quantities of Fe and 

Co. These findings highlight the strength of neutron diffraction in tackling problems that 

cannot be resolved by X-rays. To study the correlation between crystal structure and 

electrical conductivity, we also synthesized Ca2FeCoO6-δ and Sr2FeCoO6-δ (hereafter 

referred to as Ca2 and Sr2 analogues) under the same conditions as CaSrFeCoO6-δ (hereafter 

CaSr-compound). Table 3.3 compares the space groups and unit cell parameters for all 

three compounds. The Sr2 material crystallizes in the cubic space group Pm-3m.21, 24 The 

formation of the cubic structure with space group Pm-3m was confirmed by our Rietveld 
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Table 3.2. Refined atomic parameters of CaSrFeCoO6-δ in Ibm2 space group using neutron 

diffraction. 

 

Elements x y z Occupancy Uiso 

Ca1 0.5125(6)     0.1110(2)   0.010(2)    0.48(5)     0.0140(8)      

Sr1 0.5125(6)     0.1110(2)   0.010(2)    0.52(5)     0.0140(8)      

Fe1 0.0664(9)     0.25 -0.031(2)    0.46(3)   0.022(2)     

Co1 0.0664(9)     0.25 -0.031(2)    0.54(3)   0.022(2)     

Fe2 0 0 0 0.52(2)   0.009(1)     

Co2 0 0 0 0.48(2)   0.009(1)     

O1 0.2393(8)     0.0094(2)   0.266(2)    1 0.0106(6)      

O2 -0.057(1)     0.1406(2)   0.008(3)    1 0.0204(7)      

O3 0.370(1)    0.25 0.889(2)    1 0.027(1)     

 

 

 

refinement results. Figures 3.4 and 3.5 show the crystal structure and Rietveld refinement 

profile of the Sr2 compound. The refined atomic parameters are listed in Table 3.4. The 

Ca2 compound has a brownmillerite-type Pbcm structure20 (Figure 3.6) with a large unit 

cell, which is double the size of that for a typical brownmillerite,  and ordered arrangement 

of tetrahedral chains, where each chain is oriented opposite to all of its nearest-neighbors. 

Our Rietveld refinements confirm the formation of the Pbcm structure 20 (Figure 3.7) under 

the same synthesis conditions as the other two materials. Table 3.5 lists the refined atomic 

parameters for the Ca2 compound.  
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Table 3.3. Comparison of space groups and unit cell parameters for Ca2FeCoO6-δ, 

CaSrFeCoO6-δ and Sr2FeCoO6-δ  

Sr2FeCoO5 CaSrFeCOO5 Ca2FeCoO5 

Space group Pm-3m Ibm2 Pbcm 

Lattice 

parameters 

a (Å) 3.86469(3) 5.5576(2) 5.36854(8) 

b (Å) 3.86469(3) 15.1658(5) 11.1063(2) 

c (Å) 3.86469(3) 5.4141(2) 14.8079(2) 

V (Å3) 57.722(1) 456.33(4) 882.92(3) 

The trend in the structural order in progression from Sr2-compound to CaSr and Ca2 

materials is remarkable. In the Sr2 material, the vacant sites, created due to oxygen 

deficiency, are distributed randomly. In the CaSr compound the vacancies are ordered. The 

vacant sites only appear in alternating layers, forming tetrahedral chains, instead of 

octahedral geometry that is commonly observed in perovskites. All tetrahedral chains in 

this material have the same orientation, as evident from its space group. The Ca2 material 

has the same type of vacancy order. However, an additional type of ordering is also present, 

namely the alternating orientation of tetrahedral chains within and between layers. 

Therefore, it is evident that as the Ca content increases, the degree of ordering also 

increases. 
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Figure 3.4. Crystal structure of Sr2FeCoO6-δ. (a) The crystallographic unit cell and corner-

sharing (Fe/Co)O6 octahedra (cyan) are highlighted. The large grey spheres are the Sr 

atoms. (b) A view along the unit cell axis. Due to cubic symmetry, the three axes are 

identical. (c) The coordination geometry around the Sr atom, which is 12-coordinated. 

We investigated the oxygen contents of all three materials using iodometric titration, which 

showed that the formulae for the three compounds can be described as Sr2FeCoO6-δ (δ = 

0.5), CaSrFeCoO6-δ (δ = 0.8) and Ca2FeCoO6-δ (δ = 0.9). Note the greater oxygen content 

of the disordered Sr2 material. We have also confirmed these results by monitoring the 

oxygen loss due to the heating of samples in argon at temperatures up to 1200 °C, which 

usually leads to oxygen stoichiometry of 5, i.e., δ =0, in oxygen-deficient perovskites.10, 23  

We also explored the correlation between the A-site cation and the morphology and 

crystallite size by performing scanning electron microscopy studies on all three materials. 

Interestingly, the CaSr compound has the smallest crystallite size, as shown in Figure 3.8. 

The Sr2 and Ca2 compounds have comparable crystallite sizes. However, the contact 

between crystallites is enhanced in the Sr2 material compared to the other compounds.  
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Figure 3.5. Rietveld refinement profile for powder X-ray diffraction data of Sr2FeCoO6-δ 

refined in Pm-3m space group. Crosses represent experimental data, solid red line is the 

model, vertical tick marks show Bragg peak positions, and the lower blue line represents 

the difference plot. 

Table 3.4. Refined structural parameters of Sr2FeCoO6-δ. 

Space group: Pm-3m   

a = 3.86469(3) Å, Rp = 0.0142, wRp = 0.0192 

Element x y z Occupancy Uiso Multiplicity 

Sr1 0.5 0.5 0.5 1 0.0183(3) 1 

Fe1 0 0 0 0.5 0.0177(4) 1 

Co1 0 0 0 0.5 0.0177(4) 1 

O1 0 0 0.5 0.92 0.0220(6) 3 
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Figure 3.6. Crystal structure of Ca2FeCoO6-δ featuring alternating (Fe/Co)O6 octahedra 

(cyan) and (Fe/Co)O4 tetrahedra (pink). The large grey spheres are Ca atoms. The 

crystallographic unit cell is highlighted using yellow lines. Note that the unit cell here is 2-

times larger than that for the CaSr analogue.  

Figure 3.7. Rietveld refinement profile for powder X-ray diffraction data of Ca2FeCoO6-δ 

refined in Pbcm space group. Crosses represent experimental data, red solid line is the 

model, vertical tick marks show Bragg peak positions, and the blue line represents the 

difference plot. 
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To investigate these structural transitions further, we carried out a series of experiments 

and synthesized 21 different materials by systematically varying the Ca/Sr ratio to 

determine the average ionic radius that is required on the A-site to promote these structural 

transformations. The ionic radii play an essential role in the formation of different 

perovskite-type structures.25  For our materials, the transition from disordered structure to 

the ordered system occurs when the Ca/Sr ratio is greater than 0.3/1.7. (Figure 3.9) We also 

determined the Ca/Sr ratio that is required for transition from the Ibm2 structure (where all 

tetrahedral chains have the same orientation) to the Pbcm system (with alternating 

orientation of tetrahedral chains). This transition was found to occur at Ca/Sr ratio 1.2/0.8, 

as indicated by the appearance of (120) peak at 2θ ≈ 23° in Figure 3.10. Using the ionic 

radii for 12-coordinated Sr2+, 1.44 Å, and Ca2+, 1.34 Å, 26 one can calculate the average 

ionic radius that prompts each of these phase transitions. The transition from a disordered 

to ordered system occurs when the average ionic radius on the A-site is greater than ~1.42 

Å. The transition from the ordered system with uniform orientation of chains to the more-

ordered system, with alternating chain orientation, takes place when the average ionic 

radius is larger than 1.39 Å. 
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Table 3.5. Refined structural parameters of Ca2FeCoO6-δ. 

 

Space group: Pbcm   

a = 5.36854(8) Å,   b = 11.1063(2) Å,    c = 14.8079(2) Å,  Rp = 0.0167,  wRp = 0.0215 

Element x y z Occupancy Uiso Multiplicity 

Ca1    -0.006(2) 0.757(2) 0.393(1) 1 0.038(8) 8 

Ca2 -0.491(3) 0.516(2) 0.609(1) 1 0.035(7) 8 

Fe1 0.439(3) 0.719(1) 0.25 0.5 0.032(7) 4 

Co1 0.439(3)  0.719(1) 0.25 0.5 0.032(7) 4 

Fe2 -0.054(3) 0.539(2) 0.25 0.5 0.042(8) 4 

Co2 -0.054(3)  0.539(2) 0.25 0.5 0.042(8) 4 

Fe3 -0.504(3) 0.75 0.5 0.5 0.026(8)       4 

Co3 -0.504(3)    0.75 0.5 0.5 0.026(8) 4 

Fe4 0.0 0.0 0.0 0.5 0.043(9)       4 

Co4 0.0 0.0 0.0 0.5 0.043(9) 4 

O1 0.114(8)  0.662(4)      0.25 1 0.04 4 

O2     0.604(9)         0.552(4)             0.25          1 0.04 4 

O3 -0.213(7)         0.612(4)      0.489(2)    1 0.04 8 

O4 -0.760(9)      0.609(4)    0.490(2)    1 0.04 8 

O5 0.042(7)      0.459(4)      0.359(3) 1 0.04 8 

O6 0.527(6)      0.781(4)      0.365(4)      1 0.04          8 
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Figure 3.8. Scanning electron microscopy images for Sr2FeCoO6-δ, CaSrFeCoO6-δ 

andCa2FeCoO6-δ

Figure 3.9. Powder XRD data for the series Sr2-xCaxFeCoO6-δ, x = 0 – 1. The structural 

transition occurs above x = 0.3. 
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Figure 3.10. Powder XRD data for the series Sr2-xCaxFeCoO6-δ, x = 1 – 2. The structural 

transition occurs above x = 1.2. 

 

X-ray photoelectron spectroscopy (XPS) 

The oxidation states of iron and cobalt in all three materials were explored using XPS 

analyses, which revealed an interesting trend with regard to the cation oxidation states in 

these three compounds.  We note that the starting materials used in the syntheses, namely 

Fe2O3 and Co3O4, contained Fe3+, Co2+ and Co3+. The main XPS peak for Fe3+ is the 2p3/2 

peak, which appears at about 710 – 711.5 eV.27-29 In our spectra this peak is present. 

However, additional features are also observed in the spectra indicating that other oxidation 

states are present as well, as discussed further below. Similar observations are made for 
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Co, where the dominant Co3+ peak, i.e., the 2p3/2 peak,30-31 is observed at ~780 eV, but 

additional features signify the presence of other cobalt oxidation states as well. 

For Fe, the position and width of the 2p3/2 peak, as well as the positions of satellite peaks, 

which appear at higher energy than the 2p3/2 peak, are indicative of oxidation states.27-29 In 

the XPS spectra of our materials, two satellite peaks are observed for Fe, one at ~ 4 eV 

higher and another at ~ 6.5 – 7.5 eV higher than the center of the 2p3/2 peak. The first 

satellite peak, located at ~ 4 eV higher than the 2p3/2 peak, belongs to Fe2+.28-29 The second 

satellite peak, at ~ 6.5 – 7.5 eV higher than the 2p3/2 peak, is the signature of Fe3+.28-29, 32 

Therefore, the XPS data show that these materials contain Fe in both divalent and trivalent 

states. Figure 3.11 shows the Fe XPS spectra for all three materials. 

Unlike the Fe spectra that are quite similar for all three compounds, the Co spectra show 

an interesting variation in oxidation states. The most striking difference is the low energy 

shoulder on the cobalt 2p3/2 peak for the Ca2 and CaSr-compounds, which is absent for the 

Sr2-material, as seen in Figure 3.12. The low energy side of the cobalt 2p3/2 peak for Ca2 

and CaSr-materials is much wider and is stretched further into the low-energy region, 

showing a distinct shoulder, which is not present in Sr2-material spectrum. 
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Figure 3.11. The Fe XPS spectra for Ca2FeCoO6-δ, CaSrFeCoO6-δ and Sr2FeCoO6-δ 

The low energy shoulder is indicative of Co2+.30, 33 There is also a shoulder on the high 

energy side of the 2p3/2 peak for all three compounds, which represents Co4+.30-31 Two 

satellite peaks are present in the cobalt spectra for all three materials, including the Sr2-

compound that lacks Co2+. The first satellite peak appears at about 785 eV – 787 eV, while 

the second satellite peak is observed at about 788 eV – 789 eV.  The first satellite peak 

represents tetravalent cobalt,31 and is located ~ 3.5 – 5 eV higher than the Co4+ peak, as 

expected.31 
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Figure 3.12. The cobalt XPS spectra for Ca2FeCoO6-δ, CaSrFeCoO6-δ and Sr2FeCoO6-δ 

 This satellite peak is especially pronounced in the CaSr and Sr2-materials. The second 

satellite peak belongs to Co3+, located at ~ 8 – 9 eV higher than the 2p3/2 peak, as expected 

for trivalent cobalt.31 Note that the relative binding energy of satellite peaks for different 

oxidation states of cobalt does not follow the same trend as the relative binding energy of 

the main 2p3/2 and 2p1/2 peaks, which have a different origin compared to the satellite peaks. 

The satellite peak for Co4+ appears at lower binding energy than that for Co3+.31 In general, 

some degree of cobalt oxidation is expected at high temperature in air.24 However, the 

above observations point to an interesting redox phenomenon in these materials, where 
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further oxidation of cobalt becomes possible through the reduction of iron. In addition, it 

is remarkable that the disordered Sr2 compound lacks Co2+, while the ordered Ca2 and CaSr 

materials contain divalent cobalt. It appears that the disordered structure encourages the 

oxidation of Co2+ to Co3+. 

Electrical conductivity 

The electrical properties of these three materials were studied by DC and AC methods. The 

total conductivity was found by first obtaining the resistance from the intercept of the data 

with the real axis (Z’) of the Nyquist plot at high frequency in the AC method. Similar 

values were obtained using DC method by applying constant voltage or current and 

measuring the output current or voltage. The resistance values obtained using the above 

methods, can be used to calculate the conductivity (σ) using the following equation:  

σ = L/RA                                        (8) 

where L and A represent the thickness and cross sectional area of the cylindrical pellet, 

respectively. The electrical conductivity values for the three compounds, Ca2FeCoO6-δ, 

CaSrFCoO6-δ and Sr2FeCoO6-δ were obtained by AC method at room temperature and by 

DC method from 298 to 1073 K. The room temperature conductivity values are listed in 

Table 3.6. These results show the order of the total conductivity for the three compounds 

at room temperature: 

                          Ca2FeCoO6-δ       ˂       CaSrFeCoO6-δ     ˂      Sr2FeCoO6-δ 

The electrical conductivity increases as the Sr content and structural disorder increase. Note 

that the Sr2 compound is the most disordered phase, where oxygen vacancies have random 

distribution. The Ca2 material is the most ordered phase featuring vacancy order and also 

tetrahedral chain order. The bond angles may play a role as well. It has been shown that 
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changes in electrical conductivity correlate with changes in bond lengths and angles.34-35 

Some researchers have used density-functional theory calculations to show that when the 

Co−O−Co bond angles in La1-xSrxCoO3 get closer to 180°, the overlap between the 

unoccupied cobalt 3d conduction band and the occupied oxygen 2p valence band is 

enhanced, leading to improvement in electrical conductivity.36 Metallic conductivity can 

be obtained due to the formation of a hybrid band as a result of the enhanced overlap 

between metal 3d and oxygen 2p bands. 36-38 A correlation between conductivity and bond 

angle is also observed when the x-value is varied in La1-xSrxCoO3.
34-35 A change from 

semiconductivity to metallic conductivity is observed at x = 0.25. This change has been 

explained by the introduction of doped states within the band gap and broadening of these 

states into a band as x increases, which leads to band overlap and transition from 

semiconductor to metal. It has been observed that at around x = 0.25, where this transition 

occurs, there is an abrupt increase in the Co–O–Co bond angle. 34-35 For our materials, the 

Fe(Co)–O–Fe(Co) bond angles in the Sr2 compound are 180°, while those angles in the Ca2 

material can be as small as ~123°.20 The small angles are a consequence of the vacancy-

ordered structure, where each tetrahedron shares corners with two tetrahedra as well as two 

octahedra. In order for the structure to accommodate these simultaneous corner-sharing, 

the bond angles distort from the ideal perovskite angle (180°). Large bond angles in the Sr2 

compound and smaller angles in the Ca2 material correlate well with the relative 

conductivity of these materials at room temperature. 

To obtain a more in-depth understanding of the electrical conductivity, variable 

temperature studies were performed on all three materials. Figure 3.13 shows the 

conductivity of the three samples during heating and cooling cycles in the temperature 
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range 298 – 1073 K. The conductivity of Ca2FeCoO6-δ and CaSrFeCoO6-δ increases with 

temperature indicating the semiconducting nature of these materials. However, the 

conductivity of Sr2FeCoO6-δ decreases as the temperature increases, exhibiting metallic 

behavior. 

Figure 3.13.  Total conductivity of Sr2FeCoO6-δ, CaSrFeCoO6-δ and Ca2FeCoO6-δ as a 

function of temperature. For Sr2Fe2O6-δ, the heating (red) and cooling (black) data overlap. 

For CaSrFeCoO6-δ, the heating data are shown in green and cooling data in blue. For 

Ca2FeCoO6-δ, the heating and cooling data are shown in pink and cyan, respectively. 

The semiconducting properties, observed in the Ca2 and CaSr compounds, have been 

observed for other oxygen-deficient perovskites (ODP) before. In general, when oxygen 

partial pressure is high, e.g., the oxygen partial pressure in air, the electronic conductivity 

is usually dominant in ODPs.39-41  In semiconducting ODPs, the dependency of 

conductivity on the oxygen partial pressure indicates the p-type semiconductivity.42-44 In 

these p-type semiconductors, the primary charge carriers are electron holes39-41, 45-46 The 
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holes are generated extrinsically due to the absorption of oxygen molecules on the surface, 

which is aided by the oxide vacancies present in the material. This leads to the following 

processes:40, 45

½ O2 → O2– + 2h• ( 9 ) 

  M3+ + h• → M4+ ( 10 ) 

The presence of a variable valence metal (M) is essential, as it leads to the formation of 

small polarons, and electronic transport through the M3+–O–M4+ network.45 The polaronic 

conductivity in the Ca2 and CaSr compounds is a result of the structural properties, where 

structural distortions occur to accommodate the corner-sharing between octahedra and 

tetrahedra. These distortions lead to lattice polarization that promotes polaronic charge 

transport.45 The polaron mobility is enhanced by rising temperature. This temperature-

activated mobility results in an increase in total conductivity,47 which can be expressed by 

the equation 

σ = n e µ        ( 11 ) 

where σ, n, e and µ are conductivity, concentration of electrons/holes, charge of electron 

and mobility of charge carriers, respectively. 

The observed differences in the conductivity of the ordered Ca2 and CaSr materials 

compared to the disordered Sr2 compound are clearly related to the crystal structure, which 

seem to lead to different conduction mechanisms.  The large bond angles (180°) in the Sr2 

compound lead to the enhancement of overlap between metal 3d and oxygen 2p orbitals, 

leading to metallic conductivity, similar to the situation observed in some other materials, 

such as La1-xSrxCoO3.
36 In the ordered Ca2 and CaSr compounds, the distorted angles do 
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not allow for good orbital overlap and broadening of bands. The conduction in these 

materials is through polaronic mechanism, which is activated further at high temperature, 

leading to enhanced conductivity at elevated temperatures. 

For the Sr2 compound, the decrease in electrical conductivity as a function of temperature 

occurs due to the increase in collisions between phonons and charge carriers as the 

temperature increases. 37 In addition, for this material, the conductivity as a function of 

temperature has the same descending trend in the entire temperature range, 298 K – 1073 

K.  

Unlike the disordered Sr2 material, the ordered Ca2 and CaSr compounds exhibit a change 

in the conductivity trend at high temperature. For the Ca2 compound, the increase in 

conductivity continues up to ~ 500 °C (773 K), and then plateaus and even decreases 

slightly. Similar trend is observed for the CaSr compound, where the increase in 

conductivity continues up to ~ 300 °C (573 K) and then a plateau and decrease in 

conductivity is observed. The downturn in conductivity as a function of temperature is 

indicative of a metal-like conductivity, pointing to a semiconductor to metal transition. 

There appears to be a limit to the temperature-activated increase in the polaron mobility, 

beyond which the collisions between phonons and charge-carriers lead to decrease in 

conductivity and metal-like temperature-dependent behavior. It should be noted that the 

ionic conductivity is expected to increase at high temperature, due to some oxygen-loss 

and creation of more vacancies. However, the decrease in electrical conductivity is greater 

than the increase in ionic conductivity, leading to an overall decrease in total conductivity. 

48
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A small degree of oxygen loss at high temperature has been observed through 

thermogravimetric analysis (TGA) of the CaSr compound in the temperature range, 25 – 

800 °C. As shown in Figure 3.14, there is about 1% weight loss as a result of heating up to 

800 °C. More interestingly there is an inflection in the TGA data between 300 – 400 °C, 

matching the temperature where the transition in electrical conductivity occurs. 

Figure 3.14. Thermogravimetric analysis of CaSrFeCoO6-δ in air. An inflection in the data 

appears in the temperature range between the dashed lines. The inset shows the derivative 

plot.  

In the entire temperature range, the highest conductivity among the three materials is 

observed for the CaSr-compound at ~ 400 °C. There appears to be an optimum degree of 

structural order that leads to the highest conductivity at high temperature. Both the 

disordered Sr2-compound and the highly ordered Ca2-material have lower conductivities at 

high temperature compared to the CaSr-compound. 
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We also tested the possibility of any structural transition at high temperature. This was 

done by heating the CaSr compound to 800 °C, followed by quenching in liquid nitrogen. 

However, the XRD data showed no changes in the crystal structure.  

Another remarkable property was found when we examined the materials’ conductivity 

during both heating and cooling cycles. For the Sr2 compound, the conductivity values 

during both heating and cooling cycles were the same. However, for the Ca2 and CaSr 

compounds, the conductivity was greater during the cooling cycle. The observation of these 

hystereses confirms the contribution of ionic conductivity to the total conductivity as 

described for other mixed ionic-electronic conductors.49-50 The oxygen 

absorption/desorption phenomena are relatively slow compared to the electronic transport 

processes. The oxygen vacancies created at high temperature are not immediately filled 

when the temperature is lowered. Therefore, the high ionic conductivity persists at lower 

temperatures, leading to an increase in total conductivity compared to the values obtained 

during heating. Interestingly, the divergence between the heating and cooling data is only 

observed below the transition temperature, i.e., in the semiconducting region, for Ca2 and 

CaSr compounds. However, above the transition temperature, where the Ca2 and CaSr 

materials exhibit metallic behavior, the heating and cooling data overlap. This overlap 

between heating and cooling data is the same behavior observed for the metallic Sr2 

material in the entire temperature range, 298 – 1073 K.  

The Arrhenius equation can be applied to the variation of conductivity with temperature, 

from which activation energy for conductivity can be obtained.45 Figure 3.15 shows the 

Arrhenius plot for conductivity in the temperature range, 298 – 1073 K.  
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Figure 3.15. Arrhenius plot of the total conductivity for Sr2FeCoO6-δ (black triangles), 

CaSrFe2O6-δ (red circles) and Ca2Fe2O6-δ (green stars). 

The straight lines represent the fit using the Arrhenius equation for thermally activated 

conductivity :47 51-52 

σT = σ◦e
−𝐸𝑎
KT ( 12 ) 

where σ◦ is a pre-exponential factor and a characteristic of a material. Ea, K and T are the 

activation energy for the electrical conductivity, Boltzmann constant and absolute 

temperature, respectively. The activation energy (Ea) can be calculated from the slope of 

the line of best fit in the log σT vs 1000/T plot. These values are listed in Table 3.6. As 

evident from Figure 3.15 and Table 3.6, the slope of the Arrhenius plot changes at high 

temperature for the Ca2 and CaSr compounds, consistent with the change in the 

conductivity trend. This leads to two different Ea values, where the activation energy at 

high temperature is smaller than that at low temperature for both Ca2 and CaSr compounds. 
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   Table 3.6. Room temperature conductivity and activation energies 

Sample 
Total conductivity at room 

temperature (Scm
-1

) 

Activation energy of total 

conductivity (E
a
) in eV

AC DC 

Ca2FeCoO6-δ  6.5 X 10
-5

6.49 X 10
-5 298 K – 800 K:  0.2225  

800 K – 1073 K: 0.2587 

CaSrFeCoO6-δ 1.184 X 10
-1

1.077 X 10
-1

 
298 K – 600 K:  0.72365  

600 K – 1073 K: 0.16669 

Sr2FeCoO6-δ  8.270 X 10
-1

8.256 X 10
-1

 0.12437 

CONCLUSION 

Considering the importance of solid-state oxides in energy industry, especially for the 

development of advanced fuel cells, the investigation of methods to tune and control their 

electrical conductivity is essential. In this article, the correlation between electrical 

conductivity and structural order has been studied in a series of oxygen-deficient 

perovskites. Our findings indicate that, transition from disordered to ordered systems can 

be controlled by controlling the average ionic radius of the A-site cation. The conductivity 

at room temperature has an inverse correlation with ordering of oxygen vacancies. 

Furthermore, the least ordered compound exhibits metallic behavior, while the ordered 

materials are semiconductors. In addition, it appears that high temperature conductivity 

requires an intermediate level of vacancy-order. At high temperature, the highly ordered 

and highly disordered systems do not conduct as well as a material with an intermediate 

degree of ordering. Additionally, structural order leads to a semiconductor-to-metal 

transition at high temperature, which is absent in the disordered compound. Another effect 

of ordering is the mixed ionic-electronic conductivity manifested in hysteresis in 
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conductivity data during heating and cooling cycles. These findings indicate that electrical 

properties of oxygen-deficient perovskites can be tuned by modifying the structural order 

in these materials. 
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CHAPTER 4 

MAGNETIC STRUCTURE OF CaSrFeCoO5: CORRELATION WITH STRUCTURAL 

ORDER3 

INTRODUCTION 

The study of magnetic properties and materials that exhibit various types of magnetism is 

motivated by scientific curiosity as well as the important applications of magnetic materials 

in various areas, such as spintronics and magnetic memories.67-69 Among magnetic 

systems, solid-state oxides are particularly fascinating due to the diversity of properties 

observed in this series of compounds. Oxygen acts as an effective bridge for magnetic 

coupling, leading to strong magnetic interactions in many transition-metal oxides. 

Perovskite-type systems, with general formula ABO3, are especially interesting, where A 

is usually an alkaline-earth metal or lanthanide and B is usually a transition metal. (Figure 

4.1) The large A cations are located in spaces between corner-sharing BO6 octahedra. It is 

possible to form perovskite materials with some degree of oxygen-deficiency. The vacant 

sites that are created as a result of oxygen-deficiency can spread in the structure arbitrarily, 

3 The work described in this chapter was published in Material Research Bulletin ( 2018, 

vol. 106, p. 131-136) 
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forming a disordered system.11, 70 An example is Sr2FeMnO5,
11 where oxide vacancies are 

distributed randomly, forming a disordered cubic structure.11   

However, it is also possible to form oxygen-deficient perovskites, in which vacancies have 

an ordered distribution. The ordering of vacant sites can lead to the formation of new 

structure-types derived from the perovskite structure. An example is Ba2In2O5,
71 in which 

the vacancies lead to the formation of tetrahedral coordination geometry in alternating 

layers. The layers, where the tetrahedral geometry appears, contain chains of corner-

sharing tetrahedra, that run parallel to the octahedral layers, as shown in Figure 4.1. This 

arrangement, which is derived from the perovskite system, is called brownmillerite-type 

structure. 12, 72-75 The magnetic properties of oxygen-deficient perovskites have a strong 

correlation with the arrangement of vacant sites and the structure of materials. If the 

material composition contains magnetic cations, the magnetic order usually occurs when 

structural order is present.72 The lack of structural order usually leads to the absence of 

magnetic order.72 However, there are exceptions, such as Sr2Fe1.5Cr0.5O5,
76 where the 

vacancies are spread randomly in the structure, forming a disordered system, but the 

magnetic order is still present, and a long-range antiferromagnetic order is observed.76  

In this article, we describe the magnetic structure of CaSrFeCoO5,
77 determined using 

neutron diffraction experiments. The magnetic order has been discussed in the context of 

materials with similar compositions, to highlight the magnetic properties that are unique to 

this compound. 
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EXPERIMENTAL 

CaSrFeCoO5 was synthesized using CaCO3, SrCO3, Fe2O3, and Co3O4 as starting 

materials. The powders of the precursors were ground, thoroughly mixed, and then 

pelletized. The pellets were heated at 1000°C in air for 24 hours, followed by regrinding 

and refiring at 1200 °C and 1250 °C, for 24 hours each. The same synthesis procedure was 

also used to synthesize the Ca2 analogue, Ca2FeCoO5 using CaCO3, Fe2O3, and Co3O4. 

Similarly, the Sr2 analogue was also synthesized under the same conditions.  

 

 

Figure 4.1. Comparison between (a) perovskite and (b) brownmillerite structure. In 

brownmillerite, the oxygen vacancies are ordered. The difference in transition metal 

coordination geometry is highlighted. The A-site cations that reside in spaces between 

polyhedra have been omitted for clarity. 

 

Neutron diffraction experiments at 10 K and 300 K were performed on POWGEN 

diffractometer at Oak Ridge National Laboratory. The center wavelength of neutrons in 
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these experiments was 1.333 Å, and the d-spacing range was 0.4142 – 6.1363 Å. Rietveld 

refinements were performed using GSAS program40 and EXPEGUI interface.41 Magnetic 

susceptibility data were obtained in the temperature range 2 K – 400 K, using the magnetic 

field of 0.1 T. 

RESULTS AND DISCUSSION 

To determine the magnetic structure of CaSrFeCoO5, neutron diffraction experiments were 

performed at 10 K. The neutron data showed strong magnetic peaks at d = 4.42 Å and 4.50 

Å, corresponding to 021 and 120 reflections. The presence of these peaks indicates long-

range magnetic order. 

The crystal structure at 10 K also features structural order, where the vacant sites, created 

due to oxygen deficiency, are ordered. The space group is Ibm2, and unit cell parameters 

are a = 5.5870(2) Å, b = 15.1684(6) Å, c = 5.4370(2) Å.  This structure belongs to the 

brownmillerite family, (Figure 4.1) where chains of corner-sharing (Fe/Co)O4 tetrahedra 

are sandwiched between layers of corner-sharing (Fe/Co)O6 octahedra. The crystal 

structure at 10 K was confirmed by Rietveld refinements with neutron diffraction data as 

shown in Figure 4.2. 

The magnetic structure is G-type antiferromagnetic, where the magnetic moment of each 

transition metal is aligned antiparallel to all nearest neighbors, as depicted in Figure 4.3. 

The magnetic and crystal structures are commensurate. In materials with brownmillerite-

type structure, if the magnetic order occurs, the ratio of intensities of the main magnetic 

peaks is indicative of the direction of the magnetic moments.72, 74 When the (120)/(021) 

peak ratio is close to 1, the magnetic moments are aligned along the longest unit cell axis. 
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However, if that ratio is close to 3, the magnetic moments are oriented along the shortest 

axis. 

Figure 4.2. Neutron diffraction refinement profile at 10 K for CaSrFeCoO5. The crosses 

are experimental data, the red line is the model and the lower grey line represents the 

difference plot. The upper and lower vertical tick marks locate the crystal and magnetic 

structure peak positions. 

Figure 4.3. G-type antiferromagnetic order in CaSrFeCoO5 
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As demonstrated in Figure 4.4, Gaussian fits indicate that the (120)/(021) peaks ratio for 

CaSrFeCoO5 is ~2.96, indicating that the magnetic moments should be along the shortest 

unit cell axis.  We then confirmed the orientation of the moments by a series of Rietveld 

refinements. Initially, we compared three models, by orienting the magnetic moments 

along the three unit-cell axes and determining their fit to the data. Figure 4.5 shows three 

different situations where magnetic structure models with moments along the shortest, 

intermediate and longest unit cell axes were used.  As observed here, the model featuring 

magnetic moments along the longest axis does not match the data, as it requires the two 

major magnetic peaks, 021 and 120, to have almost the same intensity. The model where 

magnetic moments are oriented along the intermediate axis is also ruled out, as it requires 

the magnetic peaks ratio to be (120)/(021) ≈ 
1

3
. (Figure 4.5) However, the model with

magnetic moments along the shortest axis, which requires a 3/1 ratio for (120)/(021) 

intensities, leads to an excellent fit, as shown in Figure 4.5.  The magnetic moments 

magnitude was also refined giving 3.6(2) μB at 10 K. There is a sharp contrast between the 

magnetic structure of CaSrFeCoO5 and that of the Ca-analogue, Ca2FeCoO5, which has a 

magnetic structure with moments oriented along the longest axis at 10 K.74 The stark 

difference between the magnetic structures of the CaSr and Ca2 compounds is remarkable. 

The presence of Sr on the A-site appears to direct the magnetic moments along the shortest 

axis. In addition, the G-type antiferromagnetic order in CaSrFeCoO5 is retained up to room 

temperature, as demonstrated by neutron diffraction experiments at 300 K, shown in Figure 

4.6. The magnetic structure and orientation of magnetic moments remain unchanged 

compared to those at 10 K. However, as expected, the magnetic moment magnitude at 300 

K, 3.2(1) μB, is smaller than that at 10 K, 3.6(2) μB. 
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Figure 4.4. Gaussian fit for (021) and (120) magnetic peaks, indicating (120)/(021) ratio 

of ~2.96. 
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Figure 4.5. Fits for (021) and (120) magnetic peaks in neutron diffraction data using three 

different models with magnetic moments along a (intermediate), b (longest), or c (shortest) 

axis. As shown here, the model with moments along the c-axis leads to an excellent fit.  
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The neutron diffraction data at both 10 K and 300 K highlight the role of Sr in directing 

the magnetic moments in a particular orientation, i.e. along the shortest unit cell axis, 

regardless of the temperature. This demonstrates another significant difference compared 

to the Ca2 analogue. In Ca2FeCoO5, the direction of magnetic moments changes as 

temperature increases.74 The moments in the Ca2 compound are oriented along the longest 

unit axis at 10 K, and along the shortest axis at 300 K.74  

Figure 4.6. Neutron diffraction refinement profile at 300 K for CaSrFeCoO5. The crosses 

are experimental data, the red line is the model and the lower grey line represents the 

difference plot. The upper and lower vertical tick marks locate the crystal and magnetic 

structure peak positions. 

A comparison to the Mn analogue72 further highlights the interesting magnetic properties 

of CaSrFeCoO5. If a composition containing Mn instead of Co is synthesized under the 

same conditions, i.e., 1250 °C in air, a disordered structure is formed that lacks magnetic 

order.72 This material undergoes a transition to a spin-glass state below ~30 K, and does 
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not have any long-range magnetic order.72 This observation indicates that the presence of 

cobalt in the material composition encourages the G-type magnetic order along the shortest 

unit-cell axis in CaSrFeCoO5. However, the presence of cobalt is not the only factor 

governing the formation of this magnetic structure. An optimum A-site cation combination 

is also required, as evident from comparison to the Ca2 analogue.74 Therefore, CaSrFeCoO5 

appears to be an optimum composition for this type of magnetic order to occur.  

The magnetic susceptibility data were also obtained in the temperature range 2 K – 400 K, 

as demonstrated in Figure 4.7. Ca2FeCoO5 shows a divergence between zero-field-cooled 

(ZFC) and field-cooled (FC) data below ~220 K, as observed in Figure 4.7a. This 

temperature is where the re-orientation of magnetic moments in the Ca2 compound is 

completed, as described previously.74  

For CaSrFeCoO5, there is divergence between the zero-field-cooled and field-cooled data 

below ~100 K, and the magnetic susceptibility trend for ZFC becomes opposite to that of 

FC data below 100 K, down to 50 K (Figure 4.7b). Below 50 K, the upward magnetic 

susceptibility trend is the same for both ZFC and FC data, but the separation between them 

persists. Both features at 50 K and 100 K are only observed in the ZFC data and 

corresponded to short-range domains. The material has long-range magnetic order at 10 K 

and 300 K, as observed in neutron diffraction data. 

To our knowledge the magnetic properties of the Sr2 analogue,78 synthesized under the 

same condition as the CaSr-compound, i.e., 1250 °C in air, has not been studied previously. 

We synthesized the Sr2 analogue, which has a cubic disordered strcuture78 and obtained 

magnetic 
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Figure 4.7. Magnetic susceptibility data for CaSrFeCoO5, as well as its Ca2 and Sr2 

analogues. Images in a, b and c show the Ca2, CaSr and Sr2 compounds, respectively. Black 

squares show zero-field-cooled and red circles represent field-cooled data.  

 

susceptibility data for this material as well. In the zero-field-cooled data, the magnetic 

susceptibility increases as the temperature decreases down to ~80 K, where a sudden 

downturn in susceptibility begins. The field-cooled data shows a different trend, where the 

slope of the susceptibility data changes drastically below 87 K, but the upturn trend 
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continue. This feature, demonstrated in Figure 4.7c, has been previously observed for some 

other oxygen-deficient perovskites.11, 72 This is usually indicative of spin-glass magnetic 

behavior, where the disorder in magnetic moments is quenched. This observation further 

confirms the important effect of the A-site cation on magnetic properties, where changing 

Ca2 to CaSr and Sr2, leads to significant changes in magnetism of these material. 

CONCLUSION 

The magnetic structure of CaSrFeCoO5 consists of antiferromagnetically ordered moments 

that are oriented antiparallel to their nearest neighbors, as determined by neutron diffraction 

at 10 K and 300 K. This ordering arrangement is the so-called G-type antiferromagnetic 

structure. The magnetic moment orientation is along the shortest unit cell axis. The G-type 

antiferromagnetic order persists up to room temperature and the orientation of magnetic 

moments also remains unchanged. Comparisons have been made between CaSrFeCoO5

and materials with similar compositions, where CaSr is replaced by Ca2 and Sr2, or Co is 

replaced by Mn. These analogue materials show significantly different magnetic 

properties, from spin-glass to ordered moments that reorient if heated to room temperature. 

These observations indicate that CaSrFeCoO5 is an optimum composition for this G-type 

antiferromagnetic order, where the arrangement and orientation of magnetic moments 

remain unchanged up to room temperature. 
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CHAPTER 5 

ELECTRICAL PROPERTIES OF ORDERED OXYGEN-DEFICIENT PEROVSKITE 

Ca2Fe0.5Ga1.5O5
4 

INTRODUCTION 

Many oxygen-deficient perovskite oxides exhibit mixed ionic-electronic conductivity.23 

Mixed conducting materials are important in different areas, such as gas sensing devices,79 

electrodes for solid-oxide fuel cells80, and electrocatalysts.81 

Oxygen deficient perovskites have general formula ABO3-δ, where δ represents the oxygen 

deficiency. The B-site cations usually form BO6, BO5, or BO4 polyhedra depending on the 

structure, while the A-site cations reside in spaces between the polyhedra. The crystal 

structure can vary depending on different parameters including the magnitude of δ. For 

example, a series of structures have been observed for SrMnO3-δ
82 and Sr2Fe2O3-δ

83
 due to 

the variation of oxygen stoichiometry. The crystal structure of oxygen-deficient 

perovskites also depends on the arrangement of defects that are generated due to oxygen-

deficiency.4, 84-87 The defects can be distributed in a disordered76, 88-89 or ordered fashion.4, 

4 The work described in this chapter was published in IONICS ( 2019, vol. 25, p. 1315-

1321) 
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12, 73-75, 84-87, 90 One of the common structures, resulting from the ordering of defects, is 

brownmillerite-type structure.4, 12, 73-75, 84-87, 90 In brownmillerite materials, the ordering of 

defects results in tetrahedral coordination geometry in alternating layers. As shown in 

Figure 5.1, the BO4 tetrahedra and BO6 octahedra alternate in the crystal lattice. The 

tetrahedra form chains that run parallel to the octahedral layers. The orientation of 

tetrahedral chains with respect to each other can be different, leading to different space 

groups in brownmillerite compounds. 

Figure 5.1.  Brownmillerite structure of Ca2Fe0.5Ga1.5O5 

Changes in the A or B-site cations in oxygen-deficient perovskites, ABO3-δ, can change the 

crystal structure. One example is the significant difference between Sr2Fe2O5, which has a 

brownmillerite-type structure, and Ba2Fe2O5, that features a complex structure containing 

tetrahedral, square-pyramidal and octahedral geometry.86 The change in the crystal 

structure leads to significant differences in electrical properties of Sr2Fe2O5 and 

Ba2Fe2O5.
86 Another example is the phase transitions in La1-xSrxFeO3-δ as a result of Sr-

substitution on the A-site, leading to variation in physical properties.91 The effect of the B-
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site cation is demonstrated by phase transitions in SrFe1 – xNbxO3–δ  (x = 0.05, 0.1, 0.2, 0.3, 

and 0.4) where an I4/mmm tetragonal structure transforms into a cubic structure with Pm-

3m space group.92 The same study also reported a structural transition between cubic and 

orthorhombic due to the variation of the B-site cation.92  

Most oxygen-deficient perovskites contain transition metals on the B-site. However, main 

group metals, particularly those from group 13, can also be incorporated into these 

compounds, and occupy some of the B-sites.93-95 Nevertheless, in most cases, the majority 

of cations on the B-site are still transition metal cations.93-95 Brownmillerite materials, 

where the transition metals are eliminated from the structure, are interesting because they 

can exhibit predominantly ionic conductivity. Thus, they can be used in applications such 

as fuel cell electrolytes, where ionic conductivity is needed, but electronic conductivity is 

undesirable. One prominent example of a brownmillerite compound, which possesses only 

main group elements on the B-site, is the In-containing material Ba2In2O5
71 and its doped 

analogues.96-97 This material can be synthesized by solid-state method at high 

temperature.71 However, the situation is different for Ga-only brownmillerite compounds, 

which seem to require high pressure to from.98 For example, Ca2Ga2O5 has been made 

under 2.5 GPa of pressure.98 In addition, Sr2Ga2O5 has been synthesized under 1.5 GPa of 

pressure, but this material does not form a brownmillerite structure.99  

There is one report on the crystal structure of Ca2Fe0.5Ga1.5O5, synthesized using standard 

solid-state synthesis method.98 However, that study only reports the crystal structure using 

X-ray diffraction, and no other information regarding properties of Ca2Fe0.5Ga1.5O5 has 

been reported. In the current study, we have shown that Ca2Fe0.5Ga1.5O5 represents the 

maximum level of Ga-doping in Ca2Fe2O5 system, which can be achieved by solid-state 
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synthesis method. We have examined the possibility of magnetic order in Ca2Fe0.5Ga1.5O5 

using neutron diffraction and bulk magnetometry, and have also studied electrical 

properties of this compound in a wide temperature range, 25 – 800 °C. 

MATERIALS AND METHODS 

Solid-state synthesis method was employed to prepare Ca2Fe0.5Ga1.5O5. The powders of 

the precursors CaCO3 (Alfa Aesar, 99.95%), Fe2O3 (Alfa Aesar, 99.998%), and Ga2O3

(Sigma Aldrich, 99.99%) were mixed, pressed into a pellet, and heated at 1000 °C for 24 

h in air. The samples were then reground and refired at 1200 °C for 24 h in air, followed 

by slow cooling. The heating and cooling rates were 100 °C/h. Synthesis of compositions 

containing higher Ga-content was also attempted. However, single phase products could 

only be obtained at the maximum Ga-concentration of 1.5 per formula unit. Iodometric 

titrations were performed under argon atmosphere, as described previously.86  

High resolution field-emission scanning electron microscopy (SEM) was used to study the 

micro-structure. X-ray photoelectron spectroscopy (XPS) was carries out at room 

temperature using Al Kα radiation (1486.7 eV). The electrical properties were investigated 

by direct-current (DC) and alternating-current (AC) on pellets that had been sintered at 

1200 °C. The AC electrochemical impedance spectroscopy measurements were performed 

in the frequency range of 0.1 Hz to 1 MHz using a computer-controlled frequency response 

analyzer. The DC measurements were done by applying a constant voltage of 10 mV and 

collecting the output current. Variable-temperature electrical conductivity measurements 

were carried out during both heating and cooling cycles with 10 °C intervals. At each 

measurement temperature, enough time was given for conductivity equilibrium to be 

achieved before moving to the next temperature. Bulk magnetization data were obtained 
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on a vibrating-sample magnetometer using a quartz sample holder in the temperature range 

2 K – 400 K. Powder X-ray diffraction measurements were done at room temperature using 

Cu Kα1 radiation (λ = 1.54056 Å). Neutron diffraction experiments were performed on 

POWGEN diffractometer at Oak Ridge National Laboratory, with center wavelength of 

0.7 Å. Rietveld refinements were done using GSAS software100 and EXPEGUI interface.101 

RESULTS AND DISCUSSION 

Crystal structure 

As discussed in the experimental section, Ca2Fe0.5Ga1.5O5 represents the highest degree of 

Ga-doping in the brownmillerite compound, Ca2Fe2O5, which can be achieved by solid-

state synthesis method. Higher degree of Ga-doping is only possible if the synthesis is done 

in high pressure, 2.5 GPa.98 The only report on Ca2Fe0.5Ga1.5O5 describes X-ray diffraction 

data of this material, indicating Pcmn space group.102 Here, we study the structure using a 

combination of neutron and X-ray diffraction. The common space groups for 

brownmillerite compounds are Imma, Ima2, Pnma (Pcmn) and Pbcm.4, 74-75, 84, 87  

The Pbcm space group is recognized by the presence of superstructure peaks, given that 

materials crystalizing in this space group have unit cells that are double the size of those 

for typical brownmillerites.4, 74-75, 84, 87  These superstructure peaks do not appear in the 

diffraction data for Ca2Fe0.5Ga1.5O5, ruling out the Pbcm space group. The Pnma space 

group is identified by the presence of the 131 peak, which is absent in I-centered space 

groups.4, 74-75, 84, 87  The powder X-ray and neutron diffraction data for Ca2Fe0.5Ga1.5O5 

show the 131 peak, indicative of space group Pnma. This was then confirmed by Rietveld 

refinements. Table 5.1 lists the refined structural parameters, and Figure 5.2 shows the X-

ray and neutron refinement profiles. In these refinements, initially Fe and Ga were mixed 
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on both octahedral and tetrahedral sites. Refining the site-occupancies on these sites 

indicates that Fe is exclusively located on the octahedral site, while Ga occupies all of the 

tetrahedral sites and half of the octahedral positions. 

Table 5.1 The refined structural parameters for Ca2Fe0.5Ga1.5O5 from neutron diffraction. 

Space group: Pnma, a = 5.3669(2), b = 14.6214(5), c = 5.5927(2), Rp = 0.0744, wRp = 

0.0479 

Elements x y z Multiplicity Occupancy Uiso 

Ca 0.0076(6) 0.1075(1) 0.5281(3) 8 1 0.0013(2) 

Ga1 0.0463(4) 0.25 0.0700(4) 4 1 0.0025(3) 

Ga2 0.0 0.0 0.0 4 0.5 0.0004(2) 

Fe 0.0 0.0 0.0 4 0.5 0.0004(2) 

O1 0.3991(7) 0.25 0.1279(6) 4 1 0.0052(4) 

O2 0.0193(5) 0.6412(2) 0.0710(4) 8 1 0.0063(3) 

O3 0.2513(6) 0.0140(1) 0.2489(7) 8 1 0.0020(2) 

Figure 5.2 Refinement profiles for Ca2Fe0.5Ga1.5O5 using (a) X-ray and (b) neutron 

diffraction 
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Scanning electron microscopy data show high sinterability and good contact between 

crystallites of Ca2Fe0.5Ga1.5O5, as shown in Figure 5.3. Oxidation state of Fe was 

investigated by X-ray photoelectron spectroscopy (XPS). The 2P3/2 peaks for trivalent and 

tetravalent Fe are expected to appear at ~710-711 eV103-104 and ~712-713 eV,44, 105 

respectively. In addition, a satellite peak appearing at about 7-9 eV higher than the 2P3/2 

peak is the signature of trivalent Fe.103-104 The XPS data for Ca2Fe0.5Ga1.5O5 (Figure 5.4) 

show the 2P3/2 peak for Fe at ~710 eV followed by a satellite peak at ~718 eV, confirming 

that Fe is primarily in trivalent state. There is also a sight shoulder on the right side of the 

Fe 2P2/3 peak, which indicates the presence of a small amount of tetravalent Fe. These 

findings were then confirmed by iodometric titrations, which showed the accurate oxygen 

stoichiometry to be 5.07 moles per formula unit, i.e., Ca2Fe0.5Ga1.5O5.07. These results 

confirm the XPS findings that the oxidation state of Fe is primarily 3+, along with a small 

amount of tetravalent Fe.  

 

 

 

Figure 5.3 SEM images of Ca2Fe0.5Ga1.5O5, showing good contact between the 

crystallites 
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Figure 5.4 X-ray photoelectron spectroscopy data for Ca2Fe0.5Ga1.5O5 

Electrical properties 

The electrical properties of Ca2Fe0.5Ga1.5O5 were studied by alternating current (AC) and 

direct current (DC) methods. In DC method, the output current (I) is measured while 

applying a constant voltage. This current is then converted into resistance using Ohm’s 

law. In AC impedance spectroscopy, the resistance is determined from the intercept of the 

data with the real axis (Z′) of the Nyquist plot at low frequency. The resistance values (R) 

are then used to calculate the conductivity (σ) using the following equation: 

σ = L/RA ( 13 ) 

where L and A represent the thickness and cross-sectional area of the sample, respectively. 

The electrical conductivity was also obtained at variable temperatures from 25 to 800 °C 

(Figure 5.5). In brownmillerite compounds, the electronic conductivity is achieved due to 

the presence of cations that have multiple stable oxidation states such as Fe2+/Fe3+/Fe4+. 

Variable oxidation states can also be created due to oxygen loss, i.e., partial reduction of 
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cations,106 or oxygen absorption, leading to partial oxidation.50, 107 These processes result 

in the formation of small polarons.50 The electrons hop through Mm+–O–Mn+ conduction 

pathways, which are created due the presence 

Figure 5.5 (a) Electrical conductivity of Ca2Fe0.5Ga1.5O5 as a function of temperature. (b) 

Arrhenius plot and activation energies for Ca2Fe0.5Ga1.5O5 

variable oxidation states.108-109 However, many brownmillerite materials are mixed-

conductors, where the total conductivity includes contribution from both electron and 

oxide-ion conductivity. The latter can become dominant when the transition metals are 

eliminated from the material composition.71  

In Ca2Fe0.5Ga1.5O5, contributions from both ionic and electronic conductivity are expected, 

considering the oxygen-vacancies and the presence of variable oxidation states of Fe in the 

material composition. The conductivity of Ca2Fe0.5Ga1.5O5, can be compared to a 

predominantly ionic conductor, Ba2In2O5, which shows electrical conductivity values, that 

are less than ~10-3 Scm-1 at 700 °C.71 Whereas the conductivity of Ca2Fe0.5Ga1.5O5 at the 

same temperature is more than one order of magnitude higher, ~10-2 Scm-1. The higher 
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conductivity of Ca2Fe0.5Ga1.5O5 may be attributed to the contribution of the electronic 

conductivity in addition to the ionic conductivity. 

In oxide materials, the bulk, grain-boundary and electrode-interface resistance can be 

determined using AC impedance spectroscopy. The observation of semicircles in the 

Nyquist plot of impedance spectroscopy indicates significant contribution form ionic 

conductivity, as described by other researchers.110 The fit to the impedance data for 

Ca2Fe0.5Ga1.5O5 at 200 °C is shown in Figure 5.6. Three resistance-capacitance (RC) units 

were used for this fit, where the RC unit at highest frequency (left) corresponds to the bulk 

resistance. The semicircle in the middle shows the grain-boundary resistance and the 

semicircle at the lowest frequency (right) represents the electrode interface resistance. 

Figure 5.6 AC impedance data for Ca2Fe0.5Ga1.5O5 at 200 ºC. Three resistance-capacitance 

units indicate the bulk (left), grain boundary (middle) and electrode interface (right) 

resistance. 
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In some oxide materials, an increase in conductivity as a function of temperature is 

observed. This behavior is seen in Ca2Fe0.5Ga1.5O5. The temperature-dependent increase in 

electrical conductivity is expected, due to an increase in the mobility of charge carriers,9 

according to the following relation: 

σ = neμ                                 ( 14 ) 

where σ, n, e, and μ are the conductivity, concentration of charge carriers, charge of 

electron, and mobility of the charge carriers, respectively. In addition, the loss of oxygen 

at higher temperature, as shown by thermogravimetric analysis (Figure 5.7), can enhance 

the ionic conductivity, due to the increase in concentration of defects. It is known that oxide 

ion conductivity is enhanced above 500 °C.111-112 Figure 5.6 shows a sharp increase in 

conductivity of Ca2Fe0.5Ga1.5O5 above 500 °C.  

 

 

Figure 5.7 Thermogravimetric analysis for Ca2Fe0.5Ga1.5O5 
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We performed the variable-temperature conductivity measurements during both heating 

and cooling cycles. As noted in the experimental section, at each measurement temperature, 

enough time was given (~40 minutes) for the conductivity to plateau, i.e., equilibrate, 

before moving to the next temperature. An interesting observation is the presence of small 

hysteresis, where the conductivity values obtained during cooling have higher values than 

those obtained during heating. This behavior has been observed in some other materials 

before.113-114 Serval researchers have reported such hysteresis,113-114 which have been 

attributed to oxygen-desorption,113 or defect-mediate ion mobility.114 In Ca2Fe0.5Ga1.5O5, 

the hysteresis is very small, but it indicates the effect of oxide ion conductivity. As shown 

by TGA (Figure 5.7) this material loses oxygen as temperature increases. The loss of 

oxygen can lead to enhanced ionic mobility, resulting in a small increase in total 

conductivity. The re-absorption of the lost oxygen upon cooling is a very slow process 

compared to the electronic transport phenomena. As a result, the enhanced ionic 

conductivity is retained after cooling the material, leading to hysteresis. It is noted that the 

hysteresis is observed at 500 °C and higher, where the contribution of ionic conductivity is 

expected to be more significant.111-112 

We have also calculated the activation energies for the increase in electrical conductivity 

as a function of temperature. For thermally activated conductivity, activation energy can 

be calculated using the Arrhenius equation:49-51 

𝜎 𝑇 =  𝜎0𝑒
−𝐸𝑎
𝐾𝑇 ( 15 ) 

where σ° is a preexponential factor and a characteristic of the material. Ea, K, and T are the 

activation energy for the electrical conductivity, Boltzmann constant, and absolute 

temperature, respectively. The activation energy (Ea) is calculated from the slope of the 
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line of best fit in the log σT versus 1000/T plot. The Arrhenius plot and activation energies 

for Ca2Fe0.5Ga1.5O5 are presented in Figure 5.6, showing values close to those typically 

observed in this class of compounds. 

CONCLUSIONS 

Ca2Fe0.5Ga1.5O5 represents the highest degree of Ga-doping in the brownmillerite 

compound, Ca2Fe2O5, which can be reached through solid-state synthesis method. The 

non-magnetic Ga3+ cation leads to the absence of long range magnetic order at temperatures 

where the parent material shows antiferromagnetic order. The bulk magnetization studies 

indicate that this material exhibits paramagnetic behavior above 250 K, and short-range 

magnetic interactions below this temperature. The electrical conductivity of 

Ca2Fe0.5Ga1.5O5 indicates semiconducting behavior, and mixed ionic-electronic 

conductivity. The properties of Ca2Fe0.5Ga1.5O5 are consistent with results from XPS and 

iodometric titrations, which indicate that Fe is primarily in trivalent state, accompanied by 

a small amount of tetravalent Fe. 
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CHAPTER 6 

ENHANCED ELECTRICAL PROPERTIES IN BaSrFe2O6-δ (δ=0.5): A DISORDERED 

DEFECT- PEROVSKITE 5 

1. INTRODUCTION

Oxygen deficient perovskites have emerged as an interesting class of functional materials 

for application in areas such as oxygen separation membranes115-116, electrodes in solid 

oxide fuel cells117, and promoters in Lithium sulfur batteries.118 Oxygen-deficient 

perovskites have general formula ABO3-δ or A2B2O6-δ where A is an alkaline-earth or rare-

earth metal and B is usually a transition metal with octahedral coordination. Here, δ 

represents the degree of oxygen-deficiency, which results in the formaiton of defects in the 

crystal structure. These vacant sites can be distributed in a radom or ordered manner in the 

structure.72, 84 The defects convert the octahedral BO6 units into other types of plolyhedra, 

such as square pyrmids119-120 or tetrahera.89 The type of structure in this class of materials 

depends on several factors, including the concentraiton of defects, i.e., δ value, as well as 

the nature of the A- and B-site cations. For example, Sr2Mn2O6-δ can have different space 

5 The work described in this chapter was published in Inorganic Chemistry ( 2019, vol. 

167, p. 69-74) 
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groups depending on the amount of oxygen-deficiency.121 Similarly, Sr2Fe2O6-δ shows a 

series of structures as a function of variation in δ.83   

Not surprisingly, the nature of the B-site cation also affects the structure and properties.75, 

88 For example, both Ca2Mn2O5
119 and Ca2Cr2O5

122 have defect-ordered structures, but the 

type of ordering in these two compounds is different. Ca2Mn2O5 contains only one type of 

B-site coordination, namely square pyramidal MnO5 units.119 However, Ca2Cr2O5 contains 

alternating layers of CrO4 tetrahedra and CrO6 octahedra,122 forming the so-called 

brownmillerite-type structure. These structural differences result in very different 

magnetic122-123 and electrical properties.110, 124 In some cases, even small variation, ~5%, 

of the B-site cation can cause significant changes to the distribution of defects in the 

structure, as observed for Sr2Fe1.9Cr0.1O6-δ
12  as compared to its parent compound Sr2Fe2O6-

δ.
4 

Similar situation applies to the role of A-site cation.85, 90 For example, partial substitution 

of Ca in Ca2FeCoO6-δ results in CaSrFeCoO6-δ, which has a different space group, leading 

to different magnetic and electrical properties.84 Note that in this case, the substitution on 

the A-site leads to the change in the space group, but the overall structural framework in 

both compounds is the same. Both materials have defect-ordered brownmillerite-type 

structure.  

In this article, we demonstrate drastic changes in the distribution of defects as a result of 

increase in the average ionic radius of the A-site cations. We report BaSrFe2O6-δ (δ=0.5) 

which has a disoreded cubic strcuture, whereas the Ca-analogue, CaSrFe2O6-δ (δ=1),4 is 

known to be a defect-ordered material with orthorhombic structure. The remarkably higher 
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electrical condcutivty of BaSrFe2O6-δ (δ=0.5) and the transformation of magnetic properties 

have been demonstrated. 

2. EXPERIMENTAL

Both compounds CaSrFe2O6-δ (δ=1) and BaSrFe2O6-δ (δ=0.5) were synthesized under 

identical conditions by solid state method. The powders of the precursor compounds 

CaCO3 (Alfa Aesar, 99.95%), SrCO3 (Alfa Aesar, 99.95%), BaCO3 (Alfa Aesar, 99.95%), 

and Fe2O3 (Alfa Aesar,99.998%) were mixed in stoichiometric proportions and ground 

together using agate mortar and pestle. The powder was then pressed into a pellet and 

heated for 24 h at 1000 °C in air. Subsequently, the samples were reground and refired at 

1200 °C for 24 h in air. The heating and cooling rates were 100 °C/h. The phase purity and 

structure of the polycrystalline samples were determined by powder X-ray diffraction at 

room temperature using Cu Kα1 radiation (λ = 1.54056 Å). Neutron diffraction 

experiments were performed on POWGEN diffractometer at Oak Ridge National 

Laboratory. The GSAS software40 and EXPEGUI interface125 were used for Rietveld 

refinements. In these refinements, the peak profile parameters, background, sample 

displacement, unit-cell parameters, atomic coordinates and thermal displacement factors 

were refined simultaneously. The neutron diffraction data were also used to refine the site 

occupancy of oxygen and show that it matched the observed results from XPS and 

iodometric titrations. 

The microstructures were studied using high resolution field-emission scanning electron 

microscopy (SEM). The electrical properties were investigated by direct-current (dc) 

method on pellets that had been sintered at 1200 °C. Alternating current (ac) measurements 

of resistance were also performed. As expected from a material with predominantly 
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electronic conductivity, no semicircle was observed.126-127 The resistance obtained from 

the intercept with the real axis in the Nyquist plot was the same as that obtained from dc 

measurements. The 4-probe conductivity measurements were performed in the 

temperature-range from 25 to 800 ºC. The sample was kept at each temperature until a 

plateau in conductivity was reached, before increasing the temperature. The rate of heating 

between different measurement temperatures was 3 °C/min. Iodometric titrations were 

performed by dissolving about 50 mg of sample and excess KI (∼2 g) in 100 mL of 1M 

HCl. A total of 5 mL of the solution was then pipetted out, and iodine that had been 

generated in the solution was titrated against 0.025 M Na2S2O3. Near the end point of the 

titration, 0.2mL of a starch solution was added to act as an indicator. All steps were 

performed under argon atmosphere. X-ray photoelectron spectroscopy (XPS) was done at 

room temperature using Al Kα radiation (1486.7 eV) to study the oxidation states of Fe. 

3. RESULT AND DISCUSSIONS

3.1. Crystal structure 

The crystal structures are determined by powder X-ray and neutron diffraction. Also, the 

degree of oxygen-deficiency (δ) and the Fe oxidation states have been studied by 

iodometric titrations and X-ray photoelectron spectroscopy. A phase change is observed 

between CaSrFe2O6-δ (δ=1) and BaSrFe2O6-δ (δ=0.5), where the arrangement of defects 

changes from ordered to disordered. This transformation has significant consequences in 

terms of charge transport properties, as discussed in the next section. Note that both 

materials were synthesized under identical conditions. For BaSrFe2O6-δ (δ=0.5) all 
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diffraction peaks can be indexed on cubic Pm-3m space group, as confirmed by Rietveld 

refinements using X-ray and neutron diffraction data, shown in Figure 6.1. 

Figure 6.1. Rietveld refinement profiles for BaSrFe2O6-δ (δ=0.5): (a) X-ray and (b) 

neutron diffraction data. 

In this structure, the defects, created due to oxygen-deficiency, have a random distribution. 

As a result, the average structure looks similar to that of a typical perovskite70, 88 (Figure 

6.2), but with partial occupancy on the oxygen positions (Table 6.1). This is in sharp 

contrast to the structure of CaSrFe2O6-δ (δ=1),4 (Figure 6.2) which is known to contain an 

ordered array of defects, that appear in alternating layers, converting the octahedral 

geometry into tetrahedra in those layers. The outcome is a structure with alternating FeO6 

octahedra and FeO4 tetrahedra,4 the so called brownmillerite-type structure.72-74 Clearly, 

the average ionic radius on the A-site of the oxygen-deficient perovskites A2Fe2O6-δ is the 
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driving force behind the structural transformation from defect-ordered to disordered. The 

average A-site ionic radius for CaSrFe2O6-δ (δ=1) is 1.39 Å,  

 

 

 

Figure 6.2. Crystal structures of (a) BaSrFe2O6-δ (δ=0.5) and (b) CaSrFe2O6-δ (δ=1). 

 

 

 

 

Table 6.1. Refined structural parameters from neutron diffraction data for BaSrFe2O6-δ 

(δ=0.5), space group Pm-3m, a = 3.92851(4) , Rp = 0.041,  wRp = 0.033 

 x y z Uiso occupancy multiplicity 

Ba1 0  0 0 0.0056(7) 0.5     1 

Sr1 0  0 0 0.0056(7) 0.5     1 

Fe1 0.5 0.5 0.5 0.0072(6) 1.0     1 

O1 0 0.5 0.5 0.0145(1) 0.902(3)     3 
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while for BaSrFe2O6-δ (δ=0.5), it is 1.52 Å.128 It is noted that the coordination environment 

of the A-site cation is different in the two materials. In CaSrFe2O6-δ (δ=1), the Ca2+/Sr2+ 

ions are 8-coordinated, whereas BaSrFe2O6-δ (δ=0.5) contains 12-coordinated Ba2+/Sr2+ 

cations. 

Given the structural distortions in CaSrFe2O6-δ (δ=1), which occur in order to accommodate 

the simultaneous corner-sharing between octahedra and tetrahedra, the Fe–O–Fe bond 

angles deviate significantly from 180° and can be as small as 146.2(2)°. However, the bond 

angles in BaSrFe2O6-δ (δ=0.5) are 180°, as expected from a cubic structure. The Fe–O bond 

distances are also different, ranging from 1.842(4) Å to 2.150(4) Å for CaSrFe2O6-δ (δ=1), 

and 1.964(2) Å for BaSrFe2O6-δ (δ=0.5). 

The morphology and crystallite sizes of both materials were studied using scanning 

electron microscopy (SEM). Figure 6.3 shows the SEM images of sintered pellets. There 

is a significant increase in grain size in transition from CaSrFe2O6-δ (δ=1) to BaSrFe2O6-δ 

(δ=0.5). 
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Figure 6.3. Scanning electron microscopy images of sintered pellets of (a) BaSrFe2O6-δ

(δ=0.5) and (b) CaSrFe2O6-δ (δ=1). 

The degree of oxygen-deficiency and oxidation state of Fe cations were also investigated 

using X-ray photoelectron spectroscopy (XPS) study and iodometric titrations. Note that 

Fe2O3 was used as starting material in the synthesis of both compounds, and the synthesis 

conditions were identical. If iron preserves its +3 oxidation state, the number of oxygens 

per formula unit in AA′Fe2O6−δ should be 5, resulting in δ = 1. Oxidation state of Fe is 

determined based on the position of the 2P3/2 peak as well as the satellite peak associated 

with 2P3/2. As shown in the XPS data (Figure 6.4), the 2P3/2 peak appears at ∼710 eV, 

followed by a satellite peak at ∼718 eV, indicating the presence of Fe3+ in BaSrFe2O6-δ 

(δ=0.5).44, 129-130 The shoulder on the high energy side of the 2P3/2 peak indicates that Fe4+ 

is also present in BaSrFe2O6-δ (δ=0.5).130 These results were also confirmed by iodometric 

titrations, which provided a quantitative understanding of the 
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Figure 6.4. X-ray photoelectron spectroscopy data for BaSrFe2O6-δ (δ=0.5). 

concentration of oxygen-defects. Iodometric titration indicated that the oxygen 

stoichiometry in BaSrFe2O6-δ (δ=0.5) is 5.5 per formula unit, corresponding to δ = 0.5 and 

confirming the presence of both Fe3+ and Fe4+. This is also consistent with the oxygen site-

occupancy obtained from Rietveld refinement using neutron diffraction data (Table 6.1). 

Similar analyses, using XPS and iodometric titrations, have shown that CaSrFe2O6-δ (δ=1) 

contains only Fe3+, with 5 oxygens per formula unit, i.e., δ = 1.4 It is interesting that the 

increase in ionic radius on the A-site facilitates the oxidation of Fe in BaSrFe2O6-δ (δ=0.5), 

leading to greater oxygen-content and smaller concentration of defects compared to 

CaSrFe2O6-δ (δ=1). These findings are consistent with the crystal structures determined 

using Rietveld refinements. The structure of BaSrFe2O6-δ (δ=0.5) can accommodate a 

greater amount of oxygen on lattice sites, whereas, the brownmillerite-type framework of 

CaSrFe2O6-δ (δ=1) can accommodate only up to 5 oxygens per formula unit, and any 

additional oxygen would need to be located on interstitial sites. Therefore, the structural 



109 

differences between the two compounds lead to more facile oxidation of Fe in one material 

compared to the other. 

3.2. Magnetic properties 

The change in the distribution of defects and the subsequent changes in the crystal structure 

have a major impact on the magnetic properties. CaSrFe2O6-δ (δ=1) is known to feature 

antiferromagnetic order.4 Previous studies using neutron diffraction at 10 K have shown an 

antiferromagnetic system where the magnetic moment on each Fe site is oriented opposite 

to all of its nearest neighbors.4 We therefore, performed neutron diffraction on BaSrFe2O6-

δ (δ=0.5) at 10 K to be able to make direct comparison between the two materials. In 

addition, the bulk magnetization data for BaSrFe2O6-δ (δ=0.5) show a transition at ~50 K. 

Thus, the neutron experiments at 10 K can shed light on the magnetic state below the 

transition temperature for BaSrFe2O6-δ (δ=0.5). Given the large magnetic moments 

associated with Fe atoms, any long-range magnetic order can be readily identified.  

However, neutron diffraction experiments (Figure 6.1) show no magnetic peaks for 

BaSrFe2O6-δ (δ=0.5), indicating the absence of long-range magnetic order, in sharp contrast 

to the situation in CaSrFe2O6-δ (δ=1).4  

As stated above, the bulk magnetization data (Figure 6.5) for BaSrFe2O6-δ (δ=0.5) feature 

a transition at ~50 K, where the zero-field-cooled and field-cooled data diverge. This type 

of transition has been observed in other oxygen-deficient perovskites before and has been 

attributed to transition into a spin-glass state.12, 72 The inverse susceptibility plot versus 

temperature indicates that the Currie-Weiss behavior does not occur below ~300 K. The 

linear paramagnetic trend is observed above this temperature. The fit to this linear region 

results in the Currie constant of 6.64(4) and Weiss constant of -254(4). The negative value 
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of the Weiss constant indicates that short-range antiferromagnetic interactions are present. 

The isothermal magnetization data for BaSrFe2O6-δ (δ=0.5) at 5 K show small hysteresis 

implying the presence of a small uncompensated moment. The isothermal data at 300 K is 

linear without any hysteresis, as expected from a typical 

Figure 6.5. Bulk magnetization data of BaSrFe2O6-δ (δ=0.5) (a) ZFCFC magnetic 

susceptibility data. The inset shows inverse of susceptibility versus temperature. (b) 

Isothermal magnetization data at 5 K and 400 K. 

paramagnetic system. This is consistent with the observation from inverse susceptibility 

plot, which shows paramagnetic behavior above 300 K. 

Overall, the transformation of magnetic properties as a result of changes in the distribution 

of defects is remarkable. The transition from defect-order in CaSrFe2O6-δ (δ=1) to disorder 

in BaSrFe2O6-δ (δ=0.5) results in the change from antiferromagnetic order to spin-glass 

magnetic state. 
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3.3. Electrical properties 

The resistance values (R) obtained from 4-probe measurements were used to calculate the 

conductivity (σ) using the following equation: 

                                                         σ = L/RA                                      ( 16 ) 

where L represents the distance between the voltage probes and A indicates the cross-

sectional area of the pellet through which the current is applied. The electrical conductivity 

was obtained at variable temperatures from 25 to 800 ºC. As shown in Figure 6.6, the 

conductivity of BaSrFe2O6-δ (δ=0.5) is considerably higher than that of CaSrFe2O6-δ (δ=1) 

in the entire temperature range. Therefore, the increase in the average ionic radius of the 

A-site, and the subsequent transformation of the crystal structure, lead to a significant 

increase in the electrical conductivity.  

Oxygen-deficient perovskites can show mixed electronic and oxide-ion conductivity.29, 131-

133 In situations where the B-site cations have more than one stable oxidation state, such as 

Fe3+/Fe4+, the electronic conductivity is usually dominant in ambient condition.134 The 

electron transport occurs through hopping of electrons through Metal-Oxygen-Metal bond 

system.108-109 The degree of electrical conductivity in oxygen deficient perovskites depends 

on a number of factors. Conductivity is higher for shorter M–O bond lengths and for larger 

Mm+–O–Mn+ bond angles.135 As mentioned in the previous section, the simultaneous 

corner-sharing between tetrahedra and octahedra leads to distortions in the structure of 

CaSrFe2O6-δ (δ=1), which results in a range of Fe–O bond distances, from 1.842(4) Å to 

2.150(4) Å. Due to these distortions, the average bond distance in CaSrFe2O6-δ (δ=1) is 

similar to that of BaSrFe2O6-δ (δ=0.5), which has a cubic structure, and Fe–O = 1.964(2) 

Å.  More importantly, the bond angles in CaSrFe2O6-δ (δ=1) are significantly deviated from 
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linearity and can be as small as 146°. Whereas, the bond angles in BaSrFe2O6-δ (δ=0.5) are 

180°, which facilitate the electronic conductivity through Mm+–O–Mn+ pathways. In 

addition, as demonstrated by XPS and iodometric titration, nearly all of the Fe atoms in 

CaSrFe2O6-δ (δ=1) are in trivalent state, whereas in BaSrFe2O6-δ (δ=0.5) both trivalent and 

tetravalent Fe cations are present. As a result, there is a significant number of Fe3+–O–Fe4+ 

conduction pathways in BaSrFe2O6-δ (δ=0.5), leading to the enhanced conductivity. 

To study the behavior of these materials in a wide temperature-range, the electrical 

conductivity was examined from 25 to 800 °C. For both compounds, the conductivity 

initially increases with temperature, indicating semiconducting behavior. Multiple studies 

have shown p-type semiconductivity in oxygen-deficient perovskites,24, 136-137 due to the 

dependence on oxygen partial pressure,58-59, 138 and the formation of holes as charge 

carriers.9, 23, 58-59

As shown in Figure 6.6, the increase in conductivity of BaSrFe2O6-δ (δ=0.5) is significantly 

greater than that of CaSrFe2O6-δ (δ=1). At 400 °C the difference between the conductivity 

of the two materials is more than one order of magnitude. The rise in conductivity continues 

up to 400 °C, where an inflection point is observed for both materials. Above this 

temperature, the conductivity 
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Figure 6.6. Electrical conductivity as a function of temperature for BaSrFe2O6-δ (δ=0.5) 

(red) and CaSrFe2O6-δ (δ=1) (green). 

of CaSrFe2O6-δ (δ=1) nearly plateaus. The change is more drastic for BaSrFe2O6-δ (δ=0.5), 

where a sharp decrease in conductivity occurs above 400 °C. The drastic change in 

conductivity seems to correlate with the degree of oxygen loss, as demonstrated by the 

thermogravimetric analysis (TGA) data in Figure 6.7. Above 400 °C, there is a sudden 

decline in the TGA data, indicating the onset of significant oxygen loss, as has been 

observed before.106, 139-140 This can result in a decrease in the concentration of Fe3+–O–Fe4+ 

conduction pathways, leading to a decrease in conductivity.134, 141-142  

The mechanism of oxygen vacancy creation can be expressed by following equations, 

using Kroger-Vink notation.134, 139-140, 143  

𝑂𝑜
′′→  

1

2
O2 + 𝑉𝑜

•• + 2𝑒′                         ( 17 )

2Fe4+ + 2𝑒′ → 2Fe3+                             ( 18 )

Where  𝑂𝑜
′′, 𝑉𝑜

•• and 𝑒′ represent lattice oxygen, vacancy and electron respectively.
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The change in conductivity as a function of temperature can be described using the 

Arrhenius equation for thermally activated conductivity:49-51 

𝜎 𝑇 =  𝜎𝑜𝑒
−𝐸𝑎
𝐾𝑇 ( 19 ) 

where σ° is a pre-exponential factor and a characteristic of the material. Ea, K, and T are 

the activation energy for the electrical conductivity, Boltzmann constant, and absolute 

temperature, respectively. 

Figure 6.7. Thermogravimetric analysis data for BaSrFe2O6-δ (δ=0.5). 

Table 6.2.  Electrical conductivity, σ (S cm−1), and activation energies, Ea (eV), for 

increase in electrical conductivity up to 400 °C.  

25 °C 400 °C 800 °C Ea (eV) 

BaSrFe2O6-δ (δ=0.5) 2.22 𝗑 10-2 3.08 7.13 𝗑 10-1 0.241 

CaSrFe2O6-δ (δ=1) 1.27 𝗑 10-2 2.3 𝗑 10-1 2.4 𝗑 10-1 0.174 
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The activation energy (Ea) for the change in conductivity as a function of temperature can 

be determined from the slope of the line of best fit in the log σT versus 1000/T plot,49-51 as 

shown in Figure 6.8. The activation energies for the increase in conductivity between 25 

to 400 °C are 0.174 eV and 0.241 eV, for CaSrFe2O6-δ (δ=1) and BaSrFe2O6-δ (δ=0.5), 

respectively. 

Figure 6.8. Arrhenius plot of the electrical conductivity for BaSrFe2O6-δ (δ=0.5) (red) and 

CaSrFe2O6-δ (δ=1) (green). 

CONCLUSIONS 

The increase in the average ionic radius of the A-site in A2Fe2O6-δ leads to structural 

transformation between CaSrFe2O6-δ (δ=1) and BaSrFe2O6-δ (δ=0.5). The latter features 

disordered distribution of defect sites, that are created due to oxygen deficiency, whereas 

the former is known to contain defect-order. The change in the structure results in the 
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variation of magnetic properties, where one material is antiferromagnetically ordered, 

while the other shows spin-glass behavior. The structural changes also lead to the 

transformation of electrical properties, where the electrical conductivity of BaSrFe2O6-δ 

(δ=0.5) is over one order of magnitude greater than that of CaSrFe2O6-δ (δ=1). These results 

demonstrate that in oxygen-deficient perovskites, the change in the defect arrangement can 

be used as an effective tool to manipulate the electrical properties. 
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CHAPTER 7 

CHARGE-TRANSPORT PROPERTIES OF Ca2FeGaO6-δ and CaSrFeGaO6-δ: THE 

EFFECT OF DEFECT-ORDERED6 

1. INTRODUCTION

Oxygen-deficient perovskites have been studied for their various properties, such as mixed 

ion and electronic conductivity,23 which is essential to the operation of solid oxide fuel 

cells.117 These materials have also been extensively studied as oxygen transport 

membranes, given that oxide ion diffusion through an ion conductive material produces 

nearly pure oxygen.144 Usually, the ion transport in perovskite oxides takes place at high 

temperature,145 but some oxygen-deficient perovskites such as SrFeO3-x or SrCoO3-x exhibit 

oxygen mobility at room temperature.132, 146 Given the attractive properties of this class of 

compounds, it is important to explore the parameters that control those properties. The 

structure-property relationships are particularly important. 

The general formula of oxygen-deficient perovskites is ABO3-δ. Here, A is usually a 

lanthanide or alkaline-earth metal and B is a transition metal. A-site or B-site cations can 

have more than one type of element. In such cases, the general formula can be written as 

6 The work described in this chapter was published in Material Chemistry and Physics ( 

2019, vol. 238, p. 121924) 
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AA’BB’O6-δ. The degree of oxygen-deficiency can affect the structural order.12 For 

example, SrMnO3−δ shows a four-layered (4L) hexagonal structure for 0 ≤ δ ≤ 0.12.147 

This structure transforms into a cubic perovskite structure if the degree of oxygen-

deficiency changes to 0.25 ≤ δ ≤ 0.38.147-148,82 Another example is Sr2Fe2O6-δ, where a 

series of different phases have been reported, depending on the variation of the δ value.83 

The arrangement of oxygen-vacancies in the crystal lattice is also important. The defects, 

generated due to oxygen deficiency, can be arranged in ordered4, 72, 86, 89 or disordered88-89 

manner, leading to different structure and properties.4, 90 One of the common types of 

defect-order results in the brownmillerite structure, which contains alternating BO6

octahedra and B’O4 tetrahedra. The formation of brownmillerite-type structure can be 

controlled by altering the A- or B-site cations. For example, the substitution of A-site 

cations in Sr2FeMnO5, which has a disordered cubic structure, leads to Ca2FeMnO5, which 

features brownmillerite-type ordering.85 The changes in the arrangement of defects leads 

to significant changes in electrical properties. The electrical conductivity of the ordered 

Ca2 compound is almost unaffected by the change in atmosphere from argon to air, while 

the conductivity of the disordered Sr2 compound increases significantly in air compared to 

the argon atmosphere.85 Another example is the differences in electrical properties of 

Ca2FeCoO6-δ, which has brownmillerite-type structure,74 and Sr2FeCoO6-δ, which lacks the 

ordering of defects.84 The latter exhibits metallic properties, whereas the former displays 

semiconducting behavior.84  

The above examples are related to situations where the properties of an ordered material 

are compared to those of a disordered system. In this article, we show that the electrical 
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Figure 7.1. Rietveld refinement profiles for powder X-ray diffraction data of (a) 

Ca2FeGaO6-δ in Pnma, and (b) CaSrFeGaO6-δ in Ibm2 space group. Black crosses represent 

experimental data, the solid red line is the model, pink vertical tick marks show Bragg peak 

positions, and the lower blue line represents the difference plot. The arrows show the 

position of 131 peak, which is present for Ca2FeGaO6-δ and absent for CaSrFeGaO6-δ.  

 

 

properties can be manipulated by subtle changes to the arrangement of defects, while 

maintaining the defect-order in the system. We report a new oxygen-deficient perovskite, 

CaSrFeGaO6-δ, which unlike its Ca-only analogue, Ca2FeGaO6-δ, has a non-

centrosymmetric structure. Little information is known about the Ca-only analogue, with 

only magnetodielectric properties reported.37 Here, we perform neutron diffraction, X-ray 

photoelectron spectroscopy, and charge-transport studies on both Ca2FeGaO6-δ and 

CaSrFeGaO6-δ, to demonstrate that the manipulation of defect-order can be used as a tool 

to control the electrical properties of oxygen-deficient perovskites.  
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Figure 7.2. Rietveld refinement profiles for powder neutron diffraction data of (a) 

Ca2FeGaO6-δ in Pnma, and (b) CaSrFeGaO6-δ in Ibm2 space group. Black crosses represent 

experimental data, the solid red line is the model, pink vertical tick marks show Bragg peak 

positions, and the lower blue line represents the difference plot. 

2. EXPERIMENTAL

Solid-state synthesis method was used to synthesize the materials CaSrFeGaO6-δ and 

Ca2FeGaO6-δ. The synthesis of the Sr2-analogue was also attempted, but it consistently led 

to multiphase products. The powders of the precursor compounds, CaCO3 (Alfa Aesar, 

99.95%), SrCO3 (Alfa Aesar, 99.95%), Fe2O3 (Alfa Aesar,99.998%) and Ga2O3 (Sigma 

Aldrich,99.99%) were mixed in stoichiometric proportions and ground together using an 

agate mortar and pestle, pressed into a pellet, and calcined in air at 1000 °C for 24 h. The 

samples were then reground and sintered at 1200 °C for 24 h in the same environment, 

followed by slow cooling. The heating and cooling rates were 100 °C/h. The phase purity 

and structure of the polycrystalline samples were determined by powder X-ray diffraction 

(XRD) at room temperature using Cu Kα1 radiation (λ = 1.54056 Å). Neutron diffraction 

experiments were performed on POWGEN beamline at Oak Ridge National Laboratory, 



121 

with center wavelength of 0.7 Å. The GSAS software100 and EXPGUI interface101 were 

used for Rietveld refinements. The microstructures were studied using high resolution 

field-emission scanning electron microscopy (SEM). X-ray photoelectron spectroscopy 

(XPS) was performed at room temperature using Al Kα radiation (1486.7 eV) to study the 

oxidation states of Fe. The electrical properties were investigated by direct-current (DC) 

and alternating-current (AC) methods, on samples that had been sintered at 1200 °C. The 

AC electrochemical impedance spectroscopy measurements were done in the frequency 

range 0.1Hz to 1 MHz using a computer-controlled frequency response analyzer. The DC 

measurements were performed at constant voltage of 10 mV, in the temperature range 25 

– 800 ºC. The conductivity measurements were performed at 100 °C intervals, and

equilibrium was reached at each temperature of measurement before moving to the next 

temperature. The rate of heating between measurement-temperatures was 3 °C/min. 

Iodometric titrations were performed by dissolving about 50 mg of the sample and excess 

KI (∼2 g) in 100 mL of 1M HCl. A total of 5 mL of the solution was then pipetted out, and 

the iodine that had been generated in the solution was titrated against 0.025 M Na2S2O3. 

Near the end point of the titration, 0.2mL of a starch solution was added to act as an 

indicator. All steps were performed under argon atmosphere. 

3. RESULTS AND DISCUSSION

3.1. Crystal structure 

Structural characterizations involved Rietveld refinements with powder X-ray and neutron 

diffraction data based on different crystallographic models. Both Ca2FeGaO6-δ and 

CaSrFeGaO6-δ are defect-ordered oxygen-deficient perovskites with brownmillerite-type 
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structure. X-ray diffraction data for Ca2FeGaO6-δ has been reported,149 showing Pcmn 

(Pnma) space group. Here, we study the crystal structures using neutron diffraction, and 

show the structural transformation upon changing the average ionic-radius on the A-site. 

Brownmillerite compounds usually crystalize in one of the four space groups Imma, Ibm2, 

Pnma, or Pbcm,4, 72, 84 depending on the relative orientation of tetrahedral chains. There are 

two possible chain-orientations, which are arbitrarily called right-handed and left-handed. 

If the tetrahedral chains are oriented randomly relative to each other, the space group will 

be Imma (Icmm).150 If all tetrahedral chains have the same orientation in all layers, the 

space group will be Ibm2 (Ima2).4, 72, 84 If the tetrahedral chains have the same orientation 

within each layer but are oriented opposite to the chains in the next tetrahedral layer, the 

space group will be Pnma.4, 72, 84 Finally, if each tetrahedral chain is oriented opposite to 

its nearest neighbors within the same layer and the next layer, the space group will be 

Pbcm.4, 72, 74, 84

The two primitive space groups are readily identifiable by their characteristic peaks. Space 

group Pbcm can be easily distinguished from others due to the presence of superstructure 

peaks in its powder diffraction data, considering that its unit cell is double the size of those 

of the other three space groups.4, 72, 74, 84 Space group Pnma is recognized by the presence 

of 131 and 151 peaks, which are absent in the body-centered systems. The 131 peak is 
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Figure 7.3. (a) Unit cell of Ca2FeGaO6-δ, Pnma.  (b) Alternating octahedral and tetrahedral 

coordination geometry in Ca2FeGaO6-δ. The Ca atoms, located in spaces between 

polyhedra, are omitted for clarity. (c) Orientation of tetrahedral chains in two neighboring 

layers, which are opposite to each other in Ca2FeGaO6-δ (top view). The tetrahedral sites 

are primarily occupied by Ga and octahedral sites by Fe. The red and blue colors represent 

the two different orientations of tetrahedral chains.  

 

 

particularly prominent.4, 72, 84 We examined all four space groups in our Rietveld 

refinements. All peaks can be indexed to orthorhombic unit cell for both compounds. The 

Pbcm space group was readily ruled out for both materials, as the superstructure peaks 

associated with this space group were absent. For Ca2FeGaO6-δ, the presence of the 131 

peak indicted that the space group should be primitive Pnma, which was confirmed by 

Rietveld refinements with both X-ray (Figure 7.1a) and neutron diffraction data (Figure 

7.2a). These refinements also showed that the octahedral sites are primarily occupied by  
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Figure 7.4. (a) Unit cell of CaSrFeGaO6-δ, Ibm2. (b) Alternating octahedral and tetrahedral 

coordination geometry in CaSrFeGaO6-δ. The Ca/Sr atoms, located in spaces between 

polyhedra, are omitted for clarity.  (c) Orientation of tetrahedral chains in two neighboring 

layers (top view). All tetrahedral chains have the same orientation in CaSrFeGaO6-δ.  

Figure 7.5.  Scanning electron microscopy images of Ca2FeGaO6-δ and CaSrFeGaO6-δ. 
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Fe and tetrahedral sites by Ga. Table 7.1 shows the refined structural parameters for 

Ca2FeGaO6-δ. 

Interestingly, CaSrFeGaO6-δ has a different structure, where the superstructure peaks of 

Pbcm, and the 131 peak of Pnma are absent, indicating the formation of a body-centered 

structure. Among the body-centered space groups, Imma and Ibm2, the latter showed the 

best fit for this material. The Rietveld refinement profiles for X-ray and neutron diffraction 

data of CaSrFeGaO6-δ are shown in Figures 7.1b and 7.2b, respectively. The distribution 

of Fe and Ga was also determined from neutron diffraction, which indicated that Fe mostly 

occupies the octahedral positions, while Ga resides mainly on the tetrahedral sites. Table 

7.2 shows the refined structural parameters for CaSrFeGaO6-δ. 

These results demonstrate the important effect of the average ionic radius of the A-site 

cations on the orientation of tetrahedral chains. Smaller ionic radius in Ca2FeGaO6-δ favors 

a more ordered arrangement, where tetrahedral chains in each layer are oriented opposite 

to the neighboring layers (Figure 7.3), leading to a centrosymmetric structure. Whereas, 

larger ionic radius in CaSrFeGaO6-δ leads to a non-centrosymmetric structure, where all 

tetrahedral chains have the same orientation (Figure 7.4). 

3.2. Microstructure and X-ray photoelectron spectroscopy studies 

The microstructure and crystallite size for Ca2FeGaO6-δ and CaSrFeGaO6-δ were studied 

using scanning electron microscopy (SEM). Figure 7.5 shows the images of sintered pellets 

for both materials. As observed in this figure, the two compounds contain crystallites with 

similar size and similar degree of contact. The SEM images also show the uniformity and 

homogeneity of the crystallites in both Ca2FeGaO6-δ and CaSrFeGaO6-δ. 
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Figure 7.6. X-ray photoelectron spectroscopy data for Ca2FeGaO6−δ and CaSrFeGaO6−δ. 

The data for both materials show the same binding energies for Fe peaks.  

We have also performed X-ray photoelectron spectroscopy (XPS) to investigate the 

oxidation state of iron in both compounds. It should be noted that these materials were 

synthesized in air using Fe2O3 as starting material. Therefore, Fe is expected to be trivalent, 

but the possibility of its oxidation in air should also be considered. The position of the 2P3/2 

peaks as well as satellite peaks are indicative of the oxidation states. The 2P3/2 peak for 

trivalent Fe is expected to appear at about 710 – 711.5 eV followed by its satellite peak at 

about 8 – 9 eV higher in binding energy.43-44, 104-105 The satellite peak position is particularly 

important, as it is the signature of trivalent Fe. The XPS data are shown in Figure 7.6. For 

both Ca2FeGaO6-δ and CaSrFeGaO6-δ, the 2P3/2 main peak appears at 710.6 eV followed by 

a satellite peak at about 8.6 eV higher in energy, namely at 719.2 eV. This indicates that 

Fe is in trivalent state in both compounds. However, even without the satellite peaks, which 

can sometimes have low intensity and be hard to detect, it is evident that tetravalent Fe in 

these compounds can be ruled out, as it should show the 2P3/2 peaks at ~712-713 eV.43-44, 
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104-105 We also performed iodometric titration analysis to confirm the results of XPS 

measurements. These analyses showed δ ≈ 1 for both CaSrFeGaO6-δ and Ca2FeGaO6-δ, 

consistent with primarily trivalent state for Fe, as also demonstrated by XPS. The degree 

of oxygen deficiency indicates that the oxygen stoichiometry is very close to that expected 

for ideal brownmillerite, i.e. 5 oxygens per formula unit.  

3.3. Electrical properties 

The electrical conductivities of these materials were investigated in air by both direct 

current (DC) and alternating current (AC) methods. In DC technique, the Ohm’s law is 

employed to obtain the resistance (R) using the output current upon applying a certain 

voltage. For AC impedance spectroscopy,151 the total resistance is measured from the 

intercept with the real axis (Z′) of the Nyquist plot at low frequency. Figure 7.7 shows a 

representative example of the Nyquist plot and the corresponding fit. The resistance values 

from both DC and AC methods are similar. The resistance values (R) obtained using the 

above methods are then used to calculate the conductivity (σ) using the following equation: 

σ = L/RA    (20 ) 

where L and A represent the thickness and cross-sectional area of the sample, respectively. 

The room temperature conductivity values, listed in Table 7.3, reveal the interesting effect 

of the structural order on electrical conductivity. There is an inverse correlation between 

the degree of order and the magnitude of conductivity. CaSrFeGaO6−δ, in which all 

tetrahedral chains have the same orientation, exhibits significantly greater conductivity 

than Ca2FeGaO6−δ, where the tetrahedral chains have alternating orientations in 

neighboring layers.  
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Figure 7.7. Representative example of the Nyquist plot for CaSrFeGaO6−δ at 25 °C. The 

semicircle can be fitted using two resistance–capacitance (RC) units, corresponding to the 

bulk (R1 = 766 Ω, CPE1 = 2.6 × 10-8 F) and grain boundary (R2 = 3397 Ω, CPE2 = 1.3 × 

10-7 F). 

Figure 7.8. (a) Electrical conductivity of Ca2FeGaO6−δ (red) and CaSrFeGaO6−δ (blue) as a 

function of temperature. (b) Arrhenius plots for electrical conductivity of Ca2FeGaO6−δ 

(red) and CaSrFeGaO6−δ (blue). 
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The conductivity mechanism in oxygen-deficient perovskites is based on the hopping of 

charge carriers through metal-oxygen-metal (M-O-M) pathways.108-109, 152-153 Oxygen 

absorption or desorption leads to the formation of conduction pathways such as M2+–O–

M3+  and M3+–O–M4+, i.e., small polarons, as observed in other oxygen-deficient 

perovskites.9, 109, 154-156 The presence of elements with multiple stable oxidation states are 

needed for the formation of small polarons.9 Both Ca2FeGaO6-δ and CaSrFeGaO6−δ have 

Fe and Ga on B-site, where only Fe can have flexible oxidation states. During the 

conduction process through Mm+–O–Mn+ pathway, the charge carriers hop between Mm+ 

and Mn+, resulting in change of oxidation states of cations.152-153 

The degree of electrical conductivity depends strongly on the structural parameters, such 

as the M-O bond lengths and M-O-M bond angles. Higher conductivity is usually 

associated with shorter M-O distances or larger M-O-M bond angles. For example, the 

changes in electrical conductivity of La1−xSrxCoO3 correlate with variation in bond 

angles.21, 157 A change from semiconductivity to metallic conductivity in La1−xSrxCoO3 has 

been observed at x = 0.25, where there is an abrupt increase in the Co−O−Co bond angle.21, 

157 For our materials, both Ca2FeGaO6−δ and CaSrFeGaO6−δ, have similar oxygen content, 

as well as similar oxidation state for Fe, as shown by XPS and iodometric titrations. The 

greater electrical conductivity of CaSrFeGaO6−δ can be due to larger bond angles in this 

compound, which enhance the hopping of charge carriers through M-O-M conduction 

pathways. In CaSrFeGaO6−δ, the M-O-M bond angles are 127.6(2)° (between two 

tetrahedral sites), 143.1(1)° (between a tetrahedral and an octahedral site), and 170.68(8)° 
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Table 7.1. Refined structural parameters for Ca2FeGaO6-δ from powder neutron diffraction. 

Space group Pnma, a = 5.38903(8) Å, b = 14.6517(2) Å, c = 5.60081(8) Å, Rp = 0.0400, 

wRp = 0.0209. 

Elements x y z Occupancy Uiso Multip 

licity 

Ca 0.0178(2)   0.10796(6) 0.5255(2)  1 0.0018(1)   8 

Ga1 0.0496(2)  0.25 0.0682(2)  0.82(1)  0.0011(1)   4 

Fe1 0.0496(2)  0.25 0.0682(2)  0.18(1)  0.0011(1)   4 

Ga2 0.0 0.0 0.0 0.18(1) 0.00114(7)    4 

Fe2 0.0 0.0 0.0 0.82(1)    0.00114(7)    4 

O1 0.3979(3)  0.25 0.1275(2)  1 0.0030(2)   4 

O2 0.0279(2)   0.64164(6)   0.0733(2)  1 0.0035(1)   8 

O3 0.2599(2)   0.01528(6)   0.2401(2)  1 0.00275(9)   8 

(between two octahedral sites). The corresponding angles in Ca2FeGaO6−δ are smaller, 

125.65(8)°, 138.75(5)° and 166.11(5)°, respectively. 

The electrical conductivity for Ca2FeGaO6−δ and CaSrFeGaO6−δ were also investigated at 

variable temperatures from 25 °C to 800 °C. Figure 7.8 shows the conductivity data at 

different temperatures. For both materials, there is an increase in conductivity as a function 

of temperature, indicating the semiconducting nature of these compounds. A visible rise in 

conductivity begins above 100 °C, where a slow increase is observed up to 200 °C, 

followed by a steep increase above this temperature. The increase in conductivity of 
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Table 7.2. Refined structural parameters for CaSrFeGaO6-δ from powder neutron 

diffraction. Space group Ibm2, a = 5.6437(1) Å, b = 15.0577(4) Å, c = 5.4458(1) Å, Rp = 

0.0450, wRp = 0.0216. 

Elem

ents 

x y z Occupa

ncy 

Uiso Multip

licity 

Ca 0.5202(3)  0.10910(9)   0.0076(5)    0.5 0.0041(2)   8 

Sr 0.5202(3)  0.10910(9)   0.0076(5)    0.5 0.0041(2)   8 

Ga1 0.0713(3)  0.25         0.0429(4)    0.79(4)  0.0020(3)   4 

Fe1 0.0713(3)  0.25         0.0429(4)    0.21(4)    0.0020(3)   4 

Ga2 0.0          0.0          0.0          0.20(3)  0.019 (2) 4 

Fe2 0.0          0.0          0.0          0.80(3)  0.019 (2) 4 

O1 0.7545(4)   -0.01045(9)   0.2526(5)    1 0.0029 (2)   4 

O2 -0.0618(3)  0.1416(1) -0.0237(5)    1 0.0063(3)   8 

O3 0.3685(6)    0.25 0.8843(7)    1 0.0077(4)     8 

CaSrFeGaO6−δ is much sharper compared to that of Ca2FeGaO6−δ. The rise in temperature 

leads to an increase in the mobility of polarons. This temperature-activated mobility results 

in enhanced electrical conductivity,50 according to the following relation 

σ = neμ     (21 ) 

where σ, n, e, and μ are the conductivity, concentration of electrons/holes, charge of the 

electron, and mobility of the charge carriers, respectively. An additional contribution can 

be the rise in ionic conductivity due to the increase in temperature. Some studies145 indicate 

that oxide ion transport in perovskites starts at ~ 500 °C, although some reports suggest 

that it can also occur at lower temperatures.132, 146  However, it has been shown that at high 

oxygen partial-pressure, such as in atmospheric air, the electronic conductivity can be 

dominant over the ionic conductivity in perovskite-based systems.9, 23, 58-59, 138, 141   
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The activation energy for the increase in conductivity as a function of temperature can be 

obtained using Arrhenius equation for thermally activated conductivity49-51 as follows: 

𝜎 𝑇 =  𝜎0𝑒
−𝐸𝑎
𝐾𝑇  ( 22 ) 

where σ° is a pre-exponential factor and characteristic of the material. Ea, K, and T are the 

activation energy for the electrical conductivity, Boltzmann constant, and absolute 

temperature, respectively. The activation energy (Ea) can be calculated from the slope of 

the line of best fit in the log σT versus 1000/T plot. Figure 7.8b shows the Arrhenius plot 

for both materials in the temperature range 25 °C – 800 °C (298 K – 1073 K). The activation 

energies are lower for CaSrFeGaO6−δ compared to Ca2FeGaO6−δ, as shown in Table 7.3. 

The sharp differences between the electrical properties of these two materials indicate the 

pronounced impact of structural order on charge-transport in oxygen-deficient perovskites. 

Table 7.3. Room Temperature Conductivity and Activation Energies. 

compounds 

total conductivity, σ (S cm−1) 

Activation energy, Ea (eV) 
AC DC 

CaSrFeGaO5 1.00 × 10-4 1.07 × 10-4 
0.195 eV for 25 to 300 ºC       

0.083 eV for 300 to 800 ºC 

Ca2FeGaO5 4.80 × 10-5 4.79 × 10-5 0.377 eV for 25 to 220 ºC 

0.238 eV for 220 to 800 ºC 
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4. CONCLUSIONS

Subtle changes in defect-order can have a significant impact on the electrical conductivity 

of oxygen-deficient perovskites. Different distribution of defects in CaSrFeGaO6-δ leads to 

different orientation of tetrahedral chains compared to that in Ca2FeGaO6-δ. Importantly, 

these changes lead to enhanced electrical conductivity in CaSrFeGaO6-δ, which exhibits 

significantly greater conductivity than Ca2FeGaO6-δ. Variable-temperature conductivity 

studies show that the enhanced electrical conductivity of CaSrFeGaO6-δ persists at high 

temperature, up to 800 °C. The XPS and iodometric titration studies show the same degree 

of oxygen deficiency for both materials. They also indicate similar oxidation states of Fe 

in both compounds. Therefore, the difference in relative orientation of tetrahedral chains 

appears to be the main factor that leads to the changes in electrical conductivity between 

these materials. This indicates that controlling the structural parameters can be used as a 

tool to control the charge-transport properties of oxygen-deficient perovskites. 
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CHAPTER 8 

DISPARITY IN ELECTRICAL AND MAGNETIC PROPERTIES OF 

ISOSTRUCTURAL OXYGEN DEFICIENT PEROVSKITES BaSrCo2O6-δ AND 

BaSrCoFeO6-δ
7

INTRODUCTION 

We have recently studied20, 158 the structure-property relationships in a series of oxygen 

deficient perovskites (ODPs). These materials have general formula ABO3-x where A is 

usually an alkaline earth metal or lanthanide, and B is a smaller ion, typically a transition 

metal, although some main group elements could also reside on the B-site. The ODPs 

feature interesting properties, from superconductivity159, to magnetoresistant,160 and have 

been considered for different applications including gas sensors161, gas diffusion 

membranes for gas separation162, and  electrodes in solid oxide fuel cells163. In typical 

perovskites, oxygen atoms form octahedral geometry around the B-site metal, forming BO6 

octahedra. In ODPs, the absence of some oxygen atoms from the structure creates 

vacancies which may lead to the formation of different coordination geometries, such as 

7 The work described in this chapter was published in Journal of Materials Science: 

Materials in Electronics ( 2018, vol. 29, p. 13464-13473) 

https://link.springer.com/journal/10854
https://link.springer.com/journal/10854
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tetrahedral (BO4) or square pyramidal (BO5).
20 Considering the various coordination 

geometries that can be formed due to the presence of oxygen vacancies, a high degree of 

structural diversity is observed in ODPs.11, 72-76, 164  

Structural changes can sometimes occur through substitution on the A or B-sites. For 

example, the coordination around the B-site cation can change when the A site cation is 

substituted in Sr2-xCaxFe2O6-δ.
20 Here, Sr2Fe2O6-δ has a tetragonal structure and contains 

alternating octahedral and square pyramidal coordination of the B-site cations. When one 

Sr is substituted by Ca, i.e., SrCaFe2O6-δ, the structure changes into orthorhombic, and the 

coordination geometry transforms into alternating tetrahedral and octahedral.20 These 

structural changes lead to the transformation of electrical properties from metallic to 

semiconductor.  The magnetic structure also changes, where the spin-density wave state in 

Sr2Fe2O6-δ is converted into long-range G-type antiferromagnetic order in SrCaFe2O6-δ.
20 

Similar changes in structure and electrical conductivity as a result of substitution on the A-

site have been observed for Sr2-xCaxFeCoO6-δ.
20  

Substitution on the B-site can also lead to changes in crystal structure and material 

properties. For example, the above mentioned tetragonal compound, Sr2Fe2O6-δ, which has 

magnetic moments in spin-density wave state, can be modified by replacing one of the Fe 

atoms with Mn. The resulting material, Sr2FeMnO6-δ, has a cubic Pm-3m structure and 

inhomogeneous magnetic ground state, where the majority of the sample contains 

fluctuating spins at 4K, but a small fraction is magnetically ordered.11 Even minor changes 

to the B-site cations can sometimes lead to major changes, as highlighted by the difference 

between Sr2Fe1.9Cr0.1O6-δ, cubic Pm-3m, and Sr2Fe1.9Co0.1O6-δ , orthorhombic Cmmm.164 

Again this leads to significant variation of magnetic properties in these two materials.164 
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The above examples describe changes in material properties as a consequence of structural 

modifications due to B-site cation substitution. However, circumstances where cation 

substitution leads to isostructural materials, which have significantly different electrical 

and magnetic properties are less common.  In the present work, two isostructural oxygen 

deficient perovskites, BaSrCo2O6-δ (δ = 1.35) and BaSrCoFeO6-δ  (δ = 0.73), have been 

investigated and the significant contrast between their electrical and magnetic properties 

has been demonstrated. Cubic, Pm-3m structure has been reported for a material with 

similar composition to BaSrCo2O6-δ (δ = 1.35), but with greater oxygen content. Also, some 

information has been reported on bulk magnetization and electrical conductivity in the 

temperature span of ~135 degrees Celsius.165 BaSrCo2O6-δ discussed in the current 

manuscript has about 18% more vacancies, and has been investigated in detail using X-ray 

photoelectron spectroscopy, SEM, bulk magnetization, and DC and AC electrical 

conductivity studies in a wide temperature range, 25 °C to 900 °C. Regarding BaSrCoFeO6-

δ, its crystal structure has been reported to be cubic Pm-3m,166 but no information is 

available on magnetism and electrical conductivity of this material. In this article, an array 

of characterization methods has been employed to show remarkable differences between 

the two isostructural materials, BaSrCo2O6-δ and BaSrCoFeO6-δ, due to the difference in 

their oxygen stoichiometry. Most significantly, the disparities between electrical properties 

and temperature-dependent electrical conductivities are reported here. 

EXPERIMENTAL 

Syntheses at different temperatures and under argon or air atmosphere were attempted. The 

powders of precursors BaCO3 (Alfa Aesar, 99.95%), SrCO3 (Aldrich, 99.9%), Fe2O3 (Alfa 

Aesar,99.998%), and Co3O4 (Alfa Aesar, 99.7%) were mixed and ground together using 
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an agate mortar and pestle, pressed into a pellet, and heated at 1100 °C for 24 h. Then the 

samples were reground and refired at 1100 °C for 24 h, followed by slow cooling. In all 

cases, the heating and cooling rates were 100 °C/h. BaSrCo2O6-δ could only be synthesized

in argon atmosphere, while BaSrCoFeO6-δ could only be made in air. Syntheses under other 

conditions led to the formation of multiphase products. The phase purity and structure of 

the polycrystalline samples were determined by powder X-ray diffraction (XRD) at room 

temperature using Cu Kα1 radiation (λ = 1.54056 Å). The GSAS software40 and 

EXPEGUI41 interface were used for Rietveld refinements. The sample morphologies were 

studied using high resolution field-emission scanning electron microscopy (SEM). X-ray 

photoelectron spectroscopy (XPS) was performed at room temperature using Al Kα 

radiation (1486.7 eV) to study the oxidation states of Fe and Co. The electrical properties 

were investigated by direct-current (DC) and alternating-current (AC) conductivity 

measurements on pressed pellets that had been sintered at 1100 °C. Magnetic susceptibility 

data were obtained by cooling each material to 2 K, then applying magnetic field of 1000 

Oe and measuring the magnetization up to 400 K to obtain the zero-field-cooled (ZFC) 

data. The process was then repeated by cooling the material in the presence of the field and 

measuring the magnetization to obtain the field-cooled (FC) data. Electrochemical 

impedance spectroscopy was performed in the frequency range of 0.1Hz to 1 MHz using a 

computer-controlled frequency response analyzer at room temperature. Two-probe dc 

measurements were performed in the temperature range 25 – 900 ºC by applying a constant 

voltage of 10 mV and collecting the output current. Variable-temperature electrical 

conductivity measurements were carried out during both heating and cooling cycles. The 

rate of heating and cooling for conductivity measurements was 3 °C/min. Iodometric 



138 

titrations were performed by dissolving about 50 mg of the sample and excess KI (∼2 g) 

in 100 mL of 1M HCl. A total of 5 mL of the solution was then pipetted out, and the iodine 

that had been generated in the solution was titrated against 0.025 M Na2S2O3. Near the end 

point of the titration, 0.2mL of a starch solution was added to act as an indicator. All steps 

were performed under argon atmosphere. 

RESULTS AND DISCUSSION 

Crystal structure and crystallite morphology 

As mentioned in the experimental section, single phase cubic structure could only be 

obtained when syntheses were done in argon for BaSrCo2O6-δ, and in air for BaSrCoFeO6-

δ. This led to the formation of isostructural phases that have different oxygen stoichiometry 

and presented a great opportunity to study the effect of oxygen content on material 

properties. 

The crystal structures of these materials were characterized by powder X-ray diffraction 

(PXRD). Figure 8.1 shows the Rietveld refinement profiles for both materials, which have 

cubic structure with Pm-3m space group as previously reported165-166. The refined unit cell 

parameters and atomic positions for both materials are listed in Tables 8.1 and 8.2. 

BaSrCoFeO6-δ has a slightly smaller unit cell, which is also evident from the systematic 

shift of X-ray diffraction peaks to the right, compared to the data for BaSrCo2O6-δ. This is 

consistent with the cation oxidation states in the two materials. As described in the next 

section, BaSrCoFeO6-δ contains tri- and tetravalent Fe and Co, whereas BaSrCo2O6-δ 

contains Co2+/Co3+. Therefore, the average ionic radius in the latter is greater than that in 

the former, leading to the difference in the unit cell dimensions. 
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Figure 8.1. Rietveld refinement profile for powder XRD data of a) BaSrCo2O6-δ and b) 

BaSrCoFeO6-δ. Black crosses represent experimental data, the solid red line is the cubic 

Pm-3m model, pink vertical tick marks show Bragg peak positions, and the lower blue line 

represents the difference plot. 

 

 

Table 8.1. Refined Structural Parameters for BaSrCoFeO6-δ using powder X-ray 

diffraction data. 

Space group: Pm-3m, a = 3.9804(2)Å, V = 63.066(1) Å3, Rp = 0.0323,  

wRp = 0.0419 

Elements x y z Occupancy Uiso 

Fe 0 0 0 0.5 0.035(1)     

Co 0 0 0 0.5 0.035(1)     

Ba 0.5 0.5 0.5 0.5 0.0202(7)      

Sr 0.5 0.5 0.5 0.5 0.0202(7)      

O 0.5 0 0 0.88 0.056(3)     

 

 

 



140 

Table 8.2. Refined Structural Parameters for BaSrCo2O6-δ using powder X-ray diffraction 

data. 

Space group: Pm-3m, a = 3.9839(2) Å, V = 63.23(1) Å3, 

 Rp = 0.0385, wRp = 0.0492 

Elements x y z Occupancy Uiso 

Co 0 0 0 1 0.026(2)    

Ba 0.5 0.5 0.5 0.5 0.0152(9)    

Sr 0.5 0.5 0.5 0.5 0.0152(9)    

O 0.5 0 0 0.77 0.084(5)      

The morphology and crystallite sizes of both materials were also studied using scanning 

electron microscopy. Despite having the same crystal structure and same space group, the 

crystallite morphology for the two materials is significantly different. Figure 8.2 shows the 

sintered pellets for both materials. As seen in this figure, the crystallite size is larger in 

BaSrCo2O6-δ. In addition, the crystallites appear to be more densely packed in BaSrCo2O6-

δ. 

Figure 8.2. Scanning electron microscopy images of BaSrCoFeO6-δ (top) and BaSrCo2O6-

δ (bottom) 
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X-ray photoelectron spectroscopy (XPS) and iodometric titration 

The XPS studies were used to analyze the oxidation states of Fe and Co in both materials. 

The XPS analyses were guided by the information regarding synthesis conditions, which 

affect the oxygen content, as well as the iodometric titration results that show the oxygen 

stoichiometry in each material. Since BaSrCoFeO6-δ was synthesized in air, the oxygen 

content in this compound is expected to be greater than that of BaSrCo2O6-δ, which was 

made in argon. This is confirmed by iodometric titrations results, which indicate the oxygen 

stoichiometry for the two compounds to be 5.27 and 4.65, corresponding to BaSrCoFeO6-

δ (δ = 0.73) and BaSrCo2O6-δ (δ = 1.35), respectively. Note that the starting materials for 

syntheses were Co3O4 and Fe2O3, which contain divalent and trivalent cobalt, as well as 

trivalent iron. The oxygen stoichiometry of BaSrCoFeO6-δ indicates that there should be 

some tetravalent Fe and/or Co in this material. On the other hand, the low oxygen 

stoichiometry of BaSrCo2O6-δ indicates that the oxidation state of cobalt should be a 

combination of divalent and trivalent. 

We discuss the XPS data for BaSrCo2O6-δ first. The Co 2P3/2 peak appears at ~780 eV, and 

two satellite peaks are present at ~4.5 eV and 10 eV higher than the 2P3/2 peak (Figure 

8.3a). Co2+ and Co4+ are both expected to show satellite peaks at about 5 eV higher than 

the 2P3/2 peak.167-168 Considering that BaSrCo2O6-δ was synthesized in argon atmosphere, 

the oxidation of cobalt to tetravalent state is not expected. In addition, the oxygen 

stoichiometry determined by iodometric titration indicates δ = 1.35 for BaSrCo2O6-δ, which 

rules out the possibility of the presence of tetravalent cobalt. Therefore, for this material, 

the satellite peak at ~4.5 eV higher than the 2P3/2 peak belongs to Co2+. The satellite peak 

at ~10 eV higher than the 2P3/2 peak is signature of Co3+.167 
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The XPS spectra for BaSrCoFeO6-δ are shown in Figures 8.3b and c. The Fe3+ 2P3/2 peak is 

expected to appear at ~710-711 eV with a satellite peak at ~7-9 eV higher than the 2P3/2 

peak. 169 170-172 Compared to Fe3+, the Fe4+ 2P3/2 peak is expected to have higher binding 

energy, appearing at ~712-713 eV.169, 171  In the XPS spectrum for BaSrCoFeO6-δ (Figure 

8.3b) the Fe 2P3/2 peak appears at ~710 eV with a shoulder at ~713 eV, indicating the 

presence Fe3+ (~710 eV) and Fe4+ (~713eV) in this material. The satellite peak for Fe3+ is 

present at about 718 eV, as expected. 

The XPS spectrum for cobalt in BaSrCoFeO6-δ (Figure 8.3c) is very similar to that of 

BaSrCo2O6-δ. The Co 2P3/2 peak appears at ~780 eV, along with two satellite peaks at ~5.5 

eV and 10 eV higher than the 2P3/2 peak. Again, these indicate the presence of Co2+ and 

Co3+, as described above. Therefore, iodometric titration and XPS indicate that Fe in 

BaSrCoFeO6-δ is in tri- and tetravalent states, whereas Co is in di- and trivalent states in 

both materials. 

Magnetic properties. 

 Magnetic susceptibility as a function of temperature shows another sharp contrast between 

these two isostructural materials. Both ZFC and FC data were obtained in the temperature 

range 2 K – 400 K. The magnetic susceptibility data for BaSrCo2O6-δ (Figure 8.4a) shows 

ZFC-FC divergence below 300 K. There is no sharp magnetic transition in the temperature 

range 2 K – 400 K. As shown in the inset of Figure 8.4a, the inverse susceptibility plot 
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Figure 8.3. X-ray photoelectron spectroscopy data. (a) shows the Co peaks for BaSrCo2O6-

δ. (b) and (c) show the Fe and Co peaks for BaSrCoFeO6-δ, respectively.  

 

 

shows deviation from linear paramagnetic behavior. The very low magnitude of magnetic 

susceptibility in the entire temperature range for BaSrCo2O6-δ indicates that there is little 

uncompensated moment in this material. This is further confirmed by isothermal 

magnetization data (Figure 8.4b) that show very low magnetization even at 2 K, where the 

magnetization value reaches a maximum of 0.16 μB at magnetic field of 9 T. As evident 

from the inverse susceptibility plot, BaSrCo2O6-δ is not paramagnetic at 2 K. The low 

magnetization value could be due to antiferromagnetic order, with a transition temperature 

higher than the measured temperature range. The antiferromagnetic order is consistent with 

that reported for a similar composition, which has 18% less oxygen-vacancies than our 
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material and shows TN ≈ 525 K.165 For that composition, only FC data has been reported.165 

The ZFC-FC divergence observed in Figure 8.4a can be indicative of reorientation of 

magnetic moments while the overall antiferromagnetic order is retained and the low 

magnetization value persists. This has been observed before for another oxygen-deficient 

perovskite with formula Ca2FeCoO5,
74 where neutron diffraction data showed reorientation 

of magnetic moments from along the a-axis to b-axis while the antiferromagnetic order was 

retained.74 The magnetic susceptibly of Ca2FeCoO5 below the magnetic transition 

temperature showed ZFC-FC divergence, occurring at the temperature where the magnetic 

moment reorientation was completed, similar to the situation observed in BaSrCo2O6-δ.
74  

Figure 8.4. Bulk magnetization data for BaSrCo2O6-δ: (a) ZFC and FC magnetic 

susceptibility data. The inset shows inverse of susceptibility plotted against temperature. 

(b) Isothermal magnetization versus field, at 2K and 400 K. 

For BaSrCoFeO6-δ, there is no ZFC-FC divergence in the magnetic susceptibility data, as 

shown in Figure 8.5a. However, the susceptibility deviates significantly from paramagnetic 

behavior, showing a sharp increase at low temperature, indicative of uncompensated 
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moments due to ferro- or ferrimagnetic coupling.173-174,175-176 This is also evident when 

inverse susceptibility is plotted as a function of temperature, where the only linear region 

is in the temperature range 300 K – 400 K. The linear paramagnetic region can be fitted 

using the inverse Curie-Weiss equation: 

1

𝜒
=

𝑇−𝜃

𝐶
( 23) 

The fit values are C = 4.49(3) and θ = -110(3). The negative θ value confirms the presence 

of ferrimagnetic interactions. Below 300 K, the inverse susceptibility deviates from that of 

a paramagnetic system. There is no sharp magnetic transition, and the changes are gradual. 

Figure 8.5. Bulk magnetization data for BaSrCoFeO6-δ: (a) ZFC/FC magnetic susceptibility 

data. The inset shows inverse of susceptibility versus temperature. (b) Isothermal 

magnetization data at 2K and 400 K. 

The isothermal magnetization data as a function of field further confirm the ferrimagnetic 

behavior at low temperature. As shown in Figure 8.5b, isothermal magnetization at 400 K 

has a typical paramagnetic behavior. However, at 2 K, the isothermal data shows a sharp 

increase in magnetization followed by a semi-plateau. However, even at high field of ~9 
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T, the magnetization continues to increase gradually and does not reach saturation. In 

addition, the maximum magnetization at 9 T is ~1.28 μB, much lower than that anticipated 

for ferromagnetic coupling of Fe and Co in their trivalent and tetravalent states. This again 

indicates that the magnetic interactions are ferrimagnetic. Note that as far as electronic 

configurations are concerned, there are two types of magnetic ions in BaSrCoFeO6-δ, as 

suggested by XPS. They are spin 5/2 ions (Fe3+ and Co4+) and spin 4/2 ions (Fe4+ and Co3+), 

for high-spin configurations which are common in perovskite-based oxides. If 

ferrimagnetic coupling occurs between equal concentrations of spin 5/2 and spin 4/2 ions, 

the expected saturation moment will be ~ 1 μB, close to the value obtained experimentally, 

~1.28 μB. The experimental value of ~1.28 μB actually matches 52/48% ratio for spin 5/2 

to spin 4/2 ions. Another observation is that there is no hysteresis in the isothermal 

magnetization data at 2 K or 400 K. The data collected while increasing the magnetic field 

from 0 T – 9 T overlap with the data obtained while decreasing the field from 9 T – 0 T. 

The absence of hysteresis in the isothermal magnetization at 2 K indicates that the 

ferrimagnetic interactions are not long-range, and occur in short-range scale, similar to the 

situation in superparamagnetic systems.177  

The significantly different magnetic properties between the two isostructural materials is 

interesting. The magnetic susceptibility of BaSrCo2O6-δ deviates from paramagnetism in 

the entire temperature range, 2- 400 K. The very low magnetization values even at 2 K and 

9 T, indicate antiferromagnetic order in BaSrCo2O6-δ, consistent with a report on a similar 

material. On the other hand, BaSrCoFeO6-δ shows ferrimagnetic properties with large 

uncompensated moments and isothermal magnetization similar to that observed in 

superparamagnetic systems, indicating the presence of ferrimagnetic clusters. 
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Electrical conductivity  

The electrical behavior of our samples was studied using DC method, as well as AC 

electrochemical impedance spectroscopy (EIS). In both methods, the resistance of a 

material is analyzed to get total conductivity. In AC impedance spectroscopy, the total 

impedance is generally measured as the low frequency intercept of arc on the real axis (Z’) 

of a Nyquist plot. Whereas DC method requires a constant applied current or voltage to 

measure the output voltage or current, respectively. Consequently, the total conductivity 

(σ) is obtained by using the relation σ = L/RA, where L, R and A represent the thickness, 

resistance and cross-sectional area of the cylindrical pellet, respectively. The total 

conductivity values for BaSrCo2O6-δ and BaSrCoFeO6-δ measured using both AC and DC 

methods at room temperature are listed in Table 8.3. The conductivity values measured by 

AC and DC methods are the same. Several interesting observations were made with regard 

to the electrical conductivity of these materials, as follows.   

At room temperature, BaSrCoFeO6-δ has higher electrical conductivity than BaSrCo2O6-δ. 

The electrical conductivity in perovskite-based oxides occurs by electron hopping through 

M–O–M (metal-oxygen-metal) bonds. For this process to happen, metals with multiple 

oxidation states such as Fe2+/Fe3+/Fe4+ or Co2+/Co3+/Co4+ are required on the octahedrally 

coordinated B-site. In our materials, the metal 3d orbitals overlap with oxygen 2p orbitals, 

and electron hopping occurs through the (Fe/Co)–O–(Fe/Co) or Co–O–Co pathways. The 

extent of electronic conductivity is affected by the degree of M–O orbital overlap. Shorter 

M−O bond distance and larger M−O−M bond angles lead to better orbital overlap and 

higher conductivity.178  
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In situations where structural transitions take place, the bond distances and angles are 

affected leading to changes in electrical conductivity.20 An example is the structural 

transition between Sr2Fe2O6-δ and CaSrFe2O6-δ, where some bond angles in the latter 

become significantly small, leading to smaller degree of orbital overlap and lower 

conductivity at room temperature.20  

Table 8.3. Room Temperature Conductivity and Activation Energies. 

compounds total conductivity, σ (S 

cm−1) 

Activation energy (Ea) 

AC DC 

BaSrFeCoO6-δ 0.07368 0.07365 0.144 eV for 298-473 K (25-200 ºC) 

0.010 eV for 473-1173 K (200-900 ºC) 

BaSrCo2O6-δ 0.000134 0.000133 0.218 eV for 298- 673 K (25-400 ºC) 

0.571 eV for 673-1173 K (400-900 ºC) 

However, the two materials investigated in the present study, BaSrCo2O6-δ and

BaSrCoFeO6-δ, have the same crystal structure. The M–O–M bond angles are 180º in both 

compounds. Nevertheless, the size of the unit cell and bond lengths are slightly different 

between these two materials. BaSrCoFeO6-δ has smaller unit cell and slightly shorter 

Fe(Co)–O bond distances, 1.9902(1) Å, as compared to those in BaSrCo2O6-δ, 1.9920(1) 

Å. The improvement in conductivity as a result of decrease in unit cell parameters is 

expected, as observed in other materials such as SrFe1-xAlxO3- δ.
136 In addition, the degree 

of oxygen deficiency and cation combinations that form the conduction pathways in the 

two materials are different. Higher degree of oxygen deficiency is expected to decrease the 

number of conduction pathways. As outlined in the XPS section, BaSrCoFeO6-δ has higher 

oxygen content and contains Fe3+/Fe4+ and Co3+/Co4+, while BaSrCo2O6-δ contains 
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Co2+/Co3+. The difference in the room temperature conductivity of these two materials is 

due to the combination of three factors, namely the subtle difference in bond distances, 

difference in concentration of oxygen vacancies and the dissimilarity of conduction 

pathways. 

Variable-temperature conductivity studies in the temperature range 25 − 900 °C provide 

further insight into the properties of these two materials. The measurements were 

performed under the same conditions used for the synthesis of these materials, namely in 

air for BaSrCoFeO6-δ and in argon for BaSrCo2O6-δ (Figure 8.6) However, we also 

performed conductivity measurements in argon atmosphere for BaSrCoFeO6-δ, which 

showed the same temperature-dependent trend as the air-measurement, but with lower 

overall conductivity (Figure 8.7). 

Figure 8.6. Electrical conductivity of (a) BaSrCo2O6-δ and (b) BaSrCoFeO6-δ. The 

measurements were done in the same environment used for synthesis, namely in argon 

for BaSrCo2O6-δ and in air BaSrCoFeO6-δ. Heating data are shown in green and the 

cooling data in red. 
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Figure 8.7. comparison of the electrical conductivity for BaSrCo2O6-δ and BaSrCoFeO6-δ 

both obtained in argon atmosphere. 

There is a sharp contrast between the BaSrCo2O6-δ and BaSrCoFeO6-δ with regard to their 

electrical conductivity as a function of temperature. Comparison between the two materials 

reveals significant increase in conductivity as a function of temperature for BaSrCoFeO6-δ 

up to 200 °C, whereas BaSrCo2O6-δ shows electrical conductivity which is nearly 

independent of temperature up to 400 °C. The retention of the same level of conductivity 

over a range of nearly 400 degrees can be a very useful property, especially in applications 

such as sensors where the change in conductivity should only be induced by the analyte 

and not temperature. 

Above 400 °C, BaSrCo2O6-δ shows increase in conductivity, a typical behavior of 

semiconductors. However, BaSrCoFeO6-δ exhibits a transition above 200 °C, where a 

downturn in conductivity begins and continues to 900 °C (Figure 8.6). 

Another interesting feature of the electrical conductivity of BaSrCo2O6-δ is the distinct 

hysteresis between the conductivity data obtained during heating and cooling cycles. 
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(Figure 8.6) Whereas, BaSrCoFeO6-δ shows nearly identical conductivity values during 

heating and cooling cycles. The temperature-activated enhancement of conductivity in 

BaSrCo2O6-δ is retained upon cooling the material, leading to the observation of hysteresis.  

The activation energies for electrical conductivity of both materials were also calculated 

using Arrhenius plots. The plots in Figure 8.8 were used for fitting with the Arrhenius 

equation for thermally activated conductivity,51, 179-180 as shown below: 

 

                                          σT = σ° e−Ea/kT                                      ( 24 ) 

 

where σ° is a pre-exponential factor and a characteristic of a material, and Ea, k, and T are 

the activation energy for the conductivity, Boltzmann constant, and absolute temperature, 

respectively. The activation energy for the total conductivity (Ea) can be obtained from the 

slope of the line of best fit in the log σT vs 1000/T plot. As shown in Table 8.3, the Ea 

values are higher for BaSrCo2O6-δ compared to BaSrCoFeO6-δ. Note that activation 

energies are dependent on the change in conductivity as a function of temperature. 

BaSrCo2O6-δ has very small conductivity at low temperature (in the order of 10-4 Scm-1), 

and its conductivity increases to 0.167 Scm-1 at high  
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Figure 8.8. Arrhenius plot for electrical conductivity of (a) BaSrCo2O6-δ and (b) 

BaSrCoFeO6-δ. 

temperature. Therefore, the change in conductivity as a function of temperature is large for 

this material. This leads to a large slope in the Arrhenius plot and higher activation energy 

for BaSrCo2O6-δ. For BaSrCoFeO6-δ, the conductivity is higher, but the difference between 

the conductivity values at low and high temperature is not as significant as that of 

BaSrCo2O6-δ. 

CONCLUSIONS 

The isostructural oxygen-deficient perovskites BaSrCo2O6-δ and BaSrCoFeO6-δ show 

significant disparity in magnetic and electrical properties. The magnetic susceptibility of 

BaSrCo2O6-δ deviates from paramagnetism in the entire temperature range, 2 - 400 K. The 

very low magnetization values even at 2 K and 9 T, indicate antiferromagnetic order in 

BaSrCo2O6-δ, consistent with a report on a similar material. On the other hand, 

BaSrCoFeO6-δ shows ferrimagnetic properties with large uncompensated moments and 

isothermal magnetization reminiscent of superparamagnetic systems, indicating the 



153 

presence of ferrimagnetic clusters. The differences in electrical conductivity are also 

remarkable. BaSrCo2O6-δ shows nearly constant conductivity up to 400 C, followed by 

semiconducting properties above this temperature. Whereas the BaSrCoFeO6-δ shows 

semiconducting properties up to 200 °C, above which a downturn in conductivity is 

observed, similar to metallic conductors.  
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CHAPTER 9 

STRUCTURE DEPENDENCE OF ELECTRICAL CONDUCTIVITY AND 

ELECTROCATALYTIC PROPERTIES OF Sr2Mn2O6 AND CaSrMn2O6
8 

1. INTRODUCTION

Perovskite oxides exhibit a wide range of structural, electrical and magnetic properties.82, 

147-148, 181 They have been studied for their potential applications in different technological 

fields, such as fuel cells, thermoelectric devices and sensors.148, 182-183 The structure and 

properties of perovskites can vary significantly4, 84-85, 92, 120, 184-186 upon variation of the A- 

or B-site cations in the ABO3 formula, where the A-cations occupy the 12-coordinated sites 

located between the BO6 octahedra.  

Given the wide range of transition metal or main group cations that can reside on the B-

site, the structural transformation upon B-site doping are frequently observed. Various 

parameters, such as ionic radius, oxidation state and electronic structure lead to these 

changes.  For example, when Mn is substituted by Fe, the orthorhombic structure of 

CaMnO3
124 transforms into the orthorhombic structure of a double perovskite, Ca2FeMnO6, 

with layered ordering.187-188 Similarly, Sr2FeMoO6 has a tetragonal structure, while the B-

8 The work described in this chapter was published in journal of Chemical Sciences ( 

2019, vol 131, p 109) 
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site substituted Sr2FeWO6 is orthorhombic.189 The structural transformation leads to 

significant variation in properties as well, where Sr2FeMoO6 behaves as a half metal and a 

ferromagnetic material, whereas Sr2FeWO6 shows insulating and antiferromagnetic 

properties.189 Note that there are two B-site cations in these materials. In situations, where 

there are two crystallographically distinct positions for the A- or B-site cations, the general 

formula can be represented by AA’B2O6 and A2BB’O6, respectively. 

There are also oxide materials where the general formula is similar to that of a typical 

perovskite, but the connectivity in their crystal lattice is different. An example is SrMnO3, 

better described as Sr2Mn2O6 since it has two crystallographically distinct positions for Sr 

and two for Mn.181 Unlike typical perovskites that contain corner-sharing octahedra, this 

material has dimeric units of face-sharing MnO6 octahedra.181 This compound has been of 

interest in recent years, given the potential of the Mn-based oxides for applications in areas 

such as sensing,182 spintronics190 and solid oxide fuel cells.183 Several substituted 

derivatives have been investigated, showing variations in structure and properties. For 

example, when  50% of Mn in Sr2Mn2O6 is substituted by Fe, the crystal structure changes 

to a perovskite type system with corner-sharing octahedra.191 The structural transformation 

also leads to changes in magnetic properties, where  the antiferromagnetic arrangement of 

Mn4+ magnetic moments181 in Sr2Mn2O6 transforms into ferromagnetic arrangement upon 

partial substitution of Mn by Fe.191  

It is also possible to partially or completely replace the A-site cation in Sr2Mn2O6. For 

example, the Ba substitution on the A-site results in orthorhombic and rhombohedral 

structures for 50 % and 100 % substitutions, respectively.192 The structural transformation 

upon Ba-doping is followed by the change in electrical properties.192 It is also possible to 
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replace Sr2+ by a smaller cation, namely Ca2+, to obtain CaSrMn2O6, which has a 

perovskite-type structure193 unlike the parent Sr2 compound. To our knowledge, the effect 

of doping a smaller A-site cation, i.e., Ca2+, on charge transport properties of Sr2Mn2O6 

has not been investigated. In this paper, we report the remarkable structure-property 

relationships, where the structural changes prompted by the replacement of the A-site 

cation lead to significant enhancement of the electrical charge-transport and 

electrocatalytic activity. Dramatic increase in the electrical conductivity is observed over 

a wide range of temperature, due to Ca-doping. Furthermore, we have studied the 

electrocatalytic activity of both Sr2Mn2O6 and CaSrMn2O6 for oxygen-evolution reaction, 

demonstrating the enhancement of catalytic properties in the latter compound. 

2. EXPERIMENTAL

The materials Sr2Mn2O6 and CaSrMn2O6 were synthesized in air by solid state method. 

Stoichiometric amounts of the powders of the precursor compounds CaCO3 (Alfa Aesar, 

99.95%), Mn2O3 (Alfa Aesar,99.998%) and SrCO3 (Sigma Aldrich,99.99%) were mixed 

together using an agate mortar and pestle and pressed into a pellet which was calcined in 

air at 1000 °C for 24 h in order to decompose the carbonates and start the reaction. The 

samples were then ground and sintered at 1200 °C for 24 h in the same environment to 

complete the reaction and form pure products. Both heat treatments were followed by slow 

cooling. The heating and cooling rates were 100 °C/h. The phase purity and structure of 

the polycrystalline samples were examined by powder X-ray diffraction at room 

temperature using Cu Kα1 radiation (λ = 1.54056 Å). The GSAS software100 and 

EXPEGUI interface125 were used for Rietveld refinements. The sample morphologies were 

studied using high resolution field-emission scanning electron microscopy (SEM). The 
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electrical properties were investigated by 4-point probe measurements. Electrical 

conductivity was measured at 100 °C intervals from 25 to 800 °C during both heating and 

cooling cycles. At each measurement point, the temperature was maintained constant until 

a plateau in conductivity was observed, before changing the temperature. The rate of 

heating and cooling for conductivity measurements was 3 °C/min. Oxygen contents of each 

material was determined by iodometric titration as explained elsewhere.88, 120, 130 

Electrocatalytic performances of the materials were measured in a three-electrode 

electrochemical workstation using a rotating disc electrode at 1600 rpm. A glassy carbon 

electrode loaded with catalysts, a commercial platinum electrode and Ag/AgCl (in 3 M 

NaCl) were used as working, counter and reference electrodes, respectively. For working 

electrode preparation, 35 mg of the sample and 20 µL of nafion (5% w/w in water/1-

propanol) were mixed in 7 mL of THF and sonicated for 5 minutes. The catalyst ink was 

loaded onto the glassy carbon electrode (diameter 5 mm, area 0.196 cm2) by four 

subsequent coatings (each coating with 10 μL). OER was performed in 0.1 M KOH 

electrolyte which was deaerated by bubbling argon gas for at least 30 min before the 

measurement started. The cyclic voltammetry (CV) measurements were performed at a 

scan rate of 10 mV s−1 from 0 to 0.8 V vs Ag/AgCl. The potential versus reversible 

hydrogen electrode (RHE) was calculated according to Nernst equation: 

ERHE = EAg/AgCl + 0.059 pH + E⁰Ag/AgCl ( 25 ) 
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3. RESULT AND DISCUSION

3.1. Crystal structure 

The X-ray diffraction studies demonstrate the structural changes due to the variation of the 

A-site cation in these A2B2O6 compounds (A2=Sr2, CaSr; B= Mn).  The crystal structure 

of Sr2Mn2O6 can be indexed on a hexagonal cell with space group P63/mmc, consistent 

with previous reports.181 Rietveld refinement profile and the refined structural parameters 

from powder X-ray diffraction data are shown in Figure 9.1 and Table 9.1, respectively. 

As seen in Figure 9.1, the structure of Sr2Mn2O6 consists of dimeric units of face-sharing 

MnO6 octahedra. Each dimer is connected to other dimers through corner-sharing, leading 

to a 3-dimensional network. As shown in Table 9.1, there are two crystallographically 

distinct Sr sites and two distinct Mn positions, hence the formula Sr2Mn2O6. The crystal 

structure is transformed upon changing the A-site cations from Sr2 to CaSr, as 

demonstrated in Figure 9.2. The Ca-containing compound, CaSrMn2O6, features a cubic 

Pm-3m structure, where individual MnO6 octahedra are all connected to each other through 

corner-sharing, consistent with a previous report.193 There are no dimeric units in 

CaSrMn2O6, as shown in Figure 9.2. There is only one Mn position, and one A-site, jointly 

occupied by both Ca and Sr, as shown in Table 9.2 that lists the refined structural 

parameters for CaSrMn2O6. 
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Figure 9.1. (a) Crystal structure and (b) Rietveld refinement profile from X-ray 

diffraction data for Sr2Mn2O6, P63/mmc. Black crosses represent experimental data, the 

solid red line is the model, pink vertical tick marks show Bragg peak positions, and the 

lower grey line represents the difference plot.  

Table 9.1. Refined structural parameters for Sr2Mn2O6 using powder X-ray diffraction. 

Space group: P63/mmc, a = b = 5.45233(8)Å, c = 9.0856(1)Å, Rp=0.030, wRp= 0.038, χ2 

= 1.790  

element x y z Uiso occupancy multiplicity 

O1 0.191(8) 0.359(1) 0.298(2) 0.020(3) 1 6 

O2 -0.021(3) 0.507(5) 0.049(2) 0.021(3) 1 6 

Mn1 1/3 2/3 0.4160(8) 0.013(3) 1 2 

Mn2 1/3 2/3 0.1412(8 0.046(4) 1 2 

Sr1 1/3 2/3 0.7850(9) 0.0271(7) 1 2 

Sr2 0.0 0.0 0.039(1) 0.0298(7) 1 2 
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Figure 9.2. (a) Crystal structure and (b) Rietveld refinement profile from X-ray diffraction 

data for CaSrMn2O6, Pm-3m. Black crosses represent experimental data, the solid red line 

is the model, pink vertical tick marks show Bragg peak positions, and the lower grey line 

represents the difference plot.  

Table 9.2. Refined structural parameters for CaSrMn2O6 using powder X-ray diffraction 

data. Space group: Pm-3m, a = 3.7772(1)Å, Rp = 0.051, wRp = 0.064, χ2 = 1.406 

x y z Uiso occupancy multiplicity 

O1 0.5 0.0 0.0 0.043(2) 1 3 

Mn1 0.0 0.0 0.0 0.007(1) 1 1 

Ca1 0.5 0.5 0.5 0.024(2) 0.5 1 

Sr1 0.5 0.5 0.5 0.024(2) 0.5 1 

We note that further substitution of Sr by Ca, beyond CaSrMn2O6, does not change the 

polyhedral connectivity. The completely substituted product, that contains only Ca on the 

A-site, contains the same type of corner-sharing connectivity as CaSrMn2O6, although the 

corner-sharing MnO6 octahedra are somewhat distorted, leading to orthorhombic 

symmetry.194 Nevertheless, the overall picture that emerges is that the transition from 
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Sr2Mn2O6 to CaSrMn2O6 results in significant structural transformation, but further 

substitution of Sr by Ca does not have a substantial effect on the structure-type. 

The Mn-O bond distances in Sr2Mn2O6 vary widely, 1.81(2), 1.87(2), 1.91(2), and 2.03(2) 

Å, due to the existence of two types of polyhedral connectivity, namely face-sharing and 

corner-sharing. Given the structural differences between the two compounds, direct 

comparison of the bond distances is not warranted. However, the average Mn-O bond 

distance in Sr2Mn2O6, 1.91 Å, is longer than that of CaSrMn2O6, 1.89 Å. Furthermore, the 

Mn-O-Mn bond angles in Sr2Mn2O6 can be as small as 80.9(3)° due to the face-sharing in 

octahedral dimers. The angle between the corner-sharing octahedra in Sr2Mn2O6 is Mn-O-

Mn = 166(1)°. However, CaSrMn2O6 contains only one type of Mn-O-Mn angle, which is 

180°, as expected from a cubic perovskite structure. 

3.2. Electrical properties 

Changes in composition, and the subsequent variation of the crystal structure lead to 

significant changes in the electrical properties, which were studied by four probe technique. 

The electrical conductivity (σ) is obtained from the measured resistance (R), using the 

following equation:195 

σ = L/RA ( 26 )

where L is the voltage probe spacing and A represents the cross-sectional area of the 

rectangular pellet where the current probes are connected. The remarkable effect of 

structural transformation is immediately clear from the improvement in the electrical 

conductivity by five orders of magnitude, 4.5 × 10-1 S cm-1 for CaSrMn2O6, compared to 
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1.0 × 10-6 S cm-1 for Sr2Mn2O6 at room temperature. The electrical conductivity in oxide 

materials occurs through M–O–M pathways, where M is the transition metal. It has been 

demonstrated that larger bond angles lead to enhanced electrical conductivity due to the 

improved overlap between the metal 3d band and oxygen 2p band.135 The change in crystal 

structure between Sr2Mn2O6 and CaSrMn2O6 clearly leads to the enhancement of the Mn–

O–Mn bond angles. The face sharing of MnO6 octahedra in Sr2Mn2O6 results in bond 

angles as small as 80.9(3)°, as described in the previous section. However, the Mn–O–Mn 

bond angles in CaSrMn2O6 are 180.0°, due to the cubic structure and corner-sharing 

between the octahedra. 

The superior electrical conductivity of CaSrMn2O6 persists at higher temperature, as 

evident from the results of conductivity studies in a wide temperature range, 25 – 800 °C, 

shown in Figure 9.3. Both compounds show increase in conductivity as a function of 

temperature, a behavior typical of semiconductors. The increase in temperature results in 

the loss of oxygen and reduction of some of Mn4+ ions into Mn3+, leading to facile charge 

transport through the resultant Mn4+–O–Mn3+ pathways. In addition, the oxide ion 

conductivity is enhanced due to the creation of lattice defects upon oxygen loss. 

Furthermore, the rise in temperature leads to an increase in the mobility of charge carriers, 

which in turn results in the enhancement of the electrical conductivity as described by the 

equation: 7 

     σ = neμ ( 27 )

where σ, n, e, and μ are the conductivity, concentration of charge carriers (electrons/holes), 

charge of the electron, and mobility of the charge carriers, respectively. 
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The activation energy for the increase in electrical conductivity as a function of temperature 

can be found using the Arrhenius equation for thermally activated conductivity:49-51 

𝜎 𝑇 =  𝜎0𝑒
−𝐸𝑎
𝐾𝑇                         ( 28 ) 

where σ0 is a preexponential factor and a characteristic of the material. Ea, K, and T are 

the activation energy for the increase in conductivity, Boltzmann constant, and absolute 

temperature, respectively. The activation energy (Ea) is calculated from the slope of the 

line of best fit in the log σT versus 1000/T plot (Figure 9.3). The Ea values for the sharp 

rise in conductivity above 500 °C are 0.687 eV for Sr2Mn2O6 and 0.449 eV for CaSrMn2O6. 

 

 

Figure 9.3. (a) Temperature dependent electrical conductivity and (b) Arrhenius plots for 

Sr2Mn2O6 (blue circles) and CaSrMn2O6 (green triangles). The inset in (a) is a zoomed 

view of the increase in conductivity of Sr2Mn2O6. 

 

 

Table 9.3.  Room temperature conductivity and activation energies. 

 Conductivity, σ (Scm-1) Activation energy, Ea (eV) 

       Sr2Mn2O6 1.0 × 10-6 0.382 eV for 25 to 500 ºC 

0.687 eV for 500 to 800 ºC 

 

      CaSrMn2O6 

 

4.5 × 10-1 

 

0.093 eV for 25 to 400 ºC 

0.449 eV for 400 to 800 ºC 
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3.3. Correlation between electrocatalytic activity and conductivity 

The electrocatalytic activity of these materials for oxygen evolution reaction (OER) was 

studied by cyclic voltammetry in alkaline medium. The OER mechanism in alkaline 

solution has been examined by several researchers.26-27, 196 The commonly accepted 

mechanism involves four steps, where there is a single electron transfer in each step.26-27,

196 In the first step, the reaction initiates by the adsorption of OH
–

on the active site of the 

catalyst, i.e., metal site, M. 27, 196 In the second step, a hydroxide from the electrolyte 

abstracts a proton from M-OH to form M-O and water. In the third step, M-O combines 

with a hydroxide to form a peroxide. Finally, in the fourth step, the peroxide intermediate 

reacts with OH
–

 to give an oxygen and water and regenerate the catalyst. 

5. M + OH
–
  → M–OH + e- 

6. M–OH + OH
–
 → M–O + H2O + e- 

7. M–O + OH
–
 → M–OOH + e- 

8. M–OOH + OH
–
 → M + H2O + O2 + e- 

The conventional technique for investigation of OER activity involves the addition of 

carbon black to the electrode composition in order to enhance the electrical conductivity 

within the electrode and maximize the utilization of the catalyst.197-199 However, recent 

studies have shown that the role of carbon is more complex than a simple enhancement of 

conductivity.200-201 For example, it has been shown that cobalt in an OER catalyst is 

reduced by carbon  during the composite preparation process.202 Therefore, OER 
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experiments without carbon black are prefered,135 in order to examine the intrinsic catalytic 

activity of a material, without interference from carbon.203 The two materials studied in 

this work demonstrate the effect of crystal structure and electrical conductivity on OER 

activity. As observed from Figure 9.4, CaSrMn2O6 shows significantly enhanced onset 

potential, ⁓1.55 V, compared to Sr2Mn2O6, ⁓1.65 V. While these onset potentials are not 

as good as those of the state of the art catalysts materials, such as RuO2, ∼1.45 V,119 IrO2, 

∼1.50 V,119 and BSCF, ⁓1.53 V,204 they are comparable to or better than those of several

other reported catalysts, such as CaMnO3/C (1.6 V),119 Co-based microporous polymers, 

1.57 V,205 and Co-phthalocyanine, 1.70 V.205 We have also determined the mass activity 

of each catalyst, using the catalyst loading mass on the electrode surface (0.2 mg cm-2) and 

the measured current density for that electrode J (mA cm-2). The inset in Figure 9.4 

compares the OER mass activity of the two materials at 1.80 V vs RHE. As observed in 

this figure, CaSrMn2O6 shows mass activity of 0.42 A/g, compared to 0.28 A/g for 

Sr2Mn2O6. 

Figure 9.4. (a) Polarization curves for OER with mass activities for Sr2Mn2O6 (blue) and 

CaSrMn2O6 (green). (b) Tafel slopes for Sr2Mn2O6 (blue) and CaSrMn2O6 (green). 



166 

The kinetics of OER is usually examined using the Tafel equation  = a + b log j where  

is the overpotential, and j is the current density.206-207  The plot is obtained from the curved 

portion of the OER cyclic voltammogram, as commonly done in OER analysis.208-209 The 

slope of the Tafel plot,  vs. log j, is used as a measure for the reaction kinetics and is 

influenced by electron and mass transport ability of the catalyst.210-211 Smaller slope is 

associated with faster reaction, and indicates that once the reaction commences, it proceeds 

quickly without the need for significant increase in potential.212 In other words, small 

increase in potential leads to the generation of significant current by OER process due to 

the fast kinetics of the reaction. Small change in potential accompanied by large increase 

in current results in a small slope in the plot of  vs. log j. The Tafel slopes (Figure 9.4) 

for CaSrMn2O6 and Sr2Mn2O6 are 160.3 mV/dec and 167.4 mV/dec, respectively, 

consistent with the greater OER activity of CaSrMn2O6 and the improved charge transport 

in this compound. These Tafel slopes are higher than those observed for highly active 

catalysts such as BSCF (87 mv/dec).203 However, they are lower than the Tafel slopes for 

several other OER catalysts reported in the literature, with values ranging from  220 

mV/dec,213 to  184 mV/ dec,214 and 169 mV/ dec.215 The relationship between the electrical 

conductivity and OER activity is remarkable. CaSrMn2O6, which has superior electrical 

conductivity, also shows higher OER activity compared to Sr2Mn2O6. These findings 

demonstrate an interesting correlation between crystal structure, electrical conductivity and 

electrocatalytic properties. The modification of the crystal structure can be used as a tool 

to enhance the electrical conductivity, which in turn can have an impact on the 

electrocatalytic properties. 
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4. CONCLUSION

The substitution of 50% of the A-site cations in Sr2Mn2O6 results in the formation of 

CaSrMn2O6, which features a different crystal structure and polyhedral connectivity. The 

change in the crystal structure leads to a significantly improved electrical conductivity in 

CaSrMn2O6. Variable-temperature electrical conductivity measurements indicate that the 

higher conductivity of CaSrMn2O6 persists up to 800 °C. The enhanced conductivity in 

turn results in superior catalytic activity of CaSrMn2O6 for oxygen evolution reaction. 

These findings indicate the dependence of the electrical conductivity on crystal structure, 

and the correlation between structure, charge-transport and electrocatalytic activity.   
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CHAPTER 10 

VARIATION IN ELECTRICAL CONDUCTIVITY OF A2Fe2O5 (A=Sr, Ba)9 

INTRODUCTION 

Oxygen deficient perovskites (ODPs) are an important component of solid oxide fuel 

cells.163 They have also been studied for application as gas sensors,161 gas diffusion 

membranes,162 and photocatalysts.216  Given the structure-property relationship in ODPs, 

it is important to study the variation in structural order and its impact on the properties of 

this class of materials. ODPs have the general formula ABO3-x (A2B2O6-y) where A is 

usually an alkaline earth metal or lanthanide, and B is a transition metal. As a result of 

oxygen deficiency, some vacancies are created and some of the BO6 octahedra are 

converted into other coordination geometries such as BO4 tetrahedra or BO5 square 

pyramids.4 In some cases, the vacant sites appear in random locations within the crystal 

lattice, and no structural order is present.12, 76, 87, 89 

However, the ordered arrangement of the vacant sites is also common.4, 72-75, 84 The 

structural order can be manipulated by substitution on the B-site. For example, Sr2Fe2O6-

δ
4, 83 and Sr2FeMnO6-δ 

89 synthesized under the same condition, i.e., 1250 °C in air, have 

9 The work described in this chapter was published in Material Research Express ( 2018, 

vol. 5, p. 9076307) 
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remarkably different structure and properties. Sr2Fe2O6-δ has a tetragonal I4/mmm 

structure, where vacancy-order leads to the formation of alternating FeO6 octahedra and 

FeO5 square pyramids.4, 83 In Sr2FeMnO6-δ, on the other hand, the vacancy order is 

eliminated and a cubic Pm-3m structure is formed.89 These structural changes affect the 

magnetic properties, where the spin-density wave state in Sr2Fe2O5.75 
217 changes into an 

inhomogeneous magnetic ground state.89   

Changes in structural order can also occur due to substitution on the A-site. For example, 

Sr2FeCoO5, CaSrFeCoO5, and Ca2FeCoO5 have significantly different crystal structures.84 

Sr2FeCoO5 lacks any long-range order and has a cubic Pm-3m structure, whereas 

CaSrFeCoO5 exhibits structural order with orthorhombic Ibm2 space group.84 Ca2FeCoO5 

has an even greater degree of ordering and crystalizes in Pbcm space group.73-74, 84  These 

variations in crystal structure lead to differences in electrical conductivity, highlighting the 

strong structure-property correlations in these compounds.84 

In this paper, we have studied the electrical properties of Sr2Fe2O5 and Ba2Fe2O5, that 

feature drastic differences in structural order and electrical charge transport, as a result of 

variation in A-site cation.  

EXPERIMENTAL  

The materials Ba2Fe2O5 and Sr2Fe2O5 were synthesized under identical conditions through 

solid state method. The powders of the precursor compounds BaCO3 (Alfa Aesar, 99.95%), 

SrCO3 (Aldrich, 99.9%), and Fe2O3 (Alfa Aesar,99.998%) were mixed and ground together 

using agate mortar and pestle, pressed into a pellet, and heated in argon at 1200 °C for 24 

h. The samples were then reground and refired at 1200 °C for 24 h under the same 

condition, followed by slow cooling. The heating and cooling rates were 100 °C/h. The 
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phase purity and structure of the polycrystalline samples were determined by powder X-

ray diffraction (XRD) using Cu Kα1 radiation (λ = 1.54056 Å). The GSAS software100 

EXPEGUI interface101 were used for Rietveld refinements. The sample morphologies were 

studied using high resolution field-emission scanning electron microscopy (SEM). X-ray 

photoelectron spectroscopy (XPS) was performed at room temperature using Al Kα 

radiation (1486.7 eV) to study the oxidation states of Fe. The electrical properties were 

investigated by direct-current (dc) and alternating-current (ac) conductivity measurements 

on as-prepared pellets that had been sintered at 1100 °C. Electrochemical impedance 

spectroscopy was performed in the frequency range of 0.1Hz to 1.0 MHz using a computer-

controlled frequency response analyzer at room temperature. The two-probe dc 

measurements were performed in the temperature range of 25 – 900 ºC by applying a 

constant voltage of 10 mV and collecting the output current. Variable-temperature 

electrical conductivity measurements were carried out during both heating and cooling 

cycles. The rate of heating and cooling for conductivity measurements was 3 °C/min. 

Iodometric titrations were performed by dissolving about 50 mg of the sample and excess 

KI (∼2 g) in 100 mL of 1M HCl. A total of 5 mL of the solution was then pipetted out, and 

the iodine that had been generated in the solution was titrated against 0.025 M Na2S2O3. 

Near the end point of the titration, 0.2mL of a starch solution was added to act as an 

indicator. All steps were performed under argon atmosphere. Magnetic susceptibility data 

were obtained using vibrating sample magnetometry by applying magnetic field of 0.1 T 

in the temperature range 2 – 400 K. Isothermal magnetization data were obtained at 5 K 

and 300 K using the magnetic field of 0 – 9 T. 



171 

RESULTS AND DISCUSSION 

Crystal structure 

The crystal structure of the two compounds were confirmed using X-ray diffraction and 

were consistent with reported structures of these materials.218-219,14 Despite being 

synthesized under identical conditions, Sr2Fe2O5 and Ba2Fe2O5 have remarkably different 

crystal structures. Figures 10.1 and 10.2 show Rietveld refinement profiles and crystal 

structures of the two compounds. Sr2Fe2O5 features alternating layers of FeO6 octahedra 

and FeO4 tetrahedra, as shown in Figure 10.1. This is the brownmillerite-type structure, 

which is one of the common variations of oxygen-deficient perovskites. The refined 

structural parameters for Sr2Fe2O5 are listed in Table 10.1.  

Figure 10.1. Rietveld refinement profile for powder XRD data of (a) Sr2Fe2O5, with Ibm2 

space group and (b) Ba2Fe2O5 with monoclinic P21/c space group. The solid red line shows 

the refinement model, black crosses represent experimental data, pink vertical tick marks 

show Bragg peak positions, and the lower blue line represents the difference plot. 
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Table 10.1. Refined structural parameters for Sr2Fe2O5 using powder X-ray powder 

diffraction. Space group is Ibm2, and unit cell parameters are a = 5.68023(6), b = 

15.5862(2), c = 5.53425(6) Å. 

Element x y z Uiso Occupancy Multiplicity 

Sr1 0.0159(5) 0.1094(1) 0.498(3) 0.0130(9) 1 8 

Fe1 0.0 0.0 0.0 0.0128(2) 1 4 

Fe2 0.9356(9) 0.25 0.962(3) 0.021(3) 1 4 

O1 0.268(4) 0.9904(6) 0.260(9) 0.03 1 8 

O2 0.051(2) 0.1396(4) 0.028(4) 0.03 1 8 

O3 0.855(3) 0.25 0.622(4) 0.03 1 4 

Figure 10.2. Crystal structures of (a) Sr2Fe2O5 and (b) Ba2Fe2O5. 
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The crystal structure of Ba2Fe2O5 is entirely different and contains a complex array of 

tetrahedral, square-pyramidal and octahedral coordination geometries around Fe 

atoms.218-219 Our Rietveld refinement results confirm this complex structure. Tables 10.2 

and 10.3 list the refined atomic positions, coordination geometries and bond distances for 

Fe atoms. There are seven crystallographically distinct Fe sites in Ba2Fe2O5. They include 

four tetrahedral, two square-pyramidal and one octahedral Fe position. 

Each FeOn polyhedron (n = 4, 5, 6) shares corners with other types of polyhedra, as well 

as polyhedra of the same type, as shown in Figures 10.2  and 10.3. For example, each FeO6 

octahedron shares corners with one FeO6 octahedron, two FeO4 tetrahedra and three FeO5 

square-pyramids. In the crystal lattice, the FeO6 octahedra and FeO5 square-pyramids share 

all of their apexes with other polyhedra, whereas some of the FeO4 tetrahedra have one 

unshared corner. Table 10.4 lists the connectivity between different polyhedra.  
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Table 10.2. Refined structural parameters for Ba2Fe2O5 using powder X-ray powder 

diffraction. Space group is P21/c and unit cell parameters are a = 6.9772(1), b = 11.7376(2), 

c = 23.4575(4) Å, and  = 98.7540(8)°.   

Element x y z Uiso Occupancy Multiplicity 

Ba1 0.054(2) 0.354(1) 0.1148(5) 0.008(4) 1 4 

Ba2 0.250(2)   0.614(1) 0.3290(6) 0.027(5) 1 4 

Ba3 0.133(2) 0.131(1) 0.3219(5) 0.018(5) 1 4 

Ba4 0.322(2) 0.633(1) 0.0391(7) 0.034(5) 1 4 

Ba5 0.052(2) 0.615(1) 0.6014(7) 0.012(4) 1 4 

Ba6 0.555(2) 0.351(1) 0.2575(6) 0.025(5) 1 4 

Ba7 0.351(2) 0.110(1) 0.0357(8) 0.017(4) 1 4 

Fe1 0.532(4) 0.364(3) 0.100(2) 0.024(8) 1 4 

Fe2 0.385(4) 0.580(3) 0.188(2) 0.024(8) 1 4 

Fe3 0.074(4) 0.395(3) 0.258(2) 0.014(7) 1 4 

Fe4 0.179(5) 0.155(3) 0.472(2) 0.03(1) 1 4 

Fe5 0.427(5) 0.384(3) 0.399(2) 0.014(7) 1 4 

Fe6 0.269(5) 0.102(3) 0.176(2) 0.030(7) 1 4 

Fe7 0.135(6) 0.624(3) 0.466(2) 0.030(7) 1 4 

O1 0 0 0 0.03 1 2 

O2 0.28(2) 0.721(9) 0.152(5) 0.03 1 4 

O3 -0.04(1) 0.272(9) 0.236(5) 0.03 1 4 

O4 0.04(1) 0.046(7) 0.419(4) 0.03 1 4 

O5 -0.00(2) 0.25(1) -0.006(5) 0.03 1 4 

O6 0.28(2) 0.51(1) 0.426(6) 0.03 1 4 

O7 0.72(2) 0.273(9) 0.069(5) 0.03 1 4 

O8 0.05(2) 0.12(1) 0.109(7) 0.03 1 4 

O9 0.40(2) -0.022(9) 0.136(5) 0.03 1 4 

O10 0.40(2) 0.261(8) 0.150(5) 0.03 1 4 

O11 0.13(2) -0.001(9) 0.207(5) 0.03 1 4 

O12 0.48(1) 0.13(1) 0.253(5) 0.03 1 4 

O13 0.17(1) 0.490(9) 0.207(5) 0.03 1 4 

O14 0.55(1) 0.491(9) 0.146 (4) 0.03 1 4 

O15 0.28(2) 0.26(1) 0.418(6) 0.03 1 4 

O16 0.37(2) 0.390(8) 0.034(7) 0.03 1 4 

O17 0.26(1) 0.372(9) 0.311(5) 0.03 1 4 

O18 0.67(2) 0.353(8) 0.465(7) 0.03 1 4 
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Table 10.3.  Different coordination geometry and bond distances of Fe in Ba2Fe2O5. 

Central 

atom 

Coordination 

number  

Coordination 

geometry 

Fe-O distance in Å 

Fe1 4 Tetrahedral    O7 O10  O14

O16 

 1.9 (1)          2.0 (1)      1.8 (1)     

1.8 (2) 

Fe2 4 Tetrahedral    O2 O12  O13

O14 

2.0 (1)           1.7 (1)      2.0 (1)     

1.9 (1) 

Fe3 4 Tetrahedral   O3 O11  O13

O17 

1.7(1)          2.1(1)          1.8(1)       

1.7(1) 

Fe4 4 Tetrahedral   O4 O5  O15

O16 

2.0(9)          1.8(1)          2.0(1)       

1.9(1) 

Fe5 5 Pseudo square 

pyramidal 

 O6 O9 O15 O17          

O18 

2.0(1)       1.9(1)        1.9(1)        2.2(1)     

2.1(1) 

Fe6 5 Square 

pyramidal 

O8 O9 O10 O11          

O12 

2.0(2)       2.0(1)        2.2(1)        1.8(1)       

2.2(1) 

Fe7 6 Distorted 

octahedral 

O1 O5         O6           O7          

O8 O18 

2.0(1)     2.0(1)     2.0(1)      2.2(1)     

2.0(2)      2.0(1) 
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Table 10.4. The connectivity of polyhedra in Ba2Fe2O5. 

Polyhedron Corner shared to polyhedra of: 

Fe1 (tetrahedron) Fe2, Fe4, Fe6, Fe7 

Fe2 (tetrahedron) Fe1, Fe3, Fe6 

Fe3 (tetrahedron) Fe2, Fe5, Fe6 

Fe4 (tetrahedron) Fe1, Fe5, Fe7 

Fe5 (pseudo square pyramid) Fe6, Fe7, Fe7, Fe4, Fe3 

Fe6 (square pyramid) Fe1, Fe2, Fe3, Fe5, Fe7 

Fe7 (distorted octahedron) Fe1, Fe4, Fe5, Fe5, Fe6, Fe7 

Figure 10.3. The coordination geometry of 7 crystallographically distinct Fe atoms and the 

connectivity of polyhedra in Ba2Fe2O5. Red, green, blue and yellow polyhedra represent 

tetrahedral, square pyramidal, pseudo square pyramidal and octahedral geometry, 

respectively (NS = not shared with other polyhedra). 
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The morphologies of sintered pellets of the two materials were studied by scanning electron 

microscope (SEM). Figure 10.4 compares the SEM images of Ba2Fe2O5 and Sr2Fe2O5. As 

seen here, Ba2Fe2O5 is more porous and has smaller crystallite size compared to Sr2Fe2O5. 

The crystallites are more densely packed in Sr2Fe2O5. 

Figure 10.4. Scanning electron microscopy images of Sr2Fe2O5 (top) and Ba2Fe2O5

(bottom) 

Oxidation state of Fe 

The oxidation state of Fe in both compounds was analyzed by X-ray Photoelectron 

Spectroscopy (XPS). The 2P3/2 peak for Fe3+ usually appears at ~710 – 711 eV, and a 

satellite peak is usually present at about 7 – 9 eV higher than the 2P3/2 peak.43-44, 103-104, 220 

Both Ba2Fe2O5 and Sr2Fe2O5 show the 2P3/2 peak at ~710 eV and the signature satellite 

peak at about ~718 eV, indicative of Fe3+ (Figure 10.5). This is expected, as both 

compounds were synthesized in argon atmosphere with Fe2O3 as starting material. Given 

the inert synthesis condition, the retention of the trivalent state for iron was anticipated. 
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We also confirmed these findings by performing iodometric titrations, which showed 

oxygen stoichiometry of 5.06 and 5.02 per formula unit of Sr2Fe2O5 and Ba2Fe2O5, 

respectively, consistent with Fe in trivalent oxidation state. 

Figure 10.5. X-ray photoelectron spectroscopy data for (a) Sr2Fe2O5 and (b) Ba2Fe2O5. 

Magnetic properties 

Previous reports219, 221 have shown that both of these materials have antiferromagnetic 

order with Neel temperature of ~693 K and 720 K for Sr2Fe2O5
221 and Ba2Fe2O5,

219 

respectively. We performed isothermal magnetization measurements using magnetic field 

of up to 9 T on both materials. As shown in Figure 10.6, the magnetization of both materials 

shows linear field-dependent behavior. However, the difference in structural order has an 

impact on the magnitude of magnetization. At the highest field, 9 T, the magnetization of 

Sr2Fe2O5 reaches a maximum of 0.045 μB at 5 K, whereas the magnetization of Ba2Fe2O5 

is more than 30 % higher, and reaches ~ 0.06 μB at 9 T and 5 K. In addition, the isothermal 
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magnetization of Sr2Fe2O5 at 5 K and 300 K overlap, whereas Ba2Fe2O5 shows a clear 

decrease in magnetization values at 300 K compared to 5 K. The effect of structural order 

on magnetism is also demonstrated by the magnetic susceptibility data shown in Figure 

10.6. As seen here, the molar magnetic susceptibility for Ba2Fe2O5 is two times greater than 

that of Sr2Fe2O5. However, the overall magnitude of susceptibility is small for both 

materials as the temperature range of study, 2 – 400 K, falls in the antiferromagnetic region 

for both compounds. As stated above, the Neel temperature of Sr2Fe2O5 has been 

previously determined by neutron diffraction to be 693 K.221 Also, the Neel temperature of 

Ba2Fe2O5 has been found using Mossbauer spectroscopy to be 720 K.219, 222 Another 

difference between the two materials is the ZFC/FC splitting, which occurs below ~240 K 

for Sr2Fe2O5, but at a much higher temperature, ~355 K, for Ba2Fe2O5.  

While both materials have small magnetic moments in the range 2 – 400 K, the effect of 

variation in structural order on magnetic properties is clear.  

 

 

Figure 10.6. (a) Isothermal magnetization data, where black and red show Sr2Fe2O5 

magnetization at 5 K and 300 K, and blue and green represent the corresponding data for 

Ba2Fe2O5. (b) Magnetic susceptibility data.  
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Electrical conductivity 

The difference in structural order leads to a sharp difference in electrical conductivity of 

Ba2Fe2O5 and Sr2Fe2O5. Their electrical conductivities were measured by both direct 

current (DC) and alternating current (AC) methods using impedance spectroscopy. In 

impedance spectroscopy, total resistance is obtained from the intercept of the data with the 

real axis (Z′) of the Nyquist plot at low frequency. In DC method, the output current is 

measured while applying constant voltage, which is then converted into resistance. The 

resistance (R) is used to determine the conductivity (σ) of a material using the following 

equation 

σ = L/RA   ( 29 )       

where L and A represent the thickness and cross-sectional area of the cylindrical pellet, 

respectively. The AC and DC values were similar throughout the whole range of 

conductivity measurement for both materials. The room temperature conductivity values 

are listed in Table 10.5, indicating that the room temperature conductivity of Sr2Fe2O5 is 

two orders of magnitude greater than that of Ba2Fe2O5. Variable temperature conductivity 

measurements from 25 ºC to 900 ºC were also performed to study the temperature-

dependent behavior of electrical conductivity (Figure 10.7). 
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Figure 10.7. Electrical conductivity of (a) Sr2Fe2O5 and (b) Ba2Fe2O5 in inert atmosphere.  

Blue circles and red stars represent the data obtained while heating and cooling, 

respectively. The inset in (b) magnifies the data in the temperature range 600 – 900 °C for 

Ba2Fe2O5. 

It is immediately clear that Sr2Fe2O5 has greater conductivity than Ba2Fe2O5 in the entire 

temperature range. The temperature-dependent behavior is also drastically different for the 

two materials. For Sr2Fe2O5, there is little change in electrical conductivity up to ~200 °C, 

whereas for Ba2Fe2O5, the conductivity remains nearly unchanged up to ~400 °C. For 

Sr2Fe2O5, there is a sharp increase in conductivity in the range 200 – 500 °C, a behavior 

typical of semiconductors. Above 500 °C, the increase in conductivity for Sr2Fe2O5 slows 

down, finally reaching a maximum at 700 °C, above which the electrical conductivity 

plateaus. 

The temperature-dependent behavior of Ba2Fe2O5 in different, where the electrical 

conductivity remains the same up to 400 °C followed by a mild linear increase between 

400 -  900 °C. The semiconducting behavior persists up to 900 °C and there are no peaks 

or plateau regions at high temperature. 
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Another interesting feature is the observation of hysteresis, where the conductivity values 

obtained while cooling are lower that the values obtained during heating. For Sr2Fe2O5, the 

hysteresis is large and readily detectable. Whereas, Ba2Fe2O5 shows a small hysteresis at 

800 °C, but the heating and cooling data overlap at lower temperatures. 

The electrical conductivity in oxides occurs by electron hopping through M–O–M’ (metal-

oxygen-metal) bond system where M and M’ have different oxidation states. Thus, metals 

with variable oxidation states such as Fe2+/Fe3+/Fe4+ are required for this process. The 

increase in temperature leads to enhanced mobility of charge carriers, resulting in increase 

in electrical conductivity in semiconductors. However, as observed in the TGA data 

(Figure 10.8), the increase in temperature also leads to the loss of oxygen, which can have 

a negative impact on electronic conductivity by disrupting some of the M–O–M’ 

conduction pathways. However, it can also have an impact on the ionic conductivity,223 as 

more defects are created due to the loss of oxygen. Therefore, the increase in temperature 

has multiple consequence that can have positive or negative effects on total conductivity. 

Figure 10.8. Thermogravimetric analysis data for (a) Sr2Fe2O5 and (b) Ba2Fe2O5. 
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During the heating-cooling cycle, the temperature-dependent increase in mobility of charge 

carries is usually the dominant effect in semiconductors, leading to the commonly observed 

upturn in conductivity as temperature increases. During cooling, the charge carrier mobility 

decreases, leading to downturn in conductivity. In our experiments, since the conductivity 

measurements are done in inert atmosphere, the defects created during heating remain in 

the crystal lattice, even after the sample is cooled to lower temperatures. While the 

concentration of these defects is small, they can still have a negative impact on 

conductivity, as some of the M–O–M’ conduction pathways are disrupted. Eventually, as 

the temperature is lowered further, the conductivity value becomes too small for any 

parameter other than charge carrier mobility to have a visible impact on conductivity. That 

is why the hysteresis is only observed at high temperature. Note that the high temperature 

conductivity of Sr2Fe2O5 is almost one order of magnitude greater than that of Ba2Fe2O5. 

The hystereses for both materials are present at similar conductivity values. For Sr2Fe2O5 

the hysteresis disappears when the material is cooled to 300 °C, where electrical 

conductivity becomes less than 0.021 Scm-1, and for Ba2Fe2O5 the hysteresis disappears 

when the material is cooled to 700 °C, where electrical conductivity goes below 0.013 Scm-

1. 

The activation energies for electrical conductivity (Table 10.5) can be obtained using 

Arrhenius plot (Figure 10.9) where the Arrhenius equation for thermally activated 

conductivity50-51, 179 is used for fitting:  

σT = σ° e−Ea/kT           ( 30 ) 
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where σ° is a pre-exponential factor and a characteristic of the material, and Ea, k, and T 

are the activation energy for conductivity, Boltzmann constant, and absolute temperature, 

respectively. The activation energy for the total conductivity (Ea) is obtained from slope of 

the line of best fit in the log σT vs 1000/T plot. The activation energies are listed in Table 

10.5. 

Table 10.5.  Room temperature conductivity and activation energies 

compounds 

total conductivity, 

 σ (S cm−1) 
Activation energy, Ea (eV) 

AC DC 

Ba2Fe2O5 1.15 × 10-7 1.15 × 10-7 
  0.462 eV for 273 to 1173K (25 - 300 ºC) 

  0.448  eV for 273 to 1173K (300 - 900 ºC) 

Sr2Fe2O5 3.65 × 10-5 3.65 × 10-5 

  0.375 eV for 298 to 773K (25 – 300 ºC) 

  0.280 eV for 298 to 773K (300 – 600 ºC) 

0.089 eV for 773 to 1173K (600 - 900 ºC) 

. 

Figure 10.9. Arrhenius plots for electrical conductivity of (a) Sr2Fe2O5 and (b) Ba2Fe2O5. 
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Overall, the correlation between structural order and electrical conductivity is 

demonstrated by these two materials, where electrical conductivity varies drastically due 

to the difference in type of ordering 

CONCLUSION 

The variation in the type of ordering in oxygen-deficient perovskites can lead to significant 

differences in magnetic and electrical properties. This has been demonstrated through 

investigation of Sr2Fe2O5 and Ba2Fe2O5, which feature two different types of ordering. 

Sr2Fe2O5 contains alternating FeO4 tetrahedra and FeO6 octahedra, whereas Ba2Fe2O5 has 

a complex structure, where Fe atoms have tetrahedral, square-pyramidal and octahedral 

geometry. The effect of these differences on magnetic properties is evident from the 

considerably higher magnetization of Ba2Fe2O5 compared to Sr2Fe2O5. In addition, the 

electrical conductivity of the two compounds are drastically different, with Sr2Fe2O5 

showing nearly two-orders of magnitude higher conductivity at room temperature. 

Furthermore, the temperature-dependence of electrical conductivity varies significantly 

between the two materials, where the conductivity of Sr2Fe2O5 reaches saturation at high 

temperature. This saturation is absent for Ba2Fe2O5, where electrical conductivity shows a 

gradual increase all the way to 900 °C. These findings show the direct correlations between 

structure and physical properties of oxygen-deficient perovskites. 
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CHAPTER 11 

STUDY OF  Sr2Fe2O6−δ AS ANODE ELECTRODE IN Li-ION BATTERY 

INTRODUCTION 

Lithium ion batteries (LIB) are extensively used in cell phones and laptops. The 

performance of the LIB is basically rooted on the efficiency of its electrodes and 

electrolyte. Since LIB has been used in devices like cell phones and laptops, which have 

become a part of our daily life activities, researchers have been committed to improving 

the durability and performance of the electrodes and electrolyte of LIB.224-225 Anode is one 

of the electrodes that researchers have been showing deep interest in improving the 

efficiency and durability.226-229 

There are certain criteria that need to be fulfilled by a material to be a good and efficient 

anode in LIB such as a low atomic weight, low cost, and low standard potential as well as 

high ionic and electrical conductivities.230 Graphite is one of the primarily commercially 

used anode material in LIB.231 Lithium may intercalate between the graphene layers of 

graphite until a composition of LiC6 is reached resulting in a theoretical specific capacity 

of 372 mAh g−1 224, 228, 230, 232 but practically the capacity is ⁓300 – 320 mAh g−1.230   

Graphite has a low potential of around 0.1 V vs. Li/Li+ for most lithium concentrations.230,

233  However, it has some defects such as it reacts with organic electrolyte to form an SEI 

on its surface in the initial few charge and discharge cycles.230, 233-234 Many researchers 
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have been committed to improving the quality and efficiency of the anode and to develop 

new material to overcome the shortcomings of the graphite anode.230, 235 Tin based 

materials (Sn-oxides, mixed oxides and alloys) and pure and mixed transition metal oxides 

227-228, 236-238were studied as alternative materials for anode to substitute the graphite. The 

tin based materials have been reported to be high capacity anode materials where the 

capacity arises from the reversible Li-Sn alloy formation/decomposition during the 

charge/discharge cycles.228, 230, 234, 236-237 The transition metal oxides are non-intercalating 

and non-alloying oxides.230 The reversible capacity in transition metal oxides is believed 

to develop from reversible oxidation of metal and lithia decomposition/formation.230, 239-241  

Later on, materials with different structures and phases such as spinel phase have been 

studied for the alternative materials for the anode.230, 242-243 The reversible capacity in spinel 

type materials such as ZnCo2O4 is believed to arise from Li intercalation into spinel lattice, 

crystal structure destruction followed by metal particle formation and alloy formation with 

Zn.230, 244-245 Recently, Ca2Fe2O5 and Ca2Co2O5 have been studied for their possibility of a 

potential candidate for a better and efficient anode material in LIB by Sharma and 

Chowdari et.al.226 Ca2Fe2O5 and Ca2Co2O5 have the brownmillerite type structures which 

belong to oxygen deficient perovskite (ODP).226 Here, the mechanism or the operation of 

the electrodes is believed to involve the destruction of the crystal lattice to form the 

nanoparticles of Fe and Co embedded in an amorphous matrix of Li2O and CaO.226 The 

nanoparticles react reversibly with Li2O contributing to the capacity and Ca is presumed to 

act as a beneficial spectator ion helping in the stabilization of the amorphous nanometal 

oxide matrix.226 We have studied similar type of oxygen deficient perovskite material, 

Sr2Fe2O6-δ but with different structure and phase, for its potential application as anode in 
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LIB. In this paper, we report the synthesis and electrochemical property of Sr2Fe2O6-δ that 

is applicable for LIB anode. 

EXPERIMENTAL 

Conventional solid-state synthesis method was applied to synthesize the material. 

Stoichiometric proportions of the precursors, SrCO3 (Sigma Aldrich, 99.9%), and Fe2O3 

(Alfa Aesar, 99.998%) were used for the synthesis. The mixtures of precursor powders 

were ground using agate mortar and pestle, pressed into pellets and calcined at 1000OC for 

24 hours. The pellets were then ground and refired in air at 1200 °C for 24 hours. In all 

cases, the furnace heating and cooling rates were set at 100 °C/h. 

The phase purity and structure of polycrystalline samples were tested by Rietveld 

refinements of powder X-ray diffraction data taken at room temperature using a PAN 

analytical Empyrean diffractometer with CuKα1 radiation (λ = 1.54056 Å). The Rietveld 

refinements were carried out using GSAS software100 and EXPEGUI interface.125 The 

micro-structure of the compound was investigated using a high resolution field-emission 

scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) study and 

iodometric titration were performed to investigate the oxidation states of Fe. The Sr2Fe2O6-

δ powder of accurately weighed (5 mg) was mixed with 3 mg of teflonized acetylene black 

binder on an agate mortar with pestle to make an anode electrode. The Sr2Fe2O6-δ electrode 

was used as a working electrode and Li foil as counter electrode separated by piece of glass 

fiber filter (ADVANTEC, GB-100R, Japan) using 2032 coin-type cell. The electrolyte used 

was 1M LiPF6-EC (ethylene carbonate): DMC (dimethyl carbonate) (1:2 by volume). The 
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galvanostatic charge-discharge measurements were carried out using Arbin instrument. 

Charge-discharge measurement were carried out in the voltage range between 3.0 – 0.005 

V with a current density of 25 mA g−1. The rate capability test was carried out at different 

currents of 25, 50, 100, 200, and 500 mA g−1, respectively. The cyclic voltammetry 

measurement was carried out in the voltage range of 3.0 – 0.005 V with a scan speed of 1 

mV s−1 using SP200 Biologic Instrument.  

RESULT AND DISCUSSION 

The crystal structure of the compound was determined by the analysis of Powder X-ray 

diffraction (XRD). Sr2Fe2O6-δ was found to be tetragonal with space group I4/mmm.4 

Figure 11.1 shows the crystallographic structure of Sr2Fe2O6-δ. Figure 11.2 shows the 

Rietveld refinement profile and crystal structure of the material. The inset picture shows 

the bifurcation of the peak at higher 2θ angle which helps to distinguish the tetragonal 

structure (model) from cubic structure. The refined structural parameters are listed in Table 

11.1. Sr2Fe2O6-δ is an oxygen deficient perovskite (ODP) with a general formula, ABO3-δ 

(or A2B2O6- δ) where Sr occupies A site and Fe occupies B site. Oxygen deficiency in ODPs 

can form tetrahedral or square pyramidal coordination geometry around B site cations.4 

The crystal structure of Sr2Fe2O6-δ contains square pyramidal and octahedral geometries Sr 

is 11 or 12 coordinated.4  The micro-stricture of Sr2Fe2O6-δ is investigated by high 

resolution scanning electron microscopy (SEM). The SEM images are shown in figure 

11.3. It seems that the grain shapes are irregular, and the grains show well contact though 

some pores appear in the sample.  
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Figure 11.1. Crystal structure of Sr2Fe2O6−δ. (a) unit cell (b) side view and (c) Top view of 

the crystallographic structure which show the alternating FeO6 octahedra (cyan) and FeO5 

square pyramids (purple). Sr atoms are removed for clarity. 

Table 11.1. Refined structural parameters for Sr2Fe2O6−δ from powder X-ray diffraction. 

Space group I4/mmm, a = 10.9301(2) Å, b = 10.9301(2) Å, c = 7.6958(2) Å, Rp = 0.0211, 

wRp = 0.0299. 

Elements x y z Occupancy Uiso Multiplicity 

Sr1 0.2587(6) 0 0 1 0.031(2)    8 

Sr2 0.2493(6)    0 0.5  1  0.035(2)    8 

Fe1 0.0 0.0 0.25 1  0.042(7)     4 

Fe2 0.25      0.25 0.25 1  0.019(3)     8 

Fe3 0.5  0 0.25  1  0.060(7)             4 

O1 0  0 0.5  1 0.02(1)     2 

O2 0.124(2)    0.124(2)   0.216(2)  1   0.02(1) 16 

O3 0.251(2)    0.251(2) 0.5  1 0.02(1)     8 

O4 0.125 (2)   0.625 

(2)   

0.25 1 0.04(1)    16 

O5 0.5 0 0 1 0.04(3)     4 
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Figure 11.2. Rietveld refinement profile for powder X-ray diffraction data of Sr2Fe2O6−δ in 

I4/mmm space group. Cross symbols represent experimental data, red solid is the model, 

vertical tick marks show Bragg peak positions, and the blue line represents the difference 

plot. Inset shows the peak bifurcation at higher 2θ angle. 

Figure 11.3. SEM images of Sr2Fe2O6−δ. 
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Past studies of Fe based ODPs showed the different oxidation states of +3 and +4 for Fe.4,

246-247 So, we performed the X-ray photoelectron spectroscopy (XPS) study and iodometric 

titration to investigate the oxidation states of Fe in Sr2Fe2O6-δ. If the compound contains 

only +3-oxidation state for Fe, the oxygen stoichiometry in Sr2Fe2O6−δ formula should be 

5, or  δ = 1. Oxidation state of Fe in a compound is characterized by its 2P3/2 peak position. 

For Fe3+, 2P3/2 peak  is followed by a satellite peak at around∼8 eV . As shown in Figure 

11.4 for our material, the 2P3/2 peak observed at ∼710 eV followed by a satellite peak at 

∼8 eV higher than the Fe 2P3/2 peak confirmed the presence of  Fe3+.43-44 The XPS data for

early transition metals with high-spin unpaired electrons show multiplet structure for the 

2p spectra due to spin−orbital and electrostatic interactions.248-249 It has been reported that 

the high-spin Fe3+ species can be fitted to multiple peaks.43, 248, 250-252 We have followed 

the same procedure and the Fe 2p spectra obtained could be successfully fitted into four 

multiplets, indicating the presence of Fe in 3+ oxidation state in the compound. For +4 

oxidation state, a peak (fitted) appears at binding energy higher than that of +3 oxidation 

state44. We can see a small bump raised at around 713 eV as indicated by blue arrow in the 

figure. The fitting also shows a peak associated with the bump at around 713 eV. It 

indicates the presence of +4 oxidation state. The blue arrows show the peaks in the raw 

data. It has also been confirmed by iodometric titration, i.e., δ = 0.25 (Sr2Fe2O6-δ). Thus, 

the formula becomes Sr2Fe2O5.75. To become the oxygen stoichiometry 5.75 (or 

Sr2Fe2O5.75), Fe must have mixed oxidation states (+3 and + 4). Thus, iodometric titration 

also indicates that a considerable amount of iron has been oxidized during the synthesis. 

Note that the starting material was Fe2O3. 
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Figure 11.4. X-ray photoelectron spectroscopy data for Sr2Fe2O6−δ. 

Figure 11.5 depicts the first, second, tenth, twentieth, thirtieth, fortieth and fiftieth cycles 

of galvanostatic charge/discharge curves of Sr2Fe2O6−δ tested at a current density of 25 

mAg−1 with voltage range from 3.0 to 0.005 V. It has an initial discharge capacity of 2400 

mAh g−1 during the first initial cycle. Higher capacity could result from higher amount of 

lithium incorporation at defects within crystal surfaces.229 The first cycle discharging has 

a platue similar as seen in other material at the region between 0.9– 0.75 V.226, 253 The 

electrode exhibits a discharge capacity of  840, 570,500, 490, 460 and 410 mAh g−1 at the 

2nd, 10th, 20th, 30th, 40th and 50th, cycles, respectively. The first discharge and charge 

capacities of the as-prepared anode is 2400 mAh g−1 and 680 mAh g−1, respectively; 

indicating an initial coulombic efficiency of 28.3%. The irreversible capacity is due to the 

solid/electrolyte interphase (SEI) formation.254-255 Therefore, the first discharge 

irreversible capacity loss of ~1720 mAh g−1 could mainly originate from the reduction of 
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electrode and the formation of a SEI on the surface of an electrode.255 The voltage profiles 

for the first discharge shows qualitatively similar to reported data of Ca2Fe2O5 and 

Ca2Co2O5
226 and quantitatively to that of Fe2O3

253 with a plateau at around 0.9 V  for 

Sr2Fe2O6−δ until a capacity of around 1000 mAh g−1 is reached and thereafter the voltage 

decreases gradually to 0.005 V, suggesting an electrochemical process similar to Ca2Fe2O5 

and Ca2Co2O5
226. The comparative plateau voltage position observed for the compound 

was found to be sensitive to the crystal structure and nature of metal ion involved in 

electrochemical reaction.226, 253 Similar observations have also been reported for other 

compounds with 3-d metal oxides.226, 253 After the first cycle, the charge and discharge 

profile shows the analogous curves indicating a reversible insertion/extraction of Li. At the 

50th cycle, the average of both the charge and discharge potential is around ∼1.5 V, 

suggesting a low average potential, which means Sr2Fe2O6−δ anode is a good electrode with 

almost no charge/discharge hysteresis.229 The observed 2nd discharge capacity is around 

840 mAh g−1 and the 50th cycle is 410 mAh g−1. The corresponding first, second, third and 

50th charge capacities are 660, 630, 510 and 350 mAh g−1, respectively. The observed 

values of the first discharge and charge capacity  are higher than the values reported for 

similar compounds, Ca2Co2O5 and Ca2Fe2O5.
226  
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Figure 11.5. Galvanostatic charge-discharge profiles of Sr2Fe2O6−δ anode electrode at the 

voltage range of 3.0 -0.005 V with a current density of 25 mA/g for 1st,2nd, 10th, 20th, 30th, 

40th and 50th cycles. 

 

Figure 11.6 shows the cycle performance of as prepared Sr2Fe2O6−δ at the current density 

of 25 mA g−1. The electrode keeps a steady capacity of about 400 mAh g−1 until 50 cycles, 

which is slightly higher than that of theoretical capacity of graphite anode 372 mAh·g−1.230 

The capacity has been found to be 300 – 320 mAh g−1 in practice for graphite anode.230 

Due to the various irreversible processes such as the formation of solid/electrolyte 

interphase (SEI) film and electrode decomposition, the capacity of Sr2Fe2O6−δ has a 

reasonable loss in the first cycle.254-256 As shown in the figure, its capacity was maintained 

up to 50 cycles with an average coulombic efficiency of over 90% but still we need to 

increase the coulombic efficiency for practical application.  
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Figure 11.6. Capacities versus cycle numbers of Sr2Fe2O6−δ anode electrode at the voltage 

range of 3.0 -0.005 V with a current density of 25 mA/g. 

Figure 11.7 shows the rate capability test of the Sr2Fe2O6−δ electrode in the voltage range 

of 3.0-0.005 V under different current densities from 25, 50, 100, 200, and 500 mA g−1. 

With the increase in current densities from 25, 50, 100, 200, and 500 mA g−1
, the Sr2Fe2O6−δ 

electrode delivers discharge capacities of 1885, 416, 325,v 261 and 187 mAh g−1, 

respectively. On reducing the current rate to the lower value of 50, and 25 mA g−1 after 

rate performance test, Sr2Fe2O6−δ electrode still retains the discharge capacities of 340, and 

390 mAh g−1, indicating good reversibility and high rate capability. 
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Figure 11.7. C-rate test of Sr2Fe2O6−δ anode electrode at the voltage range of 3.0 – 0.005 

V and different current densities of 25, 50, 100, 200, and 500 mA g
−1, respectively.

Figure 11.8 shows the cyclic voltammetry of Sr2Fe2O6−δ anode electrode scanned at the 

voltage range of 0.005- 3.0 V (vs Li/Li+) with a scan speed of 1 mV s−1 for study of the 

electrochemical mechanism. For the CV testing, the anodic scan (oxidation process) is first 

performed and then followed by cathodic scan (reduction process). Two peaks are observed 

in the reduction process of the first cycle,  but remaining cycles exhibited only one peak. 

The voltage profile observed was similar to previous report of Fe2O3
253 with a long flat 

plateau at around 0.9 V during  discharging. A peak observed between 0.8 V to 1.2 V in 

CV is indication for nonreversible formation of solid/electrolyte interphase (SEI) on the 

surface of the electrode257-258 which led to irreversible capacity loss.254-255 A cathodic peaks 

in the first cycle is observed in CV at around 0.95 V. This peak is masked by the lines of 

other CVs. we can see small cathodic peak at around 1.0 V for cycles 2,3,4 and 5. The 
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2nd,3rd,4th and 5th CV curves of have higher extent of overlapping. Such overlapping is 

suggested to be the result of good reversibility and structural stability.254 The cathodic and 

anodic peaks can shift left or right for different cycles.254, 258-261 The peak at around 0.3 V 

for the first cycle can be a peak shifted left from those of the other cycles. Thus, the peak 

at around 0.95 V for the first cycle may be attributed to the crystal structure destruction.226, 

258, 262 The other reduction peak at around 0.3V for the first cycle and at around 1 V for 

other remaining cycles could be attributed to electrochemical reaction.261, 263  In the 

oxidation process, the CV curves reveal the shifting of the anodic peak from right to left as 

the cycle number increases. The chemical process for Fe4+ is unknown.  The chemical 

process of Fe3+ can be described as in the previous report.226 

Figure 11.8. Cyclic voltammetry of Sr2Fe2O6−δ anode electrode scanned at the voltage 

range of 3.0 – 0.005 V with a scan speed of 1 mV s
−1

.
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The first discharge reaction for the compounds involves the irreversible crystal structure 

destruction leading to the formation of metal nanoparticles embedded in an amorphous 

matrix of SrO and Li2O.226  

 

Sr2Fe2
3+O6−δ + 6Li+ + 6e− → 2SrO + 2Fe0 + 3Li2O    

 

On subsequent charging, these metal particles are converted to their oxides together with 

the decomposition of Li2O which can be written as:226 

 

Fe0 + Li2O ↔ Fe2+O + 2Li+ + 2e−     

 

This reversible displacement reaction, viz. the formation and decomposition of Li2O 

accompanied by the reduction and oxidation of metal nanoparticles gives rise to reversible 

capacity in the subsequent charge–discharge cycles.226 This is a three-phase reaction 

between metal oxide, the reduced metal and Li2O.226 From the second cycle to the fifth 

cycle, the CV curves have higher extent overlapping suggesting the good reversibility and 

structural stability of Sr2Fe2O6−δ.
254The way how Fe4+ undergoes in reaction has not been 

discussed before and is yet to be researched. 

CONCLUSION 

Oxygen deficient perovskite, Sr2Fe2O6-δ has been synthesized by solid state method to 

study its anodic property for Li ion battery. Sr2Fe2O6-δ electrode showed an initial discharge 

capacity of 2400 mAh g–1 with large irreversible capacity and low coulombic efficiency of 

28.3%. Further charge–discharge measurement of Sr2Fe2O6−δ electrode shows the increase 
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in coulombic efficiency of over 90 %. Sr2Fe2O6-δ electrode shows the stable capacity of 

over 393 mAh g−1 up to 50 cycles with high reversible capacity at current density of 25 mA 

g−1 and superior reversible capacity throughout the whole studied number of cycles. The 

rate capability test of Sr2Fe2O6-δ electrode shows good performance in terms of capacity 

and can be comparable to the present graphitic carbon anode electrode in Li-ion battery. 
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CHAPTER 12 

REMARKABLE OXYGEN EVOLUTION ACTIVITY OF Ca2-xSrxFe2O6-δ
10 

The rise in global energy consumption has intensified the demand for clean and sustainable 

energy conversion and storage.264 The oxygen evolution reaction (OER) during water 

oxidation is an important electrochemical process for renewable-energy technologies, such 

as water splitting, rechargeable metal-air batteries, and regenerative fuel cells.265-270 

However, the intrinsically sluggish kinetics of OER hinders the performance of these 

advanced energy devices, and results in a considerable overpotential for OER.271-272 The 

overpotential can be lowered by electrocatalysts, such as IrO2 and RuO2, which show high 

activity, but their scarcity, high cost and limitations in long-term stability in alkaline 

solutions hamper their practical use.204, 273-275 Designing inexpensive, earth-abundant and 

efficient electrocatalysts with low overpotential, which are stable upon prolonged exposure 

to oxidizing conditions in alkaline solutions, has been a major challenge.81, 204, 275-276 

Oxygen-deficient perovskites (ABO3-δ) with alkaline or rare-earth cations on the A-site 

and 3d-metal cations on the B-site have demonstrated great potential for electrocatalytic 

10 The work described in this chapter was published in Angewandte Chemie International 

Edition ( 2019, vol. 58, p. 2060-2063) 
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activity in alkaline solutions.119, 135, 199, 201, 209, 266, 275, 277 Much research has been dedicated 

to understanding the parameters that can improve the OER activity of oxygen-deficient 

perovskites.119, 135, 199, 201, 209, 266, 275, 277 One study reported that a near-unity occupancy of 

the eg orbital of the first-row transition metal in perovskite oxides can enhance the intrinsic 

activity for OER in alkaline solution.266 Based on this descriptor, the oxygen-deficient 

perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) was developed as a highly active catalyst.198, 266 

Since then, various other oxygen-deficient perovskites have been studied,119, 135, 199, 201, 209, 

266, 275, 277 but BSCF remains the most highly regarded catalyst for OER. However, cobalt 

criticality has emerged as a major concern in recent years, and development of cobalt-free 

catalysts for electrochemical for electrochemical processes such as OER is a priority. 

Recently, the qualitative pH-dependence of OER catalysis was reported for some Fe-based 

perovskites, without any quantitative investigation of the OER activity, overpotential, 

Tafel kinetics, or electrochemically active surface areas.278 In line with efforts to develop 

inexpensive and earth-abundant electrocatalysts, we report the electrocatalytic activity of 

a Fe-based oxygen-deficient perovskite, Sr2Fe2O6-δ,
4 which shows greater intrinsic OER 

activity than BSCF. We also demonstrate the correlations between the electrocatalytic 

activity, composition and defect-order as well as electrical conductivity in the series 

Ca2Fe2O6-δ, CaSrFe2O6-δ and Sr2Fe2O6-δ.
4, 279 

All compounds were synthesized under identical conditions, and characterized by Rietveld 

refinements100-101 using powder X-ray diffraction. The material synthesis methods, 

Rietveld refinement profiles and the refined structural parameters are provided in the 

supplementary information. In this series of oxygen-deficient perovskites, the defects 

created due to oxygen-deficiency are distributed in an ordered fashion, rather than being 
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spread randomly in the structure. In Ca2Fe2O6-δ, the defects only appear in alternating 

layers, where the coordination number of Fe decreases from 6 to 4. This leads to the 

formation of alternating tetrahedral and octahedral layers,279 as shown in Figure 12.1a. The 

tetrahedral layers actually consist of one-dimensional chains, which can have either right-

handed or left-handed orientation. In Ca2Fe2O6-δ, the tetrahedral chains in each layer are 

oriented opposite to those in the neighboring layer. CaSrFe2O6-δ has the same type of 

defect-order, resulting in alternating tetrahedral and octahedral geometry, but the 

tetrahedral chains in this compound have the same orientation throughout the crystal lattice 

(Figure 12.1b).4 Finally, Sr2Fe2O6-δ exhibits a different type of defect order, leading to the 

formation of alternating square pyramidal and octahedral coordination, as shown in Figure 

12.1c.4  

Figure 12.1. Crystal structures of (a) Ca2Fe2O6-δ, (b) CaSrFe2O6-δ, and (c) Sr2Fe2O6-δ. In (a) 

and (b), different colors represent different orientations of tetrahedral chains. 
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The OER activities were studied for all three compounds, Ca2Fe2O6-δ, CaSrFe2O6-δ and 

Sr2Fe2O6-δ, as well as the state of the art materials Ba0.5Sr0.5Co0.8Fe0.2O3−δ
26, 204 and RuO2.

273 

The details of electrode preparation and experimental setup are described in the 

supplementary information. For OER measurements, carbon black is often added to the 

electrode composition in order to enhance the conductivity within the electrode and 

maximize the utilization of the catalyst.197-199 However, recent studies have shown that 

carbon plays a more complex role than just a simple conductive support.200-201 For example, 

X-ray absorption near-edge spectroscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ/carbon 

composite electrode demonstrated the reduction of Co during the composite preparation 

process.202 As a result, some researchers have conducted OER experiments without carbon 

black.135 For the series of materials studied in this work, we performed the OER 

experiments both with and without carbon black. Both experiments led to similar results, 

particularly for compounds with higher OER activity, indicating that in these materials 

carbon black is not essential to the catalytic performance. The experiments without carbon 

black are preferred, as they demonstrate the intrinsic catalytic activity of each material. The 

conventional electrode preparation method usually involves drop casting the catalyst on 

the surface of a glassy carbon (GC) electrode. The GC electrode helps to improve the 

electrical charge transport. In the present study, the conventional method was initially 

employed. One of the parameters in the OER activity of a catalyst is the onset potential in 

polarization curve.275, 280-281 As shown in Figure 12.2, the onset potential decreases 

systematically in progression from Ca2Fe2O6-δ to CaSrFe2O6-δ and Sr2Fe2O6-δ. The latter 

shows onset potential of 1.5 V, which is similar to those reported for highly active OER 
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catalysts, such as Ba0.5Sr0.5Fe0.2Co0.8O3-δ,
81, 275 IrO2,

119, 282 SrNb0.1Co0.7Fe0.2O3-δ,
204 

Ca2Mn2O5
119, and Co3O4/carbon nanotubes.281 

 

 

 

 

Figure 12.2. (a) Polarization curves showing the OER activities, obtained using the 

conventional glassy carbon electrode setup.         (b) Comparison of the activity of Sr2Fe2O6-

δ with state of the art materials RuO2 and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). 

 

The overpotential, beyond the ideal thermodynamic potential of 1.23 V, at 10 mA/cm2 is 

an important parameter in describing the OER activity. The current density of 10 mA/cm2 

is related to solar fuel synthesis204, 283 and the potential at this current density has been 

adopted as a metric for comparison of different OER catalysts. Among the three 

compounds, Ca2Fe2O6-δ shows low current density that does not reach 10 mA/cm2 in the 

potentials up to 1.8 V vs RHE. CaSrFe2O6-δ shows overpotential of 0.60 V, making it a 

reasonable catalyst. However, the most remarkable OER activity belongs to Sr2Fe2O6-δ, 

that shows overpotential of 0.48 V (Figure 12.2a), which is superior to the state of the art 
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compound, Ba0.5Sr0.5Co0.8Fe0.2O3−δ.
26, 204 For direct comparison, we examined two of the 

best OER catalysts, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)26, 204 and RuO2
273 under the same 

conditions. As shown in Figure 12.2b, the OER activity of Sr2Fe2O6-δ is superior to both of 

these catalysts. 

The OER kinetics is usually evaluated using Tafel equation  = a + b log j206-207 where  

is the overpotential, and j is the current density. Tafel plot,  vs. log j, is influenced by 

electron and mass transport.210-211 Thus, it can provide information about electronic and 

geometric enhancement in the activity of electrocatalysts.211 In general, a decrease in the 

slope of the Tafel plot indicates better kinetics of OER, and smaller slopes represent faster 

reactions. The Tafel slopes for Ca2Fe2O6-δ, CaSrFe2O6-δ and Sr2Fe2O6-δ are 185mV/dec, 101 

mV/dec and  60 mV/dec, respectively, as shown in Figure 12.3. Sr2Fe2O6-δ shows the lowest 

Tafel slope among the three materials, which is consistent with the highest OER activity, 

and indicates facile charge transport in this compound.210-211, 284 

The electrochemically active surface area (ECSA) of each catalyst was estimated from 

double layer capacitance, Cdl, in non-faradic region,285 where electrode reactions are 

considered to be negligible and the current is primarily from electrical double layer charge 

and discharge.285-286 The relationship between ECSA and Cdl is described by ECSA=Cdl/Cs, 

where Cs is specific capacitance.207, 285, 287 Some researchers have treated Cs as a constant, 

40 µF/cm2, when dealing with metal electrodes.207, 285 Regardless of the value of Cs, the 

double layer capacitance, Cdl, is clearly proportional to electrochemically active surface 

area of the electrode (ECSA).206, 288-290 Therefore Cdl is commonly taken as representative 

of the magnitude of ECSA.206, 289-290 The value of Cdl can be obtained using the relationship 

Cdl = Δj/v,206, 289-290 where Δj is the absolute value of the difference between janodic and jcatodic 
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from cyclic voltammetry, and v is the scan rate.206, 289-290 The plot of Δj versus v is 

frequently utilized, where the magnitude of Cdl is equivalent to half of the slope of this 

plot.206, 289-290 Some researchers have plotted javerage, the average of the absolute values of 

janodic and jcatodic, versus v.26, 288 In that case, the slope is directly equivalent to Cdl and does 

not need to be divided by 2.288 In Figure 12.4, the values of Δj at the middle potential,206 

0.977 V, are plotted against their corresponding scan rates from cyclic voltammetry 

experiments (Figure S3), and Cdl is obtained as half of the slope of this plot.206, 289-290 The 

Cdl for Sr2Fe2O6-δ is significantly greater than that for CaSrFe2O6-δ and Ca2Fe2O6-δ. This 

indicates larger ECSA for Sr2Fe2O6-δ, consistent with its high OER catalytic activity.  

 

Figure 12.3. Tafel slopes indicating the OER kinetics. 

 

In recent years, in addition to the conventional glassy carbon experiments, some 

researchers have used pure disks of catalytic oxides, without glassy carbon disk, to examine 

hydrogen or oxygen evolution activities.291-292 The advantage of this method is that it 
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provides information about the intrinsic properties of the catalyst without any interference 

from the glassy carbon disk, which usually helps with the electrical conductivity. In this 

method, the material itself is responsible for both electrical conductivity and OER activity, 

and the contribution from glassy carbon disk is eliminated.291-292 Considering that this 

method represents the intrinsic catalytic activity of a material, we performed additional 

experiments using this technique to further examine the three compounds Ca2Fe2O6-δ, 

CaSrFe2O6-δ, and Sr2Fe2O6-δ, as well as the state-of-the-art compound, 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ, which to our knowledge has not been examined using this method. 

Figure 12.4. Plot of Δj = janodic –  jcatodic as a function of scan rate. The Cdl for each material 

is equivalent to half of the slope. 
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Figure 12.5. (a) Polarization curves showing the OER activities of pure disks of 

catalysts. (b) Stability test for Sr2Fe2O6-δ by performing 500 cycles. 

The polarization curves obtained from pure disks indicated almost no OER activity for 

Ca2Fe2O6-δ, which is expected, given the low electrical conductivity of this compound. Our 

4-probe measurements show the room temperature conductivity of 1.13×10-9 Scm-1 for 

Ca2Fe2O6-δ, 7.78×10-3 Scm-1 for CaSrFe2O6-δ, 7.30 Scm-1 for Sr2Fe2O6-δ, and 8.17×10-3 Scm-

1 for Ba0.5Sr0.5Co0.8Fe0.2O3−δ. The enhanced electrical conductivity in Sr2Fe2O6-δ can be 

attributed to two different parameters. The first is the larger average bond angle in 

Sr2Fe2O6-δ (~170°) compared to that of Ca2Fe2O6-δ and CaSrFe2O6-δ (~139°), which 

enhances the electron transfer through Mn+-O-Mm+ pathways, where M is a metal (such as 

Fe) with variable oxidation states n+ and m+. Previous reports on perovskite-based 

compounds have demonstrated the improvement of the electrical conductivity as a function 

of bond angle.[27] The second parameter is the presence of a greater number of Fe3+-O-Fe4+ 

conduction pathways in Sr2Fe2O6-δ. As shown before,[9] the oxygen stoichiometry in this 

material is 5.75 (i.e., δ = 0.25), indicating that Fe has both tri- and tetravalent oxidation 

states. However, Ca2Fe2O6-δ and CaSrFe2O6-δ have oxygen stoichiometry of 5.0 (i.e., δ = 
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1.0),[9,10] which indicates that Fe is primarily in +3 oxidation state. We have confirmed the 

oxygen stoichiometry using iodometric titrations. Note that metals with multiple stable 

oxidation states are needed for enhanced electronic conductivity. While perovskite-based 

materials are known to conduct both electrons and ions,[28] the dominance of electronic 

conductivity has been demonstrated in this class of materials.[28] Therefore, the 

enhancement of the electrical conductivity in Sr2Fe2O6-δ is primarily due to the superior 

electronic charge transport. 

The polarization curves for pure disks of CaSrFe2O6-δ and Sr2Fe2O6-δ (Figure 12.5) show 

overpotential values of 0.52 V and 0.42 V, respectively. Considering that the disk is made 

of pure catalyst, the entire disk surface participates in OER activity, leading to the enhanced 

overpotential compared to the glassy carbon electrode method. The remarkable 

overpotential of Sr2Fe2O6-δ disk is due to a combination of good OER catalytic activity and 

sufficient intrinsic electrical conductivity. As shown in Figure 12.5, the Sr2Fe2O6-δ disk 

shows better OER activity than the disk of the state-of-the-art catalyst, 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ, consistent with the lower electrical conductivity of 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ compared to Sr2Fe2O6-δ. Also, note the well-defined non-faradaic 

region and sharp onset for Sr2Fe2O6-δ disk. 

Given the outstanding OER activity of Sr2Fe2O6-δ disk, we also examined its stability by 

repeating the polarization curves over 500 cycles. As shown in Figure 12.5b, this material 

shows remarkable stability and there is little change to its OER activity after 500 cycles. 

The findings described in this communication indicate that the OER activity is enhanced 

as electrical conductivity increases, leading to the outstanding catalytic activity of an iron-

based catalyst, Sr2Fe2O6-δ. It has been found for other series of compounds as well.293 
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SUPPORTING INFORMATION 

Material synthesis and characterization 

All materials used for each type of analysis were synthesized under identical conditions. 

The catalysts used for standard oxygen evolution reaction (OER) on glassy carbon 

electrode were prepared by sol-gel method. Stoichiometric amounts of metal nitrates were 

dissolved in water and equimolar concentration of citric acid was also added to the mixture. 

The solution was heated to 80 °C to form a gel. The sample was then heated for 6 hours at 

600 °C, followed by 12 hours at 1200 °C. Similar method was used for the preparation of 

BSCF. RuO2 was purchased from Alfa Aesar. The phase purity and structure of 

polycrystalline samples were examined by powder X-ray diffraction at room temperature 

using Cu Kα1 radiation (λ = 1.54056 Å). The Rietveld refinements were carried out using 

GSAS software and EXPGUI interface.[11] The refinement profiles are shown in Figure S1.  

Electrode preparation 

35 mg of the sample was added to 40 µL of Nafion® D-521 solution and stirred using 

magnetic stirrer. 7 mL of THF was then added and stirred for a few more minutes and then 

sonicated for 10 minutes. This mixture was made both with and without carbon powder to 

test the effect of carbon on OER activity. For experiments with carbon, 7 mg of carbon 

powder was added prior to adding THF. The catalyst ink was drop casted on the surface of 

a glassy electrode with a diameter of 5 mm and was left to dry in air overnight. 

The OER experiments were also performed on disks of pure samples, without the use of 

glassy carbon electrode or other additives. A pellet of the material with 5.56 mm diameter 

and 2.02 mm thickness was prepared by sintering at 1200 °C. One side of the pellet was 

painted with gold and dried at 800 °C. The pellet was then fixed inside a plastic tube with 
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the gold paint facing the inside of the tube, as shown in Figure S2. The exposed surface of 

the pellet faced the outside and was aligned with the opening of the tube. The pellet fitted 

inside the tube tightly, such that there was no leakage of the solvent to the inside of the 

tube as confirmed by many repeated experiments. The tube was then attached to a PINE 

Research rotating disk electrode, where the gold-painted side of the pellet was connected 

to a copper wire, as shown in Figure S2. 

Measurements of OER activity 

Electrocatalytic activity measurements were carried out on an electrochemical workstation 

in a three-electrode glass cell system. A glassy carbon electrode coated with the catalyst or 

the pure disk of the catalytic material were used as the working electrode. A commercial 

platinum electrode was used as the counter electrode. Ag/AgCl (in 3 M NaCl) was used as 

reference electrode and was calibrated against standard hydrogen electrode prior to use. 

The potential obtained versus Ag/AgCl electrode (EAg/AgCl) was converted to potential 

versus reversible hydrogen electrode (ERHE) according to the Nernst equation: 

ERHE = EAg/AgCl + 0.059 pH + E⁰Ag/AgCl 

where E⁰Ag/AgCl is the potential of the Ag/AgCl electrode versus RHE. 

Before starting each measurement, 0.1 M KOH electrolyte was bubbled with oxygen for at 

least 30 min. The cyclic voltammetry (CV) profiles were recorded at a scan rate of 10 mV 

s−1 from 0 to 1.85 V vs RHE using a rotating disk electrode, which was continuously rotated 

at 1600 rpm. 
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Figure S1. Rietveld refinement profiles using powder X-ray diffraction for (a) Ca2Fe2O6-

δ, space group Pnma, (b) CaSrFe2O6-δ, space group Ibm2, and (c) Sr2Fe2O6-δ, space group 

I4/mmm. Black symbols are the experimental data, red line represents the model, vertical 

tick marks show Bragg peak positions, and the lower blue line represents the difference 

plot. 

Figure S2. (a) The setup for testing the OER activity of catalysts disks, without glassy 

carbon electrode. (b) The entire measurement setup. 
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Figure S3. Cyclic voltammetry in non-faradic region to obtain double layer capacitance 

(Figure 12.4) for the three compounds (a) Ca2Fe2O6-δ, (b) CaSrFe2O6-δ, and (c) Sr2Fe2O6-

δ.   
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Figure S4. Polarization curve for Sr2Fe2O6-δ, obtained using the conventional glassy carbon 

setup, and with the addition of carbon black to the catalyst. Comparison to Figure 12.2 

indicates that carbon black does not improve the OER activity.  

Figure S5. Tafel slopes for BSCF and RuO2. 
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Figure S6. Plot of Δj = janodic –  jcathodic as a function of scan rate for (a) BSCF and (b) 

RuO2. The Cdl for each material is equivalent to half of the slope. 

Table S1. The refined structural parameters for Ca2Fe2O6-δ from powder X-ray diffraction. 

Space group: Pnma, a = 5.40238(5), b = 14.7018(1), c = 5.57261(5), Rp = 0.013, wRp = 

0.018, χ2 = 1.941 

Elements x y z occupancy Uiso 

Ca 0.4807(5) 0.1080(1) 0.0248(4) 1 0.0281(9)     

Fe1 0.0 0.0 0.0    1 0.027(1)     

Fe2 -0.0551(6)   0.25 -0.0670(4) 1 0.030(1)     

O1 0.261(3)    -0.0154(3) 0.234(1) 1 0.021(1) 

O2 0.0297(1)    0.1423(3)    0.0773(8) 1 0.021(1) 

O3 0.6084(2)     0.25 -0.124(2)    1 0.021(1) 
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Table S2. The refined structural parameters for CaSrFe2O6-δ from powder X-ray 

diffraction. Space group: Ibm2, a = 5.6313(4), b = 15.181(1), c = 5.4695(4), Rp = 0.018, 

wRp = 0.026, χ2 = 1.604 

Elements x y z occupancy Uiso 

Ca 0.5127(5) 0.1109(1) 0.008(4) 0.5 0.015(1) 

Sr 0.5127(5) 0.1109(1) 0.008(4) 0.5 0.015(1)    

Fe1 0.0 0.0 0.0    1 0.022(2)     

Fe2 0.0760(7)   0.25 -0.004(7) 1 0.013(2)     

O1 0.229(4)   0.0069(6) 0.292(5) 1 0.014(3) 

O2 -0.082(1)   0.149(5)    0.001(8) 1 0.014(3) 

O3 0.382(3)     0.25 0.887(7)   1 0.014(3) 

Table S3. The refined structural parameters for Sr2Fe2O6-δ from powder X-ray diffraction. 

Space group: I4/mmm, a = 10.9345(7), b = 10.9345(7), c = 7.6988(5), Rp = 0.022, wRp = 

0.031, χ2 = 1.505 

Elements x y z occupancy Uiso 

Sr1 0.2561(7) 0.0 0.0 1 0.026(2) 

Sr2 0.2488(7) 0.0 0.5 1 0.041(3) 

Fe1 0.0 0.0 0.25 1 0.061(9) 

Fe2 0.25 0.25 0.25 1 0.023(3) 

Fe3 0.5 0.0 0.25 1 0.042(8) 

O1 0.0 0.0 0.25 1 0.024(2) 

O2 0.124(2) 0.124(2) 0.208(2) 1 0.024(2) 

O3 0.250(2) 0.250(2) 0.5 1 0.024(2) 

O4 0.131(2) 0.631(2) 0.25 1 0.024(2) 

O5 0.5 0.0 0.0 1 0.024(2) 
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